51
|
Sternhagen E, Bettendorf B, Lenert A, Lenert PS. The Role of Clinical Features and Serum Biomarkers in Identifying Patients with Incomplete Lupus Erythematosus at Higher Risk of Transitioning to Systemic Lupus Erythematosus: Current Perspectives. J Inflamm Res 2022; 15:1133-1145. [PMID: 35210816 PMCID: PMC8863324 DOI: 10.2147/jir.s275043] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 02/02/2022] [Indexed: 12/16/2022] Open
Abstract
Discovery of antinuclear antibodies (ANA) enabled earlier diagnosis of systemic lupus erythematosus (SLE) and other ANA+ connective tissue diseases (CTD). Rheumatologists increasingly encounter high referral volume of ANA+ patients. It has been estimated that only a small percentage of these patients will eventually transition to either SLE or other specified CTD. Incomplete lupus erythematosus (ILE) has been defined as a subset of patients who have some SLE-specific clinical manifestations but do not meet currently accepted classification criteria for SLE. Several studies have been performed with the goal of identifying clinical features, serum and tissue biomarkers that can distinguish those patients with ILE at risk of transitioning to SLE from those who will not. Increased autoantibody diversity, presence of anti-double-stranded DNA (dsDNA) antibodies, high expression of type I and type II interferon (IFN)-gene products, increased serum levels of B-cell-activating factor of the TNF family (BAFF), and certain serum cytokines and complement products have been identified as markers with positive predictive value, particularly when combined together. Once this patient population is better characterized biochemically, clinical trials should be considered with the primary objective to completely halt or slow down the transition from ILE to SLE. Hydroxychloroquine (HCQ) appears to be a promising agent due to its good tolerability and low toxicity profile and open-label studies in ILE patients have already shown its ability to delay the onset of SLE. Other therapeutics, like those targeting abnormal type I and type II IFN-signatures, B-cell specific signaling pathways, complement activation pathways and high BAFF levels should also be evaluated, but the risk to benefit ratio must be carefully determined before they can be considered.
Collapse
Affiliation(s)
- Erin Sternhagen
- Division of Immunology, Department of Internal Medicine, Carver College of Medicine, The University of Iowa, Iowa City, IA, 52242, USA
| | - Brittany Bettendorf
- Division of Immunology, Department of Internal Medicine, Carver College of Medicine, The University of Iowa, Iowa City, IA, 52242, USA
| | - Aleksander Lenert
- Division of Immunology, Department of Internal Medicine, Carver College of Medicine, The University of Iowa, Iowa City, IA, 52242, USA
| | - Petar S Lenert
- Division of Immunology, Department of Internal Medicine, Carver College of Medicine, The University of Iowa, Iowa City, IA, 52242, USA
- Correspondence: Petar S Lenert, Clinical Professor of Medicine, C428-2GH, 200 Hawkins Drive, Iowa City, Iowa City, 52242, USA, Email
| |
Collapse
|
52
|
Izmirly PM, Kim MY, Samanovic M, Fernandez‐Ruiz R, Ohana S, Deonaraine KK, Engel AJ, Masson M, Xie X, Cornelius AR, Herati RS, Haberman RH, Scher JU, Guttmann A, Blank RB, Plotz B, Haj‐Ali M, Banbury B, Stream S, Hasan G, Ho G, Rackoff P, Blazer AD, Tseng C, Belmont HM, Saxena A, Mulligan MJ, Clancy RM, Buyon JP. Evaluation of Immune Response and Disease Status in Systemic Lupus Erythematosus Patients Following SARS-CoV-2 Vaccination. Arthritis Rheumatol 2022; 74:284-294. [PMID: 34347939 PMCID: PMC8426963 DOI: 10.1002/art.41937] [Citation(s) in RCA: 113] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/09/2021] [Accepted: 07/29/2021] [Indexed: 11/11/2022]
Abstract
OBJECTIVE To evaluate seroreactivity and disease flares after COVID-19 vaccination in a multiethnic/multiracial cohort of patients with systemic lupus erythematosus (SLE). METHODS Ninety SLE patients and 20 healthy controls receiving a complete COVID-19 vaccine regimen were included. IgG seroreactivity to the SARS-CoV-2 spike receptor-binding domain (RBD) and SARS-CoV-2 microneutralization were used to evaluate B cell responses; interferon-γ (IFNγ) production was measured by enzyme-linked immunospot (ELISpot) assay in order to assess T cell responses. Disease activity was measured by the hybrid SLE Disease Activity Index (SLEDAI), and flares were identified according to the Safety of Estrogens in Lupus Erythematosus National Assessment-SLEDAI flare index. RESULTS Overall, fully vaccinated SLE patients produced significantly lower IgG antibodies against SARS-CoV-2 spike RBD compared to fully vaccinated controls. Twenty-six SLE patients (28.8%) generated an IgG response below that of the lowest control (<100 units/ml). In logistic regression analyses, the use of any immunosuppressant or prednisone and a normal anti-double-stranded DNA antibody level prior to vaccination were associated with decreased vaccine responses. IgG seroreactivity to the SARS-CoV-2 spike RBD strongly correlated with the SARS-CoV-2 microneutralization titers and correlated with antigen-specific IFNγ production determined by ELISpot. In a subset of patients with poor antibody responses, IFNγ production was similarly diminished. Pre- and postvaccination SLEDAI scores were similar in both groups. Postvaccination flares occurred in 11.4% of patients; 1.3% of these were severe. CONCLUSION In a multiethnic/multiracial study of SLE patients, 29% had a low response to the COVID-19 vaccine which was associated with receiving immunosuppressive therapy. Reassuringly, severe disease flares were rare. While minimal protective levels remain unknown, these data suggest that protocol development is needed to assess the efficacy of booster vaccination.
Collapse
Affiliation(s)
| | - Mimi Y. Kim
- Albert Einstein College of MedicineNew YorkNew York
| | - Marie Samanovic
- New York University Grossman School of MedicineNew YorkNew York
| | | | - Sharon Ohana
- New York University Grossman School of MedicineNew YorkNew York
| | | | - Alexis J. Engel
- New York University Grossman School of MedicineNew YorkNew York
| | - Mala Masson
- New York University Grossman School of MedicineNew YorkNew York
| | - Xianhong Xie
- Albert Einstein College of MedicineNew YorkNew York
| | | | - Ramin S. Herati
- New York University Grossman School of MedicineNew YorkNew York
| | | | - Jose U. Scher
- New York University Grossman School of MedicineNew YorkNew York
| | | | | | - Benjamin Plotz
- New York University Grossman School of MedicineNew YorkNew York
| | - Mayce Haj‐Ali
- New York University Grossman School of MedicineNew YorkNew York
| | | | - Sara Stream
- New York University Grossman School of MedicineNew YorkNew York
| | - Ghadeer Hasan
- New York University Grossman School of MedicineNew YorkNew York
| | - Gary Ho
- New York University Grossman School of MedicineNew YorkNew York
| | - Paula Rackoff
- New York University Grossman School of MedicineNew YorkNew York
| | | | - Chung‐E Tseng
- New York University Grossman School of MedicineNew YorkNew York
| | | | - Amit Saxena
- New York University Grossman School of MedicineNew YorkNew York
| | | | | | - Jill P. Buyon
- New York University Grossman School of MedicineNew YorkNew York
| |
Collapse
|
53
|
Kaur H, Ghorai SM. Role of Cytokines as Immunomodulators. IMMUNOMODULATORS AND HUMAN HEALTH 2022:371-414. [DOI: 10.1007/978-981-16-6379-6_13] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
54
|
Immunogenetics of Lupus Erythematosus. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1367:213-257. [DOI: 10.1007/978-3-030-92616-8_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
55
|
Iwamoto T, Dorschner JM, Selvaraj S, Mezzano V, Jensen MA, Vsetecka D, Amin S, Makol A, Osborn T, Moder K, Chowdhary VR, Izmirly P, Belmont HM, Clancy RM, Buyon JP, Wu M, Loomis CA, Niewold TB. High Systemic Type I Interferon Activity is Associated with Active Class III/IV Lupus Nephritis. J Rheumatol 2021; 49:388-397. [PMID: 34782453 DOI: 10.3899/jrheum.210391] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/03/2021] [Indexed: 10/19/2022]
Abstract
OBJECTIVE Previous studies suggest a link between high serum type I interferon (IFN) and lupus nephritis (LN). We determined whether serum IFN activity is associated with subtypes of LN and studied renal tissues and cells to understand the impact of IFN in LN. METHODS 221 systemic lupus erythematosus (SLE) patients were studied. Serum IFN activity was measured by WISH bioassay. mRNA in-situ hybridization was used in renal tissue to measure expression of the representative IFN-induced gene, interferon-induced protein with tetratricopeptide repeats-1 (IFIT1), and the plasmacytoid dendritic cell (pDC) marker gene C-type lectin domain family-4 member C (CLEC4C or BDCA2). Podocyte cell line gene expression was measured by real-time PCR. RESULTS Class III/IV LN prevalence was significantly increased in patients with high serum IFN compared with those with low IFN (OR=5.48, p=4.0x10-7). In multivariate regression models, type I IFN was a stronger predictor of class III/IV LN than complement C3 or anti-dsDNA antibody, and could account for the association of these variables with LN. IFIT1 expression was increased in all classes of LN, but most in the glomerular areas of active class III/IV LN kidneys. IFIT1 expression was not closely co-localized with pDCs. IFN directly activated podocyte cell lines to induce chemokines and proapoptotic molecules. CONCLUSION Systemic high IFN is involved in the pathogenesis of severe LN. We do not find co-localization of pDCs with IFN signature in renal tissue, and instead observe the greatest intensity of IFN signature in glomerular areas, which could suggest a blood source of IFN.
Collapse
Affiliation(s)
- Taro Iwamoto
- Colton Center for Autoimmunity, New York University, USA; Allergy and Clinical Immunology, Chiba University, Japan; Mayo Clinic College of Medicine, USA; Department of Pathology, New York University, USA; Division of Rheumatology, New York University, USA. Funding: TBN: Grants from the Colton Center for Autoimmunity, NIH (AR060861, AR057781, AR065964), the Lupus Research Foundation, and the Lupus Research Alliance Disclosures of Competing Interests: TBN has received research grants from EMD Serono and Janssen, and has consulted for Thermo Fisher, Progentec, and Inova, all unrelated to the current manuscript. Corresponding author: Timothy B. Niewold, MD, Colton Center for Autoimmunity, NYU Grossman School of Medicine, 550 1st Ave., New York, NY 10016,
| | - Jessica M Dorschner
- Colton Center for Autoimmunity, New York University, USA; Allergy and Clinical Immunology, Chiba University, Japan; Mayo Clinic College of Medicine, USA; Department of Pathology, New York University, USA; Division of Rheumatology, New York University, USA. Funding: TBN: Grants from the Colton Center for Autoimmunity, NIH (AR060861, AR057781, AR065964), the Lupus Research Foundation, and the Lupus Research Alliance Disclosures of Competing Interests: TBN has received research grants from EMD Serono and Janssen, and has consulted for Thermo Fisher, Progentec, and Inova, all unrelated to the current manuscript. Corresponding author: Timothy B. Niewold, MD, Colton Center for Autoimmunity, NYU Grossman School of Medicine, 550 1st Ave., New York, NY 10016,
| | - Shanmugapriya Selvaraj
- Colton Center for Autoimmunity, New York University, USA; Allergy and Clinical Immunology, Chiba University, Japan; Mayo Clinic College of Medicine, USA; Department of Pathology, New York University, USA; Division of Rheumatology, New York University, USA. Funding: TBN: Grants from the Colton Center for Autoimmunity, NIH (AR060861, AR057781, AR065964), the Lupus Research Foundation, and the Lupus Research Alliance Disclosures of Competing Interests: TBN has received research grants from EMD Serono and Janssen, and has consulted for Thermo Fisher, Progentec, and Inova, all unrelated to the current manuscript. Corresponding author: Timothy B. Niewold, MD, Colton Center for Autoimmunity, NYU Grossman School of Medicine, 550 1st Ave., New York, NY 10016,
| | - Valeria Mezzano
- Colton Center for Autoimmunity, New York University, USA; Allergy and Clinical Immunology, Chiba University, Japan; Mayo Clinic College of Medicine, USA; Department of Pathology, New York University, USA; Division of Rheumatology, New York University, USA. Funding: TBN: Grants from the Colton Center for Autoimmunity, NIH (AR060861, AR057781, AR065964), the Lupus Research Foundation, and the Lupus Research Alliance Disclosures of Competing Interests: TBN has received research grants from EMD Serono and Janssen, and has consulted for Thermo Fisher, Progentec, and Inova, all unrelated to the current manuscript. Corresponding author: Timothy B. Niewold, MD, Colton Center for Autoimmunity, NYU Grossman School of Medicine, 550 1st Ave., New York, NY 10016,
| | - Mark A Jensen
- Colton Center for Autoimmunity, New York University, USA; Allergy and Clinical Immunology, Chiba University, Japan; Mayo Clinic College of Medicine, USA; Department of Pathology, New York University, USA; Division of Rheumatology, New York University, USA. Funding: TBN: Grants from the Colton Center for Autoimmunity, NIH (AR060861, AR057781, AR065964), the Lupus Research Foundation, and the Lupus Research Alliance Disclosures of Competing Interests: TBN has received research grants from EMD Serono and Janssen, and has consulted for Thermo Fisher, Progentec, and Inova, all unrelated to the current manuscript. Corresponding author: Timothy B. Niewold, MD, Colton Center for Autoimmunity, NYU Grossman School of Medicine, 550 1st Ave., New York, NY 10016,
| | - Danielle Vsetecka
- Colton Center for Autoimmunity, New York University, USA; Allergy and Clinical Immunology, Chiba University, Japan; Mayo Clinic College of Medicine, USA; Department of Pathology, New York University, USA; Division of Rheumatology, New York University, USA. Funding: TBN: Grants from the Colton Center for Autoimmunity, NIH (AR060861, AR057781, AR065964), the Lupus Research Foundation, and the Lupus Research Alliance Disclosures of Competing Interests: TBN has received research grants from EMD Serono and Janssen, and has consulted for Thermo Fisher, Progentec, and Inova, all unrelated to the current manuscript. Corresponding author: Timothy B. Niewold, MD, Colton Center for Autoimmunity, NYU Grossman School of Medicine, 550 1st Ave., New York, NY 10016,
| | - Shreyasee Amin
- Colton Center for Autoimmunity, New York University, USA; Allergy and Clinical Immunology, Chiba University, Japan; Mayo Clinic College of Medicine, USA; Department of Pathology, New York University, USA; Division of Rheumatology, New York University, USA. Funding: TBN: Grants from the Colton Center for Autoimmunity, NIH (AR060861, AR057781, AR065964), the Lupus Research Foundation, and the Lupus Research Alliance Disclosures of Competing Interests: TBN has received research grants from EMD Serono and Janssen, and has consulted for Thermo Fisher, Progentec, and Inova, all unrelated to the current manuscript. Corresponding author: Timothy B. Niewold, MD, Colton Center for Autoimmunity, NYU Grossman School of Medicine, 550 1st Ave., New York, NY 10016,
| | - Ashima Makol
- Colton Center for Autoimmunity, New York University, USA; Allergy and Clinical Immunology, Chiba University, Japan; Mayo Clinic College of Medicine, USA; Department of Pathology, New York University, USA; Division of Rheumatology, New York University, USA. Funding: TBN: Grants from the Colton Center for Autoimmunity, NIH (AR060861, AR057781, AR065964), the Lupus Research Foundation, and the Lupus Research Alliance Disclosures of Competing Interests: TBN has received research grants from EMD Serono and Janssen, and has consulted for Thermo Fisher, Progentec, and Inova, all unrelated to the current manuscript. Corresponding author: Timothy B. Niewold, MD, Colton Center for Autoimmunity, NYU Grossman School of Medicine, 550 1st Ave., New York, NY 10016,
| | - Thomas Osborn
- Colton Center for Autoimmunity, New York University, USA; Allergy and Clinical Immunology, Chiba University, Japan; Mayo Clinic College of Medicine, USA; Department of Pathology, New York University, USA; Division of Rheumatology, New York University, USA. Funding: TBN: Grants from the Colton Center for Autoimmunity, NIH (AR060861, AR057781, AR065964), the Lupus Research Foundation, and the Lupus Research Alliance Disclosures of Competing Interests: TBN has received research grants from EMD Serono and Janssen, and has consulted for Thermo Fisher, Progentec, and Inova, all unrelated to the current manuscript. Corresponding author: Timothy B. Niewold, MD, Colton Center for Autoimmunity, NYU Grossman School of Medicine, 550 1st Ave., New York, NY 10016,
