51
|
Mohamed H, Marusich E, Afanasev Y, Leonov S. Bacterial Outer Membrane Permeability Increase Underlies the Bactericidal Effect of Fatty Acids From Hermetia illucens (Black Soldier Fly) Larvae Fat Against Hypermucoviscous Isolates of Klebsiella pneumoniae. Front Microbiol 2022; 13:844811. [PMID: 35602017 PMCID: PMC9121012 DOI: 10.3389/fmicb.2022.844811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 03/08/2022] [Indexed: 11/25/2022] Open
Abstract
Behind expensive treatments, Klebsiella pneumoniae infections account for extended hospitalization’s high mortality rates. This study aimed to evaluate the activity and mechanism of the antimicrobial action of a fatty acid-containing extract (AWME3) isolated from Hermetia illucens (HI) larvae fat against K. pneumoniae subsp. pneumoniae standard NDM-1 carbapenemase-producing ATCC BAA-2473 strain, along with a wild-type hypermucoviscous clinical isolate, strain K. pneumoniae subsp. pneumoniae KPi1627, and an environmental isolate, strain K. pneumoniae subsp. pneumoniae KPM9. We classified these strains as extensive multidrug-resistant (XDR) or multiple antibiotic-resistant (MDR) demonstrated by a susceptibility assay against 14 antibiotics belonging to ten classes of antibiotics. Antibacterial properties of fatty acids extracted from the HI larvae fat were evaluated using disk diffusion method, microdilution, minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), half of the inhibitory concentration (MIC50), and bactericidal assays. In addition, the cytotoxocity of AWME3 was tested on human HEK293 cells, and AWME3 lipid profile was determined by gas chromatography-mass spectrometry (GC-MS) analysis. For the first time, we demonstrated that the inhibition zone diameter (IZD) of fatty acid-containing extract (AWME3) of the HI larvae fat tested at 20 mg/ml was 16.52 ± 0.74 and 14.23 ± 0.35 mm against colistin-resistant KPi1627 and KPM9, respectively. It was 19.72 ± 0.51 mm against the colistin-susceptible K. pneumoniae ATCC BAA-2473 strain. The MIC and MBC were 250 μg/ml for all the tested bacteria strains, indicating the bactericidal effect of AWME3. The MIC50 values were 155.6 ± 0.009 and 160.1 ± 0.008 μg/ml against the KPi1627 and KPM9 isolates, respectively, and 149.5 ± 0.013 μg/ml against the ATCC BAA-2473 strain in the micro-dilution assay. For the first time, we demonstrated that AWME3 dose-dependently increased bacterial cell membrane permeability as determined by the relative electric conductivity (REC) of the K. pneumoniae ATCC BAA-2473 suspension, and that none of the strains did not build up resistance to extended AWME3 treatment using the antibiotic resistance assay. Cytotoxicity assay showed that AWME3 is safe for human HEK293 cells at IC50 266.1 μg/ml, while bactericidal for all the strains of bacteria at the same concentration. Free fatty acids (FFAs) and their derivatives were the significant substances among 33 compounds identified by the GC-MS analysis of AWME3. Cis-oleic and palmitoleic acids represent the most abundant unsaturated FAs (UFAs), while palmitic, lauric, stearic, and myristic acids were the most abundant saturated FAs (SFAs) of the AWME3 content. Bactericidal resistant-free AWM3 mechanism of action provides a rationale interpretations and the utility of HI larvae fat to develop natural biocidal resistance-free formulations that might be promising therapeutic against Gram-negative MDR bacteria causing nosocomial infections.
Collapse
Affiliation(s)
- Heakal Mohamed
- School of Biological and Medical Physics, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Elena Marusich
- School of Biological and Medical Physics, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
- *Correspondence: Elena Marusich,
| | - Yuriy Afanasev
- School of Biological and Medical Physics, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Sergey Leonov
- School of Biological and Medical Physics, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
- Institute of Cell Biophysics, Russian Academy of Sciences, Moscow, Russia
- Sergey Leonov,
| |
Collapse
|
52
|
Almeida C, Murta D, Nunes R, Baby AR, Fernandes Â, Barros L, Rijo P, Rosado C. Characterization of lipid extracts from the Hermetia illucens larvae and their bioactivities for potential use as pharmaceutical and cosmetic ingredients. Heliyon 2022; 8:e09455. [PMID: 35637671 PMCID: PMC9142853 DOI: 10.1016/j.heliyon.2022.e09455] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/06/2022] [Accepted: 05/12/2022] [Indexed: 11/18/2022] Open
Abstract
There is an increasingly growing demand for the use of natural and sustainable bioactives in the field of the pharmaceutical and cosmetic industries. The biomass from black soldier fly larvae (Hermetia illucens) can be viewed as an innovative source of compounds with high aggregate value and marketing potential due to the sustainable organic matter bioconversion process used as substrate for its development. This insect can be a source of lipid compounds with high added value, mainly due to its high content in fatty acids (FA) with potential applicability in the pharmaceutical and cosmetic industry. In this context, in this work different extraction methods were tested (decoction, microwaves, maceration and ultrasound), using water, acetone, n-hexane as extraction solvents, to evaluate yields of the BSF larvae lipid extracts, as well as their lipid profile, and a preliminary safety screening was conducted. Results show that despite using different extraction techniques and solvents, similar FA composition profiles were obtained. The lauric acid content (C12: 0) is elevated in all the extracts in relation to the other FA, ranging 37%-62%. The contents in palmitic (C16: 0) and oleic (C18: 1n-9) acids, were also high in all applied extraction methods. The omega-6 FA (ω-6 PUFAs), mainly linoleic acid (C18: 2n6c), were also identified in the lipid fraction of BSF larvae biomass, with a content variation between 4.5% and 17.7%, while the omega-3 group, namely α-Linolenic acid (C18: 3n3), presented values between 0.66% and 1.95%. None of the extracts presented toxicity in preliminary tests with the Artemia salina model. Through this study, it was possible to confirm that BSF larvae oil can be obtained by sustainable methods, containing a broad mixture of FA and being highly rich in lauric acid, with a promising skin care applicability.
Collapse
Affiliation(s)
- Cíntia Almeida
- Universidade Lusófona (CBIOS – Research Center for Biosciences & Health Technologies), Lisboa, Portugal
- Department of Biomedical Sciences, University of Alcalá, Ctra, Madrid-Barcelona, Km 33.600, Alcalá de Henares, 28871, Madrid, Spain
| | - Daniel Murta
- Ingredient Odyssey SA – EntoGreen, Rua Cidade de Santarém 140, 2005-079 Santarém, Portugal
- CiiEM – Centro de Investigação Interdisciplinar Egas Moniz, Campus Universitário, 2829-511 Caparica, Portugal
- Myrtus Unipessoal Lda, Monte Claro, Nisa, Portugal
| | - Rui Nunes
- Ingredient Odyssey SA – EntoGreen, Rua Cidade de Santarém 140, 2005-079 Santarém, Portugal
| | - André Rolim Baby
- Faculty of Pharmaceutical Sciences, Universidade de São Paulo, São Paulo, Brazil
| | - Ângela Fernandes
- Centro de Investigação da Montanha (CIMO), Intituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Lillian Barros
- Centro de Investigação da Montanha (CIMO), Intituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Patricia Rijo
- Universidade Lusófona (CBIOS – Research Center for Biosciences & Health Technologies), Lisboa, Portugal
| | - Catarina Rosado
- Universidade Lusófona (CBIOS – Research Center for Biosciences & Health Technologies), Lisboa, Portugal
| |
Collapse
|
53
|
Sandrock C, Leupi S, Wohlfahrt J, Kaya C, Heuel M, Terranova M, Blanckenhorn WU, Windisch W, Kreuzer M, Leiber F. Genotype-by-Diet Interactions for Larval Performance and Body Composition Traits in the Black Soldier Fly, Hermetia illucens. INSECTS 2022; 13:424. [PMID: 35621760 PMCID: PMC9147266 DOI: 10.3390/insects13050424] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 04/25/2022] [Accepted: 04/28/2022] [Indexed: 12/03/2022]
Abstract
Further advancing black soldier fly (BSF) farming for waste valorisation and more sustainable global protein supplies critically depends on targeted exploitation of genotype-phenotype associations in this insect, comparable to conventional livestock. This study used a fully crossed factorial design of rearing larvae of four genetically distinct BSF strains (FST: 0.11-0.35) on three nutritionally different diets (poultry feed, food waste, poultry manure) to investigate genotype-by-environment interactions. Phenotypic responses included larval growth dynamics over time, weight at harvest, mortality, biomass production with respective contents of ash, fat, and protein, including amino acid profiles, as well as bioconversion and nitrogen efficiency, reduction of dry matter and relevant fibre fractions, and dry matter loss (emissions). Virtually all larval performance and body composition traits were substantially influenced by diet but also characterised by ample BSF genetic variation and, most importantly, by pronounced interaction effects between the two. Across evaluated phenotypes, variable diet-dependent rankings and the lack of generally superior BSF strains indicate the involvement of trade-offs between traits, as their relationships may even change signs. Conflicting resource allocation in light of overall BSF fitness suggests anticipated breeding programs will require complex and differential selection strategies to account for pinpointed trait maximisation versus multi-purpose resilience.
