51
|
Choltus H, Lavergne M, De Sousa Do Outeiro C, Coste K, Belville C, Blanchon L, Sapin V. Pathophysiological Implication of Pattern Recognition Receptors in Fetal Membranes Rupture: RAGE and NLRP Inflammasome. Biomedicines 2021; 9:biomedicines9091123. [PMID: 34572309 PMCID: PMC8466405 DOI: 10.3390/biomedicines9091123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 12/28/2022] Open
Abstract
Preterm prelabor ruptures of fetal membranes (pPROM) are a pregnancy complication responsible for 30% of all preterm births. This pathology currently appears more as a consequence of early and uncontrolled process runaway activation, which is usually implicated in the physiologic rupture at term: inflammation. This phenomenon can be septic but also sterile. In this latter case, the inflammation depends on some specific molecules called “alarmins” or “damage-associated molecular patterns” (DAMPs) that are recognized by pattern recognition receptors (PRRs), leading to a microbial-free inflammatory response. Recent data clarify how this activation works and which receptor translates this inflammatory signaling into fetal membranes (FM) to manage a successful rupture after 37 weeks of gestation. In this context, this review focused on two PRRs: the receptor for advanced glycation end-products (RAGE) and the NLRP7 inflammasome.
Collapse
Affiliation(s)
- Helena Choltus
- CNRS, INSERM, GReD, Université Clermont Auvergne, 63000 Clermont-Ferrand, France; (H.C.); (M.L.); (C.D.S.D.O.); (K.C.); (C.B.); (L.B.)
| | - Marilyne Lavergne
- CNRS, INSERM, GReD, Université Clermont Auvergne, 63000 Clermont-Ferrand, France; (H.C.); (M.L.); (C.D.S.D.O.); (K.C.); (C.B.); (L.B.)
| | - Coraline De Sousa Do Outeiro
- CNRS, INSERM, GReD, Université Clermont Auvergne, 63000 Clermont-Ferrand, France; (H.C.); (M.L.); (C.D.S.D.O.); (K.C.); (C.B.); (L.B.)
| | - Karen Coste
- CNRS, INSERM, GReD, Université Clermont Auvergne, 63000 Clermont-Ferrand, France; (H.C.); (M.L.); (C.D.S.D.O.); (K.C.); (C.B.); (L.B.)
| | - Corinne Belville
- CNRS, INSERM, GReD, Université Clermont Auvergne, 63000 Clermont-Ferrand, France; (H.C.); (M.L.); (C.D.S.D.O.); (K.C.); (C.B.); (L.B.)
| | - Loïc Blanchon
- CNRS, INSERM, GReD, Université Clermont Auvergne, 63000 Clermont-Ferrand, France; (H.C.); (M.L.); (C.D.S.D.O.); (K.C.); (C.B.); (L.B.)
| | - Vincent Sapin
- CNRS, INSERM, GReD, Université Clermont Auvergne, 63000 Clermont-Ferrand, France; (H.C.); (M.L.); (C.D.S.D.O.); (K.C.); (C.B.); (L.B.)
- CHU de Clermont-Ferrand, Biochemistry and Molecular Genetic Department, 63000 Clermont-Ferrand, France
- Correspondence: ; Tel.: +33-473-178-174
| |
Collapse
|
52
|
Hashimoto A, Sugiura K, Hoshino A. Impact of exosome-mediated feto-maternal interactions on pregnancy maintenance and development of obstetric complications. J Biochem 2021; 169:163-171. [PMID: 33231644 DOI: 10.1093/jb/mvaa137] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 11/09/2020] [Indexed: 01/08/2023] Open
Abstract
Pregnancy is an immunological paradox, a phenomenon in which the foetus and the placenta, containing foreign antigens to the mother, develop without inducing rejection by the maternal immune system. Cell-to-cell communication between the foetus and the mother is mediated by secreted factors such as cytokines, hormones and extracellular vesicles (EVs) for a successful pregnancy and to avoid rejection. Exosomes, the smallest of EVs, are released extracellularly, where they are taken up by proximal or distant recipient cells. Here, we discuss the role of EVs, especially exosomes in feto-maternal communication during pregnancy. This review will provide an overview of the functional roles exosomes may play during embryo implantation, modulating immune responses during pregnancy and the onset of labour. Moreover, we will discuss exosomal function in obstetric pathology, and the development of pregnancy-associated complications such as preeclampsia and preterm birth as well as the biomarker potential of exosomes for detecting such conditions.
Collapse
Affiliation(s)
- Ayako Hashimoto
- School of Life Science and Technology, Tokyo Institute of Technology, Nagatsuta-cho 4259, Midori-ku, Yokohama-shi, Kanagawa 226-8501, Japan.,Department of Obstetrics and Gynecology, Faculty of Medicine, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Kei Sugiura
- School of Life Science and Technology, Tokyo Institute of Technology, Nagatsuta-cho 4259, Midori-ku, Yokohama-shi, Kanagawa 226-8501, Japan.,Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Ayuko Hoshino
- School of Life Science and Technology, Tokyo Institute of Technology, Nagatsuta-cho 4259, Midori-ku, Yokohama-shi, Kanagawa 226-8501, Japan
| |
Collapse
|
53
|
Next generation strategies for preventing preterm birth. Adv Drug Deliv Rev 2021; 174:190-209. [PMID: 33895215 DOI: 10.1016/j.addr.2021.04.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/16/2021] [Accepted: 04/19/2021] [Indexed: 12/22/2022]
Abstract
Preterm birth (PTB) is defined as delivery before 37 weeks of gestation. Globally, 15 million infants are born prematurely, putting these children at an increased risk of mortality and lifelong health challenges. Currently in the U.S., there is only one FDA approved therapy for the prevention of preterm birth. Makena is an intramuscular progestin injection given to women who have experienced a premature delivery in the past. Recently, however, Makena failed a confirmatory trial, resulting the Center for Drug Evaluation and Research's (CDER) recommendation for the FDA to withdrawal Makena's approval. This recommendation would leave clinicians with no therapeutic options for preventing PTB. Here, we outline recent interdisciplinary efforts involving physicians, pharmacologists, biologists, chemists, and engineers to understand risk factors associated with PTB, to define mechanisms that contribute to PTB, and to develop next generation therapies for preventing PTB. These advances have the potential to better identify women at risk for PTB, prevent the onset of premature labor, and, ultimately, save infant lives.
Collapse
|
54
|
Freger S, Leonardi M, Foster WG. Exosomes and their cargo are important regulators of cell function in endometriosis. Reprod Biomed Online 2021; 43:370-378. [PMID: 34272164 DOI: 10.1016/j.rbmo.2021.05.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 05/18/2021] [Accepted: 05/27/2021] [Indexed: 12/16/2022]
Abstract
Endometriosis is a chronic oestrogen-dependent gynaecological disorder characterized by non-menstrual pelvic pain, infertility and the extrauterine growth of endometrial-like glands and stroma. It has been noted that the eutopic endometrium of women with endometriosis is functionally distinct from that of women without endometriosis. Moreover, ectopic endometrial implants are functionally different from the eutopic endometrium of women with endometriosis. However, the mechanisms directing these differences are ill-defined. It is proposed here that small membrane-bound extracellular vesicles called exosomes are important vehicles in the protection and transport of signalling molecules central to the dysregulation of endometrial function in women with endometriosis. Therefore, a critical review of the literature linking exosomes and their cargo to the pathobiology of endometriosis was conducted. Circulating peritoneal fluid and endometrial cell exosomes contained long non-coding RNA, miRNA and proteins involved in histone modification, angiogenesis and immune modulation that differed significantly in women with endometriosis compared with controls. Moreover, experimental evidence supports a role for exosomes and their cargo in angiogenesis, neurogenesis, immune modulation and endometrial stromal cell invasion. It is therefore suggested that exosomes play an important role in the pathophysiology of endometriosis.
Collapse
Affiliation(s)
- Shay Freger
- Department of Obstetrics and Gynecology, McMaster University, Hamilton Ontario L8N 3Z5, Canada
| | - Mathew Leonardi
- Department of Obstetrics and Gynecology, McMaster University, Hamilton Ontario L8N 3Z5, Canada; Sydney Medical School Nepean, University of Sydney, Sydney, Australia
| | - Warren George Foster
- Department of Obstetrics and Gynecology, McMaster University, Hamilton Ontario L8N 3Z5, Canada.
