51
|
Wei Q, He F, Rao J, Xiang X, Li L, Qi H. Targeting non-classical autophagy-dependent ferroptosis and the subsequent HMGB1/TfR1 feedback loop accounts for alleviating solar dermatitis by senkyunolide I. Free Radic Biol Med 2024; 223:263-280. [PMID: 39117049 DOI: 10.1016/j.freeradbiomed.2024.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 08/03/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024]
Abstract
Given the substantial risks associated with ultraviolet B (UVB) radiation-induced solar dermatitis, enhancing current strategies to combat UVB regarding skin diseases is imperative. The cross-talk between ferroptosis and inflammation has been proven to be an essential factor in UVB-induced solar dermatitis, whereas detailed process of how their interaction contributes to this remains unclear. Therefore, further investigation of ferroptosis-mediated processes and identification of corresponding inhibitory approaches hold promise for repairing skin damage. Senkyunolide I (Sen I), a bioactive component mainly extracted from the traditional Chinese medicinal plants, Ligusticum chuanxiong Hort. and Angelica sinensis (Oliv.) Diels, has demonstrated efficacy in combating oxidative stress and inflammation. In this study, we utilized UVB-irradiated HaCaT cells as an in vitro model and C57BL/6J mice as an in vivo model of solar dermatitis. Our findings revealed the pivotal roles of autophagy and ferroptosis in inducing skin inflammation, particularly emphasizing the activation of ferroptosis through macroautophagy. Surprisingly, this mechanism operated independently of ferritinophagy, a classical autophagy-driven ferroptosis pathway. Instead, our results highlighted Transferrin Receptor 1 (TfR1), tightly controlled by autophagy, as a crucial mediator of ferroptosis execution and amplifier of subsequent lethal signals. Furthermore, extracellular High Mobility Group Box 1 protein (HMGB1), released following UVB-induced ferroptotic cells from activated autophagic flux, initiated a feedback loop with TfR1, propagating ferroptosis to neighboring cells and exacerbating damage. Remarkably, Sen I administration showed a significant protective effect against UVB damage in both in vitro and in vivo models by interrupting this cascade. Consequently, we have illuminated a novel therapeutic pathway post-UVB exposure and identified Sen I as a potent natural molecule that safeguarded against UVB-induced solar dermatitis by suppressing the autophagy-ferroptosis-HMGB1-TfR1 axis, highlighting a new frontier in photoprotection.
Collapse
Affiliation(s)
- Qi Wei
- College of Pharmaceutical Sciences & College of Chinese Medicine, Southwest University, Chongqing, 400715, China
| | - Fuxia He
- College of Pharmaceutical Sciences & College of Chinese Medicine, Southwest University, Chongqing, 400715, China
| | - Jiangyan Rao
- College of Pharmaceutical Sciences & College of Chinese Medicine, Southwest University, Chongqing, 400715, China
| | - Xiaoxia Xiang
- College of Pharmaceutical Sciences & College of Chinese Medicine, Southwest University, Chongqing, 400715, China
| | - Li Li
- College of Pharmaceutical Sciences & College of Chinese Medicine, Southwest University, Chongqing, 400715, China
| | - Hongyi Qi
- College of Pharmaceutical Sciences & College of Chinese Medicine, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
52
|
Yang J, Zhu B, Zhang J, Liang SH, Shen S, Ran C. Half-Curcumin-Based Chemiluminescence Probes and Their Applications in Detecting Quasi-Stable Oxidized Proteins. Angew Chem Int Ed Engl 2024; 63:e202409896. [PMID: 38980957 PMCID: PMC11421953 DOI: 10.1002/anie.202409896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/04/2024] [Accepted: 07/09/2024] [Indexed: 07/11/2024]
Abstract
Numerous methods have been reported for detecting ROS/RNS in vitro and in vivo; however, detecting methods for the secondary products of the reactive oxygen species (ROS)/reactive nitrogen species (RNS) reactions, particularly quasi-stable oxidized products, have been much less explored. In this report, we observed that half-curcumins could generate chemiluminescence (CL). In contrast to other chemiluminescence scaffolds, the distinguishing feature of a half-curcumin is the formation of a carbanion intermediate of its acetylacetone moiety, opening unique avenues for applications. In this study, we designed a series of half-curcumins CRANAD-Xs and found that CRANAD-164 could be used to detect quasi-stable oxidized proteins (QSOP) in vivo and in patient serum samples. We illustrated that CRANAD-164 could be used to monitor the responses of taurine, an amino acid with newly reported anti-aging capacity, in an inflammatory mouse model. Remarkably, we further demonstrated that the QSOP levels were much higher in the disease serum samples, including Alzheimer's disease (AD), compared to the samples from healthy controls. Moreover, our results revealed that the sera chemiluminescence intensities were higher in aged healthy controls compared to young healthy subjects, suggesting that CRANAD-164 can be used to monitor the increase of QSOP during aging.
Collapse
Affiliation(s)
- Jun Yang
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Boston, Massachusetts, USA, 02129
| | - Biyue Zhu
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Boston, Massachusetts, USA, 02129
| | - Jing Zhang
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Boston, Massachusetts, USA, 02129
| | - Steven H Liang
- Department of Radiology and Imaging Sciences, Emory University, Atlanta, Georgia, 30322, United States
| | - Shiqian Shen
- Massachusetts General Hospital Center for Translational Pain Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Chongzhao Ran
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Boston, Massachusetts, USA, 02129
| |
Collapse
|
53
|
Russo GL, Spagnuolo C, Russo M. Reassessing the role of phytochemicals in cancer chemoprevention. Biochem Pharmacol 2024; 228:116165. [PMID: 38527559 DOI: 10.1016/j.bcp.2024.116165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/13/2024] [Accepted: 03/22/2024] [Indexed: 03/27/2024]
Abstract
In this comprehensive review we tried to reassess the role of phytochemicals in cancer chemoprevention. The exploration of the "synergistic effect" concept, advocating combined chemopreventive agents, faces challenges like low bioavailability. The review incorporates personal, occasionally controversial, viewpoints on natural compounds' cancer preventive capabilities, delving into mechanisms. Prioritizing significant contributions within the vast research domain, we aim stimulating discussion to provide a comprehensive insight into the evolving role of phytochemicals in cancer prevention. While early years downplayed the role of phytochemicals, the late nineties witnessed a shift, with leaders exploring their potential alongside synthetic compounds. Challenges faced by chemoprevention, such as limited pharmaceutical interest and cost-effectiveness issues, persist despite successful drugs. Recent studies, including the EPIC study, provide nuanced insights, indicating a modest risk reduction for increased fruit and vegetable intake. Phytochemicals, once attributed to antioxidant effects, face scrutiny due to low bioavailability and conflicting evidence. The Nrf2-EpRE signaling pathway and microbiota-mediated metabolism emerge as potential mechanisms, highlighting the complexity of understanding phytochemical mechanisms in cancer chemoprevention.
Collapse
Affiliation(s)
- Gian Luigi Russo
- National Research Council, Institute of Food Sciences, 83100 Avellino, Italy.
| | - Carmela Spagnuolo
- National Research Council, Institute of Food Sciences, 83100 Avellino, Italy
| | - Maria Russo
- National Research Council, Institute of Food Sciences, 83100 Avellino, Italy
| |
Collapse
|
54
|
Bahety D, Böke E, Rodríguez-Nuevo A. Mitochondrial morphology, distribution and activity during oocyte development. Trends Endocrinol Metab 2024; 35:902-917. [PMID: 38599901 DOI: 10.1016/j.tem.2024.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/06/2024] [Accepted: 03/08/2024] [Indexed: 04/12/2024]
Abstract
Mitochondria have a crucial role in cellular function and exhibit remarkable plasticity, adjusting both their structure and activity to meet the changing energy demands of a cell. Oocytes, female germ cells that become eggs, undergo unique transformations: the extended dormancy period, followed by substantial increase in cell size and subsequent maturation involving the segregation of genetic material for the next generation, present distinct metabolic challenges necessitating varied mitochondrial adaptations. Recent findings in dormant oocytes challenged the established respiratory complex hierarchies and underscored the extent of mitochondrial plasticity in long-lived oocytes. In this review, we discuss mitochondrial adaptations observed during oocyte development across three vertebrate species (Xenopus, mouse, and human), emphasising current knowledge, acknowledging limitations, and outlining future research directions.
Collapse
Affiliation(s)
- Devesh Bahety
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Elvan Böke
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain.
| | - Aida Rodríguez-Nuevo
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain.
| |
Collapse
|
55
|
Zhang Y, Cao Y, Jiang W, Ma Q, Shin J, Sun H, Cui J, Chen Y, Giraldo JP, Strano MS, Lowry GV, Sheen J, Marelli B. Polymeric Nanocarriers Autonomously Cross the Plant Cell Wall and Enable Protein Delivery for Stress Sensing. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2409356. [PMID: 39149770 PMCID: PMC11466712 DOI: 10.1002/adma.202409356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 08/07/2024] [Indexed: 08/17/2024]
Abstract
Delivery of proteins in plant cells can facilitate the design of desired functions by modulation of biological processes and plant traits but is currently limited by narrow host range, tissue damage, and poor scalability. Physical barriers in plants, including cell walls and membranes, limit protein delivery to desired plant tissues. Herein, a cationic high aspect ratio polymeric nanocarriers (PNCs) platform is developed to enable efficient protein delivery to plants. The cationic nature of PNCs binds proteins through electrostatic. The ability to precisely design PNCs' size and aspect ratio allowed us to find a cutoff of ≈14 nm in the cell wall, below which cationic PNCs can autonomously overcome the barrier and carry their cargo into plant cells. To exploit these findings, a reduction-oxidation sensitive green fluorescent protein (roGFP) is deployed as a stress sensor protein cargo in a model plant Nicotiana benthamiana and common crop plants, including tomato and maize. In vivo imaging of PNC-roGFP enabled optical monitoring of plant response to wounding, biotic, and heat stressors. These results show that PNCs can be precisely designed below the size exclusion limit of cell walls to overcome current limitations in protein delivery to plants and facilitate species-independent plant engineering.
Collapse
Affiliation(s)
- Yilin Zhang
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Yunteng Cao
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Wenzhi Jiang
- Department of Molecular Biology and Centre for Computational and Integrative Biology, Massachusetts General Hospital, and Department of Genetics, Harvard Medical School, Boston, MA 02114, United States
| | - Qingquan Ma
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Jinwoo Shin
- Department of Molecular Biology and Centre for Computational and Integrative Biology, Massachusetts General Hospital, and Department of Genetics, Harvard Medical School, Boston, MA 02114, United States
| | - Hui Sun
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Jianqiao Cui
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Yongsheng Chen
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Juan Pablo Giraldo
- Department of Botany and Plant Sciences, University of California, Riverside, California 92521, United States
| | - Michael S. Strano
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Gregory V. Lowry
- Department of Civil and Environmental Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Jen Sheen
- Department of Molecular Biology and Centre for Computational and Integrative Biology, Massachusetts General Hospital, and Department of Genetics, Harvard Medical School, Boston, MA 02114, United States
| | - Benedetto Marelli
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
56
|
Zhao J, Sarkar N, Ren Y, Pathak AP, Grayson WL. Engineering next-generation oxygen-generating scaffolds to enhance bone regeneration. Trends Biotechnol 2024:S0167-7799(24)00250-6. [PMID: 39343620 DOI: 10.1016/j.tibtech.2024.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 08/08/2024] [Accepted: 09/05/2024] [Indexed: 10/01/2024]
Abstract
In bone, an adequate oxygen (O2) supply is crucial during development, homeostasis, and healing. Oxygen-generating scaffolds (OGS) have demonstrated significant potential to enhance bone regeneration. However, the complexity of O2 delivery and signaling in vivo makes it challenging to tailor the design of OGS to precisely meet this biological requirement. We review recent advances in OGS and analyze persisting engineering and translational hurdles. We also discuss the potential of computational and machine learning (ML) models to facilitate the integration of novel imaging data with biological readouts and advanced biomanufacturing technologies. By elucidating how to tackle current challenges using cutting-edge technologies, we provide insights for transitioning from traditional to next-generation OGS to improve bone regeneration in patients.
Collapse
Affiliation(s)
- Jingtong Zhao
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Translational Tissue Engineering Center, Johns Hopkins University, Baltimore, MD, USA
| | - Naboneeta Sarkar
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Translational Tissue Engineering Center, Johns Hopkins University, Baltimore, MD, USA
| | - Yunke Ren
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Translational Tissue Engineering Center, Johns Hopkins University, Baltimore, MD, USA
| | - Arvind P Pathak
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Translational Tissue Engineering Center, Johns Hopkins University, Baltimore, MD, USA; Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD, USA; Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, USA
| | - Warren L Grayson
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Translational Tissue Engineering Center, Johns Hopkins University, Baltimore, MD, USA; Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, USA; Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, USA; Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
57
|
Ostrom EL, Stuppard R, Mattson-Hughes A, Marcinek DJ. Inducible and reversible SOD2 knockdown in mouse skeletal muscle drives impaired pyruvate oxidation and reduced metabolic flexibility. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.23.614547. [PMID: 39386714 PMCID: PMC11463494 DOI: 10.1101/2024.09.23.614547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Introduction Skeletal muscle mitochondrial dysfunction is a key characteristic of aging muscle and contributes to age related diseases such as sarcopenia, frailty, and type 2 diabetes. Mitochondrial oxidative distress has been implicated as a driving factor in these age-related diseases, however whether it is a cause, or a consequence of mitochondrial dysfunction remains to be determined. The development of more flexible genetic models is an important tool to test the mechanistic role of mitochondrial oxidative stress on skeletal muscle metabolic dysfunction. We characterize a new model of inducible and reversible mitochondrial redox stress using a tetracycline controlled skeletal muscle specific short hairpin RNA targeted to superoxide dismutase 2 (iSOD2). Methods iSOD2 KD and control (CON) animals were administered doxycycline for 3- or 12- weeks and followed for up to 24 weeks and mitochondrial respiration and muscle contraction were measured to define the time course of SOD2 KD and muscle functional changes and recovery. Results Maximum knockdown of SOD2 protein occurred by 6 weeks and recovered by 24 weeks after DOX treatment. Mitochondrial aconitase activity and maximum mitochondrial respiration declined in KD muscle by 12 weeks and recovered by 24 weeks. There were minimal changes in gene expression between KD and CON muscle. Twelve-week KD showed a small, but significant decrease in muscle fatigue resistance. The primary phenotype was reduced metabolic flexibility characterized by impaired pyruvate driven respiration when other substrates are present. The pyruvate dehydrogenase kinase inhibitor dichloroacetate partially restored pyruvate driven respiration, while the thiol reductant DTT did not. Conclusion We use a model of inducible and reversible skeletal muscle SOD2 knockdown to demonstrate that elevated matrix superoxide reversibly impairs mitochondrial substrate flexibility characterized by impaired pyruvate oxidation. Despite the bioenergetic effect, the limited change in gene expression suggests that the elevated redox stress in this model is confined to the mitochondrial matrix.
Collapse
Affiliation(s)
- Ethan L Ostrom
- Department of Radiology, University of Washington School of Medicine, Seattle, WA, USA
| | - Rudy Stuppard
- Department of Radiology, University of Washington School of Medicine, Seattle, WA, USA
| | - Aurora Mattson-Hughes
- Department of Radiology, University of Washington School of Medicine, Seattle, WA, USA
| | - David J Marcinek
- Department of Radiology, University of Washington School of Medicine, Seattle, WA, USA
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA, USA
| |
Collapse
|
58
|
Hou S, Yan X, Gao X, Jockusch S, Gibson KM, Shan Z, Bi L. Enhancing Cardiomyocyte Resilience to Ischemia-Reperfusion Injury: The Therapeutic Potential of an Indole-Peptide-Tempo Conjugate (IPTC). ACS OMEGA 2024; 9:39401-39418. [PMID: 39346824 PMCID: PMC11425819 DOI: 10.1021/acsomega.4c02725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/18/2024] [Accepted: 06/20/2024] [Indexed: 10/01/2024]
Abstract
Ischemia/reperfusion (I/R) injury leads to apoptosis and extensive cellular and mitochondrial damage, triggered by the early generation and subsequent accumulation of mitochondrial reactive oxygen species (mtROS). This condition not only contributes to the pathology of I/R injury itself but is also implicated in a variety of other diseases, especially within the cardiovascular domain. Addressing mitochondrial oxidative stress thus emerges as a critical therapeutic target. In this context, our study introduces an indole-peptide-tempo conjugate (IPTC), a compound designed with dual functionalities: antioxidative properties and the ability to modulate autophagy. Our findings reveal that IPTC effectively shields H9C2 cardiomyocytes against hypoxia/reoxygenation (H/R) damage, primarily through counteracting mtROS overproduction linked to impaired mitophagy and mitochondrial dysfunction. We propose that IPTC operates by simultaneously reducing mtROS levels and inducing mitophagy, highlighting its potential as a novel therapeutic strategy for mitigating mitochondrial oxidative damage and, by extension, easing I/R injury and potentially other related cardiovascular conditions.