| | - Kevin Moder
- Colton Center for Autoimmunity, New York University, USA; Allergy and Clinical Immunology, Chiba University, Japan; Mayo Clinic College of Medicine, USA; Department of Pathology, New York University, USA; Division of Rheumatology, New York University, USA. Funding: TBN: Grants from the Colton Center for Autoimmunity, NIH (AR060861, AR057781, AR065964), the Lupus Research Foundation, and the Lupus Research Alliance Disclosures of Competing Interests: TBN has received research grants from EMD Serono and Janssen, and has consulted for Thermo Fisher, Progentec, and Inova, all unrelated to the current manuscript. Corresponding author: Timothy B. Niewold, MD, Colton Center for Autoimmunity, NYU Grossman School of Medicine, 550 1st Ave., New York, NY 10016,
| | - Vaidehi R Chowdhary
- Colton Center for Autoimmunity, New York University, USA; Allergy and Clinical Immunology, Chiba University, Japan; Mayo Clinic College of Medicine, USA; Department of Pathology, New York University, USA; Division of Rheumatology, New York University, USA. Funding: TBN: Grants from the Colton Center for Autoimmunity, NIH (AR060861, AR057781, AR065964), the Lupus Research Foundation, and the Lupus Research Alliance Disclosures of Competing Interests: TBN has received research grants from EMD Serono and Janssen, and has consulted for Thermo Fisher, Progentec, and Inova, all unrelated to the current manuscript. Corresponding author: Timothy B. Niewold, MD, Colton Center for Autoimmunity, NYU Grossman School of Medicine, 550 1st Ave., New York, NY 10016,
| | - Peter Izmirly
- Colton Center for Autoimmunity, New York University, USA; Allergy and Clinical Immunology, Chiba University, Japan; Mayo Clinic College of Medicine, USA; Department of Pathology, New York University, USA; Division of Rheumatology, New York University, USA. Funding: TBN: Grants from the Colton Center for Autoimmunity, NIH (AR060861, AR057781, AR065964), the Lupus Research Foundation, and the Lupus Research Alliance Disclosures of Competing Interests: TBN has received research grants from EMD Serono and Janssen, and has consulted for Thermo Fisher, Progentec, and Inova, all unrelated to the current manuscript. Corresponding author: Timothy B. Niewold, MD, Colton Center for Autoimmunity, NYU Grossman School of Medicine, 550 1st Ave., New York, NY 10016,
| | - H Michael Belmont
- Colton Center for Autoimmunity, New York University, USA; Allergy and Clinical Immunology, Chiba University, Japan; Mayo Clinic College of Medicine, USA; Department of Pathology, New York University, USA; Division of Rheumatology, New York University, USA. Funding: TBN: Grants from the Colton Center for Autoimmunity, NIH (AR060861, AR057781, AR065964), the Lupus Research Foundation, and the Lupus Research Alliance Disclosures of Competing Interests: TBN has received research grants from EMD Serono and Janssen, and has consulted for Thermo Fisher, Progentec, and Inova, all unrelated to the current manuscript. Corresponding author: Timothy B. Niewold, MD, Colton Center for Autoimmunity, NYU Grossman School of Medicine, 550 1st Ave., New York, NY 10016,
| | - Robert M Clancy
- Colton Center for Autoimmunity, New York University, USA; Allergy and Clinical Immunology, Chiba University, Japan; Mayo Clinic College of Medicine, USA; Department of Pathology, New York University, USA; Division of Rheumatology, New York University, USA. Funding: TBN: Grants from the Colton Center for Autoimmunity, NIH (AR060861, AR057781, AR065964), the Lupus Research Foundation, and the Lupus Research Alliance Disclosures of Competing Interests: TBN has received research grants from EMD Serono and Janssen, and has consulted for Thermo Fisher, Progentec, and Inova, all unrelated to the current manuscript. Corresponding author: Timothy B. Niewold, MD, Colton Center for Autoimmunity, NYU Grossman School of Medicine, 550 1st Ave., New York, NY 10016,
| | - Jill P Buyon
- Colton Center for Autoimmunity, New York University, USA; Allergy and Clinical Immunology, Chiba University, Japan; Mayo Clinic College of Medicine, USA; Department of Pathology, New York University, USA; Division of Rheumatology, New York University, USA. Funding: TBN: Grants from the Colton Center for Autoimmunity, NIH (AR060861, AR057781, AR065964), the Lupus Research Foundation, and the Lupus Research Alliance Disclosures of Competing Interests: TBN has received research grants from EMD Serono and Janssen, and has consulted for Thermo Fisher, Progentec, and Inova, all unrelated to the current manuscript. Corresponding author: Timothy B. Niewold, MD, Colton Center for Autoimmunity, NYU Grossman School of Medicine, 550 1st Ave., New York, NY 10016,
| | - Ming Wu
- Colton Center for Autoimmunity, New York University, USA; Allergy and Clinical Immunology, Chiba University, Japan; Mayo Clinic College of Medicine, USA; Department of Pathology, New York University, USA; Division of Rheumatology, New York University, USA. Funding: TBN: Grants from the Colton Center for Autoimmunity, NIH (AR060861, AR057781, AR065964), the Lupus Research Foundation, and the Lupus Research Alliance Disclosures of Competing Interests: TBN has received research grants from EMD Serono and Janssen, and has consulted for Thermo Fisher, Progentec, and Inova, all unrelated to the current manuscript. Corresponding author: Timothy B. Niewold, MD, Colton Center for Autoimmunity, NYU Grossman School of Medicine, 550 1st Ave., New York, NY 10016,
| | - Cynthia A Loomis
- Colton Center for Autoimmunity, New York University, USA; Allergy and Clinical Immunology, Chiba University, Japan; Mayo Clinic College of Medicine, USA; Department of Pathology, New York University, USA; Division of Rheumatology, New York University, USA. Funding: TBN: Grants from the Colton Center for Autoimmunity, NIH (AR060861, AR057781, AR065964), the Lupus Research Foundation, and the Lupus Research Alliance Disclosures of Competing Interests: TBN has received research grants from EMD Serono and Janssen, and has consulted for Thermo Fisher, Progentec, and Inova, all unrelated to the current manuscript. Corresponding author: Timothy B. Niewold, MD, Colton Center for Autoimmunity, NYU Grossman School of Medicine, 550 1st Ave., New York, NY 10016,
| | - Timothy B Niewold
- Colton Center for Autoimmunity, New York University, USA; Allergy and Clinical Immunology, Chiba University, Japan; Mayo Clinic College of Medicine, USA; Department of Pathology, New York University, USA; Division of Rheumatology, New York University, USA. Funding: TBN: Grants from the Colton Center for Autoimmunity, NIH (AR060861, AR057781, AR065964), the Lupus Research Foundation, and the Lupus Research Alliance Disclosures of Competing Interests: TBN has received research grants from EMD Serono and Janssen, and has consulted for Thermo Fisher, Progentec, and Inova, all unrelated to the current manuscript. Corresponding author: Timothy B. Niewold, MD, Colton Center for Autoimmunity, NYU Grossman School of Medicine, 550 1st Ave., New York, NY 10016,
| |
Collapse
|
56
|
Immunosuppression in Rheumatologic and Auto-immune Disease. Handb Exp Pharmacol 2021; 272:181-208. [PMID: 34734308 DOI: 10.1007/164_2021_551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Many rheumatologic diseases are thought to originate in dysregulation of the immune system; lupus nephritis, for example, involves humoral immunity, while autoinflammatory diseases such as familial Mediterranean fever are caused by defects in innate immunity. Of note, this dysregulation may involve both upregulation of immune system components and aspects of immunodeficiency. Treatment of rheumatologic diseases thus requires a familiarity with a variety of immunosuppressive medications and their effects on immune system function.In many rheumatologic conditions, due to an incompletely elucidated mechanism of disease, immunosuppression is relatively broad in contrast to agents used, for example, in treatment of transplant rejection. Multiple immunosuppressive drugs may also be used in succession or in combination. As such, an understanding of the mechanisms and targets of immunosuppressive drugs is essential to appreciating their utility and potential adverse effects. Because of the overlap between therapies used in rheumatologic as well as other inflammatory disorders, some of these medications are discussed in other disease processes (e.g., Immunosuppression for inflammatory bowel disease) or in greater detail in other chapters of this textbook (corticosteroids, mTOR inhibitors, antiproliferative agents).
Collapse
|
57
|
Idborg H, Oke V. Cytokines as Biomarkers in Systemic Lupus Erythematosus: Value for Diagnosis and Drug Therapy. Int J Mol Sci 2021; 22:ijms222111327. [PMID: 34768756 PMCID: PMC8582965 DOI: 10.3390/ijms222111327] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/12/2021] [Accepted: 10/13/2021] [Indexed: 12/21/2022] Open
Abstract
Systemic Lupus Erythematosus (SLE) is a chronic autoimmune disease. The disease is characterized by activation and dysregulation of both the innate and the adaptive immune systems. The autoimmune response targets self-molecules including cell nuclei, double stranded DNA and other intra and extracellular structures. Multiple susceptibility genes within the immune system have been identified, as well as disturbances in different immune pathways. SLE may affect different organs and organ systems, and organ involvement is diverse among individuals. A universal understanding of pathophysiological mechanism of the disease, as well as directed therapies, are still missing. Cytokines are immunomodulating molecules produced by cells of the immune system. Interferons (IFNs) are a broad group of cytokines, primarily produced by the innate immune system. The IFN system has been observed to be dysregulated in SLE, and therefore IFNs have been extensively studied with a hope to understand the disease mechanisms and identify novel targeted therapies. In several autoimmune diseases identification and subsequent blockade of specific cytokines has led to successful therapies, for example tumor necrosis factor-alpha (TNF-α) inhibition in rheumatoid arthritis. Authors of this review have sought corresponding developments in SLE. In the current review, we cover the actual knowledge on IFNs and other studied cytokines as biomarkers and treatment targets in SLE.
Collapse
Affiliation(s)
- Helena Idborg
- Division of Rheumatology, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, 17176 Stockholm, Sweden;
| | - Vilija Oke
- Division of Rheumatology, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, 17176 Stockholm, Sweden;
- Center for Rheumatology, Academic Specialist Center, Stockholm Health Care Services, 11365 Stockholm, Sweden
- Correspondence:
| |
Collapse
|
58
|
Gallucci S, Meka S, Gamero AM. Abnormalities of the type I interferon signaling pathway in lupus autoimmunity. Cytokine 2021; 146:155633. [PMID: 34340046 PMCID: PMC8475157 DOI: 10.1016/j.cyto.2021.155633] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 06/11/2021] [Indexed: 12/16/2022]
Abstract
Type I interferons (IFNs), mostly IFNα and IFNβ, and the type I IFN Signature are important in the pathogenesis of Systemic Lupus Erythematosus (SLE), an autoimmune chronic condition linked to inflammation. Both IFNα and IFNβ trigger a signaling cascade that, through the activation of JAK1, TYK2, STAT1 and STAT2, initiates gene transcription of IFN stimulated genes (ISGs). Noteworthy, other STAT family members and IFN Responsive Factors (IRFs) can also contribute to the activation of the IFN response. Aberrant type I IFN signaling, therefore, can exacerbate SLE by deregulated homeostasis leading to unnecessary persistence of the biological effects of type I IFNs. The etiopathogenesis of SLE is partially known and considered multifactorial. Family-based and genome wide association studies (GWAS) have identified genetic and transcriptional abnormalities in key molecules directly involved in the type I IFN signaling pathway, namely TYK2, STAT1 and STAT4, and IRF5. Gain-of-function mutations that heighten IFNα/β production, which in turn maintains type I IFN signaling, are found in other pathologies like the interferonopathies. However, the distinctive characteristics have yet to be determined. Signaling molecules activated in response to type I IFNs are upregulated in immune cell subsets and affected tissues of SLE patients. Moreover, Type I IFNs induce chromatin remodeling leading to a state permissive to transcription, and SLE patients have increased global and gene-specific epigenetic modifications, such as hypomethylation of DNA and histone acetylation. Epigenome wide association studies (EWAS) highlight important differences between SLE patients and healthy controls in Interferon Stimulated Genes (ISGs). The combination of environmental and genetic factors may stimulate type I IFN signaling transiently and produce long-lasting detrimental effects through epigenetic alterations. Substantial evidence for the pathogenic role of type I IFNs in SLE advocates the clinical use of neutralizing anti-type I IFN receptor antibodies as a therapeutic strategy, with clinical studies already showing promising results. Current and future clinical trials will determine whether drugs targeting molecules of the type I IFN signaling pathway, like non-selective JAK inhibitors or specific TYK2 inhibitors, may benefit people living with lupus.
Collapse
Affiliation(s)
- Stefania Gallucci
- Laboratory of Dendritic Cell Biology, Department of Microbiology and Immunology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States.
| | - Sowmya Meka
- Laboratory of Dendritic Cell Biology, Department of Microbiology and Immunology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Ana M Gamero
- Department of Medical Genetics and Molecular Biochemistry, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States; Fels Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| |
Collapse
|
59
|
Papadopoulos VE, Skarlis C, Evangelopoulos ME, Mavragani CP. Type I interferon detection in autoimmune diseases: challenges and clinical applications. Expert Rev Clin Immunol 2021; 17:883-903. [PMID: 34096436 DOI: 10.1080/1744666x.2021.1939686] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
INTRODUCTION Accumulating data highlights that the dysregulation of type I interferon (IFN) pathways plays a central role in the pathogenesis of several systemic and organ-specific autoimmune diseases. Advances in understanding the role of type I IFNs in these disorders can lead to targeted drug development as well as establishing potential disease biomarkers. AREAS COVERED Here, we summarize current knowledge regarding the role of type I IFNs in the major systemic, as well as organ-specific, autoimmune disorders, including prominent inflammatory CNS disorders like multiple sclerosis. EXPERT OPINION Type I IFN involvement and its clinical associations in a wide spectrum of autoimmune diseases represents a promising area for research aiming to unveil common pathogenetic pathways in systemic and organ-specific autoimmunity.
Collapse
Affiliation(s)
- Vassilis E Papadopoulos
- Demyelinating Diseases Unit, First Department of Neurology, Eginition Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Charalampos Skarlis
- Department of Physiology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Maria-Eleftheria Evangelopoulos
- Demyelinating Diseases Unit, First Department of Neurology, Eginition Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Clio P Mavragani
- Department of Physiology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece.,Joint Academic Rheumatology Program, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
60
|
Abstract
Skewing of type I interferon (IFN) production and responses is a hallmark of systemic lupus erythematosus (SLE). Genetic and environmental contributions to IFN production lead to aberrant innate and adaptive immune activation even before clinical development of disease. Basic and translational research in this arena continues to identify contributions of IFNs to disease pathogenesis, and several promising therapeutic options for targeting of type I IFNs and their signaling pathways are in development for treatment of SLE patients.