| |
Collapse
|
55
|
Radnaa E, Richardson LS, Sheller-Miller S, Baljinnyam T, de Castro Silva M, Kumar Kammala A, Urrabaz-Garza R, Kechichian T, Kim S, Han A, Menon R. Extracellular vesicle mediated feto-maternal HMGB1 signaling induces preterm birth. LAB ON A CHIP 2021; 21:1956-1973. [PMID: 34008619 PMCID: PMC8162392 DOI: 10.1039/d0lc01323d] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Preterm birth (PTB; <37 weeks of gestation) impacts ∼11% of all pregnancies and contributes to 1 million neonatal deaths worldwide annually. An understanding of the feto-maternal (F-M) signals that initiate birthing (parturition) at term is critical to design strategies to prevent their premature activation, resulting in PTB. Although endocrine and immune cell signaling are well-reported, fetal-derived paracrine signals capable of transitioning quiescent uterus to an active state of labor are poorly studied. Recent reports have suggested that senescence of the fetal amnion membrane coinciding with fetal growth and maturation generates inflammatory signals capable of triggering parturition. This is by increasing the inflammatory load at the feto-maternal interface (FMi) tissues (i.e., amniochorion-decidua). High mobility group box 1 protein (HMGB1), an alarmin, is one of the inflammatory signals released by senescent amnion cells via extracellular vesicles (exosomes; 40-160 nm). Increased levels of HMGB1 in the amniotic fluid, cord and maternal blood are associated with term and PTB. This study tested the hypothesis that senescent amnion cells release HMGB1, which is fetal signaling capable of increasing FMi inflammation, predisposing them to parturition. To test this hypothesis, exosomes from amnion epithelial cells (AECs) grown under normal conditions were engineered to contain HMGB1 by electroporation (eHMGB1). eHMGB1 was characterized (quantity, size, shape, markers and loading efficiency), and its propagation through FMi was tested using a four-chamber microfluidic organ-on-a-chip device (FMi-OOC) that contained four distinct cell types (amnion and chorion mesenchymal, chorion trophoblast and decidual cells) connected through microchannels. eHMGB1 propagated through the fetal cells and matrix to the maternal decidua and increased inflammation (receptor expression [RAGE and TLR4] and cytokines). Furthermore, intra-amniotic injection of eHMGB1 (containing 10 ng) into pregnant CD-1 mice on embryonic day 17 led to PTB. Injecting carboxyfluorescein succinimidyl ester (CFSE)-labeled eHMGB1, we determined in vivo kinetics and report that eHMGB1 trafficking resulting in PTB was associated with increased FMi inflammation. This study determined that fetal exosome mediated paracrine signaling can generate inflammation and induce parturition. Besides, in vivo functional validation of FMi-OOC experiments strengthens the reliability of such devices to test physiologic and pathologic systems.
Collapse
Affiliation(s)
- Enkhtuya Radnaa
- Division of Maternal-Fetal Medicine and Perinatal Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, 301 University Blvd., Galveston, TX 77555-1062, USA.
| | - Lauren S Richardson
- Division of Maternal-Fetal Medicine and Perinatal Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, 301 University Blvd., Galveston, TX 77555-1062, USA. and Department of Electrical and Computer Engineering, Department of Biomedical Engineering, Texas A&M University, College Station, Texas, USA
| | - Samantha Sheller-Miller
- Division of Maternal-Fetal Medicine and Perinatal Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, 301 University Blvd., Galveston, TX 77555-1062, USA.
| | - Tuvshintugs Baljinnyam
- Department of Pharmacology and Toxicology, The University of Texas Medical Branch at Galveston, Galveston, Texas, USA
| | - Mariana de Castro Silva
- Division of Maternal-Fetal Medicine and Perinatal Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, 301 University Blvd., Galveston, TX 77555-1062, USA.
| | - Ananth Kumar Kammala
- Division of Maternal-Fetal Medicine and Perinatal Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, 301 University Blvd., Galveston, TX 77555-1062, USA.
| | - Rheanna Urrabaz-Garza
- Division of Maternal-Fetal Medicine and Perinatal Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, 301 University Blvd., Galveston, TX 77555-1062, USA.
| | - Talar Kechichian
- Division of Maternal-Fetal Medicine and Perinatal Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, 301 University Blvd., Galveston, TX 77555-1062, USA.
| | - Sungjin Kim
- Department of Electrical and Computer Engineering, Department of Biomedical Engineering, Texas A&M University, College Station, Texas, USA
| | - Arum Han
- Department of Electrical and Computer Engineering, Department of Biomedical Engineering, Texas A&M University, College Station, Texas, USA
| | - Ramkumar Menon
- Division of Maternal-Fetal Medicine and Perinatal Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, 301 University Blvd., Galveston, TX 77555-1062, USA.
| |
Collapse
|
56
|
Bai K, Li X, Zhong J, Ng EHY, Yeung WSB, Lee CL, Chiu PCN. Placenta-Derived Exosomes as a Modulator in Maternal Immune Tolerance During Pregnancy. Front Immunol 2021; 12:671093. [PMID: 34046039 PMCID: PMC8144714 DOI: 10.3389/fimmu.2021.671093] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 04/26/2021] [Indexed: 12/12/2022] Open
Abstract
Exosomes are a subset of extracellular vesicles with an average diameter of ~100nm. Exosomes are released by all cells through an endosome-dependent pathway and carry nucleic acids, proteins, lipids, cytokines and metabolites, mirroring the state of the originating cells. The function of exosomes has been implicated in various reproduction processes, such as embryo development, implantation, decidualization and placentation. Placenta-derived exosomes (pEXO) can be detected in the maternal blood as early as 6 weeks after conception and their levels increase with gestational age. Importantly, alternations in the molecular signatures of pEXO are observed in pregnancy-related complications. Thus, these differentially expressed molecules could be the potential biomarkers for diagnosis of the pregnancy-associated diseases. Recent studies have demonstrated that pEXO play a key role in the establishment of maternal immune tolerance, which is critical for a successful pregnancy. To gain a better understanding of the underlying mechanism, we highlighted the advanced studies of pEXO on immune cells in pregnancy.
Collapse
Affiliation(s)
- Kunfeng Bai
- Department of Obstetrics and Gynaecology, Li Ka Shing (LKS) Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong.,The University of Hong Kong Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Xintong Li
- Department of Obstetrics and Gynaecology, Li Ka Shing (LKS) Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| | - Jiangming Zhong
- Department of Obstetrics and Gynaecology, Li Ka Shing (LKS) Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| | - Ernest H Y Ng
- Department of Obstetrics and Gynaecology, Li Ka Shing (LKS) Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong.,The University of Hong Kong Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - William S B Yeung
- The University of Hong Kong Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Cheuk-Lun Lee
- Department of Obstetrics and Gynaecology, Li Ka Shing (LKS) Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong.,The University of Hong Kong Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Philip C N Chiu
- Department of Obstetrics and Gynaecology, Li Ka Shing (LKS) Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong.,The University of Hong Kong Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| |
Collapse
|
57
|
Screening and identification of microRNAs from plasma-derived extracellular vesicles (EVs) of Dazu black goat (Capra hircus) in early pregnant stages. Gene 2021; 790:145706. [PMID: 33979681 DOI: 10.1016/j.gene.2021.145706] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 04/20/2021] [Accepted: 05/06/2021] [Indexed: 12/20/2022]
Abstract
Previous studies have shown that extracellular vesicles (EVs) containing proteins, lipids, nucleic acids and other biological components exist in all kinds of body fluids. EVs, as an intercellular communication carrier, regulate the functions of its target cells by transporting biomacromolecules between cells. In this study, a total of six female Dazu black goats were divided into NP group (NP, non-pregnant group) and P30 (P30, 30-day pregnant group). The goats in NP group (n = 3) were in estrus, but failed to fertilize; the other goats in P30 group (n = 3) were fertilized by natural mating. Firstly, goats plasma-derived EVs were isolated using ultracentrifugation. Secondly, EVs were identified by transmission electron microscope (TEM), dynamic light scattering (DLS), and by testing its markers (CD9 and CD63) using west blotting in NP and P30 groups, respectively. Thirdly, EVs related miRNAs were sequenced and analyzed by bioinformatics method. Data shows that miR-31-5p, miR-137-3p, novel_miR_1355, novel_miR_734 and novel_miR_736 exclusively were expressed in P30 group. Their target genes were significantly enriched in the axon guidance, the Notch signaling pathway, the Wnt signaling pathway, tight junction and the Hippo signaling pathway. And miRNA-mRNA interactive network analysis reveals potential regulatory functions of miRNAs for goat during early pregnancy. These findings provided theretical references for studying the regulation of plasma-derived EVs between the fetal and placental development, and these candidate miRNAs identified might be as markers for diagnosis of goat early pregnancy.
Collapse
|
58
|
Shahin HI, Radnaa E, Tantengco OAG, Kechichian T, Kammala AK, Sheller-Miller S, Taylor BD, Menon R. Microvesicles and exosomes released by amnion epithelial cells under oxidative stress cause inflammatory changes in uterine cells†. Biol Reprod 2021; 105:464-480. [PMID: 33962471 DOI: 10.1093/biolre/ioab088] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/01/2021] [Accepted: 04/26/2021] [Indexed: 12/17/2022] Open
Abstract
Extracellular vesicles play a crucial role in feto-maternal communication and provide an important paracrine signaling mechanism in pregnancy. We hypothesized that fetal cells-derived exosomes and microvesicles (MVs) under oxidative stress (OS) carry unique cargo and traffic through feto-maternal interface, which cause inflammation in uterine cells associated with parturition. Exosomes and MVs, from primary amnion epithelial cell (AEC) culture media under normal or OS-induced conditions, were isolated by optimized differential centrifugation method followed by characterization for size (nanoparticle tracking analyzer), shape (transmission electron microscopy), and protein markers (western blot and immunofluorescence). Cargo and canonical pathways were identified by mass spectroscopy and ingenuity pathway analysis. Myometrial, decidual, and cervical cells were treated with 1 × 107 control/OS-derived exosomes/MVs. Pro-inflammatory cytokines were measured using a Luminex assay. Statistical significance was determined by paired T-test (P < 0.05). AEC produced cup-shaped exosomes of 90-150 nm and circular MVs of 160-400 nm. CD9, heat shock protein 70, and Nanog were detected in exosomes, whereas OCT-4, human leukocyte antigen G, and calnexin were found in MVs. MVs, but not exosomes, were stained for phosphatidylserine. The protein profiles for control versus OS-derived exosomes and MVs were significantly different. Several inflammatory pathways related to OS were upregulated that were distinct between exosomes and MVs. Both OS-derived exosomes and MVs significantly increased pro-inflammatory cytokines (granulocyte-macrophage colony-stimulating factor, interleukin 6 (IL-6), and IL-8) in maternal cells compared with control (P < 0.05). Our findings suggest that fetal-derived exosomes and MVs under OS exhibited distinct characteristics and a synergistic inflammatory role in uterine cells associated with the initiation of parturition.
