51
|
Rogers JM, Smith KE, Schriefer D, Epstein DH. For Better or Worse: Self-reported Changes in Kratom and Other Substance Use as a Result of the COVID-19 Pandemic. Subst Abuse 2022; 16:11782218221123977. [PMID: 36199697 PMCID: PMC9527987 DOI: 10.1177/11782218221123977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 08/10/2022] [Indexed: 12/01/2022]
Abstract
Background: Kratom is taken to self-treat pain and symptoms of psychiatric disorders, including substance-use disorders (SUDs) and opioid withdrawal. Before COVID-19, kratom use was increasing in the US, however, there are few published data on whether that trend continued during the COVID-19 pandemic, which could have affected kratom use in multiple ways. Aim: To examine COVID-19-related changes in kratom use and how these changes were experienced, relative to changes in other commonly used substances. Methods: Using Amazon Mechanical Turk, 2615 evaluable surveys were completed between September 2020 and March 2021. Responses from past-month and past-year kratom-using adults (N = 174) indicating changes for the better or worse were examined using generalized linear mixed effects models, and relevant open-text responses (n = 85) were thematically coded. Results: For kratom 33% (n = 58) reported a Covid-related increase and 24% (n = 42) reported a Covid-related decrease. Controlling for changes in amount used, alcohol (OR = 5.02), tobacco (OR = 4.72), and nonmedical opioid use (OR = 3.42) were all more likely to have changed for the worse, compared with kratom use. Relative to decreases in kratom use, decreases in alcohol (OR = 3.21) and tobacco (OR = 6.18) use were more likely to be changes for the better. Cannabis use was the only substance to display a probability lower than 50% of being a decrease for the better, and of the increases, cannabis use displayed the highest probability of being for the better. Conclusions: Increases in kratom and cannabis use were less likely than alcohol and tobacco to be reported as changes for the worse, and decreases in kratom and cannabis use were more likely than alcohol and tobacco to be reported as changes for the better. These findings indicate that people differently conceptualize their relationships with kratom and cannabis, compared to their relationships with alcohol and tobacco.
Collapse
Affiliation(s)
- Jeffrey M Rogers
- National Institute on Drug Abuse Intramural Research Program, Baltimore, MD, USA
- San Diego State University/University of California San Diego Joint Doctoral Program in Clinical Psychology, San Diego, CA, USA
| | - Kirsten E Smith
- National Institute on Drug Abuse Intramural Research Program, Baltimore, MD, USA
| | - Destiny Schriefer
- National Institute on Drug Abuse Intramural Research Program, Baltimore, MD, USA
| | - David H Epstein
- National Institute on Drug Abuse Intramural Research Program, Baltimore, MD, USA
| |
Collapse
|
52
|
Rogers JM, Smith KE, Strickland JC, Epstein DH. Kratom Use in the US: Both a Regional Phenomenon and a White Middle-Class Phenomenon? Evidence From NSDUH 2019 and an Online Convenience Sample. Front Pharmacol 2021; 12:789075. [PMID: 34987402 PMCID: PMC8721145 DOI: 10.3389/fphar.2021.789075] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 11/18/2021] [Indexed: 12/02/2022] Open
Abstract
Kratom products available in the United States are becoming increasingly diverse both in terms of content and in terms of how they are marketed. Prior survey research indicates that kratom has been primarily used in the US to self-treat anxiety, depression, pain, fatigue, and substance use disorder (SUD) symptoms. Kratom is also well-known for its use as a short- or long-term full opioid agonist substitute. Therefore, use may be greater in regions particularly impacted by addiction to prescription opioids. Use may also be greater in demographic groups targeted by media outlets (such as specific podcasts) in which kratom is touted. Here, we aimed to determine whether lifetime and past-year kratom use were associated with region of residence and with being young, White, post-secondary educated, and employed. To strengthen confidence in our findings, we analyzed data from two sources: our own crowdsourced online convenience sample and the 2019 National Survey on Drug Use and Health (NSDUH). In our sample (N = 2,615), 11.1% reported lifetime and 6.7% reported past-year kratom use, and the odds of kratom use were higher among people who were White, younger, at least high school educated, employed, and above the poverty line, as well as those reporting nonmedical opioid use, past-year SUD, or lifetime SUD treatment; residence was not a significant predictor. In NSDUH data, suburban residence and other demographic factors, concordant with those from the crowdsourced sample, were associated with kratom use. Taken together, the findings support a general "White middle-class suburban" profile of the modal kratom user, but more research is needed to understand it. In the interim, focus should be on our finding that lifetime nonmedical opioid use was associated with an up to five times greater likelihood of past-year kratom use, suggesting that drug-use history may presently be the strongest predictor of kratom use.
