51
|
Calvo V, Izquierdo M. T Lymphocyte and CAR-T Cell-Derived Extracellular Vesicles and Their Applications in Cancer Therapy. Cells 2022; 11:790. [PMID: 35269412 PMCID: PMC8909086 DOI: 10.3390/cells11050790] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/14/2022] [Accepted: 02/21/2022] [Indexed: 02/01/2023] Open
Abstract
Extracellular vesicles (EV) are a very diverse group of cell-derived vesicles released by almost all kind of living cells. EV are involved in intercellular exchange, both nearby and systemically, since they induce signals and transmit their cargo (proteins, lipids, miRNAs) to other cells, which subsequently trigger a wide variety of biological responses in the target cells. However, cell surface receptor-induced EV release is limited to cells from the immune system, including T lymphocytes. T cell receptor activation of T lymphocytes induces secretion of EV containing T cell receptors for antigen and several bioactive molecules, including proapoptotic proteins. These EV are specific for antigen-bearing cells, which make them ideal candidates for a cell-free, EV-dependent cancer therapy. In this review we examine the generation of EV by T lymphocytes and CAR-T cells and some potential therapeutic approaches of these EV.
Collapse
Affiliation(s)
- Victor Calvo
- Departamento de Bioquímica, Instituto de Investigaciones Biomédicas Alberto Sols CSIC-UAM, Facultad de Medicina, Universidad Autónoma de Madrid, 28029 Madrid, Spain;
| | - Manuel Izquierdo
- Departamento de Metabolismo y Señalización Celular, Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM, 28029 Madrid, Spain
| |
Collapse
|
52
|
Russell AE, Liao Z, Tkach M, Tarwater PM, Ostrowski M, Théry C, Witwer KW. Cigarette smoke-induced extracellular vesicles from dendritic cells alter T-cell activation and HIV replication. Toxicol Lett 2022; 360:33-43. [PMID: 35181468 PMCID: PMC9014967 DOI: 10.1016/j.toxlet.2022.02.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 01/26/2022] [Accepted: 02/12/2022] [Indexed: 10/19/2022]
Abstract
Despite decreased rates of tobacco smoking in many areas, cigarette smoking remains a major contributor to many health problems. Cigarette smoking can reduce immune system functioning while concurrently increasing inflammation. Dendritic cells in the lung exposed to cigarette smoke become stimulated and go on to activate T-cells. Extracellular vesicles (EVs) are nano-sized particles released by cells. They participate in intercellular communication by transferring functional proteins and nucleic acids to recipient cells and have been implicated in immune responses. For example, they can display MHC-peptide complexes to activate T-cells. In the current study, we sought to understand the role of cigarette smoke extract (CSE) on dendritic cell-derived EVs and their capacity to activate and differentiate T-cells. Primary human dendritic cells (iDCs) were exposed to CSE and EVs were separated and characterized. We exposed autologous primary CD4 + T-cells to iDC-EVs and observed T helper cell populations skewing towards Th1 and Th17 phenotypes. As HIV + individuals are disproportionately likely to be current smokers, we also examined the effects of iDC-EVs on acutely infected T-cells as well as on a cell model of HIV latency (ACH-2). We found that in most cases, iDC-CSE EVs tended to reduce p24 release from the acutely infected primary T-cells, albeit with great variability. We did not observe large effects of iDC-EVs or direct CSE exposure on p24 release from the ACH-2 cell line. Together, these data suggest that iDC-CSE EVs have the capacity to modulate the immune responses, in part by pushing T-cells towards Th1 and Th17 phenotypes.
Collapse
Affiliation(s)
- Ashley E Russell
- Department of Molecular and Comparative Pathobiology, The Johns Hopkins University School of Medicine, Baltimore, MD, United States; Department of Biology, School of Science, Penn State Erie, The Behrend College, Erie, PA, United States.
| | - Zhaohao Liao
- Department of Molecular and Comparative Pathobiology, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Mercedes Tkach
- INSERM U932, Institut Curie Centre de Recherche, PSL Research University, Paris, France
| | - Patrick M Tarwater
- Department of Epidemiology, The Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, United States
| | - Matias Ostrowski
- Instituto INBIRS, Universidad de Buenos Aires-CONICET, Buenos Aires, Argentina
| | - Clotilde Théry
- INSERM U932, Institut Curie Centre de Recherche, PSL Research University, Paris, France
| | - Kenneth W Witwer
- Department of Molecular and Comparative Pathobiology, The Johns Hopkins University School of Medicine, Baltimore, MD, United States; Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD, United States; The Richman Family Precision Medicine Center of Excellence in Alzheimer's Disease.
| |
Collapse
|
53
|
Waqas MY, Javid MA, Nazir MM, Niaz N, Nisar MF, Manzoor Z, Bhatti SA, Hameed S, Khaliq MH. Extracellular vesicles and exosome: insight from physiological regulatory perspectives. J Physiol Biochem 2022; 78:573-580. [PMID: 35102530 DOI: 10.1007/s13105-022-00877-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 01/18/2022] [Indexed: 12/11/2022]
Abstract
The current study highlights prospective mechanisms of biogenesis of extracellular vesicles (EVs) and potential involvement in cellular signaling and transport with great emphasis to illustrate their role as biomarkers in certain pathologies. The current review highlights EVs, the heterogeneous entities secreted by cells in highly conserved manner. A series of consensus terminologies for various types is yet to be organized. Exosomes, microvesicles and apoptotic bodies are major populations among EVs. EVs are key regulators in cellular physiological homeostasis, disease progression and evolve either from plasma membrane (microvesicles) or fusion of endosomes with exosomes. However, how vesicular inclusions elicit a plethora of biological responses is still not much clear. However, how these vesicular inclusions get packaged and delivered by these EVs shows great involvement in inter- and intracellular cellular signaling and channeling of multiple proteins, variety of RNAs and certain fat molecules. It's worth to mention that EVs carry small non-coding RNAs (snRNAs) which are involved in multiple cellular molecular events at targeted sites. Moreover, snRNA trafficking through exosomes and microvesicles depicts remarkable potential as non-invasive biomarkers in different clinical disorders especially immune system pathologies, cardiovascular issues, and metabolic syndromes.
Collapse
Affiliation(s)
- Muhammad Yasir Waqas
- Department of Physiology and Biochemistry, Cholistan University of Veterinary and Animal Sciences (CUVAS), Bahawalpur, 63100, Pakistan
| | - Muhammad Arshad Javid
- Department of Bio-Sciences, Faculty of Veterinary Sciences, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Muhammad Mudasser Nazir
- Department of Pathobiology, Faculty of Veterinary Sciences, Bahauddin Zakariya University, Multan, 60800, Pakistan.
| | - Nasir Niaz
- Faculty of Veterinary and Animal Sciences, Muhammad Nawaz Sharif University of Agriculture, Multan, 60800, Pakistan
| | - Muhammad Farrukh Nisar
- Department of Physiology and Biochemistry, Cholistan University of Veterinary and Animal Sciences (CUVAS), Bahawalpur, 63100, Pakistan
| | - Zahid Manzoor
- Department of Pharmacology and Toxicology, Cholistan University of Veterinary and Animal Sciences (CUVAS), Bahawalpur, 63100, Pakistan
| | - Sheraz Ahmed Bhatti
- Department of Pathobiology, Faculty of Veterinary Sciences, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Sajid Hameed
- Department of Anatomy and Histology, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Muhammad Haseeb Khaliq
- Department of Anatomy and Histology, Cholistan University of Veterinary and Animal Sciences (CUVAS), Bahawalpur, 63100, Pakistan
| |
Collapse
|
54
|
Fasano R, Malerba E, Prete M, Solimando AG, Buonavoglia A, Silvestris N, Leone P, Racanelli V. Impact of Antigen Presentation Mechanisms on Immune Response in Autoimmune Hepatitis. Front Immunol 2022; 12:814155. [PMID: 35116039 PMCID: PMC8804214 DOI: 10.3389/fimmu.2021.814155] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 12/31/2021] [Indexed: 12/21/2022] Open
Abstract
The liver is a very tolerogenic organ. It is continually exposed to a multitude of antigens and is able to promote an effective immune response against pathogens and simultaneously immune tolerance against self-antigens. In spite of strong peripheral and central tolerogenic mechanisms, loss of tolerance can occur in autoimmune liver diseases, such as autoimmune hepatitis (AIH) through a combination of genetic predisposition, environmental factors, and an imbalance in immunological regulatory mechanisms. The liver hosts several types of conventional resident antigen presenting cells (APCs) such as dendritic cells, B cells and macrophages (Kupffer cells), and unconventional APCs including liver sinusoidal endothelial cells, hepatic stellate cells and hepatocytes. By standard (direct presentation and cross-presentation) and alternative mechanisms (cross-dressing and MHC class II-dressing), liver APCs presents self-antigen to naive T cells in the presence of costimulation leading to an altered immune response that results in liver injury and inflammation. Additionally, the transport of antigens and antigen:MHC complexes by trogocytosis and extracellular vesicles between different cells in the liver contributes to enhance antigen presentation and amplify autoimmune response. Here, we focus on the impact of antigen presentation on the immune response in the liver and on the functional role of the immune cells in the induction of liver inflammation. A better understanding of these key pathogenic aspects could facilitate the establishment of novel therapeutic strategies in AIH.
Collapse
Affiliation(s)
- Rossella Fasano
- Department of Biomedical Sciences and Human Oncology, “Aldo Moro” University of Bari Medical School, Bari, Italy
- Medical Oncology Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Tumori Giovanni Paolo II, Bari, Italy
| | - Eleonora Malerba
- Department of Biomedical Sciences and Human Oncology, “Aldo Moro” University of Bari Medical School, Bari, Italy
| | - Marcella Prete
- Department of Biomedical Sciences and Human Oncology, “Aldo Moro” University of Bari Medical School, Bari, Italy
| | - Antonio Giovanni Solimando
- Department of Biomedical Sciences and Human Oncology, “Aldo Moro” University of Bari Medical School, Bari, Italy
- Medical Oncology Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Tumori Giovanni Paolo II, Bari, Italy
| | - Alessio Buonavoglia
- Department of Biomedical Sciences and Human Oncology, “Aldo Moro” University of Bari Medical School, Bari, Italy
| | - Nicola Silvestris
- Department of Biomedical Sciences and Human Oncology, “Aldo Moro” University of Bari Medical School, Bari, Italy
- Medical Oncology Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Tumori Giovanni Paolo II, Bari, Italy
| | - Patrizia Leone
- Department of Biomedical Sciences and Human Oncology, “Aldo Moro” University of Bari Medical School, Bari, Italy
| | - Vito Racanelli
- Department of Biomedical Sciences and Human Oncology, “Aldo Moro” University of Bari Medical School, Bari, Italy
- *Correspondence: Vito Racanelli,
| |
Collapse
|
55
|
Kong H, Kim SB. Exosomal Communication Between the Tumor Microenvironment and Innate Immunity and Its Therapeutic Application. Immune Netw 2022; 22:e38. [DOI: 10.4110/in.2022.22.e38] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 08/16/2022] [Accepted: 08/18/2022] [Indexed: 11/05/2022] Open
Affiliation(s)
- Hyunseok Kong
- Department of Animal Resource Science, Sahmyook University, Seoul 01795, Korea
| | - Sang Bum Kim
- College of Pharmacy, Sahmyook University, Seoul 01795, Korea
| |
Collapse
|
56
|
Bosch S, Mignot G. [Extracellular vesicles are players of the immune continuum]. Med Sci (Paris) 2021; 37:1139-1145. [PMID: 34928218 DOI: 10.1051/medsci/2021206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Regulation of immune responses was among the first functions of extracellular vesicles to be identified, more than twenty years ago. What exactly defines the outcome of an immune response remains a challenging issue. Owing to their reduced size, extracellular vesicles easily diffuse in interstitial and lymphatic fluids, where they can interact with the multiple effectors of the immune system. By accelerating and amplifying immune interactions, these ultra-mobile units may contribute to local and systemic coordination for efficient adaption to external and internal changes. Here we introduce the related ground-breaking studies of extracellular vesicle-mediated immune effects and present ongoing considerations on their potential roles in health and the development of immune disorders.
