51
|
Fu L, Wang Y, Fang H, Xiao X, Xiao T, Li Y, Li C, Wu Q, Chu K, Xiao C, Ke X. Longitudinal Study of Brain Asymmetries in Autism and Developmental Delays Aged 2–5 Years. Neuroscience 2020; 432:137-149. [DOI: 10.1016/j.neuroscience.2020.02.028] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 02/16/2020] [Accepted: 02/18/2020] [Indexed: 12/24/2022]
|
52
|
Federici A, Parma V, Vicovaro M, Radassao L, Casartelli L, Ronconi L. Anomalous Perception of Biological Motion in Autism: A Conceptual Review and Meta-Analysis. Sci Rep 2020; 10:4576. [PMID: 32165647 PMCID: PMC7067769 DOI: 10.1038/s41598-020-61252-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 01/31/2020] [Indexed: 12/31/2022] Open
Abstract
Despite its popularity, the construct of biological motion (BM) and its putative anomalies in autism spectrum disorder (ASD) are not completely clarified. In this article, we present a meta-analysis investigating the putative anomalies of BM perception in ASD. Through a systematic literature search, we found 30 studies that investigated BM perception in both ASD and typical developing peers by using point-light display stimuli. A general meta-analysis including all these studies showed a moderate deficit of individuals with ASD in BM processing, but also a high heterogeneity. This heterogeneity was explored in different additional meta-analyses where studies were grouped according to levels of complexity of the BM task employed (first-order, direct and instrumental), and according to the manipulation of low-level perceptual features (spatial vs. temporal) of the control stimuli. Results suggest that the most severe deficit in ASD is evident when perception of BM is serving a secondary purpose (e.g., inferring intentionality/action/emotion) and, interestingly, that temporal dynamics of stimuli are an important factor in determining BM processing anomalies in ASD. Our results question the traditional understanding of BM anomalies in ASD as a monolithic deficit and suggest a paradigm shift that deconstructs BM into distinct levels of processing and specific spatio-temporal subcomponents.
Collapse
Affiliation(s)
- Alessandra Federici
- Child Psychopathology Unit, Theoretical and Cognitive Neuroscience Group, Scientific Institute IRCCS E. Medea, Bosisio Parini, Lecco, Italy
- MoMiLab Research Unit, IMT School of Advanced Studies Lucca, Lucca, Italy
| | - Valentina Parma
- International School for Advanced Studies (SISSA), Trieste, Italy
- Department of Psychology, Temple University, Philadelphia, PA, United States
| | - Michele Vicovaro
- Department of General Psychology, University of Padova, Padova, Italy
| | - Luca Radassao
- International School for Advanced Studies (SISSA), Trieste, Italy
| | - Luca Casartelli
- Child Psychopathology Unit, Theoretical and Cognitive Neuroscience Group, Scientific Institute IRCCS E. Medea, Bosisio Parini, Lecco, Italy.
| | - Luca Ronconi
- Child Psychopathology Unit, Theoretical and Cognitive Neuroscience Group, Scientific Institute IRCCS E. Medea, Bosisio Parini, Lecco, Italy.
- School of Psychology, Vita-Salute San Raffaele University, Milan, Italy.
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.
| |
Collapse
|
53
|
Li A, Rao X, Zhou Y, Restrepo D. Complex neural representation of odour information in the olfactory bulb. Acta Physiol (Oxf) 2020; 228:e13333. [PMID: 31188539 PMCID: PMC7900671 DOI: 10.1111/apha.13333] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 05/29/2019] [Accepted: 05/30/2019] [Indexed: 12/20/2022]
Abstract
The most important task of the olfactory system is to generate a precise representation of odour information under different brain and behavioural states. As the first processing stage in the olfactory system and a crucial hub, the olfactory bulb plays a key role in the neural representation of odours, encoding odour identity, intensity and timing. Although the neural circuits and coding strategies used by the olfactory bulb for odour representation were initially identified in anaesthetized animals, a large number of recent studies focused on neural representation of odorants in the olfactory bulb in awake behaving animals. In this review, we discuss these recent findings, covering (a) the neural circuits for odour representation both within the olfactory bulb and the functional connections between the olfactory bulb and the higher order processing centres; (b) how related factors such as sniffing affect and shape the representation; (c) how the representation changes under different states; and (d) recent progress on the processing of temporal aspects of odour presentation in awake, behaving rodents. We highlight discussion of the current views and emerging proposals on the neural representation of odorants in the olfactory bulb.
