51
|
Archer M, Dogra N, Dovey Z, Ganta T, Jang HS, Khusid JA, Lantz A, Mihalopoulos M, Stockert JA, Zahalka A, Björnebo L, Gaglani S, Noh MR, Kaplan SA, Mehrazin R, Badani KK, Wiklund P, Tsao K, Lundon DJ, Mohamed N, Lucien F, Padanilam B, Gupta M, Tewari AK, Kyprianou N. Role of α- and β-adrenergic signaling in phenotypic targeting: significance in benign and malignant urologic disease. Cell Commun Signal 2021; 19:78. [PMID: 34284799 PMCID: PMC8290582 DOI: 10.1186/s12964-021-00755-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 05/28/2021] [Indexed: 01/17/2023] Open
Abstract
The urinary tract is highly innervated by autonomic nerves which are essential in urinary tract development, the production of growth factors, and the control of homeostasis. These neural signals may become dysregulated in several genitourinary (GU) disease states, both benign and malignant. Accordingly, the autonomic nervous system is a therapeutic target for several genitourinary pathologies including cancer, voiding dysfunction, and obstructing nephrolithiasis. Adrenergic receptors (adrenoceptors) are G-Protein coupled-receptors that are distributed throughout the body. The major function of α1-adrenoceptors is signaling smooth muscle contractions through GPCR and intracellular calcium influx. Pharmacologic intervention of α-and β-adrenoceptors is routinely and successfully implemented in the treatment of benign urologic illnesses, through the use of α-adrenoceptor antagonists. Furthermore, cell-based evidence recently established the antitumor effect of α1-adrenoceptor antagonists in prostate, bladder and renal tumors by reducing neovascularity and impairing growth within the tumor microenvironment via regulation of the phenotypic epithelial-mesenchymal transition (EMT). There has been a significant focus on repurposing the routinely used, Food and Drug Administration-approved α1-adrenoceptor antagonists to inhibit GU tumor growth and angiogenesis in patients with advanced prostate, bladder, and renal cancer. In this review we discuss the current evidence on (a) the signaling events of the autonomic nervous system mediated by its cognate α- and β-adrenoceptors in regulating the phenotypic landscape (EMT) of genitourinary organs; and (b) the therapeutic significance of targeting this signaling pathway in benign and malignant urologic disease. Video abstract.
Collapse
Affiliation(s)
- M. Archer
- Department of Urology, Icahn School of Medicine at Mount Sinai, 6th Floor, 1425 Madison Avenue, New York, NY 10029 USA
| | - N. Dogra
- Department of Pathology and Molecular and Cell Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY USA
- Department of Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Z. Dovey
- Department of Urology, Icahn School of Medicine at Mount Sinai, 6th Floor, 1425 Madison Avenue, New York, NY 10029 USA
| | - T. Ganta
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY USA
- Division of Hematology and Medical Oncology, Mount Sinai Hospital, New York, NY USA
| | - H.-S. Jang
- Department of Urology, Icahn School of Medicine at Mount Sinai, 6th Floor, 1425 Madison Avenue, New York, NY 10029 USA
| | - J. A. Khusid
- Department of Urology, Icahn School of Medicine at Mount Sinai, 6th Floor, 1425 Madison Avenue, New York, NY 10029 USA
| | - A. Lantz
- Department of Molecular Medicine and Surgery, Section of Urology, Karolinska Institute, Stockholm, Sweden
- Department of Medical Epidemiology and Biostatistics, Karolinska Institute, Stockholm, Sweden
| | - M. Mihalopoulos
- Department of Urology, Icahn School of Medicine at Mount Sinai, 6th Floor, 1425 Madison Avenue, New York, NY 10029 USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - J. A. Stockert
- Department of Urology, Icahn School of Medicine at Mount Sinai, 6th Floor, 1425 Madison Avenue, New York, NY 10029 USA
| | - A. Zahalka
- Department of Urology, Icahn School of Medicine at Mount Sinai, 6th Floor, 1425 Madison Avenue, New York, NY 10029 USA
| | - L. Björnebo
- Department of Medical Epidemiology and Biostatistics, Karolinska Institute, Stockholm, Sweden
| | - S. Gaglani
- Department of Urology, Icahn School of Medicine at Mount Sinai, 6th Floor, 1425 Madison Avenue, New York, NY 10029 USA
| | - M. R. Noh
- Department of Urology, Icahn School of Medicine at Mount Sinai, 6th Floor, 1425 Madison Avenue, New York, NY 10029 USA
| | - S. A. Kaplan
- Department of Urology, Icahn School of Medicine at Mount Sinai, 6th Floor, 1425 Madison Avenue, New York, NY 10029 USA
| | - R. Mehrazin
- Department of Urology, Icahn School of Medicine at Mount Sinai, 6th Floor, 1425 Madison Avenue, New York, NY 10029 USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - K. K. Badani
- Department of Urology, Icahn School of Medicine at Mount Sinai, 6th Floor, 1425 Madison Avenue, New York, NY 10029 USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - P. Wiklund
- Department of Urology, Icahn School of Medicine at Mount Sinai, 6th Floor, 1425 Madison Avenue, New York, NY 10029 USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - K. Tsao
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY USA
- Division of Hematology and Medical Oncology, Mount Sinai Hospital, New York, NY USA
| | - D. J. Lundon
- Department of Urology, Icahn School of Medicine at Mount Sinai, 6th Floor, 1425 Madison Avenue, New York, NY 10029 USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - N. Mohamed
- Department of Urology, Icahn School of Medicine at Mount Sinai, 6th Floor, 1425 Madison Avenue, New York, NY 10029 USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - F. Lucien
- Department of Urology, Mayo Clinic, Rochester, MN USA
| | - B. Padanilam
- Department of Urology, Icahn School of Medicine at Mount Sinai, 6th Floor, 1425 Madison Avenue, New York, NY 10029 USA
| | - M. Gupta
- Department of Urology, Icahn School of Medicine at Mount Sinai, 6th Floor, 1425 Madison Avenue, New York, NY 10029 USA
| | - A. K. Tewari
- Department of Urology, Icahn School of Medicine at Mount Sinai, 6th Floor, 1425 Madison Avenue, New York, NY 10029 USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - N. Kyprianou
- Department of Urology, Icahn School of Medicine at Mount Sinai, 6th Floor, 1425 Madison Avenue, New York, NY 10029 USA
- Department of Pathology and Molecular and Cell Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY USA
| |
Collapse
|
52
|
Sethi SK, Sharma R, Gupta A, Tibrewal A, Akole R, Dhir R, Soni K, Bansal SB, Jha PK, Bhan A, Kher V, Raina R. Long-Term Renal Outcomes in Children With Acute Kidney Injury Post Cardiac Surgery. Kidney Int Rep 2021; 6:1850-1857. [PMID: 34307979 PMCID: PMC8258583 DOI: 10.1016/j.ekir.2021.04.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 04/13/2021] [Accepted: 04/15/2021] [Indexed: 01/11/2023] Open
Abstract
INTRODUCTION The long-term renal outcomes of survivors of pediatric acute kidney injury (AKI) are varied within the current literature, and we aim to establish long-term renal outcomes for pediatric patients after cardiac surgery. We studied long-term renal outcomes and markers of kidney injury in pediatric patients after congenital cardiac surgery. METHODS In a prospective case-control observational study (the Renal Outcomes in Children with acute Kidney injury post cardiac Surgery [ROCKS] trial) we reviewed all children who underwent cardiac surgery on cardiopulmonary bypass (December 2010-2017). RESULTS During the study period, 2035 patients underwent cardiac surgery, of whom 9.8% developed AKI postoperatively. Forty-four patients who had postoperative AKI had a long-term follow-up, met our inclusion criteria, and were compared with 49 control subjects. We conducted a univariate analysis of reported parameters. At a median follow-up of 41 months, the cases had significantly higher urine levels of neutrophil gelatinase-associated lipocalin (NGAL), interleukin-18 (IL-18), and kidney injury molecule-1 (KIM-1). The biomarkers remained higher after adjusting for the urine creatinine, and the ratio of urine KIM-1/urine creatinine was significantly higher among cases. None of the patients had proteinuria or hypertension on follow-up. The presence of AKI, AKI stage, and younger age were not associated with the occurrence of low glomerular filtration rate (GFR) at follow-up. CONCLUSIONS Urinary biomarker abnormalities persist years after a congenital cardiac surgery in children, who may have a low GFR on follow-up. The presence of AKI, AKI stage, and younger age at surgery are not associated with the occurrence of low GFR at follow-up. Children with a higher surgical complexity score have lower GFR on follow-up.
Collapse
Affiliation(s)
- Sidharth Kumar Sethi
- Department of Pediatric Nephrology, Kidney Institute, Medanta – The Medicity, Gurgaon, Haryana, India
| | - Rajesh Sharma
- Pediatric Cardiac Intensive Care, Medanta – The Medicity, Gurgaon, Haryana, India
| | - Aditi Gupta
- Department of Biochemistry, Aster Clinical Lab, Bangalore, India
| | - Abhishek Tibrewal
- Department of Nephrology, Akron’s Children Hospital, Akron, Ohio, USA
| | - Romel Akole
- Pediatric Cardiac Intensive Care, Medanta – The Medicity, Gurgaon, Haryana, India
| | - Rohan Dhir
- Department of Pediatric Nephrology, Kidney Institute, Medanta – The Medicity, Gurgaon, Haryana, India
| | - Kritika Soni
- Department of Pediatric Nephrology, Kidney Institute, Medanta – The Medicity, Gurgaon, Haryana, India
| | | | - Pranaw Kumar Jha
- Kidney Institute, Medanta, The Medicity Hospital, Gurgaon, Haryana, India
| | - Anil Bhan
- CTVS, Medanta – The Medicity, Gurgaon, Haryana, India
| | - Vijay Kher
- Kidney Institute, Medanta, The Medicity Hospital, Gurgaon, Haryana, India
| | - Rupesh Raina
- Department of Nephrology, Akron’s Children Hospital, Akron, Ohio, USA
| |
Collapse
|
53
|
Wu Y, Yang B. Erythropoietin Receptor/β Common Receptor: A Shining Light on Acute Kidney Injury Induced by Ischemia-Reperfusion. Front Immunol 2021; 12:697796. [PMID: 34276689 PMCID: PMC8278521 DOI: 10.3389/fimmu.2021.697796] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 05/17/2021] [Indexed: 12/29/2022] Open
Abstract
Acute kidney injury (AKI) is a health problem worldwide, but there is a lack of early diagnostic biomarkers and target-specific treatments. Ischemia-reperfusion (IR), a major cause of AKI, not only induces kidney injury, but also stimulates the self-defense system including innate immune responses to limit injury. One of these responses is the production of erythropoietin (EPO) by adjacent normal tissue, which is simultaneously triggered, but behind the action of its receptors, either by the homodimer EPO receptor (EPOR)2 mainly involved in erythropoiesis or the heterodimer EPOR/β common receptor (EPOR/βcR) which has a broad range of biological protections. EPOR/βcR is expressed in several cell types including tubular epithelial cells at low levels or absent in normal kidneys, but is swiftly upregulated by hypoxia and inflammation and also translocated to cellular membrane post IR. EPOR/βcR mediates anti-apoptosis, anti-inflammation, pro-regeneration, and remodeling via the PI3K/Akt, STAT3, and MAPK signaling pathways in AKI. However, the precise roles of EPOR/βcR in the pathogenesis and progression of AKI have not been well defined, and its potential as an earlier biomarker for AKI diagnosis and monitoring repair or chronic progression requires further investigation. Here, we review biological functions and mechanistic signaling pathways of EPOR/βcR in AKI, and discuss its potential clinical applications as a biomarker for effective diagnosis and predicting prognosis, as well as directing cell target drug delivery.