Collapse
Affiliation(s)
- Steffi Bosch
- Laboratoire d'immuno-endocrinologie cellulaire et moléculaire (IECM), École nationale vétérinaire, agroalimentaire et de l'alimentation de Nantes-Atlantique (ONIRIS), INRAE, USC (unités sous-contrats)1383, 44000 Nantes, France
| | - Grégoire Mignot
- Laboratoire d'immuno-endocrinologie cellulaire et moléculaire (IECM), École nationale vétérinaire, agroalimentaire et de l'alimentation de Nantes-Atlantique (ONIRIS), INRAE, USC (unités sous-contrats)1383, 44000 Nantes, France
| |
Collapse
|
57
|
Zhang Y, Chen J, Fu H, Kuang S, He F, Zhang M, Shen Z, Qin W, Lin Z, Huang S. Exosomes derived from 3D-cultured MSCs improve therapeutic effects in periodontitis and experimental colitis and restore the Th17 cell/Treg balance in inflamed periodontium. Int J Oral Sci 2021; 13:43. [PMID: 34907166 PMCID: PMC8671433 DOI: 10.1038/s41368-021-00150-4] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 11/20/2021] [Accepted: 11/21/2021] [Indexed: 01/07/2023] Open
Abstract
Although mesenchymal stem cell-derived exosomes (MSC-exos) have been shown to have therapeutic effects in experimental periodontitis, their drawbacks, such as low yield and limited efficacy, have hampered their clinical application. These drawbacks can be largely reduced by replacing the traditional 2D culture system with a 3D system. However, the potential function of MSC-exos produced by 3D culture (3D-exos) in periodontitis remains elusive. This study showed that compared with MSC-exos generated via 2D culture (2D-exos), 3D-exos showed enhanced anti-inflammatory effects in a ligature-induced model of periodontitis by restoring the reactive T helper 17 (Th17) cell/Treg balance in inflamed periodontal tissues. Mechanistically, 3D-exos exhibited greater enrichment of miR-1246, which can suppress the expression of Nfat5, a key factor that mediates Th17 cell polarization in a sequence-dependent manner. Furthermore, we found that recovery of the Th17 cell/Treg balance in the inflamed periodontium by the local injection of 3D-exos attenuated experimental colitis. Our study not only showed that by restoring the Th17 cell/Treg balance through the miR-1246/Nfat5 axis, the 3D culture system improved the function of MSC-exos in the treatment of periodontitis, but also it provided a basis for treating inflammatory bowel disease (IBD) by restoring immune responses in the inflamed periodontium.
Collapse
Affiliation(s)
- Yong Zhang
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jiayao Chen
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Haijun Fu
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Shuhong Kuang
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Feng He
- Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Min Zhang
- The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zongshan Shen
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Wei Qin
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zhengmei Lin
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China.
| | - Shuheng Huang
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China.
| |
Collapse
|
58
|
Logozzi M, Di Raimo R, Properzi F, Barca S, Angelini DF, Mizzoni D, Falchi M, Battistini L, Fais S. Nanovesicles released by OKT3 hybridoma express fully active antibodies. J Enzyme Inhib Med Chem 2021; 36:175-182. [PMID: 33404266 PMCID: PMC7801098 DOI: 10.1080/14756366.2020.1852401] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 11/12/2020] [Indexed: 12/17/2022] Open
Abstract
Recent findings have shown that nanovesicles preparations from either primary immune cells culture supernatants or plasma contain immunoglobulins, suggesting that a natural way of antibody production may be through exosome release. To verify this hypothesis, we used the OKT3 hybridoma clone, which produces a murine IgG2a monoclonal antibody used to reduce rejection in patients undergoing organ transplantation. We showed exosome-associated immunoglobulins in hybridoma supernatants, by Western blot, nanoscale flow cytometry and immunocapture-based ELISA. The OKT3-exo was also being able to trigger cytokines production in both CD4 and CD8 T cells. These results show that nanovesicles contain immunoglobulin and could be used for immunotherapy. These data could lead to a new approach to improve the effectiveness of therapeutic antibodies by exploiting their natural property to be expressed on nanovesicle membrane, that probably render them more stable and as a consequence more capable to interact with their specific ligand in the best way.
Collapse
Affiliation(s)
- Mariantonia Logozzi
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Rossella Di Raimo
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Francesca Properzi
- Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità, Rome, Italy
| | - Stefano Barca
- FARVA – National Centre for Drug Research and Evaluation, Istituto Superiore di Sanità, Rome, Italy
| | | | - Davide Mizzoni
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Mario Falchi
- National AIDS Center, Istituto Superiore di Sanità, Rome, Italy
| | - Luca Battistini
- Neuroimmunology Unit, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Stefano Fais
- Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
59
|
Mammes A, Pasquier J, Mammes O, Conti M, Douard R, Loric S. Extracellular vesicles: General features and usefulness in diagnosis and therapeutic management of colorectal cancer. World J Gastrointest Oncol 2021; 13:1561-1598. [PMID: 34853637 PMCID: PMC8603448 DOI: 10.4251/wjgo.v13.i11.1561] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 06/29/2021] [Accepted: 09/08/2021] [Indexed: 02/06/2023] Open
Abstract
In the world, among all type of cancers, colorectal cancer (CRC) is the third most commonly diagnosed in males and the second in females. In most of cases, (RP1) patients’ prognosis limitation with malignant tumors can be attributed to delayed diagnosis of the disease. Identification of patients with early-stage disease leads to more effective therapeutic interventions. Therefore, new screening methods and further innovative treatment approaches are mandatory as they may lead to an increase in progression-free and overall survival rates. For the last decade, the interest in extracellular vesicles (EVs) research has exponentially increased as EVs generation appears to be a universal feature of every cell that is strongly involved in many mechanisms of cell-cell communication either in physiological or pathological situations. EVs can cargo biomolecules, such as lipids, proteins, nucleic acids and generate transmission signal through the intercellular transfer of their content. By this mechanism, tumor cells can recruit and modify the adjacent and systemic microenvironment to support further invasion and dissemination. This review intends to cover the most recent literature on the role of EVs production in colorectal normal and cancer tissues. Specific attention is paid to the use of EVs for early CRC diagnosis, follow-up, and prognosis as EVs have come into the spotlight of research as a high potential source of ‘liquid biopsies’. The use of EVs as new targets or nanovectors as drug delivery systems for CRC therapy is also summarized.
Collapse
Affiliation(s)
- Aurelien Mammes
- INSERM UMR-938, Cancer Biology and Therapeutics Unit, Saint-Antoine Research Center, Saint Antoine University Hospital, Paris 75012, France
| | - Jennifer Pasquier
- INSERM UMR-938, Cancer Biology and Therapeutics Unit, Saint-Antoine Research Center, Saint Antoine University Hospital, Paris 75012, France
| | | | - Marc Conti
- INSERM UMR-938, Cancer Biology and Therapeutics Unit, Saint-Antoine Research Center, Saint Antoine University Hospital, Paris 75012, France
- Metabolism Research Unit, Integracell SAS, Longjumeau 91160, France
| | - Richard Douard
- UCBM, Necker University Hospital, Paris 75015, France
- Gastrointestinal Surgery Department, Clinique Bizet, Paris 75016, France
| | - Sylvain Loric
- INSERM UMR-938, Cancer Biology and Therapeutics Unit, Saint-Antoine Research Center, Saint Antoine University Hospital, Paris 75012, France
| |
Collapse
|
60
|
Promotion or inhibition of extracellular vesicle release: Emerging therapeutic opportunities. J Control Release 2021; 340:136-148. [PMID: 34695524 DOI: 10.1016/j.jconrel.2021.10.019] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 02/07/2023]
Abstract
Extracellular vesicles (EVs) are vehicles of intercellular communication that are released from various cell types under physiological and pathological conditions, with differing effects on the body. Under physiological conditions, EVs mediate cell-to-cell and intertissue communication and participate in maintaining homeostasis. Certain EV types have emerged as biological therapeutic agents in various fields, such as cell-free regenerative medicine, drug delivery and immunotherapy. However, the low yield of EVs is a bottleneck in the large-scale implementation of these therapies. Conversely, more EVs in the microenvironment in other circumstances, such as tumor metastasis, viral particle transmission, and the propagation of neurodegenerative disease, can exacerbate the situation, and the inhibition of EV secretion may delay the progression of these diseases. Therefore, the promotion and inhibition of EV release is a new and promising field because of its great research potential and wide application prospects. We first review the methods and therapeutic opportunities for the regulation of EV release based on the mechanism of EV biogenesis and consider the side effects and challenges.
Collapse
|
61
|
Verweij FJ, Balaj L, Boulanger CM, Carter DRF, Compeer EB, D'Angelo G, El Andaloussi S, Goetz JG, Gross JC, Hyenne V, Krämer-Albers EM, Lai CP, Loyer X, Marki A, Momma S, Nolte-'t Hoen ENM, Pegtel DM, Peinado H, Raposo G, Rilla K, Tahara H, Théry C, van Royen ME, Vandenbroucke RE, Wehman AM, Witwer K, Wu Z, Wubbolts R, van Niel G. The power of imaging to understand extracellular vesicle biology in vivo. Nat Methods 2021; 18:1013-1026. [PMID: 34446922 PMCID: PMC8796660 DOI: 10.1038/s41592-021-01206-3] [Citation(s) in RCA: 165] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 05/20/2021] [Indexed: 01/08/2023]
Abstract
Extracellular vesicles (EVs) are nano-sized lipid bilayer vesicles released by virtually every cell type. EVs have diverse biological activities, ranging from roles in development and homeostasis to cancer progression, which has spurred the development of EVs as disease biomarkers and drug nanovehicles. Owing to the small size of EVs, however, most studies have relied on isolation and biochemical analysis of bulk EVs separated from biofluids. Although informative, these approaches do not capture the dynamics of EV release, biodistribution, and other contributions to pathophysiology. Recent advances in live and high-resolution microscopy techniques, combined with innovative EV labeling strategies and reporter systems, provide new tools to study EVs in vivo in their physiological environment and at the single-vesicle level. Here we critically review the latest advances and challenges in EV imaging, and identify urgent, outstanding questions in our quest to unravel EV biology and therapeutic applications.
Collapse
Affiliation(s)
- Frederik J Verweij
- Université de Paris, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Paris, France.