Collapse
Affiliation(s)
- Anan Li
- Jiangsu Key laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, 221004, China
| | - Xiaoping Rao
- Center of Brain Science, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological systems, Wuhan institute of Physics and Mathematics, Chinese Academy of Science, Wuhan, 430072, China
| | - Yang Zhou
- Jiangsu Key laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, 221004, China
| | - Diego Restrepo
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
54
|
Quintana P, Nolet K, Baus O, Bouchard S. The Effect of Exposure to Fear-Related Body Odorants on Anxiety and Interpersonal Trust Toward a Virtual Character. Chem Senses 2019; 44:683-692. [DOI: 10.1093/chemse/bjz063] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Abstract
A growing body of literature documents how exposure to another person's fear-related body odorants can increase one's own anxiety and interfere with processing of social information, such as facial expression and impression formation. Building on these results, we aimed to 1) test the hypothesis that exposure to fear-related odorant would affect impression formation through fear contagion and 2) verify whether these effects can be observed in an ecologically valid (i.e., virtual) environment. We proposed that exposure to fear-related odorant would cause receivers to feel more anxious, which in turn would lead them to report less trust toward an unknown virtual character. This study had 2 distinct phases. First, we collected perspiration odorants from the armpits of 12 male senders (i.e., the source of the odorant) during the viewing of either fear or joy inducing film clips. In the second phase, 53 women receivers were exposed to either a fear, joy, or neutral odorant (i.e., between-subjects design) by breathing through a gauze attached to a disposable respirator mask while immersed in a virtual bar. As expected, receivers exposed to fear odorants felt significantly more stressed. Mediation analysis also revealed an indirect effect of exposure on trust through anxiety. More specifically, the more anxious the receiver felt, the less she trusted the virtual character. Our results show for the first time that the impact of exposure to fear-related body odorants on negative interpersonal impression formation is mediated by the anxiety induced in the receiver.
Collapse
Affiliation(s)
- Pamela Quintana
- Département de psychoéducation et de psychologie, University of Quebec in Outaouais (UQO), Gatineau, Quebec, Canada
| | - Kévin Nolet
- Département de psychoéducation et de psychologie, University of Quebec in Outaouais (UQO), Gatineau, Quebec, Canada
| | - Oliver Baus
- School of psychology, University of Ottawa, Ontario, Canada
| | - Stéphane Bouchard
- Département de psychoéducation et de psychologie, University of Quebec in Outaouais (UQO), Gatineau, Quebec, Canada
| |
Collapse
|
55
|
van Nieuwenburg D, de Groot JHB, Smeets MAM. The Subtle Signaling Strength of Smells: A Masked Odor Enhances Interpersonal Trust. Front Psychol 2019; 10:1890. [PMID: 31481913 PMCID: PMC6710396 DOI: 10.3389/fpsyg.2019.01890] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 07/31/2019] [Indexed: 12/22/2022] Open
Abstract
Most everyday smells, from lavender to body odors, are complex odorant mixtures that “host” particular compounds that guide (social) behavior and motivation (biomarkers). A key element of social behavior is interpersonal trust, and building on previous research showing that (i) lavender odor can enhance trust, and that (ii) certain compounds in body odor can reduce stress in mice and humans (called “social buffering”), we examined whether a grassy-smelling compound found in both body odors and lavender, hexanal, would enhance interpersonal trust. Notably, we applied odor masking to explore whether trust could be influenced subconsciously by masked (i.e., undetectable) hexanal. In Study 1 (between-subjects), 90 females played a Trust Game while they either smelled hexanal (0.01% v/v), clove odor (eugenol: 10% v/v), or hexanal masked by clove odor (a mix of the former). As a sign of higher trust, participants gave more money to a trustee while exposed to masked hexanal (vs. the mask: eugenol). In Study 2 (within-subjects, double-blind), another sample of 35 females smelled the same three odors, while they rated the trustworthiness of a spectrum of faces that varied on trustworthiness. Controlling for subjective odor intensity and pleasantness and substantiating that masked hexanal could not be distinguished from the mask, faces were perceived as more trustworthy during exposure to masked hexanal (vs. the mask: eugenol). Whereas non-masked hexanal also increased face trustworthiness ratings, these effects disappeared after controlling for the odor’s subjective intensity and pleasantness. The combined results bring new evidence that trust can be enhanced implicitly via undetected smells.