Collapse
Affiliation(s)
- Yuanyuan Wu
- Basic Medical Research Centre, Medical School, Nantong University, Nantong, China.,Nantong-Leicester Joint Institute of Kidney Science, Nephrology, Affiliated Hospital of Nantong University, Nantong, China
| | - Bin Yang
- Nantong-Leicester Joint Institute of Kidney Science, Nephrology, Affiliated Hospital of Nantong University, Nantong, China.,Department of Cardiovascular Sciences, College of Life Sciences, University of Leicester, Leicester, United Kingdom
| |
Collapse
|
54
|
Yang J, Yang S, Xu Y, Lu F, You L, He Z, Zhan S, Ye C, Liu M, Fu C, Wang C. Evaluation of Renal Oxygenation and Hemodynamics in Patients with Chronic Kidney Disease by Blood Oxygenation Level-dependent Magnetic Resonance Imaging and Intrarenal Doppler Ultrasonography. Nephron Clin Pract 2021; 145:653-663. [PMID: 34182563 DOI: 10.1159/000516637] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 04/15/2021] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION The basic pathophysiologic derangement of chronic kidney disease (CKD) begins with the loss of nephrons, leading to renal hemodynamic changes, eventually causing a reduced nephron count and renal hypoxia. The purpose of this study was to observe the renal oxygenation and renal hemodynamics of patients with CKD using blood oxygenation level-dependent (BOLD) magnetic resonance imaging (MRI) and intrarenal Doppler ultrasonography (IDU). METHODS The study enrolled 39 patients with stage 1-4 CKD and 19 healthy volunteers (HVs). Based on their estimated glomerular filtration rate (eGFR), CKD patients were divided into 2 subgroups: a mild renal impairment (MI) group and a moderate to severe renal impairment (MSI) group. We monitored the participants' mean cortical T2* (COT2*) and mean medullary T2* (MET2*) values on BOLD-MRI, and measured the peak systolic velocities (PSVs), end-diastolic velocities (EDVs), renal resistive index (RI), and kidney length by IDU. We also recorded clinical indicators such as age, sex, body mass index (BMI), 24-h urinary protein (24-h Upr), serum creatinine (sCr), blood urea nitrogen (BUN), and eGFR. BOLD-MRI, IDU measurements, and the clinical indicators were compared in CKD patients and HVs by the analysis of variance and Kruskal-Wallis H test. Spearman's correlation was used to assess the relationship between data from BOLD-MRI and IDU and clinical indicators. RESULTS The COT2* values were significantly higher than the MET2* values in the HV, MI, and MSI groups. COT2*, MET2*, EDV, PSV, and kidney length gradually decreased in the HV, MI, and MSI groups (all p < 0.05), whereas RI and 24-h Upr gradually increased (both p < 0.05). Spearman correlation analysis showed that COT2* and MET2* were significantly positively correlated with eGFR, PSV, EDV, and kidney length but were significantly negatively correlated with sCr, BUN, and 24-h Upr (all p < 0.05). There was no correlation observed between the COT2* and MET2* and the RI and BMI values. CONCLUSIONS Renal oxygenation and blood flow velocities were found declined as the CKD stage progressed. The BOLD-MRI and IDU techniques may have clinical value by measuring intrarenal oxygenation and renal blood perfusion to judge the severity of renal damage in patients with CKD.
Collapse
Affiliation(s)
- Jing Yang
- Department of Nephrology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China, .,TCM Institute of Kidney Disease, Shanghai University of Traditional Chinese Medicine, Shanghai, China, .,Key Laboratory of Liver and Kidney Diseases (Shanghai University of Traditional Chinese Medicine), Ministry of Education, Shanghai, China, .,Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China,
| | - Shuohui Yang
- Department of Radiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Department of Radiology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yizeng Xu
- Department of Nephrology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.,TCM Institute of Kidney Disease, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Key Laboratory of Liver and Kidney Diseases (Shanghai University of Traditional Chinese Medicine), Ministry of Education, Shanghai, China.,Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Fang Lu
- Department of Radiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lan You
- Department of Radiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zheng He
- Department of Ultrasonography, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Songhua Zhan
- Department of Radiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chaoyang Ye
- Department of Nephrology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.,TCM Institute of Kidney Disease, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Key Laboratory of Liver and Kidney Diseases (Shanghai University of Traditional Chinese Medicine), Ministry of Education, Shanghai, China.,Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Mengxiao Liu
- MR Scientific Marketing, Siemens Healthcare, Shanghai, China
| | - Caixia Fu
- MR Applications Development, Siemens Shenzhen Magnetic Resonance Ltd., Shenzhen, China
| | - Chen Wang
- Department of Nephrology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.,TCM Institute of Kidney Disease, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Key Laboratory of Liver and Kidney Diseases (Shanghai University of Traditional Chinese Medicine), Ministry of Education, Shanghai, China.,Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
55
|
Viñas JL, Spence M, Porter CJ, Douvris A, Gutsol A, Zimpelmann JA, Campbell PA, Burns KD. micro-RNA-486-5p protects against kidney ischemic injury and modifies the apoptotic transcriptome in proximal tubules. Kidney Int 2021; 100:597-612. [PMID: 34181969 DOI: 10.1016/j.kint.2021.05.034] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 05/18/2021] [Accepted: 05/20/2021] [Indexed: 02/08/2023]
Abstract
Acute kidney injury (AKI) carries high morbidity and mortality, and effective treatments are lacking. Preclinical models support involvement of micro-RNAs (miRs) in AKI pathogenesis, although effects on the kidney transcriptome are unclear. We previously showed that injection of cord blood endothelial colony forming cell-derived exosomes, enriched in miR-486-5p, prevented ischemic AKI in mice. To further define this, we studied direct effects of miR-486-5p in mice with kidney ischemia-reperfusion injury. RNA-Seq was used to compare the impact of miR-486-5p and exosomes on the transcriptome of proximal tubules and kidney endothelial cells 24 hours after ischemia-reperfusion. In mice with AKI, injection of miR-486-5p mimic increased its levels in proximal tubules and endothelial cells, and improved plasma creatinine, histological injury, neutrophil infiltration, and apoptosis. Additionally, miR-486-5p inhibited expression of its target phosphatase and tensin homolog, and activated protein kinase B. In proximal tubules, miR-486-5p or exosomes reduced expression of genes associated with ischemic injury and the tumor necrosis factor (TNF) pathway, and altered distinct apoptotic genes. In endothelial cells, genes associated with metabolic processes were altered by miR-486-5p or exosomes, although TNF pathway genes were not affected. Thus, our results suggest that miR-486-5p may have therapeutic potential in AKI.
Collapse
Affiliation(s)
- Jose L Viñas
- Division of Nephrology, Department of Medicine, Kidney Research Centre, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, Ontario, Canada
| | - Matthew Spence
- Division of Nephrology, Department of Medicine, Kidney Research Centre, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, Ontario, Canada
| | - Christopher J Porter
- Ottawa Bioinformatics Core Facility, the Sprott Centre for Stem Cell Research, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Adrianna Douvris
- Division of Nephrology, Department of Medicine, Kidney Research Centre, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, Ontario, Canada
| | - Alex Gutsol
- Division of Nephrology, Department of Medicine, Kidney Research Centre, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, Ontario, Canada
| | - Joseph A Zimpelmann
- Division of Nephrology, Department of Medicine, Kidney Research Centre, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, Ontario, Canada
| | - Pearl A Campbell
- Regenerative Medicine Program, the Sprott Centre for Stem Cell Research, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Kevin D Burns
- Division of Nephrology, Department of Medicine, Kidney Research Centre, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, Ontario, Canada.
| |
Collapse
|
56
|
Osis G, Traylor AM, Black LM, Spangler D, George JF, Zarjou A, Verlander JW, Agarwal A. Expression of lactate dehydrogenase A and B isoforms in the mouse kidney. Am J Physiol Renal Physiol 2021; 320:F706-F718. [PMID: 33719570 PMCID: PMC8424554 DOI: 10.1152/ajprenal.00628.2020] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 02/19/2021] [Accepted: 03/07/2021] [Indexed: 02/08/2023] Open
Abstract
Cellular metabolic rates in the kidney are critical for maintaining normal renal function. In a hypoxic milieu, cells rely on glycolysis to meet energy needs, resulting in the generation of pyruvate and NADH. In the absence of oxidative phosphorylation, the continuation of glycolysis is dependent on the regeneration of NAD+ from NADH accompanied by the fermentation of pyruvate to lactate. This reaction is catalyzed by lactate dehydrogenase (LDH) isoform A (LDHA), whereas LDH isoform B (LDHB) catalyzes the opposite reaction. LDH is widely used as a potential injury marker as it is released from damaged cells into the urine and serum; however, the precise isoform-specific cellular localization of the enzyme along the nephron has not been characterized. By combining immunohistochemistry results and single-cell RNA-sequencing data on healthy mouse kidneys, we identified that LDHA is primarily expressed in proximal segments, whereas LDHB is expressed in the distal parts of the nephron. In vitro experiments in mouse and human renal proximal tubule cells showed an increase in LDHA following hypoxia with no change in LDHB. Using immunofluorescence, we observed that the overall expression of both LDHA and LDHB proteins decreased following renal ischemia-reperfusion injury as well as in the adenine-diet-induced model of chronic kidney disease. Single-nucleus RNA-sequencing analyses of kidneys following ischemia-reperfusion injury revealed a significant decline in the number of cells expressing detectable levels of Ldha and Ldhb; however, cells that were positive showed increased average expression postinjury, which subsided during the recovery phase. These data provide information on the cell-specific expression of LDHA and LDHB in the normal kidney as well as following acute and chronic kidney disease.NEW & NOTEWORTHY Cellular release of lactate dehydrogenase (LDH) is being used as an injury marker; however, the exact localization of LDH within the nephron remains unclear. We show that LDH isoform A is expressed proximally, whereas isoform B is expressed distally. Both subunit expressions were significantly altered in models of acute kidney injury and chronic kidney disease. Our study provides new insights into basal and postinjury renal lactate metabolism.