Collapse
Affiliation(s)
- Sirisha Sirobhushanam
- Department of Internal Medicine, Division of Rheumatology, University of Michigan, 5568 MSRB 2, 1150 West Medical Center Drive, Ann Arbor, MI 49109, USA
| | - Stephanie Lazar
- Department of Internal Medicine, Division of Rheumatology, University of Michigan, 5568 MSRB 2, 1150 West Medical Center Drive, Ann Arbor, MI 49109, USA
| | - J Michelle Kahlenberg
- Department of Internal Medicine, Division of Rheumatology, University of Michigan, 5570A MSRB 2, 1150 West Medical Center Drive, Ann Arbor, MI 49109, USA; Department of Dermatology, University of Michigan, 5570A MSRB 2, 1150 West Medical Center Drive, Ann Arbor, MI 49109, USA.
| |
Collapse
|
61
|
Monogenic Autoinflammatory Diseases: State of the Art and Future Perspectives. Int J Mol Sci 2021; 22:ijms22126360. [PMID: 34198614 PMCID: PMC8232320 DOI: 10.3390/ijms22126360] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/10/2021] [Accepted: 06/11/2021] [Indexed: 12/18/2022] Open
Abstract
Systemic autoinflammatory diseases are a heterogeneous family of disorders characterized by a dysregulation of the innate immune system, in which sterile inflammation primarily develops through antigen-independent hyperactivation of immune pathways. In most cases, they have a strong genetic background, with mutations in single genes involved in inflammation. Therefore, they can derive from different pathogenic mechanisms at any level, such as dysregulated inflammasome-mediated production of cytokines, intracellular stress, defective regulatory pathways, altered protein folding, enhanced NF-kappaB signalling, ubiquitination disorders, interferon pathway upregulation and complement activation. Since the discover of pathogenic mutations of the pyrin-encoding gene MEFV in Familial Mediterranean Fever, more than 50 monogenic autoinflammatory diseases have been discovered thanks to the advances in genetic sequencing: the advent of new genetic analysis techniques and the discovery of genes involved in autoinflammatory diseases have allowed a better understanding of the underlying innate immunologic pathways and pathogenetic mechanisms, thus opening new perspectives in targeted therapies. Moreover, this field of research has become of great interest, since more than a hundred clinical trials for autoinflammatory diseases are currently active or recently concluded, allowing us to hope for considerable acquisitions for the next few years. General paediatricians need to be aware of the importance of this group of diseases and they should consider autoinflammatory diseases in patients with clinical hallmarks, in order to guide further examinations and refer the patient to a specialist rheumatologist. Here we resume the pathogenesis, clinical aspects and diagnosis of the most important autoinflammatory diseases in children.
Collapse
|
62
|
Chasset F, Dayer JM, Chizzolini C. Type I Interferons in Systemic Autoimmune Diseases: Distinguishing Between Afferent and Efferent Functions for Precision Medicine and Individualized Treatment. Front Pharmacol 2021; 12:633821. [PMID: 33986670 PMCID: PMC8112244 DOI: 10.3389/fphar.2021.633821] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 03/03/2021] [Indexed: 12/19/2022] Open
Abstract
A sustained increase in type I interferon (IFN-I) may accompany clinical manifestations and disease activity in systemic autoimmune diseases (SADs). Despite the very frequent presence of IFN-I in SADs, clinical manifestations are extremely varied between and within SADs. The present short review will address the following key questions associated with high IFN-I in SADs in the perspective of precision medicine. 1) What are the mechanisms leading to high IFN-I? 2) What are the predisposing conditions favoring high IFN-I production? 3) What is the role of IFN-I in the development of distinct clinical manifestations within SADs? 4) Would therapeutic strategies targeting IFN-I be helpful in controlling or even preventing SADs? In answering these questions, we will underlie areas of incertitude and the intertwined role of autoantibodies, immune complexes, and neutrophils.
Collapse
Affiliation(s)
- François Chasset
- Department of Dermatology and Allergology, Faculty of Medicine, AP-HP, Tenon Hospital, Sorbonne University, Paris, France
| | - Jean-Michel Dayer
- Emeritus Professor of Medicine, School of Medicine, Geneva University, Geneva, Switzerland
| | - Carlo Chizzolini
- Department of Pathology and Immunology, School of Medicine, Geneva University, Geneva, Switzerland
| |
Collapse
|
63
|
Perez-Bercoff D, Laude H, Lemaire M, Hunewald O, Thiers V, Vignuzzi M, Blanc H, Poli A, Amoura Z, Caval V, Suspène R, Hafezi F, Mathian A, Vartanian JP, Wain-Hobson S. Sustained high expression of multiple APOBEC3 cytidine deaminases in systemic lupus erythematosus. Sci Rep 2021; 11:7893. [PMID: 33846459 PMCID: PMC8041901 DOI: 10.1038/s41598-021-87024-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 03/23/2021] [Indexed: 12/13/2022] Open
Abstract
APOBEC3 (A3) enzymes are best known for their role as antiviral restriction factors and as mutagens in cancer. Although four of them, A3A, A3B, A3F and A3G, are induced by type-1-interferon (IFN-I), their role in inflammatory conditions is unknown. We thus investigated the expression of A3, and particularly A3A and A3B because of their ability to edit cellular DNA, in Systemic Lupus Erythematosus (SLE), a chronic inflammatory disease characterized by high IFN-α serum levels. In a cohort of 57 SLE patients, A3A and A3B, but also A3C and A3G, were upregulated ~ 10 to 15-fold (> 1000-fold for A3B) compared to healthy controls, particularly in patients with flares and elevated serum IFN-α levels. Hydroxychloroquine, corticosteroids and immunosuppressive treatment did not reverse A3 levels. The A3AΔ3B polymorphism, which potentiates A3A, was detected in 14.9% of patients and in 10% of controls, and was associated with higher A3A mRNA expression. A3A and A3B mRNA levels, but not A3C or A3G, were correlated positively with dsDNA breaks and negatively with lymphopenia. Exposure of SLE PBMCs to IFN-α in culture induced massive and sustained A3A levels by 4 h and led to massive cell death. Furthermore, the rs2853669 A > G polymorphism in the telomerase reverse transcriptase (TERT) promoter, which disrupts an Ets-TCF-binding site and influences certain cancers, was highly prevalent in SLE patients, possibly contributing to lymphopenia. Taken together, these findings suggest that high baseline A3A and A3B levels may contribute to cell frailty, lymphopenia and to the generation of neoantigens in SLE patients. Targeting A3 expression could be a strategy to reverse cell death and the generation of neoantigens.
Collapse
Affiliation(s)
- Danielle Perez-Bercoff
- Department of Infection and Immunity, Luxembourg Institute of Health, 29 rue Henri Koch, 4354, Esch-sur-Alzette, Luxembourg.
| | - Hélène Laude
- ICAReB Platform, 28 rue du Docteur Roux, 75724, Paris Cedex 15, France
- Viral Populations and Pathogenesis Unit, UMR 3569, CNRS, Institut Pasteur, 28 rue du Dr. Roux, 75724, Paris Cedex 15, France
| | - Morgane Lemaire
- Department of Infection and Immunity, Luxembourg Institute of Health, 29 rue Henri Koch, 4354, Esch-sur-Alzette, Luxembourg
| | - Oliver Hunewald
- Department of Infection and Immunity, Luxembourg Institute of Health, 29 rue Henri Koch, 4354, Esch-sur-Alzette, Luxembourg
| | - Valérie Thiers
- Molecular Retrovirology Unit, UMR 3569, Institut Pasteur, CNRS, 28 rue du Dr. Roux, 75724, Paris cedex 15, France
| | - Marco Vignuzzi
- Viral Populations and Pathogenesis Unit, UMR 3569, CNRS, Institut Pasteur, 28 rue du Dr. Roux, 75724, Paris Cedex 15, France
| | - Hervé Blanc
- Viral Populations and Pathogenesis Unit, UMR 3569, CNRS, Institut Pasteur, 28 rue du Dr. Roux, 75724, Paris Cedex 15, France
| | - Aurélie Poli
- Department of Infection and Immunity, Luxembourg Institute of Health, 29 rue Henri Koch, 4354, Esch-sur-Alzette, Luxembourg
| | - Zahir Amoura
- Sorbonne Université, Assistance Publique-Hôpitaux de Paris, Groupement Hospitalier Pitié-Salpêtrière, French National Referral Center for Systemic Lupus Erythematosus, Antiphospholipid Antibody Syndrome and Other Autoimmune Disorders, Service de Médecine Interne 2, Institut E3M, Inserm UMRS, Centre D'Immunologie Et Des Maladies Infectieuses (CIMI-Paris), Paris, France
| | - Vincent Caval
- Departement de Virologie, Institut Pasteur, 28 rue du Dr. Roux, 75724, Paris Cedex 15, France
| | - Rodolphe Suspène
- Departement de Virologie, Institut Pasteur, 28 rue du Dr. Roux, 75724, Paris Cedex 15, France
| | - François Hafezi
- Department of Infection and Immunity, Luxembourg Institute of Health, 29 rue Henri Koch, 4354, Esch-sur-Alzette, Luxembourg
| | - Alexis Mathian
- Sorbonne Université, Assistance Publique-Hôpitaux de Paris, Groupement Hospitalier Pitié-Salpêtrière, French National Referral Center for Systemic Lupus Erythematosus, Antiphospholipid Antibody Syndrome and Other Autoimmune Disorders, Service de Médecine Interne 2, Institut E3M, Inserm UMRS, Centre D'Immunologie Et Des Maladies Infectieuses (CIMI-Paris), Paris, France
| | - Jean-Pierre Vartanian
- Molecular Retrovirology Unit, UMR 3569, Institut Pasteur, CNRS, 28 rue du Dr. Roux, 75724, Paris cedex 15, France
- Departement de Virologie, Institut Pasteur, 28 rue du Dr. Roux, 75724, Paris Cedex 15, France
| | - Simon Wain-Hobson
- Molecular Retrovirology Unit, UMR 3569, Institut Pasteur, CNRS, 28 rue du Dr. Roux, 75724, Paris cedex 15, France
| |
Collapse
|
64
|
Rubio J, Kyttaris VC. Measuring IFN activity in suspected SLE: a valuable step? Expert Rev Clin Immunol 2021; 17:545-548. [PMID: 33827358 DOI: 10.1080/1744666x.2021.1912597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Jose Rubio
- Division of Rheumatology, Beth Israel Deaconess Medical Center, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - Vasileios C Kyttaris
- Division of Rheumatology, Beth Israel Deaconess Medical Center, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| |
Collapse
|
65
|
d'Angelo DM, Di Filippo P, Breda L, Chiarelli F. Type I Interferonopathies in Children: An Overview. Front Pediatr 2021; 9:631329. [PMID: 33869112 PMCID: PMC8044321 DOI: 10.3389/fped.2021.631329] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 01/05/2021] [Indexed: 01/01/2023] Open
Abstract
Notable advances in gene sequencing methods in recent years have permitted enormous progress in the phenotypic and genotypic characterization of autoinflammatory syndromes. Interferonopathies are a recent group of inherited autoinflammatory diseases, characterized by a dysregulation of the interferon pathway, leading to constitutive upregulation of its activation mechanisms or downregulation of negative regulatory systems. They are clinically heterogeneous, but some peculiar clinical features may lead to suspicion: a familial "idiopathic" juvenile arthritis resistant to conventional treatments, an early necrotizing vasculitis, a non-infectious interstitial lung disease, and a panniculitis associated or not with a lipodystrophy may represent the "interferon alarm bells." The awareness of this group of diseases represents a challenge for pediatricians because, despite being rare, a differential diagnosis with the most common childhood rheumatological and immunological disorders is mandatory. Furthermore, the characterization of interferonopathy molecular pathogenetic mechanisms is allowing important steps forward in other immune dysregulation diseases, such as systemic lupus erythematosus and inflammatory myositis, implementing the opportunity of a more effective target therapy.
Collapse
Affiliation(s)
| | | | - Luciana Breda
- Department of Pediatrics, University of Chieti, Chieti, Italy
| | - Francesco Chiarelli
- Department of Pediatrics, University of Chieti, Chieti, Italy
- Center of Excellence on Aging, University of Chieti, Chieti, Italy
| |
Collapse
|
66
|
Zian Z, Bouhoudan A, Mourabit N, Azizi G, Bennani Mechita M. Salivary Cytokines as Potential Diagnostic Biomarkers for Systemic Lupus Erythematosus Disease. Mediators Inflamm 2021; 2021:8847557. [PMID: 33776578 PMCID: PMC7979309 DOI: 10.1155/2021/8847557] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 02/05/2021] [Accepted: 03/03/2021] [Indexed: 01/08/2023] Open
Abstract
Systemic lupus erythematosus (SLE) is a complex autoimmune inflammatory disease characterized by an unknown etiology and a highly variable clinical presentation. This clinical heterogeneity might be explained by dysregulation of tolerance to self and apoptotic mechanisms, overproduction of autoantibodies, and abnormal cytokine levels. Cytokine imbalance levels have been associated with disease activity and severity in SLE patients. In the last years, salivary cytokines related to SLE have gained significant attention and researchers have begun to focus on the identification of cytokines in the saliva of SLE patients using it as a diagnostic fluid for the inflammatory process underlying SLE. This review highlights and summarizes recent studies revealing the cytokines that have been identified in the saliva of individuals with SLE. Data reported and discussed in this report may provide useful additional information to better understand the mechanisms associated with the disease.
Collapse
Affiliation(s)
- Zeineb Zian
- Biomedical Genomics and Oncogenetics Research Laboratory, Faculty of Sciences and Techniques of Tangier, Abdelmalek Essaadi University, Tetouan, Morocco
| | - Assia Bouhoudan
- Faculty of Sciences of Tetouan, Abdelmalek Essaadi University, Tetouan, Morocco
| | - Nadira Mourabit
- Higher Institute of Nursing Professions and Technical Health of Tangier, Morocco
| | - Gholamreza Azizi
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Mohcine Bennani Mechita
- Biomedical Genomics and Oncogenetics Research Laboratory, Faculty of Sciences and Techniques of Tangier, Abdelmalek Essaadi University, Tetouan, Morocco
| |
Collapse
|
67
|
Shah R, Amador C, Tormanen K, Ghiam S, Saghizadeh M, Arumugaswami V, Kumar A, Kramerov AA, Ljubimov AV. Systemic diseases and the cornea. Exp Eye Res 2021; 204:108455. [PMID: 33485845 PMCID: PMC7946758 DOI: 10.1016/j.exer.2021.108455] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/11/2021] [Accepted: 01/12/2021] [Indexed: 01/08/2023]
Abstract
There is a number of systemic diseases affecting the cornea. These include endocrine disorders (diabetes, Graves' disease, Addison's disease, hyperparathyroidism), infections with viruses (SARS-CoV-2, herpes simplex, varicella zoster, HTLV-1, Epstein-Barr virus) and bacteria (tuberculosis, syphilis and Pseudomonas aeruginosa), autoimmune and inflammatory diseases (rheumatoid arthritis, Sjögren's syndrome, lupus erythematosus, gout, atopic and vernal keratoconjunctivitis, multiple sclerosis, granulomatosis with polyangiitis, sarcoidosis, Cogan's syndrome, immunobullous diseases), corneal deposit disorders (Wilson's disease, cystinosis, Fabry disease, Meretoja's syndrome, mucopolysaccharidosis, hyperlipoproteinemia), and genetic disorders (aniridia, Ehlers-Danlos syndromes, Marfan syndrome). Corneal manifestations often provide an insight to underlying systemic diseases and can act as the first indicator of an undiagnosed systemic condition. Routine eye exams can bring attention to potentially life-threatening illnesses. In this review, we provide a fairly detailed overview of the pathologic changes in the cornea described in various systemic diseases and also discuss underlying molecular mechanisms, as well as current and emerging treatments.