Collapse
Affiliation(s)
- Daan van Nieuwenburg
- Department of Psychology, Faculty of Social and Behavioral Sciences, Utrecht University, Utrecht, Netherlands
| | - Jasper H B de Groot
- Department of Psychology, Faculty of Social and Behavioral Sciences, Utrecht University, Utrecht, Netherlands.,Department of Neurology, University of Pennsylvania, Philadelphia, PA, United States
| | - Monique A M Smeets
- Department of Psychology, Faculty of Social and Behavioral Sciences, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
56
|
Zhou G, Lane G, Cooper SL, Kahnt T, Zelano C. Characterizing functional pathways of the human olfactory system. eLife 2019; 8:47177. [PMID: 31339489 PMCID: PMC6656430 DOI: 10.7554/elife.47177] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 07/09/2019] [Indexed: 11/23/2022] Open
Abstract
The central processing pathways of the human olfactory system are not fully understood. The olfactory bulb projects directly to a number of cortical brain structures, but the distinct networks formed by projections from each of these structures to the rest of the brain have not been well-defined. Here, we used functional magnetic resonance imaging and k-means clustering to parcellate human primary olfactory cortex into clusters based on whole-brain functional connectivity patterns. Resulting clusters accurately corresponded to anterior olfactory nucleus, olfactory tubercle, and frontal and temporal piriform cortices, suggesting dissociable whole-brain networks formed by the subregions of primary olfactory cortex. This result was replicated in an independent data set. We then characterized the unique functional connectivity profiles of each subregion, producing a map of the large-scale processing pathways of the human olfactory system. These results provide insight into the functional and anatomical organization of the human olfactory system.
Collapse
Affiliation(s)
- Guangyu Zhou
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, United States
| | - Gregory Lane
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, United States
| | - Shiloh L Cooper
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, United States
| | - Thorsten Kahnt
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, United States.,Department of Psychology, Weinberg College of Arts and Sciences, Northwestern University, Evanston, United States
| | - Christina Zelano
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, United States
| |
Collapse
|
57
|
Koehler L, Fournel A, Albertowski K, Roessner V, Gerber J, Hummel C, Hummel T, Bensafi M. Impaired Odor Perception in Autism Spectrum Disorder Is Associated with Decreased Activity in Olfactory Cortex. Chem Senses 2019; 43:627-634. [PMID: 30219913 DOI: 10.1093/chemse/bjy051] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Autism Spectrum Disorders (ASDs) are characterized by atypical sensory functioning in the visual, tactile, and auditory systems. Although less explored, olfactory changes have been reported in ASD patients. To explore these changes on a neural level, 18 adults with ASD and 18 healthy neurotypical controls were examined in a 2-phase study. Participants were first tested for odor threshold and odor identification. Then, (i) structural magnetic resonance (MR) images of the olfactory bulb were acquired, and (ii) a functional MR imaging olfaction study was conducted. ASD patients exhibited decreased function for odor thresholds and odor identification; this was accompanied by a relatively decreased activation in the piriform cortex. In conclusion, these findings suggest, that the known alterations in olfaction in ASD are rooted in the primary olfactory cortex.