Collapse
Affiliation(s)
- Gunars Osis
- Nephrology Research and Training Center, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Amie M Traylor
- Nephrology Research and Training Center, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Laurence M Black
- Nephrology Research and Training Center, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Daryll Spangler
- Nephrology Research and Training Center, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - James F George
- Nephrology Research and Training Center, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
- Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama
| | - Abolfazl Zarjou
- Nephrology Research and Training Center, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Jill W Verlander
- Division of Nephrology, Hypertension and Transplantation, College of Medicine, University of Florida, Gainesville, Florida
| | - Anupam Agarwal
- Nephrology Research and Training Center, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
- Birmingham Veterans Administration Medical Center, Birmingham, Alabama
| |
Collapse
|
57
|
Evaluation of Neutrophil Dynamics Change by Protective Effect of Tadalafil After Renal Ischemia/Reperfusion Using In Vivo Real-time Imaging. Transplantation 2021; 106:280-288. [PMID: 33908383 DOI: 10.1097/tp.0000000000003803] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Neutrophils play a major role in ischemia/reperfusion injury (IRI) in renal transplantation and acute kidney injury. However, it has been difficult to observe changes in neutrophil dynamics over time in living mice kidney. We investigate neutrophil dynamics in IRI in living mice using novel in vivo multiphoton microscope imaging techniques and characterize the renoprotective effects of a selective phosphodiesterase (PDE) 5 inhibitor, tadalafil. METHODS Wild-type (WT) and eNOS knockout (eNOS-KO) mice, a model of endothelial dysfunction, were used to establish in vivo real-time imaging in living mouse kidneys. Neutrophils were labeled green with Ly-6G monoclonal antibody, and plasma flow was labeled red with bovine serum albumin. Tadalafil was administered orally 1 h before surgery. Both kidney pedicles were reperfused after 37° warm ischemia for 45 min. RESULTS Our novel approach revealed that neutrophils were trapped in glomerulus within a few minutes after reperfusion. They gradually increased over time and Infiltrated neutrophils were observed in the tubular lumen and peritubular capillary. The neutrophils were clearly visualized rolling on peritubular capillary plexus at 3 μm/min. The administration of tadalafil significantly reduced neutrophil influx into the glomerulus in both WT and eNOS-KO mice. Reduced neutrophil infiltration in tadalafil groups, which was confirmed by flow cytometry, resulted in histopathologically decreased tubular injury. The expression of VCAM-1 and KIM-1 was partially prevented by tadalafil. CONCLUSIONS Use of a novel technique contributed to elucidation of neutrophil dynamics after reperfusion. Tadalafil has a potential for inhibiting neutrophil infiltration in renal IRI.Supplemental Visual Abstract; http://links.lww.com/TP/C223.
Collapse
|
58
|
Doreille A, Azzi F, Larivière-Beaudoin S, Karakeussian-Rimbaud A, Trudel D, Hébert MJ, Dieudé M, Patey N, Cardinal H. Acute Kidney Injury, Microvascular Rarefaction, and Estimated Glomerular Filtration Rate in Kidney Transplant Recipients. Clin J Am Soc Nephrol 2021; 16:415-426. [PMID: 33648972 PMCID: PMC8011007 DOI: 10.2215/cjn.07270520] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 01/14/2021] [Indexed: 02/04/2023]
Abstract
BACKGROUND AND OBJECTIVES Animal studies suggest that microvascular rarefaction is a key factor in the acute kidney disease to CKD transition. Hence, delayed graft function appears as a unique human model of AKI to further explore the role of microvascular rarefaction in kidney transplant recipients. Here, we assessed whether delayed graft function is associated with peritubular capillary loss and evaluated the association between this loss and long-term kidney graft function. DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS This observational, retrospective cohort study included 61 participants who experienced delayed graft function and 130 who had immediate graft function. We used linear regression models to evaluate associations between delayed graft function and peritubular capillary density expressed as the percentage of efficient cortical area occupied by peritubular capillaries in pre- and post-transplant graft biopsies. eGFRs 1 and 3 years post-transplant were secondary outcomes. RESULTS Post-transplant biopsies were performed at a median of 113 days (interquartile range, 101-128) after transplantation. Peritubular capillary density went from 15.4% to 11.5% in patients with delayed graft function (median change, -3.7%; interquartile range, -6.6% to -0.8%) and from 19.7% to 15.1% in those with immediate graft function (median change, -4.5%; interquartile range, -8.0% to -0.8%). Although the unadjusted change in peritubular capillary density was similar between patients with and without delayed graft function, delayed graft function was associated with more peritubular capillary loss in the multivariable analysis (adjusted difference in change, -2.9%; 95% confidence interval, -4.0 to -1.8). Pretransplant peritubular capillary density and change in peritubular capillary density were associated with eGFR 1 and 3 years post-transplantation. CONCLUSIONS Perioperative AKI is associated with lower density in peritubular capillaries before transplantation and with loss of peritubular capillaries following transplantation. Lower peritubular capillary density is linked to lower long-term eGFR.
Collapse
Affiliation(s)
- Alice Doreille
- Centre de recherche du Centre hospitalier de l’Université de Montréal, Immunopathology axis, Montreal, Quebec, Canada,Faculté de Médecine, Université Paris-Sud, Paris, France
| | - Féryel Azzi
- Institut du cancer de Montréal, Montreal, Quebec, Canada
| | - Stéphanie Larivière-Beaudoin
- Centre de recherche du Centre hospitalier de l’Université de Montréal, Immunopathology axis, Montreal, Quebec, Canada,Canadian Donation and Transplantation Research Program, Edmonton, Alberta, Canada
| | - Annie Karakeussian-Rimbaud
- Centre de recherche du Centre hospitalier de l’Université de Montréal, Immunopathology axis, Montreal, Quebec, Canada,Canadian Donation and Transplantation Research Program, Edmonton, Alberta, Canada
| | - Dominique Trudel
- Institut du cancer de Montréal, Montreal, Quebec, Canada,Pathology Department, Centre hospitalier de l’Université de Montréal, Montreal, Quebec, Canada
| | - Marie-Josée Hébert
- Centre de recherche du Centre hospitalier de l’Université de Montréal, Immunopathology axis, Montreal, Quebec, Canada,Canadian Donation and Transplantation Research Program, Edmonton, Alberta, Canada,Nephrology Department, Centre hospitalier de l’Université de Montréal, Montreal, Quebec, Canada
| | - Mélanie Dieudé
- Centre de recherche du Centre hospitalier de l’Université de Montréal, Immunopathology axis, Montreal, Quebec, Canada,Canadian Donation and Transplantation Research Program, Edmonton, Alberta, Canada
| | - Natacha Patey
- Centre de recherche du Centre hospitalier de l’Université de Montréal, Immunopathology axis, Montreal, Quebec, Canada,Pathology Department, Sainte-Justine Hospital, Montreal, Quebec, Canada
| | - Héloïse Cardinal
- Centre de recherche du Centre hospitalier de l’Université de Montréal, Immunopathology axis, Montreal, Quebec, Canada,Canadian Donation and Transplantation Research Program, Edmonton, Alberta, Canada,Nephrology Department, Centre hospitalier de l’Université de Montréal, Montreal, Quebec, Canada
| |
Collapse
|
59
|
Hatton GE, Isbell KD, Henriksen HH, Stensballe J, Brummerstedt M, Johansson PI, Kao LS, Wade CE. Endothelial Dysfunction is Associated With Increased Incidence, Worsened Severity, and Prolonged Duration of Acute Kidney Injury After Severe Trauma. Shock 2021; 55:311-315. [PMID: 32826819 PMCID: PMC7870558 DOI: 10.1097/shk.0000000000001638] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
INTRODUCTION Nearly half of severely injured patients suffer acute kidney injury (AKI), but little is known about its pathogenesis or optimal management. We hypothesized that endothelial dysfunction, evidenced by elevated systemic soluble thrombomodulin (sTM) and syndecan-1, would be associated with higher incidence, worsened severity, and prolonged duration of AKI after severe trauma. METHODS A single-center cohort study of severely injured patients surviving ≥24 h from 2012 to 2016 was performed. Arrival plasma sTM and syndecan-1 were measured by ELISA. Outcomes included 7-day AKI incidence, stage, and prolonged AKI ≥2 days. The Kidney Disease Improving Global Outcomes guidelines were used for AKI diagnosis and staging. Univariate and multivariable analyses were performed. RESULTS Of 477 patients, 78% were male. Patients had a median age of 38 (interquartile ranges [IQR] 27-54) and injury severity score of 17 (IQR 10-26). AKI developed in 51% of patients. Those with AKI were older and displayed worse arrival physiology. Patients with AKI had higher plasma levels of syndecan-1 (median 34.9 ng/mL vs. 20.1 ng/mL) and sTM (6.5 ng/mL vs. 4.8 ng/mL). After adjustment, sTM and syndecan-1 were both associated with higher AKI incidence, worse AKI severity, and prolonged AKI duration. The strength and precision of the association of sTM and these outcomes were greater than those for syndecan-1. A sensitivity analysis excluding patients with AKI on arrival demonstrated the same relationship. CONCLUSIONS Elevated sTM and syndecan-1, indicating endothelial dysfunction, were associated with higher incidence, worsened severity, and prolonged duration of AKI after severe trauma. Treatments that stabilize the endothelium hold promise for AKI treatment in severely injured patients.
Collapse
Affiliation(s)
- Gabrielle E. Hatton
- Division of Acute Care Surgery, Department of Surgery, McGovern Medical School at UTHealth, Houston, TX
- Center for Surgical Trials and Evidence-based Practice, McGovern Medical School at UTHealth, Houston, TX
- Center for Translational Injury Research, Houston, TX
| | - Kayla D. Isbell
- Division of Acute Care Surgery, Department of Surgery, McGovern Medical School at UTHealth, Houston, TX
- Center for Surgical Trials and Evidence-based Practice, McGovern Medical School at UTHealth, Houston, TX
- Center for Translational Injury Research, Houston, TX
| | - Hanne H Henriksen
- Section for Transfusion Medicine, Capital Region Blood Bank, University of Copenhagen, Copenhagen, Denmark
| | - Jakob Stensballe
- Section for Transfusion Medicine, Capital Region Blood Bank, University of Copenhagen, Copenhagen, Denmark
- Department of Anaesthesia and Trauma Centre, Centre of Head and Orthopedics, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Martin Brummerstedt
- Section for Transfusion Medicine, Capital Region Blood Bank, University of Copenhagen, Copenhagen, Denmark
| | - Pär I Johansson
- Section for Transfusion Medicine, Capital Region Blood Bank, University of Copenhagen, Copenhagen, Denmark
| | - Lillian S. Kao
- Division of Acute Care Surgery, Department of Surgery, McGovern Medical School at UTHealth, Houston, TX
- Center for Surgical Trials and Evidence-based Practice, McGovern Medical School at UTHealth, Houston, TX
- Center for Translational Injury Research, Houston, TX
| | - Charles E. Wade
- Division of Acute Care Surgery, Department of Surgery, McGovern Medical School at UTHealth, Houston, TX
- Center for Translational Injury Research, Houston, TX
| |
Collapse
|
60
|
McWilliam SJ, Wright RD, Welsh GI, Tuffin J, Budge KL, Swan L, Wilm T, Martinas IR, Littlewood J, Oni L. The complex interplay between kidney injury and inflammation. Clin Kidney J 2021; 14:780-788. [PMID: 33777361 PMCID: PMC7986351 DOI: 10.1093/ckj/sfaa164] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 06/10/2020] [Indexed: 12/11/2022] Open
Abstract
Acute kidney injury (AKI) has gained significant attention following patient safety alerts about the increased risk of harm to patients, including increased mortality and hospitalization. Common causes of AKI include hypovolaemia, nephrotoxic medications, ischaemia and acute glomerulonephritis, although in reality it may be undetermined or multifactorial. A period of inflammation either as a contributor to the kidney injury or resulting from the injury is almost universally seen. This article was compiled following a workshop exploring the interplay between injury and inflammation. AKI is characterized by some degree of renal cell death through either apoptosis or necrosis, together with a strong inflammatory response. Studies interrogating the resolution of renal inflammation identify a whole range of molecules that are upregulated and confirm that the kidneys are able to intrinsically regenerate after an episode of AKI, provided the threshold of damage is not too high. Kidneys are unable to generate new nephrons, and dysfunctional or repeated episodes will lead to further nephron loss that is ultimately associated with the development of renal fibrosis and chronic kidney disease (CKD). The AKI to CKD transition is a complex process mainly facilitated by maladaptive repair mechanisms. Early biomarkers mapping out this process would allow a personalized approach to identifying patients with AKI who are at high risk of developing fibrosis and subsequent CKD. This review article highlights this process and explains how laboratory models of renal inflammation and injury assist with understanding the underlying disease process and allow interrogation of medications aimed at targeting the mechanistic interplay.