Collapse
Affiliation(s)
- Hend I Shahin
- Division of Maternal-Fetal Medicine and Perinatal Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
| | - Enkhtuya Radnaa
- Division of Maternal-Fetal Medicine and Perinatal Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
| | - Ourlad Alzeus G Tantengco
- Division of Maternal-Fetal Medicine and Perinatal Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA.,Department of Biochemistry and Molecular Biology, College of Medicine, University of the Philippines Manila, Manila, 1000, Philippines
| | - Talar Kechichian
- Division of Maternal-Fetal Medicine and Perinatal Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
| | - Ananth Kumar Kammala
- Division of Maternal-Fetal Medicine and Perinatal Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
| | - Samantha Sheller-Miller
- Division of Maternal-Fetal Medicine and Perinatal Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
| | - Brandie D Taylor
- Department of Epidemiology and Biostatistics, College of Public Health, Temple University, Philadelphia, Pennsylvania
| | - Ramkumar Menon
- Division of Maternal-Fetal Medicine and Perinatal Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
| |
Collapse
|
59
|
Pregnancy-Related Extracellular Vesicles Revisited. Int J Mol Sci 2021; 22:ijms22083904. [PMID: 33918880 PMCID: PMC8068855 DOI: 10.3390/ijms22083904] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/20/2021] [Accepted: 04/07/2021] [Indexed: 12/14/2022] Open
Abstract
Extracellular vesicles (EVs) are small vesicles ranging from 20–200 nm to 10 μm in diameter that are discharged and taken in by many different types of cells. Depending on the nature and quantity of their content—which generally includes proteins, lipids as well as microRNAs (miRNAs), messenger-RNA (mRNA), and DNA—these particles can bring about functional modifications in the receiving cells. During pregnancy, placenta and/or fetal-derived EVs have recently been isolated, eliciting interest in discovering their clinical significance. To date, various studies have associated variations in the circulating levels of maternal and fetal EVs and their contents, with complications including gestational diabetes and preeclampsia, ultimately leading to adverse pregnancy outcomes. Furthermore, EVs have also been identified as messengers and important players in viral infections during pregnancy, as well as in various congenital malformations. Their presence can be detected in the maternal blood from the first trimester and their level increases towards term, thus acting as liquid biopsies that give invaluable insight into the status of the feto-placental unit. However, their exact roles in the metabolic and vascular adaptations associated with physiological and pathological pregnancy is still under investigation. Analyzing peer-reviewed journal articles available in online databases, the purpose of this review is to synthesize current knowledge regarding the utility of quantification of pregnancy related EVs in general and placental EVs in particular as non-invasive evidence of placental dysfunction and adverse pregnancy outcomes, and to develop the current understanding of these particles and their applicability in clinical practice.
Collapse
|
60
|
Zou X, Yuan M, Zhang T, Zheng N, Wu Z. EVs Containing Host Restriction Factor IFITM3 Inhibited ZIKV Infection of Fetuses in Pregnant Mice through Trans-placenta Delivery. Mol Ther 2021; 29:176-190. [PMID: 33002418 PMCID: PMC7791082 DOI: 10.1016/j.ymthe.2020.09.026] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 08/09/2020] [Accepted: 09/15/2020] [Indexed: 12/30/2022] Open
Abstract
Zika virus (ZIKV) infection can lead to neurological complications and fetal defects, and it has attracted global public health concerns. Effective treatment for ZIKV infection remains elusive, and a preventative vaccine is not yet available. Therapeutics for fetuses need to overcome placenta barriers to reach the fetuses and require higher safety standards. In the present study, we engineered mammalian extracellular vesicles (EVs) to deliver a host restriction factor, interferon-induced transmembrane protein 3 (IFITM3), for the treatment of ZIKV infection. Our results demonstrated that the IFITM3-containing EVs (IFITM3-Exos) suppressed ZIKV viremia by a 2-log reduction in pregnant mice. Moreover, the engineered EVs effectively delivered IFITM3 protein across the placental barrier and suppressed ZIKV in the fetuses with significant reduction of viremia in key fetal organs as measured by quantitative real-time PCR. Mechanistic study showed that IFITM3 was delivered to late endosomes/lysosomes where it inhibited viral entry into the host cells. Our study demonstrated that EVs could act as a cross-placenta drug delivery vehicle to the fetus, and IFITM3, an endogenous restriction factor, is a potential treatment for ZIKV infection during pregnancy.
Collapse
Affiliation(s)
- Xue Zou
- Center for Public Health Research, Medical School, Nanjing University, Nanjing, China
| | - Meng Yuan
- Center for Public Health Research, Medical School, Nanjing University, Nanjing, China
| | - Tongyu Zhang
- Model Animal Research Center, Nanjing University, Nanjing, China
| | - Nan Zheng
- Center for Public Health Research, Medical School, Nanjing University, Nanjing, China; State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, China; Medical School, Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, China.
| | - Zhiwei Wu
- Center for Public Health Research, Medical School, Nanjing University, Nanjing, China; State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, China; Medical School, Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, China.
| |
Collapse
|
61
|
Block LN, Bowman BD, Schmidt JK, Keding LT, Stanic AK, Golos TG. The promise of placental extracellular vesicles: models and challenges for diagnosing placental dysfunction in utero†. Biol Reprod 2021; 104:27-57. [PMID: 32856695 PMCID: PMC7786267 DOI: 10.1093/biolre/ioaa152] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 08/04/2020] [Accepted: 08/26/2020] [Indexed: 12/14/2022] Open
Abstract
Monitoring the health of a pregnancy is of utmost importance to both the fetus and the mother. The diagnosis of pregnancy complications typically occurs after the manifestation of symptoms, and limited preventative measures or effective treatments are available. Traditionally, pregnancy health is evaluated by analyzing maternal serum hormone levels, genetic testing, ultrasonographic imaging, and monitoring maternal symptoms. However, researchers have reported a difference in extracellular vesicle (EV) quantity and cargo between healthy and at-risk pregnancies. Thus, placental EVs (PEVs) may help to understand normal and aberrant placental development, monitor pregnancy health in terms of developing placental pathologies, and assess the impact of environmental influences, such as infection, on pregnancy. The diagnostic potential of PEVs could allow for earlier detection of pregnancy complications via noninvasive sampling and frequent monitoring. Understanding how PEVs serve as a means of communication with maternal cells and recognizing their potential utility as a readout of placental health have sparked a growing interest in basic and translational research. However, to date, PEV research with animal models lags behind human studies. The strength of animal pregnancy models is that they can be used to assess placental pathologies in conjunction with isolation of PEVs from fluid samples at different time points throughout gestation. Assessing PEV cargo in animals within normal and complicated pregnancies will accelerate the translation of PEV analysis into the clinic for potential use in prognostics. We propose that appropriate animal models of human pregnancy complications must be established in the PEV field.
Collapse
Affiliation(s)
- Lindsey N Block
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, USA
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Brittany D Bowman
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Jenna Kropp Schmidt
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Logan T Keding
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Aleksandar K Stanic
- Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, WI, USA
| | - Thaddeus G Golos
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, USA
- Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, WI, USA
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
62
|
Tan Q, Shi S, Liang J, Cao D, Wang S, Wang Z. Endometrial cell-derived small extracellular vesicle miR-100-5p promotes functions of trophoblast during embryo implantation. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 23:217-231. [PMID: 33376629 PMCID: PMC7758458 DOI: 10.1016/j.omtn.2020.10.043] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 10/30/2020] [Indexed: 12/19/2022]
Abstract
Communication between maternal uterus and blastocyst occurs in the early stages of pregnancy, and the interaction influences the success of embryo implantation. Whereas small extracellular vesicles (sEVs) play an essential role in mediating intercellular communication in numerous biological processes, their role in embryo implantation during the window of implantation (WOI) remains poorly defined. Here, we report that endometrial epithelial cells (EECs) secrete sEVs during early pregnancy, which affects the trophoblast behaviors (migration, invasion, and proliferation), thus influencing embryo implantation. We show that microRNA (miR)-100-5p, sEVs containing microRNA (miRNA), activates both focal adhesion kinase (FAK) and c-Jun N-terminal kinase (JNK), as well as contributes to trophoblast migration and invasion. Furthermore, our findings indicate that the sEV miR-100-5p promotes angiogenesis during the implantation process. In conclusion, this study reveals a novel mechanism by which EEC-derived sEV miR-100-5p crosstalks with trophoblasts, leading to an enhanced ability for implantation.