- GHU Paris Psychiatrie et Neurosciences, Hôpital Sainte Anne, Paris, France.
| | - Leonora Balaj
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | | | - David R F Carter
- Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, UK
- Evox Therapeutics Limited, Oxford Science Park, Oxford, UK
| | - Ewoud B Compeer
- Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford, UK
| | - Gisela D'Angelo
- Institut Curie, PSL Research University, CNRS, UMR144 Cell Biology and Cancer, Paris, France
| | - Samir El Andaloussi
- Evox Therapeutics Limited, Oxford Science Park, Oxford, UK
- Clinical Research Center, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Jacky G Goetz
- INSERM UMR_S1109, Tumor Biomechanics Lab, Université de Strasbourg, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Equipe Labellisée Ligue contre le Cancer, Strasbourg, France
| | | | - Vincent Hyenne
- INSERM UMR_S1109, Tumor Biomechanics Lab, Université de Strasbourg, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Equipe Labellisée Ligue contre le Cancer, Strasbourg, France
- CNRS SNC5055, Strasbourg, France
| | - Eva-Maria Krämer-Albers
- Johannes Gutenberg-Universität Mainz, Institute of Developmental Biology and Neurobiology, Mainz, Germany
| | - Charles P Lai
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, Taiwan
| | - Xavier Loyer
- Université de Paris, PARCC, INSERM, Paris, France
| | - Alex Marki
- La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA
| | - Stefan Momma
- Institute of Neurology (Edinger Institute), Goethe-University, Frankfurt am Main, Germany
| | - Esther N M Nolte-'t Hoen
- Department of Biomolecular Health Sciences, Faculty of veterinary medicine, Utrecht University, Utrecht, the Netherlands
| | - D Michiel Pegtel
- Amsterdam UMC, Vrije Universiteit Amsterdam, Pathology, Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Hector Peinado
- Microenvironment and Metastasis Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Graça Raposo
- Institut Curie, PSL Research University, CNRS, UMR144 Cell Biology and Cancer, Paris, France
| | - Kirsi Rilla
- University of Eastern Finland, Institute of Biomedicine, Kuopio, Finland
| | - Hidetoshi Tahara
- Department of Cellular and Molecular Biology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Clotilde Théry
- Institut Curie, PSL Research University, INSERM U932, Immunity and Cancer, Paris, France
| | | | - Roosmarijn E Vandenbroucke
- VIB Center for Inflammation Research and Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Ann M Wehman
- Department of Biological Sciences, University of Denver, Denver, CO, USA
| | - Kenneth Witwer
- Department of Molecular and Comparative Pathobiology and Neurology and the Richman Family Precision Medicine Center of Excellence in Alzheimer's Disease, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Zhiwei Wu
- Center for Public Health Research, Medical School, Nanjing University, Nanjing, China
- State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, China
- Medical School, Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, China
| | - Richard Wubbolts
- Department of Biomolecular Health Sciences, Faculty of veterinary medicine, Utrecht University, Utrecht, the Netherlands
| | - Guillaume van Niel
- Université de Paris, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Paris, France.
- GHU Paris Psychiatrie et Neurosciences, Hôpital Sainte Anne, Paris, France.
| |
Collapse
|
62
|
Sun Y, Hou Y, Meng G, Han P, Zhao Y, Wang H, Xu M, Wang Y, Qiu J, Peng J, Shao L, Sun L, Hou M. Proteomic analysis and microRNA expression profiling of plasma-derived exosomes in primary immune thrombocytopenia. Br J Haematol 2021; 194:1045-1052. [PMID: 34337736 DOI: 10.1111/bjh.17720] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 06/30/2021] [Accepted: 07/08/2021] [Indexed: 12/23/2022]
Abstract
Exosomes are released into extracellular fluids and have emerged as vital biological mediators in autoimmune diseases. Plasma-derived exosomes have been reported to take part in the pathogenesis of primary immune thrombocytopenia (ITP), but the protein and miRNA cargoes have not been entirely elucidated. Via proteomic analysis and RNA sequencing on plasma-derived exosomes from ITP patients and healthy controls, we found one upregulated exosomal protein (apolipoprotein E, ApoE), six downregulated exosomal miRNAs (miR-584-5p, miR-4433a-5p, miR-4433b-3p, miR-6842-3p, miR-130b-5p and miR-222-3p), and 10 upregulated exosomal miRNAs (miR-29a-3p, miR-142-5p, miR-16-2-3p, miR-29b-3p, miR-501-3p, miR-144-5p, miR-192-5p, miR-182-5p, miR-363-3p and miR-96-5p) in ITP patients. The elevated exosomal protein candidate ApoE in the ITP cohort was further validated using western blot. Via quantitative real-time polymerase chain reaction assays, three differentially expressed miRNAs (miR-584-5p, miR-142-5p and miR-29b-3p) were identified. This study provides direct evidence for a restricted signature of exosomal protein and miRNAs which distinguishes ITP from healthy controls. The results require further validation in larger independent ITP cohorts, which will provide insights into the potential pathophysiological significance of circulating exosomes in ITP.
Collapse
Affiliation(s)
- Yunqi Sun
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.,Department of Pain, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Yu Hou
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Guiyue Meng
- Department of Geriatrics, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Panpan Han
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Yajing Zhao
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Haoyi Wang
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Miao Xu
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Yawen Wang
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Jihua Qiu
- Department of Geriatric Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Jun Peng
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.,Shandong Key Laboratory of Immunohematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Linlin Shao
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Lu Sun
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Ming Hou
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.,Shandong Key Laboratory of Immunohematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.,Leading Research Group of Scientific Innovation, Department of Science and Technology of Shandong Province, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| |
Collapse
|
63
|
Mastoridis S, Londoño MC, Kurt A, Kodela E, Crespo E, Mason J, Bestard O, Martínez-Llordella M, Sánchez-Fueyo A. Impact of donor extracellular vesicle release on recipient cell "cross-dressing" following clinical liver and kidney transplantation. Am J Transplant 2021; 21:2387-2398. [PMID: 32515541 DOI: 10.1111/ajt.16123] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 05/26/2020] [Accepted: 05/30/2020] [Indexed: 01/25/2023]
Abstract
In several murine models of transplantation, the "cross-dressing" of recipient antigen presenting cells (APCs) with intact donor major histocompatibility complex (MHC) derived from allograft-released small extracellular vesicles (sEVs) has been recently described as a key mechanism in eliciting and sustaining alloimmune responses. Investigation of these processes in clinical organ transplantation has, however, been hampered by the lack of sensitivity of conventional instruments and assays. We have employed advanced imaging flow cytometry (iFCM) to explore the kinetics of allograft sEV release and the extent to which donor sEVs might induce cross-dressing following liver and kidney transplantation. We report for the first time that recipient APC cross-dressing can be transiently detected in the circulation shortly after liver, but not kidney, transplantation in association with the release of HLA-bearing allograft-derived sEVs. In liver transplant recipients the majority of circulating cells exhibiting donor HLA are indeed cross-dressed cells and not passenger leukocytes. In keeping with experimental animal data, the downstream functional consequences of the transfer of circulating sEVs harvested from human transplant recipients varies depending on the type of transplant and time posttransplant. sEVs released shortly after liver, but not kidney, transplantation exhibit immunoinhibitory effects that could influence liver allograft immunogenicity.
Collapse
Affiliation(s)
- Sotiris Mastoridis
- Medical Research Council (MRC) Centre for Transplantation, Institute of Liver Studies, King's College London, London, United Kingdom
| | - María-Carlota Londoño
- Medical Research Council (MRC) Centre for Transplantation, Institute of Liver Studies, King's College London, London, United Kingdom.,Liver Unit, Hospital Clinic Barcelona, IDIBAPS, CIBEREHD, Barcelona, Spain
| | - Ada Kurt
- Medical Research Council (MRC) Centre for Transplantation, Institute of Liver Studies, King's College London, London, United Kingdom
| | - Elisavet Kodela
- Medical Research Council (MRC) Centre for Transplantation, Institute of Liver Studies, King's College London, London, United Kingdom
| | - Elena Crespo
- Kidney Transplant Unit, Bellvitge University Hospital, Barcelona, Spain
| | - John Mason
- Department of Physiology, Anatomy & Genetics, University of Oxford, United Kingdom
| | - Oriol Bestard
- Kidney Transplant Unit, Bellvitge University Hospital, Barcelona, Spain
| | - Marc Martínez-Llordella
- Medical Research Council (MRC) Centre for Transplantation, Institute of Liver Studies, King's College London, London, United Kingdom
| | - Alberto Sánchez-Fueyo
- Medical Research Council (MRC) Centre for Transplantation, Institute of Liver Studies, King's College London, London, United Kingdom
| |
Collapse
|
64
|
Pelissier Vatter FA, Cioffi M, Hanna SJ, Castarede I, Caielli S, Pascual V, Matei I, Lyden D. Extracellular vesicle- and particle-mediated communication shapes innate and adaptive immune responses. J Exp Med 2021; 218:212439. [PMID: 34180950 PMCID: PMC8241538 DOI: 10.1084/jem.20202579] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 02/25/2021] [Accepted: 06/02/2021] [Indexed: 02/06/2023] Open
Abstract
Intercellular communication among immune cells is vital for the coordination of proper immune responses. Extracellular vesicles and particles (EVPs) act as messengers in intercellular communication, with important consequences for target cell and organ physiology in both health and disease. Under normal physiological conditions, immune cell-derived EVPs participate in immune responses by regulating innate and adaptive immune responses. EVPs play a major role in antigen presentation and immune activation. On the other hand, immune cell-derived EVPs exert immunosuppressive and regulatory effects. Consequently, EVPs may contribute to pathological conditions, such as autoimmune and inflammatory diseases, graft rejection, and cancer progression and metastasis. Here, we provide an overview of the role of EVPs in immune homeostasis and pathophysiology, with a particular focus on their contribution to innate and adaptive immunity and their potential use for immunotherapies.
Collapse
Affiliation(s)
- Fanny A Pelissier Vatter
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics and Cell and Developmental Biology, Drukier Institute for Children's Health, Meyer Cancer Center, Weill Cornell Medicine, New York, NY
| | - Michele Cioffi
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics and Cell and Developmental Biology, Drukier Institute for Children's Health, Meyer Cancer Center, Weill Cornell Medicine, New York, NY
| | - Samer J Hanna
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics and Cell and Developmental Biology, Drukier Institute for Children's Health, Meyer Cancer Center, Weill Cornell Medicine, New York, NY
| | - Ines Castarede
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics and Cell and Developmental Biology, Drukier Institute for Children's Health, Meyer Cancer Center, Weill Cornell Medicine, New York, NY.,Swiss Institute for Experimental Cancer Research, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Simone Caielli
- Drukier Institute for Children's Health and Department of Pediatrics, Weill Cornell Medicine, New York, NY
| | - Virginia Pascual
- Drukier Institute for Children's Health and Department of Pediatrics, Weill Cornell Medicine, New York, NY
| | - Irina Matei
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics and Cell and Developmental Biology, Drukier Institute for Children's Health, Meyer Cancer Center, Weill Cornell Medicine, New York, NY
| | - David Lyden
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics and Cell and Developmental Biology, Drukier Institute for Children's Health, Meyer Cancer Center, Weill Cornell Medicine, New York, NY
| |
Collapse
|
65
|
Grieco GE, Fignani D, Formichi C, Nigi L, Licata G, Maccora C, Brusco N, Sebastiani G, Dotta F. Extracellular Vesicles in Immune System Regulation and Type 1 Diabetes: Cell-to-Cell Communication Mediators, Disease Biomarkers, and Promising Therapeutic Tools. Front Immunol 2021; 12:682948. [PMID: 34177928 PMCID: PMC8219977 DOI: 10.3389/fimmu.2021.682948] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 05/10/2021] [Indexed: 12/16/2022] Open
Abstract
Extracellular vesicles (EVs) are generated by cells of origin through complex molecular mechanisms and released into extracellular environment. Hence, the presence of EVs has been described in multiple biological fluids and in most cases their molecular cargo, which includes non-coding RNAs (ncRNA), messenger RNAs (mRNA), and proteins, has been reported to modulate distinct biological processes. EVs release and their molecular cargo have been demonstrated to be altered in multiple diseases, including autoimmune diseases. Notably, numerous evidence showed a relevant crosstalk between immune system and interacting cells through specific EVs release. The crosstalk between insulin-producing pancreatic β cells and immune system through EVs bidirectional trafficking has yet started to be deciphered, thus uncovering an intricate communication network underlying type 1 diabetes (T1D) pathogenesis. EVs can also be found in blood plasma or serum. Indeed, the assessment of circulating EVs cargo has been shown as a promising advance in the detection of reliable biomarkers of disease progression. Of note, multiple studies showed several specific cargo alterations of EVs collected from plasma/serum of subjects affected by autoimmune diseases, including T1D subjects. In this review, we discuss the recent literature reporting evidence of EVs role in autoimmune diseases, specifically focusing on the bidirectional crosstalk between pancreatic β cells and immune system in T1D and highlight the relevant promising role of circulating EVs as disease biomarkers.