Collapse
Affiliation(s)
- Christoph Sandrock
- Department of Livestock Sciences, Research Institute of Organic Agriculture (FiBL), Ackerstrasse 113, 5070 Frick, Switzerland; (S.L.); (J.W.); (C.K.); (F.L.)
| | - Simon Leupi
- Department of Livestock Sciences, Research Institute of Organic Agriculture (FiBL), Ackerstrasse 113, 5070 Frick, Switzerland; (S.L.); (J.W.); (C.K.); (F.L.)
- Institute of Agricultural Sciences, ETH Zurich, Eschikon 27, 8315 Lindau, Switzerland; (M.H.); (M.K.)
| | - Jens Wohlfahrt
- Department of Livestock Sciences, Research Institute of Organic Agriculture (FiBL), Ackerstrasse 113, 5070 Frick, Switzerland; (S.L.); (J.W.); (C.K.); (F.L.)
| | - Cengiz Kaya
- Department of Livestock Sciences, Research Institute of Organic Agriculture (FiBL), Ackerstrasse 113, 5070 Frick, Switzerland; (S.L.); (J.W.); (C.K.); (F.L.)
- Department of Evolutionary Biology and Environmental Sciences, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland;
| | - Maike Heuel
- Institute of Agricultural Sciences, ETH Zurich, Eschikon 27, 8315 Lindau, Switzerland; (M.H.); (M.K.)
| | - Melissa Terranova
- AgroVet-Strickhof, ETH Zurich, Eschikon 27, 8315 Lindau, Switzerland;
| | - Wolf U. Blanckenhorn
- Department of Evolutionary Biology and Environmental Sciences, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland;
| | - Wilhelm Windisch
- Animal Nutrition, TUM School of Life Sciences, Technical University Munich, Liesel-Beckmann-Strasse 2, 85354 Freising-Weihenstephan, Germany;
| | - Michael Kreuzer
- Institute of Agricultural Sciences, ETH Zurich, Eschikon 27, 8315 Lindau, Switzerland; (M.H.); (M.K.)
| | - Florian Leiber
- Department of Livestock Sciences, Research Institute of Organic Agriculture (FiBL), Ackerstrasse 113, 5070 Frick, Switzerland; (S.L.); (J.W.); (C.K.); (F.L.)
| |
Collapse
|
54
|
Lopes IG, Yong JW, Lalander C. Frass derived from black soldier fly larvae treatment of biodegradable wastes. A critical review and future perspectives. WASTE MANAGEMENT (NEW YORK, N.Y.) 2022; 142:65-76. [PMID: 35176600 DOI: 10.1016/j.wasman.2022.02.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 01/12/2022] [Accepted: 02/04/2022] [Indexed: 06/14/2023]
Abstract
Inadequately treated biodegradable waste is considered an environmental, social and economic threat worldwide, which call for great attention. Waste treatment with larvae of the black soldier fly (BSF, Hermetia illucens) complies with the concepts of circular economy, as it enables the transformation of these wastes into marketable products, closing loops and promoting circularity. The processing residues of the treatment (frass) is constantly generated in waste management facilities in large volumes, and this product can be used as an organic fertilizer in agriculture, stimulating a transition to a circular economy. However, many aspects related to frass are still unknown, such as its varying composition of nutrients, microorganisms and bioactive compounds, its post-processing requirements for improved biological stabilization, its behavior in the soil and action in the plants' metabolism, among other aspects. In this review article, we highlight the potential of frass from BSF larvae treatment of biodegradable waste in the world market regarding its possible use as a fertilizer, summarize recent results with this novel product and point towards future research perspectives.
Collapse
Affiliation(s)
| | - Jean Wh Yong
- Department of Energy and Technology, Swedish University of Agricultural Sciences, Box 7032, 75007 Uppsala, Sweden
| | - Cecilia Lalander
- Department of Biosystems and Technology, Swedish University of Agricultural Sciences, Alnarp, Sweden.
| |
Collapse
|
55
|
Growth of the Black Soldier Fly Hermetia illucens (Diptera: Stratiomyidae) on Organic-Waste Residues and Its Application as Supplementary Diet for Nile Tilapia Oreochromis niloticus (Perciformes: Cichlidae). INSECTS 2022; 13:insects13040326. [PMID: 35447768 PMCID: PMC9031109 DOI: 10.3390/insects13040326] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/26/2022] [Accepted: 02/14/2022] [Indexed: 12/17/2022]
Abstract
The black soldier fly, Hermetia illucens (BSF, Diptera: Stratiomyidae) is an insect with high protein value and a potential feed agent for animals aimed for human consumption. The growth parameters of BSF larvae reared on four substrates—restaurant-waste, fruit-waste, fish-waste, and commercial tilapia food—for 41 days before processing for inclusion into Oreochromis niloticus (Perciformes: Cichlidae, Nile tilapia) commercial fry diets at 30% (70:30) were determined. On fly larvae, the food substrate based on restaurant waste yielded the greatest larval weight and length. BSF larvae fed a fish-waste diet showed the shortest developmental time. The fruit-waste diet induced the lowest weight and length in the fly larvae/pre-pupae (immature stage). The pre-pupal protein values were similar to commercial food. On fry-fish, the diets with pre-pupae grown on fish waste showed the greatest yields regarding weight (biomass), length, and nutritional content. These results suggest the BSF has the potential to be used in fish feed and provides an alternative for commercial cultivation.
Collapse
|
56
|
Abdelfattah EA, El-Bassiony GM. Impact of malathion toxicity on the oxidative stress parameters of the black soldier fly Hermetia illucens (Linnaeus, 1758) (Diptera: Stratiomyidae). Sci Rep 2022; 12:4583. [PMID: 35301370 PMCID: PMC8931003 DOI: 10.1038/s41598-022-08564-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 03/07/2022] [Indexed: 12/16/2022] Open
Abstract
The black soldier fly larvae (BSFL) may serve as a promising tool in the animals feed production industry. The input organic wastes may be contaminated by insecticides that affect both the insect’s mass rearing, and the animals feed process. Therefore, in the current study the assessment of oxidative stress parameters of the black soldier fly (BSF) were investigated to quantify the deleterious effect of malathion-contaminated kitchen waste (1:1 vegetable: fruit waste) container on the insect. The different developmental stages of insect (adult and larva) were exposed to different concentrations (0, 0.005, 0.01, 0.015, and 0.02 mg/mL) of malathion. The results showed that the mean value of the reactive oxygen species (ROS), which included hydrogen peroxide (H2O2) and superoxide anion radicals (O2•-) concentrations were lower in larval stage than in adults, in all treated groups (0, 0.005, 0.01, 0.015, and 0.02 mg/mL malathion concentration). Also, the protein carbonyls amount and lipid peroxides levels were decreased in the 0.02 mg/mL Malathion compared to the control values. However, the cluster analysis revealed slight dissimilar patterns for control insects and the highest malathion concentration (0.02 mg/ml). These stage-related differences could occur from the different growth dynamic functions of larvae and adults. The larvae were distinguished by robust growth, and significant oxygen consumption. The results verified that oxidative stress parameters, especially protein carbonyls and α, α-diphenyl-β-picrylhydrazyl (DPPH) were promising, cheap, quick and cost-effective applications for determining the macromolecules damage, and antioxidant ability of H. illucens enclosed with malathion exposure. These findings described that malathion application induces macromolecules damage mediated through oxidative stress injury.