Collapse
Affiliation(s)
- Jeffrey M. Rogers
- Real-world Assessment, Prediction, and Treatment Unit, National Institute on Drug Abuse Intramural Research Program, Baltimore, MD, United States
| | - Kirsten E. Smith
- Real-world Assessment, Prediction, and Treatment Unit, National Institute on Drug Abuse Intramural Research Program, Baltimore, MD, United States
| | - Justin C. Strickland
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - David H. Epstein
- Real-world Assessment, Prediction, and Treatment Unit, National Institute on Drug Abuse Intramural Research Program, Baltimore, MD, United States
| |
Collapse
|
53
|
Hanapi NA, Chear NJY, Azizi J, Yusof SR. Kratom Alkaloids: Interactions With Enzymes, Receptors, and Cellular Barriers. Front Pharmacol 2021; 12:751656. [PMID: 34867362 PMCID: PMC8637859 DOI: 10.3389/fphar.2021.751656] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 10/26/2021] [Indexed: 01/11/2023] Open
Abstract
Parallel to the growing use of kratom, there is a wealth of evidence from self-report, preclinical, and early clinical studies on therapeutic benefits of its alkaloids in particular for treating pain, managing substance use disorder, and coping with emotional or mental health conditions. On the other hand, there are also reports on potential health risks concerning kratom use. These two aspects are often discussed in reviews on kratom. Here, we aim to highlight specific areas that are of importance to give insights into the mechanistic of kratom alkaloids pharmacological actions. This includes their interactions with drug-metabolizing enzymes and predictions of clinical drug-drug interactions, receptor-binding properties, interactions with cellular barriers in regards to barrier permeability, involvement of membrane transporters, and alteration of barrier function when exposed to the alkaloids.
Collapse
Affiliation(s)
- Nur Aziah Hanapi
- Centre for Drug Research, Universiti Sains Malaysia, Minden, Malaysia
| | | | - Juzaili Azizi
- Centre for Drug Research, Universiti Sains Malaysia, Minden, Malaysia
| | - Siti R Yusof
- Centre for Drug Research, Universiti Sains Malaysia, Minden, Malaysia
| |
Collapse
|
54
|
Chakraborty S, Uprety R, Slocum ST, Irie T, Le Rouzic V, Li X, Wilson LL, Scouller B, Alder AF, Kruegel AC, Ansonoff M, Varadi A, Eans SO, Hunkele A, Allaoa A, Kalra S, Xu J, Pan YX, Pintar J, Kivell BM, Pasternak GW, Cameron MD, McLaughlin JP, Sames D, Majumdar S. Oxidative Metabolism as a Modulator of Kratom's Biological Actions. J Med Chem 2021; 64:16553-16572. [PMID: 34783240 DOI: 10.1021/acs.jmedchem.1c01111] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The leaves of Mitragyna speciosa (kratom), a plant native to Southeast Asia, are increasingly used as a pain reliever and for attenuation of opioid withdrawal symptoms. Using the tools of natural products chemistry, chemical synthesis, and pharmacology, we provide a detailed in vitro and in vivo pharmacological characterization of the alkaloids in kratom. We report that metabolism of kratom's major alkaloid, mitragynine, in mice leads to formation of (a) a potent mu opioid receptor agonist antinociceptive agent, 7-hydroxymitragynine, through a CYP3A-mediated pathway, which exhibits reinforcing properties, inhibition of gastrointestinal (GI) transit and reduced hyperlocomotion, (b) a multifunctional mu agonist/delta-kappa antagonist, mitragynine pseudoindoxyl, through a CYP3A-mediated skeletal rearrangement, displaying reduced hyperlocomotion, inhibition of GI transit and reinforcing properties, and (c) a potentially toxic metabolite, 3-dehydromitragynine, through a non-CYP oxidation pathway. Our results indicate that the oxidative metabolism of the mitragynine template beyond 7-hydroxymitragynine may have implications in its overall pharmacology in vivo.
Collapse
Affiliation(s)
- Soumen Chakraborty
- Center for Clinical Pharmacology, University of Health Sciences & Pharmacy and Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Rajendra Uprety
- Department of Neurology and Molecular Pharmacology, Memorial Sloan Kettering Cancer Center, New York 10065, United States
| | - Samuel T Slocum
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Takeshi Irie
- Department of Anesthesiology and Critical Care Medicine, Memorial Sloan Kettering Cancer Center, New York 10065, United States
| | - Valerie Le Rouzic
- Department of Neurology and Molecular Pharmacology, Memorial Sloan Kettering Cancer Center, New York 10065, United States
| | - Xiaohai Li
- Department of Molecular Therapeutics, Scripps Research Institute, Jupiter, Florida 33458, United States
| | - Lisa L Wilson
- Department of Pharmacodynamics, University of Florida, Gainesville, Florida 32610, United States
| | - Brittany Scouller
- Centre for Biodiscovery, School of Biological Science, Victoria University of Wellington, Wellington 6012, New Zealand
| | - Amy F Alder
- Centre for Biodiscovery, School of Biological Science, Victoria University of Wellington, Wellington 6012, New Zealand
| | - Andrew C Kruegel
- Department of Chemistry, Columbia University, New York 10027, United States
| | - Michael Ansonoff
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, New Jersey 08854-8021, United States
| | - Andras Varadi
- Department of Neurology and Molecular Pharmacology, Memorial Sloan Kettering Cancer Center, New York 10065, United States
| | - Shainnel O Eans
- Department of Pharmacodynamics, University of Florida, Gainesville, Florida 32610, United States
| | - Amanda Hunkele