Collapse
Affiliation(s)
- Ruchi Shah
- Eye Program, Board of Governors Regenerative Medicine Institute, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| | - Cynthia Amador
- Eye Program, Board of Governors Regenerative Medicine Institute, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Kati Tormanen
- Center for Neurobiology and Vaccine Development, Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Sean Ghiam
- Sackler School of Medicine, New York State/American Program of Tel Aviv University, Tel Aviv, Israel
| | - Mehrnoosh Saghizadeh
- Eye Program, Board of Governors Regenerative Medicine Institute, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Departments of Molecular and Medical Pharmacology, Medicine, and Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Vaithi Arumugaswami
- Departments of Molecular and Medical Pharmacology, Medicine, and Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Ashok Kumar
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University, Detroit, MI, USA
| | - Andrei A Kramerov
- Eye Program, Board of Governors Regenerative Medicine Institute, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Alexander V Ljubimov
- Eye Program, Board of Governors Regenerative Medicine Institute, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Departments of Molecular and Medical Pharmacology, Medicine, and Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
68
|
Seridi L, Cesaroni M, Orillion A, Schreiter J, Chevrier M, Marciniak S, Migone TS, Stohl W, Chatham WW, Furie RA, Benson J, Jordan J. Novel signatures associated with systemic lupus erythematosus clinical response to IFN-α/-ω inhibition. Lupus 2021; 30:795-806. [PMID: 33626969 DOI: 10.1177/0961203321995576] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVES We aimed to identify transcriptional gene signatures predictive of clinical response, for pharmacodynamic evaluation, and to provide mechanistic insight into JNJ-55920839, a human IgG1κ neutralizing mAb targeting IFN-α/IFN-ω, in participants with systemic lupus erythematosus (SLE). METHODS Blood samples were obtained from SLE participants at baseline and up to Day 130, who received six 10 mg/kg IV doses of JNJ-55920839/placebo every 2 weeks. Participants with mild-to-moderate SLE who achieved clinical responses using SLE Disease Activity Index 2000 Responder Index 4-point change were considered responders. Transcriptional signatures from longitudinally collected blood were generated by RNA-Seq; signatures were generated by microarray from baseline blood samples exposed in vitro to JNJ-55920839 versus untreated. RESULTS Two gene signatures (IFN-I Signaling and Immunoglobulin Immune Response) exhibited pharmacodynamic changes among JNJ-55920839 responders. The Immunoglobulin signature, but not the IFN-I signature, was elevated at baseline in JNJ-55920839 responders. A gene cluster associated with neutrophil-mediated immunity was reduced at baseline in JNJ-55920839 responders, substantiated by lower neutrophil counts in responders. An IFN-I signature was suppressed by JNJ-55920839 in vitro treatment versus untreated blood to a greater extent in responders before in vivo dosing. CONCLUSIONS These signatures may enable enrichment for treatment responders when using IFN-I-suppressing treatments in SLE.
Collapse
Affiliation(s)
- Loqmane Seridi
- Janssen Research & Development, LLC, Springhouse, PA, USA
| | | | | | | | - Marc Chevrier
- Janssen Research & Development, LLC, Springhouse, PA, USA
| | | | | | - William Stohl
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | | | - Richard Alan Furie
- Zucker School of Medicine at Hofstra/Northwell, Northwell Health, Long Island, NY, USA
| | | | - Jarrat Jordan
- Janssen Research & Development, LLC, Cambridge, MA, USA
| |
Collapse
|
69
|
Huang J, Peng J, Pearson JA, Efthimiou G, Hu Y, Tai N, Xing Y, Zhang L, Gu J, Jiang J, Zhao H, Zhou Z, Wong FS, Wen L. Toll-like receptor 7 deficiency suppresses type 1 diabetes development by modulating B-cell differentiation and function. Cell Mol Immunol 2021; 18:328-338. [PMID: 33432061 PMCID: PMC8027372 DOI: 10.1038/s41423-020-00590-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 10/31/2020] [Indexed: 01/29/2023] Open
Abstract
Innate immunity mediated by Toll-like receptors (TLRs), which can recognize pathogen molecular patterns, plays a critical role in type 1 diabetes development. TLR7 is a pattern recognition receptor that senses single-stranded RNAs from viruses and host tissue cells; however, its role in type 1 diabetes development remains unclear. In our study, we discovered that Tlr7-deficient (Tlr7-/-) nonobese diabetic (NOD) mice, a model of human type 1 diabetes, exhibited a significantly delayed onset and reduced incidence of type 1 diabetes compared with Tlr7-sufficient (Tlr7+/+) NOD mice. Mechanistic investigations showed that Tlr7 deficiency significantly altered B-cell differentiation and immunoglobulin production. Moreover, Tlr7-/- NOD B cells were found to suppress diabetogenic CD4+ T-cell responses and protect immunodeficient NOD mice from developing diabetes induced by diabetogenic T cells. In addition, we found that Tlr7 deficiency suppressed the antigen-presenting functions of B cells and inhibited cytotoxic CD8+ T-cell activation by downregulating the expression of both nonclassical and classical MHC class I (MHC-I) molecules on B cells. Our data suggest that TLR7 contributes to type 1 diabetes development by regulating B-cell functions and subsequent interactions with T cells. Therefore, therapeutically targeting TLR7 may prove beneficial for disease protection.
Collapse
Affiliation(s)
- Juan Huang
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Section of Endocrinology, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT, USA
| | - Jian Peng
- Section of Endocrinology, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT, USA
| | - James Alexander Pearson
- Section of Endocrinology, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT, USA
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
| | - Georgios Efthimiou
- Section of Endocrinology, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT, USA
- Department of Microbiology, University of Hull, Hull, UK
| | - Youjia Hu
- Section of Endocrinology, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT, USA
| | - Ningwen Tai
- Section of Endocrinology, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT, USA
| | - Yanpeng Xing
- Section of Endocrinology, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT, USA
- Department of Gastrointestinal Surgery of the First Hospital of Jilin University, Changchun, Jilin, China
| | - Luyao Zhang
- Section of Endocrinology, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT, USA
- Department of Gastrointestinal Surgery of the First Hospital of Jilin University, Changchun, Jilin, China
| | - Jianlei Gu
- Department of Biostatistics, Data Science & Genetics, Yale School of Public Health, New Haven, CT, USA
| | - Jianping Jiang
- Department of Biostatistics, Data Science & Genetics, Yale School of Public Health, New Haven, CT, USA
| | - Hongyu Zhao
- Department of Biostatistics, Data Science & Genetics, Yale School of Public Health, New Haven, CT, USA
| | - Zhiguang Zhou
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - F Susan Wong
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
| | - Li Wen
- Section of Endocrinology, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT, USA.
| |
Collapse
|
70
|
Gupta S, Kaplan MJ. Bite of the wolf: innate immune responses propagate autoimmunity in lupus. J Clin Invest 2021; 131:144918. [PMID: 33529160 PMCID: PMC7843222 DOI: 10.1172/jci144918] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The etiopathogenesis of systemic lupus erythematosus (SLE), a clinically heterogeneous multisystemic syndrome that derives its name from the initial characterization of facial lesions that resemble the bite of a wolf, is considered a complex, multifactorial interplay between underlying genetic susceptibility factors and the environment. Prominent pathogenic factors include the induction of aberrant cell death pathways coupled with defective cell death clearance mechanisms that promote excessive externalization of modified cellular and nuclear debris with subsequent loss of tolerance to a wide variety of autoantigens and innate and adaptive immune dysregulation. While abnormalities in adaptive immunity are well recognized and are key to the pathogenesis of SLE, recent findings have emphasized fundamental roles of the innate immune system in the initiation and propagation of autoimmunity and the development of organ damage in this disease. This Review focuses on recent discoveries regarding the role of components of the innate immune system, specifically neutrophils and interferons, in promoting various aspects of lupus pathogenesis, with potential implications for novel therapeutic strategies.
Collapse
|
71
|
Zhang B, Zhao M, Lu Q. Extracellular Vesicles in Rheumatoid Arthritis and Systemic Lupus Erythematosus: Functions and Applications. Front Immunol 2021; 11:575712. [PMID: 33519800 PMCID: PMC7841259 DOI: 10.3389/fimmu.2020.575712] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 11/27/2020] [Indexed: 12/18/2022] Open
Abstract
In the last two decades, extracellular vesicles (EVs) have aroused wide interest among researchers in basic and clinical research. EVs, small membrane vesicles are released by almost all kinds of cells into the extracellular environment. According to many recent studies, EVs participate in immunomodulation and play an important role in the pathogenesis of autoimmune diseases. In addition, EVs have great potential in the diagnosis and therapy of autoimmune diseases. Here, we reviewed the latest research advances on the functions and mechanisms of EVs and their roles in the pathogenesis, diagnosis, and treatment of rheumatoid arthritis and systemic lupus erythematosus.
Collapse
Affiliation(s)
- Bo Zhang
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, China.,Clinical Immunology Research Center, Central South University, Changsha, China.,Research Unit of Key Technologies of Diagnosis and Treatment for Immune-related Skin Diseases, Chinese Academy of Medical Sciences (2019RU027), Changsha, China
| | - Ming Zhao
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, China.,Clinical Immunology Research Center, Central South University, Changsha, China.,Research Unit of Key Technologies of Diagnosis and Treatment for Immune-related Skin Diseases, Chinese Academy of Medical Sciences (2019RU027), Changsha, China
| | - Qianjin Lu
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, China.,Clinical Immunology Research Center, Central South University, Changsha, China.,Research Unit of Key Technologies of Diagnosis and Treatment for Immune-related Skin Diseases, Chinese Academy of Medical Sciences (2019RU027), Changsha, China
| |
Collapse
|
72
|
Castro-Sanchez P, Teagle AR, Prade S, Zamoyska R. Modulation of TCR Signaling by Tyrosine Phosphatases: From Autoimmunity to Immunotherapy. Front Cell Dev Biol 2020; 8:608747. [PMID: 33425916 PMCID: PMC7793860 DOI: 10.3389/fcell.2020.608747] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 11/18/2020] [Indexed: 02/06/2023] Open
Abstract
Early TCR signaling is dependent on rapid phosphorylation and dephosphorylation of multiple signaling and adaptor proteins, leading to T cell activation. This process is tightly regulated by an intricate web of interactions between kinases and phosphatases. A number of tyrosine phosphatases have been shown to modulate T cell responses and thus alter T cell fate by negatively regulating early TCR signaling. Mutations in some of these enzymes are associated with enhanced predisposition to autoimmunity in humans, and mouse models deficient in orthologous genes often show T cell hyper-activation. Therefore, phosphatases are emerging as potential targets in situations where it is desirable to enhance T cell responses, such as immune responses to tumors. In this review, we summarize the current knowledge about tyrosine phosphatases that regulate early TCR signaling and discuss their involvement in autoimmunity and their potential as targets for tumor immunotherapy.
Collapse
Affiliation(s)
| | | | | | - Rose Zamoyska
- Ashworth Laboratories, Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
73
|
Psarras A, Alase A, Antanaviciute A, Carr IM, Md Yusof MY, Wittmann M, Emery P, Tsokos GC, Vital EM. Functionally impaired plasmacytoid dendritic cells and non-haematopoietic sources of type I interferon characterize human autoimmunity. Nat Commun 2020; 11:6149. [PMID: 33262343 PMCID: PMC7708979 DOI: 10.1038/s41467-020-19918-z] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 10/28/2020] [Indexed: 12/23/2022] Open
Abstract
Autoimmune connective tissue diseases arise in a stepwise fashion from asymptomatic preclinical autoimmunity. Type I interferons have a crucial role in the progression to established autoimmune diseases. The cellular source and regulation in disease initiation of these cytokines is not clear, but plasmacytoid dendritic cells have been thought to contribute to excessive type I interferon production. Here, we show that in preclinical autoimmunity and established systemic lupus erythematosus, plasmacytoid dendritic cells are not effector cells, have lost capacity for Toll-like-receptor-mediated cytokine production and do not induce T cell activation, independent of disease activity and the blood interferon signature. In addition, plasmacytoid dendritic cells have a transcriptional signature indicative of cellular stress and senescence accompanied by increased telomere erosion. In preclinical autoimmunity, we show a marked enrichment of an interferon signature in the skin without infiltrating immune cells, but with interferon-κ production by keratinocytes. In conclusion, non-hematopoietic cellular sources, rather than plasmacytoid dendritic cells, are responsible for interferon production prior to clinical autoimmunity.
Collapse
Affiliation(s)
- Antonios Psarras
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK
- National Institute for Health Research (NIHR), Leeds Biomedical Research Centre, Leeds Teaching Hospitals NHS Trust, Leeds, UK
- Division of Rheumatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Adewonuola Alase
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK
| | | | - Ian M Carr
- Leeds Institute for Data Analytics, University of Leeds, Leeds, UK
| | - Md Yuzaiful Md Yusof
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK
- National Institute for Health Research (NIHR), Leeds Biomedical Research Centre, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Miriam Wittmann
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK
- National Institute for Health Research (NIHR), Leeds Biomedical Research Centre, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Paul Emery
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK
- National Institute for Health Research (NIHR), Leeds Biomedical Research Centre, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - George C Tsokos
- Division of Rheumatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Edward M Vital
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK.
- National Institute for Health Research (NIHR), Leeds Biomedical Research Centre, Leeds Teaching Hospitals NHS Trust, Leeds, UK.
| |
Collapse
|
74
|
Postal M, Vivaldo JF, Fernandez-Ruiz R, Paredes JL, Appenzeller S, Niewold TB. Type I interferon in the pathogenesis of systemic lupus erythematosus. Curr Opin Immunol 2020; 67:87-94. [PMID: 33246136 PMCID: PMC8054829 DOI: 10.1016/j.coi.2020.10.014] [Citation(s) in RCA: 154] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 10/23/2020] [Accepted: 10/25/2020] [Indexed: 02/08/2023]
Abstract
Type I interferon (IFN) is a primary pathogenic factor in systemic lupus erythematosus (SLE). Gain-of-function genetic variants in the type I IFN pathway have been associated with risk of disease. Common polygenic as well as rare monogenic influences on type I IFN have been demonstrated, supporting a complex genetic basis for high IFN in many SLE patients. Both SLE-associated autoantibodies and high type I IFN can be observed in the pre-disease state. Patients with SLE and evidence of high type I IFN have more active disease and a greater propensity to nephritis and other severe manifestations. Despite the well-established association between type I IFN and SLE, the specific triggers of type I IFN production, the mechanisms by which IFNs help perpetuate the cycle of autoreactive cells and autoantibody production are not completely clear. This review provides an updated overview of type I IFN in SLE pathogenesis, clinical manifestations, and current therapeutic strategies targeting this pathway.