Collapse
Affiliation(s)
- Shanshan Hou
- Department of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Xin Yan
- Department of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Xiang Gao
- Department of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Steffen Jockusch
- Center of Photochemical Sciences, Bowling Green State University, Bowling Green, Ohio 43403, United States
| | - K Michael Gibson
- Department of Pharmacotherapy, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington 99202, United States
| | - Zhiying Shan
- Department of Kinesiology and Integrative Physiology, Health Research Institute, Michigan Technological University, Houghton, Michigan 49931, United States
- Health Research Institute, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Lanrong Bi
- Department of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
- Health Research Institute, Michigan Technological University, Houghton, Michigan 49931, United States
| |
Collapse
|
59
|
Rosser TG, Turner MA, Reynolds JC, Martin NRW, Lindley MR. Stimulated C2C12 Myotube Headspace Volatile Organic Compound Analysis. Molecules 2024; 29:4527. [PMID: 39407458 PMCID: PMC11477781 DOI: 10.3390/molecules29194527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/06/2024] [Accepted: 09/17/2024] [Indexed: 10/20/2024] Open
Abstract
Understanding exercise metabolism and the relationship with volatile organic compounds (VOCs) holds potential in both health care and sports performance. Exercise metabolism can be investigated using whole body exercise testing (in vivo) or through the culture and subsequent electrical pulse stimulation (EPS) of myotubes (in vitro). This research investigates the novel headspace (HS) analysis of EPS skeletal muscle myotubes. An in vitro system was built to investigate the effect of EPS on the volatile constituents in the HS above EPS skeletal muscle. The C2C12 immortalised cell line was chosen. EPS was applied to the system to induce myotube contraction. The in vitro system was applied to the analysis of VOCs using thermal desorption (TD) sampling. Samples were collected under four conditions: environmental samples (enviro), acellular media HS samples (blank), skeletal muscle myotubes without stimulation HS samples (baseline) and EPS of skeletal muscle myotube HS samples (stim). TD sampling combined with gas-chromatography mass spectrometry (GC-MS) detected two compounds that, after multivariate and univariate statistical analysis, were identified as changing due to EPS (p < 0.05). These compounds were tentatively assigned as 1,4-Dioxane-2,5-dione, 3,6-dimethyl- and 1-pentene. The former is a known lactide and the latter has been reported as a marker of oxidative stress. Further research should focus on improvements to the EPS system, including the use of more relevant cell lines, quantification of myotube contractions, and the application of targeted analysis, metabolic assays and media analysis.
Collapse
Affiliation(s)
- Tomos G. Rosser
- School of Sport Exercise and Health Sciences, Loughborough University, Loughborough LE11 3TU, UK (N.R.W.M.)
| | - Matthew A. Turner
- Department of Chemistry, School of Sciences, Loughborough University, Loughborough LE11 3TU, UK; (M.A.T.); (J.C.R.)
| | - James C. Reynolds
- Department of Chemistry, School of Sciences, Loughborough University, Loughborough LE11 3TU, UK; (M.A.T.); (J.C.R.)
| | - Neil R. W. Martin
- School of Sport Exercise and Health Sciences, Loughborough University, Loughborough LE11 3TU, UK (N.R.W.M.)
| | - Martin R. Lindley
- School of Health Sciences, University of New South Wales, Sydney 2050, Australia
| |
Collapse
|
60
|
Patel KD, Keskin-Erdogan Z, Sawadkar P, Nik Sharifulden NSA, Shannon MR, Patel M, Silva LB, Patel R, Chau DYS, Knowles JC, Perriman AW, Kim HW. Oxidative stress modulating nanomaterials and their biochemical roles in nanomedicine. NANOSCALE HORIZONS 2024; 9:1630-1682. [PMID: 39018043 DOI: 10.1039/d4nh00171k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
Many pathological conditions are predominantly associated with oxidative stress, arising from reactive oxygen species (ROS); therefore, the modulation of redox activities has been a key strategy to restore normal tissue functions. Current approaches involve establishing a favorable cellular redox environment through the administration of therapeutic drugs and redox-active nanomaterials (RANs). In particular, RANs not only provide a stable and reliable means of therapeutic delivery but also possess the capacity to finely tune various interconnected components, including radicals, enzymes, proteins, transcription factors, and metabolites. Here, we discuss the roles that engineered RANs play in a spectrum of pathological conditions, such as cancer, neurodegenerative diseases, infections, and inflammation. We visualize the dual functions of RANs as both generator and scavenger of ROS, emphasizing their profound impact on diverse cellular functions. The focus of this review is solely on inorganic redox-active nanomaterials (inorganic RANs). Additionally, we deliberate on the challenges associated with current RANs-based approaches and propose potential research directions for their future clinical translation.
Collapse
Affiliation(s)
- Kapil D Patel
- John Curtin School of Medical Research, Australian National University, Canberra, ACT 2601, Australia.
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
- School of Cellular and Molecular Medicine, University of Bristol, BS8 1TD, UK
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea.
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine Research Center, Dankook University, Cheonan, 31116, Republic of Korea
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, 31116, Republic of Korea
| | - Zalike Keskin-Erdogan
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, 31116, Republic of Korea
- Division of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, University College London, Royal Free Hospital, Rowland Hill Street, NW3 2PF, London, UK
- Department of Chemical Engineering, Imperial College London, Exhibition Rd, South Kensington, SW7 2BX, London, UK
| | - Prasad Sawadkar
- Division of Surgery and Interventional Science, UCL, London, UK
- The Griffin Institute, Northwick Park Institute for Medical Research, Northwick Park and St Mark's Hospitals, London, HA1 3UJ, UK
| | - Nik Syahirah Aliaa Nik Sharifulden
- Division of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, University College London, Royal Free Hospital, Rowland Hill Street, NW3 2PF, London, UK
| | - Mark Robert Shannon
- John Curtin School of Medical Research, Australian National University, Canberra, ACT 2601, Australia.
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
- School of Cellular and Molecular Medicine, University of Bristol, BS8 1TD, UK
| | - Madhumita Patel
- Department of Chemistry and Nanoscience, Ewha Women University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea
| | - Lady Barrios Silva
- Division of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, University College London, Royal Free Hospital, Rowland Hill Street, NW3 2PF, London, UK
| | - Rajkumar Patel
- Energy & Environment Sciences and Engineering (EESE), Integrated Sciences and Engineering Division (ISED), Underwood International College, Yonsei University, 85 Songdongwahak-ro, Yeonsungu, Incheon 21938, Republic of Korea
| | - David Y S Chau
- Division of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, University College London, Royal Free Hospital, Rowland Hill Street, NW3 2PF, London, UK
| | - Jonathan C Knowles
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine Research Center, Dankook University, Cheonan, 31116, Republic of Korea
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, 31116, Republic of Korea
- Division of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, University College London, Royal Free Hospital, Rowland Hill Street, NW3 2PF, London, UK
| | - Adam W Perriman
- John Curtin School of Medical Research, Australian National University, Canberra, ACT 2601, Australia.
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
- School of Cellular and Molecular Medicine, University of Bristol, BS8 1TD, UK
| | - Hae-Won Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea.
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine Research Center, Dankook University, Cheonan, 31116, Republic of Korea
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, 31116, Republic of Korea
- Department of Biomaterials Science, School of Dentistry, Dankook University, Cheonan 31116, Republic of Korea
- Cell & Matter Institute, Dankook University, Cheonan 31116, Republic of Korea
| |
Collapse
|
61
|
Salana S, Verma V. Review of in vitro studies evaluating respiratory toxicity of aerosols: impact of cell types, chemical composition, and atmospheric processing. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2024. [PMID: 39291816 DOI: 10.1039/d4em00475b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
In recent decades, several cell-based and acellular methods have been developed to evaluate ambient particulate matter (PM) toxicity. Although cell-based methods provide a more comprehensive assessment of PM toxicity, their results are difficult to comprehend due to the diversity in cellular endpoints, cell types, and assays and the interference of PM chemical components with some of the assays' techniques. In this review, we attempt to clarify some of these issues. We first discuss the morphological and immunological differences among various macrophage and epithelial cells, belonging to the respiratory systems of human and murine species, used in the in vitro studies evaluating PM toxicity. Then, we review the current state of knowledge on the role of different PM chemical components and the relevance of atmospheric processing and aging of aerosols in the respiratory toxicity of PM. Our review demonstrates the need to adopt more physiologically relevant cellular models such as epithelial (or endothelial) cells instead of macrophages for oxidative stress measurement. We suggest limiting macrophages for investigating other cellular responses (e.g., phagocytosis, inflammation, and DNA damage). Unlike monocultures (of macrophages and epithelial cells), which are generally used to study the direct effects of PM on a given cell type, the use of co-culture systems should be encouraged to investigate a more comprehensive effect of PM in the presence of other cells. Our review has identified two major groups of toxic PM chemical species from the existing literature, i.e., metals (Fe, Cu, Mn, Cr, Ni, and Zn) and organic compounds (PAHs, ketones, aliphatic and chlorinated hydrocarbons, and quinones). However, the relative toxicities of these species are still a matter of debate. Finally, the results of the existing studies investigating the effect of aging on PM toxicity are ambiguous, with varying results due to different cell types, different aging conditions, and the presence/absence of specific oxidants. More systematic studies are necessary to understand the role of different SOA precursors, interactions between different PM components, and aging conditions in the overall toxicity of PM. We anticipate that our review will guide future investigations by helping researchers choose appropriate cell models, resulting in a more meaningful interpretation of cell-based assays and thus ultimately leading to a better understanding of the health effects of PM exposure.
Collapse
Affiliation(s)
- Sudheer Salana
- Department of Civil and Environmental Engineering, University of Illinois at Urbana Champaign, Urbana, 61801, USA.
| | - Vishal Verma
- Department of Civil and Environmental Engineering, University of Illinois at Urbana Champaign, Urbana, 61801, USA.
| |
Collapse
|
62
|
Ovcherenko SS, Raizvich AE, Rogozhnikova OY, Tormyshev VM, Trukhin DV, Koval VV, Salnikov GE, Genaev AM, Shernyukov AV, Bagryanskaya EG. Redox Transformations of the OX063 Radical in Biological Media: Oxidative Decay of Initial Trityl with Further Formation of Structurally-Modified TAM. Chemistry 2024; 30:e202400718. [PMID: 39003595 DOI: 10.1002/chem.202400718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 07/10/2024] [Accepted: 07/12/2024] [Indexed: 07/15/2024]
Abstract
Being a low-toxic and hydrophilic representative of TAM, OX063 has shown its suitability for in-vivo and in-cell EPR experiments and design of spin labels. Using 13C labeling, we investigated the course of oxidative degradation of OX063 into quinone-methide (QM) under the influence of superoxide as well as further thiol-promoted reduction of QM into TAM radical, which formally corresponds to substitution of a carboxyl function by a hydroxyl group. We found these transformations being quantitative in model reactions mimicking specific features of biological media and confirmed the presence of these reactions in the blood and liver homogenate of mice in vitro. The emergence of the trityl with the hydroxyl group can be masked by an initial TAM in EPR spectra and may introduce distortions into EPR-derived oximetry data if they have been obtained for objects under hypoxia. 13C labeling allows one to detect its presence, considering its different hyperfine splitting constant on 13C1 (2.04 mT) as compared to OX063 (2.30 mT). The potential involvement of these reactions should be considered when using TAM in spin-labeling of biopolymers intended for subsequent EPR experiments, as well as in the successful application of TAM in experiments in vivo and in cell.
Collapse
Affiliation(s)
- Sergey S Ovcherenko
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, 9 Akad. Lavrentiev Avenue, Novosibirsk, 630090, Russian Federation
- Novosibirsk State University, 2 Pirogova Street, Novosibirsk, 630090, Russian Federation
| | - Arthur E Raizvich
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, 9 Akad. Lavrentiev Avenue, Novosibirsk, 630090, Russian Federation
- Novosibirsk State University, 2 Pirogova Street, Novosibirsk, 630090, Russian Federation
| | - Olga Yu Rogozhnikova
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, 9 Akad. Lavrentiev Avenue, Novosibirsk, 630090, Russian Federation
| | - Victor M Tormyshev
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, 9 Akad. Lavrentiev Avenue, Novosibirsk, 630090, Russian Federation
| | - Dmitry V Trukhin
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, 9 Akad. Lavrentiev Avenue, Novosibirsk, 630090, Russian Federation
| | - Vladimir V Koval
- Institute of Chemical Biology and Fundamental Medicine SB RAS, 8 Akad. Lavrentiev Avenue, Novosibirsk, 630090, Russian Federation
| | - Georgii E Salnikov
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, 9 Akad. Lavrentiev Avenue, Novosibirsk, 630090, Russian Federation
| | - Alexander M Genaev
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, 9 Akad. Lavrentiev Avenue, Novosibirsk, 630090, Russian Federation
| | - Andrey V Shernyukov
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, 9 Akad. Lavrentiev Avenue, Novosibirsk, 630090, Russian Federation
| | - Elena G Bagryanskaya
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, 9 Akad. Lavrentiev Avenue, Novosibirsk, 630090, Russian Federation
| |
Collapse
|
63
|
Wei W, Kang H, Lian C, Liu J, Lin J, Yang J, Xu Z, Wang Z, Yin M, Dai H. Iron-based magnetic nanocomplexes for combined chemodynamic and photothermal cancer therapy through enhanced ferroptosis. BIOMATERIALS ADVANCES 2024; 166:214046. [PMID: 39332345 DOI: 10.1016/j.bioadv.2024.214046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/19/2024] [Accepted: 09/13/2024] [Indexed: 09/29/2024]
Abstract
Chemodynamic therapy (CDT) guided by Fenton chemistry and iron-containing materials can induce ferroptosis as a prospective cancer treatment method, but the inefficient Fe3+/Fe2+ conversion restricts the monotherapeutic performances. Here, an iron-based nanoplatform (Fe3O4-SRF@FeTA) including a magnetic core and a reductive film is developed for combined CDT and photothermal therapy (PTT) through ferroptosis augmentation. The inner iron oxide core serves as a photothermal transducer, a magnet-responsive module, and an iron reservoir for CDT. The coated Fe3+-tannic acid film (FeTA) provides extra iron and reductants for Fe3+/Fe2+ conversion acceleration, and functions as a door keeper for the pH- and light-responsive release of the embedded ferroptosis inducer sorafenib (SRF). The in vitro results demonstrate that the iron-based nanocomplexes promote the production of lipid peroxide through the amplified Fenton activity, and downregulate glutathione involved in lipid peroxide repair system through the responsively released SRF. Upon accumulation in tumor by magnetic targeting and sequential laser irradiation locoregionally, Fe3O4-SRF@FeTA nanocomplexes present prominent in vivo anticancer efficacy by leveraging PTT and CDT-enhanced ferroptosis.
Collapse
Affiliation(s)
- Wenying Wei
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China; International School of Materials Science and Engineering, School of Materials and Microelectronics, Wuhan University of Technology, Wuhan 430070, China
| | - Haifei Kang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Chenxi Lian
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Jiawei Liu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Jinwei Lin
- International School of Materials Science and Engineering, School of Materials and Microelectronics, Wuhan University of Technology, Wuhan 430070, China
| | - Junwei Yang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Zhangmancang Xu
- International School of Materials Science and Engineering, School of Materials and Microelectronics, Wuhan University of Technology, Wuhan 430070, China
| | - Ziqi Wang
- International School of Materials Science and Engineering, School of Materials and Microelectronics, Wuhan University of Technology, Wuhan 430070, China
| | - Meizhen Yin
- Medical College, Inner Mongolia Minzu University, Tongliao 028000, China
| | - Honglian Dai
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China; National Energy Key Laboratory for New Hydrogen-Ammonia Energy Technologies, Foshan Xianhu Laboratory, Foshan 528200, China.
| |
Collapse
|
64
|
Mussulini BHM, Wasilewski M, Chacinska A. Methods to monitor mitochondrial disulfide bonds. Methods Enzymol 2024; 706:125-158. [PMID: 39455213 DOI: 10.1016/bs.mie.2024.07.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2024]
Abstract
Mitochondria contain numerous proteins that utilize the chemistry of cysteine residues, which can be reversibly oxidized. These proteins are involved in mitochondrial biogenesis, protection against oxidative stress, metabolism, energy transduction to adenosine triphosphate, signaling and cell death among other functions. Many proteins located in the mitochondrial intermembrane space are imported by the mitochondrial import and assembly pathway the activity of which is based on the reversible oxidation of cysteine residues and oxidative trapping of substrates. Oxidative modifications of cysteine residues are particularly difficult to study because of their labile character. Here we present techniques that allow for monitoring the oxidative state of mitochondrial proteins as well as to investigate the mitochondrial import and assembly pathway. This chapter conveys basic concepts on sample preparation and techniques to monitor the redox state of cysteine residues in mitochondrial proteins as well as the strategies to study mitochondrial import and assembly pathway.
Collapse
|
65
|
Tzang BS, Chin HY, Tzang CC, Chuang PH, Chen DY, Hsu TC. Parvovirus B19 Infection Is Associated with the Formation of Neutrophil Extracellular Traps and Thrombosis: A Possible Linkage of the VP1 Unique Region. Int J Mol Sci 2024; 25:9917. [PMID: 39337405 PMCID: PMC11432092 DOI: 10.3390/ijms25189917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/08/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024] Open
Abstract
Neutrophil extracellular traps (NETs) formation, namely NETosis, is implicated in antiphospholipid syndrome (APS)-related thrombosis in various autoimmune disorders such as systemic lupus erythematosus (SLE) and APS. Human parvovirus B19 (B19V) infection is closely associated with SLE and APS and causes various clinical manifestations such as blood disorders, joint pain, fever, pregnancy complications, and thrombosis. Additionally, B19V may trigger the production of autoantibodies, including those against nuclear and phospholipid components. Thus, exploring the connection between B19V, NETosis, and thrombosis is highly relevant. An in vitro NETosis model using differentiated HL-60 neutrophil-like cells (dHL-60) was employed to investigate the effect of B19V-VP1u IgG on NETs formation. A venous stenosis mouse model was used to test how B19V-VP1u IgG-mediated NETs affect thrombosis in vivo. The NETosis was observed in the dHL-60 cells treated with rabbit anti-B19V-VP1u IgG and was inhibited in the presence of either 8-Br-cAMP or CGS216800 but not GSK484. Significantly elevated reactive oxygen species (ROS), myeloperoxidase (MPO), and citrullinated histone (Cit-H3) levels were detected in the dHL60 treated with phorbol myristate acetate (PMA), human aPLs IgG and rabbit anti-B19V-VP1u IgG, respectively. Accordingly, a significantly larger thrombus was observed in a venous stenosis-induced thrombosis mouse model treated with PMA, human aPLs IgG, rabbit anti-B19V-VP1u IgG, and human anti-B19V-VP1u IgG, respectively, along with significantly increased amounts of Cit-H3-, MPO- and CRAMP-positive infiltrated neutrophils in the thrombin sections. This research highlights that anti-B19V-VP1u antibodies may enhance the formation of NETosis and thrombosis and implies that managing and treating B19V infection could lower the risk of thrombosis.