- Department of Neurology and Molecular Pharmacology, Memorial Sloan Kettering Cancer Center, New York 10065, United States
| | - Abdullah Allaoa
- Department of Neurology and Molecular Pharmacology, Memorial Sloan Kettering Cancer Center, New York 10065, United States
| | - Sanjay Kalra
- Department of Neurology and Molecular Pharmacology, Memorial Sloan Kettering Cancer Center, New York 10065, United States
| | - Jin Xu
- Department of Neurology and Molecular Pharmacology, Memorial Sloan Kettering Cancer Center, New York 10065, United States
| | - Ying Xian Pan
- Department of Neurology and Molecular Pharmacology, Memorial Sloan Kettering Cancer Center, New York 10065, United States
| | - John Pintar
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, New Jersey 08854-8021, United States
| | - Bronwyn M Kivell
- Centre for Biodiscovery, School of Biological Science, Victoria University of Wellington, Wellington 6012, New Zealand
| | - Gavril W Pasternak
- Department of Neurology and Molecular Pharmacology, Memorial Sloan Kettering Cancer Center, New York 10065, United States
| | - Michael D Cameron
- Department of Molecular Therapeutics, Scripps Research Institute, Jupiter, Florida 33458, United States
| | - Jay P McLaughlin
- Department of Pharmacodynamics, University of Florida, Gainesville, Florida 32610, United States
| | - Dalibor Sames
- Department of Chemistry, Columbia University, New York 10027, United States
| | - Susruta Majumdar
- Center for Clinical Pharmacology, University of Health Sciences & Pharmacy and Washington University School of Medicine, St. Louis, Missouri 63110, United States
| |
Collapse
|
55
|
Jasim RK, Hassan Z, Singh D, Boyer E, Gam LH. Characterization of urinary protein profile in regular kratom ( Mitragyna speciosa korth.) users in Malaysia. J Addict Dis 2021; 40:235-246. [PMID: 34747343 DOI: 10.1080/10550887.2021.1981122] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Mitragyna speciosa (Korth.) also known as kratom or ketum has been traditionally used for its diverse medicinal value in Southeast Asia. Despite of its therapeutic value, kratom's safety profile remains deficiently elucidated. Our study aims to characterize the urinary protein profile of regular kratom users to determine its toxic effects on renal functioning. A total of 171 respondents (comprising of n = 88 regular kratom users, and n = 83 healthy controls) were recruited for this study. Urine specimens were collected and analyzed using SDS-PAGE, followed by LC/MS/MS analysis. Our results show albumin is the primary, and most abundant form of protein excreted in kratom user's urine specimens (n = 60/64), indicating that kratom users are predisposed to proteinuria. Kratom users had an elevated urinary protein (with an intensity of 66.7 kDa band), and protein: creatinine ratio (PCR) concentrations relative to healthy controls. However, kratom user's urinary creatinine concentration was found to be in the normal range as the healthy control group. While, kratom users who tested positive for illicit drug use had an elevated urinary albumin concentration. Our preliminary findings indicate that regular consumption of freshly brewed kratom solution over a protracted period (for an average of eleven years) seems to induce proteinuria, suggestive of an early stage of kidney injury. Hence, further studies are urgently needed to confirm our findings, and establish kratom's renal impairing effects.
Collapse
Affiliation(s)
- Rana Khudhair Jasim
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Penang, Malaysia
| | - Zurina Hassan
- Centre of Drug Research, Universiti Sains Malaysia, Penang, Malaysia
| | - Darshan Singh
- Centre of Drug Research, Universiti Sains Malaysia, Penang, Malaysia
| | - Edward Boyer
- Harvard Medical School, Boston, Massachusetts, USA
| | - Lay-Harn Gam
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Penang, Malaysia
| |
Collapse
|
56
|
Chakraborty S, DiBerto JF, Faouzi A, Bernhard SM, Gutridge AM, Ramsey S, Zhou Y, Provasi D, Nuthikattu N, Jilakara R, Nelson MNF, Asher WB, Eans SO, Wilson LL, Chintala SM, Filizola M, van Rijn RM, Margolis EB, Roth BL, McLaughlin JP, Che T, Sames D, Javitch JA, Majumdar S. A Novel Mitragynine Analog with Low-Efficacy Mu Opioid Receptor Agonism Displays Antinociception with Attenuated Adverse Effects. J Med Chem 2021; 64:13873-13892. [PMID: 34505767 PMCID: PMC8530377 DOI: 10.1021/acs.jmedchem.1c01273] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Mitragynine and 7-hydroxymitragynine (7OH) are the major alkaloids mediating the biological actions of the psychoactive plant kratom. To investigate the structure-activity relationships of mitragynine/7OH templates, we diversified the aromatic ring of the indole at the C9, C10, and C12 positions and investigated their G-protein and arrestin signaling mediated by mu opioid receptors (MOR). Three synthesized lead C9 analogs replacing the 9-OCH3 group with phenyl (4), methyl (5), or 3'-furanyl [6 (SC13)] substituents demonstrated partial agonism with a lower efficacy than DAMGO or morphine in heterologous G-protein assays and synaptic physiology. In assays limiting MOR reserve, the G-protein efficacy of all three was comparable to buprenorphine. 6 (SC13) showed MOR-dependent analgesia with potency similar to morphine without respiratory depression, hyperlocomotion, constipation, or place conditioning in mice. These results suggest the possibility of activating MOR minimally (G-protein Emax ≈ 10%) in cell lines while yet attaining maximal antinociception in vivo with reduced opioid liabilities.