Collapse
Affiliation(s)
- Eman Alaaeldin Abdelfattah
- Department of Entomology, Faculty of Science, Cairo University, El-Nahda Square, Giza, Cairo, 12613, Egypt.
| | - Ghada M El-Bassiony
- Department of Entomology, Faculty of Science, Cairo University, El-Nahda Square, Giza, Cairo, 12613, Egypt
| |
Collapse
|
57
|
DeRaedt S, Bierman A, van Heusden P, Richards C, Christoffels A. microRNA profile of Hermetia illucens (black soldier fly) and its implications on mass rearing. PLoS One 2022; 17:e0265492. [PMID: 35298540 PMCID: PMC8929568 DOI: 10.1371/journal.pone.0265492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 03/02/2022] [Indexed: 11/18/2022] Open
Abstract
The growing demands on protein producers and the dwindling available resources have made Hermetia illucens (the black soldier fly, BSF) an economically important species. Insights into the genome of this insect will better allow for robust breeding protocols, and more efficient production to be used as a replacement of animal feed protein. The use of microRNA as a method to understand how gene regulation allows insect species to adapt to changes in their environment, has been established in multiple species. The baseline and life stage expression levels established in this study, allow for insight into the development and sex-linked microRNA regulation in BSF. To accomplish this, microRNA was extracted and sequenced from 15 different libraries with each life stage in triplicate. Of the total 192 microRNAs found, 168 were orthologous to known arthropod microRNAs and 24 microRNAs were unique to BSF. Twenty-six of the 168 microRNAs conserved across arthropods had a statistically significant (p < 0.05) differential expression between Egg to Larval stages. The development from larva to pupa was characterized by 16 statistically significant differentially expressed microRNA. Seven and 9 microRNA were detected as statistically significant between pupa to adult female and pupa to adult male, respectively. All life stages had a nearly equal split between up and down regulated microRNAs. Ten of the unique 24 miRNA were detected exclusively in one life stage. The egg life stage expressed five microRNA (hil-miR-m, hil-miR-p, hil-miR-r, hil-miR-s, and hil-miR-u) not seen in any other life stages. The female adult and pupa life stages expressed one miRNA each hil-miR-h and hil-miR-ac respectively. Both male and female adult life stages expressed hil-miR-a, hil-miR-b, and hil-miR-y. There were no unique microRNAs found only in the larva stage. Twenty-two microRNAs with 56 experimentally validated target genes in the closely related Drosophila melanogaster were identified. Thus, the microRNA found display the unique evolution of BSF, along with the life stages and potential genes to target for robust mass rearing. Understanding of the microRNA expression in BSF will further their use in the crucial search for alternative and sustainable protein sources.
Collapse
Affiliation(s)
- Sarah DeRaedt
- South African National Bioinformatics Institute, South African Medical Research Council Bioinformatics Unit, The University of the Western Cape, Bellville, Western Cape, South Africa
| | - Anandi Bierman
- AgriProtein Technologies (Pty) Limited, Philippi, Western Cape, South Africa
| | - Peter van Heusden
- South African National Bioinformatics Institute, South African Medical Research Council Bioinformatics Unit, The University of the Western Cape, Bellville, Western Cape, South Africa
| | - Cameron Richards
- AgriProtein Technologies (Pty) Limited, Philippi, Western Cape, South Africa
| | - Alan Christoffels
- South African National Bioinformatics Institute, South African Medical Research Council Bioinformatics Unit, The University of the Western Cape, Bellville, Western Cape, South Africa
- * E-mail:
| |
Collapse
|
58
|
Nardiello M, Scieuzo C, Salvia R, Farina D, Franco A, Cammack JA, Tomberlin JK, Falabella P, Persaud KC. Odorant binding proteins from Hermetia illucens: potential sensing elements for detecting volatile aldehydes involved in early stages of organic decomposition. NANOTECHNOLOGY 2022; 33:205501. [PMID: 35114654 DOI: 10.1088/1361-6528/ac51ab] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 02/03/2022] [Indexed: 06/14/2023]
Abstract
Organic decomposition processes, involving the breakdown of complex molecules such as carbohydrates, proteins and fats, release small chemicals known as volatile organic compounds (VOCs), smelly even at very low concentrations, but not all readily detectable by vertebrates. Many of these compounds are instead detected by insects, mostly by saprophytic species, for which long-range orientation towards organic decomposition matter is crucial. In the present work the detection of aldehydes, as an important measure of lipid oxidation, has been possible exploiting the molecular machinery underlying odour recognition inHermetia illucens(Diptera: Stratiomyidae). This voracious scavenger insect is of interest due to its outstanding capacity in bioconversion of organic waste, colonizing very diverse environments due to the ability of sensing a wide range of chemical compounds that influence the choice of substrates for ovideposition. A variety of soluble odorant binding proteins (OBPs) that may function as carriers of hydrophobic molecules from the air-water interface in the antenna of the insect to the receptors were identified, characterised and expressed. An OBP-based nanobiosensor prototype was realized using selected OBPs as sensing layers for the development of an array of quartz crystal microbalances (QCMs) for vapour phase detection of selected compounds at room temperature. QCMs coated with four recombinantH. illucensOBPs (HillOBPs) were exposed to a wide range of VOCs indicative of organic decomposition, showing a high sensitivity for the detection of three chemical compounds belonging to the class of aldehydes and one short-chain fatty acid. The possibility of using biomolecules capable of binding small ligands as reversible gas sensors has been confirmed, greatly expanding the state-of the-art in gas sensing technology.
Collapse
Affiliation(s)
- Marisa Nardiello
- Department of Chemical Engineering, The University of Manchester, Manchester, United Kingdom
- Department of Sciences, University of Basilicata, Via dell'Ateneo Lucano 10, 85100, Potenza, Italy
| | - Carmen Scieuzo
- Department of Sciences, University of Basilicata, Via dell'Ateneo Lucano 10, 85100, Potenza, Italy
- Spinoff XFlies s.r.l., University of Basilicata, Via dell'Ateneo Lucano 10, 85100, Potenza, Italy
| | - Rosanna Salvia
- Department of Sciences, University of Basilicata, Via dell'Ateneo Lucano 10, 85100, Potenza, Italy
- Spinoff XFlies s.r.l., University of Basilicata, Via dell'Ateneo Lucano 10, 85100, Potenza, Italy
| | - Donatella Farina
- Department of Sciences, University of Basilicata, Via dell'Ateneo Lucano 10, 85100, Potenza, Italy
- Spinoff XFlies s.r.l., University of Basilicata, Via dell'Ateneo Lucano 10, 85100, Potenza, Italy
| | - Antonio Franco
- Department of Sciences, University of Basilicata, Via dell'Ateneo Lucano 10, 85100, Potenza, Italy
- Spinoff XFlies s.r.l., University of Basilicata, Via dell'Ateneo Lucano 10, 85100, Potenza, Italy
| | - Jonathan A Cammack
- Department of Entomology, Texas A&M University, College Station, TX, United States of America
| | - Jeffrey K Tomberlin
- Department of Entomology, Texas A&M University, College Station, TX, United States of America
| | - Patrizia Falabella
- Department of Sciences, University of Basilicata, Via dell'Ateneo Lucano 10, 85100, Potenza, Italy
- Spinoff XFlies s.r.l., University of Basilicata, Via dell'Ateneo Lucano 10, 85100, Potenza, Italy
| | - Krishna C Persaud
- Department of Chemical Engineering, The University of Manchester, Manchester, United Kingdom
| |
Collapse
|
59
|
Lu J, Guo Y, Muhmood A, Zeng B, Qiu Y, Wang P, Ren L. Probing the antioxidant activity of functional proteins and bioactive peptides in Hermetia illucens larvae fed with food wastes. Sci Rep 2022; 12:2799. [PMID: 35181682 PMCID: PMC8857240 DOI: 10.1038/s41598-022-06668-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 01/27/2022] [Indexed: 11/09/2022] Open
Abstract
Food waste is becoming more prevalent, and managing it is one of the most important issues in terms of food safety. In this study, functional proteins and bioactive peptides produced from the enzymatic digestion of black soldier fly (Hermetia illucens L., BSF) fed with food wastes were characterized and quantified using proteomics-based analysis. The results revealed approximately 78 peptides and 57 proteins, including 40S ribosomal protein S4, 60S ribosomal protein L8, ATP synthase subunit alpha, ribosomal protein S3, Histone H2A, NADP-glutamate dehydrogenase, Fumarate hydratase, RNA helicase, Chitin binding Peritrophin-A, Lectin C-type protein, etc. were found in BSF. Furthermore, functional analysis of the proteins revealed that the 60S ribosomal protein L5 (RpL5) in BSF interacted with a variety of ribosomal proteins and played a key role in the glycolytic process (AT14039p). Higher antioxidant activity was found in peptide sequences such as GYGFGGGAGCLSMDTGAHLNR, VVPSANRAMVGIVAGGGRIDKPILK, AGLQFPVGR, GFKDQIQDVFK, and GFKDQIQDVFK. It was concluded that the bioconversion of food wastes by BSF brought about the generation of a variety of functional proteins and bioactive peptides with strong antioxidant activity. However, more studies are required to exploit BSF's potential in the value addition of food wastes.