Collapse
Affiliation(s)
- Mariana Postal
- Autoimmunity Lab, School of Medical Science, State University of Campinas, Campinas, SP, Brazil
| | - Jessica F Vivaldo
- Autoimmunity Lab, School of Medical Science, State University of Campinas, Campinas, SP, Brazil; Graduate Program of Child and Adolescent Health, School of Medical Science, State University of Campinas, Campinas, SP, Brazil
| | - Ruth Fernandez-Ruiz
- Colton Center for Autoimmunity, New York University School of Medicine, New York, NY, USA
| | - Jacqueline L Paredes
- Colton Center for Autoimmunity, New York University School of Medicine, New York, NY, USA
| | - Simone Appenzeller
- Autoimmunity Lab, School of Medical Science, State University of Campinas, Campinas, SP, Brazil; Rheumatology Unit, Department of Medicine, School of Medical Science, State University of Campinas, Campinas, SP, Brazil
| | - Timothy B Niewold
- Colton Center for Autoimmunity, New York University School of Medicine, New York, NY, USA.
| |
Collapse
|
75
|
Nozaki Y. The Network of Inflammatory Mechanisms in Lupus Nephritis. Front Med (Lausanne) 2020; 7:591724. [PMID: 33240910 PMCID: PMC7677583 DOI: 10.3389/fmed.2020.591724] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 10/20/2020] [Indexed: 12/20/2022] Open
Abstract
Several signaling pathways are involved in the progression of kidney disease in humans and in animal models, and kidney disease is usually due to the sustained activation of these pathways. Some of the best understood pathways are specific proinflammatory cytokine and protein kinase pathways (e.g., protein kinase C and mitogen-activated kinase pathways, which cause cell proliferation and fibrosis and are associated with angiotensin II) and transforming growth factor-beta (TGF-β) signaling pathways (e.g., the TGF-β signaling pathway, which leads to increased fibrosis and kidney scarring. It is thus necessary to continue to advance our knowledge of the pathogenesis and molecular biology of kidney disease and to develop new treatments. This review provides an update of important findings about kidney diseases (including diabetic nephropathy, lupus nephritis, and vasculitis, i.e., vasculitis with antineutrophilic cytoplasmic antibodies). New disease targets, potential pathological pathways, and promising therapeutic approaches from basic science to clinical practice are presented, and the blocking of JAK/STAT and TIM-1/TIM-4 signaling pathways as potential novel therapeutic agents in lupus nephritis is discussed.
Collapse
Affiliation(s)
- Yuji Nozaki
- Department of Hematology and Rheumatology, Faculty of Medicine, Kindai University, Osaka, Japan
| |
Collapse
|
76
|
Lanata CM, Blazer A, Criswell LA. The Contribution of Genetics and Epigenetics to Our Understanding of Health Disparities in Rheumatic Diseases. Rheum Dis Clin North Am 2020; 47:65-81. [PMID: 34042055 DOI: 10.1016/j.rdc.2020.09.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Socioeconomic determinants of health are associated with worse outcomes in the rheumatic diseases and contribute significantly to health disparities. However, genetic and epigenetic risk factors may affect different populations disproportionally and further exacerbate health disparities. We discuss the role of genetics and epigenetics to the health disparities observed in rheumatic diseases. We review concepts of population genetics and natural selection, current genome-wide genetic and epigenetic studies of several autoimmune diseases, and environmental exposures associated with disease risk in different populations. To understand how genomics influence health disparities in the rheumatic diseases, further studies in different populations worldwide are needed.
Collapse
Affiliation(s)
- Cristina M Lanata
- Russell/Engleman Rheumatology Research Center, University of California, San Francisco, 513 Parnassus Avenue, MSB S865, San Francisco, CA, USA
| | - Ashira Blazer
- Department of Medicine, Division of Rheumatology, NYU Langone Health, 550 1st Avenue, MSB 606, New York, NY 10029, USA
| | - Lindsey A Criswell
- Russell/Engleman Rheumatology Research Center, University of California, San Francisco, 513 Parnassus Avenue, MSB S864, San Francisco, CA, USA.
| |
Collapse
|
77
|
Yao Z, Loggia L, Fink D, Chevrier M, Marciniak S, Sharma A, Xu Z. Pharmacokinetics and Pharmacodynamics of JNJ-55920839, an Antibody Targeting Interferon α/ω, in Healthy Subjects and Subjects with Mild-to-Moderate Systemic Lupus Erythematosus. Clin Drug Investig 2020; 40:1127-1136. [PMID: 33085033 DOI: 10.1007/s40261-020-00978-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/07/2020] [Indexed: 11/26/2022]
Abstract
BACKGROUND The interferon (IFN) pathway has been correlated with clinical and serological markers of disease activity in patients with systemic lupus erythematosus (SLE). OBJECTIVE The pharmacokinetics and pharmacodynamics of JNJ-55920839, a fully human immunoglobulin G1κ antibody targeting IFNα/ω, were investigated. METHODS In a double-blind, first-in-human study, Part A enrolled 48 healthy adults who received a single dose of placebo/JNJ-55920839 between 0.3 and 15 mg/kg intravenous (IV) or at 1 mg/kg subcutaneous (SC). Part B enrolled 26 adults with SLE who received placebo or JNJ-55920839 10 mg/kg IV 6 times biweekly. Pharmacokinetic parameters were calculated by noncompartmental analysis (NCA) and estimated by nonlinear mixed-effects modeling. RESULTS JNJ-55920839 pharmacokinetics following a single IV infusion exhibited a biphasic disposition in healthy subjects. Maximum plasma concentration (Cmax) and area under the concentration-time curve values increased dose-proportionally. Mean clearance (CL) after a single IV infusion ranged between 2.28 and 3.09 mL/kg/day. Absolute bioavailability after a single SC injection was ≥ 80.0%. Mean terminal elimination half-life (t1/2) was similar after IV (20.7 to 24.6 days) and SC administration (22.6 days). Steady state of JNJ-55920839 was achieved 6 weeks after multiple 10 mg/kg IV doses in subjects with SLE. Mean steady-state CL and t1/2 were 4.73 mL/kg/day and 14.8 days, respectively. A linear 2-compartment population pharmacokinetic model with 1st-order absorption and elimination adequately characterized the pharmacokinetics; parameters were consistent with NCA estimates. Higher CL was estimated in subjects with SLE compared with healthy subjects, after correcting for body weight. A trend of increased total IFNα/ω levels was observed after treatment with JNJ-55920839. CONCLUSION Pharmacokinetic and pharmacodynamic analyses of the data from this study demonstrated that there was biphasic disposition in both healthy subjects and subjects with SLE, CL was faster in subjects with SLE, and increases in total IFNα/ω levels were observed in both healthy subjects and subjects with SLE after treatment with JNJ-55920839, thus further development is supported. The study is registered at ClinicalTrials.gov NCT02609789.
Collapse
MESH Headings
- Administration, Intravenous
- Adult
- Antibodies, Monoclonal, Humanized/pharmacokinetics
- Antibodies, Monoclonal, Humanized/pharmacology
- Antibodies, Monoclonal, Humanized/therapeutic use
- Area Under Curve
- Biological Availability
- Double-Blind Method
- Female
- Healthy Volunteers
- Humans
- Infusions, Intravenous
- Injections, Subcutaneous
- Interferon-alpha/antagonists & inhibitors
- Lupus Erythematosus, Systemic/drug therapy
- Male
- Middle Aged
- Placebos
Collapse
Affiliation(s)
- Zhenling Yao
- Janssen Research and Development, LLC, Clin Pharm TA PA, SH32-10590, Welsh & McKean Road, Spring House, PA, 19477, USA
| | - Laura Loggia
- Janssen Research and Development, LLC, Clin Pharm TA PA, SH32-10590, Welsh & McKean Road, Spring House, PA, 19477, USA
| | - Damien Fink
- Janssen Research and Development, LLC, Clin Pharm TA PA, SH32-10590, Welsh & McKean Road, Spring House, PA, 19477, USA
| | - Marc Chevrier
- Janssen Research and Development, LLC, Clin Pharm TA PA, SH32-10590, Welsh & McKean Road, Spring House, PA, 19477, USA
| | - Stanley Marciniak
- Janssen Research and Development, LLC, Clin Pharm TA PA, SH32-10590, Welsh & McKean Road, Spring House, PA, 19477, USA
| | - Amarnath Sharma
- Janssen Research and Development, LLC, Clin Pharm TA PA, SH32-10590, Welsh & McKean Road, Spring House, PA, 19477, USA
| | - Zhenhua Xu
- Janssen Research and Development, LLC, Clin Pharm TA PA, SH32-10590, Welsh & McKean Road, Spring House, PA, 19477, USA.
| |
Collapse
|
78
|
Pin A, Tesser A, Pastore S, Moressa V, Valencic E, Arbo A, Maestro A, Tommasini A, Taddio A. Biological and Clinical Changes in a Pediatric Series Treated with Off-Label JAK Inhibitors. Int J Mol Sci 2020; 21:7767. [PMID: 33092242 PMCID: PMC7590237 DOI: 10.3390/ijms21207767] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/13/2020] [Accepted: 10/19/2020] [Indexed: 02/07/2023] Open
Abstract
Off-label use of medications is still a common practice in pediatric rheumatology. JAK inhibitors are authorized in adults in the treatment of rheumatoid arthritis, psoriatic arthritis and ulcerative colitis. Although their use is not authorized yet in children, JAK inhibitors, based on their mechanism of action and on clinical experiences in small series, have been suggested to be useful in the treatment of pediatric interferon-mediated inflammation. Accordingly, an increased interferon score may help to identify those patients who might benefit of JAK inhibitors. We describe the clinical experience with JAK inhibitors in seven children affected with severe inflammatory conditions and we discuss the correlation between clinical features and transcriptomic data. Clinical improvements were recorded in all cases. A reduction of interferon signaling was recorded in three out of seven subjects at last follow-up, irrespectively from clinical improvements. Other signal pathways with significant differences between patients and controls included upregulation of DNA repair pathway and downregulation of extracellular collagen homeostasis. Two patients developed drug-related adverse events, which were considered serious in one case. In conclusion, JAK inhibitors may offer a valuable option for children with severe interferon-mediated inflammatory disorders reducing the interferon score as well as influencing other signal pathways that deserve future studies.
Collapse
Affiliation(s)
- Alessia Pin
- Department of Pediatrics, Institute for Maternal and Child Health—IRCCS “Burlo Garofolo”, 34137 Trieste, Italy; (A.P.); (A.T.); (S.P.); (V.M.); (E.V.); (A.T.)
| | - Alessandra Tesser
- Department of Pediatrics, Institute for Maternal and Child Health—IRCCS “Burlo Garofolo”, 34137 Trieste, Italy; (A.P.); (A.T.); (S.P.); (V.M.); (E.V.); (A.T.)
| | - Serena Pastore
- Department of Pediatrics, Institute for Maternal and Child Health—IRCCS “Burlo Garofolo”, 34137 Trieste, Italy; (A.P.); (A.T.); (S.P.); (V.M.); (E.V.); (A.T.)
| | - Valentina Moressa
- Department of Pediatrics, Institute for Maternal and Child Health—IRCCS “Burlo Garofolo”, 34137 Trieste, Italy; (A.P.); (A.T.); (S.P.); (V.M.); (E.V.); (A.T.)
| | - Erica Valencic
- Department of Pediatrics, Institute for Maternal and Child Health—IRCCS “Burlo Garofolo”, 34137 Trieste, Italy; (A.P.); (A.T.); (S.P.); (V.M.); (E.V.); (A.T.)
| | - Anna Arbo
- Department of Pharmacy and Clinical Pharmacology, Institute for Maternal and Child Health—IRCCS “Burlo Garofolo”, 34137 Trieste, Italy; (A.A.); (A.M.)
| | - Alessandra Maestro
- Department of Pharmacy and Clinical Pharmacology, Institute for Maternal and Child Health—IRCCS “Burlo Garofolo”, 34137 Trieste, Italy; (A.A.); (A.M.)
| | - Alberto Tommasini
- Department of Pediatrics, Institute for Maternal and Child Health—IRCCS “Burlo Garofolo”, 34137 Trieste, Italy; (A.P.); (A.T.); (S.P.); (V.M.); (E.V.); (A.T.)
- Department of Medicine, Surgery and Health Sciences, University of Trieste, 34127 Trieste, Italy
| | - Andrea Taddio
- Department of Pediatrics, Institute for Maternal and Child Health—IRCCS “Burlo Garofolo”, 34137 Trieste, Italy; (A.P.); (A.T.); (S.P.); (V.M.); (E.V.); (A.T.)
- Department of Medicine, Surgery and Health Sciences, University of Trieste, 34127 Trieste, Italy
| |
Collapse
|
79
|
Zhang M, Jie H, Wu Y, Han X, Li X, He Y, Shi X, Luo Y, Sun Y, Yang J, Yang J, Quan S, Lao X, Tan L, Sun E. Increased MLKL mRNA level in the PBMCs is correlated with autoantibody production, renal involvement, and SLE disease activity. Arthritis Res Ther 2020; 22:239. [PMID: 33054864 PMCID: PMC7557011 DOI: 10.1186/s13075-020-02332-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 09/30/2020] [Indexed: 11/16/2022] Open
Abstract
Background Necroptosis is a form of regulated necrosis that is involved in various autoimmune diseases. Mixed lineage kinase domain-like pseudokinase (MLKL) has been identified as a key executor of necroptosis; however, the significance of MLKL in peripheral blood mononuclear cells (PBMCs) of systemic lupus erythematosus (SLE) has not been investigated. In this study, we aimed to determine the mRNA level of MLKL in PBMCs and examine its relationship with clinical features and serological parameters in SLE. Methods Real-time transcription-polymerase chain reaction (RT-PCR) analysis was used to determine the expression of MLKL mRNA in PBMCs from 59 patients with SLE, 25 patients with rheumatoid arthritis (RA), and 30 age- and sex-matched healthy controls (HC). Spearman’s correlation test was performed to assess the correlation of MLKL mRNA with clinical variables. The receiver operating characteristic (ROC) curve was created to evaluate the diagnostic value. Results Our results showed MLKL mRNA in PBMCs was upregulated in SLE patients compared to that in RA and HC individuals. SLE patients positive for antinuclear antibodies had significantly higher MLKL mRNA than antibody-negative patients. In SLE patients, MLKL mRNA was found to be upregulated in patients with lupus nephritis (LN) as compared with patients without LN, and also higher in active patients than in stable patients. MLKL mRNA level was significantly and positively correlated with c-reaction protein (CRP) (r = 0.3577, p = 0.0237), erythrocyte sedimentation rate (ESR) (r = 0.4091, p = 0.0043), serum immunoglobulin G (IgG) concentration (r = 0.3546, p = 0.0289), and the numbers of positive antinuclear antibodies (ANAs) (r = 0.3945, p = 0.0432). ROC analysis showed that MLKL mRNA in PBMCs had an area under the curve of 0.9277 (95% CI 0.8779–0.9775, p < 0.001) to discriminate SLE from controls. Conclusions These results suggest that increased MLKL mRNA level in the PBMCs of SLE patients is correlated with renal involvement and disease activity, identifying a subgroup of patients with SLE or LN who may benefit from early diagnosis and therapies targeting MLKL.