Collapse
Affiliation(s)
- Stephen J McWilliam
- Department of Paediatric Pharmacology, Alder Hey Children’s Hospital, Liverpool, UK
- Department of Women and Children’s Health, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Rachael D Wright
- Department of Women and Children’s Health, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Gavin I Welsh
- Bristol Renal, Bristol Medical School, University of Bristol, Bristol, UK
| | - Jack Tuffin
- Bristol Renal, Bristol Medical School, University of Bristol, Bristol, UK
| | - Kelly L Budge
- Department of Women and Children’s Health, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Laura Swan
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Thomas Wilm
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Ioana-Roxana Martinas
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - James Littlewood
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
- Department of Nephrology, Royal Liverpool University Hospital, Liverpool, UK
| | - Louise Oni
- Department of Women and Children’s Health, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
- Department of Paediatric Nephrology, Alder Hey Children’s NHS Foundation Trust Hospital, Liverpool, UK
| |
Collapse
|
61
|
Xiao G, Zou J, Xiao X. Sialic acid-conjugated PLGA nanoparticles enhance the protective effect of lycopene in chemotherapeutic drug-induced kidney injury. IET Nanobiotechnol 2021; 14:341-345. [PMID: 32463025 DOI: 10.1049/iet-nbt.2019.0363] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Lycopene (LYC) is known to protect cells from oxidative damage caused by free radicals in human tissues. In the present study, the authors designed a LYC-loaded sialic acid (SA)-conjugated poly(D,L-lactide-co-glycolide) (PLGA) nanoparticle (LYC-NP) to enhance the therapeutic efficacy of LYC in acute kidney injury. The characteristics of the LYC-NPs were defined according to particle size, morphology, and in vitro drug release. The LYC-NPs exhibited a controlled release of LYC over 48 h. Confocal laser scanning microscopy clearly highlighted the targeting potential of SA. Enhanced green fluorescence was observed for the LYC-NPs in H2O2-treated human umbilical vein endothelial cells, indicating enhanced internalisation of NPs. The LYC-NPs showed significantly greater cell viability than H2O2-treated cells. In addition, the LYC-NPs remarkably reduced proinflammatory cytokine levels, attributable mainly to the increased cellular internalisation of the SA-based carrier delivery system. Furthermore, protein levels of caspase-3 and -9 were significantly down-regulated after treatment with the LYC-NPs. Overall, they have demonstrated that SA-conjugated PLGA-NPs containing LYC could be used to treat kidney injury.
Collapse
Affiliation(s)
- Gong Xiao
- Department of Nephrology, Xiangya Hospital Central South University, Changsha, Hunan, 410008, People's Republic of China
| | - Junlin Zou
- Department of Cardiology, Xiangya Hospital Central South University, Changsha, Hunan, 410008, People's Republic of China
| | - Xiangcheng Xiao
- Department of Nephrology, Xiangya Hospital Central South University, Changsha, Hunan, 410008, People's Republic of China.
| |
Collapse
|
62
|
Wennysia IC, Zhao L, Schomber T, Braun D, Golz S, Summer H, Benardeau A, Lai EY, Lichtenberger FB, Schubert R, Persson PB, Xu MZ, Patzak A. Role of soluble guanylyl cyclase in renal afferent and efferent arterioles. Am J Physiol Renal Physiol 2020; 320:F193-F202. [PMID: 33356952 DOI: 10.1152/ajprenal.00272.2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Renal arteriolar tone depends considerably on the dilatory action of nitric oxide (NO) via activation of soluble guanylyl cyclase (sGC) and cGMP action. NO deficiency and hypoxia/reoxygenation are important pathophysiological factors in the development of acute kidney injury. It was hypothesized that the NO-sGC-cGMP system functions differently in renal afferent arterioles (AA) compared with efferent arterioles (EA) and that the sGC activator cinaciguat differentially dilates these arterioles. Experiments were performed in isolated, perfused mouse glomerular arterioles. Hypoxia (0.1% oxygen) was achieved by using a hypoxia chamber. Phosphodiesterase 5 (PDE5) and sGC subunits were considerably expressed on the mRNA level in AA. PDE5 inhibition with sildenafil, which blocks cGMP degradation, diminished the responses to ANG II bolus application in AA, but not significantly in EA. Vasodilation induced by sildenafil in ANG II-preconstricted vessels was stronger in EA than AA. Cinaciguat, an NO- and heme-independent sGC activator, dilated EA more strongly than AA after NG-nitro-l-arginine methyl ester (l-NAME; NO synthase inhibitor) treatment and preconstriction with ANG II. Cinaciguat-induced dilatation of l-NAME-pretreated and ANG II-preconstricted arterioles was similar to controls without l-NAME treatment. Cinaciguat also induced dilatation in iodinated contrast medium treated AA. Furthermore, it dilated EA, but not AA, after hypoxia/reoxygenation. The results reveal an important role of the NO-sGC-cGMP system for renal dilatation and that EA have a more potent sGC activated dilatory system. Furthermore, AA seem to be more sensitive to hypoxia/reoxygenation than EA under these experimental conditions.
Collapse
Affiliation(s)
- I C Wennysia
- Institute of Vegetative Physiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - L Zhao
- Institute of Vegetative Physiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Department of Physiology, School Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - T Schomber
- Research & Development, Bayer AG, Wuppertal, Germany
| | - D Braun
- Institute of Vegetative Physiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - S Golz
- Research & Development, Bayer AG, Wuppertal, Germany
| | - H Summer
- Research & Development, Bayer AG, Wuppertal, Germany
| | - A Benardeau
- Research & Development, Bayer AG, Wuppertal, Germany
| | - E Y Lai
- Department of Physiology, Zhejiang University School of Medicine, Hangzhou, China
| | - F-B Lichtenberger
- Institute of Vegetative Physiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - R Schubert
- Physiology, Medical Faculty, Institute of Theoretical Medicine, University of Augsburg, Augsburg, Germany
| | - P B Persson
- Institute of Vegetative Physiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - M Z Xu
- Institute of Vegetative Physiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - A Patzak
- Institute of Vegetative Physiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
63
|
Lee WJ, Kim DB, Her SH, Park CS, Lee JM, Kim HY, Chung WS. Prognostic Value of Estimated Glomerular Filtration Rate 3-6 Months after Percutaneous Coronary Intervention. Cardiorenal Med 2020; 11:77-86. [PMID: 33333516 DOI: 10.1159/000512817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 11/03/2020] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The prognostic significance of follow-up (f/u) renal function for patients undergoing percutaneous coronary intervention (PCI) remains unknown. This study sought to investigate the prognostic implications of f/u renal function in patients undergoing PCI. METHODS A drug-eluting stent registry was used. We divided patients into 4 groups according to the change in the estimated glomerular filtration rate (eGFR) before PCI and 3-6 months after PCI. Patients with normal pre-PCI eGFR and f/u eGFR were assigned to group 1. Those with normal pre-PCI eGFR and abnormal f/u eGFR were assigned to group 2. Patients with abnormal pre-PCI eGFR and normal f/u eGFR were assigned to group 3. Patients with abnormal pre-PCI eGFR and f/u eGFR were allocated into group 4. RESULTS A total of 4,899 PCI patients were enrolled. The death rate in group 1, 2, 3, and 4 at 3 years was 2, 11, 4, and 9%, respectively. This showed significant differences between groups, except between groups 2 and 4. The prognosis of a group with aggravation from normal renal function was worse than that of a group with recovery from abnormal renal function. A prediction model that combines clinical risk factors and f/u eGFR has more power for predicting clinical outcomes than a combination of clinical risk factors and pre-PCI eGFR. CONCLUSION Post-PCI eGFR was more accurate for predicting patient outcomes than pre-PCI eGFR.
Collapse
Affiliation(s)
- Won Jik Lee
- Department of Cardiology, College of Medicine, Incheon St. Mary's Hospital, The Catholic University of Korea, Incheon, Republic of Korea
| | - Dong-Bin Kim
- Department of Cardiology, College of Medicine, Bucheon St. Mary's Hospital, The Catholic University of Korea, Bucheon, Republic of Korea,
| | - Sung-Ho Her
- Department of Cardiology, College of Medicine, Daejeon St. Mary's Hospital, The Catholic University of Korea, Daejeon, Republic of Korea
| | - Chul Soo Park
- Department of Cardiology, College of Medicine, Yeouido St. Mary's Hospital, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jong-Min Lee
- Department of Cardiology, College of Medicine, Uijeongbu St. Mary's Hospital, The Catholic University of Korea, Uijeongbu, Republic of Korea
| | - Hee-Yeol Kim
- Department of Cardiology, College of Medicine, Bucheon St. Mary's Hospital, The Catholic University of Korea, Bucheon, Republic of Korea
| | - Wook Sung Chung
- Department of Cardiology, College of Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
64
|
Lima NKS, Farias WRA, Cirilo MAS, Oliveira AG, Farias JS, Aires RS, Muzi-Filho H, Paixão ADO, Vieira LD. Renal ischemia-reperfusion leads to hypertension and changes in proximal tubule Na + transport and renin-angiotensin-aldosterone system: Role of NADPH oxidase. Life Sci 2020; 266:118879. [PMID: 33310030 DOI: 10.1016/j.lfs.2020.118879] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 11/13/2020] [Accepted: 12/01/2020] [Indexed: 12/28/2022]
Abstract
Acute renal injury (AKI) is a risk factor for the development of hypertension, which involves oxidative stress, changes in Na+ handling, and the intrarenal renin-angiotensin-aldosterone system (RAAS) as underlying mechanisms. We investigated in rats whether renal ischemia-reperfusion (IR) leads to changes in the proximal tubule ATP-dependent Na+ transport and the intrarenal content of RAAS components, as well as the role of NADPH oxidase. Rats weighing 300-350 g were submitted to AKI by bilateral IR (n = 25). After IR injury, the animals were followed up for 4 weeks. One part (n = 7) received daily treatment with the NADPH oxidase inhibitor apocynin (100 mg/kg, drinking water), while another part (n = 9) received apocynin 24 h before and after IR. One group was submitted to sham surgery (n = 8). Four weeks after IR, the rats presented elevated systolic blood pressure, as well as increased lipid peroxidation, NADPH oxidase activity, (Na++K+)ATPase activity, and upregulation of type 1 angiotensin II receptor in the renal cortex. On the other hand, there was a decrease in Na+-ATPase activity and downregulation of the isoforms 1 and 2 of the angiotensin-converting enzyme, type 2 angiotensin II receptor, and of the α and ε isoforms of protein kinase C. Most of these alterations was prevented by both apocynin treatment protocols. Thus, we conclude that AKI-induced by IR may induce changes in proximal tubule ATPases and RAAS components compatible with renal Na+ retention and hypertension. These data also indicate that the NADPH oxidase represents a key factor in the origin of these alterations.