Collapse
Affiliation(s)
- Jiaxin Lu
- School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China.,State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing, 100048, China.,Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University, Beijing, 100048, China
| | - Yuwen Guo
- School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China
| | - Atif Muhmood
- Institute of Soil Chemistry and Environmental Sciences, Ayub Agricultural Research Institute, Faisalabad, Pakistan
| | - Bei Zeng
- School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China
| | - Yizhan Qiu
- School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China
| | - Pan Wang
- School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China. .,State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing, 100048, China. .,Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University, Beijing, 100048, China.
| | - Lianhai Ren
- School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China. .,State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing, 100048, China. .,Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University, Beijing, 100048, China.
| |
Collapse
|
60
|
The Effect of Rearing Scale and Density on the Growth and Nutrient Composition of Hermetia illucens (L.) (Diptera: Stratiomyidae) Larvae. SUSTAINABILITY 2022. [DOI: 10.3390/su14031772] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
With the worldwide industrialization of black soldier fly (BSF) production, it is necessary to better understand how the rearing scale and larvae density influence the performance of larvae and the quality of the final product. In this study, a factorial experiment was conducted to test the effect of rearing scale and density on the growth and composition of the BSF larvae. The larvae were grown in four different scales (box sizes), keeping the area and feed provided to each larva constant and in two different densities. The results reveal significant differences in the larval growth depending on the scale and density, which could be attributed to the higher temperatures achieved in the bigger scales with a temperature difference of more than 5 °C between the smallest and the biggest scale. Both the scale and the density influenced the composition of the larvae. The crude protein levels were higher on the smallest scale, and the lower density (ranging from 32.5% to 36.5%), and crude fat concentrations were the opposite (ranging from 31.7% to 20.1%). The density also influenced the concentrations of S, Mg, K, P, Fe, Zn, Cu, Al, B, and Co, in addition to the analyzed free amino acids PPS, ALA, CIT, and ANS. Furthermore, the rearing scale influenced the concentration of S, Zn, Cu, and Mo. The results provide further insight into the optimization of BSF production processes and the transfer of lab-scale results into big-scale production.
Collapse
|
61
|
Yamamoto FY, Suehs BA, Ellis M, Bowles PR, Older CE, Hume ME, Bake GG, Cammack JA, Tomberlin JK, Gatlin DM. Dietary fishmeal replacement by black soldier fly larvae meals affected red drum (Sciaenops ocellatus) production performance and intestinal microbiota depending on what feed substrate the insect larvae were offered. Anim Feed Sci Technol 2022. [DOI: 10.1016/j.anifeedsci.2021.115179] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
62
|
Franco A, Salvia R, Scieuzo C, Schmitt E, Russo A, Falabella P. Lipids from Insects in Cosmetics and for Personal Care Products. INSECTS 2021; 13:insects13010041. [PMID: 35055884 PMCID: PMC8779901 DOI: 10.3390/insects13010041] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 12/17/2021] [Accepted: 12/27/2021] [Indexed: 12/16/2022]
Abstract
Simple Summary The use of insects as a new source of lipids is a topic of great interest from both environmental and economic points of view. In addition to use in feed and energy applications, lipids could be used for the formulation of personal care products. The cosmetics industry is always in search of new ingredients to use in novel product formulations. The processes mediated by bioconverter insects, such as Hermetia illucens, are really advantageous because starting from substrates of low economic and biological value (agri-food by-products, zootechnical, catering, and other waste), it is possible to obtain products of high commercial value. The composition of insect lipids depends on the feeding substrate, as well as the insect species, therefore for each personal care application, it is possible to find the most suitable starting conditions. In this review, we display a general outlook on insect lipids, the extraction processes, and their use in cosmetics and personal care fields. Abstract Insects, the most varied group of known organisms on Earth, are arousing great interest also for the possibility to use them as a feed and food source. The mass rearing of some species, defined as “bioconverters”, is spreading worldwide, thanks to their sustainability. At the end of the bioconversion process, breeders obtain eco-friendly biomolecules of high biological and economic value, including proteins and lipids, from larvae of bioconverter insects, in particular Hermetia illucens. Besides the most classical use of insect lipids as food additives, they are also used in the formulation of several products for personal care. The composition of insect lipids depends on the substrate on which the insects are reared but also on the insect species, so the cosmetic producers should consider these features to choose their insect starting point. The most abundant fatty acids detected in H. illucens are lauric, myristic, palmitic, and oleic acids, regardless of feed substrate; its fatty acids composition is favorable for soap composition, while their derivatives are used for detergent and shampoo. Here, we offer an overview of insect lipids, their extraction methods, and their application in cosmetics and personal care products.
Collapse
Affiliation(s)
- Antonio Franco
- Department of Sciences, University of Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy; (A.F.); (C.S.)
- Spinoff XFlies s.r.l., University of Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy
| | - Rosanna Salvia
- Department of Sciences, University of Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy; (A.F.); (C.S.)
- Spinoff XFlies s.r.l., University of Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy
- Correspondence: (R.S.); (P.F.)
| | - Carmen Scieuzo
- Department of Sciences, University of Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy; (A.F.); (C.S.)
- Spinoff XFlies s.r.l., University of Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy
| | - Eric Schmitt
- Protix B.V., Industriestaat 3, 5107 NC Dongen, The Netherlands;
| | - Antonella Russo
- Greenswitch s.r.l., Strada Provinciale Ferrandina—Macchia, 75013 Ferrandina, Italy;
| | - Patrizia Falabella
- Department of Sciences, University of Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy; (A.F.); (C.S.)
- Spinoff XFlies s.r.l., University of Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy
- Correspondence: (R.S.); (P.F.)
| |
Collapse
|
63
|
Structural and Functional Characterization of a Novel Recombinant Antimicrobial Peptide from Hermetia illucens. Curr Issues Mol Biol 2021; 44:1-13. [PMID: 35723380 PMCID: PMC8929087 DOI: 10.3390/cimb44010001] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/15/2021] [Accepted: 12/17/2021] [Indexed: 01/01/2023] Open
Abstract
Antibiotics are commonly used to treat pathogenic bacteria, but their prolonged use contributes to the development and spread of drug-resistant microorganisms raising the challenge to find new alternative drugs. Antimicrobial peptides (AMPs) are small/medium molecules ranging 10–60 residues synthesized by all living organisms and playing important roles in the defense systems. These features, together with the inability of microorganisms to develop resistance against the majority of AMPs, suggest that these molecules might represent effective alternatives to classical antibiotics. Because of their high biodiversity, with over one million described species, and their ability to live in hostile environments, insects represent the largest source of these molecules. However, production of insect AMPs in native forms is challenging. In this work we investigate a defensin-like antimicrobial peptide identified in the Hermetia illucens insect through a combination of transcriptomics and bioinformatics approaches. The C-15867 AMP was produced by recombinant DNA technology as a glutathione S-transferase (GST) fusion peptide and purified by affinity chromatography. The free peptide was then obtained by thrombin proteolysis and structurally characterized by mass spectrometry and circular dichroism analyses. The antibacterial activity of the C-15867 peptide was evaluated in vivo by determination of the minimum inhibitory concentration (MIC). Finally, crystal violet assays and SEM analyses suggested disruption of the cell membrane architecture and pore formation with leaking of cytosolic material.
Collapse
|
64
|
Anankware JP, Roberts BJ, Cheseto X, Osuga I, Savolainen V, Collins CM. The Nutritional Profiles of Five Important Edible Insect Species From West Africa-An Analytical and Literature Synthesis. Front Nutr 2021; 8:792941. [PMID: 34926558 PMCID: PMC8678595 DOI: 10.3389/fnut.2021.792941] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 11/09/2021] [Indexed: 12/03/2022] Open
Abstract
Background: Undernutrition is a prevalent, serious, and growing concern, particularly in developing countries. Entomophagy—the human consumption of edible insects, is a historical and culturally established practice in many regions. Increasing consumption of nutritious insect meal is a possible combative strategy and can promote sustainable food security. However, the nutritional literature frequently lacks consensus, with interspecific differences in the nutrient content of edible insects generally being poorly resolved. Aims and methods: Here we present full proximate and fatty acid profiles for five edible insect species of socio-economic importance in West Africa: Hermetia illucens (black soldier fly), Musca domestica (house fly), Rhynchophorus phoenicis (African palm weevil), Cirina butyrospermi (shea tree caterpillar), and Macrotermes bellicosus (African termite). These original profiles, which can be used in future research, are combined with literature-derived proximate, fatty acid, and amino acid profiles to analyse interspecific differences in nutrient content. Results: Interspecific differences in ash (minerals), crude protein, and crude fat contents were substantial. Highest ash content was found in H. illucens and M. domestica (~10 and 7.5% of dry matter, respectively), highest crude protein was found in C. butyrospermi and M. domestica (~60% of dry matter), whilst highest crude fat was found in R. phoenicis (~55% of dry matter). The fatty acid profile of H. illucens was differentiated from the other four species, forming its own cluster in a principal component analysis characterized by high saturated fatty acid content. Cirina butyrospermi had by far the highest poly-unsaturated fatty acid content at around 35% of its total fatty acids, with α-linolenic acid particularly represented. Amino acid analyses revealed that all five species sufficiently met human essential amino acid requirements, although C. butyrospermi was slightly limited in leucine and methionine content. Discussion: The nutritional profiles of these five edible insect species compare favorably to beef and can meet human requirements, promoting entomophagy's utility in combatting undernutrition. In particular, C. butyrospermi may provide a source of essential poly-unsaturated fatty acids, bringing many health benefits. This, along with its high protein content, indicates that this species is worthy of more attention in the nutritional literature, which has thus-far been lacking.