Collapse
Affiliation(s)
- L Koehler
- Smell & Taste Clinic, Department of Otorhinolaryngology, "Technische Universität Dresden," Fetscherstraße, Dresden, Germany
| | - A Fournel
- CNRS, UMR5292, Lyon Neuroscience Research Center, University Lyon, France
| | - K Albertowski
- Department of Child and Adolescent Psychiatry and Psychotherapy, "Technische Universität Dresden," Fetscherstraße, Dresden, Germany
| | - V Roessner
- Department of Child and Adolescent Psychiatry and Psychotherapy, "Technische Universität Dresden," Fetscherstraße, Dresden, Germany
| | - J Gerber
- Department of Neuroradiology, "Technische Universität Dresden," Fetscherstraße, Dresden, Germany
| | - C Hummel
- Smell & Taste Clinic, Department of Otorhinolaryngology, "Technische Universität Dresden," Fetscherstraße, Dresden, Germany
| | - T Hummel
- Smell & Taste Clinic, Department of Otorhinolaryngology, "Technische Universität Dresden," Fetscherstraße, Dresden, Germany
| | - M Bensafi
- CNRS, UMR5292, Lyon Neuroscience Research Center, University Lyon, France
| |
Collapse
|
58
|
A Neuroanatomical Substrate Linking Perceptual Stability to Cognitive Rigidity in Autism. J Neurosci 2019; 39:6540-6554. [PMID: 31213484 PMCID: PMC6697400 DOI: 10.1523/jneurosci.2831-18.2019] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Revised: 04/15/2019] [Accepted: 05/21/2019] [Indexed: 01/30/2023] Open
Abstract
Overly stable visual perception seen in individuals with autism spectrum disorder (ASD) is related to higher-order core symptoms of the condition. However, the neural basis by which these seemingly different symptoms are simultaneously observed in individuals with ASD remains unclear. Here, we aimed to identify such a neuroanatomical substrate linking perceptual stability to autistic cognitive rigidity, a part of core restricted, repetitive behaviors (RRBs). First, using a bistable visual perception test, we measured the perceptual stability of 22 high-functioning adults with ASD and 22 age-, IQ-, and sex-matched typically developing human individuals and confirmed overstable visual perception in autism. Next, using a spontaneous task-switching (TS) test, we showed that the individuals with ASD were more likely to repeat the same task voluntarily and spontaneously, and such rigid TS behavior was associated with the severity of their RRB symptoms. We then compared these perceptual and cognitive behaviors and found a significant correlation between them for individuals with ASD. Finally, we found that this behavioral link was supported by a smaller gray matter volume (GMV) of the posterior superior parietal lobule (pSPL) in individuals with ASD. Moreover, this smaller GMV in the pSPL was also associated with the RRB symptoms and replicated in two independent datasets. Our findings suggest that the pSPL could be one of the neuroanatomical mediators of cognitive and perceptual inflexibility in autism, which could help a unified biological understanding of the mechanisms underpinning diverse symptoms of this developmental disorder.SIGNIFICANCE STATEMENT Behavioral studies show perceptual overstability in autism spectrum disorder (ASD). However, the neural mechanisms by which such sensory symptoms can coexist and often correlate with seemingly separate core symptoms remain unknown. Here, we have identified such a key neuroanatomical substrate. We have revealed that overstable sensory perception of individuals with ASD is linked with their cognitive rigidity, a part of core restricted, repetitive behavior symptoms, and such a behavioral link is underpinned by a smaller gray matter volume in the posterior superior parietal lobule in autism. These findings uncover a key neuroanatomical mediator of autistic perceptual and cognitive inflexibility and would ignite future studies on how the core symptoms of ASD interact with its unique sensory perception.