Collapse
Affiliation(s)
- Qiang Tan
- College of Animal Science, Zhejiang University, Hangzhou 310058, PR China
| | - Shuang Shi
- College of Animal Science, Zhejiang University, Hangzhou 310058, PR China
| | - Jingjie Liang
- College of Animal Science, Zhejiang University, Hangzhou 310058, PR China
| | - Dingren Cao
- College of Animal Science, Zhejiang University, Hangzhou 310058, PR China
| | - Shaoyu Wang
- College of Animal Science, Zhejiang University, Hangzhou 310058, PR China
| | - Zhengguang Wang
- College of Animal Science, Zhejiang University, Hangzhou 310058, PR China.,Hainan Institute of Zhejiang University, Sanya 572000, PR China
| |
Collapse
|
63
|
Qamar AY, Mahiddine FY, Bang S, Fang X, Shin ST, Kim MJ, Cho J. Extracellular Vesicle Mediated Crosstalk Between the Gametes, Conceptus, and Female Reproductive Tract. Front Vet Sci 2020; 7:589117. [PMID: 33195625 PMCID: PMC7661581 DOI: 10.3389/fvets.2020.589117] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 09/28/2020] [Indexed: 12/24/2022] Open
Abstract
Extracellular vesicles (EVs) mediated intracellular communication plays an imperative role in the proper completion of different physiological events. Most of the bio-fluids are enriched with several subpopulations of EVs including exosomes and microvesicles (MVs), with the capacity of transferring different functional molecules (lipids, proteins, and nucleic acids) to target cells. Recipient cells upon receiving the signal molecules undergo different changes that positively affect the structural and functional integrity of the cells. This article was aimed to highlight the role of EVs secreted by gametes, the female reproductive tract, and the growing conceptus in the successful completion of different reproductive events related to gestation. EVs associated with the reproductive system are actively involved in the regulation of different physiological events including gamete maturation, fertilization, and embryo and fetal development. In the reproductive system, EVs mediated intracellular communication is not unidirectional but is rather regulated through crosstalk between the reproductive tract and the growing conceptus. These vesicles are secreted from the ovary, oviductal epithelium, endometrium, developing embryo, and the placenta. The cargo inside these vesicles exerts pleiotropic effects on both maternal and embryonic environments. A better understanding of the EVs-mediated crosstalk will be helpful in the development of useful tools serving both the diagnostic as well as therapeutic needs related to female fertility.
Collapse
Affiliation(s)
- Ahmad Yar Qamar
- College of Veterinary Medicine, Chungnam National University, Daejeon, South Korea
- Department of Clinical Sciences, College of Veterinary and Animal Sciences, Jhang, Sub-Campus University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Feriel Yasmine Mahiddine
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Seoul National University, Seoul, South Korea
| | - Seonggyu Bang
- College of Veterinary Medicine, Chungnam National University, Daejeon, South Korea
| | - Xun Fang
- College of Veterinary Medicine, Chungnam National University, Daejeon, South Korea
| | - Sang Tae Shin
- College of Veterinary Medicine, Chungnam National University, Daejeon, South Korea
| | - Min Jung Kim
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Seoul National University, Seoul, South Korea
| | - Jongki Cho
- College of Veterinary Medicine, Chungnam National University, Daejeon, South Korea
| |
Collapse
|
64
|
Late first trimester circulating microparticle proteins predict the risk of preeclampsia < 35 weeks and suggest phenotypic differences among affected cases. Sci Rep 2020; 10:17353. [PMID: 33087742 PMCID: PMC7578826 DOI: 10.1038/s41598-020-74078-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 09/02/2020] [Indexed: 02/07/2023] Open
Abstract
We hypothesize that first trimester circulating micro particle (CMP) proteins will define preeclampsia risk while identifying clusters of disease subtypes among cases. We performed a nested case–control analysis among women with and without preeclampsia. Cases diagnosed < 34 weeks’ gestation were matched to controls. Plasma CMPs were isolated via size exclusion chromatography and analyzed using global proteome profiling based on HRAM mass spectrometry. Logistic models then determined feature selection with best performing models determined by cross-validation. K-means clustering examined cases for phenotypic subtypes and biological pathway enrichment was examined. Our results indicated that the proteins distinguishing cases from controls were enriched in biological pathways involved in blood coagulation, hemostasis and tissue repair. A panel consisting of C1RL, GP1BA, VTNC, and ZA2G demonstrated the best distinguishing performance (AUC of 0.79). Among the cases of preeclampsia, two phenotypic sub clusters distinguished cases; one enriched for platelet degranulation and blood coagulation pathways and the other for complement and immune response-associated pathways (corrected p < 0.001). Significantly, the second of the two clusters demonstrated lower gestational age at delivery (p = 0.049), increased protein excretion (p = 0.01), more extreme laboratory derangement (p < 0.0001) and marginally increased diastolic pressure (p = 0.09). We conclude that CMP-associated proteins at 12 weeks’ gestation predict the overall risk of developing early preeclampsia and indicate distinct subtypes of pathophysiology and clinical morbidity.
Collapse
|
65
|
Tetraspanins, More than Markers of Extracellular Vesicles in Reproduction. Int J Mol Sci 2020; 21:ijms21207568. [PMID: 33066349 PMCID: PMC7589920 DOI: 10.3390/ijms21207568] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/08/2020] [Accepted: 10/08/2020] [Indexed: 02/07/2023] Open
Abstract
The participation of extracellular vesicles in many cellular processes, including reproduction, is unquestionable. Although currently, the tetraspanin proteins found in extracellular vesicles are mostly applied as markers, increasing evidence points to their role in extracellular vesicle biogenesis, cargo selection, cell targeting, and cell uptake under both physiological and pathological conditions. In this review, we bring other insight into the involvement of tetraspanin proteins in extracellular vesicle physiology in mammalian reproduction. We provide knowledge regarding the involvement of extracellular vesicle tetraspanins in these processes in somatic cells. Furthermore, we discuss the future direction towards an understanding of their functions in the tissues and fluids of the mammalian reproductive system in gamete maturation, fertilization, and embryo development; their involvement in mutual cell contact and communication in their complexity.
Collapse
|
66
|
Menon R, Shahin H. Extracellular vesicles in spontaneous preterm birth. Am J Reprod Immunol 2020; 85:e13353. [PMID: 32975858 DOI: 10.1111/aji.13353] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/13/2020] [Accepted: 09/15/2020] [Indexed: 02/06/2023] Open
Abstract
Feto-maternal communication helps to maintain pregnancy and contributes to parturition at term and preterm. Endocrine and immune factor are well-reported communication mediators. Recent advances in extracellular vesicle (EV) biology have introduced them as major communication channels between the mother and fetus. EVs are round structures with a lipid bilayer membrane. EVs are generally categorized based on their size and mode of biogenesis. The most commonly reported EVs are exosomes with a size range of 30-160 nm that are formed inside the intraluminal vesicles of multivesicular body. Microvesicles (MVs) are larger than > 200 nm and formed by outward budding of plasma membrane. Vesicles are released from all cells and carry various factors that reflect the physiologic state of cell at the time of their release. Analysis of vesicle provides a snapshot of origin cell. Recent studies in perinatal medicine have shown that exosomes are key communicators between feto-maternal units, and they can cross placenta. Fetal-derived exosomes released under term labor-associated conditions can cause parturition-associated changes in maternal uterine tissues. Exosomes carrying inflammatory cargo can cause preterm birth in animal models suggesting their functional role in parturition. A few reports have profiled differences between exosome cargos from term and preterm pregnancies and indicated their biomarker potential to predict high-risk pregnancy status. There are hardly any reports on MVs and their functional roles in reproduction. Herein, we review of EVs and MVs, their characteristics, function, and usefulness predicting adverse pregnancy complications such as preterm birth.
Collapse
Affiliation(s)
- Ramkumar Menon
- Division of Maternal-Fetal Medicine & Perinatal Research, Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Hend Shahin
- Division of Maternal-Fetal Medicine & Perinatal Research, Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
| |
Collapse
|
67
|
Tantengco OAG, Menon R. Contractile function of the cervix plays a role in normal and pathological pregnancy and parturition. Med Hypotheses 2020; 145:110336. [PMID: 33049595 DOI: 10.1016/j.mehy.2020.110336] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 09/09/2020] [Accepted: 10/04/2020] [Indexed: 12/27/2022]
Abstract
The cervix plays an integral part in ensuring the proper timing of pregnancy and parturition. It maintains the fetus within the uterus and protects it from pathogens present in the vaginal canal. The cervix undergoes extensive remodeling during pregnancy and parturition. This process is associated with collagen degradation, an increase in immune cell response and inflammation in the cervix. However, our understanding of the role of cervical smooth muscles and their contribution to cervical remodeling is still lacking. In this paper, we propose that the active contractile function of the cervix influences cervical remodeling during pregnancy and parturition. Contraction of the cervical smooth muscles helps the cervix to remain firm and closed during early pregnancy, while relaxation of the cervical smooth muscles help facilitate cervical dilatation during labor. This contractile function of the cervix can be influenced by endocrine signals, such as estrogen, progesterone, and oxytocin; local paracrine signals, such as inflammatory chemokines and cytokines, as well as extracellular vesicles, such as exosomes and ectosomes; and by pharmacological agents used for cervical ripening and the induction of labor. A deeper understanding of the role of smooth muscles in cervical remodeling can help us elucidate the cellular processes in the cervix during pregnancy and parturition. This can also help in finding critical signaling pathways and therapeutic targets in the cervix that may decrease the rates of premature cervical ripening and preterm birth.