Collapse
Affiliation(s)
- Giuseppina Emanuela Grieco
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy.,Fondazione Umberto Di Mario, c/o Toscana Life Sciences, Siena, Italy
| | - Daniela Fignani
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy.,Fondazione Umberto Di Mario, c/o Toscana Life Sciences, Siena, Italy
| | - Caterina Formichi
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy.,Fondazione Umberto Di Mario, c/o Toscana Life Sciences, Siena, Italy.,UOC Diabetologia, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Laura Nigi
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy.,Fondazione Umberto Di Mario, c/o Toscana Life Sciences, Siena, Italy.,UOC Diabetologia, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Giada Licata
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy.,Fondazione Umberto Di Mario, c/o Toscana Life Sciences, Siena, Italy
| | - Carla Maccora
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy.,Fondazione Umberto Di Mario, c/o Toscana Life Sciences, Siena, Italy.,UOC Diabetologia, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Noemi Brusco
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy.,Fondazione Umberto Di Mario, c/o Toscana Life Sciences, Siena, Italy
| | - Guido Sebastiani
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy.,Fondazione Umberto Di Mario, c/o Toscana Life Sciences, Siena, Italy
| | - Francesco Dotta
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy.,Fondazione Umberto Di Mario, c/o Toscana Life Sciences, Siena, Italy.,UOC Diabetologia, Azienda Ospedaliera Universitaria Senese, Siena, Italy.,Tuscany Centre for Precision Medicine (CReMeP), Siena, Italy
| |
Collapse
|
66
|
Mehanny M, Lehr CM, Fuhrmann G. Extracellular vesicles as antigen carriers for novel vaccination avenues. Adv Drug Deliv Rev 2021; 173:164-180. [PMID: 33775707 DOI: 10.1016/j.addr.2021.03.016] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 03/01/2021] [Accepted: 03/23/2021] [Indexed: 02/07/2023]
Abstract
Antigen delivery has always been a challenge in scientific practice of vaccine formulation. Yet, mammalian extracellular vesicles (EVs) or bacterial membrane vesicles (MVs) provide an innovative avenue for safe and effective delivery of antigenic material. They include intrinsically loaded antigens from EV-secreting cells or extrinsically loaded antigens onto pre-formed vesicles. Interestingly, many studies shed light on potential novel anti-cancer vaccination immunotherapy for therapeutic applications from mammalian cell host-derived EVs, as well as conventional vaccination for prophylactic applications using bacterial cell-derived MVs against infectious diseases. Here, we discuss the rationale, status quo and potential for both vaccine applications using EVs.
Collapse
|
67
|
White JR, Dauros-Singorenko P, Hong J, Vanholsbeeck F, Phillips A, Swift S. The complex, bidirectional role of extracellular vesicles in infection. Biochem Soc Trans 2021; 49:881-891. [PMID: 33860784 PMCID: PMC8106493 DOI: 10.1042/bst20200788] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/08/2021] [Accepted: 03/22/2021] [Indexed: 12/18/2022]
Abstract
Cells from all domains of life release extracellular vesicles (EVs), packages that carry a cargo of molecules that participate in communication, co-ordination of population behaviours, virulence and immune response mechanisms. Mammalian EVs play an increasingly recognised role to fight infection, yet may also be commandeered to disseminate pathogens and enhance infection. EVs released by bacterial pathogens may deliver toxins to host cells, signalling molecules and new DNA to other bacteria, and act as decoys, protecting infecting bacteria from immune killing. In this review, we explore the role of EVs in infection from the perspective of both the pathogen and host, and highlight their importance in the host/pathogen relationship. We highlight proposed strategies for EVs in therapeutics, and call attention to areas where existing knowledge and evidence is lacking.
Collapse
Affiliation(s)
- Joni Renee White
- Department of Molecular Medicine and Pathology, The University of Auckland, 85 Park Road, Auckland, New Zealand
- The Dodd-Walls Centre for Photonic and Quantum Technologies, Department of Physics, Auckland 1010, University of Auckland, New Zealand
| | - Priscila Dauros-Singorenko
- Department of Molecular Medicine and Pathology, The University of Auckland, 85 Park Road, Auckland, New Zealand
- Surgical and Translational Research Centre, Department of Surgery, The University of Auckland, 22-30 Park Avenue, Auckland, New Zealand
| | - Jiwon Hong
- Surgical and Translational Research Centre, Department of Surgery, The University of Auckland, 22-30 Park Avenue, Auckland, New Zealand
- School of Biological Sciences, The University of Auckland, 3A Symonds Street, Auckland, New Zealand
| | - Frédérique Vanholsbeeck
- The Dodd-Walls Centre for Photonic and Quantum Technologies, Department of Physics, Auckland 1010, University of Auckland, New Zealand
- Department of Physics, The University of Auckland, 38 Princes Street, Auckland, New Zealand
| | - Anthony Phillips
- Surgical and Translational Research Centre, Department of Surgery, The University of Auckland, 22-30 Park Avenue, Auckland, New Zealand
- School of Biological Sciences, The University of Auckland, 3A Symonds Street, Auckland, New Zealand
| | - Simon Swift
- Department of Molecular Medicine and Pathology, The University of Auckland, 85 Park Road, Auckland, New Zealand
| |
Collapse
|
68
|
Qiu P, Zhou J, Zhang J, Dong Y, Liu Y. Exosome: The Regulator of the Immune System in Sepsis. Front Pharmacol 2021; 12:671164. [PMID: 33995102 PMCID: PMC8113812 DOI: 10.3389/fphar.2021.671164] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 04/06/2021] [Indexed: 12/19/2022] Open
Abstract
Sepsis is a syndrome comprised of a series of life-threatening organ dysfunctions caused by a maladjusted body response to infection with no effective treatment. There is growing evidence that the immune system plays a core role in sepsis. Pathogens cause abnormal host immune response and eventually lead to immunosuppression, which is an important cause of death in patients with sepsis. Exosomes are vesicles derived from double invagination of plasma membrane, associating with immune responses closely. The cargos delivered by exosomes into recipient cells, especially immune cells, effectively alter their response and functions in sepsis. In this review, we focus on the effects and mechanisms of exosomes on multiple immune cells, as well as the role of immune cell-derived exosomes in sepsis. This is helpful for us to have an in-depth understanding of the mechanism of immune disorders in sepsis. Exosomes is also expected to become a novel target and therapeutic approach for sepsis.
Collapse
Affiliation(s)
- Peng Qiu
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jing Zhou
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jin Zhang
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Youjing Dong
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yang Liu
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
69
|
Bongiovanni L, Andriessen A, Wauben MHM, Hoen ENMN', de Bruin A. Extracellular Vesicles: Novel Opportunities to Understand and Detect Neoplastic Diseases. Vet Pathol 2021; 58:453-471. [PMID: 33813952 PMCID: PMC8064535 DOI: 10.1177/0300985821999328] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
With a size range from 30 to 1000 nm, extracellular vesicles (EVs) are one of the smallest cell components able to transport biologically active molecules. They mediate intercellular communications and play a fundamental role in the maintenance of tissue homeostasis and pathogenesis in several types of diseases. In particular, EVs actively contribute to cancer initiation and progression, and there is emerging understanding of their role in creation of the metastatic niche. This fact underlies the recent exponential growth in EV research, which has improved our understanding of their specific roles in disease and their potential applications in diagnosis and therapy. EVs and their biomolecular cargo reflect the state of the diseased donor cells, and can be detected in body fluids and exploited as biomarkers in cancer and other diseases. Relatively few studies have been published on EVs in the veterinary field. This review provides an overview of the features and biology of EVs as well as recent developments in EV research including techniques for isolation and analysis, and will address the way in which the EVs released by diseased tissues can be studied and exploited in the field of veterinary pathology. Uniquely, this review emphasizes the important contribution that pathologists can make to the field of EV research: pathologists can help EV scientists in studying and confirming the role of EVs and their molecular cargo in diseased tissues and as biomarkers in liquid biopsies.
Collapse
Affiliation(s)
- Laura Bongiovanni
- 90051Utrecht University, Utrecht, the Netherlands.,University Medical Center Groningen, University of Groningen, Groningen, the Netherlands.,Present address: Faculty of Veterinary Medicine, University of Teramo, Teramo, Italy
| | | | | | | | - Alain de Bruin
- 90051Utrecht University, Utrecht, the Netherlands.,University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| |
Collapse
|
70
|
Cheon SY, Lee JE. Extracellular Vesicles and Immune System in Ageing and Immune Diseases. Exp Neurobiol 2021; 30:32-47. [PMID: 33632983 PMCID: PMC7926047 DOI: 10.5607/en20059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/06/2021] [Accepted: 01/17/2021] [Indexed: 02/06/2023] Open
Abstract
Immune system is essential for host homeostasis. Immune cells communicate with each other by binding to receptors or by releasing vesicles including chemokines and cytokines. Under healthy circumstances, immune cell-derived factors are critical for cellular growth, division and function, whereas under conditions such as ageing and inflammatory states, they can aggravate pathologies and cause disease. Cell-derived membranous extracellular vesicles mediate cell-to-cell communication and are implicated in various physiological and pathological processes involving ageing and age-related diseases. Extracellular vesicles are responsible for spreading detrimental factors to the surroundings and the propagation phase of inflammatory diseases. The regulation of extracellular vesicles is a putative target for treatment of inflammatory diseases. Moreover, their features are ideal for developing biomarkers and drug delivery systems modulated by bioengineering in inflammatory diseases. The present review summarizes the current understanding of extracellular vesicles in ageing and inflammatory diseases.
Collapse
Affiliation(s)
- So Yeong Cheon
- Department of Biotechnology, College of Biomedical & Health Science, Konkuk University, Chungju 27478, Korea
| | - Jong Eun Lee
- Department of Anatomy, Yonsei University College of Medicine, Seoul 03722, Korea.,BK21 PLUS Project for Medical Science, and Brain Research Institute, Yonsei University College of Medicine, Seoul 03722, Korea
| |
Collapse
|
71
|
Calvo V, Izquierdo M. Role of Actin Cytoskeleton Reorganization in Polarized Secretory Traffic at the Immunological Synapse. Front Cell Dev Biol 2021; 9:629097. [PMID: 33614660 PMCID: PMC7890359 DOI: 10.3389/fcell.2021.629097] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 01/11/2021] [Indexed: 01/01/2023] Open
Abstract
T cell receptor (TCR) and B cell receptor (BCR) stimulation by antigen presented on an antigen-presenting cell (APC) induces the formation of the immune synapse (IS), the convergence of secretory vesicles from T and B lymphocytes toward the centrosome, and the polarization of the centrosome to the immune synapse. Immune synapse formation is associated with an initial increase in cortical F-actin at the synapse, followed by a decrease in F-actin density at the central region of the immune synapse, which contains the secretory domain. These reversible, actin cytoskeleton reorganization processes occur during lytic granule degranulation in cytotoxic T lymphocytes (CTL) and cytokine-containing vesicle secretion in T-helper (Th) lymphocytes. Recent evidences obtained in T and B lymphocytes forming synapses show that F-actin reorganization also occurs at the centrosomal area. F-actin reduction at the centrosomal area appears to be involved in centrosome polarization. In this review we deal with the biological significance of both cortical and centrosomal area F-actin reorganization and some of the derived biological consequences.