Collapse
MESH Headings
- Analgesics, Opioid/adverse effects
- Analgesics, Opioid/chemical synthesis
- Analgesics, Opioid/metabolism
- Analgesics, Opioid/pharmacology
- Animals
- Male
- Mice, Inbred C57BL
- Molecular Docking Simulation
- Molecular Dynamics Simulation
- Molecular Structure
- Rats, Sprague-Dawley
- Receptors, Opioid, mu/agonists
- Receptors, Opioid, mu/metabolism
- Secologanin Tryptamine Alkaloids/adverse effects
- Secologanin Tryptamine Alkaloids/chemical synthesis
- Secologanin Tryptamine Alkaloids/metabolism
- Secologanin Tryptamine Alkaloids/pharmacology
- Structure-Activity Relationship
- Mice
- Rats
Collapse
Affiliation(s)
- Soumen Chakraborty
- Center for Clinical Pharmacology, University of Health Sciences
& Pharmacy at St. Louis and Washington University School of Medicine,
St. Louis, Missouri 63110, United States; Department of Anesthesiology,
Washington University School of Medicine, St. Louis, Missouri 63110, United
States
| | - Jeffrey F. DiBerto
- Department of Pharmacology, University of North Carolina at Chapel
Hill School of Medicine, Chapel Hill, North Carolina 27599, United
States
| | - Abdelfattah Faouzi
- Center for Clinical Pharmacology, University of Health Sciences
& Pharmacy at St. Louis and Washington University School of Medicine,
St. Louis, Missouri 63110, United States; Department of Anesthesiology,
Washington University School of Medicine, St. Louis, Missouri 63110, United
States
| | - Sarah M. Bernhard
- Center for Clinical Pharmacology, University of Health Sciences
& Pharmacy at St. Louis and Washington University School of Medicine,
St. Louis, Missouri 63110, United States; Department of Anesthesiology,
Washington University School of Medicine, St. Louis, Missouri 63110, United
States
| | - Anna M. Gutridge
- Department of Medicinal Chemistry and Molecular Pharmacology,
College of Pharmacy, Purdue University, West Lafayette, Indiana 47907,
United States
| | - Steven Ramsey
- Department of Pharmacological Sciences, Icahn School of Medicine at
Mount Sinai, New York, New York 10029, United States
| | - Yuchen Zhou
- Department of Pharmacological Sciences, Icahn School of Medicine at
Mount Sinai, New York, New York 10029, United States
| | - Davide Provasi
- Department of Pharmacological Sciences, Icahn School of Medicine at
Mount Sinai, New York, New York 10029, United States
| | - Nitin Nuthikattu
- Center for Clinical Pharmacology, University of Health Sciences
& Pharmacy at St. Louis and Washington University School of Medicine,
St. Louis, Missouri 63110, United States; Department of Anesthesiology,
Washington University School of Medicine, St. Louis, Missouri 63110, United
States
| | - Rahul Jilakara
- Center for Clinical Pharmacology, University of Health Sciences
& Pharmacy at St. Louis and Washington University School of Medicine,
St. Louis, Missouri 63110, United States; Department of Anesthesiology,
Washington University School of Medicine, St. Louis, Missouri 63110, United
States
| | - Melissa N. F. Nelson
- Departments of Psychiatry and Molecular Pharmacology and
Therapeutics, Columbia University Vagelos College of Physicians and
Surgeons, and Division of Molecular Therapeutics, New York State Psychiatric
Institute, New York, New York 10032, United States
| | - Wesley B. Asher
- Departments of Psychiatry and Molecular Pharmacology and
Therapeutics, Columbia University Vagelos College of Physicians and
Surgeons, and Division of Molecular Therapeutics, New York State Psychiatric
Institute, New York, New York 10032, United States
| | - Shainnel O. Eans
- Department of Pharmacodynamics, University of Florida,
Gainesville, Florida 032610, United States
| | - Lisa L. Wilson
- Department of Pharmacodynamics, University of Florida,
Gainesville, Florida 032610, United States
| | - Satyanarayana M. Chintala
- Department of Anesthesiology, Washington University School of
Medicine, St. Louis, Missouri 63110, United States
| | - Marta Filizola
- Department of Pharmacological Sciences, Icahn School of Medicine
at Mount Sinai, New York, New York 10029, United States
| | - Richard M. van Rijn
- Department of Medicinal Chemistry and Molecular Pharmacology,
College of Pharmacy, Purdue University, West Lafayette, Indiana 47907,
United States
| | - Elyssa B. Margolis
- Department of Neurology, UCSF Weill Institute for Neurosciences,
University of California San Francisco, San Francisco, California 94158,
United States
| | - Bryan L. Roth
- Department of Pharmacology, University of North Carolina at Chapel
Hill School of Medicine, Chapel Hill, North Carolina 27599, United
States
| | - Jay P. McLaughlin
- Department of Pharmacodynamics, University of Florida,
Gainesville, Florida 032610, United States
| | - Tao Che
- Center for Clinical Pharmacology, University of Health Sciences
& Pharmacy at St. Louis and Washington University School of Medicine,
St. Louis, Missouri 63110, United States; Department of Anesthesiology,
Washington University School of Medicine, St. Louis, Missouri 63110, United
States; Department of Pharmacology, University of North Carolina at Chapel
Hill School of Medicine, Chapel Hill, North Carolina 27599, United
States
| | - Dalibor Sames
- Department of Chemistry, Columbia University, New York 10027,