Collapse
Affiliation(s)
- Bor-Show Tzang
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan; (B.-S.T.); (H.-Y.C.); (P.-H.C.)
- Department of Biochemistry, School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan
- Department of Clinical Laboratory, Chung Shan Medical University Hospital, Taichung 402, Taiwan
- Immunology Research Center, Chung Shan Medical University, Taichung 402, Taiwan
| | - Hao-Yang Chin
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan; (B.-S.T.); (H.-Y.C.); (P.-H.C.)
| | - Chih-Chen Tzang
- School of Medicine, College of Medicine, National Taiwan University, Taipei City 100, Taiwan;
| | - Pei-Hua Chuang
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan; (B.-S.T.); (H.-Y.C.); (P.-H.C.)
| | - Der-Yuan Chen
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan; (B.-S.T.); (H.-Y.C.); (P.-H.C.)
- College of Medicine, China Medical University, Taichung 404, Taiwan
- Rheumatology and Immunology Center, China Medical University Hospital, Taichung 404, Taiwan
| | - Tsai-Ching Hsu
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan; (B.-S.T.); (H.-Y.C.); (P.-H.C.)
- Department of Clinical Laboratory, Chung Shan Medical University Hospital, Taichung 402, Taiwan
- Immunology Research Center, Chung Shan Medical University, Taichung 402, Taiwan
| |
Collapse
|
66
|
Thanjavur N, Buddolla AL, Bugude L, Buddolla V, Kim YJ. Ultrasonic nanotechnology for the effective management of Staphylococcus aureus skin infections: an update. NANOSCALE 2024; 16:16329-16343. [PMID: 39129708 DOI: 10.1039/d4nr02147a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Ultrasonic nanotechnology represents a groundbreaking advancement in the management of Staphylococcus aureus skin infections, addressing the significant limitations of conventional treatments. S. aureus poses substantial challenges, including antibiotic resistance and biofilm formation, necessitating novel and effective approaches. By harnessing the power of ultrasonic waves and nanostructures, this technology offers a precise mechanism to disrupt bacterial cells, enhancing antibiotic susceptibility and facilitating the eradication of bacterial colonies. This innovative approach not only improves treatment outcomes, but also offers a non-invasive and highly efficient alternative to traditional methods. Recent studies have demonstrated the remarkable efficacy of ultrasonic nanotechnology, showcasing its ability to revolutionize the treatment paradigm for S. aureus infections. Ongoing research is dedicated to refining treatment protocols, developing new nanostructures, and assessing clinical applicability, with a focus on overcoming challenges such as scalability and long-term effectiveness. This review provides a comprehensive overview of the current state of ultrasonic nanotechnology in combating S. aureus skin infections, detailing its mechanism of action, summarizing key research findings, and highlighting its superiority over conventional modalities. Accumulating evidence underscores its potential as a pivotal development in modern science and technology, promising significant advancements in infection management strategies. As research continues to evolve, the optimization of protocols, exploration of innovative applications, and translation into clinical practice are poised to further solidify the transformative impact of ultrasonic nanotechnology in the medical field.
Collapse
Affiliation(s)
- Naveen Thanjavur
- Department of Electronic Engineering, Gachon University, Seongnam 13120, Republic of Korea.
- Department of Semiconductor Engineering, Gachon University, Seongnam 13120, Republic of Korea
| | - Anantha Lakshmi Buddolla
- Department of Electronic Engineering, Gachon University, Seongnam 13120, Republic of Korea.
- Department of Semiconductor Engineering, Gachon University, Seongnam 13120, Republic of Korea
| | - Laxmi Bugude
- Dr Buddolla's Institute of Life Sciences, A Unit of Dr Buddolla's Research and Educational Society, Tirupati - 517506, India.
| | - Viswanath Buddolla
- Dr Buddolla's Institute of Life Sciences, A Unit of Dr Buddolla's Research and Educational Society, Tirupati - 517506, India.
| | - Young-Joon Kim
- Department of Electronic Engineering, Gachon University, Seongnam 13120, Republic of Korea.
- Department of Semiconductor Engineering, Gachon University, Seongnam 13120, Republic of Korea
| |
Collapse
|
67
|
Zhang H, Liu J, Yuan W, Zhang Q, Luo X, Li Y, Peng Y, Feng J, Liu X, Chen J, Zhou Y, Lv J, Zhou N, Ma J, Tang K, Huang B. Ammonia-induced lysosomal and mitochondrial damage causes cell death of effector CD8 + T cells. Nat Cell Biol 2024:10.1038/s41556-024-01503-x. [PMID: 39261719 DOI: 10.1038/s41556-024-01503-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 08/15/2024] [Indexed: 09/13/2024]
Abstract
Ammonia is thought to be a cytotoxin and its increase in the blood impairs cell function. However, whether and how this toxin triggers cell death under pathophysiological conditions remains unclear. Here we show that ammonia induces a distinct form of cell death in effector T cells. We found that rapidly proliferating T cells use glutaminolysis to release ammonia in the mitochondria, which is then translocated to and stored in the lysosomes. Excessive ammonia accumulation increases lysosomal pH and results in the termination of lysosomal ammonia storage and ammonia reflux into mitochondria, leading to mitochondrial damage and cell death, which is characterized by lysosomal alkalization, mitochondrial swelling and impaired autophagic flux. Inhibition of glutaminolysis or blocking lysosomal alkalization prevents ammonia-induced T cell death and improves T cell-based antitumour immunotherapy. These findings identify a distinct form of cell death that differs from previously known mechanisms.
Collapse
Affiliation(s)
- Huafeng Zhang
- Department of Pathology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Cell Architecture Research Center, Huazhong University of Science and Technology, Wuhan, China
| | - Jincheng Liu
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Wu Yuan
- Department of Immunology and National Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qian Zhang
- Department of Pathology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiao Luo
- Department of Pathology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yonggang Li
- Hubei Provincial Key Laboratory for Applied Toxicology, Hubei Provincial Center for Disease Control and Prevention, Wuhan, China
| | - Yue'e Peng
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, China
| | - Jingyu Feng
- Department of Biochemistry and Molecular Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoyu Liu
- Department of Pathology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jie Chen
- Department of Immunology and National Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yabo Zhou
- Department of Immunology and National Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jiadi Lv
- Department of Immunology and National Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Nannan Zhou
- Department of Immunology and National Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jingwei Ma
- Department of Immunology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ke Tang
- Cell Architecture Research Center, Huazhong University of Science and Technology, Wuhan, China
- Department of Biochemistry and Molecular Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bo Huang
- Department of Immunology and National Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
- Department of Biochemistry and Molecular Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
68
|
Sun S, Chen J. Recent Advances in Hydrogel-Based Biosensors for Cancer Detection. ACS APPLIED MATERIALS & INTERFACES 2024; 16:46988-47002. [PMID: 39190320 PMCID: PMC11403555 DOI: 10.1021/acsami.4c02317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Early cancer detection is crucial for effective treatment, but current methods have limitations. Novel biomaterials, such as hydrogels, offer promising alternatives for developing biosensors for cancer detection. Hydrogels are three-dimensional and cross-linked networks of hydrophilic polymers that have properties similar to biological tissues. They can be combined with various biosensors to achieve high sensitivity, specificity, and stability. This review summarizes the recent advances in hydrogel-based biosensors for cancer detection, their synthesis, their applications, and their challenges. It also discusses the implications and future directions of this emerging field.
Collapse
Affiliation(s)
- Shengwei Sun
- Department of Materials, Loughborough University, Loughborough LE11 3TU, United Kingdom
| | - Jinju Chen
- Department of Materials, Loughborough University, Loughborough LE11 3TU, United Kingdom
| |
Collapse
|
69
|
He S, Ru Q, Chen L, Xu G, Wu Y. Advances in animal models of Parkinson's disease. Brain Res Bull 2024; 215:111024. [PMID: 38969066 DOI: 10.1016/j.brainresbull.2024.111024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 06/26/2024] [Accepted: 06/28/2024] [Indexed: 07/07/2024]
Abstract
Parkinson's disease is a complex neurodegenerative disease characterized by progressive movement impairments. Predominant symptoms encompass resting tremor, bradykinesia, limb rigidity, and postural instability. In addition, it also includes a series of non-motor symptoms such as sleep disorders, hyposmia, gastrointestinal dysfunction, autonomic dysfunction and cognitive impairment. Pathologically, the disease manifests through dopaminergic neuronal loss and the presence of Lewy bodies. At present, no significant breakthrough has been achieved in clinical Parkinson's disease treatment. Exploring treatment modalities necessitate the establishment of scientifically sound animal models. In recent years, researchers have focused on replicating the symptoms of human Parkinson's disease, resulting in the establishment of various experimental animal models primarily through drugs and transgenic methods to mimic relevant pathologies and identify more effective treatments. This review examines traditional neurotoxin and transgenic animal models as well as α-synuclein pre-formed fibrils models, non-human primate models and non-mammalian specie models. Additionally, it introduces emerging models, including models based on optogenetics, induced pluripotent stem cells, and gene editing, aiming to provide a reference for the utilization of experimental animal models and clinical research for researchers in this field.
Collapse
Affiliation(s)
- Sui He
- Institute of Intelligent Sport and Proactive Health, Department of Health and Physical Education, Jianghan University, Wuhan 430056, China
| | - Qin Ru
- Institute of Intelligent Sport and Proactive Health, Department of Health and Physical Education, Jianghan University, Wuhan 430056, China
| | - Lin Chen
- Institute of Intelligent Sport and Proactive Health, Department of Health and Physical Education, Jianghan University, Wuhan 430056, China
| | - Guodong Xu
- Institute of Intelligent Sport and Proactive Health, Department of Health and Physical Education, Jianghan University, Wuhan 430056, China
| | - Yuxiang Wu
- Institute of Intelligent Sport and Proactive Health, Department of Health and Physical Education, Jianghan University, Wuhan 430056, China.
| |
Collapse
|
70
|
Yang Y, Hao L, Guiyang L, Haozhe P. Multifaceted bioinformatic analysis of m6A-related ferroptosis and its link with gene signatures and tumour-infiltrating immune cells in gliomas. J Cell Mol Med 2024; 28:e70060. [PMID: 39248438 PMCID: PMC11382363 DOI: 10.1111/jcmm.70060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 08/14/2024] [Accepted: 08/22/2024] [Indexed: 09/10/2024] Open
Abstract
Whether N6-Methyladenosine (m6A)- and ferroptosis-related genes act on immune responses to regulate glioma progression remains unanswered. Data of glioma and corresponding normal brain tissues were fetched from the TCGA database and GTEx. Differentially expressed genes (DEGs) were identified for GO and KEGG enrichment analyses. The FerrDb database was based to yield ferroptosis-related DEGs. Hub genes were then screened out using the cytoHubba database and validated in clinical samples. Immune cells infiltrating into the glioma tissues were analysed using the CIBERSORT R script. The association of gene signature underlying the m6A-related ferroptosis with tumour-infiltrating immune cells and immune checkpoints in low-grade gliomas was analysed. Of 6298 DEGs enriched in mRNA modifications, 144 were ferroptosis-related; NFE2L2 and METTL16 showed the strongest positive correlation. METTL16 knockdown inhibited the migrative and invasive abilities of glioma cells and induced ferroptosis in vitro. NFE2L2 was enriched in the anti-m6A antibody. Moreover, METTL16 knockdown reduced the mRNA stability and level of NFE2L2 (both p < 0.05). Proportions of CD8+ T lymphocytes, activated mast cells and M2 macrophages differed between low-grade gliomas and normal tissues. METTL16 expression was negatively correlated with CD8+ T lymphocytes, while that of NFE2L2 was positively correlated with M2 macrophages and immune checkpoints in low-grade gliomas. Gene signatures involved in the m6A-related ferroptosis in gliomas were identified via bioinformatic analyses. NFE2L2 interacted with METTL16 to regulate the immune response in low-grade gliomas, and both molecules may be novel therapeutic targets for gliomas.
Collapse
Affiliation(s)
- Yang Yang
- Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning, People's Republic of China
- TCM Department, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, People's Republic of China
| | - Liu Hao
- Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning, People's Republic of China
| | - Liu Guiyang
- Department of Neurosurgery, The Fourth People's Hospital of Jinan, Jinan, Shandong, People's Republic of China
| | - Piao Haozhe
- Department of Neurosurgery, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning, People's Republic of China
| |
Collapse
|
71
|
Mussalo L, Lampinen R, Avesani S, Závodná T, Krejčík Z, Kalapudas J, Penttilä E, Löppönen H, Koivisto AM, Malm T, Topinka J, Giugno R, Jalava P, Kanninen KM. Traffic-related ultrafine particles impair mitochondrial functions in human olfactory mucosa cells - Implications for Alzheimer's disease. Redox Biol 2024; 75:103272. [PMID: 39047637 PMCID: PMC11321383 DOI: 10.1016/j.redox.2024.103272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/09/2024] [Accepted: 07/17/2024] [Indexed: 07/27/2024] Open
Abstract
Constituents of air pollution, the ultrafine particles (UFP) with a diameter of ≤0.1 μm, are considerably related to traffic emissions. Several studies link air pollution to Alzheimer's disease (AD), yet the exact relationship between the two remains poorly understood. Mitochondria are known targets of environmental toxicants, and their dysfunction is associated with neurodegenerative diseases. The olfactory mucosa (OM), located at the rooftop of the nasal cavity, is directly exposed to the environment and in contact with the brain. Mounting evidence suggests that the UFPs can impact the brain directly through the olfactory tract. By using primary human OM cultures established from nasal biopsies of cognitively healthy controls and individuals diagnosed with AD, we aimed to decipher the effects of traffic-related UFPs on mitochondria. The UFP samples were collected from the exhausts of a modern heavy-duty diesel engine (HDE) without aftertreatment systems, run with renewable diesel (A0) and petroleum diesel (A20), and from an engine of a 2019 model diesel passenger car (DI-E6d) equipped with state-of-the-art aftertreatment devices and run with renewable diesel (Euro6). OM cells were exposed to three different UFPs for 24-h and 72-h, after which cellular processes were assessed on the functional and transcriptomic levels. Our results show that UFPs impair mitochondrial functions in primary human OM cells by hampering oxidative phosphorylation (OXPHOS) and redox balance, and the responses of AD cells differ from cognitively healthy controls. RNA-Seq and IPA® revealed inhibition of OXPHOS and mitochondrial dysfunction in response to UFPs A0 and A20. Functional validation confirmed that A0 and A20 impair cellular respiration, decrease ATP levels, and disturb redox balance by altering NAD and glutathione metabolism, leading to increased ROS and oxidative stress. RNA-Seq and functional assessment revealed the presence of AD-related alterations in human OM cells and that different fuels and engine technologies elicit differential effects.
Collapse
Affiliation(s)
- Laura Mussalo
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70210, Kuopio, Finland
| | - Riikka Lampinen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70210, Kuopio, Finland
| | - Simone Avesani
- Department of Computer Science, University of Verona, 37134, Verona, Italy
| | - Táňa Závodná
- Department of Toxicology and Molecular Epidemiology, Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 142 20, Prague, Czech Republic
| | - Zdeněk Krejčík
- Department of Toxicology and Molecular Epidemiology, Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 142 20, Prague, Czech Republic
| | - Juho Kalapudas
- Department of Neurology, Neuro Centre, Kuopio University Hospital, 70210, Kuopio, Finland
| | - Elina Penttilä
- Department of Otorhinolaryngology, University of Eastern Finland and Kuopio University Hospital, 70210, Kuopio, Finland
| | - Heikki Löppönen
- Department of Otorhinolaryngology, University of Eastern Finland and Kuopio University Hospital, 70210, Kuopio, Finland
| | - Anne M Koivisto
- Department of Neurology, Neuro Centre, Kuopio University Hospital, 70210, Kuopio, Finland; Brain Research Unit, Department of Neurology, School of Medicine, University of Eastern Finland, 70210, Kuopio, Finland; Department of Neurology and Geriatrics, Helsinki University Hospital and Neurosciences, Faculty of Medicine, University of Helsinki, 00014, Helsinki, Finland
| | - Tarja Malm
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70210, Kuopio, Finland
| | - Jan Topinka
- Department of Toxicology and Molecular Epidemiology, Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 142 20, Prague, Czech Republic
| | - Rosalba Giugno
- Department of Computer Science, University of Verona, 37134, Verona, Italy
| | - Pasi Jalava
- Inhalation Toxicology Laboratory, Department of Environmental and Biological Sciences, University of Eastern Finland, 70211, Kuopio, Finland
| | - Katja M Kanninen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70210, Kuopio, Finland.
| |
Collapse
|
72
|
Cadet J, Angelov D, Di Mascio P, Wagner JR. Contribution of oxidation reactions to photo-induced damage to cellular DNA. Photochem Photobiol 2024; 100:1157-1185. [PMID: 38970297 DOI: 10.1111/php.13990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/14/2024] [Accepted: 06/15/2024] [Indexed: 07/08/2024]
Abstract
This review article is aimed at providing updated information on the contribution of immediate and delayed oxidative reactions to the photo-induced damage to cellular DNA/skin under exposure to UVB/UVA radiations and visible light. Low-intensity UVC and UVB radiations that operate predominantly through direct excitation of the nucleobases are very poor oxidizing agents giving rise to very low amounts of 8-oxo-7,8-dihydroguanine and DNA strand breaks with respect to the overwhelming bipyrimidine dimeric photoproducts. The importance of these two classes of oxidatively generated damage to DNA significantly increases together with a smaller contribution of oxidized pyrimidine bases upon UVA irradiation. This is rationalized in terms of sensitized photooxidation reactions predominantly mediated by singlet oxygen together with a small contribution of hydroxyl radical that appear to also be implicated in the photodynamic effects of the blue light component of visible light. Chemiexcitation-mediated formation of "dark" cyclobutane pyrimidine dimers in UVA-irradiated melanocytes is a recent major discovery that implicates in the initial stage, a delayed generation of reactive oxygen and nitrogen species giving rise to triplet excited carbonyl intermediate and possibly singlet oxygen. High-intensity UVC nanosecond laser radiation constitutes a suitable source of light to generate pyrimidine and purine radical cations in cellular DNA via efficient biphotonic ionization.