Collapse
Affiliation(s)
- Natália K S Lima
- Department of Physiology and Pharmacology, Federal University of Pernambuco, Recife, Brazil
| | - Wilka R A Farias
- Department of Physiology and Pharmacology, Federal University of Pernambuco, Recife, Brazil
| | - Marry A S Cirilo
- Department of Physiology and Pharmacology, Federal University of Pernambuco, Recife, Brazil
| | - Angélica G Oliveira
- Department of Physiology and Pharmacology, Federal University of Pernambuco, Recife, Brazil
| | - Juliane S Farias
- Department of Physiology and Pharmacology, Federal University of Pernambuco, Recife, Brazil
| | - Regina S Aires
- Department of Physiology and Pharmacology, Federal University of Pernambuco, Recife, Brazil
| | - Humberto Muzi-Filho
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; National Center for Structural Biology and Bioimaging/CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ana D O Paixão
- Department of Physiology and Pharmacology, Federal University of Pernambuco, Recife, Brazil; National Center for Structural Biology and Bioimaging/CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Leucio D Vieira
- Department of Physiology and Pharmacology, Federal University of Pernambuco, Recife, Brazil; National Center for Structural Biology and Bioimaging/CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
65
|
Patschan D, Schwarze K, Tampe B, Becker JU, Hakroush S, Ritter O, Patschan S, Müller GA. Constitutive Atg5 overexpression in mouse bone marrow endothelial progenitor cells improves experimental acute kidney injury. BMC Nephrol 2020; 21:503. [PMID: 33228553 PMCID: PMC7684746 DOI: 10.1186/s12882-020-02149-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 11/03/2020] [Indexed: 12/02/2022] Open
Abstract
Background Endothelial Progenitor Cells have been shown as effective tool in experimental AKI. Several pharmacological strategies for improving EPC-mediated AKI protection were identified in recent years. Aim of the current study was to analyze consequences of constitutive Atg5 activation in murine EPCs, utilized for AKI therapy. Methods Ischemic AKI was induced in male C57/Bl6N mice. Cultured murine EPCs were systemically injected post-ischemia, either natively or after Atg5 transfection (Adenovirus-based approach). Mice were analyzed 48 h and 6 weeks later. Results Both, native and transfected EPCs (EPCsAtg5) improved persisting kidney dysfunction at week 6, such effects were more pronounced after injecting EPCsAtg5. While matrix deposition and mesenchymal transdifferentiation of endothelial cells remained unaffected by cell therapy, EPCs, particularly EPCsAtg5 completely prevented the post-ischemic loss of peritubular capillaries. The cells finally augmented the augophagocytic flux in endothelial cells. Conclusions Constitutive Atg5 activation augments AKI-protective effects of murine EPCs. The exact clinical consequences need to be determined.
Collapse
Affiliation(s)
- Daniel Patschan
- Zentrum für Innere Medizin 1 - Kardiologie, Angiologie, Nephrologie, Klinikum Brandenburg, Medizinische Hochschule Brandenburg, Klinikum Brandenburg, Hochstraße 29, 14770, Brandenburg, Germany.
| | - Katrin Schwarze
- Klinik für Nephrologie und Rheumatologie, Universitätsmedizin Göttingen, Göttingen, Germany
| | - Björn Tampe
- Klinik für Nephrologie und Rheumatologie, Universitätsmedizin Göttingen, Göttingen, Germany
| | - Jan Ulrich Becker
- Institut für Allgemeine Pathologie und Pathologische Anatomie, Universitätsklinikum Köln, Köln, Germany
| | - Samy Hakroush
- Institut für Pathologie, Universitätsmedizin Göttingen, Göttingen, Germany
| | - Oliver Ritter
- Zentrum für Innere Medizin 1 - Kardiologie, Angiologie, Nephrologie, Klinikum Brandenburg, Medizinische Hochschule Brandenburg, Klinikum Brandenburg, Hochstraße 29, 14770, Brandenburg, Germany
| | - Susann Patschan
- Zentrum für Innere Medizin 1 - Kardiologie, Angiologie, Nephrologie, Klinikum Brandenburg, Medizinische Hochschule Brandenburg, Klinikum Brandenburg, Hochstraße 29, 14770, Brandenburg, Germany
| | - Gerhard Anton Müller
- Klinik für Nephrologie und Rheumatologie, Universitätsmedizin Göttingen, Göttingen, Germany
| |
Collapse
|
66
|
Wang Y, Mi Y, Tian J, Qiao X, Su X, Kang J, Wu Z, Wang G, Zhou X, Zhou Y, Li R. Intermedin Alleviates Renal Ischemia-Reperfusion Injury and Enhances Neovascularization in Wistar Rats. Drug Des Devel Ther 2020; 14:4825-4834. [PMID: 33204068 PMCID: PMC7666991 DOI: 10.2147/dddt.s253019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Accepted: 10/09/2020] [Indexed: 12/28/2022] Open
Abstract
Background Ischemia-reperfusion injury (IRI) is a major cause of acute kidney injury (AKI) and increases the risk of subsequently developing chronic kidney disease. Angiogenesis has been shown to play an important role in reducing renal injury after ischemia reperfusion. In this study, we investigated whether IMD could reduce renal IRI by promoting angiogenesis. Methods The kidneys of Wistar rats were subjected to 45 min of warm ischemia followed by 24 h of reperfusion. IMD was overexpressed in vivo using the vector pcDNA3.1-IMD transfected by an ultrasound-mediated system. The renal injury after ischemia reperfusion was assessed by detection of the serum creatinine concentration and histologic examinations of renal tissues stained by PAS and H&E. Real-time PCR and Western blotting were used to determine the mRNA and protein levels, respectively. Histological examinations were used to assess the expression of CD31, MMP2, MMP9, ET-1, VEGF and VEGFR2 in tissues. Results Renal function and renal histological damage were significantly ameliorated in IMD-transfected rats after ischemia reperfusion. Compared to the IRI, IMD significantly promoted angiogenesis. IMD also upregulated the protein and mRNA expression levels of VEGF and VEGFR2 and downregulated the expression level of MMP2, MMP9 and ET-1. Conclusion IMD could protect the kidney after renal ischemia-reperfusion injury by promoting angiogenesis and reducing the destruction of the perivascular matrix.
Collapse
Affiliation(s)
- Yanhong Wang
- Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan, Shanxi, People's Republic of China
| | - Yang Mi
- Department of Urology, Shanxi Academy of Medical Sciences, Shanxi Dayi Hospital, Taiyuan, Shanxi, People's Republic of China
| | - Jihua Tian
- Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan, Shanxi, People's Republic of China
| | - Xi Qiao
- Department of Nephrology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, People's Republic of China
| | - Xiaole Su
- Department of Nephrology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, People's Republic of China
| | - Jing Kang
- Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan, Shanxi, People's Republic of China
| | - Zhijing Wu
- Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan, Shanxi, People's Republic of China
| | - Guiqing Wang
- Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan, Shanxi, People's Republic of China
| | - Xiaoshuang Zhou
- Department of Nephrology, The Affiliated People's Hospital of Shanxi Medical University, Shanxi Provincial People's Hospital, Shanxi Kidney Disease Institute, Taiyuan, Shanxi, People's Republic of China
| | - Yun Zhou
- Department of Nephrology, The Affiliated People's Hospital of Shanxi Medical University, Shanxi Provincial People's Hospital, Shanxi Kidney Disease Institute, Taiyuan, Shanxi, People's Republic of China
| | - Rongshan Li
- Department of Nephrology, The Affiliated People's Hospital of Shanxi Medical University, Shanxi Provincial People's Hospital, Shanxi Kidney Disease Institute, Taiyuan, Shanxi, People's Republic of China
| |
Collapse
|
67
|
Wang M, Xu H, Li Y, Cao C, Zhu H, Wang Y, Zhao Z, Pei G, Zhu F, Yang Q, Deng X, Zhou C, Guo Y, Wu J, Liao W, Yang J, Yao Y, Zeng R. Exogenous bone marrow derived-putative endothelial progenitor cells attenuate ischemia reperfusion-induced vascular injury and renal fibrosis in mice dependent on pericytes. Am J Cancer Res 2020; 10:12144-12157. [PMID: 33204334 PMCID: PMC7667688 DOI: 10.7150/thno.48562] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 10/14/2020] [Indexed: 12/18/2022] Open
Abstract
Rationale: Capillaries are composed of endothelial cells and the surrounding mural cells, pericytes. Microvascular repair after injury involves not only the proliferation of endothelial cells but also pericyte-based vessel stabilization. Exogenous bone marrow derived-putative endothelial progenitor cells (b-pEPCs) have the potential for vascular repair; however, their effect on vascular structure stabilization and pericyte-related pathobiological outcomes in the injured kidney has not been fully examined. Methods: We applied ischemia-reperfusion (IR) to induce renal vascular injury and renal fibrosis in mice. Platelet-derived growth factor receptor β (PDGFR-β)-DTR-positive mice were generated to deplete pericytes, and exogenous b-pEPCs and the PDGFR-β ligand, PDGF chain B (PDGF-BB), were employed to explore the relationship among b-pEPCs, pericytes, vascular repair, and early renal fibrosis. Results: Administration of b-pEPCs reduced IR-induced pericyte-endothelial detachment, pericyte proliferation, and myofibroblast transition via a paracrine mode, which preserved not only vascular stabilization but also ameliorated IR-initiated renal fibrosis. PDGF-BB upregulated the expression of PDGFR-β, exacerbated vascular abnormality, and pericyte-myofibroblast transition, which were ameliorated by b-pEPCs administration. The exogenous b-pEPCs and their culture medium (CM) induced vascular injury protection, and renal fibrosis was blocked by selective deletion of pericytes. Conclusion: Exogenous b-pEPCs directly protect against IR-induced vascular injury and prevent renal fibrosis by inhibiting the activation of PDGFR-β-positive pericytes.
Collapse
|
68
|
Jordan NP, Nicholson ML, Hosgood SA. MicroRNA-126-3p is Downregulated in Human Kidneys in a Model of Reperfusion Injury. Kidney Int Rep 2020; 5:2357-2360. [PMID: 33305131 PMCID: PMC7710817 DOI: 10.1016/j.ekir.2020.09.035] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 08/20/2020] [Accepted: 09/15/2020] [Indexed: 11/17/2022] Open
Affiliation(s)
- Nina P Jordan
- Department of Surgery, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
| | - Michael L Nicholson
- Department of Surgery, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
| | - Sarah A Hosgood
- Department of Surgery, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
| |
Collapse
|
69
|
Charlton JR, Xu Y, Wu T, deRonde KA, Hughes JL, Dutta S, Oxley GT, Cwiek A, Cathro HP, Charlton NP, Conaway MR, Baldelomar EJ, Parvin N, Bennett KM. Magnetic resonance imaging accurately tracks kidney pathology and heterogeneity in the transition from acute kidney injury to chronic kidney disease. Kidney Int 2020; 99:173-185. [PMID: 32916180 DOI: 10.1016/j.kint.2020.08.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 08/07/2020] [Accepted: 08/20/2020] [Indexed: 01/09/2023]
Abstract
Acute kidney injury (AKI) increases the risk for chronic kidney disease (CKD). However, there are few tools to detect microstructural changes after AKI. Here, cationic ferritin-enhanced magnetic resonance imaging (CFE-MRI) was applied to examine the heterogeneity of kidney pathology in the transition from AKI to CKD. Adult male mice received folic acid followed by cationic ferritin and were euthanized at four days (AKI), four weeks (CKD-4) or 12 weeks (CKD-12). Kidneys were examined by histologic methods and CFE-MRI. In the CKD-4 and CKD-12 groups, glomerular number was reduced and atubular cortical lesions were observed. Apparent glomerular volume was larger in the AKI, CKD-4 and CKD-12 groups compared to controls. Glomerular hypertrophy occurred with ageing. Interglomerular distance and glomerular density were combined with other MRI metrics to distinguish the AKI and CKD groups from controls. Despite significant heterogeneity, the noninvasive (MRI-based) metrics were as accurate as invasive (histological) metrics at distinguishing AKI and CKD from controls. To assess the toxicity of cationic ferritin in a CKD model, CKD-4 mice received cationic ferritin and were examined one week later. The CKD-4 groups with and without cationic ferritin were similar, except the iron content of the kidney, liver, and spleen was greater in the CKD-4 plus cationic ferritin group. Thus, our study demonstrates the accuracy and safety of CFE-MRI to detect whole kidney pathology allowing for the development of novel biomarkers of kidney disease and providing a foundation for future in vivo longitudinal studies in mouse models of AKI and CKD to track nephron fate.