Collapse
Affiliation(s)
- Jacob P Anankware
- Department of Horticulture and Crop Production, University of Energy and Natural Resources, Sunyani, Ghana
| | - Benjamin J Roberts
- Georgina Mace Centre for the Living Planet, Faculty of Natural Sciences, Imperial College London, London, United Kingdom
| | - Xavier Cheseto
- Department of Chemical and Behavioural Sciences, International Centre for Insect Physiology and Ecology, Nairobi, Kenya
| | - Isaac Osuga
- Department of Animal Sciences, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
| | - Vincent Savolainen
- Georgina Mace Centre for the Living Planet, Faculty of Natural Sciences, Imperial College London, London, United Kingdom
| | - C M Collins
- Georgina Mace Centre for the Living Planet, Faculty of Natural Sciences, Imperial College London, London, United Kingdom
| |
Collapse
|
65
|
Addeo NF, Vozzo S, Secci G, Mastellone V, Piccolo G, Lombardi P, Parisi G, Asiry KA, Attia YA, Bovera F. Different Combinations of Butchery and Vegetable Wastes on Growth Performance, Chemical-Nutritional Characteristics and Oxidative Status of Black Soldier Fly Growing Larvae. Animals (Basel) 2021; 11:3515. [PMID: 34944290 PMCID: PMC8698169 DOI: 10.3390/ani11123515] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/06/2021] [Accepted: 12/06/2021] [Indexed: 12/22/2022] Open
Abstract
Hermetia illucens larvae (five days old) were farmed on broiler feed (control diet), a vegetable diet (V100), a 50% of vegetable diet + 50% of butchery wastes (V50 + B50), and a 75% of vegetable diet + 25% of butchery wastes (V75 + B25) to evaluate their suitability. Ten kilograms of substrate and 6000 larvae composed each replicate (nine per group). Larvae were weighed and measured every two days until the 25% developed into prepupae. Larval mortality and growing indexes were calculated. Substrates, larvae, and frass chemical composition were analyzed. Larvae oxidative status and stability were measured in hemolymph and body. The V100 larvae showed the lowest live weight, length, thickness, and growth rate but had low mortality rate and high substrate reduction index and protein conversion ratio. The V100 larvae had similar protein to and lower lipids than the control ones, while the V50 + B50 and V75 + B25 larvae contained higher lipids and lower protein than the others. Despite the vegetable wastes, at different levels, the reactive oxygen species content decreased in hemolymph, and the V100 diet depressed growth performance and should be avoided. The use of butchery wastes combined with vegetable ingredients can be a suitable alternative to balance the high level of lipid and the low content of protein.
Collapse
Affiliation(s)
- Nicola Francesco Addeo
- Department of Veterinary Medicine and Animal Production, University of Napoli Federico II, 80137 Napoli, Italy; (N.F.A.); (S.V.); (V.M.); (G.P.); (P.L.)
| | - Simone Vozzo
- Department of Veterinary Medicine and Animal Production, University of Napoli Federico II, 80137 Napoli, Italy; (N.F.A.); (S.V.); (V.M.); (G.P.); (P.L.)
| | - Giulia Secci
- Department of Agriculture, Food, Environment and Forestry, University of Florence, 50144 Firenze, Italy; (G.S.); (G.P.)
| | - Vincenzo Mastellone
- Department of Veterinary Medicine and Animal Production, University of Napoli Federico II, 80137 Napoli, Italy; (N.F.A.); (S.V.); (V.M.); (G.P.); (P.L.)
| | - Giovanni Piccolo
- Department of Veterinary Medicine and Animal Production, University of Napoli Federico II, 80137 Napoli, Italy; (N.F.A.); (S.V.); (V.M.); (G.P.); (P.L.)
| | - Pietro Lombardi
- Department of Veterinary Medicine and Animal Production, University of Napoli Federico II, 80137 Napoli, Italy; (N.F.A.); (S.V.); (V.M.); (G.P.); (P.L.)
| | - Giuliana Parisi
- Department of Agriculture, Food, Environment and Forestry, University of Florence, 50144 Firenze, Italy; (G.S.); (G.P.)
| | - Khalid A. Asiry
- Agriculture Department, Faculty of Environmental Sciences, King Abdulaziz University, P.O. Box 80208, Jeddah 21589, Saudi Arabia;
| | - Youssef A. Attia
- Agriculture Department, Faculty of Environmental Sciences, King Abdulaziz University, P.O. Box 80208, Jeddah 21589, Saudi Arabia;
| | - Fulvia Bovera
- Department of Veterinary Medicine and Animal Production, University of Napoli Federico II, 80137 Napoli, Italy; (N.F.A.); (S.V.); (V.M.); (G.P.); (P.L.)
| |
Collapse
|
66
|
Ho PN, Klanrit P, Hanboonsong Y, Yordpratum U, Suksawat M, Kulthawatsiri T, Jirahiranpat A, Deewai S, Mackawan P, Sermswan RW, Namwat N, Loilome W, Khampitak T, Wangwiwatsin A, Phetcharaburanin J. Bacterial challenge-associated metabolic phenotypes in Hermetia illucens defining nutritional and functional benefits. Sci Rep 2021; 11:23316. [PMID: 34857836 PMCID: PMC8639782 DOI: 10.1038/s41598-021-02752-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 11/18/2021] [Indexed: 01/18/2023] Open
Abstract
Black soldier fly (BSF, Hermetia illucens) is popular for its applications in animal feed, waste management and antimicrobial peptide source. The major advantages of BSF larva include their robust immune system and high nutritional content that can be further developed into more potential agricultural and medical applications. Several strategies are now being developed to exploit their fullest capabilities and one of these is the immunity modulation using bacterial challenges. The mechanism underlying metabolic responses of BSF to different bacteria has, however, remained unclear. In the current study, entometabolomics was employed to investigate the metabolic phenoconversion in response to either Escherichia coli, Staphylococcus aureus, or combined challenges in BSF larva. We have, thus far, characterised 37 metabolites in BSF larva challenged with different bacteria with the major biochemical groups consisting of amino acids, organic acids, and sugars. The distinct defense mechanism-specific metabolic phenotypes were clearly observed. The combined challenge contributed to the most significant metabolic phenoconversion in BSF larva with the dominant metabolic phenotypes induced by S. aureus. Our study suggested that the accumulation of energy-related metabolites provided by amino acid catabolism is the principal metabolic pathway regulating the defense mechanism. Therefore, combined challenge is strongly recommended for raising BSF immunity as it remarkably triggered amino acid metabolisms including arginine and proline metabolism and alanine, aspartate and glutamate metabolism along with purine metabolism and pyruvate metabolism that potentially result in the production of various nutritional and functional metabolites.