Collapse
Affiliation(s)
- Jean Cadet
- Département de Médecine nucléaire et Radiobiologie, Faculté de Médecine, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Dimitar Angelov
- Laboratoire de Biologie et de Modélisation de la Cellule LMBC, Ecole Normale Supérieure de Lyon, CNRS, Université de Lyon, Lyon, France
- Izmir Biomedicine and Genome Center IBG, Dokuz Eylul University, Balçova, Izmir, Turkey
| | - Paolo Di Mascio
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - J Richard Wagner
- Département de Médecine nucléaire et Radiobiologie, Faculté de Médecine, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| |
Collapse
|
73
|
Kano R, Kusano T, Takeda R, Shirakawa H, Poole DC, Kano Y, Hoshino D. Eccentric contraction increases hydrogen peroxide levels and alters gene expression through Nox2 in skeletal muscle of male mice. J Appl Physiol (1985) 2024; 137:778-788. [PMID: 39052772 DOI: 10.1152/japplphysiol.00335.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/03/2024] [Accepted: 07/19/2024] [Indexed: 07/27/2024] Open
Abstract
Hydrogen peroxide (H2O2) is one of the key signaling factors regulating skeletal muscle adaptation to muscle contractions. Eccentric (ECC) and concentric (CONC) contractions drive different muscle adaptations with ECC resulting in greater changes. The present investigation tested the hypothesis that ECC produces higher cytosolic and mitochondrial H2O2 concentrations [H2O2] and alters gene expression more than CONC. Cytosolic and mitochondrial H2O2-sensitive fluorescent proteins, HyPer7 and MLS-HyPer7, were expressed in the anterior tibialis muscle of C57BL6J male mice. Before and for 60 min after either CONC or ECC (100 Hz, 50 contractions), [H2O2]cyto and [H2O2]mito were measured by in vivo fluorescence microscopy. RNA sequencing was performed in control (noncontracted), CONC, and ECC muscles to identify genes impacted by the contractions. [H2O2]cyto immediately after ECC was greater than after CONC (CONC: +6%, ECC: +11% vs. rest, P < 0.05) and remained higher for at least 60 min into recovery. In contrast, the elevation of [H2O2]mito was independent of the contraction modes (time; P < 0.0042, contraction mode; P = 0.4965). The impact of ECC on [H2O2]cyto was abolished by NADPH oxidase 2 (Nox2) inhibition (GSK2795039). Differentially expressed genes were not present after CONC or ECC + GSK but were found after ECC and were enriched for vascular development and apoptosis-related genes, among others. In conclusion, in mouse anterior tibialis, ECC, but not CONC, evokes a pronounced cytosolic H2O2 response, caused by Nox2, that is mechanistically linked to gene expression modifications.NEW & NOTEWORTHY This in vivo model successfully characterized the effects of eccentric (ECC) and concentric (CONC) contractions on cytosolic and mitochondrial [H2O2] in mouse skeletal muscle. Compared with CONC, ECC induced higher and more sustained [H2O2]cyto-an effect that was abolished by Nox2 inhibition. ECC-induced [H2O2]cyto elevations were requisite for altered gene expression.
Collapse
Affiliation(s)
- Ryotaro Kano
- Department of Engineering Science, Bioscience and Technology Program, University of Electro-Communications, Chofu, Japan
- Research Fellowship for Young Scientists, Japan Society for the Promotion of Science, Chiyoda, Japan
| | - Tatsuya Kusano
- Department of Engineering Science, Bioscience and Technology Program, University of Electro-Communications, Chofu, Japan
| | - Reo Takeda
- Department of Engineering Science, Bioscience and Technology Program, University of Electro-Communications, Chofu, Japan
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Hideki Shirakawa
- Department of Engineering Science, Bioscience and Technology Program, University of Electro-Communications, Chofu, Japan
| | - David C Poole
- Department of Anatomy and Physiology, Kansas State University, Manhattan, Kansas, United States
- Department of Kinesiology, Kansas State University, Manhattan, Kansas, United States
| | - Yutaka Kano
- Department of Engineering Science, Bioscience and Technology Program, University of Electro-Communications, Chofu, Japan
- Center for Neuroscience and Biomedical Engineering (CNBE), University of Electro-Communications, Chofu, Japan
| | - Daisuke Hoshino
- Department of Engineering Science, Bioscience and Technology Program, University of Electro-Communications, Chofu, Japan
- Center for Neuroscience and Biomedical Engineering (CNBE), University of Electro-Communications, Chofu, Japan
| |
Collapse
|
74
|
Liu Q, Huang Y, Wang S, Yang S, Jiang Z, Huang S. Monodispersed Au nanoparticles decorated MoS 2 nanosheets with enhanced peroxidase-like activity based electrochemical H 2O 2 sensing for anticancer drug evaluations. Anal Chim Acta 2024; 1320:342996. [PMID: 39142770 DOI: 10.1016/j.aca.2024.342996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/18/2024] [Accepted: 07/19/2024] [Indexed: 08/16/2024]
Abstract
BACKGROUND The unique size, physical and chemical properties, and ultra-high stability of nanozymes have attracted extensive attentions in sensing, but improvement of catalytic activity of the nanozymes is still an urgent issue. Given the ultra-high simulated enzyme activity of metal nanoparticles and the advantage of multi-enzyme catalysis, an Au-decorated MoS2 nanosheets (MoS2/Au NS) integrating the double peroxidase-like (POD) activity is developed. RESULTS By optimizing and adjusting the density of AuNPs, as well as its morphology and other parameters, a monodisperse and high-density distribution of AuNPs on MoS2 nanosheets was obtained, which can greatly improve the POD-like activity of MoS2/Au NS. Nafion solution was applied to assist the modification of MoS2/Au NS on the electrode surface so as to improved its stability. An electrochemical H2O2 detection platform was constructed by modifying MoS2/Au NS nanozyme on the SPCE using the conductive Nafion solution. And the negatively charged sulfonic acid group can eliminate negatively charged electroactive substances to improve the specificity. Then ascorbic acid was used to stimulate tumor cells to produce H2O2 as therapeutic model, an ultrasensitive chronocoulometry detection for H2O2 in cell lysate was established. The logarithmically of ΔQ and the logarithmically of H2O2 concentration showed a good linear relationship between 1 μM and 500 mM, with a LOD value of 0.3 μM. SIGNIFICANCE The developed H2O2 sensor has excellent stability, reproducibility (RSD = 2.3 %, n = 6) and selectivity, realized the quantitative detection of H2O2 in cell lysate. Compared with commercial fluorescence detection kits for H2O2 in cell lysate, it is worth mentioning that the electrochemical H2O2 sensor developed in this study is simpler and faster, with higher sensitivity and lower cost. This provides a potential substitute for disease diagnosis and treatment evaluation based on accurate detection of H2O2.
Collapse
Affiliation(s)
- Qiwen Liu
- NMPA Key Laboratory for Clinical Research and Evaluation of Drug for Thoracic Diseases, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Yang Huang
- NMPA Key Laboratory for Clinical Research and Evaluation of Drug for Thoracic Diseases, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Sheng Wang
- NMPA Key Laboratory for Clinical Research and Evaluation of Drug for Thoracic Diseases, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Shuo Yang
- NMPA Key Laboratory for Clinical Research and Evaluation of Drug for Thoracic Diseases, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Zhengjin Jiang
- Institute of Pharmaceutical Analysis, College of Pharmacy, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou, 510632, China.
| | - Shengfeng Huang
- NMPA Key Laboratory for Clinical Research and Evaluation of Drug for Thoracic Diseases, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China.
| |
Collapse
|
75
|
Cobley JN. Exploring the unmapped cysteine redox proteoform landscape. Am J Physiol Cell Physiol 2024; 327:C844-C866. [PMID: 39099422 DOI: 10.1152/ajpcell.00152.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 07/16/2024] [Accepted: 07/16/2024] [Indexed: 08/06/2024]
Abstract
Cysteine redox proteoforms define the diverse molecular states that proteins with cysteine residues can adopt. A protein with one cysteine residue must adopt one of two binary proteoforms: reduced or oxidized. Their numbers scale: a protein with 10 cysteine residues must assume one of 1,024 proteoforms. Although they play pivotal biological roles, the vast cysteine redox proteoform landscape comprising vast numbers of theoretical proteoforms remains largely uncharted. Progress is hampered by a general underappreciation of cysteine redox proteoforms, their intricate complexity, and the formidable challenges that they pose to existing methods. The present review advances cysteine redox proteoform theory, scrutinizes methodological barriers, and elaborates innovative technologies for detecting unique residue-defined cysteine redox proteoforms. For example, chemistry-enabled hybrid approaches combining the strengths of top-down mass spectrometry (TD-MS) and bottom-up mass spectrometry (BU-MS) for systematically cataloguing cysteine redox proteoforms are delineated. These methods provide the technological means to map uncharted redox terrain. To unravel hidden redox regulatory mechanisms, discover new biomarkers, and pinpoint therapeutic targets by mining the theoretical cysteine redox proteoform space, a community-wide initiative termed the "Human Cysteine Redox Proteoform Project" is proposed. Exploring the cysteine redox proteoform landscape could transform current understanding of redox biology.
Collapse
Affiliation(s)
- James N Cobley
- School of Life Sciences, University of Dundee, Dundee, United Kingdom
| |
Collapse
|
76
|
Yang Y, Zhang T, Li Q, Ling Y, Ma Y, Tao S. SQSTM1 improves acute lung injury via inhibiting airway epithelium ferroptosis in a vitamin D receptor/autophagy-mediated manner. Free Radic Biol Med 2024; 222:588-600. [PMID: 38996820 DOI: 10.1016/j.freeradbiomed.2024.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 07/06/2024] [Accepted: 07/08/2024] [Indexed: 07/14/2024]
Abstract
Emerging evidence has reported that acute lung injury (ALI), characterized by inflammation and oxidative stress in airway epithelium, is regulated by programmed cell death. Ferroptosis, a regulated form of cell death spurred by uncontrolled lipid peroxidation, has been proven to implicate various diseases. Inhibiting ferroptosis represents a feasible strategy for ALI through the suppression of lipid peroxidation, while the mechanism remains to be further elucidated. Here, we identified Sequestosome 1 (SQSTM1) as a negative regulator of airway epithelium ferroptosis during ALI. SQSTM1 knockdown cells manifested higher sensitivity to ferroptosis. Mechanistically, SQSTM1 was found to directly interact with vitamin D receptor (VDR) through its nuclear receptor (NR) box motif, facilitating its nuclear translocation and initiating autophagy at the transcriptional level. To further validate these findings, an in vivo preventive model utilizing spermidine, a proven inducer of SQSTM1 was established. The results consistently demonstrated that spermidine supplementation significantly induced SQSTM1 and ameliorated ALI by mitigating airway epithelial ferroptosis. Notably, these effects were abrogated in the absence of SQSTM1. Taken together, this study identified SQSTM1 as a negative regulator of airway epithelium ferroptosis in a VDR-mediated autophagy manner, making it a potential therapeutic target for the treatment of ALI.
Collapse
Affiliation(s)
- Youjing Yang
- Chongqing Emergency Medical Center, Chongqing University Central Hospital, School of Medicine, Chongqing University, Chongqing, China; Chongqing Key Laboratory of Emergency Medicine, Chongqing, China.
| | - Tao Zhang
- Chongqing Emergency Medical Center, Chongqing University Central Hospital, School of Medicine, Chongqing University, Chongqing, China; Chongqing Key Laboratory of Emergency Medicine, Chongqing, China
| | - Qianmin Li
- Chongqing Emergency Medical Center, Chongqing University Central Hospital, School of Medicine, Chongqing University, Chongqing, China
| | - Yi Ling
- School of Public Health, Medical College of Soochow University, Suzhou, China
| | - Yu Ma
- Chongqing Emergency Medical Center, Chongqing University Central Hospital, School of Medicine, Chongqing University, Chongqing, China; Chongqing Key Laboratory of Emergency Medicine, Chongqing, China
| | - Shasha Tao
- Chongqing Emergency Medical Center, Chongqing University Central Hospital, School of Medicine, Chongqing University, Chongqing, China; Chongqing Key Laboratory of Emergency Medicine, Chongqing, China.
| |
Collapse
|
77
|
Zhou Y, Zhang M, Lu S, Liu L, Duan Z, Wei F, Li G. Superoxide signal orchestrates tetrathiomolybdate-induced longevity via ARGK-1 in Caenorhabditis elegans. Free Radic Biol Med 2024; 222:650-660. [PMID: 39025156 DOI: 10.1016/j.freeradbiomed.2024.07.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/13/2024] [Accepted: 07/15/2024] [Indexed: 07/20/2024]
Abstract
PURPOSE While reactive oxygen species (ROS) have been identified as key redox signaling agents contributing to aging process, which and how specific oxidants trigger healthy longevity remain unclear. This paper aimed to explore the precise role and signaling mechanism of superoxide (O2•-) in health and longevity. METHODS A tool for precise regulation of O2•- levels in vivo was developed based on the inhibition of superoxide dismutase 1 (SOD1) by tetrathiomolybdate (TM) in Caenorhabditis elegans (C. elegans). Then, we examined the effects of TM on lifespan, reproduction, lipofuscin accumulation, mobility, and stress resistance. Finally, the signaling mechanism for longevity induced by TM-O2•- was screened by transcriptome analysis and tested in sod-1 and argk-1 RNAi strains, sod-2, sod-3, and daf-16 mutants. RESULTS TM promoted longevity in C. elegans with a concomitant extension of healthy lifespan as indicated by increasing fertility and mobility and reducing lipofuscin accumulation, as well as enhanced resistance to different abiotic stresses. Mechanically, TM could precisely regulate O2•- levels in nematodes via modulating SOD1 activity. An O2•- scavenger Mn(III)TBAP abolished TM-induced lifespan extension, while an O2•- generator paraquat at low concentration mimicked the life prolongation effects. The longevity in TM-treated worms was abolished by sod-1 RNAi but was not affected in sod-2 or sod-3 mutants. Further transcriptome analysis revealed arginine kinase ARGK-1 and its downstream insulin/insulin-like growth factor 1 signaling (IIS) as potential effectors for TM-O2•‾-induced longevity, and argk-1 RNAi or daf-16 mutant nullified the longevity. CONCLUSIONS These findings indicate that it is feasible to precisely control specific oxidant in vivo and O2•- orchestrates TM-induced health and longevity in C. elegans via ARGK-1-IIS axis.
Collapse
Affiliation(s)
- Yiming Zhou
- Center for Aging Biomedicine, National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, China
| | - Mengting Zhang
- Center for Aging Biomedicine, National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, China
| | - Siyu Lu
- Center for Aging Biomedicine, National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, China
| | - Li Liu
- Center for Aging Biomedicine, National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, China
| | - Zhigui Duan
- Center for Aging Biomedicine, National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, China
| | - Fang Wei
- Center for Aging Biomedicine, National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, China.
| | - Guolin Li
- Center for Aging Biomedicine, National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, China; Key Laboratory of Hunan Province for Model Animal and Stem Cell Biology, School of Medicine, Hunan Normal University, Changsha, Hunan, 410081, China; FuRong Laboratory, Changsha, 410078, Hunan, China.
| |
Collapse
|
78
|
Sies H, Mailloux RJ, Jakob U. Fundamentals of redox regulation in biology. Nat Rev Mol Cell Biol 2024; 25:701-719. [PMID: 38689066 DOI: 10.1038/s41580-024-00730-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/26/2024] [Indexed: 05/02/2024]
Abstract
Oxidation-reduction (redox) reactions are central to the existence of life. Reactive species of oxygen, nitrogen and sulfur mediate redox control of a wide range of essential cellular processes. Yet, excessive levels of oxidants are associated with ageing and many diseases, including cardiological and neurodegenerative diseases, and cancer. Hence, maintaining the fine-tuned steady-state balance of reactive species production and removal is essential. Here, we discuss new insights into the dynamic maintenance of redox homeostasis (that is, redox homeodynamics) and the principles underlying biological redox organization, termed the 'redox code'. We survey how redox changes result in stress responses by hormesis mechanisms, and how the lifelong cumulative exposure to environmental agents, termed the 'exposome', is communicated to cells through redox signals. Better understanding of the molecular and cellular basis of redox biology will guide novel redox medicine approaches aimed at preventing and treating diseases associated with disturbed redox regulation.
Collapse
Affiliation(s)
- Helmut Sies
- Institute for Biochemistry and Molecular Biology I, Faculty of Medicine, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
- Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany.
| | - Ryan J Mailloux
- School of Human Nutrition, Faculty of Agricultural and Environmental Science, McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada.
| | - Ursula Jakob
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA.