Collapse
Affiliation(s)
- Mingjiao Zhang
- Department of Rheumatology and Immunology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Hongyu Jie
- Department of Rheumatology and Immunology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Yong Wu
- Clinical Medical Laboratory Center, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Xinai Han
- Department of Rheumatology and Immunology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Xing Li
- Department of Rheumatology and Immunology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Yi He
- Department of Rheumatology and Immunology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Xingliang Shi
- Department of Rheumatology and Immunology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Yuwei Luo
- Department of Rheumatology and Immunology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Ying Sun
- Department of Rheumatology and Immunology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Jinlong Yang
- Department of Rheumatology and Immunology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Jing Yang
- Department of Rheumatology and Immunology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Shulv Quan
- Department of Rheumatology and Immunology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Xiaobin Lao
- Department of Rheumatology and Immunology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Liping Tan
- Department of Rheumatology and Immunology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Erwei Sun
- Department of Rheumatology and Immunology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China. .,Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China. .,Department of Rheumatology and Immunology, Shunde Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
80
|
Jordan J, Benson J, Chatham WW, Furie RA, Stohl W, Wei JCC, Marciniak S, Yao Z, Srivastava B, Schreiter J, Cesaroni M, Orillion A, Seridi L, Chevrier M. First-in-Human study of JNJ-55920839 in healthy volunteers and patients with systemic lupus erythematosus: a randomised placebo-controlled phase 1 trial. THE LANCET. RHEUMATOLOGY 2020; 2:e613-e622. [PMID: 38273624 DOI: 10.1016/s2665-9913(20)30223-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 06/22/2020] [Accepted: 06/23/2020] [Indexed: 12/01/2022]
Abstract
BACKGROUND Activation of the type I interferon (IFN) pathway is associated with systemic lupus erythematosus (SLE). We assessed the safety and tolerability of JNJ-55920839, a human monoclonal antibody that selectively neutralises most human IFNα subtypes and IFNω, in healthy participants and those with SLE. METHODS This was a two-part, first-in-human, phase 1, randomised, double-blind, placebo-controlled, multicentre study of single-ascending intravenous doses of 0·3-15 mg/kg or a single subcutaneous dose of 1 mg/kg JNJ-55920839 administered to healthy participants (part A) and multiple intravenous doses of 10 mg/kg JNJ-55920839 administered to participants with SLE (part B). Healthy men and women (women had to be postmenopausal or surgically sterile) aged 18-55 years; bodyweight of 50-90 kg; and body-mass index (BMI) of 18-30 kg/m2 were eligible for inclusion in part A. Men and women with SLE were recruited to part B, fertile female participants were required to have a negative pregnancy test result before and during the study and be using two highly effective methods of birth control. The inclusion criteria for participants with SLE in part B matched part A, except for bodyweight (40-100 kg). In both parts, participants were randomly assigned (3:1) to receive JNJ-55920839 or placebo; a computer-generated randomisation schedule was used in part A, and randomisation was stratified by racial and ethnic subpopulation and elevated levels of serological disease activity in part B. The primary outcome was evaluation of safety and tolerability of the study regimen assessed using clinical and laboratory tests compared with placebo. This study is registered with ClinicalTrials.gov, NCT02609789. FINDINGS Between Dec 11, 2015, and Sept 20, 2018, 48 healthy participants from a single site and 28 participants with mild-to-moderate SLE from 19 participating centres in seven countries were enrolled in the study. 12 healthy volunteers in part A and eight participants with SLE in part B received placebo. The most common treatment-emergent adverse events in both part A and B were in the system organ class of infections and infestations with a higher percentage of participants administered JNJ-55920839 with infections (ten [28%] of 36 in part A and nine [50%] of 18 in part B) than those exposed to placebo (two [17%] of 12 in part A and one [13%] of eight in part B). Particpants in part B were permitted to continue on defined ongoing standard of care medications. In two participants with SLE, locally disseminated herpes zoster of the skin was reported. No other clinically significant safety or tolerability issues were identified beyond the infections observed in participants treated with JNJ-55920839. INTERPRETATION JNJ-55920839 was well tolerated and safe. Additional studies are warranted to determine optimal dosing of patients and further explore safety. FUNDING Janssen.
Collapse
Affiliation(s)
| | | | - Walter Winn Chatham
- School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Richard Alan Furie
- Zucker School of Medicine at Hofstra/Northwell, Northwell Health, Great Neck, NY, USA
| | - William Stohl
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - James Cheng-Chung Wei
- Institute of Medicine, Chung Shan Medical University and Graduate Institute of Integrated Medicine, China Medical University, Taichung, Taiwan
| | | | - Zhenling Yao
- Research and Development, Janssen, Spring House, PA, USA
| | | | | | | | | | - Loqmane Seridi
- Research and Development, Janssen, Spring House, PA, USA
| | - Marc Chevrier
- Research and Development, Janssen, Spring House, PA, USA.
| |
Collapse
|
81
|
Paredes JL, Niewold TB. Type I interferon antagonists in clinical development for lupus. Expert Opin Investig Drugs 2020; 29:1025-1041. [PMID: 32700979 PMCID: PMC7924012 DOI: 10.1080/13543784.2020.1797677] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 07/15/2020] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Systemic lupus erythematosus (SLE) is a severe chronic and incurable autoimmune disease. Treatment includes glucocorticoids and immunosuppressants which typically result in partial responses, and hence there is a great need for new therapies. The type I interferon (IFN) pathway is activated in more than 50% of SLE patients, and it is strongly implicated as a pathogenic factor in SLE. AREAS COVERED We searched the literature using 'SLE and interferon antagonists' as search terms. This identified a number of therapeutics that have entered clinical development targeting type I IFN in SLE. These include monoclonal antibodies against type I IFN cytokines and a kinoid vaccination strategy to induce anti-IFN antibodies. EXPERT OPINION Type I IFN antagonists have had some success, but many molecules have not progressed to phase III. These varied results are likely attributed to the multiple concurrent cytokine abnormalities present in SLE, the imprecise nature of the IFN signature as a readout for type I IFN and difficulties with clinical trials such as background medication use and diffuse composite disease activity measures. Despite these challenges, it seems likely that a type I IFN antagonist will come to clinical utility for SLE given the large unmet need and the recent phase III success with anifrolumab.
Collapse
Affiliation(s)
- Jacqueline L Paredes
- Colton Center for Autoimmunity, New York University School of Medicine , New York, NY, USA
| | - Timothy B Niewold
- Colton Center for Autoimmunity, New York University School of Medicine , New York, NY, USA
| |
Collapse
|
82
|
Patel J, Borucki R, Werth VP. An Update on the Pathogenesis of Cutaneous Lupus Erythematosus and Its Role in Clinical Practice. Curr Rheumatol Rep 2020; 22:69. [PMID: 32845411 DOI: 10.1007/s11926-020-00946-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
PURPOSE OF REVIEW Understanding the pathogenesis of cutaneous lupus erythematosus (CLE) is an important step in developing new medications and providing effective treatment to patients. This review focuses on novel research within CLE pathogenesis, as well as some of the medications being developed based on this knowledge. RECENT FINDINGS The subtle differences between systemic lupus erythematosus (SLE) and CLE pathogenesis are highlighted by differences in the circulating immune cells found in each disease, as well as the specific pathways activated by ultraviolet light. Plasmacytoid dendritic cells and the related type I interferon pathway are major components of CLE pathogenesis, and as such, therapies targeting components of this pathway have been successful in recent clinical trials. B cell-depleting therapies have shown success in SLE; however, their role in CLE is less clear. Understanding the differences between these manifestations of lupus allows for the development of therapies that are more effective in skin-specific disease. Discovering key pathways in CLE pathogenesis is critical for understanding the clinical features of the disease and ultimately developing new and effective therapies.
Collapse
Affiliation(s)
- Jay Patel
- Corporal Michael J. Crescenz VAMC, Philadelphia, PA, USA.,Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Robert Borucki
- Corporal Michael J. Crescenz VAMC, Philadelphia, PA, USA.,Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Victoria P Werth
- Corporal Michael J. Crescenz VAMC, Philadelphia, PA, USA. .,Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA. .,Department of Dermatology, Perelman Center for Advanced Medicine, Suite 1-330A, 3400 Civic Center Boulevard, Philadelphia, PA, 19104, USA.
| |
Collapse
|
83
|
Catalina MD, Bachali P, Yeo AE, Geraci NS, Petri MA, Grammer AC, Lipsky PE. Patient ancestry significantly contributes to molecular heterogeneity of systemic lupus erythematosus. JCI Insight 2020; 5:140380. [PMID: 32759501 PMCID: PMC7455079 DOI: 10.1172/jci.insight.140380] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 07/01/2020] [Indexed: 02/06/2023] Open
Abstract
Gene expression signatures can stratify patients with heterogeneous diseases, such as systemic lupus erythematosus (SLE), yet understanding the contributions of ancestral background to this heterogeneity is not well understood. We hypothesized that ancestry would significantly influence gene expression signatures and measured 34 gene modules in 1566 SLE patients of African ancestry (AA), European ancestry (EA), or Native American ancestry (NAA). Healthy subject ancestry-specific gene expression provided the transcriptomic background upon which the SLE patient signatures were built. Although standard therapy affected every gene signature and significantly increased myeloid cell signatures, logistic regression analysis determined that ancestral background significantly changed 23 of 34 gene signatures. Additionally, the strongest association to gene expression changes was found with autoantibodies, and this also had etiology in ancestry: the AA predisposition to have both RNP and dsDNA autoantibodies compared with EA predisposition to have only anti-dsDNA. A machine learning approach was used to determine a gene signature characteristic to distinguish AA SLE and was most influenced by genes characteristic of the perturbed B cell axis in AA SLE patients. Transcriptional profiling of lupus patients and healthy controls reveals ancestry-related differences and transcriptional heterogeneity among lupus patients.
Collapse
Affiliation(s)
- Michelle D Catalina
- AMPEL BioSolutions LLC & RILITE Research Institute, Charlottesville, Virginia, USA.,EMD Serono Research & Development Institute, Billerica, Massachusetts, USA
| | - Prathyusha Bachali
- AMPEL BioSolutions LLC & RILITE Research Institute, Charlottesville, Virginia, USA
| | | | - Nicholas S Geraci
- AMPEL BioSolutions LLC & RILITE Research Institute, Charlottesville, Virginia, USA
| | - Michelle A Petri
- Division of Rheumatology, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Amrie C Grammer
- AMPEL BioSolutions LLC & RILITE Research Institute, Charlottesville, Virginia, USA
| | - Peter E Lipsky
- AMPEL BioSolutions LLC & RILITE Research Institute, Charlottesville, Virginia, USA
| |
Collapse
|
84
|
Ghodke-Puranik Y, Imgruet M, Dorschner JM, Shrestha P, McCoy K, Kelly JA, Marion M, Guthridge JM, Langefeld CD, Harley JB, James JA, Sivils KL, Niewold TB. Novel genetic associations with interferon in systemic lupus erythematosus identified by replication and fine-mapping of trait-stratified genome-wide screen. Cytokine 2020; 132:154631. [PMID: 30685201 PMCID: PMC7723062 DOI: 10.1016/j.cyto.2018.12.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 12/20/2018] [Accepted: 12/24/2018] [Indexed: 12/19/2022]
Abstract
BACKGROUND/PURPOSE High serum interferon alpha (IFN-α) is an important heritable phenotype in systemic lupus erythematosus (SLE) which is involved in primary disease pathogenesis. High vs. low levels of IFN-α are associated with disease severity and account for some of the biological heterogeneity between SLE patients. The aim of the study was to replicate and fine-map previously detected genetic associations with serum IFN-α in SLE. METHODS We previously undertook a case-case genome-wide association study of SLE patients stratified by ancestry and extremes of phenotype in serum IFN-α. Single nucleotide polymorphisms (SNPs) in seven loci identified in this screen were selected for follow up in a large independent cohort of 1370 SLE patients (703 European-ancestry, 432 African ancestry, and 235 Amerindian ancestry). Each ancestral background was analyzed separately, and ancestry-informative markers were used to control for ancestry and admixture. RESULTS We find a rare haplotype spanning the promoter region of EFNA5 that is strongly associated with serum IFN-α in both African-American and European-American SLE patients (OR = 3.0, p = 3.7 × 10-6). We also find SNPs in the PPM1H, PTPRM, and NRGN regions associated with IFN-α levels in European-American, Amerindian, and African-American SLE patients respectively. Many of these associations are within regulatory regions of the gene, suggesting an impact on transcription. CONCLUSION This study demonstrates the power of molecular sub-phenotypes to reveal genetic factors involved in complex autoimmune disease. The distinct associations observed in different ancestral backgrounds emphasize the heterogeneity of molecular pathogenesis in SLE.
Collapse
Affiliation(s)
- Yogita Ghodke-Puranik
- Colton Center for Autoimmunity, New York University School of Medicine, New York, NY, USA
| | - Molly Imgruet
- Division of Rheumatology, Mayo Clinic, Rochester, MN, USA
| | | | | | - Kaci McCoy
- Division of Rheumatology, Mayo Clinic, Rochester, MN, USA
| | - Jennifer A Kelly
- Arthritis & Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Miranda Marion
- Department of Biostatistical Sciences, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Joel M Guthridge
- Arthritis & Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Carl D Langefeld
- Department of Biostatistical Sciences, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - John B Harley
- Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine and Cincinnati VA Medical Center, Cincinnati, OH, USA
| | - Judith A James
- Arthritis & Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Kathy L Sivils
- Arthritis & Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Timothy B Niewold
- Colton Center for Autoimmunity, New York University School of Medicine, New York, NY, USA.
| |
Collapse
|
85
|
Wampler Muskardin TL, Fan W, Jin Z, Jensen MA, Dorschner JM, Ghodke-Puranik Y, Dicke B, Vsetecka D, Wright K, Mason T, Persellin S, Michet CJ, Davis JM, Matteson E, Niewold TB. Distinct Single Cell Gene Expression in Peripheral Blood Monocytes Correlates With Tumor Necrosis Factor Inhibitor Treatment Response Groups Defined by Type I Interferon in Rheumatoid Arthritis. Front Immunol 2020; 11:1384. [PMID: 32765497 PMCID: PMC7378891 DOI: 10.3389/fimmu.2020.01384] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 05/29/2020] [Indexed: 01/14/2023] Open
Abstract
Previously, we demonstrated in test and validation cohorts that type I IFN (T1IFN) activity can predict non-response to tumor necrosis factor inhibitors (TNFi) in rheumatoid arthritis (RA). In this study, we examine the biology of non-classical and classical monocytes from RA patients defined by their pre-biologic treatment T1IFN activity. We compared single cell gene expression in purified classical (CL, n = 342) and non-classical (NC, n = 359) monocytes. In our previous work, RA patients who had either high IFNβ/α activity (>1.3) or undetectable T1IFN were likely to have EULAR non-response to TNFi. In this study comparisons were made among patients grouped according to their pre-biologic treatment T1IFN activity as clinically relevant: “T1IFN undetectable (T1IFN ND) or IFNβ/α >1.3” (n = 9) and “T1IFN detectable but IFNβ/α ≤ 1.3” (n = 6). In addition, comparisons were made among patients grouped according to their T1IFN activity itself: “T1IFN ND,” “T1IFN detected and IFNβ/α ≤ 1.3,” and “IFNβ/α >1.3.” Major differences in gene expression were apparent in principal component and unsupervised cluster analyses. CL monocytes from the T1IFN ND or IFNβ/α >1.3 group were unlikely to express JAK1 and IFI27 (p < 0.0001 and p 0.0005, respectively). In NC monocytes from the same group, expression of IFNAR1, IRF1, TNFA, TLR4 (p ≤ 0.0001 for each) and others was enriched. Interestingly, JAK1 expression was absent in CL and NC monocytes from nine patients. This pattern most strongly associated with the IFNβ/α>1.3 group. Differences in gene expression in monocytes among the groups suggest differential IFN pathway activation in RA patients who are either likely to respond or to have no response to TNFi. Additional transcripts enriched in NC cells of those in the T1IFN ND and IFNβ/α >1.3 groups included MYD88, CD86, IRF1, and IL8. This work could suggest key pathways active in biologically defined groups of patients, and potential therapeutic strategies for those patients unlikely to respond to TNFi.