Collapse
Affiliation(s)
- Victor Calvo
- Departamento de Bioquímica, Facultad de Medicina, Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas - Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain
| | - Manuel Izquierdo
- Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas - Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
72
|
Zhang DX, Vu LT, Ismail NN, Le MTN, Grimson A. Landscape of extracellular vesicles in the tumour microenvironment: Interactions with stromal cells and with non-cell components, and impacts on metabolic reprogramming, horizontal transfer of neoplastic traits, and the emergence of therapeutic resistance. Semin Cancer Biol 2021; 74:24-44. [PMID: 33545339 DOI: 10.1016/j.semcancer.2021.01.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/12/2021] [Accepted: 01/19/2021] [Indexed: 02/09/2023]
Abstract
Extracellular vesicles (EVs) are increasingly recognised as a pivotal player in cell-cell communication, an attribute of EVs that derives from their ability to transport bioactive cargoes between cells, resulting in complex intercellular signalling mediated by EVs, which occurs under both physiological and pathological conditions. In the context of cancer, recent studies have demonstrated the versatile and crucial roles of EVs in the tumour microenvironment (TME). Here, we revisit EV biology, and focus on EV-mediated interactions between cancer cells and stromal cells, including fibroblasts, immune cells, endothelial cells and neurons. In addition, we focus on recent reports indicating interactions between EVs and non-cell constituents within the TME, including the extracellular matrix. We also review and summarise the intricate cancer-associated network modulated by EVs, which promotes metabolic reprogramming, horizontal transfer of neoplastic traits, and therapeutic resistance in the TME. We aim to provide a comprehensive and updated landscape of EVs in the TME, focusing on oncogenesis, cancer progression and therapeutic resistance, together with our future perspectives on the field.
Collapse
Affiliation(s)
- Daniel Xin Zhang
- Department of Biomedical Sciences, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong SAR; Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA.
| | - Luyen Tien Vu
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Institute for Digital Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; N.1 Institute for Health, National University of Singapore, Singapore
| | - Nur Nadiah Ismail
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Minh T N Le
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Institute for Digital Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; N.1 Institute for Health, National University of Singapore, Singapore.
| | - Andrew Grimson
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
73
|
Samuel M, Gabrielsson S. Personalized medicine and back-allogeneic exosomes for cancer immunotherapy. J Intern Med 2021; 289:138-146. [PMID: 31359504 DOI: 10.1111/joim.12963] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 04/17/2019] [Accepted: 05/13/2019] [Indexed: 12/12/2022]
Abstract
Extracellular vesicles, especially exosomes, have been explored for cancer immunotherapy. The initial studies made use of autologous B-cell or dendritic cell-derived exosomes, with the idea that MHC-peptide complexes on the exosomal surface would stimulate an MHC-restricted cancer-specific immune response. This was also verified in mouse systems, whilst the effects in human clinical systems were more modest. Several studies have explored the mechanisms for exosomal T-cell activation, and a picture emerges where the antigen-presenting cells, possibly both B cells and dendritic cells of the recipient, are needed to induce a potent T-cell response to exosomes. Therefore, the exosomes function more as an adjuvant-like delivery system of antigens, and we need to further understand the exact components that trigger the most broad and potent immune responses. Here, we describe the grounds for using allogeneic exosomes for cancer therapy, something that would greatly improve the feasibility of new exosome-based immunotherapeutic approaches to cure cancer.
Collapse
Affiliation(s)
- M Samuel
- From the, Division of Immunology and Allergy, Department of Medicine, Karolinska Institutet, Solna, Sweden.,Department of Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - S Gabrielsson
- From the, Division of Immunology and Allergy, Department of Medicine, Karolinska Institutet, Solna, Sweden.,Department of Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
74
|
Domon H, Maekawa T, Isono T, Furuta K, Kaito C, Terao Y. Proteolytic cleavage of HLA class II by human neutrophil elastase in pneumococcal pneumonia. Sci Rep 2021; 11:2432. [PMID: 33510372 PMCID: PMC7843615 DOI: 10.1038/s41598-021-82212-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 01/18/2021] [Indexed: 12/21/2022] Open
Abstract
Bacterial and viral respiratory infections can initiate acute lung injury and acute respiratory distress syndrome. Neutrophils and their granule enzymes, including neutrophil elastase, are key mediators of the pathophysiology of acute respiratory failure. Although intracellular neutrophil elastase functions as a host defensive factor against pathogens, its leakage into airway spaces induces degradation of host connective tissue components. This leakage disrupts host innate immune responses via proteolytic cleavage of Toll-like receptors and cytokines. Here, we investigated whether neutrophils possess proteases that cleave adaptive immune molecules. We found that expression of the human leukocyte antigen (HLA) class II molecule HLA-DP β1 was decreased in THP-1-derived macrophages treated with supernatants from dead neutrophils. This decreased HLA-DP β1 expression was counteracted by treatment with neutrophil elastase inhibitor, suggesting proteolytic cleavage of HLA-DP β1 by neutrophil elastase. SDS-PAGE showed that neutrophil elastase cleaved recombinant HLA-DP α1, -DP β1, -DQ α1, -DQ β1, -DR α, and -DR β1. Neutrophil elastase also cleaved HLA-DP β1 on extracellular vesicles isolated from macrophages without triggering morphological changes. Thus, leakage of neutrophil elastase may disrupt innate immune responses, antigen presentation, and T cell activation. Additionally, inhibition of neutrophil elastase is a potential therapeutic option for treating bacterial and viral pneumonia.
Collapse
Affiliation(s)
- Hisanori Domon
- Division of Microbiology and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Tomoki Maekawa
- Division of Microbiology and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Toshihito Isono
- Division of Microbiology and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Kazuyuki Furuta
- Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Chikara Kaito
- Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Yutaka Terao
- Division of Microbiology and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.
| |
Collapse
|
75
|
Exosomes in Immune Regulation. Noncoding RNA 2021; 7:ncrna7010004. [PMID: 33435564 PMCID: PMC7838779 DOI: 10.3390/ncrna7010004] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/26/2020] [Accepted: 01/04/2021] [Indexed: 02/08/2023] Open
Abstract
Exosomes, small extracellular vesicles mediate intercellular communication by transferring their cargo including DNA, RNA, proteins and lipids from cell to cell. Notably, in the immune system, they have protective functions. However in cancer, exosomes acquire new, immunosuppressive properties that cause the dysregulation of immune cells and immune escape of tumor cells supporting cancer progression and metastasis. Therefore, current investigations focus on the regulation of exosome levels for immunotherapeutic interventions. In this review, we discuss the role of exosomes in immunomodulation of lymphoid and myeloid cells, and their use as immune stimulatory agents to elicit specific cytotoxic responses against the tumor.
Collapse
|
76
|
Ortega A, Martinez-Arroyo O, Forner MJ, Cortes R. Exosomes as Drug Delivery Systems: Endogenous Nanovehicles for Treatment of Systemic Lupus Erythematosus. Pharmaceutics 2020; 13:pharmaceutics13010003. [PMID: 33374908 PMCID: PMC7821934 DOI: 10.3390/pharmaceutics13010003] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 12/17/2020] [Accepted: 12/18/2020] [Indexed: 02/07/2023] Open
Abstract
Exosomes, nanometer-sized lipid-bilayer-enclosed extracellular vesicles (EVs), have attracted increasing attention due to their inherent ability to shuttle proteins, lipids and genes between cells and their natural affinity to target cells. Their intrinsic features such as stability, biocompatibility, low immunogenicity and ability to overcome biological barriers, have prompted interest in using exosomes as drug delivery vehicles, especially for gene therapy. Evidence indicates that exosomes play roles in both immune stimulation and tolerance, regulating immune signaling and inflammation. To date, exosome-based nanocarriers delivering small molecule drugs have been developed to treat many prevalent autoimmune diseases. This review highlights the key features of exosomes as drug delivery vehicles, such as therapeutic cargo, use of targeting peptide, loading method and administration route with a broad focus. In addition, we outline the current state of evidence in the field of exosome-based drug delivery systems in systemic lupus erythematosus (SLE), evaluating exosomes derived from various cell types and engineered exosomes.
Collapse
Affiliation(s)
- Ana Ortega
- Cardiometabolic and Renal Risk Research Group, INCLIVA Biomedical Research Institute, 46010 Valencia, Spain; (A.O.); (O.M.-A.); (M.J.F.)
| | - Olga Martinez-Arroyo
- Cardiometabolic and Renal Risk Research Group, INCLIVA Biomedical Research Institute, 46010 Valencia, Spain; (A.O.); (O.M.-A.); (M.J.F.)
| | - Maria J. Forner
- Cardiometabolic and Renal Risk Research Group, INCLIVA Biomedical Research Institute, 46010 Valencia, Spain; (A.O.); (O.M.-A.); (M.J.F.)
- Internal Medicine Unit, Hospital Clinico Universitario, 46010 Valencia, Spain
| | - Raquel Cortes
- Cardiometabolic and Renal Risk Research Group, INCLIVA Biomedical Research Institute, 46010 Valencia, Spain; (A.O.); (O.M.-A.); (M.J.F.)
- Correspondence: ; Tel.: +34-96398-3916; Fax: +34-96398-7860
| |
Collapse
|
77
|
Extracellular Vesicles Orchestrate Immune and Tumor Interaction Networks. Cancers (Basel) 2020; 12:cancers12123696. [PMID: 33317058 PMCID: PMC7763968 DOI: 10.3390/cancers12123696] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/04/2020] [Accepted: 12/07/2020] [Indexed: 12/29/2022] Open
Abstract
Simple Summary Significant strides have been made to describe the pervasive role of extracellular vesicles (EVs) in health and disease. This work provides an insightful and unifying mechanistic understanding of EVs in immunity and tumorigenesis. This is achieved by dissecting the role of EVs within the continuum of immune cell physiology, immune–infection responses, and the immune–tumor microenvironment. Our work synthesizes important topical findings on immune EV signaling in mediating immune–tumor interaction networks. Abstract Extracellular vesicles (EVs) are emerging as potent and intricate intercellular communication networks. From their first discovery almost forty years ago, several studies have bolstered our understanding of these nano-vesicular structures. EV subpopulations are now characterized by differences in size, surface markers, cargo, and biological effects. Studies have highlighted the importance of EVs in biology and intercellular communication, particularly during immune and tumor interactions. These responses can be equally mediated at the proteomic and epigenomic levels through surface markers or nucleic acid cargo signaling, respectively. Following the exponential growth of EV studies in recent years, we herein synthesize new aspects of the emerging immune–tumor EV-based intercellular communications. We also discuss the potential role of EVs in fundamental immunological processes under physiological conditions, viral infections, and tumorigenic conditions. Finally, we provide insights on the future prospects of immune–tumor EVs and suggest potential avenues for the use of EVs in diagnostics and therapeutics.