Collapse
Affiliation(s)
- Jennifer R Charlton
- Department of Pediatrics, Division Nephrology, University of Virginia, Charlottesville, Virginia, USA.
| | - Yanzhe Xu
- ASU-Mayo Center for Innovative Imaging, School of Computing, Informatics, Decision Systems Engineering, Arizona State University, Tempe, Arizona, USA
| | - Teresa Wu
- ASU-Mayo Center for Innovative Imaging, School of Computing, Informatics, Decision Systems Engineering, Arizona State University, Tempe, Arizona, USA
| | - Kim A deRonde
- Department of Pediatrics, Division Nephrology, University of Virginia, Charlottesville, Virginia, USA
| | | | - Shourik Dutta
- School of Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - Gavin T Oxley
- University of Virginia, Charlottesville, Virginia, USA
| | | | - Helen P Cathro
- Department of Pathology University of Virginia, Charlottesville, Virginia, USA
| | - Nathan P Charlton
- Department of Toxicology, University of Virginia, Virginia, Charlottesville, USA
| | - Mark R Conaway
- Division of Translational Research and Applied Statistics Department of Public Health Sciences, University of Virginia, Charlottesville, Virginia, USA
| | - Edwin J Baldelomar
- Department of Radiology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Neda Parvin
- Department of Radiology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Kevin M Bennett
- Department of Radiology, Washington University in St. Louis, St. Louis, Missouri, USA
| |
Collapse
|
70
|
Maique J, Flores B, Shi M, Shepard S, Zhou Z, Yan S, Moe OW, Hu MC. High Phosphate Induces and Klotho Attenuates Kidney Epithelial Senescence and Fibrosis. Front Pharmacol 2020; 11:1273. [PMID: 32973510 PMCID: PMC7468469 DOI: 10.3389/fphar.2020.01273] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 07/31/2020] [Indexed: 12/18/2022] Open
Abstract
Cellular senescence is an irreversible cell growth arrest and is associated with aging and age-related diseases. High plasma phosphate (Pi) and deficiency of Klotho contribute to aging and kidney fibrosis, a pathological feature in the aging kidney and chronic kidney disease. This study examined the interactive role of Pi and Klotho in kidney senescence and fibrosis. Homozygous Klotho hypomorphic mice had high plasma Pi, undetectable Klotho in plasma and kidney, high senescence with massive collagen accumulation in kidney tubules, and fibrin deposits in peritubular capillaries. To examine the Pi effect on kidney senescence, a high (2%) Pi diet was given to wild-type mice. One week of high dietary Pi mildly increased plasma Pi, and upregulated kidney p16/p21 expression, but did not significantly decrease Klotho. Two weeks of high Pi intake led to increase in plasminogen activator inhibitor (PAI)-1, and decrease in kidney Klotho, but still without detectable increase in kidney fibrosis. More prolonged dietary Pi for 12 weeks exacerbated kidney senescence and fibrosis; more so in heterozygous Klotho hypomorphic mice compared to wild-type mice, and in mice with chronic kidney disease (CKD) on high Pi diet compared to CKD mice fed a normal Pi diet. In cultured kidney tubular cells, high Pi directly induced cellular senescence, injury and epithelial-mesenchymal transition, and enhanced H2O2-induced cellular senescence and injury, which were abrogated by Klotho. Fucoidan, a bioactive molecule with multiple biologic functions including senescence inhibition, blunted Pi-induced cellular senescence, oxidation, injury, epithelial-mesenchymal transition, and senescence-associated secretary phenotype. In conclusion, high Pi activates senescence through distinct but interconnected mechanisms: upregulating p16/p21 (early), and elevating plasminogen activator inhibitor-1 and downregulating Klotho (late). Klotho may be a promising agent to attenuate senescence and ameliorate age-associated, and Pi-induced kidney degeneration such as kidney fibrosis.
Collapse
Affiliation(s)
- Jenny Maique
- Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Brianna Flores
- Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Mingjun Shi
- Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Sierra Shepard
- Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Zhiyong Zhou
- Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Shirely Yan
- Departments of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Orson W Moe
- Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, TX, United States.,Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, United States.,Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Ming Chang Hu
- Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, TX, United States.,Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, United States
| |
Collapse
|
71
|
Aleksandar T, Gordana Ž, Slavica S, Ivan M. Transplanted Kidney Increases Nitric Oxide Formation With Metabolic Acidosis Reduction. EXP CLIN TRANSPLANT 2020; 18:450-457. [PMID: 32779559 DOI: 10.6002/ect.2020.0016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
OBJECTIVES As a vasodilator, nitric oxide is considered to play a significant role in the homeostatic regulation of renal hemodynamics. To test the hypothesis that a kidney graft is capable of producing nitric oxide immediately after renal transplant surgery, we examined the possibility that it positively affects local metabolic acidosis. MATERIALS AND METHODS In kidney transplant recipients, we analyzed renal vein and central vein blood samples, which reflect local and systemic metabolic alterations, respectively. Samples were taken immediately after kidney recirculation (that is, the first blood passing through after clamps are released) and at 5, 15, and 30 minutes thereafter. Levels of nitric oxide metabolites (nitrites, nitrates, and their sum), malondialdehyde (an indicator of oxidative damages), and parameters of acid-base balance (pH level, actual excess base, hemoglobin, actual bicarbonate, partial pressure of carbon dioxide, partial pressure of oxygen) were analyzed. Living kidney donors (the recipients' parents) were controls. RESULTS In renal vein samples, nitrates and the sum of nitrites and nitrates were significantly higher than that shown in control (P < .001) and central vein (P < .05) samples, suggesting an immediate increase in nitric oxide production in the transplanted organ. Metabolic acidosis occurred in both the renal and central vein, indicated by decreased pH and actual bicarbonate level as well as by negative actual base excess level. Only in the renal vein was an increased nitrite and nitrate associated with a reduction of negative actual excess base, thereby suggesting a decrease in anion formation. CONCLUSIONS Transplanted kidneys increase nitric oxide production immediately after organ transplant surgery, which positively affects local metabolic acidosis. The mechanism for this effect is likely local circulation improvement.
Collapse
Affiliation(s)
- Tomić Aleksandar
- From the Clinic for Vascular and Endovascular Surgery, Military Medical Academy, Belgrade, Serbia
| | | | | | | |
Collapse
|
72
|
Kidney and blood pressure abnormalities 6 years after acute kidney injury in critically ill children: a prospective cohort study. Pediatr Res 2020; 88:271-278. [PMID: 31896128 DOI: 10.1038/s41390-019-0737-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 12/02/2019] [Accepted: 12/11/2019] [Indexed: 01/07/2023]
Abstract
BACKGROUND Acute kidney injury (AKI) in pediatric intensive care unit (PICU) children may be associated with long-term chronic kidney disease or hypertension. OBJECTIVES To estimate (1) prevalence of kidney abnormalities (low estimated glomerular filtration rate (eGFR) or albuminuria) and blood pressure (BP) consistent with pre-hypertension or hypertension, 6 years after PICU admission; (2) if AKI is associated with these outcomes. METHODS Longitudinal study of children admitted to two Canadian PICUs (January 2005-December 2011). Exposures (retrospective): AKI or stage 2/3 AKI (KDIGO creatinine-based definition) during PICU. Primary outcome (single visit 6 years after admission): presence of (a) low eGFR (<90 ml/min/1.73 m2) or albuminuria (albumin to creatinine ratio >30 mg/g) (termed "CKD signs") or (b) BP consistent with ≥pre-hypertension (≥90th percentile) or hypertension (≥95th percentile). RESULTS Of 277 children, 25% had AKI. AKI and stage 2/3 AKI were associated with 2.2- and 6.6-fold higher adjusted odds, respectively, for the 6-year outcomes. Applying new hypertension guidelines attenuated associations; stage 2/3 AKI was associated with 4.5-fold higher adjusted odds for 6-year CKD signs or ≥elevated BP. CONCLUSIONS Kidney and BP abnormalities are common 6 years after PICU admission and associated with AKI. Other risk factors must be elucidated to develop follow-up recommendations and reduce cardiovascular risk.
Collapse
|
73
|
Ullah MM, Basile DP. Role of Renal Hypoxia in the Progression From Acute Kidney Injury to Chronic Kidney Disease. Semin Nephrol 2020; 39:567-580. [PMID: 31836039 DOI: 10.1016/j.semnephrol.2019.10.006] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Over the past 20 years, there has been an increased appreciation of the long-term sequelae of acute kidney injury (AKI) and the potential development of chronic kidney disease (CKD). Several pathophysiologic features have been proposed to mediate AKI to CKD progression including maladaptive alterations in tubular, interstitial, inflammatory, and vascular cells. These alterations likely interact to culminate in the progression to CKD. In this article we focus primarily on evidence of vascular rarefaction secondary to AKI, and the potential mechanisms by which rarefaction occurs in relation to other alterations in tubular and interstitial compartments. We further focus on the potential that rarefaction contributes to renal hypoxia. Consideration of the role of hypoxia in AKI to CKD transition focuses on experimental evidence of persistent renal hypoxia after AKI and experimental maneuvers to evaluate the influence of hypoxia, per se, in progressive disease. Finally, consideration of methods to evaluate hypoxia in patients is provided with the suggestion that noninvasive measurement of renal hypoxia may provide insight into progression in post-AKI patients.
Collapse
Affiliation(s)
- Md Mahbub Ullah
- Department of Anatomy, Cell Biology and Physiology, Indiana University, Indianapolis, IN
| | - David P Basile
- Department of Medicine, Division of Nephrology, Indiana University, Indianapolis, IN.
| |
Collapse
|
74
|
Abstract
PURPOSE OF REVIEW The current review will describe the current evidence and mechanisms of acute kidney injury (AKI) as a risk factor for long-term kidney complications, summarize the rationale for AKI follow-up and present an approach to monitoring children with AKI. Despite emerging evidence linking AKI with risk for long-term kidney and cardiovascular outcomes, many children who develop AKI are not followed for kidney disease development after hospital discharge. Better understanding of long-term complications after AKI and practical algorithms for follow-up will hopefully increase the rate and quality of post-AKI monitoring. RECENT FINDINGS Recent evidence shows that pediatric AKI is associated with long-term renal outcomes such as chronic kidney disease (CKD) and hypertension, both known to increase cardiovascular risk. The mechanism of AKI progression to CKD involves maladaptive regeneration of tubular epithelial and endothelial cells, inflammation, fibrosis and glomerulosclerosis. Many AKI survivors are not followed, and no guidelines for pediatric AKI follow-up have been published. SUMMARY Children who had AKI are at increased risk of long-term renal complications but many of them are not monitored for these complications. Recognizing long-term outcomes post-AKI and integration of follow-up programs may have a long-lasting positive impact on patient health.