Collapse
Affiliation(s)
- Ourlad Alzeus G Tantengco
- Division of Maternal-Fetal Medicine and Perinatal Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, USA; Department of Biochemistry and Molecular Biology, College of Medicine, University of the Philippines Manila, Ermita, Manila, Philippines
| | - Ramkumar Menon
- Division of Maternal-Fetal Medicine and Perinatal Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, USA.
| |
Collapse
|
68
|
Semionatto IF, Palameta S, Toscaro JM, Manrique-Rincón AJ, Ruas LP, Paes Leme AF, Bajgelman MC. Extracellular vesicles produced by immunomodulatory cells harboring OX40 ligand and 4-1BB ligand enhance antitumor immunity. Sci Rep 2020; 10:15160. [PMID: 32939048 PMCID: PMC7495001 DOI: 10.1038/s41598-020-72122-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 08/19/2020] [Indexed: 01/08/2023] Open
Abstract
Genetically modified tumor cells harboring immunomodulators may be used as therapeutic vaccines to stimulate antitumor immunity. The therapeutic benefit of these tumor vaccines is extensively investigated and mechanisms by which they boost antitumor response may be further explored. Tumor cells are large secretors of extracellular vesicles (EVs). These EVs are able to vehiculate RNA and proteins to target cells, and engineered EVs also vehiculate recombinant proteins. In this study, we explore immunomodulatory properties of EVs derived from antitumor vaccines expressing the TNFSF ligands 4-1BBL and OX40L, modulating immune response mediated by immune cells and eliminating tumors. Our results suggest that the EVs secreted by genetically modified tumor cells harboring TNFSF ligands can induce T cell proliferation, inhibit the transcription factor FoxP3, associated with the maintenance of Treg phenotype, and enhance antitumor activity mediated by immune cells. The immunomodulatory extracellular vesicles have potential to be further engineered for developing new approaches for cancer therapy.
Collapse
Affiliation(s)
- Isadora Ferraz Semionatto
- Brazilian Biosciences National Laboratory, Center for Research in Energy and Materials, Campinas, SP, Brazil
- Institute of Biology, University of Campinas, Campinas, SP, Brazil
| | - Soledad Palameta
- Brazilian Biosciences National Laboratory, Center for Research in Energy and Materials, Campinas, SP, Brazil
- Institute of Biology, University of Campinas, Campinas, SP, Brazil
| | - Jéssica Marcelino Toscaro
- Brazilian Biosciences National Laboratory, Center for Research in Energy and Materials, Campinas, SP, Brazil
- Medical School, University of Campinas, Campinas, SP, Brazil
| | - Andrea Johanna Manrique-Rincón
- Brazilian Biosciences National Laboratory, Center for Research in Energy and Materials, Campinas, SP, Brazil
- Medical School, University of Campinas, Campinas, SP, Brazil
| | - Luciana Pereira Ruas
- Brazilian Biosciences National Laboratory, Center for Research in Energy and Materials, Campinas, SP, Brazil
| | - Adriana Franco Paes Leme
- Brazilian Biosciences National Laboratory, Center for Research in Energy and Materials, Campinas, SP, Brazil
- Institute of Biology, University of Campinas, Campinas, SP, Brazil
| | - Marcio Chaim Bajgelman
- Brazilian Biosciences National Laboratory, Center for Research in Energy and Materials, Campinas, SP, Brazil.
- Institute of Biology, University of Campinas, Campinas, SP, Brazil.
- Medical School, University of Campinas, Campinas, SP, Brazil.
| |
Collapse
|
69
|
Green ES, Arck PC. Pathogenesis of preterm birth: bidirectional inflammation in mother and fetus. Semin Immunopathol 2020; 42:413-429. [PMID: 32894326 PMCID: PMC7508962 DOI: 10.1007/s00281-020-00807-y] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 07/14/2020] [Indexed: 12/18/2022]
Abstract
Preterm birth (PTB) complicates 5–18% of pregnancies globally and is a leading cause of maternal and fetal morbidity and mortality. Most PTB is spontaneous and idiopathic, with largely undefined causes. To increase understanding of PTB, much research in recent years has focused on using animal models to recapitulate the pathophysiology of PTB. Dysfunctions of maternal immune adaptations have been implicated in a range of pregnancy pathologies, including PTB. A wealth of evidence arising from mouse models as well as human studies is now available to support that PTB results from a breakdown in fetal-maternal tolerance, along with excessive, premature inflammation. In this review, we examine the current knowledge of the bidirectional communication between fetal and maternal systems and its role in the immunopathogenesis of PTB. These recent insights significantly advance our understanding of the pathogenesis of PTB, which is essential to ultimately designing more effective strategies for early prediction and subsequent prevention of PTB.
Collapse
Affiliation(s)
- Ella Shana Green
- Department of Obstetrics and Fetal Medicine, Laboratory for Experimental Feto-Maternal Medicine, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20251, Hamburg, Germany
| | - Petra Clara Arck
- Department of Obstetrics and Fetal Medicine, Laboratory for Experimental Feto-Maternal Medicine, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20251, Hamburg, Germany.
| |
Collapse
|
70
|
Abstract
Exosomes are small extracellular vesicles released by cells under physiological and pathological conditions. There is emerging evidence associating exosomes with tumorigenesis. They carry cargo (DNA, RNA, miRNA and protein) pertaining to the cell of origin and play a key role in intercellular communication, influencing several cellular processes. Moreover, exosomes can be shed and found in almost all body fluids, providing a source of biomarkers for tumor diagnosis and prognosis. In addition, the use of exosomes for cancer therapeutics is another research area that is gaining attention. This book chapter aims to explore the role of exosomes in tumor biogenesis, progression and clinical applications, comprehensively compiling the research for three tumor types, namely head and neck cancer, lung cancer and glioblastoma.
Collapse
|
71
|
Menon R, Behnia F, Polettini J, Richardson LS. Novel pathways of inflammation in human fetal membranes associated with preterm birth and preterm pre-labor rupture of the membranes. Semin Immunopathol 2020; 42:431-450. [PMID: 32785751 DOI: 10.1007/s00281-020-00808-x] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 07/16/2020] [Indexed: 12/13/2022]
Abstract
Spontaneous preterm birth (PTB) and preterm pre-labor rupture of the membranes (pPROM) are major pregnancy complications. Although PTB and pPROM have common etiologies, they arise from distinct pathophysiologic pathways. Inflammation is a common underlying mechanism in both conditions. Balanced inflammation is required for fetoplacental growth; however, overwhelming inflammation (physiologic at term and pathologic at preterm) can lead to term and preterm parturition. A lack of effective strategies to control inflammation and reduce the risk of PTB and pPROM suggests that there are several modes of the generation of inflammation which may be dependent on the type of uterine tissue. The avascular fetal membrane (amniochorion), which provides structure, support, and protection to the intrauterine cavity, is one of the key contributors of inflammation. Localized membrane inflammation helps tissue remodeling during pregnancy. Two unique mechanisms that generate balanced inflammation are the progressive development of senescence (aging) and cyclic cellular transitions: epithelial to mesenchymal (EMT) and mesenchymal to epithelial (MET). The intrauterine build-up of oxidative stress at term or in response to risk factors (preterm) can accelerate senescence and promote a terminal state of EMT, resulting in the accumulation of inflammation. Inflammation degrades the matrix and destabilizes membrane function. Inflammatory mediators from damaged membranes are propagated via extracellular vesicles (EV) to maternal uterine tissues and transition quiescent maternal uterine tissues into an active state of labor. Membrane inflammation and its propagation are fetal signals that may promote parturition. This review summarizes the mechanisms of fetal membrane cellular senescence, transitions, and the generation of inflammation that contributes to term and preterm parturitions.
Collapse
Affiliation(s)
- Ramkumar Menon
- Division of Maternal-Fetal Medicine and Perinatal Research Department of Obstetrics & Gynecology, Division of Maternal-Fetal Medicine & Perinatal Research, The University of Texas Medical Branch at Galveston, MRB 11.138, 301 301 University Blvd, Galveston, TX, 77555-1062, USA.
| | - Faranak Behnia
- Department of Obstetrics, Gynecology, and Reproductive Sciences, McGovern Medical School at the University of Texas Health Science Center at Houston, UT Health, Houston, Texas, USA
| | - Jossimara Polettini
- Universidade Federal da Fronteira Sul, Campus Passo Fundo, Rua Capitão Araujo, 20, Centro, Passo Fundo, Rio Grande do Sul, Brazil
| | - Lauren S Richardson
- Division of Maternal-Fetal Medicine and Perinatal Research Department of Obstetrics & Gynecology, Division of Maternal-Fetal Medicine & Perinatal Research, The University of Texas Medical Branch at Galveston, MRB 11.138, 301 301 University Blvd, Galveston, TX, 77555-1062, USA
| |
Collapse
|
72
|
Monsivais LA, Sheller-Miller S, Russell W, Saade GR, Dixon CL, Urrabaz-Garza R, Menon R. Fetal membrane extracellular vesicle profiling reveals distinct pathways induced by infection and inflammation in vitro. Am J Reprod Immunol 2020; 84:e13282. [PMID: 32506769 DOI: 10.1111/aji.13282] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/30/2020] [Accepted: 05/30/2020] [Indexed: 12/22/2022] Open
Abstract
PROBLEM Fetal inflammatory signals can be propagated to maternal tissues to initiate labor via exosomes (extracellular vesicles; 30-150 nm). We tested the hypothesis that fetal membrane cells exposed to infectious and inflammatory mediators associated with preterm birth (PTB) produce exosomes with distinct protein cargo contents indicative of underlying pathobiology. METHODS OF STUDY Fetal membrane explants (FM) as well as primary amnion epithelial (AEC) and mesenchymal cells (AMC), and chorion cells (CC) from term deliveries were maintained in normal conditions (control) or exposed to LPS 100 ng/mL or TNF-α 50 ng/mL for 48 hours. Exosomes were isolated from media by differential centrifugation and size exclusion chromatography and characterized using cryo-electron microscopy (morphology), nanoparticle tracking analysis (size and quantity), Western blot (markers), and mass spectroscopy (cargo proteins). Ingenuity pathway analysis (IPA) determined pathways indicated by differentially expressed proteins. RESULTS Irrespective of source or treatment, exosomes were spherical, had similar size, quantities, and markers (ALIX, CD63, and CD81). However, exosome cargo proteins were different between FM and individual fetal membrane cell-derived exosomes in response to treatments. Several common proteins were seen; however, there are several unique proteins expressed by exosomes from different cell types in response to distinct stimuli indicative of unique pathways and physiological functions in cells. CONCLUSIONS We demonstrate collective tissue and independent cell response reflected in exosomes in response to infectious and inflammatory stimuli. These cargoes determined underlying physiology and their potential in enhancing inflammation in a paracrine fashion.