Collapse
|
78
|
Yong T, Li X, Wei Z, Gan L, Yang X. Extracellular vesicles-based drug delivery systems for cancer immunotherapy. J Control Release 2020; 328:562-574. [DOI: 10.1016/j.jconrel.2020.09.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 09/11/2020] [Accepted: 09/14/2020] [Indexed: 12/14/2022]
|
79
|
Immune Regulation by Dendritic Cell Extracellular Vesicles in Cancer Immunotherapy and Vaccines. Cancers (Basel) 2020; 12:cancers12123558. [PMID: 33260499 PMCID: PMC7761478 DOI: 10.3390/cancers12123558] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/18/2020] [Accepted: 11/25/2020] [Indexed: 02/07/2023] Open
Abstract
Extracellular vesicles (EVs) play a crucial role in intercellular communication as vehicles for the transport of membrane and cytosolic proteins, lipids, and nucleic acids including different RNAs. Dendritic cells (DCs)-derived EVs (DEVs), albeit variably, express major histocompatibility complex (MHC)-peptide complexes and co-stimulatory molecules on their surface that enable the interaction with other immune cells such as CD8+ T cells, and other ligands that stimulate natural killer (NK) cells, thereby instructing tumor rejection, and counteracting immune-suppressive tumor microenvironment. Malignant cells oppose this effect by secreting EVs bearing a variety of molecules that block DCs function. For instance, tumor-derived EVs (TDEVs) can impair myeloid cell differentiation resulting in myeloid-derived suppressor cells (MDSCs) generation. Hence, the unique composition of EVs makes them suitable candidates for the development of new cancer treatment approaches including prophylactic vaccine targeting oncogenic pathogens, cancer vaccines, and cancer immunotherapeutics. We offer a perspective from both cell sides, DCs, and tumor cells, on how EVs regulate the antitumor immune response, and how this translates into promising therapeutic options by reviewing the latest advancement in DEV-based cancer therapeutics.
Collapse
|
80
|
Nikfarjam S, Rezaie J, Kashanchi F, Jafari R. Dexosomes as a cell-free vaccine for cancer immunotherapy. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020; 39:258. [PMID: 33228747 PMCID: PMC7686678 DOI: 10.1186/s13046-020-01781-x] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 11/13/2020] [Indexed: 12/30/2022]
Abstract
Dendritic cells (DCs) secrete vast quantities of exosomes termed as dexosomes. Dexosomes are symmetric nanoscale heat-stable vesicles that consist of a lipid bilayer displaying a characteristic series of lipid and protein molecules. They include tetraspanins and all established proteins for presenting antigenic material such as the major histocompatibility complex class I/II (MHC I/II) and CD1a, b, c, d proteins and CD86 costimulatory molecule. Dexosomes contribute to antigen-specific cellular immune responses by incorporating the MHC proteins with antigen molecules and transferring the antigen-MHC complexes and other associated molecules to naïve DCs. A variety of ex vivo and in vivo studies demonstrated that antigen-loaded dexosomes were able to initiate potent antitumor immunity. Human dexosomes can be easily prepared using monocyte-derived DCs isolated by leukapheresis of peripheral blood and treated ex vivo by cytokines and other factors. The feasibility of implementing dexosomes as therapeutic antitumor vaccines has been verified in two phase I and one phase II clinical trials in malignant melanoma and non small cell lung carcinoma patients. These studies proved the safety of dexosome administration and showed that dexosome vaccines have the capacity to trigger both the adaptive (T lymphocytes) and the innate (natural killer cells) immune cell recalls. In the current review, we will focus on the perspective of utilizing dexosome vaccines in the context of cancer immunotherapy.
Collapse
Affiliation(s)
- Sepideh Nikfarjam
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jafar Rezaie
- Solid Tumor Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, P.O. Box: 1138, Shafa St, Ershad Blvd., 57147, Urmia, Iran
| | - Fatah Kashanchi
- School of Systems Biology, Laboratory of Molecular Virology, George Mason University, Discovery Hall Room 182, 10900 University Blvd., VA, 20110, Manassas, USA.
| | - Reza Jafari
- Solid Tumor Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, P.O. Box: 1138, Shafa St, Ershad Blvd., 57147, Urmia, Iran. .,Department of Immunology and Genetics, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
81
|
Antigen presentation, autoantibody production, and therapeutic targets in autoimmune liver disease. Cell Mol Immunol 2020; 18:92-111. [PMID: 33110250 PMCID: PMC7852534 DOI: 10.1038/s41423-020-00568-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 09/24/2020] [Indexed: 02/07/2023] Open
Abstract
The liver is an important immunological organ that controls systemic tolerance. The liver harbors professional and unconventional antigen-presenting cells that are crucial for tolerance induction and maintenance. Orchestrating the immune response in homeostasis depends on a healthy and well-toned immunological liver microenvironment, which is maintained by the crosstalk of liver-resident antigen-presenting cells and intrahepatic and liver-infiltrating leukocytes. In response to pathogens or autoantigens, tolerance is disrupted by unknown mechanisms. Intrahepatic parenchymal and nonparenchymal cells exhibit unique antigen-presenting properties. The presentation of microbial and endogenous lipid-, metabolite- and peptide-derived antigens from the gut via conventional and nonconventional mechanisms can educate intrahepatic immune cells and elicit effector responses or tolerance. Perturbation of this balance results in autoimmune liver diseases, such as autoimmune hepatitis, primary biliary cholangitis, and primary sclerosing cholangitis. Although the exact etiologies of these autoimmune liver diseases are unknown, it is thought that the disruption of tolerance towards self-antigens and microbial metabolites and lipids, as well as alterations in bile acid composition, may result in changes in effector cell activation and polarization and may reduce or impair protective anti-inflammatory regulatory T and B cell responses. Additionally, the canonical and noncanonical transmission of antigens and antigen:MHC complexes via trogocytosis or extracellular vesicles between different (non) immune cells in the liver may play a role in the induction of hepatic inflammation and tolerance. Here, we summarize emerging aspects of antigen presentation, autoantibody production, and the application of novel therapeutic approaches in the characterization and treatment of autoimmune liver diseases.
Collapse
|
82
|
Recent Advances in Extracellular Vesicles as Drug Delivery Systems and Their Potential in Precision Medicine. Pharmaceutics 2020; 12:pharmaceutics12111006. [PMID: 33105857 PMCID: PMC7690579 DOI: 10.3390/pharmaceutics12111006] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/15/2020] [Accepted: 10/20/2020] [Indexed: 12/13/2022] Open
Abstract
Extracellular vesicles (EVs) are membrane-bilayered nanoparticles released by most cell types. Recently, an enormous number of studies have been published on the potential of EVs as carriers of therapeutic agents. In contrast to systems such as liposomes, EVs exhibit less immunogenicity and higher engineering potential. Here, we review the most relevant publications addressing the potential and use of EVs as a drug delivery system (DDS). The information is divided based on the key steps for designing an EV-mediated delivery strategy. We discuss possible sources and isolation methods of EVs. We address the administration routes that have been tested in vivo and the tissue distribution observed. We describe the current knowledge on EV clearance, a significant challenge towards enhancing bioavailability. Also, EV-engineering approaches are described as alternatives to improve tissue and cell-specificity. Finally, a summary of the ongoing clinical trials is performed. Although the application of EVs in the clinical practice is still at an early stage, a high number of studies in animals support their potential as DDS. Thus, better treatment options could be designed to precisely increase target specificity and therapeutic efficacy while reducing off-target effects and toxicity according to the individual requirements of each patient.
Collapse
|
83
|
Extracellular vesicles as natural therapeutic agents and innate drug delivery systems for cancer treatment: Recent advances, current obstacles, and challenges for clinical translation. Semin Cancer Biol 2020; 80:340-355. [DOI: 10.1016/j.semcancer.2020.08.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 08/11/2020] [Accepted: 08/12/2020] [Indexed: 12/13/2022]
|
84
|
Huang Y, Li R, Ye S, Lin S, Yin G, Xie Q. Recent Advances in the Use of Exosomes in Sjögren's Syndrome. Front Immunol 2020; 11:1509. [PMID: 32903777 PMCID: PMC7438915 DOI: 10.3389/fimmu.2020.01509] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 06/09/2020] [Indexed: 02/05/2023] Open
Abstract
Sjögren's syndrome (SS) is a chronic autoimmune disorder of the exocrine glands mediated by lymphocytic infiltrates damaging the body tissues and affecting the life quality of patients. Although traditional methods of diagnosis and treatment for SS are effective, in the time of personalized medicine, new biomarkers, and novel approaches are required for the detection and treatment of SS. Exosomes represent an emerging field in the discovery of biomarkers and the management of SS. Exosomes, a subtype of extracellular vesicles, are secreted by various cell types and can be found in most bodily fluids. Exosomes are packed with cytokines and other proteins, bioactive lipids, and nucleic acids (mRNA, circular RNA, non-coding RNA, tRNA, microRNA, genomic DNA, and ssDNA), and transport such cargo between cells. Evidence has indicated that exosomes may play roles in processes such as the modulation of the immune response and activation of inflammation. Moreover, due to features such as stability, low immunogenicity and toxicity, long half-life, and the capacity to penetrate the blood-brain barrier, exosomes have also emerged as therapeutic tools for SS. In this review, we summarize existing literature regarding the biogenesis, isolation, and function of exosomes, specifically focusing on exosomes as novel biomarkers and their potential therapeutic uses in SS.
Collapse
Affiliation(s)
- Yupeng Huang
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
| | - Ruicen Li
- Health Management Center, West China Hospital, Sichuan University, Chengdu, China
| | - Sheng Ye
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
| | - Sang Lin
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
| | - Geng Yin
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
| | - Qibing Xie
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
85
|
Li C, Donninger H, Eaton J, Yaddanapudi K. Regulatory Role of Immune Cell-Derived Extracellular Vesicles in Cancer: The Message Is in the Envelope. Front Immunol 2020; 11:1525. [PMID: 32765528 PMCID: PMC7378739 DOI: 10.3389/fimmu.2020.01525] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 06/09/2020] [Indexed: 12/28/2022] Open
Abstract
Extracellular vesicles (EVs) are a heterogenous group of membrane-surrounded structures. Besides serving as a harbor for the unwanted material exocytosed by cells, EVs play a critical role in conveying intact protein, genetic, and lipid contents that are important for intercellular communication. EVs, broadly comprised of microvesicles and exosomes, are released to the extracellular environment from nearly all cells either via shedding from the plasma membrane or by originating from the endosomal system. Exosomes are 40–150 nm, endosome-derived small EVs (sEVs) that are released by cells into the extracellular environment. This review focuses on the biological properties of immune cell-derived sEVs, including composition and cellular targeting and mechanisms by which these immune cell-derived sEVs influence tumor immunity either by suppressing or promoting tumor growth, are discussed. The final section of this review discusses how the biological properties of immune cell-derived sEVs can be manipulated to improve their immunogenicity.
Collapse
Affiliation(s)
- Chi Li
- Experimental Therapeutics Group, James Graham Brown Cancer Center, University of Louisville, Louisville, KY, United States.,Department of Medicine, University of Louisville, Louisville, KY, United States
| | - Howard Donninger
- Experimental Therapeutics Group, James Graham Brown Cancer Center, University of Louisville, Louisville, KY, United States.,Department of Medicine, University of Louisville, Louisville, KY, United States
| | - John Eaton
- Department of Medicine, University of Louisville, Louisville, KY, United States.,Immuno-Oncology Group, James Graham Brown Cancer Center, University of Louisville, Louisville, KY, United States
| | - Kavitha Yaddanapudi
- Immuno-Oncology Group, James Graham Brown Cancer Center, University of Louisville, Louisville, KY, United States.,Division of Immunotherapy, Department of Surgery, University of Louisville, Louisville, KY, United States.,Department of Microbiology and Immunology, University of Louisville, Louisville, KY, United States
| |
Collapse
|
86
|
Extracellular Vesicles Mediate B Cell Immune Response and Are a Potential Target for Cancer Therapy. Cells 2020; 9:cells9061518. [PMID: 32580358 PMCID: PMC7349483 DOI: 10.3390/cells9061518] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 06/18/2020] [Accepted: 06/18/2020] [Indexed: 12/21/2022] Open
Abstract
Extracellular vesicles (EVs) are increasingly understood to participate directly in many essential aspects of host antitumor immune response. Tumor- and immune-cell-derived EVs function in local and systemic contexts with roles in immune processes including cancer antigen conveyance, immune cell priming and activation, as well as immune escape. Current practice of cancer immunotherapy has de facto focused on eliciting T-cell-mediated cytotoxic responses. Humoral immunity is also known to exert antitumor effects, and B cells have been demonstrated to have functions that extend beyond antibody production to include antigen presentation and activation and modulation of T cells and innate immune effectors. Evidence of B cell response against tumor-associated antigens (TAAs) is observed in early stages of tumorigenesis and in most solid tumor types. It is known that EVs convey diverse TAAs, express antigenic-peptide-loaded MHCs, and complex with circulating plasma antitumoral autoantibodies. In this review, we will consider the relationships between EVs, B cells, and other antigen-presenting cells, especially in relation to TAAs. Understanding the intersection of EVs and the cancer immunome will enable opportunities for developing tumor antigen targets, antitumor vaccines and harnessing the full potential of multiple immune system components for next-generation cancer immunotherapies.