Collapse
Affiliation(s)
- Theresa L Wampler Muskardin
- Department of Medicine, Colton Center for Autoimmunity, New York University School of Medicine, New York, NY, United States.,Division of Rheumatology, Department of Medicine, New York University School of Medicine, New York, NY, United States
| | - Wei Fan
- Department of Rheumatology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhongbo Jin
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida College of Medicine, Gainesville, FL, United States
| | - Mark A Jensen
- Department of Medicine, Colton Center for Autoimmunity, New York University School of Medicine, New York, NY, United States.,Division of Rheumatology, Department of Medicine, New York University School of Medicine, New York, NY, United States
| | - Jessica M Dorschner
- Division of Rheumatology, Department of Internal Medicine, Mayo Clinic, Rochester, MN, United States
| | - Yogita Ghodke-Puranik
- Department of Medicine, Colton Center for Autoimmunity, New York University School of Medicine, New York, NY, United States.,Division of Rheumatology, Department of Medicine, New York University School of Medicine, New York, NY, United States
| | - Betty Dicke
- Division of Rheumatology, Department of Internal Medicine, Mayo Clinic, Rochester, MN, United States
| | - Danielle Vsetecka
- Division of Rheumatology, Department of Internal Medicine, Mayo Clinic, Rochester, MN, United States
| | - Kerry Wright
- Division of Rheumatology, Department of Internal Medicine, Mayo Clinic, Rochester, MN, United States
| | - Thomas Mason
- Division of Rheumatology, Department of Internal Medicine, Mayo Clinic, Rochester, MN, United States
| | - Scott Persellin
- Division of Rheumatology, Department of Internal Medicine, Mayo Clinic, Rochester, MN, United States
| | - Clement J Michet
- Division of Rheumatology, Department of Internal Medicine, Mayo Clinic, Rochester, MN, United States
| | - John M Davis
- Division of Rheumatology, Department of Internal Medicine, Mayo Clinic, Rochester, MN, United States
| | - Eric Matteson
- Division of Rheumatology, Department of Internal Medicine, Mayo Clinic, Rochester, MN, United States
| | - Timothy B Niewold
- Department of Medicine, Colton Center for Autoimmunity, New York University School of Medicine, New York, NY, United States
| |
Collapse
|
86
|
Abstract
PURPOSE OF REVIEW Lupus erythematosus (LE) is characterized by broad and varied clinical forms ranging from a localized skin lesion to a life-threatening form with severe systemic manifestations. The overlapping between cutaneous LE (CLE) and systemic LE (SLE) brings difficulties to physicians for early accurate diagnosis and sometimes may lead to delayed treatment for patients. We comprehensively review recent progress about the similarities and differences of the main three subsets of LE in pathogenesis and immunological mechanisms, with a particular focus on the skin damage. RECENT FINDINGS Recent studies on the mechanisms contributing to the skin damage in lupus have shown a close association of abnormal circulating inflammatory cells and abundant production of IgG autoantibodies with the skin damage of SLE, whereas few evidences if serum autoantibodies and circulating inflammatory cells are involved in the pathogenesis of CLE, especially for the discoid LE (DLE). Till now, the pathogenesis and molecular/cellular mechanism for the progress from CLE to SLE are far from clear. But more and more factors correlated with the differences among the subsets of LE and progression from CLE to SLE have been found, such as the mutation of IRF5, IFN regulatory factors and abnormalities of plasmacytoid dendritic cells (PDCs), Th1 cells, and B cells, which could be the potential biomarkers for the interventions in the development of LE. A further understanding in pathogenesis and immunological mechanisms for skin damage in different subsets of LE makes us think more about the differences and cross-links in the pathogenic mechanism of CLE and SLE, which will shed a light in predictive biomarkers and therapies in LE.
Collapse
|
87
|
Affiliation(s)
- Timothy B Niewold
- Colton Center for Autoimmunity, New York University Grossman School of Medicine, New York, NY 10016, United States.
| |
Collapse
|
88
|
Anderson E, Furie R. Anifrolumab in systemic lupus erythematosus: current knowledge and future considerations. Immunotherapy 2020; 12:275-286. [PMID: 32237942 DOI: 10.2217/imt-2020-0017] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a chronic autoimmune disease that is potentially life-threatening and can affect any organ. The complex pathogenesis and heterogeneity of the disease, among other factors, present significant challenges in developing new therapies. Knowledge gained over many years has implicated type I interferon (IFN) in the pathogenesis of SLE and anti-IFN therapies hold promise as a much-needed future treatment for SLE. Anifrolumab, a human monoclonal antibody against the type I IFN receptor, has recently been evaluated in two Phase III clinical trials for the treatment of moderate-to-severe SLE. Here, we review the clinical efficacy and safety of anifrolumab and discuss the potential challenges in determining the optimal SLE patient subgroup for treatment.
Collapse
Affiliation(s)
- Erik Anderson
- Elmezzi Graduate School of Molecular Medicine, Feinstein Institutes for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY 11030, USA
| | - Richard Furie
- Division of Rheumatology, Zucker School of Medicine at Hofstra/Northwell, 865 Northern Boulevard, Great Neck, NY 11021, USA
| |
Collapse
|
89
|
Han S, Zhuang H, Lee PY, Li M, Yang L, Nigrovic PA, Reeves WH. Differential Responsiveness of Monocyte and Macrophage Subsets to Interferon. Arthritis Rheumatol 2020; 72:100-113. [PMID: 31390156 PMCID: PMC6935410 DOI: 10.1002/art.41072] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 08/01/2019] [Indexed: 12/15/2022]
Abstract
OBJECTIVE Peripheral blood mononuclear cells (PBMCs) in systemic lupus erythematosus (SLE) patients exhibit a gene expression program (interferon [IFN] signature) that is attributed to overproduction of type I IFNs by plasmacytoid dendritic cells. Type I IFNs have been thought to play a role in the pathogenesis of SLE. This study was undertaken to examine an unexpected influence of monocyte/macrophages on the IFN signature. METHODS Proinflammatory (classic) and antiinflammatory (nonclassic) monocyte/macrophages were sorted from mice and analyzed by RNA sequencing and quantitative polymerase chain reaction (qPCR). Type I IFN-α/β/ω receptor (IFNAR-1) expression was determined by qPCR and flow cytometry. Macrophages were stimulated in vitro with IFNα, and pSTAT1was measured. RESULTS Transcriptional profiling of peritoneal macrophages from mice with pristane-induced SLE unexpectedly indicated a strong IFN signature in classic, but not nonclassic, monocyte/macrophages exposed to the same type I IFN concentrations. Ifnar1 messenger RNA and IFNAR surface staining were higher in classic monocyte/macrophages versus nonclassic monocyte/macrophages (P < 0.0001 and P < 0.05, respectively, by Student's t-test). Nonclassic monocyte/macrophages were also relatively insensitive to IFNα-driven STAT1 phosphorylation. Humans exhibited a similar pattern: higher IFNAR expression (P < 0.0001 by Student's t-test) and IFNα-stimulated gene expression (P < 0.01 by paired Wilcoxon's rank sum test) in classic monocyte/macrophages and lower levels in nonclassic monocyte/macrophages. CONCLUSION This study revealed that the relative abundance of different monocyte/macrophage subsets helps determine the magnitude of the IFN signature. Responsiveness to IFNα signaling reflects differences in IFNAR expression in classic (high IFNAR) compared to nonclassic (low IFNAR) monocyte/macrophages. Thus, the IFN signature depends on both type I IFN production and the responsiveness of monocyte/macrophages to IFNAR signaling.
Collapse
Affiliation(s)
| | | | - Pui Y Lee
- Boston Children's Hospital, Boston, Massachusetts
| | | | | | - Peter A Nigrovic
- Boston Children's Hospital and Brigham and Women's Hospital, Boston, Massachusetts
| | | |
Collapse
|
90
|
Design and validation of an immuno-PCR assay for IFN-α2b quantification in human plasma. Bioanalysis 2019; 11:2175-2188. [DOI: 10.4155/bio-2019-0225] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Aim: Nowadays, IFN-α is considered a promising therapeutic target for systemic lupus erythematosus. An immuno-PCR (iPCR) was developed to quantify low amounts of IFN-α in human plasma followed by a deep analysis of the methodologic robustness throughout quality by design approach. Results: An accurate, sensitive, selective and versatile iPCR was validated. The critical iPCR procedural steps were identified, applying a Plackett–Burman design. Also, this assay demonstrated an outstanding LOD of 0.3 pg/ml. A significant aspect relies on its high versatility to detect and quantify other cytokines in human plasma as the appropriate biotinylated antibody is employed. Conclusion: This reliable iPCR assay can be clinically used as an alternative method for quantitating and detecting low IFN-α2b concentrations in human plasma samples.
Collapse
|
91
|
Mathian A, Mouries-Martin S, Dorgham K, Devilliers H, Yssel H, Garrido Castillo L, Cohen-Aubart F, Haroche J, Hié M, Pineton de Chambrun M, Miyara M, Pha M, Rozenberg F, Gorochov G, Amoura Z. Ultrasensitive serum interferon-α quantification during SLE remission identifies patients at risk for relapse. Ann Rheum Dis 2019; 78:1669-1676. [PMID: 31570366 DOI: 10.1136/annrheumdis-2019-215571] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 09/03/2019] [Accepted: 09/04/2019] [Indexed: 11/04/2022]
Abstract
OBJECTIVES Maintenance of remission has become central in the management of systemic lupus erythematosus (SLE). The importance of interferon-alpha (IFN-α) in the pathogenesis of SLE notwithstanding, its expression in remission has been poorly studied as yet. To study its expression in remission and its prognostic value in the prediction of a disease relapse, serum IFN-α levels were determined using an ultrasensitive single-molecule array digital immunoassay which enables the measurement of cytokines at physiological concentrations. METHODS A total of 254 SLE patients in remission, according to the Definition of Remission in SLE classification, were included in the study. Serum IFN-α concentrations were determined at baseline and patients were followed up for 1 year. Lupus flares were defined according to the Safety of Estrogens in Lupus Erythematosus: National Assessment version of the Systemic Lupus Erythematosus Disease Activity Index Flare Index, whereas the Kaplan-Meier analysis and Cox regression analysis were used to estimate the time to relapse and to identify baseline factors associated with time to relapse, respectively. RESULTS Of all patients in remission, 26% displayed abnormally high IFN-α serum levels that were associated with the presence of antibodies specific for ribonucleoprotein (RNP), double stranded (ds)DNA and Ro/SSA60, as well as young age. Importantly, elevated-baseline IFN-α serum levels and remission duration were associated in an independent fashion, with shorter time to relapse, while low serum levels of complement component 3 and anti-dsDNA Abs were not. CONCLUSION Direct serum IFN-α assessment with highly sensitive digital immunoassay permits clinicians to identify a subgroup of SLE patients, clinically in remission, but at higher risk of relapse.
Collapse
Affiliation(s)
- Alexis Mathian
- Sorbonne Université, Assistance Publique-Hôpitaux de Paris, Groupement Hospitalier Pitié-Salpêtrière, French National Referral Center for Systemic Lupus Erythematosus, Antiphospholipid Antibody Syndrome and Other Autoimmune Disorders, Service de Médecine Interne 2, Institut E3M, Inserm UMRS, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
| | - Suzanne Mouries-Martin
- Centre Hospitalier Universitaire de Dijon, Hôpital François-Mitterrand, service de médecine interne et maladies systémiques (médecine interne 2), Dijon, France
| | - Karim Dorgham
- Sorbonne Université, Inserm UMRS, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Assistance Publique-Hôpitaux de Paris, Groupement Hospitalier Pitié-Salpêtrière, Département d'Immunologie, Paris, France
| | - Hervé Devilliers
- Centre Hospitalier Universitaire de Dijon, Hôpital François-Mitterrand, service de médecine interne et maladies systémiques (médecine interne 2) et Centre d'Investigation Clinique, Inserm CIC 1432, Dijon, France
| | - Hans Yssel
- Sorbonne Université, Inserm UMRS, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Assistance Publique-Hôpitaux de Paris, Groupement Hospitalier Pitié-Salpêtrière, Département d'Immunologie, Paris, France
| | - Laura Garrido Castillo
- Sorbonne Université, Inserm UMRS, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Assistance Publique-Hôpitaux de Paris, Groupement Hospitalier Pitié-Salpêtrière, Département d'Immunologie, Paris, France
| | - Fleur Cohen-Aubart
- Sorbonne Université, Assistance Publique-Hôpitaux de Paris, Groupement Hospitalier Pitié-Salpêtrière, French National Referral Center for Systemic Lupus Erythematosus, Antiphospholipid Antibody Syndrome and Other Autoimmune Disorders, Service de Médecine Interne 2, Institut E3M, Inserm UMRS, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
| | - Julien Haroche
- Sorbonne Université, Assistance Publique-Hôpitaux de Paris, Groupement Hospitalier Pitié-Salpêtrière, French National Referral Center for Systemic Lupus Erythematosus, Antiphospholipid Antibody Syndrome and Other Autoimmune Disorders, Service de Médecine Interne 2, Institut E3M, Inserm UMRS, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
| | - Miguel Hié
- Sorbonne Université, Assistance Publique-Hôpitaux de Paris, Groupement Hospitalier Pitié-Salpêtrière, French National Referral Center for Systemic Lupus Erythematosus, Antiphospholipid Antibody Syndrome and Other Autoimmune Disorders, Service de Médecine Interne 2, Institut E3M, Inserm UMRS, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
| | - Marc Pineton de Chambrun
- Sorbonne Université, Assistance Publique-Hôpitaux de Paris, Groupement Hospitalier Pitié-Salpêtrière, French National Referral Center for Systemic Lupus Erythematosus, Antiphospholipid Antibody Syndrome and Other Autoimmune Disorders, Service de Médecine Interne 2, Institut E3M, Inserm UMRS, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
| | - Makoto Miyara
- Sorbonne Université, Inserm UMRS, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Assistance Publique-Hôpitaux de Paris, Groupement Hospitalier Pitié-Salpêtrière, Département d'Immunologie, Paris, France
| | - Micheline Pha
- Sorbonne Université, Assistance Publique-Hôpitaux de Paris, Groupement Hospitalier Pitié-Salpêtrière, French National Referral Center for Systemic Lupus Erythematosus, Antiphospholipid Antibody Syndrome and Other Autoimmune Disorders, Service de Médecine Interne 2, Institut E3M, Inserm UMRS, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
| | - Flore Rozenberg
- Université de Paris, Assistance Publique-Hôpitaux de Paris, Hôpital Cochin, Service de Virologie, Paris, France
| | - Guy Gorochov
- Sorbonne Université, Inserm UMRS, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Assistance Publique-Hôpitaux de Paris, Groupement Hospitalier Pitié-Salpêtrière, Département d'Immunologie, Paris, France
| | - Zahir Amoura
- Sorbonne Université, Assistance Publique-Hôpitaux de Paris, Groupement Hospitalier Pitié-Salpêtrière, French National Referral Center for Systemic Lupus Erythematosus, Antiphospholipid Antibody Syndrome and Other Autoimmune Disorders, Service de Médecine Interne 2, Institut E3M, Inserm UMRS, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
| |
Collapse
|
92
|
Gkirtzimanaki K, Kabrani E, Nikoleri D, Polyzos A, Blanas A, Sidiropoulos P, Makrigiannakis A, Bertsias G, Boumpas DT, Verginis P. IFNα Impairs Autophagic Degradation of mtDNA Promoting Autoreactivity of SLE Monocytes in a STING-Dependent Fashion. Cell Rep 2019; 25:921-933.e5. [PMID: 30355498 PMCID: PMC6218203 DOI: 10.1016/j.celrep.2018.09.001] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 06/25/2018] [Accepted: 08/31/2018] [Indexed: 12/11/2022] Open
Abstract
Interferon α (IFNα) is a prompt and efficient orchestrator of host defense against nucleic acids but upon chronicity becomes a potent mediator of autoimmunity. Sustained IFNα signaling is linked to pathogenesis of systemic lupus erythematosus (SLE), an incurable autoimmune disease characterized by aberrant self-DNA sensing that culminates in anti-DNA autoantibody-mediated pathology. IFNα instructs monocytes differentiation into autoinflammatory dendritic cells (DCs) than potentiates the survival and expansion of autoreactive lymphocytes, but the molecular mechanism bridging sterile IFNα-danger alarm with adaptive response against self-DNA remains elusive. Herein, we demonstrate IFNα-mediated deregulation of mitochondrial metabolism and impairment of autophagic degradation, leading to cytosolic accumulation of mtDNA that is sensed via stimulator of interferon genes (STING) to promote induction of autoinflammatory DCs. Identification of mtDNA as a cell-autonomous enhancer of IFNα signaling underlines the significance of efficient mitochondrial recycling in the maintenance of peripheral tolerance. Antioxidant treatment and metabolic rescue of autolysosomal degradation emerge as drug targets in SLE and other IFNα-related pathologies. IFNα obstructs autophagic flux in SLE monocytes through lysosomal alkalinization IFNα signaling induces oxidative stress that affects lysosomal pH through mTOR Impaired clearance of damaged mitochondria leads to cytosolic mtDNA accumulation Autophagic escape of mtDNA is sensed by STING and primes monocytes autoimmunity
Collapse
Affiliation(s)
- Katerina Gkirtzimanaki
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, Heraklion, Greece; Laboratory of Autoimmunity and Inflammation, Faculty of Medicine, University of Crete, Heraklion, Greece.