Collapse
|
59
|
|
60
|
Tonacci A, Calderoni S, Billeci L, Maestro S, Fantozzi P, Ciuccoli F, Morales MA, Narzisi A, Muratori F. Autistic traits impact on olfactory processing in adolescent girls with Anorexia Nervosa restricting type. Psychiatry Res 2019; 274:20-26. [PMID: 30776708 DOI: 10.1016/j.psychres.2019.02.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 01/03/2019] [Accepted: 02/11/2019] [Indexed: 10/27/2022]
Abstract
The correct functioning of the chemosensory pathway is pivotal for the attitude towards feeding. In some neuropsychiatric disorders, abnormalities of the sensory processing dramatically affect feeding behavior; however, evidences for an olfactory involvement in Anorexia Nervosa (AN) are still controversial. We administered a complete olfactory testing battery, the Sniffin' Sticks Extended Test, to a cohort of 19 girls with Restrictive Anorexia Nervosa (AN-R) and 19 healthy controls. A battery of questionnaires aiming to evaluate eating attitude, psychopathologic disorders and autistic traits was also administered. No difference was found between the two groups in any of the olfactory tasks. Despite the lack of correlation between olfaction and disease severity, however, olfactory performances were related to autistic traits in anorectic girls (r = -0.489, p = 0.039). Girls with AN-R do not appear to have an impaired olfactory function with respect to controls. However, a possible correlation between olfactory ability and autistic traits was discovered. In light of such findings, the role of possible relations between social functioning-related features and olfactory processing in AN-R is discussed.
Collapse
Affiliation(s)
- Alessandro Tonacci
- Institute of Clinical Physiology, National Research Council of Italy (CNR), Pisa, Italy
| | - Sara Calderoni
- IRCCS Fondazione Stella Maris, Pisa, Italy; Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy.
| | - Lucia Billeci
- Institute of Clinical Physiology, National Research Council of Italy (CNR), Pisa, Italy
| | | | | | | | - Maria Aurora Morales
- Institute of Clinical Physiology, National Research Council of Italy (CNR), Pisa, Italy
| | | | - Filippo Muratori
- IRCCS Fondazione Stella Maris, Pisa, Italy; Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| |
Collapse
|
61
|
Huang TN, Yen TL, Qiu LR, Chuang HC, Lerch JP, Hsueh YP. Haploinsufficiency of autism causative gene Tbr1 impairs olfactory discrimination and neuronal activation of the olfactory system in mice. Mol Autism 2019; 10:5. [PMID: 30792833 PMCID: PMC6371489 DOI: 10.1186/s13229-019-0257-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 01/25/2019] [Indexed: 12/21/2022] Open
Abstract
Background Autism spectrum disorders (ASD) exhibit two clusters of core symptoms, i.e., social and communication impairment, and repetitive behaviors and sensory abnormalities. Our previous study demonstrated that TBR1, a causative gene of ASD, controls axonal projection and neuronal activation of amygdala and regulates social interaction and vocal communication in a mouse model. Behavioral defects caused by Tbr1 haploinsufficiency can be ameliorated by increasing neural activity via D-cycloserine treatment, an N-methyl-D-aspartate receptor (NMDAR) coagonist. In this report, we investigate the role of TBR1 in regulating olfaction and test whether D-cycloserine can also improve olfactory defects in Tbr1 mutant mice. Methods We used Tbr1+/− mice as a model to investigate the function of TBR1 in olfactory sensation and discrimination of non-social odors. We employed a behavioral assay to characterize the olfactory defects of Tbr1+/− mice. Magnetic resonance imaging (MRI) and histological analysis were applied to characterize anatomical features. Immunostaining was performed to further analyze differences in expression of TBR1 subfamily members (namely TBR1, TBR2, and TBX21), interneuron populations, and dendritic abnormalities