Collapse
Affiliation(s)
- Phuc N Ho
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Poramate Klanrit
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand.,Khon Kaen University International Phenome Laboratory, Khon Kaen, 40002, Thailand.,Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Yupa Hanboonsong
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Umaporn Yordpratum
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Manida Suksawat
- Khon Kaen University International Phenome Laboratory, Khon Kaen, 40002, Thailand.,Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Thanaporn Kulthawatsiri
- Khon Kaen University International Phenome Laboratory, Khon Kaen, 40002, Thailand.,Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Anyarin Jirahiranpat
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Suthicha Deewai
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Panya Mackawan
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Khon Kaen University, Khon Kaen, 40002, Thailand.,Research and Development Center, Betagro Group, Klong Luang, Pathum Thani, 12120, Thailand
| | - Rasana W Sermswan
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Nisana Namwat
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand.,Khon Kaen University International Phenome Laboratory, Khon Kaen, 40002, Thailand.,Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Watcharin Loilome
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand.,Khon Kaen University International Phenome Laboratory, Khon Kaen, 40002, Thailand.,Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Tueanjit Khampitak
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Arporn Wangwiwatsin
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand.,Khon Kaen University International Phenome Laboratory, Khon Kaen, 40002, Thailand.,Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Jutarop Phetcharaburanin
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand. .,Khon Kaen University International Phenome Laboratory, Khon Kaen, 40002, Thailand. .,Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, 40002, Thailand. .,Center of Excellence for Innovation in Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand.
| |
Collapse
|
67
|
Abstract
Black soldier fly (BSF) larvae may play a role in a circular economy by upcycling low-value organic streams into high value biomass. In this paper, the capacity of BSF larvae to process 12 organic side-streams (mono-streams) and two standard substrates (chicken start mash and Gainesville diet) was investigated. Survival, larval mass, feed conversion ratio, and waste reduction were evaluated in relation to the proximate composition of the side-streams used. Survival rates larger than 80% were observed for 10 of the organic mono-streams and the two standard substrates. Maximum mean larval weight ranged from 38.3 mg up to 176.4 mg regardless of high survival and was highly correlated with substrate crude protein content. Feed conversion ratio (range 1.58–8.90) and waste reduction (range 17.0–58.9%) were similar to values reported in other studies in the literature. On low protein substrates (e.g., apple pulp), survival rates remained high, however, possibly due to protein deficiency, limited larval growth was observed. It is concluded that several low value organic side-streams can successfully be processed by BSF larvae, thereby opening the possibility of lowering the costs of BSF farming. Potentially mixing nutritionally distinct mono-streams into a mixed substrate might improve BSF performance. However, more research is needed for optimizing diets to guarantee production of BSF larvae of constant yield and quality.
Collapse
|
68
|
Bertola M, Mutinelli F. A Systematic Review on Viruses in Mass-Reared Edible Insect Species. Viruses 2021; 13:2280. [PMID: 34835086 PMCID: PMC8619331 DOI: 10.3390/v13112280] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 11/04/2021] [Accepted: 11/08/2021] [Indexed: 01/22/2023] Open
Abstract
Edible insects are expected to become an important nutrient source for animals and humans in the Western world in the near future. Only a few studies on viruses in edible insects with potential for industrial rearing have been published and concern only some edible insect species. Viral pathogens that can infect insects could be non-pathogenic, or pathogenic to the insects themselves, or to humans and animals. The objective of this systematic review is to provide an overview of the viruses detected in edible insects currently considered for use in food and/or feed in the European Union or appropriate for mass rearing, and to collect information on clinical symptoms in insects and on the vector role of insects themselves. Many different virus species have been detected in edible insect species showing promise for mass production systems. These viruses could be a risk for mass insect rearing systems causing acute high mortality, a drastic decline in growth in juvenile stages and in the reproductive performance of adults. Furthermore, some viruses could pose a risk to human and animal health where insects are used for food and feed.
Collapse
Affiliation(s)
- Michela Bertola
- Laboratory of Parasitology Micology and Sanitary Enthomology, Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell’Università 10, 35020 Legnaro, PD, Italy
| | - Franco Mutinelli
- National Rereference Laboratory for Honey Bee Health, Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell’Università 10, 35020 Legnaro, PD, Italy;
| |
Collapse
|
69
|
Shumo M, Khamis FM, Ombura FL, Tanga CM, Fiaboe KKM, Subramanian S, Ekesi S, Schlüter OK, van Huis A, Borgemeister C. A Molecular Survey of Bacterial Species in the Guts of Black Soldier Fly Larvae ( Hermetia illucens) Reared on Two Urban Organic Waste Streams in Kenya. Front Microbiol 2021; 12:687103. [PMID: 34630342 PMCID: PMC8493336 DOI: 10.3389/fmicb.2021.687103] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 08/13/2021] [Indexed: 11/28/2022] Open
Abstract
Globally, the expansion of livestock and fisheries production is severely constrained due to the increasing costs and ecological footprint of feed constituents. The utilization of black soldier fly (BSF) as an alternative protein ingredient to fishmeal and soybean in animal feed has been widely documented. The black soldier fly larvae (BSFL) used are known to voraciously feed and grow in contaminated organic wastes. Thus, several concerns about their safety for inclusion into animal feed remain largely unaddressed. This study evaluated both culture-dependent sequence-based and 16S rDNA amplification analysis to isolate and identify bacterial species associated with BSFL fed on chicken manure (CM) and kitchen waste (KW). The bacteria species from the CM and KW were also isolated and investigated. Results from the culture-dependent isolation strategies revealed that Providencia sp. was the most dominant bacterial species detected from the guts of BSFL reared on CM and KW. Morganella sp. and Brevibacterium sp. were detected in CM, while Staphylococcus sp. and Bordetella sp. were specific to KW. However, metagenomic studies showed that Providencia and Bordetella were the dominant genera observed in BSFL gut and processed waste substrates. Pseudomonas and Comamonas were recorded in the raw waste substrates. The diversity of bacterial genera recorded from the fresh rearing substrates was significantly higher compared to the diversity observed in the gut of the BSFL and BSF frass (leftovers of the rearing substrates). These findings demonstrate that the presence and abundance of microbiota in BSFL and their associated waste vary considerably. However, the presence of clinically pathogenic strains of bacteria in the gut of BSFL fed both substrates highlight the biosafety risk of potential vertical transmission that might occur, if appropriate pre-and-postharvest measures are not enforced.
Collapse
Affiliation(s)
- Marwa Shumo
- Leibniz-Institute for Agricultural Engineering Potsdam-Bornim (ATB), Potsdam, Germany
- Department of Ecology and Natural Resources Management, Center for Development Research (ZEF), Bonn, Germany
- Plant Health Unit, International Centre of Insect Physiology and Ecology (ICIPE), Nairobi, Kenya
- Hermetia Baruth GmbH, Insect Technology Center (ITC), Berlin, Germany
| | - Fathiya M. Khamis
- Plant Health Unit, International Centre of Insect Physiology and Ecology (ICIPE), Nairobi, Kenya
| | - Fidelis Levi Ombura
- Plant Health Unit, International Centre of Insect Physiology and Ecology (ICIPE), Nairobi, Kenya
| | - Chrysantus M. Tanga
- Plant Health Unit, International Centre of Insect Physiology and Ecology (ICIPE), Nairobi, Kenya
| | - Komi K. M. Fiaboe
- Plant Health Unit, International Centre of Insect Physiology and Ecology (ICIPE), Nairobi, Kenya
- IPM Department, The International Institute of Tropical Agriculture, Yaoundé, Cameroon
| | - Sevgan Subramanian
- Plant Health Unit, International Centre of Insect Physiology and Ecology (ICIPE), Nairobi, Kenya
| | - Sunday Ekesi
- Plant Health Unit, International Centre of Insect Physiology and Ecology (ICIPE), Nairobi, Kenya
| | - Oliver K. Schlüter
- Leibniz-Institute for Agricultural Engineering Potsdam-Bornim (ATB), Potsdam, Germany
| | - Arnold van Huis
- Laboratory of Entomology, Wageningen University & Research, Wageningen, Netherlands
| | - Christian Borgemeister
- Department of Ecology and Natural Resources Management, Center for Development Research (ZEF), Bonn, Germany
| |
Collapse
|
70
|
Abstract
The exponential increase of global demand for proteins and lipids can no longer be satisfied by classical sources. High amounts of CO2 produced by intensive livestock breeding and its effects on the environment are the main factors that prevent the use of animals as primary sources for proteins and lipids, calling for the use of new sustainable sources, such as insects. The massive breeding of bioconverter insects as a feed source has been a major topic in recent years, with both economic and scientific aspects related to rearing and subsequent processing optimization. The larvae of Hermetia illucens (Diptera: Stratiomyidae) (also known as Black Soldier Fly) can be used for the eco-sustainable production of proteins and lipids with high biological and economic value. Lipids can be obtained from BSF bioconversion processes and are present in high quantities in the last instar larvae and prepupae. Fats obtained from BSF are used as animal feed ingredients, in the formulation of several products for personal care, and in biodiesel production. To enable the use of insect-derived lipids, it is important to understand how to optimize their extraction. Here, we summarize the published information on the composition, the extraction methods, and the possible applications of the BSF lipid component.