Collapse
|
87
|
Wang M, Yu F, Li P, Wang K. Emerging Function and Clinical Significance of Exosomal circRNAs in Cancer. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 21:367-383. [PMID: 32650235 PMCID: PMC7340966 DOI: 10.1016/j.omtn.2020.06.008] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/18/2020] [Accepted: 06/09/2020] [Indexed: 02/08/2023]
Abstract
Exosomes are a type of extracellular vesicles (EVs) secreted by almost all cells, with a diameter range of 30-150 nm and a lipid bilayer membrane. Exosomes are now considered as vital mediators of intercellular communication and participate in multiple cellular processes, such as signal transduction and antigen presentation. Recently, circular RNAs (circRNAs), a novel class of noncoding RNAs (ncRNAs), have been found to be abundant and stable in exosomes. Increasing evidence indicates that exosome-derived circRNAs act as signaling molecules to regulate cancer growth, angiogenesis, invasion, metastasis, and sensitivity to chemotherapy. Moreover, circulating exosomal circRNAs can reflect the progression and malignant characteristics of cancer, implying their great potential as promising, non-invasive biomarkers for cancer diagnosis and prognosis. In this review, we summarize the recent progress on the functional roles of exosomal circRNAs in cancer progression, discussing their potential as promising biomarkers and therapeutic targets in cancer. Comprehensive elucidation of molecular mechanisms relevant to the implications of exosomal circRNAs in cancer progression will be conducive to the development of innovative diagnostic and therapeutic approaches in cancer.
Collapse
Affiliation(s)
- Man Wang
- Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao 266021, China.
| | - Fei Yu
- Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Peifeng Li
- Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Kun Wang
- Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao 266021, China.
| |
Collapse
|
88
|
Abstract
Extracellular vesicles (EVs) play an important role in intercellular communication in normal cellular process and pathological conditions by facilitating the transport of cellular content from one cell to another. EVs as conveyors of various biological molecules with their ability to redirect effects on a target cell physiological function in cell type-specific manner makes EVs an excellent candidate for drug delivery vehicle in disease therapy. Moreover, unique characteristics and contents of EVs which differ depends on cellular origin and physiological state make them a valuable source of diagnostic biomarker. Herein, we review the current progress in extracellular vesicle (EV) analysis, its transition from biomedical research to advancing therapy, and recent pioneered approaches to characterize and quantify EVs' subclasses with an emphasis on the integration of advanced technologies for both qualitative and quantitative analysis of EVs in different clinical tissue/body fluid samples.
Collapse
Affiliation(s)
- Arada Vinaiphat
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Siu Kwan Sze
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore.
| |
Collapse
|
89
|
Steffens S, Van Linthout S, Sluijter JPG, Tocchetti CG, Thum T, Madonna R. Stimulating pro-reparative immune responses to prevent adverse cardiac remodelling: consensus document from the joint 2019 meeting of the ESC Working Groups of cellular biology of the heart and myocardial function. Cardiovasc Res 2020; 116:1850-1862. [DOI: 10.1093/cvr/cvaa137] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 03/31/2020] [Accepted: 05/05/2020] [Indexed: 12/14/2022] Open
Abstract
Abstract
Cardiac injury may have multiple causes, including ischaemic, non-ischaemic, autoimmune, and infectious triggers. Independent of the underlying pathophysiology, cardiac tissue damage induces an inflammatory response to initiate repair processes. Immune cells are recruited to the heart to remove dead cardiomyocytes, which is essential for cardiac healing. Insufficient clearance of dying cardiomyocytes after myocardial infarction (MI) has been shown to promote unfavourable cardiac remodelling, which may result in heart failure (HF). Although immune cells are integral key players of cardiac healing, an unbalanced or unresolved immune reaction aggravates tissue damage that triggers maladaptive remodelling and HF. Neutrophils and macrophages are involved in both, inflammatory as well as reparative processes. Stimulating the resolution of cardiac inflammation seems to be an attractive therapeutic strategy to prevent adverse remodelling. Along with numerous experimental studies, the promising outcomes from recent clinical trials testing canakinumab or colchicine in patients with MI are boosting the interest in novel therapies targeting inflammation in cardiovascular disease patients. The aim of this review is to discuss recent experimental studies that provide new insights into the signalling pathways and local regulators within the cardiac microenvironment promoting the resolution of inflammation and tissue regeneration. We will cover ischaemia- and non-ischaemic-induced as well as infection-related cardiac remodelling and address potential targets to prevent adverse cardiac remodelling.
Collapse
Affiliation(s)
- Sabine Steffens
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-Universität, Munich, Germany
- German Centre for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany
| | - Sophie Van Linthout
- Berlin Institute of Health Center for Regenerative Therapies (BCRT), Charité, University Medicine Berlin, Berlin, Germany
- German Centre for Cardiovascular Research (DZHK), partner site Berlin, Germany
| | - Joost P G Sluijter
- Department of Cardiology, Laboratory of Experimental Cardiology, University Medical Center Utrecht, Utrecht, the Netherlands
- Regenerative Medicine Center, Circulatory Health Laboratory, University Medical Center Utrecht, University Utrecht, Utrecht, The Netherlands
| | - Carlo Gabriele Tocchetti
- Department of Translational Medical Sciences and Interdepartmental Center of Clinical and Translational Sciences (CIRCET), Federico II University, Naples, Italy
| | - Thomas Thum
- Institute for Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany
| | - Rosalinda Madonna
- Institute of Cardiology, University of Pisa, Via Paradisa, Pisa 56124, Italy
| |
Collapse
|
90
|
Inducible Polarized Secretion of Exosomes in T and B Lymphocytes. Int J Mol Sci 2020; 21:ijms21072631. [PMID: 32290050 PMCID: PMC7177964 DOI: 10.3390/ijms21072631] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/05/2020] [Accepted: 04/07/2020] [Indexed: 12/19/2022] Open
Abstract
Exosomes are extracellular vesicles (EV) of endosomal origin (multivesicular bodies, MVB) constitutively released by many different eukaryotic cells by fusion of MVB to the plasma membrane. However, inducible exosome secretion controlled by cell surface receptors is restricted to very few cell types and a limited number of cell surface receptors. Among these, exosome secretion is induced in T lymphocytes and B lymphocytes when stimulated at the immune synapse (IS) via T-cell receptors (TCR) and B-cell receptors (BCR), respectively. IS formation by T and B lymphocytes constitutes a crucial event involved in antigen-specific, cellular, and humoral immune responses. Upon IS formation by T and B lymphocytes with antigen-presenting cells (APC), the convergence of MVB towards the microtubule organization center (MTOC), and MTOC polarization to the IS, are involved in polarized exosome secretion at the synaptic cleft. This specialized mechanism provides the immune system with a finely-tuned strategy to increase the specificity and efficiency of crucial secretory effector functions of B and T lymphocytes. As inducible exosome secretion by antigen-receptors is a critical and unique feature of the immune system this review considers the study of the traffic events leading to polarized exosome secretion at the IS and some of their biological consequences.
Collapse
|
91
|
The function and clinical application of extracellular vesicles in innate immune regulation. Cell Mol Immunol 2020; 17:323-334. [PMID: 32203193 PMCID: PMC7109106 DOI: 10.1038/s41423-020-0391-1] [Citation(s) in RCA: 179] [Impact Index Per Article: 44.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 02/17/2020] [Indexed: 12/21/2022] Open
Abstract
The innate immune system plays a crucial role in the host defense against viral and microbial infection. Exosomes constitute a subset of extracellular vesicles (EVs) that can be released by almost all cell types. Owing to their capacity to shield the payload from degradation and to evade recognition and subsequent removal by the immune system, exosomes efficiently transport functional components to recipient cells. Accumulating evidence has recently shown that exosomes derived from tumor cells, host cells and even bacteria and parasites mediate the communication between the invader and innate immune cells and thus play an irreplaceable function in the dissemination of pathogens and donor cell-derived molecules, modulating the innate immune responses of the host. In this review, we describe the current understanding of EVs (mainly focusing on exosomes) and summarize and discuss their crucial roles in determining innate immune responses. Additionally, we discuss the potential of using exosomes as biomarkers and cancer vaccines in diagnostic and therapeutic applications.
Collapse
|
92
|
Cho KJ, Ishido S, Eisenlohr LC, Roche PA. Activation of Dendritic Cells Alters the Mechanism of MHC Class II Antigen Presentation to CD4 T Cells. THE JOURNAL OF IMMUNOLOGY 2020; 204:1621-1629. [PMID: 31996461 DOI: 10.4049/jimmunol.1901234] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 12/31/2019] [Indexed: 11/19/2022]
Abstract
Both immature and mature dendritic cells (DCs) can process and present foreign Ags to CD4 T cells; however, the mechanism by which MHC class II (MHC-II) in mature DCs acquires antigenic peptides remains unknown. To address this, we have studied Ag processing and presentation of two distinct CD4 T cell epitopes of the influenza virus hemagglutinin coat protein by both immature and mature mouse DCs. We find that immature DCs almost exclusively use newly synthesized MHC-II targeted to DM+ late endosomes for presentation to influenza virus-specific CD4 T cells. By contrast, mature DCs exclusively use recycling MHC-II that traffics to both early and late endosomes for antigenic peptide binding. Rab11a knockdown partially inhibits recycling of MHC-II in mature DCs and selectively inhibits presentation of an influenza virus hemagglutinin CD4 T cell epitope generated in early endosomes. These studies highlight a "division of labor" in MHC-II peptide binding, in which immature DCs preferentially present Ags acquired in Rab11a- DM+ late endosomes, whereas mature DCs use recycling MHC-II to present antigenic peptides acquired in both Rab11a+ early endosomes and Rab11a- endosomes for CD4 T cell activation.
Collapse
Affiliation(s)
- Kyung-Jin Cho
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Satoshi Ishido
- Department of Microbiology, Hyogo College of Medicine, Nishinomiya, 663-8501 Japan
| | - Laurence C Eisenlohr
- The Children's Hospital of Philadelphia Research Institute, Philadelphia, PA 19104; and.,Perelman School of Medicine at The University of Pennsylvania, Philadelphia, PA 19104
| | - Paul A Roche
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892;
| |
Collapse
|
93
|
Thankam FG, Agrawal DK. Infarct Zone: a Novel Platform for Exosome Trade in Cardiac Tissue Regeneration. J Cardiovasc Transl Res 2020; 13:686-701. [PMID: 31907784 DOI: 10.1007/s12265-019-09952-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Accepted: 12/27/2019] [Indexed: 12/13/2022]
Abstract
The global incidence of coronary artery diseases (CADs), especially myocardial infarction (MI), has drastically increased in recent years. Even though the conventional therapies have improved the outcomes, the post-MI complications and the increased rate of recurrence among the survivors are still alarming. Molecular events associated with the pathogenesis and the adaptive responses of the surviving myocardium are largely unknown. Focus on exosome-mediated signaling for cell-cell/matrix communications at the infarct zone reflects an emerging opportunity in cardiac regeneration. Also, cardiac tissue engineering provides promising insights for the next generation of therapeutic approaches in the management of CADs. In this article, we critically reviewed the current understanding on the biology of cardiac exosomes, therapeutic potential of exosomes, and recent developments in cardiac tissue engineering and discussed novel translational approaches based on tissue engineering and exosomes for cardiac regeneration and CADs.