in olfactory bulbs. Finally, C-FOS staining was used to monitor neuronal activation of the olfactory system upon odor stimulation. Results Tbr1+/− mice exhibited smaller olfactory bulbs and anterior commissures, reduced interneuron populations, and an abnormal dendritic morphology of mitral cells in the olfactory bulbs. Tbr1 haploinsufficiency specifically impaired olfactory discrimination but not olfactory sensation. Neuronal activation upon odorant stimulation was reduced in the glomerular layer of Tbr1+/− olfactory bulbs. Furthermore, although the sizes of piriform and perirhinal cortices were not affected by Tbr1 deficiency, neuronal activation was reduced in these two cortical regions in response to odorant stimulation. These results suggest an impairment of neuronal activation in olfactory bulbs and defective connectivity from olfactory bulbs to the upper olfactory system in Tbr1+/− mice. Systemic administration of D-cycloserine, an NMDAR co-agonist, ameliorated olfactory discrimination in Tbr1+/− mice, suggesting that increased neuronal activity has a beneficial effect on Tbr1 deficiency. Conclusions Tbr1 regulates neural circuits and activity in the olfactory system to control olfaction. Tbr1+/− mice can serve as a suitable model for revealing how an autism causative gene controls neuronal circuits, neural activity, and autism-related behaviors. Electronic supplementary material The online version of this article (10.1186/s13229-019-0257-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tzyy-Nan Huang
- 1Institute of Molecular Biology, Academia Sinica, 128, Academia Rd., Sec. 2, Taipei, 11529 Taiwan
| | - Tzu-Li Yen
- 1Institute of Molecular Biology, Academia Sinica, 128, Academia Rd., Sec. 2, Taipei, 11529 Taiwan
| | - Lily R Qiu
- 2Mouse Imaging Centre, Hospital for Sick Children, Toronto, Canada
| | - Hsiu-Chun Chuang
- 1Institute of Molecular Biology, Academia Sinica, 128, Academia Rd., Sec. 2, Taipei, 11529 Taiwan.,4Present address: Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720 USA
| | - Jason P Lerch
- 2Mouse Imaging Centre, Hospital for Sick Children, Toronto, Canada.,3Department of Medical Biophysics, The University of Toronto, Toronto, Canada
| | - Yi-Ping Hsueh
- 1Institute of Molecular Biology, Academia Sinica, 128, Academia Rd., Sec. 2, Taipei, 11529 Taiwan
| |
Collapse
|
62
|
Ye Y, Zhuang Y, Smeets MAM, Zhou W. Human chemosignals modulate emotional perception of biological motion in a sex-specific manner. Psychoneuroendocrinology 2019; 100:246-253. [PMID: 30390523 DOI: 10.1016/j.psyneuen.2018.10.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 09/15/2018] [Accepted: 10/17/2018] [Indexed: 01/05/2023]
Abstract
Androsta-4,16,-dien-3-one and estra-1,3,5(10),16-tetraen-3-ol have previously been shown to communicate opposite sex information that is differently effective to the two sex groups. The current study critically examines if the two human steroids could facilitate interactions with potential mates rather than competitors by acting on the recipients' emotional perception in a sex-appropriate manner. Using dynamic point-light displays that portray the gaits of walkers whose emotional states are digitally morphed along the valence and the arousal axes, we show that smelling androstadienone subconsciously biases heterosexual women, but not men, towards perceiving the male, but not female, walkers as happier and more relaxed. By contrast, smelling estratetraenol subconsciously biases heterosexual men, but not women, towards perceiving the female, but not male, walkers as happier and more relaxed. These findings indicate that androstadienone and estratetraenol prime the identification of emotionally receptive states for the potential mates with whom they are associated, in manners contingent upon not only the recipients' own sex but also their sex perception of other individuals that ensure sex-appropriate behavior.