| | - Eleni Kabrani
- Laboratory of Autoimmunity and Inflammation, Faculty of Medicine, University of Crete, Heraklion, Greece
| | - Dimitra Nikoleri
- Laboratory of Autoimmunity and Inflammation, Faculty of Medicine, University of Crete, Heraklion, Greece
| | - Alexander Polyzos
- Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Athanasios Blanas
- Laboratory of Autoimmunity and Inflammation, Faculty of Medicine, University of Crete, Heraklion, Greece
| | - Prodromos Sidiropoulos
- Laboratory of Autoimmunity and Inflammation, Faculty of Medicine, University of Crete, Heraklion, Greece; Department of Rheumatology, University Hospital of Heraklion, Faculty of Medicine, University of Crete, Heraklion, Greece
| | - Antonis Makrigiannakis
- Department of Obstetrics and Gynecology, Medical School, University of Crete, Heraklion, Greece
| | - George Bertsias
- Laboratory of Autoimmunity and Inflammation, Faculty of Medicine, University of Crete, Heraklion, Greece; Department of Rheumatology, University Hospital of Heraklion, Faculty of Medicine, University of Crete, Heraklion, Greece
| | - Dimitrios T Boumpas
- 4th Department of Medicine, Attikon University Hospital, National and Kapodistrian University, Athens, Greece and Medical School, University of Cyprus, Nikosia, Cyprus; Laboratory of Immune Regulation and Tolerance, Autoimmunity and Inflammation, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Panayotis Verginis
- Laboratory of Immune Regulation and Tolerance, Autoimmunity and Inflammation, Biomedical Research Foundation of the Academy of Athens, Athens, Greece.
| |
Collapse
|
93
|
Hamilton JA, Hsu HC, Mountz JD. Autoreactive B cells in SLE, villains or innocent bystanders? Immunol Rev 2019; 292:120-138. [PMID: 31631359 PMCID: PMC6935412 DOI: 10.1111/imr.12815] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 09/12/2019] [Accepted: 09/23/2019] [Indexed: 12/14/2022]
Abstract
The current concepts for development of autoreactive B cells in SLE (systemic lupus erythematosus) focus on extrinsic stimuli and factors that provoke B cells into tolerance loss. Traditionally, major tolerance loss pathways are thought to be regulated by factors outside the B cell including autoantigen engagement of the B-cell receptor (BCR) with simultaneous type I interferon (IFN) produced by dendritic cells, especially plasmacytoid dendritic cells (pDCs). Later, in autoreactive follicles, B-cells encounter T-follicular helper cells (Tfh) that produce interleukin (IL)-21, IL-4 and pathogenic cytokines, IL-17 and IFN gamma (IFNɣ). This review discusses these mechanisms and also highlights recent advances pointing to the peripheral transitional B-cell stage as a major juncture where transient autocrine IFNβ expression by developing B-cells imprints a heightened susceptibility to external factors favoring differentiation into autoantibody-producing plasmablasts. Recent studies highlight transitional B-cell heterogeneity as a determinant of intrinsic resistance or susceptibility to tolerance loss through the shaping of B-cell responsiveness to cytokines and other environment factors.
Collapse
Affiliation(s)
| | - Hui-Chen Hsu
- University of Alabama at Birmingham, Birmingham, AL, USA
| | - John D Mountz
- University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
94
|
Nasonov EL, Avdeeva AS. IMMUNOINFLAMMATORY RHEUMATIC DISEASES ASSOCIATED WITH TYPE I INTERFERON: NEW EVIDENCE. ACTA ACUST UNITED AC 2019. [DOI: 10.14412/1995-4484-2019-452-461] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Immunoinflammatory rheumatic diseases (IIRDs) are a large group of pathological conditions with impaired immunological tolerance to autogenous tissues, leading to inflammation and irreversible organ damage. The review discusses current ideas on the role of type I interferons in the immunopathogenesis of IIRDs, primarily systemic lupus erythematosus, and new possibilities for personalized therapy.
Collapse
Affiliation(s)
- E. L. Nasonov
- V.A. Nasonova Research Institute of Rheumatology;
I.M. Sechenov First Moscow State Medical University (Sechenov University)
| | | |
Collapse
|
95
|
Hobeika L, Ng L, Lee IJ. Moving Forward With Biologics in Lupus Nephritis. Adv Chronic Kidney Dis 2019; 26:338-350. [PMID: 31733718 DOI: 10.1053/j.ackd.2019.08.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Revised: 07/17/2019] [Accepted: 08/09/2019] [Indexed: 12/27/2022]
Abstract
The majority of patients with systemic lupus erythematosus develop lupus nephritis (LN) which significantly contributes to increased risks of hospitalizations, ESRD, and death. Unfortunately, treatments for LN have not changed over the past 15 years. Despite continued efforts to elucidate the pathogenesis of LN, no new drugs have yet replaced the standard-of-care regimens of cyclophosphamide or mycophenolate mofetil plus high-dose corticosteroids. The significant limitations of standard-of-care are low complete response rates, risk of flares, and ongoing inflammation in the kidney leading to progressive renal dysfunction. Repeat and prolonged treatments are often needed to control disease, leading to a high level of severe side effects. The development of targeted drugs with better efficacy and safety are desperately needed. The rationale for targeting key immunologic pathways in LN continues to be strongly supported by basic and translational research and has generated the hope and excitement of testing these therapies in human LN. This review provides an overview of biologics studied to date in clinical trials of LN, discusses the potential reasons for their failure, and addresses the challenges moving forward.
Collapse
|
96
|
Thanarajasingam U, Muppirala AN, Jensen MA, Ghodke-Puranik Y, Dorschner JM, Vsetecka DM, Amin S, Makol A, Ernste F, Osborn T, Moder K, Chowdhary V, Niewold TB. Type I Interferon Predicts an Alternate Immune System Phenotype in Systemic Lupus Erythematosus. ACR Open Rheumatol 2019; 1:499-506. [PMID: 31777831 PMCID: PMC6858011 DOI: 10.1002/acr2.11073] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Accepted: 07/30/2019] [Indexed: 01/05/2023] Open
Abstract
Objective Type I interferon (IFN) is important to systemic lupus erythematosus (SLE) pathogenesis, but it is not clear how chronic elevations in IFN alter immune function. We compared cytokine responses after whole blood stimulation with Toll‐like receptor (TLR) agonists in high‐ and low‐IFN SLE patient subgroups. Methods SLE patients and nonautoimmune controls were recruited, and SLE patients were categorized as either high or low IFN. Whole blood was dispensed into tubes coated with lipopolysaccharide (LPS), oligonucleotides with cytosine‐guanine repeats, Resiquimod, IFN‐α, and IFN‐α + LPS. Cytokine production in patient sera and after whole blood TLR stimulation was measured by multiplex assay, and type I IFN was assessed using a functional assay. Results Circulating plasmacytoid dendritic cell numbers were specifically reduced in high‐IFN SLE patients and not in low‐IFN SLE patients. In serum, we observed that the correlations between cytokines in serum differed to a much greater degree between the high‐ and low‐IFN groups (P < 0.0001) than the absolute cytokine levels differed between these same groups. In stimulated conditions, the high‐IFN patients had less cytokine production in response to TLR ligation than the low‐IFN SLE patients. LPS produced the most diverse response, and a number of interactions between type I IFN and LPS were observed. Conclusion We find striking differences in resting and stimulated cytokine patterns in high‐ vs. low‐IFN SLE patients, which supports the biological importance of these patient subsets. These data could inform personalized treatment approaches and the pathogenesis of SLE flare following infection.
Collapse
|
97
|
Tang Y, Tao H, Gong Y, Chen F, Li C, Yang X. Changes of Serum IL-6, IL-17, and Complements in Systemic Lupus Erythematosus Patients. J Interferon Cytokine Res 2019; 39:410-415. [PMID: 31173544 DOI: 10.1089/jir.2018.0169] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Affiliation(s)
- Yamei Tang
- Department of Laboratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Huai Tao
- Department of Biochemistry and Molecular Biology, Hunan University of Chinese Medicine, Changsha, Hunan, People's Republic of China
| | - Yuji Gong
- Department of Laboratory Medicine, Union Hospital Affiliated with Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Fang Chen
- Department of Laboratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Cunyan Li
- Department of Laboratory Medicine, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, People's Republic of China
| | - Xiudeng Yang
- Department of Laboratory Medicine, The First Affiliated Hospital of Shaoyang University, Shaoyang, Hunan, People's Republic of China
| |
Collapse
|
98
|
Lee MH, Gallo PM, Hooper KM, Corradetti C, Ganea D, Caricchio R, Gallucci S. The cytokine network type I IFN-IL-27-IL-10 is augmented in murine and human lupus. J Leukoc Biol 2019; 106:967-975. [PMID: 31216373 DOI: 10.1002/jlb.3ab0518-180rr] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 05/23/2019] [Accepted: 06/04/2019] [Indexed: 01/01/2023] Open
Abstract
IL-10 is elevated in the autoimmune disease systemic lupus erythematosus (SLE). Here, we show that conventional dendritic cells (cDCs) from predisease lupus-prone B6.NZM Sle1/Sle2/Sle3 triple congenic (TCSle) mice produce more IL-10 than wild-type congenic cDCs upon TLR stimulation, and this overproduction is prevented by blocking the type I IFN receptor (IFNAR) with specific Abs. Priming wild-type cDCs with type I IFN mimics the IL-10 overproduction of TCSle cDCs. The MAPK ERK is more phosphorylated in lupus cDCs, partially contributing to IL-10 overproduction. Moreover, we found that TCSle cDCs express higher levels of IL-27 upon TLR7/TLR9 stimulation, and IFNAR blockade reduced IL-27 levels in TCSle cDCs. These results suggest that dysregulated type I IFNs in cDCs contribute to the increased IL-10 and IL-27 in SLE. Since IL-27 neutralization did not inhibit TLR-induced IL-10 production, we propose that type I IFNs enhanced IL-10 in TCSle cDCs independently from IL-27. Moreover, RNA sequencing analysis of a cohort of SLE patients reveals higher gene expression of these cytokines in SLE patients expressing a high IFN signature. Since IL-27 and IL-10 have both pro- and anti-inflammatory effects, our results also suggest that these cytokines can be modulated by the therapeutic IFN blockade in trials in SLE patients and have complex effects on the autoimmune response.
Collapse
Affiliation(s)
- Michael H Lee
- Laboratory of Dendritic Cell Biology, Department of Microbiology and Immunology, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
| | - Paul M Gallo
- Laboratory of Dendritic Cell Biology, Department of Microbiology and Immunology, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
| | - Kirsten M Hooper
- Department of Microbiology and Immunology, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
| | - Chelsea Corradetti
- Division of Rheumatology, Department of Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
| | - Doina Ganea
- Department of Microbiology and Immunology, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
| | - Roberto Caricchio
- Division of Rheumatology, Department of Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
| | - Stefania Gallucci
- Laboratory of Dendritic Cell Biology, Department of Microbiology and Immunology, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
99
|
Titov AA, Baker HV, Brusko TM, Sobel ES, Morel L. Metformin Inhibits the Type 1 IFN Response in Human CD4 + T Cells. THE JOURNAL OF IMMUNOLOGY 2019; 203:338-348. [PMID: 31160534 DOI: 10.4049/jimmunol.1801651] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 05/03/2019] [Indexed: 02/07/2023]
Abstract
In systemic lupus erythematosus, defective clearance of apoptotic debris and activation of innate cells result in a chronically activated type 1 IFN response, which can be measured in PBMCs of most patients. Metformin, a widely used prescription drug for Type 2 diabetes, has a therapeutic effect in several mouse models of lupus through mechanisms involving inhibition of oxidative phosphorylation and a decrease in CD4+ T cell activation. In this study, we report that in CD4+ T cells from human healthy controls and human systemic lupus erythematosus patients, metformin inhibits the transcription of IFN-stimulated genes (ISGs) after IFN-α treatment. Accordingly, metformin inhibited the phosphorylation of pSTAT1 (Y701) and its binding to IFN-stimulated response elements that control ISG expression. These effects were independent of AMPK activation or mTORC1 inhibition but were replicated using inhibitors of the electron transport chain respiratory complexes I, III, and IV. This indicates that mitochondrial respiration is required for ISG expression in CD4+ T cells and provides a novel mechanism by which metformin may exert a therapeutic effect in autoimmune diseases.
Collapse
Affiliation(s)
- Anton A Titov
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL 32610
| | - Henry V Baker
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, FL 32610; and
| | - Todd M Brusko
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL 32610
| | - Eric S Sobel
- Department of Medicine, College of Medicine, University of Florida, Gainesville, FL 32610
| | - Laurence Morel
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL 32610;
| |
Collapse
|
100
|
Sinicato NA, de Oliveira L, Lapa A, Postal M, Peliçari KO, Costallat LTL, Marini R, Gil-da-Silva-Lopes VL, Niewold TB, Appenzeller S. Familial Aggregation of Childhood- and Adulthood-Onset Systemic Lupus Erythematosus. Arthritis Care Res (Hoboken) 2019; 72:1147-1151. [PMID: 31127864 DOI: 10.1002/acr.23931] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 05/21/2019] [Indexed: 01/20/2023]
Abstract
OBJECTIVE To assess the familial occurrence of systemic lupus erythematosus (SLE) in a large Brazilian cohort. METHODS Consecutive patients with SLE were recruited and stratified according to age at disease onset into childhood-onset SLE or adult-onset SLE. Each patient was personally interviewed regarding the history of SLE across 3 generations (first-, second-, and third-degree relatives). Recurrence rates were analyzed for each degree of relation. RESULTS We included 392 patients with SLE (112 with childhood-onset SLE and 280 with adult-onset SLE). We identified 2,574 first-degree relatives, 5,490 second-degree relatives, and 6,805 third-degree relatives. In the combined overall SLE cohort, we observed a familial SLE recurrence rate of 19.4 in first-degree relatives, 5.4 in second-degree relatives, and 3.0 in third-degree relatives. Recurrence rates were higher for first- and second-degree relatives of patients with childhood-onset SLE than for first- and second-degree relatives of patients with adult-onset SLE (25.2 versus 18.4 for first-degree, and 8.5 versus 4.5 for second-degree), while in third-degree relatives, recurrence rates were higher in adult-onset SLE than in childhood-onset SLE (P = 2.2 × 10-4 for differences in recurrence proportions between childhood-onset SLE and adult-onset SLE). There were no phenotypic differences in patients from multicase versus single-case families, and there was no sex-skewing observed in the offspring of patients with SLE. CONCLUSION The greater decline in SLE recurrence rate by generation in childhood-onset SLE versus adult-onset SLE suggests a more polygenic and epistatic inheritance and suggests that adult-onset SLE may be characterized by fewer risk factors that are individually stronger. This finding suggests a higher genetic load in childhood-onset SLE versus adult-onset SLE and a difference in the genetic architecture of the disease based on age at onset.
Collapse
|