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
79
|
Guo Y, Mao C, Wu S, Wang C, Zheng Y, Liu X. Ultrasound-Triggered Piezoelectric Catalysis of Zinc Oxide@Glucose Derived Carbon Spheres for the Treatment of MRSA Infected Osteomyelitis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400732. [PMID: 38764258 DOI: 10.1002/smll.202400732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/28/2024] [Indexed: 05/21/2024]
Abstract
Currently, methicillin-resistant Staphylococcus aureus (MRSA)-induced osteomyelitis is a clinically life-threatening disease, however, long-term antibiotic treatment can lead to bacterial resistance, posing a huge challenge to treatment and public health. In this study, glucose-derived carbon spheres loaded with zinc oxide (ZnO@HTCS) are successfully constructed. This composite demonstrates the robust ability to generate reactive oxygen species (ROS) under ultrasound (US) irradiation, eradicating 99.788% ± 0.087% of MRSA within 15 min and effectively treating MRSA-induced osteomyelitis infection. Piezoelectric force microscopy tests and finite element method simulations reveal that the ZnO@HTCS composite exhibits superior piezoelectric catalytic performance compared to pure ZnO, making it a unique piezoelectric sonosensitizer. Density functional theory calculations reveal that the formation of a Mott-Schottky heterojunction and an internal piezoelectric field within the interface accelerates the electron transfer and the separation of electron-hole pairs. Concurrently, surface vacancies of the composite enable the adsorption of a greater amount of oxygen, enhancing the piezoelectric catalytic effect and generating a substantial quantity of ROS. This work not only presents a promising approach for augmenting piezoelectric catalysis through construction of a Schottky heterojunction interface but also provides a novel, efficient therapeutic strategy for treating osteomyelitis.
Collapse
Affiliation(s)
- Yihao Guo
- Biomedical Materials Engineering Research Center, Hubei Key Laboratory of Polymer Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science & Engineering, State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan, 430062, China
- School of Health Science & Biomedical Engineering, Hebei University of Technology, Xiping Avenue 5340#, Tianjin, 300401, China
- School of Materials Science & Engineering, Peking University, Yiheyuan Road 5#, Beijing, 100871, China
| | - Congyang Mao
- Biomedical Materials Engineering Research Center, Hubei Key Laboratory of Polymer Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science & Engineering, State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan, 430062, China
| | - Shuilin Wu
- Biomedical Materials Engineering Research Center, Hubei Key Laboratory of Polymer Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science & Engineering, State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan, 430062, China
- School of Health Science & Biomedical Engineering, Hebei University of Technology, Xiping Avenue 5340#, Tianjin, 300401, China
- School of Materials Science & Engineering, Peking University, Yiheyuan Road 5#, Beijing, 100871, China
| | - Chaofeng Wang
- School of Health Science & Biomedical Engineering, Hebei University of Technology, Xiping Avenue 5340#, Tianjin, 300401, China
| | - Yufeng Zheng
- School of Materials Science & Engineering, Peking University, Yiheyuan Road 5#, Beijing, 100871, China
| | - Xiangmei Liu
- Biomedical Materials Engineering Research Center, Hubei Key Laboratory of Polymer Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science & Engineering, State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan, 430062, China
- School of Health Science & Biomedical Engineering, Hebei University of Technology, Xiping Avenue 5340#, Tianjin, 300401, China
| |
Collapse
|
80
|
Elias-Llumbet A, Sharmin R, Berg-Sorensen K, Schirhagl R, Mzyk A. The Interplay between Mechanoregulation and ROS in Heart Physiology, Disease, and Regeneration. Adv Healthc Mater 2024; 13:e2400952. [PMID: 38962858 DOI: 10.1002/adhm.202400952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/16/2024] [Indexed: 07/05/2024]
Abstract
Cardiovascular diseases are currently the most common cause of death in developed countries. Due to lifestyle and environmental factors, this problem is only expected to increase in the future. Reactive oxygen species (ROS) are a key player in the onset of cardiovascular diseases but also have important functions in healthy cardiac tissue. Here, the interplay between ROS generation and cardiac mechanical forces is shown, and the state of the art and a perspective on future directions are discussed. To this end, an overview of what is currently known regarding ROS and mechanosignaling at a subcellular level is first given. There the role of ROS in mechanosignaling as well as the interplay between both factors in specific organelles is emphasized. The consequences at a larger scale across the population of heart cells are then discussed. Subsequently, the roles of ROS in embryogenesis, pathogenesis, and aging are further discussed, exemplifying some aspects of mechanoregulation. Finally, different models that are currently in use are discussed to study the topics above.
Collapse
Affiliation(s)
- Arturo Elias-Llumbet
- Department of Biomedical Engineering, University of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, Groningen, 9713AW, The Netherlands
- Laboratory of Genomic of Germ Cells, Biomedical Sciences Institute, Faculty of Medicine, University of Chile, Independencia, Santiago, 1027, Chile
| | - Rokshana Sharmin
- Department of Biomedical Engineering, University of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, Groningen, 9713AW, The Netherlands
| | | | - Romana Schirhagl
- Department of Biomedical Engineering, University of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, Groningen, 9713AW, The Netherlands
| | - Aldona Mzyk
- DTU Health Tech, Ørsteds Plads Bldg 345C, Kongens Lyngby, 2800, Denmark
| |
Collapse
|
81
|
Boonpraman N, Yi SS. NADPH oxidase 4 (NOX4) as a biomarker and therapeutic target in neurodegenerative diseases. Neural Regen Res 2024; 19:1961-1966. [PMID: 38227522 DOI: 10.4103/1673-5374.390973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 10/25/2023] [Indexed: 01/17/2024] Open
Abstract
Diseases like Alzheimer's and Parkinson's diseases are defined by inflammation and the damage neurons undergo due to oxidative stress. A primary reactive oxygen species contributor in the central nervous system, NADPH oxidase 4, is viewed as a potential therapeutic touchstone and indicative marker for these ailments. This in-depth review brings to light distinct features of NADPH oxidase 4, responsible for generating superoxide and hydrogen peroxide, emphasizing its pivotal role in activating glial cells, inciting inflammation, and disturbing neuronal functions. Significantly, malfunctioning astrocytes, forming the majority in the central nervous system, play a part in advancing neurodegenerative diseases, due to their reactive oxygen species and inflammatory factor secretion. Our study reveals that aiming at NADPH oxidase 4 within astrocytes could be a viable treatment pathway to reduce oxidative damage and halt neurodegenerative processes. Adjusting NADPH oxidase 4 activity might influence the neuroinflammatory cytokine levels, including myeloperoxidase and osteopontin, offering better prospects for conditions like Alzheimer's disease and Parkinson's disease. This review sheds light on the role of NADPH oxidase 4 in neural degeneration, emphasizing its drug target potential, and paving the path for novel treatment approaches to combat these severe conditions.
Collapse
Affiliation(s)
- Napissara Boonpraman
- BK21 four Program, Department of Medical Sciences, Soonchunhyang University, Asan, South Korea
| | - Sun Shin Yi
- BK21 four Program, Department of Medical Sciences, Soonchunhyang University, Asan, South Korea
- Department of Biomedical Laboratory Science, Soonchunhyang University, Asan, South Korea
- iConnectome, Co., Ltd., Cheonan, South Korea
| |
Collapse
|
82
|
Berndt C, Alborzinia H, Amen VS, Ayton S, Barayeu U, Bartelt A, Bayir H, Bebber CM, Birsoy K, Böttcher JP, Brabletz S, Brabletz T, Brown AR, Brüne B, Bulli G, Bruneau A, Chen Q, DeNicola GM, Dick TP, Distéfano A, Dixon SJ, Engler JB, Esser-von Bieren J, Fedorova M, Friedmann Angeli JP, Friese MA, Fuhrmann DC, García-Sáez AJ, Garbowicz K, Götz M, Gu W, Hammerich L, Hassannia B, Jiang X, Jeridi A, Kang YP, Kagan VE, Konrad DB, Kotschi S, Lei P, Le Tertre M, Lev S, Liang D, Linkermann A, Lohr C, Lorenz S, Luedde T, Methner A, Michalke B, Milton AV, Min J, Mishima E, Müller S, Motohashi H, Muckenthaler MU, Murakami S, Olzmann JA, Pagnussat G, Pan Z, Papagiannakopoulos T, Pedrera Puentes L, Pratt DA, Proneth B, Ramsauer L, Rodriguez R, Saito Y, Schmidt F, Schmitt C, Schulze A, Schwab A, Schwantes A, Soula M, Spitzlberger B, Stockwell BR, Thewes L, Thorn-Seshold O, Toyokuni S, Tonnus W, Trumpp A, Vandenabeele P, Vanden Berghe T, Venkataramani V, Vogel FCE, von Karstedt S, Wang F, Westermann F, Wientjens C, Wilhelm C, Wölk M, Wu K, Yang X, Yu F, Zou Y, Conrad M. Ferroptosis in health and disease. Redox Biol 2024; 75:103211. [PMID: 38908072 PMCID: PMC11253697 DOI: 10.1016/j.redox.2024.103211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/24/2024] [Accepted: 05/24/2024] [Indexed: 06/24/2024] Open
Abstract
Ferroptosis is a pervasive non-apoptotic form of cell death highly relevant in various degenerative diseases and malignancies. The hallmark of ferroptosis is uncontrolled and overwhelming peroxidation of polyunsaturated fatty acids contained in membrane phospholipids, which eventually leads to rupture of the plasma membrane. Ferroptosis is unique in that it is essentially a spontaneous, uncatalyzed chemical process based on perturbed iron and redox homeostasis contributing to the cell death process, but that it is nonetheless modulated by many metabolic nodes that impinge on the cells' susceptibility to ferroptosis. Among the various nodes affecting ferroptosis sensitivity, several have emerged as promising candidates for pharmacological intervention, rendering ferroptosis-related proteins attractive targets for the treatment of numerous currently incurable diseases. Herein, the current members of a Germany-wide research consortium focusing on ferroptosis research, as well as key external experts in ferroptosis who have made seminal contributions to this rapidly growing and exciting field of research, have gathered to provide a comprehensive, state-of-the-art review on ferroptosis. Specific topics include: basic mechanisms, in vivo relevance, specialized methodologies, chemical and pharmacological tools, and the potential contribution of ferroptosis to disease etiopathology and progression. We hope that this article will not only provide established scientists and newcomers to the field with an overview of the multiple facets of ferroptosis, but also encourage additional efforts to characterize further molecular pathways modulating ferroptosis, with the ultimate goal to develop novel pharmacotherapies to tackle the various diseases associated with - or caused by - ferroptosis.
Collapse
Affiliation(s)
- Carsten Berndt
- Department of Neurology, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - Hamed Alborzinia
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM GGmbH), Heidelberg, Germany; Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Vera Skafar Amen
- Rudolf Virchow Zentrum, Center for Integrative and Translational Bioimaging - University of Würzburg, Germany
| | - Scott Ayton
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Australia
| | - Uladzimir Barayeu
- Division of Redox Regulation, DKFZ-ZMBH Alliance, German Cancer Research Center (DKFZ) Heidelberg, Germany; Faculty of Biosciences, Heidelberg University, 69120, Heidelberg, Germany; Department of Environmental Medicine and Molecular Toxicology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Alexander Bartelt
- Institute for Cardiovascular Prevention (IPEK), Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany; Institute for Diabetes and Cancer (IDC), Helmholtz Center Munich, Neuherberg, Germany; German Center for Cardiovascular Research, Partner Site Munich Heart Alliance, Munich, Germany
| | - Hülya Bayir
- Department of Pediatrics, Columbia University, New York City, NY, USA
| | - Christina M Bebber
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Translational Genomics, Cologne, Germany; CECAD Cluster of Excellence, University of Cologne, Cologne, Germany
| | - Kivanc Birsoy
- Laboratory of Metabolic Regulation and Genetics, Rockefeller University, New York City, NY, USA
| | - Jan P Böttcher
- Institute of Molecular Immunology, School of Medicine, Technical University of Munich (TUM), Germany
| | - Simone Brabletz
- Department of Experimental Medicine 1, Nikolaus-Fiebiger Center for Molecular Medicine, Friedrich-Alexander University of Erlangen-Nürnberg, Germany
| | - Thomas Brabletz
- Department of Experimental Medicine 1, Nikolaus-Fiebiger Center for Molecular Medicine, Friedrich-Alexander University of Erlangen-Nürnberg, Germany
| | - Ashley R Brown
- Department of Biological Sciences, Columbia University, New York City, NY, USA
| | - Bernhard Brüne
- Institute of Biochemistry1-Pathobiochemistry, Goethe-Universität, Frankfurt Am Main, Germany
| | - Giorgia Bulli
- Department of Physiological Genomics, Ludwig-Maximilians-University, Munich, Germany
| | - Alix Bruneau
- Department of Hepatology and Gastroenterology, Charité - Universitätsmedizin Berlin, Campus Virchow-Klinikum (CVK) and Campus Charité Mitte (CCM), Berlin, Germany
| | - Quan Chen
- College of Life Sciences, Nankai University, Tianjin, China
| | - Gina M DeNicola
- Department of Metabolism and Physiology, Moffitt Cancer Center, Tampa, FL, USA
| | - Tobias P Dick
- Division of Redox Regulation, DKFZ-ZMBH Alliance, German Cancer Research Center (DKFZ) Heidelberg, Germany; Faculty of Biosciences, Heidelberg University, 69120, Heidelberg, Germany
| | - Ayelén Distéfano
- Instituto de Investigaciones Biológicas, CONICET, National University of Mar Del Plata, Argentina
| | - Scott J Dixon
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Jan B Engler
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, Germany
| | | | - Maria Fedorova
- Center of Membrane Biochemistry and Lipid Research, University Hospital Carl Gustav Carus and Faculty of Medicine of TU Dresden, Germany
| | - José Pedro Friedmann Angeli
- Rudolf Virchow Zentrum, Center for Integrative and Translational Bioimaging - University of Würzburg, Germany
| | - Manuel A Friese
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, Germany
| | - Dominic C Fuhrmann
- Institute of Biochemistry1-Pathobiochemistry, Goethe-Universität, Frankfurt Am Main, Germany
| | - Ana J García-Sáez
- Institute for Genetics, CECAD, University of Cologne, Germany; Max Planck Institute of Biophysics, Frankfurt/Main, Germany
| | | | - Magdalena Götz
- Department of Physiological Genomics, Ludwig-Maximilians-University, Munich, Germany; Institute of Stem Cell Research, Helmholtz Center Munich, Germany
| | - Wei Gu
- Institute for Cancer Genetics, And Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA; Department of Pathology and Cell Biology, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - Linda Hammerich
- Department of Hepatology and Gastroenterology, Charité - Universitätsmedizin Berlin, Campus Virchow-Klinikum (CVK) and Campus Charité Mitte (CCM), Berlin, Germany
| | | | - Xuejun Jiang
- Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
| | - Aicha Jeridi
- Institute of Lung Health and Immunity (LHI), Helmholtz Munich, Comprehensive Pneumology Center (CPC-M), Germany, Member of the German Center for Lung Research (DZL)
| | - Yun Pyo Kang
- College of Pharmacy and Research Institute of Pharmaceutical Science, Seoul National University, Republic of Korea
| | | | - David B Konrad
- Department of Pharmacy, Ludwig-Maximilians-University, Munich, Germany
| | - Stefan Kotschi
- Institute for Cardiovascular Prevention (IPEK), Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Peng Lei
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Marlène Le Tertre
- Center for Translational Biomedical Iron Research, Heidelberg University, Germany
| | - Sima Lev
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Deguang Liang
- Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
| | - Andreas Linkermann
- Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Germany; Division of Nephrology, Department of Medicine, Albert Einstein College of Medicine, New York, NY, USA
| | - Carolin Lohr
- Department of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - Svenja Lorenz
- Institute of Metabolism and Cell Death, Helmholtz Center Munich, Germany
| | - Tom Luedde
- Department of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - Axel Methner
- Institute of Molecular Medicine, Johannes Gutenberg-Universität Mainz, Germany
| | - Bernhard Michalke
- Research Unit Analytical Biogeochemistry, Helmholtz Center Munich, Germany
| | - Anna V Milton
- Department of Pharmacy, Ludwig-Maximilians-University, Munich, Germany
| | - Junxia Min
- School of Medicine, Zhejiang University, Hangzhou, China
| | - Eikan Mishima
- Institute of Metabolism and Cell Death, Helmholtz Center Munich, Germany
| | | | - Hozumi Motohashi
- Department of Gene Expression Regulation, Tohoku University, Sendai, Japan
| | | | - Shohei Murakami
- Department of Gene Expression Regulation, Tohoku University, Sendai, Japan
| | - James A Olzmann
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA; Department of Nutritional Sciences and Toxicology, University of California, Berkeley, CA, USA; Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Gabriela Pagnussat
- Instituto de Investigaciones Biológicas, CONICET, National University of Mar Del Plata, Argentina
| | - Zijan Pan
- School of Life Sciences, Westlake University, Hangzhou, China
| | | | | | - Derek A Pratt
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Canada
| | - Bettina Proneth
- Institute of Metabolism and Cell Death, Helmholtz Center Munich, Germany
| | - Lukas Ramsauer
- Institute of Molecular Immunology, School of Medicine, Technical University of Munich (TUM), Germany
| | | | - Yoshiro Saito
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Felix Schmidt
- Institute of Molecular Medicine, Johannes Gutenberg-Universität Mainz, Germany
| | - Carina Schmitt
- Department of Pharmacy, Ludwig-Maximilians-University, Munich, Germany
| | - Almut Schulze
- Division of Tumour Metabolism and Microenvironment, DKFZ Heidelberg and DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Annemarie Schwab
- Department of Experimental Medicine 1, Nikolaus-Fiebiger Center for Molecular Medicine, Friedrich-Alexander University of Erlangen-Nürnberg, Germany
| | - Anna Schwantes
- Institute of Biochemistry1-Pathobiochemistry, Goethe-Universität, Frankfurt Am Main, Germany
| | - Mariluz Soula
- Laboratory of Metabolic Regulation and Genetics, Rockefeller University, New York City, NY, USA
| | - Benedikt Spitzlberger
- Department of Immunobiology, Université de Lausanne, Switzerland; Center of Allergy and Environment (ZAUM), Technical University of Munich and Helmholtz Center Munich, Munich, Germany
| | - Brent R Stockwell
- Department of Biological Sciences, Columbia University, New York City, NY, USA; Department of Pathology and Cell Biology, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA; Department of Chemistry, Columbia University, New York, NY, USA
| | - Leonie Thewes
- Department of Neurology, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | | | - Shinya Toyokuni
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya, Japan; Center for Low-temperature Plasma Sciences, Nagoya University, Nagoya, Japan; Center for Integrated Sciences of Low-temperature Plasma Core Research (iPlasma Core), Tokai National Higher Education and Research System, Nagoya, Japan
| | - Wulf Tonnus
- Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Germany
| | - Andreas Trumpp
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM GGmbH), Heidelberg, Germany; Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany; German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Peter Vandenabeele
- VIB-UGent Center for Inflammation Research, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Tom Vanden Berghe
- Department of Biomedical Sciences, University of Antwerp, Belgium; VIB-UGent Center for Inflammation Research, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Vivek Venkataramani
- Comprehensive Cancer Center Mainfranken, University Hospital Würzburg, Germany
| | - Felix C E Vogel
- Division of Tumour Metabolism and Microenvironment, DKFZ Heidelberg and DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Silvia von Karstedt
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Translational Genomics, Cologne, Germany; CECAD Cluster of Excellence, University of Cologne, Cologne, Germany; University of Cologne, Faculty of Medicine and University Hospital Cologne, Center for Molecular Medicine Cologne, Germany
| | - Fudi Wang
- School of Medicine, Zhejiang University, Hangzhou, China
| | | | - Chantal Wientjens
- Immunopathology Unit, Institute of Clinical Chemistry and Clinical Pharmacology, Medical Faculty, University Hospital Bonn, University of Bonn, Germany
| | - Christoph Wilhelm
- Immunopathology Unit, Institute of Clinical Chemistry and Clinical Pharmacology, Medical Faculty, University Hospital Bonn, University of Bonn, Germany
| | - Michele Wölk
- Center of Membrane Biochemistry and Lipid Research, University Hospital Carl Gustav Carus and Faculty of Medicine of TU Dresden, Germany
| | - Katherine Wu
- Department of Pathology, Grossman School of Medicine, New York University, NY, USA
| | - Xin Yang
- Institute for Cancer Genetics, And Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - Fan Yu
- College of Life Sciences, Nankai University, Tianjin, China
| | - Yilong Zou
- School of Life Sciences, Westlake University, Hangzhou, China; Westlake Four-Dimensional Dynamic Metabolomics (Meta4D) Laboratory, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
| | - Marcus Conrad
- Institute of Metabolism and Cell Death, Helmholtz Center Munich, Germany.