Collapse
Affiliation(s)
- Yuting Ye
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuan Zhuang
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Monique A M Smeets
- Unilever R&D, Vlaardingen, 3133 AT, The Netherlands; Department of Social, Health & Organizational Psychology, Utrecht University, Utrecht, 3584 CS, The Netherlands
| | - Wen Zhou
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
63
|
Vahaba DM, Remage-Healey L. Neuroestrogens rapidly shape auditory circuits to support communication learning and perception: Evidence from songbirds. Horm Behav 2018; 104:77-87. [PMID: 29555375 PMCID: PMC7025793 DOI: 10.1016/j.yhbeh.2018.03.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 03/15/2018] [Accepted: 03/15/2018] [Indexed: 12/19/2022]
Abstract
Contribution to Special Issue on Fast effects of steroids. Steroid hormones, such as estrogens, were once thought to be exclusively synthesized in the ovaries and enact transcriptional changes over the course of hours to days. However, estrogens are also locally synthesized within neural circuits, wherein they rapidly (within minutes) modulate a range of behaviors, including spatial cognition and communication. Here, we review the role of brain-derived estrogens (neuroestrogens) as modulators within sensory circuits in songbirds. We first present songbirds as an attractive model to explore how neuroestrogens in auditory cortex modulate vocal communication processing and learning. Further, we examine how estrogens may enhance vocal learning and auditory memory consolidation in sensory cortex via mechanisms similar to those found in the hippocampus of rodents and birds. Finally, we propose future directions for investigation, including: 1) the extent of developmental and hemispheric shifts in aromatase and membrane estrogen receptor expression in auditory circuits; 2) how neuroestrogens may impact inhibitory interneurons to regulate audition and critical period plasticity; and, 3) dendritic spine plasticity as a candidate mechanism mediating estrogen-dependent effects on vocal learning. Together, this perspective of estrogens as neuromodulators in the vertebrate brain has opened new avenues in understanding sensory plasticity, including how hormones can act on communication circuits to influence behaviors in other vocal learning species, such as in language acquisition and speech processing in humans.
Collapse
Affiliation(s)
- Daniel M Vahaba
- Neuroscience and Behavior Program, Center for Neuroendocrine Studies, University of Massachusetts Amherst, Amherst, MA 01003, United States
| | - Luke Remage-Healey
- Neuroscience and Behavior Program, Center for Neuroendocrine Studies, University of Massachusetts Amherst, Amherst, MA 01003, United States.
| |
Collapse
|
64
|
Zhao H, Jiang YH, Zhang YQ. Modeling autism in non-human primates: Opportunities and challenges. Autism Res 2018; 11:686-694. [PMID: 29573234 PMCID: PMC6188783 DOI: 10.1002/aur.1945] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 02/26/2018] [Accepted: 02/26/2018] [Indexed: 12/18/2022]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by social communication deficits and restricted, repetitive patterns of behavior. For more than a decade, genetically-modified, risk factor-induced, as well as naturally occurring rodent models for ASD have been used as the most predominant tools to dissect the molecular and circuitry mechanisms underlying ASD. However, the apparent evolutionary differences in terms of social behavior and brain anatomy between rodents and humans have become an issue of debate regarding the translational value of rodent models for studying ASD. More recently, genome manipulation of non human primates using lentivirus-based gene expression, TALEN and CRISPR/Cas9 mediated gene editing techniques, has been reported. Genetically modified non-human primate models for ASD have been produced and characterized. While the feasibility, value, and exciting opportunities provided by the non-human primate models have been clearly demonstrated, many challenges still remain. Here, we review current progress, discuss the remaining challenges, and highlight the key issues in the development of non-human primate models for ASD research and drug development. Autism Res 2018, 11: 686-694. © 2018 International Society for Autism Research, Wiley Periodicals, Inc. LAY SUMMARY Over the last two decades, genetically modified rat and mouse models have been used as the most predominant tools to study mechanisms underlying autism spectrum disorder (ASD). However, the apparent evolutionary differences between rodents and humans limit the translational value of rodent models for studying ASD. Recently, several non-human primate models for ASD have been established and characterized. Here, we review current progress, discuss the challenges, and highlight the key issues in the development of non-human primate models for ASD research and drug development.
Collapse
Affiliation(s)
- Hui Zhao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yong-Hui Jiang
- Department of Pediatrics and Department of Neurobiology, Duke University, Durham, North Carolina, 27710
| | - Yong Q Zhang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
65
|
Neurodevelopmental disorders: Misreading social smells. Nat Rev Neurosci 2017; 19:2-3. [PMID: 29213136 DOI: 10.1038/nrn.2017.157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|