United States
| | - Jonathan A. Javitch
- Departments of Psychiatry and Molecular Pharmacology and
Therapeutics, Columbia University Vagelos College of Physicians and
Surgeons, and Division of Molecular Therapeutics, New York State Psychiatric
Institute, New York, New York 10032, United States
| | - Susruta Majumdar
- Center for Clinical Pharmacology, University of Health Sciences
& Pharmacy at St. Louis and Washington University School of Medicine,
St. Louis, Missouri 63110, United States; Department of Anesthesiology,
Washington University School of Medicine, St. Louis, Missouri 63110, United
States
| |
Collapse
|
57
|
Prozialeck WC, Lamar PC, Krupp M, Moon M, Phelps LE, Grundmann O. Kratom Use Within the Context of the Evolving Opioid Crisis and the COVID-19 Pandemic in the United States. Front Pharmacol 2021; 12:729220. [PMID: 34512353 PMCID: PMC8427750 DOI: 10.3389/fphar.2021.729220] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 08/12/2021] [Indexed: 12/18/2022] Open
Abstract
Kratom (Mitragyna speciosa, Korth.) is an evergreen tree that is indigenous to Southeast Asia. When ingested, kratom leaves or decoctions from the leaves have been reported to produce complex stimulant and opioid-like effects. For generations, native populations in Southeast Asia have used kratom products to stave off fatigue, improve mood, alleviate pain and manage symptoms of opioid withdrawal. Despite the long history of kratom use in Asia, it is only within the past 10-20 years that kratom has emerged as an important herbal agent in the United States, where it is being used for the self-treatment of pain, opioid withdrawal symptoms, and mood disorders. The increase in the use of kratom in the United States has coincided with the serious epidemic of opioid abuse and dependence. Since 2015, efforts to restrict access to prescription opioids have resulted in a marked increase in the use of "street" opioids such as heroin and illicit fentanyl. At the same time, many patients with chronic pain conditions or opioid use disorder have been denied access to appropriate medical help. The lack of access to care for patients with chronic pain and opioid use disorder has been magnified by the emergence of the COVID-19 pandemic. In this report, we highlight how these converging factors have led to a surge in interest in kratom as a potential harm reduction agent in the treatment of pain and opioid use disorder.
Collapse
Affiliation(s)
- Walter C Prozialeck
- Department of Pharmacology, Midwestern University, Downers Grove, IL, United States
| | - Peter C Lamar
- Department of Pharmacology, Midwestern University, Downers Grove, IL, United States
| | - Michael Krupp
- Department of Pharmacology, Midwestern University, Downers Grove, IL, United States
| | - Matthew Moon
- Department of Pharmacology, Midwestern University, Downers Grove, IL, United States
| | - Laura E Phelps
- Department of Pharmacology, Midwestern University, Downers Grove, IL, United States
| | - Oliver Grundmann
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL, United States
| |
Collapse
|
58
|
Smith KE, Rogers JM, Schriefer D, Grundmann O. Therapeutic benefit with caveats?: Analyzing social media data to understand the complexities of kratom use. Drug Alcohol Depend 2021; 226:108879. [PMID: 34216869 PMCID: PMC8355181 DOI: 10.1016/j.drugalcdep.2021.108879] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 06/11/2021] [Accepted: 06/19/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND Mitragyna speciosa, referred to as "kratom", is increasingly used in the United States for self-treating pain, psychiatric, and substance use disorder symptoms. It is used by some to attenuate opioid withdrawal and as a longer-term drug substitute. Most self-report data have come from online surveys, small in-person surveys, and case reports. These may not be representative of the broader kratom-using population. PURPOSE Analyze user-generated social media posts to determine if independent, descriptive accounts are generally consistent with prior U.S. kratom survey findings and gain a more nuanced understanding of kratom use patterns. METHODS Reddit posts mentioning kratom from 42 subreddits between June 2019-July 2020 were coded by two independent raters. FINDINGS Relevant posts (number of comments, upvotes, and downvotes) from 1274 posts comprised the final sample (n = 280). Of the 1521 codes applied, 1273 (83.69%) were concordant. Desirable kratom effects were described among a majority, but so too were adverse effects. Reports of kratom as acute self-treatment for opioid withdrawal were more prominent compared to longer-term opioid substitution. Quantitative analysis found higher kratom doses associated (p < .001) with greater odds of reported kratom addiction (OR = 3.56) or withdrawal (OR = 5.88), with slightly lower odds of desirable effects (OR = 0.53, p = .014). Despite perceived therapeutic benefits, kratom was characterized by some in terms of addiction that, in some cases, appeared dose-dependent. Polydrug use was also prominently discussed. CONCLUSIONS Results validated many prior survey findings while illustrating complexities of kratom use that are not being fully captured and require continued investigation.