| |
Collapse
|
83
|
Alva R, Wiebe JE, Stuart JA. Revisiting reactive oxygen species production in hypoxia. Pflugers Arch 2024; 476:1423-1444. [PMID: 38955833 DOI: 10.1007/s00424-024-02986-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/20/2024] [Accepted: 06/24/2024] [Indexed: 07/04/2024]
Abstract
Cellular responses to hypoxia are crucial in various physiological and pathophysiological contexts and have thus been extensively studied. This has led to a comprehensive understanding of the transcriptional response to hypoxia, which is regulated by hypoxia-inducible factors (HIFs). However, the detailed molecular mechanisms of HIF regulation in hypoxia remain incompletely understood. In particular, there is controversy surrounding the production of mitochondrial reactive oxygen species (ROS) in hypoxia and how this affects the stabilization and activity of HIFs. This review examines this controversy and attempts to shed light on its origin. We discuss the role of physioxia versus normoxia as baseline conditions that can affect the subsequent cellular response to hypoxia and highlight the paucity of data on pericellular oxygen levels in most experiments, leading to variable levels of hypoxia that might progress to anoxia over time. We analyze the different outcomes reported in isolated mitochondria, versus intact cells or whole organisms, and evaluate the reliability of various ROS-detecting tools. Finally, we examine the cell-type and context specificity of oxygen's various effects. We conclude that while recent evidence suggests that the effect of hypoxia on ROS production is highly dependent on the cell type and the duration of exposure, efforts should be made to conduct experiments under carefully controlled, physiological microenvironmental conditions in order to rule out potential artifacts and improve reproducibility in research.
Collapse
Affiliation(s)
- Ricardo Alva
- Department of Biological Sciences, Brock University, St. Catharines, ON, L2S 3A1, Canada.
| | - Jacob E Wiebe
- Department of Biological Sciences, Brock University, St. Catharines, ON, L2S 3A1, Canada
| | - Jeffrey A Stuart
- Department of Biological Sciences, Brock University, St. Catharines, ON, L2S 3A1, Canada.
| |
Collapse
|
84
|
Gallero S, Persson KW, Henríquez-Olguín C. Unresolved questions in the regulation of skeletal muscle insulin action by reactive oxygen species. FEBS Lett 2024; 598:2145-2159. [PMID: 38803005 DOI: 10.1002/1873-3468.14937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/10/2024] [Accepted: 04/22/2024] [Indexed: 05/29/2024]
Abstract
Reactive oxygen species (ROS) are well-established signaling molecules implicated in a wide range of cellular processes, including both oxidative stress and intracellular redox signaling. In the context of insulin action within its target tissues, ROS have been reported to exert both positive and negative regulatory effects. However, the precise molecular mechanisms underlying this duality remain unclear. This Review examines the complex role of ROS in insulin action, with a particular focus on skeletal muscle. We aim to address three critical aspects: (a) the proposed intracellular pro-oxidative redox shift elicited by insulin, (b) the evidence supporting that redox-sensitive cysteine modifications impact insulin signaling and action, and (c) cellular mechanisms underlying how ROS can paradoxically act as both enhancers and inhibitors of insulin action. This Review underscores the urgent need for more systematic research to identify specific reactive species, redox targets, and the physiological significance of redox signaling in maintaining insulin action and metabolic health, with a particular emphasis on human skeletal muscle.
Collapse
Affiliation(s)
- Samantha Gallero
- The August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Denmark
| | - Kaspar W Persson
- The August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Denmark
| | - Carlos Henríquez-Olguín
- The August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Denmark
- Exercise Science Laboratory, Faculty of Medicine, Universidad Finis Terrae, Santiago, Chile
| |
Collapse
|
85
|
Ding M, Zhou Y, Becker D, Yang S, Krischke M, Scherzer S, Yu-Strzelczyk J, Mueller MJ, Hedrich R, Nagel G, Gao S, Konrad KR. Probing plant signal processing optogenetically by two channelrhodopsins. Nature 2024; 633:872-877. [PMID: 39198644 PMCID: PMC11424491 DOI: 10.1038/s41586-024-07884-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 07/30/2024] [Indexed: 09/01/2024]
Abstract
Early plant responses to different stress situations often encompass cytosolic Ca2+ increases, plasma membrane depolarization and the generation of reactive oxygen species1-3. However, the mechanisms by which these signalling elements are translated into defined physiological outcomes are poorly understood. Here, to study the basis for encoding of specificity in plant signal processing, we used light-gated ion channels (channelrhodopsins). We developed a genetically engineered channelrhodopsin variant called XXM 2.0 with high Ca2+ conductance that enabled triggering cytosolic Ca2+ elevations in planta. Plant responses to light-induced Ca2+ influx through XXM 2.0 were studied side by side with effects caused by an anion efflux through the light-gated anion channelrhodopsin ACR1 2.04. Although both tools triggered membrane depolarizations, their activation led to distinct plant stress responses: XXM 2.0-induced Ca2+ signals stimulated production of reactive oxygen species and defence mechanisms; ACR1 2.0-mediated anion efflux triggered drought stress responses. Our findings imply that discrete Ca2+ signals and anion efflux serve as triggers for specific metabolic and transcriptional reprogramming enabling plants to adapt to particular stress situations. Our optogenetics approach unveiled that within plant leaves, distinct physiological responses are triggered by specific ion fluxes, which are accompanied by similar electrical signals.
Collapse
Affiliation(s)
- Meiqi Ding
- Molecular Plant Physiology and Biophysics, Julius-von-Sachs-Institute, University of Wuerzburg, Würzburg, Germany
| | - Yang Zhou
- Department of Neurophysiology, Physiological Institute, University of Wuerzburg, Würzburg, Germany
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Dirk Becker
- Molecular Plant Physiology and Biophysics, Julius-von-Sachs-Institute, University of Wuerzburg, Würzburg, Germany
| | - Shang Yang
- Department of Neurophysiology, Physiological Institute, University of Wuerzburg, Würzburg, Germany
| | - Markus Krischke
- Pharmaceutical Biology, Julius-von-Sachs-Institute, University of Wuerzburg, Würzburg, Germany
| | - Sönke Scherzer
- Molecular Plant Physiology and Biophysics, Julius-von-Sachs-Institute, University of Wuerzburg, Würzburg, Germany
| | - Jing Yu-Strzelczyk
- Department of Neurophysiology, Physiological Institute, University of Wuerzburg, Würzburg, Germany
| | - Martin J Mueller
- Pharmaceutical Biology, Julius-von-Sachs-Institute, University of Wuerzburg, Würzburg, Germany
| | - Rainer Hedrich
- Molecular Plant Physiology and Biophysics, Julius-von-Sachs-Institute, University of Wuerzburg, Würzburg, Germany.
| | - Georg Nagel
- Department of Neurophysiology, Physiological Institute, University of Wuerzburg, Würzburg, Germany.
| | - Shiqiang Gao
- Department of Neurophysiology, Physiological Institute, University of Wuerzburg, Würzburg, Germany.
| | - Kai R Konrad
- Molecular Plant Physiology and Biophysics, Julius-von-Sachs-Institute, University of Wuerzburg, Würzburg, Germany.
| |
Collapse
|
86
|
Zeng G, Mao J, Xing H, Xu Z, Cao Z, Kang Y, Liu G, Xue P. Gold Nanodots-Anchored Cobalt Ferrite Nanoflowers as Versatile Tumor Microenvironment Modulators for Reinforced Redox Dyshomeostasis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2406683. [PMID: 38984397 PMCID: PMC11529044 DOI: 10.1002/advs.202406683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Indexed: 07/11/2024]
Abstract
Given that tumor microenvironment (TME) exerts adverse impact on the therapeutic response and clinical outcome, robust TME modulators may significantly improve the curative effect and increase survival benefits of cancer patients. Here, Au nanodots-anchored CoFe2O4 nanoflowers with PEGylation (CFAP) are developed to respond to TME cues, aiming to exacerbate redox dyshomeostasis for efficacious antineoplastic therapy under ultrasound (US) irradiation. After uptake by tumor cells, CFAP with glucose oxidase (GOx)-like activity can facilitate glucose depletion and promote the production of H2O2. Multivalent elements of Co(II)/Co(III) and Fe(II)/Fe(III) in CFAP display strong Fenton-like activity for·OH production from H2O2. On the other hand, energy band structure CFAP is superior for US-actuated 1O2 generation, relying on the enhanced separation and retarded recombination of e-/h+ pairs. In addition, catalase-mimic CFAP can react with cytosolic H2O2 to generate molecular oxygen, which may increase the product yields from O2-consuming reactions, such as glucose oxidation and sonosensitization processes. Besides the massive production of reactive oxygen species, CFAP is also capable of exhausting glutathione to devastate intracellular redox balance. Severe immunogenic cell death and effective inhibition of solid tumor by CFAP demonstrates the clinical potency of such heterogeneous structure and may inspire more relevant designs for disease therapy.
Collapse
Affiliation(s)
- Guicheng Zeng
- School of Materials and EnergySouthwest UniversityChongqing400715China
| | - Jinning Mao
- Health Management CenterThe Second Affiliated Hospital of Chongqing Medical UniversityChongqing400016China
| | - Haiyan Xing
- School of Materials and EnergySouthwest UniversityChongqing400715China
| | - Zhigang Xu
- School of Materials and EnergySouthwest UniversityChongqing400715China
| | - Zhong Cao
- School of Biomedical EngineeringShenzhen Campus of Sun Yat‐sen UniversityShenzhenGuangdong518107China
| | - Yuejun Kang
- School of Materials and EnergySouthwest UniversityChongqing400715China
| | - Guodong Liu
- Department of NeurosurgeryThe Second Affiliated Hospital of Chongqing Medical UniversityChongqing400016China
| | - Peng Xue
- School of Materials and EnergySouthwest UniversityChongqing400715China
| |
Collapse
|
87
|
Tiwari S, Kumar R, Devi S, Sharma P, Chaudhary NR, Negi S, Tandel N, Marepally S, Pied S, Tyagi RK. Biogenically synthesized green silver nanoparticles exhibit antimalarial activity. DISCOVER NANO 2024; 19:136. [PMID: 39217276 PMCID: PMC11365884 DOI: 10.1186/s11671-024-04098-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
The suboptimal efficacies of existing anti-malarial drugs attributed to the emergence of drug resistance dampen the clinical outcomes. Hence, there is a need for developing novel drug and drug targets. Recently silver nanoparticles (AgNPs) constructed with the leaf extracts of Euphorbia cotinifolia were shown to possess antimalarial activity. Therefore, the synthesized AgNPs from Euphorbia cotinifolia (EcAgNPs) were tested for their parasite clearance activity. We determined the antimalarial activity in the asexual blood stage infection of 3D7 (laboratory strain) P. falciparum. EcAgNPs demonstrated the significant inhibition of parasite growth (EC50 of 0.75 µg/ml) in the routine in vitro culture of P. falciparum. The synthesized silver nanoparticles were seen to induce apoptosis in P. falciparum through increased reactive oxygen species (ROS) ROS production and activated programmed cell death pathways characterized by the caspase-3 and calpain activity. Also, altered transcriptional regulation of Bax/Bcl-2 ratio indicated the enhanced apoptosis. Moreover, inhibited expression of PfLPL-1 by EcAgNPs is suggestive of the dysregulated host fatty acid flux via parasite lipid storage. Overall, our findings suggest that EcAgNPs are a non-toxic and targeted antimalarial treatment, and could be a promising therapeutic approach for clearing malaria infection.
Collapse
Affiliation(s)
- Savitri Tiwari
- School of Biological and Life Sciences, Galgotias University, Gautam Buddha Nagar, Greater Noida, 201310, India
| | - Reetesh Kumar
- Faculty of Agricultural Sciences, Institute of Applied Sciences and Humanities, GLA University, Mathura, 281406, India
| | - Sonia Devi
- Biomedical Parasitology and Translational-Immunology Lab, Division of Cell Biology and Immunology, CSIR-Institute of Microbial Technology (IMTECH), Sec-39A, Chandigarh, 160036, India
- Academy of Scientific and Innovation Research (AcSIR), Ghaziabad, 201002, India
| | - Prakriti Sharma
- Biomedical Parasitology and Translational-Immunology Lab, Division of Cell Biology and Immunology, CSIR-Institute of Microbial Technology (IMTECH), Sec-39A, Chandigarh, 160036, India
| | - Neil Roy Chaudhary
- Biomedical Parasitology and Translational-Immunology Lab, Division of Cell Biology and Immunology, CSIR-Institute of Microbial Technology (IMTECH), Sec-39A, Chandigarh, 160036, India
| | - Sushmita Negi
- Biomedical Parasitology and Translational-Immunology Lab, Division of Cell Biology and Immunology, CSIR-Institute of Microbial Technology (IMTECH), Sec-39A, Chandigarh, 160036, India
- Academy of Scientific and Innovation Research (AcSIR), Ghaziabad, 201002, India
| | - Nikunj Tandel
- Institute of Science, Nirma University, Ahmedabad, Gujarat, India
- Malaria Research Lab, CSIR-Centre for Cellular and Molecular Biology (CCMB), Habsiguda, Hyderabad, Telangana, 500007, India
| | - Srujan Marepally
- Centre for Stem Cell Research (a Unit of inStem, Bengaluru), Christian Medical College Campus, Bagayam, Vellore, Tamil Nadu, 632002, India
| | - Sylviane Pied
- CNRS UMR 9017-INSERM U1019, Center for Infection and Immunity of Lille-9 CIIL, Institut Pasteur de Lille, University of Lille, 59019, Lille, France
| | - Rajeev K Tyagi
- Biomedical Parasitology and Translational-Immunology Lab, Division of Cell Biology and Immunology, CSIR-Institute of Microbial Technology (IMTECH), Sec-39A, Chandigarh, 160036, India.
- Academy of Scientific and Innovation Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
88
|
Shan G, Bian Y, Yao G, Liang J, Shi H, Hu Z, Zheng Z, Bi G, Fan H, Zhan C. Targeting ALDH2 to augment platinum-based chemosensitivity through ferroptosis in lung adenocarcinoma. Free Radic Biol Med 2024; 224:310-324. [PMID: 39216560 DOI: 10.1016/j.freeradbiomed.2024.08.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
Ferroptosis is a regulated cell death driven by iron-dependent lipid peroxidation and associated with drug resistance in lung adenocarcinoma (LUAD). It's found that aldehyde dehydrogenase 2 (ALDH2), which is highly mutated in East Asian populations, is correlated with response to chemotherapy in LUAD patients. The rs671 variant knock-in, downregulation, and pharmacological inhibition of ALDH2 render LUAD cells more vulnerable to ferroptosis inducers and platinum-based chemotherapy. ALDH2 inhibits ferroptosis through the detoxification of 4-hydroxynonenal and malondialdehyde, the product of lipid peroxidation, as well as the production of NADH at the same time. Besides, ALDH2 deficiency leads to elevated intracellular pH (pHi), thus inhibiting the ERK/CREB1/GPX4 axis. Interestingly, ALDH2 is also regulated by CREB1, and the ALDH2 enzyme activity was decreased with elevated pHi. What's more, the elevated pHi caused by impaired ALDH2 activity promotes the biosynthesis of lipid droplets to counteract ferroptosis. At last, the effect of ALDH2 on ferroptosis and chemosensitivity is confirmed in patient-derived organoids and xenograft models. Collectively, this study demonstrates that ALDH2 deficiency confers sensitivity to platinum through ferroptosis in LUAD, and targeting ALDH2 is a promising new strategy to enhance the sensitivity of platinum-based chemotherapy for the treatment of LUAD patients.