Collapse
|
71
|
Scieuzo C, Nardiello M, Farina D, Scala A, Cammack JA, Tomberlin JK, Vogel H, Salvia R, Persaud K, Falabella P. Hermetia illucens (L.) (Diptera: Stratiomyidae) Odorant Binding Proteins and Their Interactions with Selected Volatile Organic Compounds: An In Silico Approach. INSECTS 2021; 12:814. [PMID: 34564254 PMCID: PMC8469849 DOI: 10.3390/insects12090814] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/02/2021] [Accepted: 09/07/2021] [Indexed: 02/07/2023]
Abstract
The black soldier fly (BSF), Hermetia illucens (Diptera: Stratiomyidae), has considerable global interest due to its outstanding capacity in bioconverting organic waste to insect biomass, which can be used for livestock, poultry, and aquaculture feed. Mass production of this insect in colonies requires the development of methods concentrating oviposition in specific collection devices, while the mass production of larvae and disposing of waste may require substrates that are more palatable and more attractive to the insects. In insects, chemoreception plays an essential role throughout their life cycle, responding to an array of chemical, biological and environmental signals to locate and select food, mates, oviposition sites and avoid predators. To interpret these signals, insects use an arsenal of molecular components, including small proteins called odorant binding proteins (OBPs). Next generation sequencing was used to identify genes involved in chemoreception during the larval and adult stage of BSF, with particular attention to OBPs. The analysis of the de novo adult and larval transcriptome led to the identification of 27 and 31 OBPs for adults and larvae, respectively. Among these OBPs, 15 were common in larval and adult transcriptomes and the tertiary structures of 8 selected OBPs were modelled. In silico docking of ligands confirms the potential interaction with VOCs of interest. Starting from the information about the growth performance of H. illucens on different organic substrates from the agri-food sector, the present work demonstrates a possible correlation between a pool of selected VOCs, emitted by those substrates that are attractive for H. illucens females when searching for oviposition sites, as well as phagostimulants for larvae. The binding affinities between OBPs and selected ligands calculated by in silico modelling may indicate a correlation among OBPs, VOCs and behavioural preferences that will be the basis for further analysis.
Collapse
Affiliation(s)
- Carmen Scieuzo
- Department of Sciences, University of Basilicata, via dell’Ateneo Lucano 10, 85100 Potenza, Italy; (C.S.); (M.N.); (D.F.); (A.S.)
- Spinoff XFlies s.r.l, University of Basilicata, via dell’Ateneo Lucano 10, 85100 Potenza, Italy
| | - Marisa Nardiello
- Department of Sciences, University of Basilicata, via dell’Ateneo Lucano 10, 85100 Potenza, Italy; (C.S.); (M.N.); (D.F.); (A.S.)
| | - Donatella Farina
- Department of Sciences, University of Basilicata, via dell’Ateneo Lucano 10, 85100 Potenza, Italy; (C.S.); (M.N.); (D.F.); (A.S.)
- Spinoff XFlies s.r.l, University of Basilicata, via dell’Ateneo Lucano 10, 85100 Potenza, Italy
| | - Andrea Scala
- Department of Sciences, University of Basilicata, via dell’Ateneo Lucano 10, 85100 Potenza, Italy; (C.S.); (M.N.); (D.F.); (A.S.)
| | - Jonathan A. Cammack
- Department of Entomology, Texas A&M University, College Station, TX 77843, USA; (J.A.C.); (J.K.T.)
| | - Jeffery K. Tomberlin
- Department of Entomology, Texas A&M University, College Station, TX 77843, USA; (J.A.C.); (J.K.T.)
| | - Heiko Vogel
- Department of Entomology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, D-07745 Jena, Germany;
| | - Rosanna Salvia
- Department of Sciences, University of Basilicata, via dell’Ateneo Lucano 10, 85100 Potenza, Italy; (C.S.); (M.N.); (D.F.); (A.S.)
- Spinoff XFlies s.r.l, University of Basilicata, via dell’Ateneo Lucano 10, 85100 Potenza, Italy
| | - Krishna Persaud
- Department of Chemical Engineering and Analytical Science, The University of Manchester, Manchester M13 9PL, UK
| | - Patrizia Falabella
- Department of Sciences, University of Basilicata, via dell’Ateneo Lucano 10, 85100 Potenza, Italy; (C.S.); (M.N.); (D.F.); (A.S.)
- Spinoff XFlies s.r.l, University of Basilicata, via dell’Ateneo Lucano 10, 85100 Potenza, Italy
| |
Collapse
|
72
|
Potential of Fermentation and Vacuum Packaging Followed by Chilling to Preserve Black Soldier Fly Larvae ( Hermetia illucens). INSECTS 2021; 12:insects12080714. [PMID: 34442280 PMCID: PMC8396865 DOI: 10.3390/insects12080714] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/27/2021] [Accepted: 08/04/2021] [Indexed: 11/20/2022]
Abstract
Simple Summary Insects are being produced at an industrial scale, mainly as feed ingredient to replace less sustainable protein sources in feed. Larvae of the black soldier fly (Hermetia illucens) are currently the most important species reared for this purpose. After production, it is necessary that the larvae be stored and transported in a stable way, i.e., without deterioration. In this study, we investigated fermentation and vacuum packaging technology as potential stabilisation techniques. Fermentation appears to be possible when the larvae are first blanched and pulverised, but bacterial endospores remain present and can potentially be dangerous if the conditions are not acidic enough. Vacuum packaging was tested as storage technique for living larvae, but their survival was lower than for living larvae packaged in air. Additionally, for killed larvae, vacuum packaging before chilling did not bring benefits over chilled storage alone. That was concluded from the fact that microbial counts were similar for larvae that were packaged in air or under vacuum during storage. Abstract Black soldier fly larvae (Hermetia illucens) are currently reared at an industrial scale, mainly as a feed ingredient. The logistic chain not only involves the production of larvae, but also stabilisation, storage, and transport. The aim of this work was to study fermentation and vacuum packaging of larvae as potential preservation technologies. For fermentation, blanched larvae were pulverised into a paste, and a starter culture, NaCl, and glucose were added. The mixture was fermented for 7 days at 35 °C and then stored for 14 days at 4 °C and pH and microbial counts were monitored. Vacuum packaging was applied to living, blanched and frozen larvae. After packaging, they were stored for 6–10 days at several temperatures and gas composition, survival (living larvae) and microbial counts (killed larvae) were recorded. Fermentation allows storage of pulverised larvae, but points to consider are a rapid pH reduction and the presence of bacterial endospores. Vacuum packaging did not bring added value over cooling alone. This was the case for all types of larvae investigated. Vacuum packaging is not considered as a valuable preservation technology to pursue for storage and transport of black soldier fly larvae.
Collapse
|
73
|
Growth Performance, Waste Reduction Efficiency and Nutritional Composition of Black Soldier Fly ( Hermetia illucens) Larvae and Prepupae Reared on Coconut Endosperm and Soybean Curd Residue with or without Supplementation. INSECTS 2021; 12:insects12080682. [PMID: 34442248 PMCID: PMC8396427 DOI: 10.3390/insects12080682] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 07/24/2021] [Accepted: 07/27/2021] [Indexed: 12/04/2022]
Abstract
Simple Summary Black soldier fly (BSF, Hermetia illucens) larvae have a high potential to convert organic waste into high-value products. However, the growth performance, waste reduction efficiency, and chemical composition of BSF larvae are greatly influenced by the rearing substrate. This study focused on investigating the growth performance, waste reduction efficiency, and nutritional composition of BSF larvae reared on different ratios of coconut endosperm (C) and soybean curd residue (S), with or without supplementation, compared to standard diets (Gainesville: G and starter chicken diet: CK). The results showed that BSF larvae fed CK has the highest larval weight, followed by those fed coconut endosperm and soybean curd residue at a ratio of 20:80 (C20S80), and coconut endosperm and soybean curd residue at a ratio of 50:50 (C50S50) without supplementation. The greatest waste reduction efficiency was observed in the G, C50S50, and C20S80 groups without supplementation. The highest crude protein content in larvae was presented in the G and C20S80 groups followed by the CK and C50S50 groups. Therefore, equal proportions of C and S without supplementation is likely the best formulation for growth performance, waste reduction efficiency, and nutritional composition of BSF larvae when compared with standard diets. Abstract Black soldier fly (BSF, Hermetia illucens) larvae are considered as insects with a high potential to convert organic waste into high-value products. The objective of this study was to investigate the growth performance, waste reduction efficiency, and nutritional composition of BSF reared on different ratios of coconut endosperm (C) and soybean curd residue (S), with or without supplementation, compared to standard diets (Gainesville: G and starter chicken diet: CK). Seven-day-old larvae were randomly divided into eight experimental groups (G, CK, and three different ratios of C and S with or without supplementation) with three replicates with an equal weight of larvae. The supplement contained calcium, phosphorus, amino acids, and a mineral–vitamin premix which was formulated to correlate with CK. Each replicate was terminated, measured, and evaluated when 40% of larvae had reached prepupal stage. The highest larval weight gain was presented in BSF fed CK, followed by those fed coconut endosperm and soybean curd residue at a ratio of 20:80 (C20S80), and coconut endosperm and soybean curd residue at a ratio of 50:50 (C50S50) without supplementation (numbers after C and S represent their percentage in the formulation; p < 0.001). Harvesting was delayed in the BSF fed C80S20 with and without supplementation (p < 0.001). The number of total larvae and prepupae was not significantly different between groups (p > 0.05). The greatest waste reduction efficiency was observed in the G, C50S50, and C20S80 groups without supplementation (p < 0.001). All groups with supplementation had a higher proportion of ash in both larvae and prepupae compared to non-supplemented groups (p < 0.001), but lower growth performance. The highest percentage of crude protein in larvae was presented in the Gainesville and C20S80 groups followed by the CK and C50S50 groups (p < 0.001). Equal proportions of C and S without supplementation are suggested as a rearing substrate. However, growth performance was lower than for CK; therefore, further studies could investigate cost-efficient techniques to promote this parameter.