Collapse
Affiliation(s)
- Kirsten E Smith
- National Institute on Drug Abuse Intramural Research Program, 251 Bayview Blvd., Baltimore, MD 21224, USA.
| | - Jeffrey M Rogers
- National Institute on Drug Abuse Intramural Research Program, 251 Bayview Blvd., Baltimore, MD 21224, USA
| | - Destiny Schriefer
- National Institute on Drug Abuse Intramural Research Program, 251 Bayview Blvd., Baltimore, MD 21224, USA
| | - Oliver Grundmann
- College of Pharmacy, Department of Medicinal Chemistry, University of Florida, FL 32610, USA
| |
Collapse
|
59
|
Xu KY, Mintz CM, Borodovsky JT, Glaser PEA, Bierut LJ, Grucza RA. Prevalence of Kratom Use and Co-Occurring Substance Use Disorders in the United States. Prim Care Companion CNS Disord 2021; 23:21br02930. [PMID: 34352941 PMCID: PMC8647372 DOI: 10.4088/pcc.21br02930] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Affiliation(s)
- Kevin Y Xu
- Health and Behavior Research Center, Department of Psychiatry, Washington University School of Medicine, St Louis, Missouri
- Corresponding author: Kevin Y. Xu, MD, MPH, Department of Psychiatry, Washington University School of Medicine, 420 South Euclid Ave, Campus Box 8134, St Louis, MO 63110
| | - Carrie M Mintz
- Health and Behavior Research Center, Department of Psychiatry, Washington University School of Medicine, St Louis, Missouri
| | - Jacob T Borodovsky
- Health and Behavior Research Center, Department of Psychiatry, Washington University School of Medicine, St Louis, Missouri
- Center for Technology and Behavioral Health, Department of Biomedical Data Science, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire
| | - Paul E A Glaser
- William Greenleaf Eliot Division of Child Psychiatry, Washington University School of Medicine, St Louis, Missouri
| | - Laura J Bierut
- Health and Behavior Research Center, Department of Psychiatry, Washington University School of Medicine, St Louis, Missouri
- Alvin J Siteman Cancer Center, Barnes Jewish Hospital and Washington University School of Medicine, St Louis, Missouri
| | - Richard A Grucza
- Health and Behavior Research Center, Department of Psychiatry, Washington University School of Medicine, St Louis, Missouri
- Departments of Family and Community Medicine and Health and Outcomes Research, St Louis University, St Louis, Missouri
| |
Collapse
|
60
|
Chakraborty S, Uprety R, Daibani AE, Rouzic VL, Hunkele A, Appourchaux K, Eans SO, Nuthikattu N, Jilakara R, Thammavong L, Pasternak GW, Pan YX, McLaughlin JP, Che T, Majumdar S. Kratom Alkaloids as Probes for Opioid Receptor Function: Pharmacological Characterization of Minor Indole and Oxindole Alkaloids from Kratom. ACS Chem Neurosci 2021; 12:2661-2678. [PMID: 34213886 PMCID: PMC8328003 DOI: 10.1021/acschemneuro.1c00149] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Dry leaves of kratom (mitragyna speciosa) are anecdotally consumed as pain relievers and antidotes against opioid withdrawal and alcohol use disorders. There are at least 54 alkaloids in kratom; however, investigations to date have focused around mitragynine, 7-hydroxy mitragynine (7OH), and mitragynine pseudoindoxyl (MP). Herein, we probe a few minor indole and oxindole based alkaloids, reporting the receptor affinity, G-protein activity, and βarrestin-2 signaling of corynantheidine, corynoxine, corynoxine B, mitraciliatine, and isopaynantheine at mouse and human opioid receptors. We identify corynantheidine as a mu opioid receptor (MOR) partial agonist, whereas its oxindole derivative corynoxine was an MOR full agonist. Similarly, another alkaloid mitraciliatine was found to be an MOR partial agonist, while isopaynantheine was a KOR agonist which showed reduced βarrestin-2 recruitment. Corynantheidine, corynoxine, and mitraciliatine showed MOR dependent antinociception in mice, but mitraciliatine and corynoxine displayed attenuated respiratory depression and hyperlocomotion compared to the prototypic MOR agonist morphine in vivo when administered supraspinally. Isopaynantheine on the other hand was identified as the first kratom derived KOR agonist in vivo. While these minor alkaloids are unlikely to play the majority role in the biological actions of kratom, they represent excellent starting points for further diversification as well as distinct efficacy and signaling profiles with which to probe opioid actions in vivo.