Collapse
Affiliation(s)
- Luis A Monsivais
- Department of Obstetrics & Gynecology, Division of Maternal-Fetal Medicine & Perinatal Research, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Samantha Sheller-Miller
- Department of Obstetrics & Gynecology, Division of Maternal-Fetal Medicine & Perinatal Research, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - William Russell
- Department of Biochemistry & Molecular Biology, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - George R Saade
- Department of Obstetrics & Gynecology, Division of Maternal-Fetal Medicine & Perinatal Research, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Christopher L Dixon
- Department of Obstetrics & Gynecology, Division of Maternal-Fetal Medicine & Perinatal Research, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Rheanna Urrabaz-Garza
- Department of Obstetrics & Gynecology, Division of Maternal-Fetal Medicine & Perinatal Research, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Ramkumar Menon
- Department of Obstetrics & Gynecology, Division of Maternal-Fetal Medicine & Perinatal Research, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
| |
Collapse
|
73
|
Czernek L, Düchler M. Exosomes as Messengers Between Mother and Fetus in Pregnancy. Int J Mol Sci 2020; 21:E4264. [PMID: 32549407 PMCID: PMC7352303 DOI: 10.3390/ijms21124264] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/04/2020] [Accepted: 06/12/2020] [Indexed: 12/15/2022] Open
Abstract
The ability of exosomes to transport different molecular cargoes and their ability to influence various physiological factors is already well known. An exciting area of research explores the functions of exosomes in healthy and pathological pregnancies. Placenta-derived exosomes were identified in the maternal circulation during pregnancy and their contribution in the crosstalk between mother and fetus are now starting to become defined. In this review, we will try to summarize actual knowledge about this topic and to answer the question of how important exosomes are for a healthy pregnancy.
Collapse
Affiliation(s)
| | - Markus Düchler
- Department of Bioorganic Chemistry, Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, 112, Sienkiewicza Street, 90-363 Lodz, Poland;
| |
Collapse
|
74
|
Lamont RF, Richardson LS, Boniface JJ, Cobo T, Exner MM, Christensen IB, Forslund SK, Gaba A, Helmer H, Jørgensen JS, Khan RN, McElrath TF, Petro K, Rasmussen M, Singh R, Tribe RM, Vink JS, Vinter CA, Zhong N, Menon R. Commentary on a combined approach to the problem of developing biomarkers for the prediction of spontaneous preterm labor that leads to preterm birth. Placenta 2020; 98:13-23. [PMID: 33039027 DOI: 10.1016/j.placenta.2020.05.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 05/16/2020] [Accepted: 05/19/2020] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Globally, preterm birth has replaced congenital malformation as the major cause of perinatal mortality and morbidity. The reduced rate of congenital malformation was not achieved through a single biophysical or biochemical marker at a specific gestational age, but rather through a combination of clinical, biophysical and biochemical markers at different gestational ages. Since the aetiology of spontaneous preterm birth is also multifactorial, it is unlikely that a single biomarker test, at a specific gestational age will emerge as the definitive predictive test. METHODS The Biomarkers Group of PREBIC, comprising clinicians, basic scientists and other experts in the field, with a particular interest in preterm birth have produced this commentary with short, medium and long-term aims: i) to alert clinicians to the advances that are being made in the prediction of spontaneous preterm birth; ii) to encourage clinicians and scientists to continue their efforts in this field, and not to be disheartened or nihilistic because of a perceived lack of progress and iii) to enable development of novel interventions that can reduce the mortality and morbidity associated with preterm birth. RESULTS Using language that we hope is clear to practising clinicians, we have identified 11 Sections in which there exists the potential, feasibility and capability of technologies for candidate biomarkers in the prediction of spontaneous preterm birth and how current limitations to this research might be circumvented. DISCUSSION The combination of biophysical, biochemical, immunological, microbiological, fetal cell, exosomal, or cell free RNA at different gestational ages, integrated as part of a multivariable predictor model may be necessary to advance our attempts to predict sPTL and PTB. This will require systems biological data using "omics" data and artificial intelligence/machine learning to manage the data appropriately. The ultimate goal is to reduce the mortality and morbidity associated with preterm birth.
Collapse
Affiliation(s)
- R F Lamont
- Research Unit of Gynaecology and Obstetrics, Department of Gynaecology and Obstetrics, Odense University Hospital, Institute of Clinical Research, University of Southern Denmark, Odense, Denmark; Division of Surgery, Northwick Park Institute for Medical Research Campus, University College London, London, UK.
| | - L S Richardson
- Dept of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Dept. Electrical and Computer Engineering Texas A&M University, College Station, TX, USA
| | - J J Boniface
- Sera Prognostics, Inc., 2749 East Parleys Way, Suite 200, Salt Lake City, UT, 84109, USA
| | - T Cobo
- BCNatal - Barcelona Center for Maternal-Fetal and Neonatal Medicine (Hospital Clínic and Hospital Sant Joan de Deu), Institut Clínic de Ginecología, Obstetrícia I Neonatología, Fetal i+D Fetal Medicine Research Center, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), University of Barcelona. Barcelona. Spain, Centre for Biomedical Research on Rare Diseases (CIBER-ER), Barcelona, Spain
| | - M M Exner
- Hologic, Inc., 10210 Genetic Center Dr, San Diego, CA, 92121, USA
| | | | - S K Forslund
- Experimental and Clinical Research Center, A Cooperation of Charité-Universitätsmedizin and the Max-Delbrück Center, Berlin, Germany
| | - A Gaba
- Department of Obstetrics and Maternal-fetal Medicine, Vienna Medical University, Austria
| | - H Helmer
- Department of Obstetrics and Maternal-fetal Medicine, Vienna Medical University, Austria
| | - J S Jørgensen
- Research Unit of Gynaecology and Obstetrics, Department of Gynaecology and Obstetrics, Odense University Hospital, Institute of Clinical Research, University of Southern Denmark, Odense, Denmark; Centre for Innovative Medical Technologies (CIMT), Odense University Hospital, Kløvervænget 8, 5000, Odense C, Denmark; Odense Patient Data Explorative Network (OPEN), Odense University Hospital/University of Southern Denmark, J. B. Winsløws Vej 9 a, 3. Floor, 5000, Odense C, Denmark
| | - R N Khan
- Division of Medical Science and Graduate Entry Medicine, School of Medicine, University of Nottingham, Room 4115, Medical School, Royal Derby Hospital Centre, Derby, DE22 3DT, UK
| | | | - K Petro
- Hologic, Inc., 10210 Genetic Center Dr, San Diego, CA, 92121, USA
| | - M Rasmussen
- MIRVIE Inc., 820 Dubuque Ave., South San Francisco, CA, 94080, USA
| | - R Singh
- ARCEDI Biotech ApS, Aarhus, Denmark
| | - R M Tribe
- Dept. of Women and Children's Health, School of Life Course Sciences, King's College London, St Thomas' Hospital Campus, London, SE1 7EH, UK
| | - J S Vink
- Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, Columbia University Medical Center, New York, NY, USA
| | - C A Vinter
- Research Unit of Gynaecology and Obstetrics, Department of Gynaecology and Obstetrics, Odense University Hospital, Institute of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - N Zhong
- New York State Institute for Basic Research in Developmental Disabilities, 105 Forest Hill Road, Staten Island, NY, 10314, USA
| | - R Menon
- Dept of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Dept. Electrical and Computer Engineering Texas A&M University, College Station, TX, USA.
| |
Collapse
|
75
|
Menon R, Debnath C, Lai A, Guanzon D, Bhatnagar S, Kshetrapal P, Sheller-Miller S, Salomon C. Protein Profile Changes in Circulating Placental Extracellular Vesicles in Term and Preterm Births: A Longitudinal Study. Endocrinology 2020; 161:bqaa009. [PMID: 31995166 PMCID: PMC7102872 DOI: 10.1210/endocr/bqaa009] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 01/27/2020] [Indexed: 12/20/2022]
Abstract
Spontaneous preterm birth (PTB) is a major obstetrical problem around the globe and the mechanisms leading to PTB are unclear. Recently, changes in the circulating levels of placental extracellular vesicles (EVs) during pregnancy have been associated with various pregnancy complications. However, progress in the field is hindered by the inability to isolate placental EVs from the maternal circulation. A longitudinal study design was used to determine the protein cargo present in circulating placental EVs in maternal plasma of term and PTB across gestation (ie, first, second, and third trimester). Placental-derived EVs were enriched from the total EV population based on their expression of membrane-bound placental alkaline phosphatase (PLAP). A quantitative, information-independent acquisition (sequential windowed acquisition of all theoretical mass spectra [SWATH]) approach identified and quantified the placental EV protein contents. PLAP+ EVs did not change in characteristics (size, shape, and markers) but did differ in numbers across gestation with low levels in PTB. A comparison analysis between the PLAP+ EV proteome from term and PTB revealed 96 proteins differing significantly (P < 0.05, false discovery rate 1%) across gestation. Bioinformatics analysis of differentially expressed proteins revealed consistent upregulation of inflammatory pathways in both upregulation of epithelial mesenchymal transition pathways at term and downregulation of coagulation/complement activation in preterm. Characterization of the proteomic profile in PLAP+ EVs across gestation demonstrates dramatic changes, which might be used to understand the biological process associated with early parturition and develop biomarkers for predicting high-risk status for PTB.