Collapse
|
75
|
Adams LC, Bressem KK, Scheibl S, Nunninger M, Gentsch A, Fahlenkamp UL, Eckardt KU, Hamm B, Makowski MR. Multiparametric Assessment of Changes in Renal Tissue after Kidney Transplantation with Quantitative MR Relaxometry and Diffusion-Tensor Imaging at 3 T. J Clin Med 2020; 9:jcm9051551. [PMID: 32455558 PMCID: PMC7290480 DOI: 10.3390/jcm9051551] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 05/15/2020] [Accepted: 05/18/2020] [Indexed: 12/17/2022] Open
Abstract
Background: Magnetic resonance relaxometry (MRR) offers highly reproducible pixel-wise parametric maps of T1 and T2 relaxation times, reflecting specific tissue properties, while diffusion-tensor imaging (DTI) is a promising technique for the characterization of microstructural changes, depending on the directionality of molecular motion. Both MMR and DTI may be used for non-invasive assessment of parenchymal changes caused by kidney injury or graft dysfunction. Methods: We examined 46 patients with kidney transplantation and 16 healthy controls, using T1/T2 relaxometry and DTI at 3 T. Twenty-two early transplants and 24 late transplants were included. Seven of the patients had prior renal biopsy (all of them dysfunctional allografts; 6/7 with tubular atrophy and 7/7 with interstitial fibrosis). Results: Compared to healthy controls, T1 and T2 relaxation times in the renal parenchyma were increased after transplantation, with the highest T1/T2 values in early transplants (T1: 1700 ± 53 ms/T2: 83 ± 6 ms compared to T1: 1514 ± 29 ms/T2: 78 ± 4 ms in controls). Medullary and cortical ADC/FA values were decreased in early transplants and highest in controls, with medullary FA values showing the most pronounced difference. Cortical renal T1, mean medullary FA and corticomedullary differentiation (CMD) values correlated best with renal function as measured by eGFR (cortical T1: r = −0.63, p < 0.001; medullary FA: r = 0.67, p < 0.001; FA CMD: r = 0.62, p < 0.001). Mean medullary FA proved to be a significant predictor for tubular atrophy (p < 0.001), while cortical T1 appeared as a significant predictor of interstitial fibrosis (p = 0.003). Conclusion: Cortical T1, medullary FA, and FA CMD might serve as new imaging biomarkers of renal function and histopathologic microstructure.
Collapse
Affiliation(s)
- Lisa C. Adams
- Department of Radiology, Charité, Charitéplatz 1, 10117 Berlin, Germany; (S.S.); (M.N.); (U.L.F.); (B.H.)
- Correspondence: (L.C.A.); (K.K.B.); Tel.: +49-30627376 (L.C.A.)
| | - Keno K. Bressem
- Department of Radiology, Charité, Hindenburgdamm 30, 12203 Berlin, Germany
- Correspondence: (L.C.A.); (K.K.B.); Tel.: +49-30627376 (L.C.A.)
| | - Sonja Scheibl
- Department of Radiology, Charité, Charitéplatz 1, 10117 Berlin, Germany; (S.S.); (M.N.); (U.L.F.); (B.H.)
| | - Max Nunninger
- Department of Radiology, Charité, Charitéplatz 1, 10117 Berlin, Germany; (S.S.); (M.N.); (U.L.F.); (B.H.)
| | - Andre Gentsch
- Department of Nephrology, Charité, Charitéplatz 1, 10117 Berlin, Germany; (A.G.); (K.-U.E.)
| | - Ute L. Fahlenkamp
- Department of Radiology, Charité, Charitéplatz 1, 10117 Berlin, Germany; (S.S.); (M.N.); (U.L.F.); (B.H.)
| | - Kai-Uwe Eckardt
- Department of Nephrology, Charité, Charitéplatz 1, 10117 Berlin, Germany; (A.G.); (K.-U.E.)
| | - Bernd Hamm
- Department of Radiology, Charité, Charitéplatz 1, 10117 Berlin, Germany; (S.S.); (M.N.); (U.L.F.); (B.H.)
| | - Marcus R. Makowski
- Department of Radiology, Charité, Charitéplatz 1, 10117 Berlin, Germany; (S.S.); (M.N.); (U.L.F.); (B.H.)
- Department of Diagnostic and Interventional Radiology, Technical University of Munich, School of Medicine, 81675 Munich, Germany
| |
Collapse
|
76
|
Wilson MR, Holladay J, Sheridan R, Hostetter G, Berghuis B, Graveel C, Essenburg C, Peck A, Ho TH, Stanton M, Chandler RL. Lgr5-positive endothelial progenitor cells occupy a tumor and injury prone niche in the kidney vasa recta. Stem Cell Res 2020; 46:101849. [PMID: 32464345 DOI: 10.1016/j.scr.2020.101849] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 02/13/2020] [Accepted: 05/12/2020] [Indexed: 01/10/2023] Open
Abstract
The Wnt pathway co-receptor, Leucine Rich Repeat Containing G Protein-Coupled Receptor 5 (LGR5), labels tumor-prone stem cell populations in certain types of tissue. In this study, we show that ARID1A and PIK3CA mutations in LGR5+ cells result in renal angiosarcomas in adult mice. The tumors originate in the renal medulla. We further show that LGR5 labels SOX17+/CD31+/CD34+/CD133+/AQP1+/CD146+ endothelial progenitor cells within the descending vasa recta or straight arterioles of the kidney, which are specialized capillaries that maintain medullary osmotic gradients necessary for water reabsorption and the production of concentrated urine. LGR5+ endothelial progenitor cells are tightly associated with contractile pericytes within the descending vasa recta. Long-term in vivo lineage tracing revealed that LGR5+ cells give rise to renal medullary vasculature. We further show that LGR5+ cells are activated in response to ischemic kidney injury. Our findings uncover a physiologically relevant endothelial progenitor cell population within the kidney vasa recta.
Collapse
Affiliation(s)
- Mike R Wilson
- Department of Obstetrics, Gynecology and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, USA
| | - Jeanne Holladay
- Department of Obstetrics, Gynecology and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, USA
| | - Rachael Sheridan
- Flow Cytometry Core, Van Andel Research Institute, Grand Rapids, MI 49503, USA
| | - Galen Hostetter
- Pathology and Biorepository Core, Van Andel Research Institute, Grand Rapids, MI 49503, USA
| | - Bree Berghuis
- Pathology and Biorepository Core, Van Andel Research Institute, Grand Rapids, MI 49503, USA
| | - Carrie Graveel
- Center for Cancer and Cell Biology, Van Andel Research Institute, Grand Rapids, MI 49503, USA
| | - Curt Essenburg
- Center for Cancer and Cell Biology, Van Andel Research Institute, Grand Rapids, MI 49503, USA
| | - Anderson Peck
- Small Animal Imaging Facility, Van Andel Research Institute, Grand Rapids, MI 49503, USA
| | - Thai H Ho
- Division of Hematology and Medical Oncology, Mayo Clinic, Phoenix, AZ 85054, USA
| | - Melissa Stanton
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Scottsdale, AZ 85259, USA
| | - Ronald L Chandler
- Department of Obstetrics, Gynecology and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, USA; Center for Epigenetics, Van Andel Research Institute, Grand Rapids, MI 49503, USA; Department of Women's Health, Spectrum Health System, Grand Rapids, MI 49341, USA.
| |
Collapse
|
77
|
Nezu M, Suzuki N. Roles of Nrf2 in Protecting the Kidney from Oxidative Damage. Int J Mol Sci 2020; 21:ijms21082951. [PMID: 32331329 PMCID: PMC7215459 DOI: 10.3390/ijms21082951] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/16/2020] [Accepted: 04/21/2020] [Indexed: 12/12/2022] Open
Abstract
Over 10% of the global population suffers from kidney disease. However, only kidney replacement therapies, which burden medical expenses, are currently effective in treating kidney disease. Therefore, elucidating the complicated molecular pathology of kidney disease is an urgent priority for developing innovative therapeutics for kidney disease. Recent studies demonstrated that intertwined renal vasculature often causes ischemia-reperfusion injury (IRI), which generates oxidative stress, and that the accumulation of oxidative stress is a common pathway underlying various types of kidney disease. We reported that activating the antioxidative transcription factor Nrf2 in renal tubules in mice with renal IRI effectively mitigates tubular damage and interstitial fibrosis by inducing the expression of genes related to cytoprotection against oxidative stress. Additionally, since the kidney performs multiple functions beyond blood purification, renoprotection by Nrf2 activation is anticipated to lead to various benefits. Indeed, our experiments indicated the possibility that Nrf2 activation mitigates anemia, which is caused by impaired production of the erythroid growth factor erythropoietin from injured kidneys, and moderates organ damage worsened by anemic hypoxia. Clinical trials investigating Nrf2-activating compounds in kidney disease patients are ongoing, and beneficial effects are being obtained. Thus, Nrf2 activators are expected to emerge as first-in-class innovative medicine for kidney disease treatment.
Collapse
Affiliation(s)
- Masahiro Nezu
- Department of Endocrinology and Diabetes, Yamanashi Prefectural Central Hospital, Fujimi 1-1-1, Kofu, Japan;
- Division of Oxygen Biology, United Centers for Advanced Research and Translational Medicine, Tohoku University Graduate School of Medicine, Seiryo-machi 2-1, Aoba-ku, Sendai, Japan
| | - Norio Suzuki
- Division of Oxygen Biology, United Centers for Advanced Research and Translational Medicine, Tohoku University Graduate School of Medicine, Seiryo-machi 2-1, Aoba-ku, Sendai, Japan
- Correspondence: ; Tel.: +81-22-717-8206
| |
Collapse
|
78
|
Gomelsky A, Abreo K, Khater N, Abreo A, Amin B, Craig MK, Prabhakar A, Cornett EM, Urman RD, Kaye AD. Perioperative acute kidney injury: Stratification and risk reduction strategies. Best Pract Res Clin Anaesthesiol 2020; 34:167-182. [PMID: 32711827 DOI: 10.1016/j.bpa.2020.04.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 04/07/2020] [Indexed: 12/29/2022]
Abstract
Perioperative acute kidney injury (AKI) is associated with increased morbidity and mortality. Patient comorbidities, the type of surgery, timing of surgery, and exposure to nephrotoxins are important contributors for developing acute kidney injury. Urgent or emergent surgery, cardiac, and organ transplantation procedures are associated with a higher risk of acute kidney injury. Nephrotoxic drugs, contrast dye, and diuretics can worsen preexisting kidney dysfunction or act as an additive and/or synergistic insult to perioperative injury. A history of preoperative chronic kidney disease is the main risk factor for developing AKI, conferring as much as a 10-fold risk. However, beyond the preoperative renal function, the development of AKI is a complex phenomenon that involves a combination of patient-related and surgery-related factors.