Collapse
Affiliation(s)
- Soumen Chakraborty
- Center for Clinical Pharmacology, University of Health Sciences & Pharmacy at St. Louis and Washington University School of Medicine, St. Louis, Missouri 63110, United States
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Rajendra Uprety
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
| | - Amal E Daibani
- Center for Clinical Pharmacology, University of Health Sciences & Pharmacy at St. Louis and Washington University School of Medicine, St. Louis, Missouri 63110, United States
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Valerie L Rouzic
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
| | - Amanda Hunkele
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
| | - Kevin Appourchaux
- Center for Clinical Pharmacology, University of Health Sciences & Pharmacy at St. Louis and Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Shainnel O Eans
- Department of Pharmacodynamics, University of Florida, Gainesville, Florida 032610, United States
| | - Nitin Nuthikattu
- Center for Clinical Pharmacology, University of Health Sciences & Pharmacy at St. Louis and Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Rahul Jilakara
- Center for Clinical Pharmacology, University of Health Sciences & Pharmacy at St. Louis and Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Lisa Thammavong
- Center for Clinical Pharmacology, University of Health Sciences & Pharmacy at St. Louis and Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Gavril W Pasternak
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
| | - Ying-Xian Pan
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
- Department of Anesthesiology, Rutgers New Jersey Medical School, Newark, New Jersey 07103, United States
| | - Jay P McLaughlin
- Department of Pharmacodynamics, University of Florida, Gainesville, Florida 032610, United States
| | - Tao Che
- Center for Clinical Pharmacology, University of Health Sciences & Pharmacy at St. Louis and Washington University School of Medicine, St. Louis, Missouri 63110, United States
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri 63110, United States
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina 27599, United States
| | - Susruta Majumdar
- Center for Clinical Pharmacology, University of Health Sciences & Pharmacy at St. Louis and Washington University School of Medicine, St. Louis, Missouri 63110, United States
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| |
Collapse
|
61
|
Jamieson CS, Misa J, Tang Y, Billingsley JM. Biosynthesis and synthetic biology of psychoactive natural products. Chem Soc Rev 2021; 50:6950-7008. [PMID: 33908526 PMCID: PMC8217322 DOI: 10.1039/d1cs00065a] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Psychoactive natural products play an integral role in the modern world. The tremendous structural complexity displayed by such molecules confers diverse biological activities of significant medicinal value and sociocultural impact. Accordingly, in the last two centuries, immense effort has been devoted towards establishing how plants, animals, and fungi synthesize complex natural products from simple metabolic precursors. The recent explosion of genomics data and molecular biology tools has enabled the identification of genes encoding proteins that catalyze individual biosynthetic steps. Once fully elucidated, the "biosynthetic pathways" are often comparable to organic syntheses in elegance and yield. Additionally, the discovery of biosynthetic enzymes provides powerful catalysts which may be repurposed for synthetic biology applications, or implemented with chemoenzymatic synthetic approaches. In this review, we discuss the progress that has been made toward biosynthetic pathway elucidation amongst four classes of psychoactive natural products: hallucinogens, stimulants, cannabinoids, and opioids. Compounds of diverse biosynthetic origin - terpene, amino acid, polyketide - are identified, and notable mechanisms of key scaffold transforming steps are highlighted. We also provide a description of subsequent applications of the biosynthetic machinery, with an emphasis placed on the synthetic biology and metabolic engineering strategies enabling heterologous production.
Collapse
Affiliation(s)
- Cooper S Jamieson
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, USA.
| | - Joshua Misa
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA, USA.
| | - Yi Tang
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, USA. and Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA, USA.
| | - John M Billingsley
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA, USA. and Invizyne Technologies, Inc., Monrovia, CA, USA
| |
Collapse
|
62
|
Domnic G, Narayanan S, Mohana-Kumaran N, Singh D. Kratom (Mitragyna speciosa Korth.) an overlooked medicinal plant in Malaysia. JOURNAL OF SUBSTANCE USE 2021. [DOI: 10.1080/14659891.2021.1885515] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Gregory Domnic
- School of Biological Sciences, Universiti Sains Malaysia, Penang, Malaysia
| | - Suresh Narayanan
- School of Social Sciences, Universiti Sains Malaysia, Penang, Malaysia
| | | | - Darshan Singh
- Centre for Drug Research, Universiti Sains Malaysia, Penang, Malaysia
| |
Collapse
|
63
|
Tanna RS, Tian DD, Cech NB, Oberlies NH, Rettie AE, Thummel KE, Paine MF. Refined Prediction of Pharmacokinetic Kratom-Drug Interactions: Time-Dependent Inhibition Considerations. J Pharmacol Exp Ther 2020; 376:64-73. [PMID: 33093187 DOI: 10.1124/jpet.120.000270] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 10/08/2020] [Indexed: 02/06/2023] Open