Collapse
Affiliation(s)
- Ramkumar Menon
- Division of Maternal-Fetal Medicine & Perinatal Research, Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, Galveston, Texas
| | - Chirantan Debnath
- Translational Health Science and Technology Institute of India, Faridabad, Haryana, India
| | - Andrew Lai
- Exosome Biology Laboratory, Centre for Clinical Diagnostics, University of Queensland Centre for Clinical Research, Royal Brisbane and Women’s Hospital, The University of Queensland, Brisbane, Australia
| | - Dominic Guanzon
- Exosome Biology Laboratory, Centre for Clinical Diagnostics, University of Queensland Centre for Clinical Research, Royal Brisbane and Women’s Hospital, The University of Queensland, Brisbane, Australia
| | - Shinjini Bhatnagar
- Translational Health Science and Technology Institute of India, Faridabad, Haryana, India
| | - Pallavi Kshetrapal
- Translational Health Science and Technology Institute of India, Faridabad, Haryana, India
| | - Samantha Sheller-Miller
- Division of Maternal-Fetal Medicine & Perinatal Research, Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, Galveston, Texas
| | - Carlos Salomon
- Exosome Biology Laboratory, Centre for Clinical Diagnostics, University of Queensland Centre for Clinical Research, Royal Brisbane and Women’s Hospital, The University of Queensland, Brisbane, Australia
- Department of Clinical Biochemistry and Immunology, Faculty of Pharmacy, University of Concepción, Concepción, Chile
| |
Collapse
|
76
|
Zhang J, Li H, Fan B, Xu W, Zhang X. Extracellular vesicles in normal pregnancy and pregnancy-related diseases. J Cell Mol Med 2020; 24:4377-4388. [PMID: 32175696 PMCID: PMC7176865 DOI: 10.1111/jcmm.15144] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 02/20/2020] [Accepted: 02/24/2020] [Indexed: 12/11/2022] Open
Abstract
Extracellular vesicles (EVs) are nanosized, membranous vesicles released by almost all types of cells. Extracellular vesicles can be classified into distinct subtypes according to their sizes, origins and functions. Extracellular vesicles play important roles in intercellular communication through the transfer of a wide spectrum of bioactive molecules, contributing to the regulation of diverse physiological and pathological processes. Recently, it has been established that EVs mediate foetal‐maternal communication across gestation. Abnormal changes in EVs have been reported to be critically involved in pregnancy‐related diseases. Moreover, EVs have shown great potential to serve as biomarkers for the diagnosis of pregnancy‐related diseases. In this review, we discussed about the roles of EVs in normal pregnancy and how changes in EVs led to complicated pregnancy with an emphasis on their values in predicting and monitoring of pregnancy‐related diseases.
Collapse
Affiliation(s)
- Jiayin Zhang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Haibo Li
- Department of Clinical Laboratory, Nantong Maternal and Child Health Care Hospital, Nantong, China
| | - Boyue Fan
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Wenrong Xu
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Xu Zhang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| |
Collapse
|
77
|
Galley JD, Besner GE. The Therapeutic Potential of Breast Milk-Derived Extracellular Vesicles. Nutrients 2020; 12:nu12030745. [PMID: 32168961 PMCID: PMC7146576 DOI: 10.3390/nu12030745] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 03/04/2020] [Accepted: 03/08/2020] [Indexed: 12/21/2022] Open
Abstract
In the past few decades, interest in the therapeutic benefits of exosomes and extracellular vesicles (EVs) has grown exponentially. Exosomes/EVs are small particles which are produced and exocytosed by cells throughout the body. They are loaded with active regulatory and stimulatory molecules from the parent cell including miRNAs and enzymes, making them prime targets in therapeutics and diagnostics. Breast milk, known for years to have beneficial health effects, contains a population of EVs which may mediate its therapeutic effects. This review offers an update on the therapeutic potential of exosomes/EVs in disease, with a focus on EVs present in human breast milk and their remedial effect in the gastrointestinal disease necrotizing enterocolitis. Additionally, the relationship between EV miRNAs, health, and disease will be examined, along with the potential for EVs and their miRNAs to be engineered for targeted treatments.
Collapse
|
78
|
Lorencova L, Bertok T, Bertokova A, Gajdosova V, Hroncekova S, Vikartovska A, Kasak P, Tkac J. Exosomes as a Source of Cancer Biomarkers: Advances in Electrochemical Biosensing of Exosomes. ChemElectroChem 2020. [DOI: 10.1002/celc.202000075] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Lenka Lorencova
- Department of Glycobiotechnology Institute of ChemistrySlovak Academy of Sciences Dubravska cesta 9 845 38 Bratislava Slovakia
| | - Tomas Bertok
- Department of Glycobiotechnology Institute of ChemistrySlovak Academy of Sciences Dubravska cesta 9 845 38 Bratislava Slovakia
| | - Aniko Bertokova
- Department of Glycobiotechnology Institute of ChemistrySlovak Academy of Sciences Dubravska cesta 9 845 38 Bratislava Slovakia
| | - Veronika Gajdosova
- Department of Glycobiotechnology Institute of ChemistrySlovak Academy of Sciences Dubravska cesta 9 845 38 Bratislava Slovakia
| | - Stefania Hroncekova
- Department of Glycobiotechnology Institute of ChemistrySlovak Academy of Sciences Dubravska cesta 9 845 38 Bratislava Slovakia
| | - Alica Vikartovska
- Department of Glycobiotechnology Institute of ChemistrySlovak Academy of Sciences Dubravska cesta 9 845 38 Bratislava Slovakia
| | - Peter Kasak
- Center for Advanced MaterialsQatar University P.O. Box 2713 Doha Qatar
| | - Jan Tkac
- Department of Glycobiotechnology Institute of ChemistrySlovak Academy of Sciences Dubravska cesta 9 845 38 Bratislava Slovakia
| |
Collapse
|
79
|
Sadovsky Y, Ouyang Y, Powell JS, Li H, Mouillet JF, Morelli AE, Sorkin A, Margolis L. Placental small extracellular vesicles: Current questions and investigative opportunities. Placenta 2020; 102:34-38. [PMID: 33218576 DOI: 10.1016/j.placenta.2020.03.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 02/19/2020] [Accepted: 03/02/2020] [Indexed: 12/12/2022]
Abstract
The discovery of regulated trafficking of extracellular vesicles (EVs) has added a new dimension to our understanding of local and distant communication among cells and tissues. Notwithstanding the expanded landscape of EV subtypes, the majority of research in the field centers on small and large EVs that are commonly termed exosomes, microvesicles and apoptotic cell-derived vesicles. In the context of pregnancy, EV-based communication has a special role in the crosstalk among the placenta, maternal and fetal compartments, with most studies focusing on trophoblastic EVs and their effect on other placental cell types, endothelial cells, and distant tissues. Many unanswered questions in the field of EV biology center on the mechanisms of vesicle biogenesis, loading of cargo molecules, EV release and trafficking, the interaction of EVs with target cells and the endocytic pathways underlying their uptake, and the intracellular processing of EVs inside target cells. These questions are directly relevant to EV-based placental-maternal-fetal communication and have unique implications in the context of interaction between two organisms. Despite rapid progress in the field, the number of speculative, unsubstantiated assumptions about placental EVs is concerning. Here we attempt to delineate existing knowledge in the field, focusing primarily on placental small EVs (exosomes). We define central questions that require investigative attention in order to advance the field.
Collapse
Affiliation(s)
- Yoel Sadovsky
- Magee-Womens Research Institute, Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, Pittsburgh, PA, USA; Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Yingshi Ouyang
- Magee-Womens Research Institute, Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Juliana S Powell
- Magee-Womens Research Institute, Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Hui Li
- Magee-Womens Research Institute, Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, Pittsburgh, PA, USA; Reproductive Department of Xiangya Hospital, Central South University, Changsha, Hunan, China; The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jean-Francois Mouillet
- Magee-Womens Research Institute, Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Adrian E Morelli
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA; Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Alexander Sorkin
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Leonid Margolis
- Section for Intercellular Interactions, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD, USA
| |
Collapse
|
80
|
Abstract
The study of extracellular vesicles (EVs) has the potential to identify unknown cellular and molecular mechanisms in intercellular communication and in organ homeostasis and disease. Exosomes, with an average diameter of ~100 nanometers, are a subset of EVs. The biogenesis of exosomes involves their origin in endosomes, and subsequent interactions with other intracellular vesicles and organelles generate the final content of the exosomes. Their diverse constituents include nucleic acids, proteins, lipids, amino acids, and metabolites, which can reflect their cell of origin. In various diseases, exosomes offer a window into altered cellular or tissue states, and their detection in biological fluids potentially offers a multicomponent diagnostic readout. The efficient exchange of cellular components through exosomes can inform their applied use in designing exosome-based therapeutics.