Collapse
Affiliation(s)
- Guangyao Shan
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yunyi Bian
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Guangyu Yao
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jiaqi Liang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Haochun Shi
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhengyang Hu
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhaolin Zheng
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Guoshu Bi
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Hong Fan
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University (Xiamen Branch), Xiamen, China.
| | - Cheng Zhan
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
89
|
Cabello MC, Chen G, Melville MJ, Osman R, Kumar GD, Domaille DW, Lippert AR. Ex Tenebris Lux: Illuminating Reactive Oxygen and Nitrogen Species with Small Molecule Probes. Chem Rev 2024; 124:9225-9375. [PMID: 39137397 DOI: 10.1021/acs.chemrev.3c00892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Reactive oxygen and nitrogen species are small reactive molecules derived from elements in the air─oxygen and nitrogen. They are produced in biological systems to mediate fundamental aspects of cellular signaling but must be very tightly balanced to prevent indiscriminate damage to biological molecules. Small molecule probes can transmute the specific nature of each reactive oxygen and nitrogen species into an observable luminescent signal (or even an acoustic wave) to offer sensitive and selective imaging in living cells and whole animals. This review focuses specifically on small molecule probes for superoxide, hydrogen peroxide, hypochlorite, nitric oxide, and peroxynitrite that provide a luminescent or photoacoustic signal. Important background information on general photophysical phenomena, common probe designs, mechanisms, and imaging modalities will be provided, and then, probes for each analyte will be thoroughly evaluated. A discussion of the successes of the field will be presented, followed by recommendations for improvement and a future outlook of emerging trends. Our objectives are to provide an informative, useful, and thorough field guide to small molecule probes for reactive oxygen and nitrogen species as well as important context to compare the ecosystem of chemistries and molecular scaffolds that has manifested within the field.
Collapse
Affiliation(s)
- Maidileyvis C Cabello
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275-0314, United States
| | - Gen Chen
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275-0314, United States
| | - Michael J Melville
- Department of Chemistry, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Rokia Osman
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275-0314, United States
| | - G Dinesh Kumar
- Department of Chemistry, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Dylan W Domaille
- Department of Chemistry, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Alexander R Lippert
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275-0314, United States
| |
Collapse
|
90
|
Iuele H, Forciniti S, Onesto V, Colella F, Siciliano AC, Chandra A, Nobile C, Gigli G, Del Mercato LL. Facile One Pot Synthesis of Hybrid Core-Shell Silica-Based Sensors for Live Imaging of Dissolved Oxygen and Hypoxia Mapping in 3D Cell Models. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39205375 DOI: 10.1021/acsami.4c08306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Fluorescence imaging allows for noninvasively visualizing and measuring key physiological parameters like pH and dissolved oxygen. In our work, we created two ratiometric fluorescent microsensors designed for accurately tracking dissolved oxygen levels in 3D cell cultures. We developed a simple and cost-effective method to produce hybrid core-shell silica microparticles that are biocompatible and versatile. These sensors incorporate oxygen-sensitive probes (Ru(dpp) or PtOEP) and reference dyes (RBITC or A647 NHS-Ester). SEM analysis confirmed the efficient loading and distribution of the sensing dye on the outer shell. Fluorimetric and CLSM tests demonstrated the sensors' reversibility and high sensitivity to oxygen, even when integrated into 3D scaffolds. Aging and bleaching experiments validated the stability of our hybrid core-shell silica microsensors for 3D monitoring. The Ru(dpp)-RBITC microparticles showed the most promising performance, especially in a pancreatic cancer model using alginate microgels. By employing computational segmentation, we generated 3D oxygen maps during live cell imaging, revealing oxygen gradients in the extracellular matrix and indicating a significant decrease in oxygen level characteristics of solid tumors. Notably, after 12 h, the oxygen concentration dropped to a hypoxic level of PO2 2.7 ± 0.1%.
Collapse
Affiliation(s)
- Helena Iuele
- Institute of Nanotechnology, National Research Council (CNR-NANOTEC), c/o Campus Ecotekne, via Monteroni, 73100 Lecce, Italy
| | - Stefania Forciniti
- Institute of Nanotechnology, National Research Council (CNR-NANOTEC), c/o Campus Ecotekne, via Monteroni, 73100 Lecce, Italy
| | - Valentina Onesto
- Institute of Nanotechnology, National Research Council (CNR-NANOTEC), c/o Campus Ecotekne, via Monteroni, 73100 Lecce, Italy
| | - Francesco Colella
- Institute of Nanotechnology, National Research Council (CNR-NANOTEC), c/o Campus Ecotekne, via Monteroni, 73100 Lecce, Italy
- Department of Mathematics and Physics ''Ennio De Giorgi", University of Salento, c/o Campus Ecotekne, via Monteroni, 73100 Lecce, Italy
| | - Anna Chiara Siciliano
- Institute of Nanotechnology, National Research Council (CNR-NANOTEC), c/o Campus Ecotekne, via Monteroni, 73100 Lecce, Italy
- Department of Mathematics and Physics ''Ennio De Giorgi", University of Salento, c/o Campus Ecotekne, via Monteroni, 73100 Lecce, Italy
| | - Anil Chandra
- Centre for Research in Pure and Applied Sciences, Jain (Deemed-to-be-University), Bangalore, Karnataka 560078, India
| | - Concetta Nobile
- Institute of Nanotechnology, National Research Council (CNR-NANOTEC), c/o Campus Ecotekne, via Monteroni, 73100 Lecce, Italy
| | - Giuseppe Gigli
- Institute of Nanotechnology, National Research Council (CNR-NANOTEC), c/o Campus Ecotekne, via Monteroni, 73100 Lecce, Italy
- Department of Experimental Medicine, University of Salento, c/o Campus Ecotekne, via Monteroni, 73100 Lecce, Italy
| | - Loretta L Del Mercato
- Institute of Nanotechnology, National Research Council (CNR-NANOTEC), c/o Campus Ecotekne, via Monteroni, 73100 Lecce, Italy
| |
Collapse
|
91
|
Boudries R, Williams H, Paquereau-Gaboreau S, Bashir S, Hojjat Jodaylami M, Chisanga M, Trudeau LÉ, Masson JF. Surface-Enhanced Raman Scattering Nanosensing and Imaging in Neuroscience. ACS NANO 2024; 18:22620-22647. [PMID: 39088751 DOI: 10.1021/acsnano.4c05200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/03/2024]
Abstract
Monitoring neurochemicals and imaging the molecular content of brain tissues in vitro, ex vivo, and in vivo is essential for enhancing our understanding of neurochemistry and the causes of brain disorders. This review explores the potential applications of surface-enhanced Raman scattering (SERS) nanosensors in neurosciences, where their adoption could lead to significant progress in the field. These applications encompass detecting neurotransmitters or brain disorders biomarkers in biofluids with SERS nanosensors, and imaging normal and pathological brain tissues with SERS labeling. Specific studies highlighting in vitro, ex vivo, and in vivo analysis of brain disorders using fit-for-purpose SERS nanosensors will be detailed, with an emphasis on the ability of SERS to detect clinically pertinent levels of neurochemicals. Recent advancements in designing SERS-active nanomaterials, improving experimentation in biofluids, and increasing the usage of machine learning for interpreting SERS spectra will also be discussed. Furthermore, we will address the tagging of tissues presenting pathologies with nanoparticles for SERS imaging, a burgeoning domain of neuroscience that has been demonstrated to be effective in guiding tumor removal during brain surgery. The review also explores future research applications for SERS nanosensors in neuroscience, including monitoring neurochemistry in vivo with greater penetration using surface-enhanced spatially offset Raman scattering (SESORS), near-infrared lasers, and 2-photon techniques. The article concludes by discussing the potential of SERS for investigating the effectiveness of therapies for brain disorders and for integrating conventional neurochemistry techniques with SERS sensing.
Collapse
Affiliation(s)
- Ryma Boudries
- Department of Chemistry, Institut Courtois, Quebec Center for Advanced Materials (QCAM), and Regroupement Québécois sur les Matériaux de Pointe (RQMP), Université de Montréal, C.P. 6128 Succ. Centre-Ville, Montréal, Quebec H3C 3J7, Canada
| | - Hannah Williams
- Department of Chemistry, Institut Courtois, Quebec Center for Advanced Materials (QCAM), and Regroupement Québécois sur les Matériaux de Pointe (RQMP), Université de Montréal, C.P. 6128 Succ. Centre-Ville, Montréal, Quebec H3C 3J7, Canada
| | - Soraya Paquereau-Gaboreau
- Department of Chemistry, Institut Courtois, Quebec Center for Advanced Materials (QCAM), and Regroupement Québécois sur les Matériaux de Pointe (RQMP), Université de Montréal, C.P. 6128 Succ. Centre-Ville, Montréal, Quebec H3C 3J7, Canada
- Department of Pharmacology and Physiology, Department of Neurosciences, Faculty of Medicine, Université de Montréal, C.P. 6128 Succ. Centre-ville, Montréal, Quebec H3C 3J7, Canada
- Neural Signalling and Circuitry Research Group (SNC), Center for Interdisciplinary Research on the Brain and Learning (CIRCA), Université de Montréal, C.P. 6128 Succ. Centre-ville, Montréal, Quebec H3C 3J7, Canada
| | - Saba Bashir
- Department of Chemistry, Institut Courtois, Quebec Center for Advanced Materials (QCAM), and Regroupement Québécois sur les Matériaux de Pointe (RQMP), Université de Montréal, C.P. 6128 Succ. Centre-Ville, Montréal, Quebec H3C 3J7, Canada
| | - Maryam Hojjat Jodaylami
- Department of Chemistry, Institut Courtois, Quebec Center for Advanced Materials (QCAM), and Regroupement Québécois sur les Matériaux de Pointe (RQMP), Université de Montréal, C.P. 6128 Succ. Centre-Ville, Montréal, Quebec H3C 3J7, Canada
| | - Malama Chisanga
- Department of Chemistry, Institut Courtois, Quebec Center for Advanced Materials (QCAM), and Regroupement Québécois sur les Matériaux de Pointe (RQMP), Université de Montréal, C.P. 6128 Succ. Centre-Ville, Montréal, Quebec H3C 3J7, Canada
| | - Louis-Éric Trudeau
- Department of Pharmacology and Physiology, Department of Neurosciences, Faculty of Medicine, Université de Montréal, C.P. 6128 Succ. Centre-ville, Montréal, Quebec H3C 3J7, Canada
- Neural Signalling and Circuitry Research Group (SNC), Center for Interdisciplinary Research on the Brain and Learning (CIRCA), Université de Montréal, C.P. 6128 Succ. Centre-ville, Montréal, Quebec H3C 3J7, Canada
| | - Jean-Francois Masson
- Department of Chemistry, Institut Courtois, Quebec Center for Advanced Materials (QCAM), and Regroupement Québécois sur les Matériaux de Pointe (RQMP), Université de Montréal, C.P. 6128 Succ. Centre-Ville, Montréal, Quebec H3C 3J7, Canada
- Neural Signalling and Circuitry Research Group (SNC), Center for Interdisciplinary Research on the Brain and Learning (CIRCA), Université de Montréal, C.P. 6128 Succ. Centre-ville, Montréal, Quebec H3C 3J7, Canada
| |
Collapse
|
92
|
Xu L, Meng L, Xiang W, Wang X, Yang J, Shu C, Zhao XH, Rong Z, Ye Y. Prohibitin 2 confers NADPH oxidase 1-mediated cytosolic oxidative signaling to promote gastric cancer progression by ERK activation. Free Radic Biol Med 2024; 224:130-143. [PMID: 39182738 DOI: 10.1016/j.freeradbiomed.2024.08.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/21/2024] [Accepted: 08/22/2024] [Indexed: 08/27/2024]
Abstract
Oxidative signaling plays a dual role in tumor initiation and progression to malignancy; however, the regulatory mechanisms of oxidative stress in gastric cancer remain to be explored. In this study, we discovered that Prohibitin 2 (PHB2) specifically regulates cytosolic reactive oxygen species production in gastric cancer and facilitates its malignant progression. Previously, we found that PHB2 is upregulated in gastric cancer, correlating with increased tumorigenicity of gastric cancer cells and poor patient prognosis. Here, we discovered that PHB2 expression correlates with the activation of the ERK/MAPK cascade, positively regulating the top gene NADPH oxidase 1 (NOX1) within this pathway. Further mechanistic investigation reveals that PHB2 enhances NOX1 transcription by interacting with the transcription factor C/EBP-beta and promoting its translocation into the nucleus, resulting in elevated intracellular oxidative signaling driven by NOX1, which subsequently activates ERK. Therefore, we propose that targeting PHB2-C/EBP-beta-NOX1-mediated cytosolic oxidative stress could offer a promising therapeutic avenue for combating gastric cancer malignant progression.
Collapse
Affiliation(s)
- Liang Xu
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China; School of Biomedical Sciences and Pharmacy, The University of Newcastle, NSW, 2308, Australia
| | - Li Meng
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China; Department of Prenatal Diagnostic Center, People's Hospital of Puyang, Puyang, 457001, China
| | - Wanying Xiang
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Xinyue Wang
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Jiezhen Yang
- Department of Pathology, Zhongshan Hospital (Xiamen Branch), Fudan University, Xiamen, 361015, China
| | - Chang Shu
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Xiao Hong Zhao
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, NSW, 2308, Australia
| | - Ziye Rong
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China.
| | - Yan Ye
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
93
|
Zhou Y, Li D, Yue X, Shi Y, Li C, Wang Y, Chen Y, Liu Q, Ding D, Wang D, Shen J. Enhancing Root Canal Therapy with NIR-II Semiconducting Polymer AIEgen and Low-Concentration Sodium Hypochlorite Synergy. Adv Healthc Mater 2024:e2401434. [PMID: 39171782 DOI: 10.1002/adhm.202401434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/10/2024] [Indexed: 08/23/2024]
Abstract
Despite significant efforts to eliminate bacterial biofilm within root canals, achieving effective disinfection remains challenging due to the complex anatomy and limitations of disinfectants. In this study, a second near-infrared (NIR-II) semiconducting polymer with aggregation-induced emission (AIE) properties, named PIDT-TBT, is deliberately designed and synthesized. This proposes an AIE luminogen-based sterilization strategy in synergy with a low concentration of sodium hypochlorite (NaClO). Water-dispersible PIDT-TBT nanoparticles (NPs) are prepared, demonstrating good biocompatibility, as well as photothermal and photodynamic properties. Subsequent antibacterial tests show that PIDT-TBT NPs exhibit excellent bactericidal effects against three bacterial strains: Staphylococcus aureus, Streptococcus mutans, and Enterococcus faecalis, upon 808 nm laser irradiation. In synergy with a low concentration of NaClO (0.5%) solution, PIDT-TBT NPs significantly improves the outcome of root canal treatment under 808 nm laser irradiation in a human extracted tooth root canal infection model. Additionally, it is found that PIDT-TBT NPs combine with a low concentration of NaClO solution could safely dissolve dentin debris and further increase the efficiency of root canal preparation by altering the elemental composition of the inner root canal wall.
Collapse
Affiliation(s)
- Yuanzhu Zhou
- Department of International VIP Dental Clinic, Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin, 300041, P. R. China
| | - Dan Li
- Center for AIE Research, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Xin Yue
- Department of International VIP Dental Clinic, Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin, 300041, P. R. China
| | - Yang Shi
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Frontiers Science Center for Cell Responses, Tianjin, 300071, P. R. China
| | - Cong Li
- Department of International VIP Dental Clinic, Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin, 300041, P. R. China
| | - Yuhan Wang
- Department of International VIP Dental Clinic, Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin, 300041, P. R. China
| | - Yao Chen
- Department of International VIP Dental Clinic, Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin, 300041, P. R. China
| | - Qian Liu
- Department of Urology, Tianjin First Central Hospital, Tianjin, 300192, P. R. China
| | - Dan Ding
- Department of International VIP Dental Clinic, Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin, 300041, P. R. China
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Frontiers Science Center for Cell Responses, Tianjin, 300071, P. R. China
| | - Dong Wang
- Center for AIE Research, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Jing Shen
- Department of International VIP Dental Clinic, Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin, 300041, P. R. China
| |
Collapse
|
94
|
Wen C, Yu X, Zhu J, Zeng J, Kuang X, Zhang Y, Tang S, Zhang Q, Yan J, Shen H. Gastrodin ameliorates oxidative stress-induced RPE damage by facilitating autophagy and phagocytosis through PPARα-TFEB/CD36 signal pathway. Free Radic Biol Med 2024; 224:103-116. [PMID: 39173893 DOI: 10.1016/j.freeradbiomed.2024.08.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 08/24/2024]
Abstract
Age-related macular degeneration (AMD), the leading cause of irreversible blindness in the elderly, is primarily characterized by the degeneration of the retinal pigment epithelium (RPE). However, effective therapeutic options for dry AMD are currently lacking, necessitating further exploration into preventive and pharmaceutical interventions. This study aimed to investigate the protective effects of gastrodin on RPE cells exposed to oxidative stress. We constructed an in vitro oxidative stress model of 4-hydroxynonenal (4-HNE) and performed RNA-seq, and demonstrated the protective effect of gastrodin through mouse experiments. Our findings reveal that gastrodin can inhibit 4-HNE-induced oxidative stress, effectively improving the mitochondrial and lysosomal dysfunction of RPE cells. We further elucidated that gastrodin promotes autophagy and phagocytosis through activating the PPARα-TFEB/CD36 signaling pathway. Interestingly, these outcomes were corroborated in a mouse model, in which gastrodin maintained retinal integrity and reduced RPE disorganization and degeneration under oxidative stress. The accumulation of LC3B and SQSTM1 in mouse RPE-choroid was also reduced. Moreover, activating PPARα and downstream pathways to restore autophagy and phagocytosis, thereby countering RPE injury from oxidative stress. In conclusion, this study demonstrated that gastrodin maintains the normal function of RPE cells by reducing oxidative stress, enhancing their phagocytic function, and restoring the level of autophagic flow. These findings suggest that gastrodin is a novel formulation with potential applications in the development of AMD disease.