Abstract
Preparations from the leaves of the kratom plant (Mitragyna speciosa) are consumed for their opioid-like effects. Several deaths have been associated with kratom used concomitantly with some drugs. Pharmacokinetic interactions are potential underlying mechanisms of these fatalities. Accumulating in vitro evidence has demonstrated select kratom alkaloids, including the abundant indole alkaloid mitragynine, as reversible inhibitors of several cytochromes P450 (CYPs). The objective of this work was to refine the mechanistic understanding of potential kratom-drug interactions by considering both reversible and time-dependent inhibition (TDI) of CYPs in the liver and intestine. Mitragynine was tested against CYP2C9 (diclofenac 4'-hydroxylation), CYP2D6 (dextromethorphan O-demethylation), and CYP3A (midazolam 1'-hydroxylation) activities in human liver microsomes (HLMs) and CYP3A activity in human intestinal microsomes (HIMs). Comparing the absence to presence of NADPH during preincubation of mitragynine with HLMs or HIMs, an ∼7-fold leftward shift in IC50 (∼20 to 3 μM) toward CYP3A resulted, prompting determination of TDI parameters (HLMs: K I , 4.1 ± 0.9 μM; k inact , 0.068 ± 0.01 min-1; HIMs: K I , 4.2 ± 2.5 μM; k inact , 0.079 ± 0.02 min-1). Mitragynine caused no leftward shift in IC50 toward CYP2C9 (∼40 μM) and CYP2D6 (∼1 μM) but was a strong competitive inhibitor of CYP2D6 (K i , 1.17 ± 0.07 μM). Using a recommended mechanistic static model, mitragynine (2-g kratom dose) was predicted to increase dextromethorphan and midazolam area under the plasma concentration-time curve by 1.06- and 5.69-fold, respectively. The predicted midazolam area under the plasma concentration-time curve ratio exceeded the recommended cutoff (1.25), which would have been missed if TDI was not considered. SIGNIFICANCE STATEMENT: Kratom, a botanical natural product increasingly consumed for its opioid-like effects, may precipitate potentially serious pharmacokinetic interactions with drugs. The abundant kratom indole alkaloid mitragynine was shown to be a time-dependent inhibitor of hepatic and intestinal cytochrome P450 3A activity. A mechanistic static model predicted mitragynine to increase systemic exposure to the probe drug substrate midazolam by 5.7-fold, necessitating further evaluation via dynamic models and clinical assessment to advance the understanding of consumer safety associated with kratom use.
Collapse
Affiliation(s)
- Rakshit S Tanna
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington (R.S.T., D.-D.T., M.F.P.); Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina (N.B.C., N.H.O.); Departments of Medicinal Chemistry (A.E.R.) and Pharmaceutics (K.E.T.), School of Pharmacy, University of Washington, Seattle, Washington; and Center of Excellence for Natural Product Drug Interaction Research, Spokane, Washington (N.B.C., N.H.O., A.E.R., K.E.T., M.F.P.)
| | - Dan-Dan Tian
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington (R.S.T., D.-D.T., M.F.P.); Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina (N.B.C., N.H.O.); Departments of Medicinal Chemistry (A.E.R.) and Pharmaceutics (K.E.T.), School of Pharmacy, University of Washington, Seattle, Washington; and Center of Excellence for Natural Product Drug Interaction Research, Spokane, Washington (N.B.C., N.H.O., A.E.R., K.E.T., M.F.P.)
| | - Nadja B Cech
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington (R.S.T., D.-D.T., M.F.P.); Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina (N.B.C., N.H.O.); Departments of Medicinal Chemistry (A.E.R.) and Pharmaceutics (K.E.T.), School of Pharmacy, University of Washington, Seattle, Washington; and Center of Excellence for Natural Product Drug Interaction Research, Spokane, Washington (N.B.C., N.H.O., A.E.R., K.E.T., M.F.P.)
| | - Nicholas H Oberlies
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington (R.S.T., D.-D.T., M.F.P.); Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina (N.B.C., N.H.O.); Departments of Medicinal Chemistry (A.E.R.) and Pharmaceutics (K.E.T.), School of Pharmacy, University of Washington, Seattle, Washington; and Center of Excellence for Natural Product Drug Interaction Research, Spokane, Washington (N.B.C., N.H.O., A.E.R., K.E.T., M.F.P.)
| | - Allan E Rettie
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington (R.S.T., D.-D.T., M.F.P.); Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina (N.B.C., N.H.O.); Departments of Medicinal Chemistry (A.E.R.) and Pharmaceutics (K.E.T.), School of Pharmacy, University of Washington, Seattle, Washington; and Center of Excellence for Natural Product Drug Interaction Research, Spokane, Washington (N.B.C., N.H.O., A.E.R., K.E.T., M.F.P.)
| | - Kenneth E Thummel
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington (R.S.T., D.-D.T., M.F.P.); Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina (N.B.C., N.H.O.); Departments of Medicinal Chemistry (A.E.R.) and Pharmaceutics (K.E.T.), School of Pharmacy, University of Washington, Seattle, Washington; and Center of Excellence for Natural Product Drug Interaction Research, Spokane, Washington (N.B.C., N.H.O., A.E.R., K.E.T., M.F.P.)
| | - Mary F Paine
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington (R.S.T., D.-D.T., M.F.P.); Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina (N.B.C., N.H.O.); Departments of Medicinal Chemistry (A.E.R.) and Pharmaceutics (K.E.T.), School of Pharmacy, University of Washington, Seattle, Washington; and Center of Excellence for Natural Product Drug Interaction Research, Spokane, Washington (N.B.C., N.H.O., A.E.R., K.E.T., M.F.P.)
| |
Collapse
|