Collapse
Affiliation(s)
- Raghu Kalluri
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- School of Bioengineering, Rice University, Houston, TX, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Valerie S LeBleu
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
81
|
Lavu N, Sheller-Miller S, Kechichian T, Cayenne S, Bonney EA, Menon R. Changes in mediators of pro-cell growth, senescence, and inflammation during murine gestation. Am J Reprod Immunol 2020; 83:e13214. [PMID: 31814178 DOI: 10.1111/aji.13214] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 11/08/2019] [Accepted: 12/05/2019] [Indexed: 12/27/2022] Open
Abstract
PROBLEM Senescence of the fetal membranes and senescence-associated inflammation have been associated with parturition at term and pre-term in both mice and humans. Using a pregnant mouse model, we determined changes in multiple molecular signalers contributing to senescence and inflammation associated with parturition. METHOD OF STUDY Fetal membranes were collected from timed-pregnant CD-1 mice on gestation days (E) 13, 15, 17, 18, and 19. Immunohistochemistry (IHC) localized pro-cell growth factors glycogen synthase kinase 3β (GSK3β) and β-catenin. Gestational age-associated changes in pro-cell growth vs senescence mediators (p38 mitogen-activated protein kinase [p38MAPK]), prooxidants (heme oxygenase-1 [HO-1], peroxisome proliferator-activated receptor γ [PPARγ]), and pro- and anti-inflammatory cytokines (IL-6, IL-8, IL-10, and IL-1β) were determined by Western blots and Luminex assays. RESULTS Fetal membrane expressions of phosphorylated forms of GSK3β (inactivation) and p38MAPK (activation) increased, while β-catenin expression decreased, as gestation progressed. Antioxidant HO-1 expression decreased while PPARγ increased toward term gestation. IL-6 and IL-8 concentrations were highest on E19 (day of delivery), while IL-10 and IL-1β concentrations were highest on E15. CONCLUSION Mouse fetal membranes showed a progressive senescence marker increase coincided with downregulation of cell growth factors. Development of senescence is associated with inflammation. Senescence-associated changes are natural and physiologic and indicative of fetal membranes' readiness for parturition.
Collapse
Affiliation(s)
- Narmada Lavu
- Division of Maternal-Fetal Medicine & Perinatal Research, Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, USA.,Department of Neuroscience, Cell Biology & Anatomy, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Samantha Sheller-Miller
- Division of Maternal-Fetal Medicine & Perinatal Research, Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Talar Kechichian
- Division of Maternal-Fetal Medicine & Perinatal Research, Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | | | - Elizabeth A Bonney
- Department of Obstetrics and Gynecology, University of Vermont, Burlington, VT, USA
| | - Ramkumar Menon
- Division of Maternal-Fetal Medicine & Perinatal Research, Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
| |
Collapse
|
82
|
Menon R, Moore JJ. Fetal Membranes, Not a Mere Appendage of the Placenta, but a Critical Part of the Fetal-Maternal Interface Controlling Parturition. Obstet Gynecol Clin North Am 2019; 47:147-162. [PMID: 32008665 DOI: 10.1016/j.ogc.2019.10.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Fetal membranes (FMs) play a role in pregnancy maintenance and promoting parturition at term. The FMs are not just part of the placenta, structurally or functionally. Although attached to the placenta, the amnion has a separate embryologic origin, and the chorion deviates from the placenta by the first month of pregnancy. Other than immune protection, these FM functions are not those of the placenta. FM dysfunction is associated with and may cause adverse pregnancy outcomes. Ongoing research may identify biomarkers for pending preterm premature rupture of the FMs as well as therapeutic agents, to prevent it and resulting preterm birth.
Collapse
Affiliation(s)
- Ramkumar Menon
- Department of Obstetrics and Gynecology, Perinatal Research Division, The University of Texas Medical Branch, MRB 11.138, 301 University Boulevard, Galveston, TX 77555, USA
| | - John J Moore
- Case Western Reserve University School of Medicine, 2500 MetroHealth Drive, Cleveland, OH 44109, USA.
| |
Collapse
|
83
|
Nguyen SL, Greenberg JW, Wang H, Collaer BW, Wang J, Petroff MG. Quantifying murine placental extracellular vesicles across gestation and in preterm birth data with tidyNano: A computational framework for analyzing and visualizing nanoparticle data in R. PLoS One 2019; 14:e0218270. [PMID: 31211806 PMCID: PMC6581270 DOI: 10.1371/journal.pone.0218270] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 05/29/2019] [Indexed: 01/08/2023] Open
Abstract
Extracellular vesicles (EVs) are increasingly recognized as important mediators of intercellular communication that carry protein, lipids, and nucleic acids via the circulation to target cells whereupon they mediate physiological changes. In pregnancy, EVs are released in high quantities from the placenta and have been postulated to target multiple cell types, including those of the vascular and immune systems. However, most studies of pregnancy-associated EVs have used clinical samples and in vitro models; to date, few studies have taken advantage of murine models in which pregnancy can be precisely timed and manipulated. In this study, we used a murine model to determine whether the quantity of EVs is altered during healthy pregnancy and during inflammation-associated preterm birth. To facilitate data analysis, we developed a novel software package, tidyNano, an R package that provides functions to import, clean, and quickly summarize raw data generated by the nanoparticle tracking device, NanoSight (Malvern Panalytical). We also developed shinySIGHT, a Shiny web application that allows for interactive exploration and visualization of EV data. In mice, EV concentration in blood increased linearly across pregnancy, with significant rises at GD14.5 and 17.5 relative to EV concentrations in nonpregnant females. Additionally, lipopolysaccharide treatment resulted in a significant reduction in circulating EV concentrations relative to vehicle-treated controls at GD16.5 within 4 hours. Use of tidyNano facilitated rapid analysis of EV data; importantly, this package provides a straightforward framework by which diverse types of large datasets can be simply and efficiently analyzed, is freely available under the MIT license, and is hosted on GitHub (https://nguyens7.github.io/tidyNano/). Our data highlight the utility of the mouse as a model of EV biology in pregnancy, and suggest that placental dysfunction is associated with reduced circulating EVs.
Collapse
Affiliation(s)
- Sean L. Nguyen
- Cell and Molecular Biology Program, Michigan State University, East Lansing, Michigan, United States of America
- Institute for Integrative Toxicology, Michigan State University, East Lansing, Michigan, United States of America
| | - Jacob W. Greenberg
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, United States of America
| | - Hao Wang
- Department of Computational Mathematics, Science and Engineering, Michigan State University, East Lansing, Michigan, United States of America
| | - Benjamin W. Collaer
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, United States of America
| | - Jianrong Wang
- Department of Computational Mathematics, Science and Engineering, Michigan State University, East Lansing, Michigan, United States of America
| | - Margaret G. Petroff
- Cell and Molecular Biology Program, Michigan State University, East Lansing, Michigan, United States of America
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, United States of America
- Department of Pathobiology Diagnostic Investigation, Michigan State University, East Lansing, Michigan, United States of America
| |
Collapse
|
84
|
Konečná B, Tóthová Ľ, Repiská G. Exosomes-Associated DNA-New Marker in Pregnancy Complications? Int J Mol Sci 2019; 20:ijms20122890. [PMID: 31200554 PMCID: PMC6627934 DOI: 10.3390/ijms20122890] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 06/09/2019] [Accepted: 06/11/2019] [Indexed: 12/14/2022] Open
Abstract
Despite a large number of studies, the etiology of pregnancy complications remains unknown. The involvement of cell-free DNA or fetal cell-free DNA in the pathogenesis of pregnancy complications is currently being hypothesized. Cell-free DNA occurs in different forms-free; part of neutrophil extracellular traps; or as recently discovered, carried by extracellular vesicles. Cell-free DNA is believed to activate an inflammatory pathway, which could possibly cause pregnancy complications. It could be hypothesized that DNA in its free form could be easily degraded by nucleases to prevent the inflammatory activation. However, recently, there has been a growing interest in the role of exosomes, potential protectors of cell-free DNA, in pregnancy complications. Most of the interest from recent years is directed towards the micro RNA carried by exosomes. However, exosome-associated DNA in relation to pregnancy complications has not been truly studied yet. DNA, as an important cargo of exosomes, has been so far studied mostly in cancer research. This review collects all the known information on the topic of not only exosome-associated DNA but also some information on vesicles-associated DNA and the studies regarding the role of exosomes in pregnancy complications from recent years. It also suggests possible analysis of exosome-associated DNA in pregnancy from plasma and emphasizes the importance of such analysis for future investigations of pregnancy complications. A major obstacle to the advancement in this field is the proper uniformed technique for exosomes isolation. Similarly, the sensitivity of methods analyzing a small fraction of DNA, potentially fetal DNA, carried by exosomes is variable.
Collapse
Affiliation(s)
- Barbora Konečná
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University in Bratislava, Bratislava 81108, Slovakia.
| | - Ľubomíra Tóthová
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University in Bratislava, Bratislava 81108, Slovakia.
| | - Gabriela Repiská
- Institute of Physiology, Faculty of Medicine, Comenius University in Bratislava, Bratislava 81372, Slovakia.
| |
Collapse
|