Collapse
Affiliation(s)
- Chaojuan Wen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Xinyue Yu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Jingya Zhu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Jingshu Zeng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Xielan Kuang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
- Eye Biobank, State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Youao Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Shiyu Tang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Qingjiong Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Jianhua Yan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Huangxuan Shen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
- Eye Biobank, State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| |
Collapse
|
95
|
Xia Z, Li Y, Liu J, Chen Y, Liu C, Hao Y. CRP and IHF act as host regulators in Royal Jelly's antibacterial activity. Sci Rep 2024; 14:19350. [PMID: 39169111 PMCID: PMC11339446 DOI: 10.1038/s41598-024-70164-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 08/13/2024] [Indexed: 08/23/2024] Open
Abstract
Royal Jelly (RJ) is a natural substance produced by honeybees, serving not only as nutrition for bee brood and queens but also as a functional food due to its health-promoting properties. Despite its well-known broad-spectrum antibacterial activity, the precise molecular mechanism underlying its antibacterial action has remained elusive. In this study, we investigated the impact of RJ on the bacteria model MG1655 at its half-maximal inhibitory concentration, employing LC-MS/MS to analyze proteomic changes. The differentially expressed proteins were found to primarily contribute to the suppression of gene expression processes, specifically transcription and translation, disrupting nutrition and energy metabolism, and inducing oxidative stress. Notably, RJ treatment led to a marked inhibition of superoxide dismutase and catalase activities, resulting in heightened oxidative damage and lipid peroxidation. Furthermore, through a protein-protein interaction network analysis using the STRING database, we identified CRP and IHF as crucial host regulators responsive to RJ. These regulators were found to play a pivotal role in suppressing essential hub genes associated with energy production and antioxidant capabilities. Our findings significantly contribute to the understanding of RJ's antibacterial mechanism, highlighting its potential as a natural alternative to conventional antibiotics. The identification of CRP and IHF as central players highlights the intricate regulatory networks involved in RJ's action, offering new targets for developing innovative antimicrobial strategies.
Collapse
Affiliation(s)
- Zhenyu Xia
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, 100093, China
| | - Yunchang Li
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, 100093, China
| | - Jinhao Liu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yanping Chen
- U.S. Department of Agriculture -Agricultural Research Service (USDA-ARS) Bee Research Laboratory, Beltsville, MD, 20705, USA
| | - Chenguang Liu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Yue Hao
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, 100093, China.
| |
Collapse
|
96
|
Hou S, Gao C, Liu J, Chen X, Wei W, Song W, Hu G, Li X, Wu J, Liu L. Med3-mediated NADPH generation to help Saccharomyces cerevisiae tolerate hyperosmotic stress. Appl Environ Microbiol 2024; 90:e0096824. [PMID: 39082808 PMCID: PMC11337799 DOI: 10.1128/aem.00968-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 07/19/2024] [Indexed: 08/22/2024] Open
Abstract
Hyperosmotic stress tolerance is crucial for Saccharomyces cerevisiae in producing value-added products from renewable feedstock. The limited understanding of its tolerance mechanism has impeded the application of these microbial cell factories. Previous studies have shown that Med3 plays a role in hyperosmotic stress in S. cerevisiae. However, the specific function of Med3 in hyperosmotic stress tolerance remains unclear. In this study, we showed that the deletion of the mediator Med3 impairs S. cerevisiae growth under hyperosmotic stress. Phenotypic analyses and yeast two-hybrid assays revealed that Med3 interacts with the transcription factor Stb5 to regulate the expression of the genes gnd1 and ald6, which are involved in NADPH production under hyperosmotic stress conditions. The deletion of med3 resulted in a decrease in intracellular NADPH content, leading to increased oxidative stress and elevated levels of intracellular reactive oxygen species under hyperosmotic stress, thereby impacting bud formation. These findings highlight the significant role of Med3 as a regulator in maintaining NADPH generation and redox homeostasis in S. cerevisiae during hyperosmotic stress.IMPORTANCEHyperosmotic stress tolerance in the host strain is a significant challenge for fermentation performance in industrial production. In this study, we showed that the S. cerevisiae mediator Med3 is essential for yeast growth under hyperosmotic conditions. Med3 interacts with the transcription factor Stb5 to regulate the expression of genes involved in the NADPH-generation system during hyperosmotic stress. Adequate NADPH ensures the timely removal of excess reactive oxygen species and supports bud formation under these conditions. This work highlights the crucial role of Med3 as a regulator in maintaining NADPH generation and redox homeostasis in S. cerevisiae during hyperosmotic stress.
Collapse
Affiliation(s)
- Shuo Hou
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi, China
| | - Cong Gao
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi, China
| | - Jia Liu
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi, China
| | - Xiulai Chen
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi, China
| | - Wanqing Wei
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi, China
| | - Wei Song
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, China
| | - Guipeng Hu
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, China
| | - Xiaomin Li
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi, China
| | - Jing Wu
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, China
| | - Liming Liu
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi, China
| |
Collapse
|
97
|
Mollet IG, Viana-Soares R, Cardoso-Pires C, Soares NL, Marto JP, Mendonça M, Queiroga CSF, Carvalho AS, Sequeira CO, Teixeira-Santos L, Fernandes TP, Aloria K, Pereira SA, Matthiesen R, Viana-Baptista M, Vieira HLA. Identification of human circulating factors following remote ischemic conditioning (RIC): Potential impact on stroke. Free Radic Biol Med 2024; 224:23-38. [PMID: 39151835 DOI: 10.1016/j.freeradbiomed.2024.08.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 08/12/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
Remote ischemic conditioning (RIC) is a procedure consisting of short cycles of ischemia applied in a limb that activates endogenous protection in distant organs, such as the brain. Despite the promising outcomes of RIC, the biochemical factors governing inter-organ communication remain largely unexplored, particularly in humans. A pilot study on 20 healthy humans was performed to identify potential circulating biochemical factors involved in RIC signalling. Blood was collected before and immediately, 4 and 22 h after the end of RIC. To characterize the responses triggered by RIC, a combination of biochemical and proteomic analysis, along with functional in vitro tests in human cells, were performed. RIC did not alter the levels of nitric oxide, bilirubin and cell-free mitochondrial DNA. In contrast, carboxyhaemoglobin levels increased following RIC at all time points and young subset, suggesting endogenous production of carbon monoxide that is a cytoprotective gasotransmitter. Additionally, the levels of glutathione and cysteinylglycine bound to proteins also increased after RIC, while glutathione catabolism decreased. Plasma proteomic analysis identified overall 828 proteins. Several steps of statistical analysis (Student's t-test, repeated measures ANOVA, with Holm corrected pairwise p-values <0.05 threshold and fold change higher or lower than 100 %) leaded to the identification of 9 proteins with altered circulating levels in response to RIC at 4h and 22h. All 9 proteins are from extracellular space or exosomes, being involved in inflammation, angiogenesis or metabolism control. In addition, RIC-conditioned plasma from young subjects protected microglial cell culture against inflammatory stimuli, indicating an anti-inflammatory effect of RIC. Nevertheless, other functional tests in neurons or endothelial cells had no effect. Overall, we present some evidence for RIC-induced anti-inflammatory and antioxidant responses in healthy human subjects, in particular in young subjects. This study is a first step towards the disclosure of signalling factors involved in RIC-mediated inter-organ communication.
Collapse
Affiliation(s)
- Inês G Mollet
- UCIBIO, Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, Universidade Nova de Lisboa, Caparica, Portugal; iNOVA4Health, NOVA Medical School|Faculdade de Ciências Médicas, NMS|FCM, Universidade NOVA de Lisboa, Portugal; Associate Laboratory i4HB, Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Ricardo Viana-Soares
- iNOVA4Health, NOVA Medical School|Faculdade de Ciências Médicas, NMS|FCM, Universidade NOVA de Lisboa, Portugal
| | - Catarina Cardoso-Pires
- UCIBIO, Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, Universidade Nova de Lisboa, Caparica, Portugal; Associate Laboratory i4HB, Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Nuno L Soares
- iNOVA4Health, NOVA Medical School|Faculdade de Ciências Médicas, NMS|FCM, Universidade NOVA de Lisboa, Portugal
| | - João Pedro Marto
- iNOVA4Health, NOVA Medical School|Faculdade de Ciências Médicas, NMS|FCM, Universidade NOVA de Lisboa, Portugal; Department of Neurology, Hospital de Egas Moniz, Centro Hospitalar Lisboa Ocidental, Portugal; Centro Clínico Académico de Lisboa CCAL, Lisboa, Portugal
| | - Marcelo Mendonça
- iNOVA4Health, NOVA Medical School|Faculdade de Ciências Médicas, NMS|FCM, Universidade NOVA de Lisboa, Portugal; Champalimaud Research, Champalimaud Center for the Unknown, Lisbon, Portugal
| | - Cláudia S F Queiroga
- iNOVA4Health, NOVA Medical School|Faculdade de Ciências Médicas, NMS|FCM, Universidade NOVA de Lisboa, Portugal
| | - Ana S Carvalho
- iNOVA4Health, NOVA Medical School|Faculdade de Ciências Médicas, NMS|FCM, Universidade NOVA de Lisboa, Portugal
| | - Catarina O Sequeira
- iNOVA4Health, NOVA Medical School|Faculdade de Ciências Médicas, NMS|FCM, Universidade NOVA de Lisboa, Portugal; Centro Clínico Académico de Lisboa CCAL, Lisboa, Portugal
| | - Luísa Teixeira-Santos
- iNOVA4Health, NOVA Medical School|Faculdade de Ciências Médicas, NMS|FCM, Universidade NOVA de Lisboa, Portugal; Centro Clínico Académico de Lisboa CCAL, Lisboa, Portugal
| | - Tatiana P Fernandes
- UCIBIO, Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, Universidade Nova de Lisboa, Caparica, Portugal; Associate Laboratory i4HB, Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Kerman Aloria
- Proteomics Core Facility-SGIKER, University of the Basque Country UPV/EHU, Vizcaya, Spain
| | - Sofia A Pereira
- iNOVA4Health, NOVA Medical School|Faculdade de Ciências Médicas, NMS|FCM, Universidade NOVA de Lisboa, Portugal; Centro Clínico Académico de Lisboa CCAL, Lisboa, Portugal
| | - Rune Matthiesen
- iNOVA4Health, NOVA Medical School|Faculdade de Ciências Médicas, NMS|FCM, Universidade NOVA de Lisboa, Portugal
| | - Miguel Viana-Baptista
- iNOVA4Health, NOVA Medical School|Faculdade de Ciências Médicas, NMS|FCM, Universidade NOVA de Lisboa, Portugal; Department of Neurology, Hospital de Egas Moniz, Centro Hospitalar Lisboa Ocidental, Portugal; Centro Clínico Académico de Lisboa CCAL, Lisboa, Portugal
| | - Helena L A Vieira
- UCIBIO, Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, Universidade Nova de Lisboa, Caparica, Portugal; iNOVA4Health, NOVA Medical School|Faculdade de Ciências Médicas, NMS|FCM, Universidade NOVA de Lisboa, Portugal; Associate Laboratory i4HB, Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal.
| |
Collapse
|
98
|
Knaus UG, Clark RA, Nauseef WM, Dinauer MC, Leto TL, Jaquet V. Challenging the role of a NOX4-Piezo1 axis in neutrophil bactericidal function. Immunity 2024; 57:1716-1718. [PMID: 39142268 DOI: 10.1016/j.immuni.2024.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/14/2024] [Accepted: 07/16/2024] [Indexed: 08/16/2024]
Affiliation(s)
- Ulla G Knaus
- Conway Institute, School of Medicine, University College Dublin, D04 V1W8 Dublin, Ireland.
| | - Robert A Clark
- Department of Medicine, University of Texas Health Science Center, San Antonio, TX 78229, USA
| | - William M Nauseef
- Department of Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52240, USA
| | - Mary C Dinauer
- Department of Pediatrics, Division of Pediatric Hematology & Oncology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Thomas L Leto
- Laboratory of Clinical Immunology & Microbiology, NIAID, NIH, Bethesda, MD 20892, USA
| | - Vincent Jaquet
- Department of Cell Physiology & Metabolism, Centre Medical Universitaire, University of Geneva, 1211 Geneva, Switzerland
| |
Collapse
|
99
|
Yang TH, Kang EYC, Lin PH, Yu BBC, Wang JHH, Chen V, Wang NK. Mitochondria in Retinal Ganglion Cells: Unraveling the Metabolic Nexus and Oxidative Stress. Int J Mol Sci 2024; 25:8626. [PMID: 39201313 PMCID: PMC11354650 DOI: 10.3390/ijms25168626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/29/2024] [Accepted: 07/29/2024] [Indexed: 09/02/2024] Open
Abstract
This review explored the role of mitochondria in retinal ganglion cells (RGCs), which are essential for visual processing. Mitochondrial dysfunction is a key factor in the pathogenesis of various vision-related disorders, including glaucoma, hereditary optic neuropathy, and age-related macular degeneration. This review highlighted the critical role of mitochondria in RGCs, which provide metabolic support, regulate cellular health, and respond to cellular stress while also producing reactive oxygen species (ROS) that can damage cellular components. Maintaining mitochondrial function is essential for meeting RGCs' high metabolic demands and ensuring redox homeostasis, which is crucial for their proper function and visual health. Oxidative stress, exacerbated by factors like elevated intraocular pressure and environmental factors, contributes to diseases such as glaucoma and age-related vision loss by triggering cellular damage pathways. Strategies targeting mitochondrial function or bolstering antioxidant defenses include mitochondrial-based therapies, gene therapies, and mitochondrial transplantation. These advances can offer potential strategies for addressing mitochondrial dysfunction in the retina, with implications that extend beyond ocular diseases.
Collapse
Affiliation(s)
- Tsai-Hsuan Yang
- Department of Education, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan 33305, Taiwan;
- College of Medicine, National Yang Ming Chiao Tung University, Taipei 11217, Taiwan
| | - Eugene Yu-Chuan Kang
- Department of Ophthalmology, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan 33305, Taiwan;
- College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Department of Ophthalmology, Edward S. Harkness Eye Institute, Columbia University Irving Medical Center, Columbia University, New York, NY 10032, USA; (P.-H.L.); (J.H.-H.W.); (V.C.)
| | - Pei-Hsuan Lin
- Department of Ophthalmology, Edward S. Harkness Eye Institute, Columbia University Irving Medical Center, Columbia University, New York, NY 10032, USA; (P.-H.L.); (J.H.-H.W.); (V.C.)
- National Taiwan University Hospital, Yunlin 640203, Taiwan
| | - Benjamin Ben-Chi Yu
- Fu Foundation School of Engineering & Applied Science, Columbia University, New York, NY 10027, USA;
| | - Jason Hung-Hsuan Wang
- Department of Ophthalmology, Edward S. Harkness Eye Institute, Columbia University Irving Medical Center, Columbia University, New York, NY 10032, USA; (P.-H.L.); (J.H.-H.W.); (V.C.)
- Columbian College of Arts and Sciences, George Washington University, Washington, DC 20052, USA
| | - Vincent Chen
- Department of Ophthalmology, Edward S. Harkness Eye Institute, Columbia University Irving Medical Center, Columbia University, New York, NY 10032, USA; (P.-H.L.); (J.H.-H.W.); (V.C.)
- Faculty of Health Sciences, Queen’s University, Kingston, ON K7L 3N9, Canada
| | - Nan-Kai Wang
- Department of Ophthalmology, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan 33305, Taiwan;
- College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Department of Ophthalmology, Edward S. Harkness Eye Institute, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, Columbia University, New York, NY 10032, USA
| |
Collapse
|
100
|
Yang S, Liu F, Leng Y, Zhang M, Zhang L, Wang X, Wang Y. Development of Xanthoangelol-Derived Compounds with Membrane-Disrupting Effects against Gram-Positive Bacteria. Antibiotics (Basel) 2024; 13:744. [PMID: 39200044 PMCID: PMC11350758 DOI: 10.3390/antibiotics13080744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/29/2024] [Accepted: 08/06/2024] [Indexed: 09/01/2024] Open
Abstract
Infections caused by multidrug-resistant pathogens have emerged as a serious threat to public health. To develop new antibacterial agents to combat such drug-resistant bacteria, a class of novel amphiphilic xanthoangelol-derived compounds were designed and synthesized by mimicking the structure and function of antimicrobial peptides (AMPs). Among them, compound 9h displayed excellent antimicrobial activity against the Gram-positive strains tested (MICs = 0.5-2 μg/mL), comparable to vancomycin, and with low hemolytic toxicity and good membrane selectivity. Additionally, compound 9h demonstrated rapid bactericidal effects, low resistance frequency, low cytotoxicity, and good plasma stability. Mechanistic studies further revealed that compound 9h had good membrane-targeting ability and was able to destroy the integrity of bacterial cell membranes, causing an increase in intracellular ROS and the leakage of DNA and proteins, thus accelerating bacterial death. These results make 9h a promising antimicrobial candidate to combat bacterial infection.
Collapse
Affiliation(s)
| | | | | | | | | | - Xuekun Wang
- State Key Laboratory for Macromolecule Drugs and Large-Scale Manufacturing, School of Pharmaceutical Sciences and Food Engineering, Liaocheng University, Liaocheng 252059, China; (S.Y.); (F.L.); (Y.L.); (M.Z.); (L.Z.)
| | - Yinhu Wang
- State Key Laboratory for Macromolecule Drugs and Large-Scale Manufacturing, School of Pharmaceutical Sciences and Food Engineering, Liaocheng University, Liaocheng 252059, China; (S.Y.); (F.L.); (Y.L.); (M.Z.); (L.Z.)
| |
Collapse
|