Collapse
Affiliation(s)
- Finosh G Thankam
- Department of Translational Research, Western University of Health Sciences, 309 E. Second Street, Pomona, CA, 91766, USA
| | - Devendra K Agrawal
- Department of Translational Research, Western University of Health Sciences, 309 E. Second Street, Pomona, CA, 91766, USA.
| |
Collapse
|
94
|
Chlamydia psittaci-Infected Dendritic Cells Communicate with NK Cells via Exosomes To Activate Antibacterial Immunity. Infect Immun 2019; 88:IAI.00541-19. [PMID: 31658957 DOI: 10.1128/iai.00541-19] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Accepted: 10/21/2019] [Indexed: 12/31/2022] Open
Abstract
Dendritic cells (DCs) and natural killer (NK) cells are critically involved in the early response against various bacterial microbes. Functional activation of infected DCs and NK cell-mediated gamma interferon (IFN-γ) secretion essentially contribute to the protective immunity against Chlamydia How DCs and NK cells cooperate during the antichlamydial response is not fully understood. Therefore, in the present study, we investigated the functional interplay between Chlamydia-infected DCs and NK cells. Our biochemical and cell biological experiments show that Chlamydia psittaci-infected DCs display enhanced exosome release. We find that such extracellular vesicles (referred to as dexosomes) do not contain infectious bacterial material but strongly induce IFN-γ production by NK cells. This directly affects C. psittaci growth in infected target cells. Furthermore, NK cell-released IFN-γ in cooperation with tumor necrosis factor alpha (TNF-α) and/or dexosomes augments apoptosis of both noninfected and infected epithelial cells. Thus, the combined effect of dexosomes and proinflammatory cytokines restricts C. psittaci growth and attenuates bacterial subversion of apoptotic host cell death. In conclusion, this provides new insights into the functional cooperation between DCs, dexosomes, and NK cells in the early steps of antichlamydial defense.
Collapse
|
95
|
Xie F, Zhou X, Fang M, Li H, Su P, Tu Y, Zhang L, Zhou F. Extracellular Vesicles in Cancer Immune Microenvironment and Cancer Immunotherapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1901779. [PMID: 31871860 PMCID: PMC6918121 DOI: 10.1002/advs.201901779] [Citation(s) in RCA: 182] [Impact Index Per Article: 36.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 09/26/2019] [Indexed: 05/10/2023]
Abstract
Extracellular vesicles (EVs) are secreted by almost all cells. They contain proteins, lipids, and nucleic acids which are delivered from the parent cells to the recipient cells. Thereby, they function as mediators of intercellular communication and molecular transfer. Recent evidences suggest that exosomes, a small subset of EVs, are involved in numerous physiological and pathological processes and play essential roles in remodeling the tumor immune microenvironment even before the occurrence and metastasis of cancer. Exosomes derived from tumor cells and host cells mediate their mutual regulation locally or remotely, thereby determining the responsiveness of cancer therapies. As such, tumor-derived circulating exosomes are considered as noninvasive biomarkers for early detection and diagnosis of tumor. Exosome-based therapies are also emerging as cutting-edge and promising strategies that could be applied to suppress tumor progression or enhance anti-tumor immunity. Herein, the current understanding of exosomes and their key roles in modulating immune responses, as well as their potential therapeutic applications are outlined. The limitations of current studies are also presented and directions for future research are described.
Collapse
Affiliation(s)
- Feng Xie
- Institute of Biology and Medical ScienceSoochow UniversitySuzhou215123P. R. China
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhou310058P. R. China
| | - Xiaoxue Zhou
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhou310058P. R. China
- Key Laboratory of Head & Neck CancerTranslational Research of Zhejiang ProvinceZhejiang Cancer HospitalHangzhou310058P. R. China
| | - Meiyu Fang
- Key Laboratory of Head & Neck CancerTranslational Research of Zhejiang ProvinceZhejiang Cancer HospitalHangzhou310058P. R. China
| | - Heyu Li
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhou310058P. R. China
| | - Peng Su
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhou310058P. R. China
| | - Yifei Tu
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhou310058P. R. China
| | - Long Zhang
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhou310058P. R. China
| | - Fangfang Zhou
- Institute of Biology and Medical ScienceSoochow UniversitySuzhou215123P. R. China
| |
Collapse
|
96
|
Exosomes: Versatile Nano Mediators of Immune Regulation. Cancers (Basel) 2019; 11:cancers11101557. [PMID: 31615107 PMCID: PMC6826959 DOI: 10.3390/cancers11101557] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 09/24/2019] [Accepted: 10/11/2019] [Indexed: 01/02/2023] Open
Abstract
One of many types of extracellular vesicles (EVs), exosomes are nanovesicle structures that are released by almost all living cells that can perform a wide range of critical biological functions. Exosomes play important roles in both normal and pathological conditions by regulating cell-cell communication in cancer, angiogenesis, cellular differentiation, osteogenesis, and inflammation. Exosomes are stable in vivo and they can regulate biological processes by transferring lipids, proteins, nucleic acids, and even entire signaling pathways through the circulation to cells at distal sites. Recent advances in the identification, production, and purification of exosomes have created opportunities to exploit these structures as novel drug delivery systems, modulators of cell signaling, mediators of antigen presentation, as well as biological targeting agents and diagnostic tools in cancer therapy. This review will examine the functions of immunocyte-derived exosomes and their roles in the immune response under physiological and pathological conditions. The use of immunocyte exosomes in immunotherapy and vaccine development is discussed.
Collapse
|
97
|
Verweij FJ, Hyenne V, Van Niel G, Goetz JG. Extracellular Vesicles: Catching the Light in Zebrafish. Trends Cell Biol 2019; 29:770-776. [DOI: 10.1016/j.tcb.2019.07.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 07/08/2019] [Accepted: 07/15/2019] [Indexed: 12/11/2022]
|
98
|
Garikipati VNS, Shoja-Taheri F, Davis ME, Kishore R. Extracellular Vesicles and the Application of System Biology and Computational Modeling in Cardiac Repair. Circ Res 2019; 123:188-204. [PMID: 29976687 DOI: 10.1161/circresaha.117.311215] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Recent literature suggests that extracellular vesicles (EVs), secreted from most cells and containing cell-specific cargo of proteins, lipids, and nucleic acids, are major driver of intracellular communication in normal physiology and pathological conditions. The recent evidence on stem/progenitor cell EVs as potential therapeutic modality mimicking their parental cell function is exciting because EVs could possibly be used as a surrogate for the stem cell-based therapy, and this regimen may overcome certain roadblocks identified with the use of stem/progenitor cell themselves. This review provides a comprehensive update on our understanding on the role of EVs in cardiac repair and emphasizes the applications of stem/progenitor cell-derived EVs as therapeutics and discusses the current challenges associated with the EV therapy.
Collapse
Affiliation(s)
| | - Farnaz Shoja-Taheri
- Lewis Katz School of Medicine, Temple University, Philadelphia, PA; Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta (F.S.-T., M.E.D.).,Division of Cardiology, Emory University School of Medicine, Atlanta, GA (F.S.-T., M.E.D).,Children's Heart Research and Outcomes Center, Emory University School of Medicine, Children's Healthcare of Atlanta, GA (F.S.-T., M.E.D)
| | - Michael E Davis
- Lewis Katz School of Medicine, Temple University, Philadelphia, PA; Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta (F.S.-T., M.E.D.).,Division of Cardiology, Emory University School of Medicine, Atlanta, GA (F.S.-T., M.E.D).,Children's Heart Research and Outcomes Center, Emory University School of Medicine, Children's Healthcare of Atlanta, GA (F.S.-T., M.E.D)
| | - Raj Kishore
- From the Center for Translational Medicine (V.N.S.G., R.K.) .,Department of Pharmacology (R.K.)
| |
Collapse
|
99
|
Li N, Zhao L, Wei Y, Ea VL, Nian H, Wei R. Recent advances of exosomes in immune-mediated eye diseases. Stem Cell Res Ther 2019; 10:278. [PMID: 31470892 PMCID: PMC6716826 DOI: 10.1186/s13287-019-1372-0] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Exosomes, nanosized extracellular vesicles of 30-150 nm, are shed by almost all cell types. Bearing proteins, lipids, RNAs, and DNAs, exosomes have emerged as vital biological mediators in cell-to-cell communication, affecting a plethora of physiological and pathological processes. Particularly, mounting evidence indicates that immunologically active exosomes can regulate both innate and adaptive immune responses. Herein, we review recent advances in the research of exosomes in several immune-mediated eye diseases, including Sjögren's syndrome (SS) dry eye, corneal allograft rejection, autoimmune uveitis, and age-related macular degeneration (AMD). Additionally, we discuss the potential of exosomes as novel biomarkers and drug delivery vesicles for the diagnosis and treatment of eye diseases.
Collapse
Affiliation(s)
- Na Li
- Tianjin Key Laboratory of Retinal Functions and Diseases, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, No.251 Fukang Road, Nankai District, Tianjin, 300384, People's Republic of China
| | - Lu Zhao
- Tianjin Key Laboratory of Retinal Functions and Diseases, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, No.251 Fukang Road, Nankai District, Tianjin, 300384, People's Republic of China
| | - Yankai Wei
- Tianjin Key Laboratory of Retinal Functions and Diseases, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, No.251 Fukang Road, Nankai District, Tianjin, 300384, People's Republic of China
| | - Vicki L Ea
- Tianjin Key Laboratory of Retinal Functions and Diseases, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, No.251 Fukang Road, Nankai District, Tianjin, 300384, People's Republic of China
| | - Hong Nian
- Tianjin Key Laboratory of Retinal Functions and Diseases, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, No.251 Fukang Road, Nankai District, Tianjin, 300384, People's Republic of China.
| | - Ruihua Wei
- Tianjin Key Laboratory of Retinal Functions and Diseases, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, No.251 Fukang Road, Nankai District, Tianjin, 300384, People's Republic of China.
| |
Collapse
|
100
|
Deng F, Miller J. A review on protein markers of exosome from different bio-resources and the antibodies used for characterization. J Histotechnol 2019; 42:226-239. [PMID: 31432761 DOI: 10.1080/01478885.2019.1646984] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Exosomes are small membrane vesicles (ranging from 30 nm to 150 nm), secreted by different cell types upon fusion of multivesicular bodies (MVB) to the cell plasma membrane under a variety of normal and pathological conditions. Through transferring their cargos such as proteins, lipids and nucleic acids from donor cells to recipient cells, exosomes play a crucial role in cell-to-cell communication. Due to their presence in most body fluids (such as blood, breast milk, saliva, urine, bile, pancreatic juice, cerebrospinal and peritoneal fluids), and their role in carrying bioactive molecules from the cells of origin, exosomes have attracted great interest in their diagnostic and prognostic value for various diseases and therapeutic approaches. Although a large body of literature has documented the importance of exosomes over the past decade, there is no article systematically summarizing protein markers of exosome from different resources and the antibodies that are suited to characterize exosomes. In this review, we briefly summarize the exosome marker proteins, exosomal biomarkers for different diseases, and the antibodies suitable for different bio-resources exosomes characterization.
Collapse
Affiliation(s)
- Fengyan Deng
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, MO, USA
| | - Josh Miller
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, MO, USA
| |
Collapse
|