Collapse
|
74
|
Impact of Diets Including Agro-Industrial By-Products on the Fatty Acid and Sterol Profiles of Larvae Biomass from Ephestia kuehniella, Tenebrio molitor and Hermetia illucens. INSECTS 2021; 12:insects12080672. [PMID: 34442238 PMCID: PMC8396641 DOI: 10.3390/insects12080672] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/22/2021] [Accepted: 07/22/2021] [Indexed: 02/05/2023]
Abstract
Simple Summary Insects are a promising source of lipids. Their fatty acid compositions can vary as a function of diet composition, rearing conditions and developmental stage. In the present study, different agro-industrial by-products were used to feed the insects. Then, the fatty acids and sterols were determined. Notably, these profiles were assessed for the first time for E. kuehniella. According to our results, fatty acid profiles showed differences depending on diet composition, but mostly depended on species. Sterols varied significantly as a function of diet composition and species, showing low cholesterol and high campesterol and β-sitosterol levels in H. illucens, and high cholesterol and low campesterol contents in T. molitor and E. kuehniella. These results suggest that insects are an interesting alternative source of fat for humans and animals, which might promote the use of insects for circular economy practices. Abstract Rearing insects on agro-industrial by-products is a sustainable strategy for the circular economy while producing valuable products for feed and foods. In this context, this study investigated the impact of larvae diet containing agro-industrial by-products on the contents of fatty acids and sterols of Ephestia kuehniella (Zeller) (Lepidoptera: Pyralidae), Tenebrio molitor (L.) (Coleoptera: Tenebrionidae), and Hermetia illucens (L.) (Diptera: Stratiomyidae). For each insect, selected diets were formulated using single or combined agro-industrial by-products (i.e., apricot, brewer’s spent grain and yeast, and feed mill) and compared to a control diet. Fatty acid profiles showed differences depending on diet composition, but mostly depended on species: H. illucens was characterized by the abundance of C12:0, C16:0 and C18:2, whereas C:16, C18:1(n-9c), and C18:2(n-6c) were predominant in T. molitor and E. kuehniella. Sterols significantly varied as a function of diet composition and species. H. illucens showed low cholesterol levels and high campesterol and β sitosterol levels (0.031, 0.554 and 1.035 mg/g, respectively), whereas T. molitor and E. kuehniella had high cholesterol and low campesterol contents (1.037 and 0.078 g/kg, respectively, for T. molitor; 0.873 and 0.132 g/kg, respectively, for E. kuehniella).
Collapse
|
75
|
Abstract
Chitin and its derivatives are attracting great interest in cosmetic and cosmeceutical fields, thanks to their antioxidant and antimicrobial properties, as well as their biocompatibility and biodegradability. The classical source of chitin, crustacean waste, is no longer sustainable and fungi, a possible alternative, have not been exploited at an industrial scale yet. On the contrary, the breeding of bioconverting insects, especially of the Diptera Hermetia illucens, is becoming increasingly popular worldwide. Therefore, their exoskeletons, consisting of chitin as a major component, represent a waste stream of facilities that could be exploited for many applications. Insect chitin, indeed, suggests its application in the same fields as the crustacean biopolymer, because of its comparable commercial characteristics. This review reports several cosmetic and cosmeceutical applications based on chitin and its derivatives. In this context, chitin nanofibers and nanofibrils, produced from crustacean waste, have proved to be excellent cosmeceutical active compounds and carriers of active ingredients in personal care. Consequently, the insect-based chitin, its derivatives and their complexes with hyaluronic acid and lignin, as well as with other chitin-derived compounds, may be considered a new appropriate potential polymer to be used in cosmetic and cosmeceutical fields.
Collapse
|
76
|
Saviane A, Tassoni L, Naviglio D, Lupi D, Savoldelli S, Bianchi G, Cortellino G, Bondioli P, Folegatti L, Casartelli M, Orlandi VT, Tettamanti G, Cappellozza S. Mechanical Processing of Hermetia illucens Larvae and Bombyx mori Pupae Produces Oils with Antimicrobial Activity. Animals (Basel) 2021; 11:783. [PMID: 33799904 PMCID: PMC8001418 DOI: 10.3390/ani11030783] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 02/24/2021] [Accepted: 03/04/2021] [Indexed: 12/26/2022] Open
Abstract
The aim of this work was to develop processing methods that safeguard the quality and antimicrobial properties of H. illucens and B. mori oils. We adopted a vegetable diet for both insects: leftover vegetables and fruit for H. illucens and mulberry leaves for B. mori. First, alternative techniques to obtain a good oil extraction yield from the dried biomass of H. illucens larvae were tested. Traditional pressing resulted to be the best system to maximize the oil yield and it was successfully applied to B. mori pupae. Oil quality resulted comparable to that obtained with other extraction methods described in the literature. In the case of B. mori pupae, different treatments and preservation periods were investigated to evaluate their influence on the oil composition and quality. Interestingly, agar diffusion assays demonstrated the sensitivity of Gram-positive Bacillus subtilis and Staphylococcus aureus to H. illucens and B. mori derived oils, whereas the growth of Gram-negative Pseudomonas aeruginosa and Escherichia coli was not affected. This study confirms that fat and other active compounds of the oil extracted by hot pressing could represent effective antimicrobials against bacteria, a relevant result if we consider that they are by-products of the protein extraction process in the feed industry.
Collapse
Affiliation(s)
- Alessio Saviane
- Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria, Centro di Ricerca Agricoltura e Ambiente (CREA-AA), 35143 Padova, Italy;
| | - Luca Tassoni
- Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, 35020 Padova, Italy;
| | - Daniele Naviglio
- Dipartimento di Scienze Chimiche, Università di Napoli “Federico II”, 80126 Napoli, Italy;
| | - Daniela Lupi
- Dipartimento Scienze per gli Alimenti, la Nutrizione e l’Ambiente, Università degli Studi di Milano, 20133 Milano, Italy; (D.L.); (S.S.)
| | - Sara Savoldelli
- Dipartimento Scienze per gli Alimenti, la Nutrizione e l’Ambiente, Università degli Studi di Milano, 20133 Milano, Italy; (D.L.); (S.S.)
| | - Giulia Bianchi
- Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria, Centro di Ricerca Ingegneria e Trasformazioni Agroalimentari (CREA-IT), 20133 Milano, Italy; (G.B.); (G.C.)
| | - Giovanna Cortellino
- Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria, Centro di Ricerca Ingegneria e Trasformazioni Agroalimentari (CREA-IT), 20133 Milano, Italy; (G.B.); (G.C.)
| | | | - Liliana Folegatti
- Innovhub, Laboratorio Sostanze Grasse, Derivati e Tecnologie Olearie, 20133 Milano, Italy;
| | - Morena Casartelli
- Dipartimento di Bioscienze, Università degli Studi di Milano, 20133 Milano, Italy;
| | - Viviana Teresa Orlandi
- Dipartimento di Biotecnologie e Scienze della Vita, Università degli Studi dell’Insubria, 21100 Varese, Italy; (V.T.O.); (G.T.)
| | - Gianluca Tettamanti
- Dipartimento di Biotecnologie e Scienze della Vita, Università degli Studi dell’Insubria, 21100 Varese, Italy; (V.T.O.); (G.T.)
| | - Silvia Cappellozza
- Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria, Centro di Ricerca Agricoltura e Ambiente (CREA-AA), 35143 Padova, Italy;
| |
Collapse
|