Collapse
Affiliation(s)
- Alexander Gomelsky
- Department of Urology, LSU Health Shreveport, 1501 Kings Highway, Shreveport, LA, 71103, USA.
| | - Kenneth Abreo
- Department of Urology, LSU Health Shreveport, 1501 Kings Highway, Shreveport, LA, 71103, USA; Department of Nephrology and Hypertension, LSU Health Shreveport, 1501 Kings Highway, Shreveport, LA, 71103, USA.
| | - Nazih Khater
- Department of Urology, LSU Health Shreveport, 1501 Kings Highway, Shreveport, LA, 71103, USA.
| | - Adrian Abreo
- Division of Nephrology, Clerkship Director, Internal Medicine Clerkship, Associate Program Director, Adrian AbreoA, 71103, USA.
| | - Bakhtiar Amin
- Department of Nephrology and Hypertension, LSU Health Shreveport, 1501 Kings Highway, Shreveport, LA, 71103, USA.
| | - Madelyn K Craig
- Department of Anesthesiology, LSU Health Science Center New Orleans, 1542 Tulane Avenue, New Orleans, LA, 70112, USA.
| | - Amit Prabhakar
- Department of Anesthesiology, Division of Critical Care, Emory University School of Medicine, Atlanta, GA, USA.
| | - Elyse M Cornett
- Department of Anesthesiology, LSU Health Shreveport, 1501 Kings Highway, Shreveport, LA, 71103, USA.
| | - Richard D Urman
- Department of Anesthesiology, Perioperative and Pain Medicine, Harvard Medical School, Brigham and Women's Hospital, 75 Francis St, Boston, MA, 02115, USA.
| | - Alan D Kaye
- Departments of Anesthesiology and Pharmacology, Toxicology, and Neurosciences; Provost, Chief Academic Officer, and Vice Chancellor of Academic Affairs, LSU Health Shreveport, 1501 Kings Highway, Shreveport, LA, 71103, USA.
| |
Collapse
|
79
|
Yao R, Hou W, Shen T, Zhao S, He X, Sun Y, Ma B, Wu G, Xia Z. The Impact of Blood Type O on Major Outcomes in Patients With Severe Burns. J Burn Care Res 2020; 41:1111-1117. [PMID: 32249907 DOI: 10.1093/jbcr/iraa059] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
ABO blood type has been reported to be a predictor of poor prognosis in critically ill patients. Here, we aim to correlate different blood types with clinical outcomes in patients with severe burns. We conducted a single-center retrospective cohort study by enrolling patients with severe burn injuries (≥40% TBSA) between January 2012 and December 2017. Baseline characteristics and clinical outcomes were compared between disparate ABO blood types (type O vs non-O type). Multivariate logistic and linear regression analyses were performed to identify an association between ABO blood type and clinical outcomes, including in-hospital mortality, the development of acute kidney injury (AKI), and hospital or ICU length of stay. A total of 141 patients were finally enrolled in the current study. Mortality was significantly higher in patients with type O blood compared with those of other blood types. The development of AKI was significantly higher in patients with blood type O vs non-O blood type (P = .001). Multivariate analysis demonstrated that blood type O was independently associated with in-hospital mortality and AKI occurrence after adjusting for other potential confounders. Our findings indicated the blood type O was an independent risk factor of both increased mortality and the development of AKI postburn. More prudent and specific treatments are required in treating these patients to avoid poor prognosis.
Collapse
Affiliation(s)
- Renqi Yao
- Department of Burn Surgery, Changhai Hospital, Navy Medical University, Shanghai, People's Republic of China.,Trauma Research Center, Fourth Medical Center of the Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Wenjia Hou
- Department of Burn Surgery, Changhai Hospital, Navy Medical University, Shanghai, People's Republic of China
| | - Tuo Shen
- Department of Burn Surgery, Changhai Hospital, Navy Medical University, Shanghai, People's Republic of China
| | - Shuo Zhao
- Department of Laboratory Diagnosis, Changhai Hospital, Navy Medical University, Shanghai, People's Republic of China
| | - Xingfeng He
- Department of Burn Surgery, Changhai Hospital, Navy Medical University, Shanghai, People's Republic of China
| | - Yu Sun
- Department of Burn Surgery, Changhai Hospital, Navy Medical University, Shanghai, People's Republic of China
| | - Bing Ma
- Department of Burn Surgery, Changhai Hospital, Navy Medical University, Shanghai, People's Republic of China
| | - Guosheng Wu
- Department of Burn Surgery, Changhai Hospital, Navy Medical University, Shanghai, People's Republic of China
| | - Zhaofan Xia
- Department of Burn Surgery, Changhai Hospital, Navy Medical University, Shanghai, People's Republic of China
| |
Collapse
|
80
|
Nespoux J, Patel R, Zhang H, Huang W, Freeman B, Sanders PW, Kim YC, Vallon V. Gene knockout of the Na +-glucose cotransporter SGLT2 in a murine model of acute kidney injury induced by ischemia-reperfusion. Am J Physiol Renal Physiol 2020; 318:F1100-F1112. [PMID: 32116018 DOI: 10.1152/ajprenal.00607.2019] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
In the early proximal tubule, Na+-glucose cotransporter 2 (SGLT2) mediates the bulk of renal glucose reabsorption. Gene deletion in mice (Sglt2-/-) was used to determine the role of SGLT2 in acute kidney injury induced by bilateral ischemia-reperfusion (IR). In Sglt2-/- and littermate wild-type mice, plasma creatinine increased similarly on day 1 after IR. This was associated with an equal increase in both genotypes in the urinary kidney injury molecule-1-to-creatinine ratio, a tubular injury marker, and similarly reduced urine osmolality and increased plasma osmolality, indicating impaired urine concentration. In both IR groups, FITC-sinistrin glomerular filtration rate was equally reduced on day 14, and plasma creatinine was similarly and incompletely restored on day 23. In Sglt2-/- mice subjected to IR, fractional urinary glucose excretion was increased on day 1 but reduced and associated with normal renal Na+-glucose cotransporter 1 (Sglt1) mRNA expression on day 23, suggesting temporary SGLT1 suppression. In wild-type mice subjected to IR, renal Sglt1 mRNA was likewise normal on day 23, whereas Sglt2 mRNA was reduced by 57%. In both genotypes, IR equally reduced urine osmolality and renal mRNA expression of the Na+-K+-2Cl- cotransporter and renin on day 23, suggesting thick ascending limb dysfunction, and similarly increased renal mRNA expression of markers of injury, inflammation, oxidative stress, and fibrosis (kidney injury molecule-1, neutrophil gelatinase-associated lipocalin, monocyte chemoattractant protein-1, transforming growth factor-β1, NADPH oxidase-2, and collagen type 1). This was associated with equal increases in kidney histological damage scores and similar degree of capillary loss in both genotypes. The data indicate that genetic deletion of SGLT2 did not protect the kidneys in the initial injury phase or the subsequent recovery phase in a mouse model of IR-induced acute kidney injury.
Collapse
Affiliation(s)
- Josselin Nespoux
- Department of Medicine, University of California, and Veterans Affairs San Diego Healthcare System , San Diego, California
| | - Rohit Patel
- Department of Medicine, University of California, and Veterans Affairs San Diego Healthcare System , San Diego, California
| | - Haiyan Zhang
- Department of Pathology, University of California, San Diego, California
| | - Winnie Huang
- Department of Medicine, University of California, and Veterans Affairs San Diego Healthcare System , San Diego, California
| | - Brent Freeman
- Department of Medicine, University of California, and Veterans Affairs San Diego Healthcare System , San Diego, California
| | - Paul W Sanders
- Departments of Medicine, Cell, and Developmental and Integrative Biology, University of Alabama at Birmingham, and Department of Veterans Affairs Medical Center, Birmingham, Alabama
| | - Young Chul Kim
- Department of Medicine, University of California, and Veterans Affairs San Diego Healthcare System , San Diego, California
| | - Volker Vallon
- Department of Medicine, University of California, and Veterans Affairs San Diego Healthcare System , San Diego, California.,Department of Pharmacology, University of California, San Diego, California
| |
Collapse
|
81
|
Characterization of cytotoxic effects of aristolochic acids on the vascular endothelium. Toxicol In Vitro 2020; 65:104811. [PMID: 32119997 DOI: 10.1016/j.tiv.2020.104811] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 02/09/2020] [Accepted: 02/23/2020] [Indexed: 02/08/2023]
Abstract
Aristolochic acid nephropathy (AAN) is characterized by interstitial fibrosis, proximal tubular atrophy, and hypoxia. A correlation between a reduced peritubular capillary density and the severity of fibrosis has been demonstrated. As calcium, redox and energetic homeostasis are crucial in maintaining endothelial cell function and survival, we aimed to investigate AA-induced disturbances involved in endothelial cell injury. Our results showed a cytotoxic effect of AA on EAhy926 endothelial cells. Exposure of aortic rings to AA impaired vascular relaxation to Acetylcholine (ACh). Increased levels of intracellular reactive oxygen species (ROS) were observed in cells exposed to AA. Pre-treatment with antioxidant N-acetyl cysteine inhibited AA-induced cell death. Superoxide dismutase resulted in restoring ACh-induced relaxation. An increase in intracellular calcium level ([Ca2+]i) was observed on endothelial cells. Calcium chelators BAPTA-AM or APB, a specific inhibitor of IP3R, improved cell viability. Moreover, AA exposure led to reduced AMP-activated protein kinase (AMPK) expression. AICAR, an activator of AMPK, improved the viability of AA-intoxicated cells and inhibited the rise of cytosolic [Ca2+]i levels. This study provides evidence that AA exposure increases ROS generation, disrupts calcium homeostasis and decreases AMPK activity. It also suggests that significant damage observed in endothelial cells may enhance microcirculation defects, worsening hypoxia and tubulointerstitial lesions.
Collapse
|
82
|
Gao L, Zhong X, Jin J, Li J, Meng XM. Potential targeted therapy and diagnosis based on novel insight into growth factors, receptors, and downstream effectors in acute kidney injury and acute kidney injury-chronic kidney disease progression. Signal Transduct Target Ther 2020; 5:9. [PMID: 32296020 PMCID: PMC7018831 DOI: 10.1038/s41392-020-0106-1] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 12/01/2019] [Accepted: 12/17/2019] [Indexed: 02/08/2023] Open
Abstract
Acute kidney injury (AKI) is defined as a rapid decline in renal function and is characterized by excessive renal inflammation and programmed death of resident cells. AKI shows high morbidity and mortality, and severe or repeated AKI can transition to chronic kidney disease (CKD) or even end-stage renal disease (ESRD); however, very few effective and specific therapies are available, except for supportive treatment. Growth factors, such as epidermal growth factor (EGF), insulin-like growth factor (IGF), and transforming growth factor-β (TGF-β), are significantly altered in AKI models and have been suggested to play critical roles in the repair process of AKI because of their roles in cell regeneration and renal repair. In recent years, a series of studies have shown evidence that growth factors, receptors, and downstream effectors may be highly involved in the mechanism of AKI and may function in the early stage of AKI in response to stimuli by regulating inflammation and programmed cell death. Moreover, certain growth factors or correlated proteins act as biomarkers for AKI due to their sensitivity and specificity. Furthermore, growth factors originating from mesenchymal stem cells (MSCs) via paracrine signaling or extracellular vesicles recruit leukocytes or repair intrinsic cells and may participate in AKI repair or the AKI-CKD transition. In addition, growth factor-modified MSCs show superior therapeutic potential compared to that of unmodified controls. In this review, we summarized the current therapeutic and diagnostic strategies targeting growth factors to treat AKI in clinical trials. We also evaluated the possibilities of other growth factor-correlated molecules as therapeutic targets in the treatment of AKI and the AKI-CKD transition.
Collapse
Affiliation(s)
- Li Gao
- The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, 230032, Hefei, China
| | - Xiang Zhong
- Department of Nephrology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, 610072, Chengdu, Sichuan, China
| | - Juan Jin
- Department of Pharmacology, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, 230032, Hefei, China
| | - Jun Li
- The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, 230032, Hefei, China
| | - Xiao-Ming Meng
- The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, 230032, Hefei, China.
| |
Collapse
|
83
|
TRPM7 mediates kidney injury, endothelial hyperpermeability and mortality during endotoxemia. J Transl Med 2020; 100:234-249. [PMID: 31444399 DOI: 10.1038/s41374-019-0304-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 06/24/2019] [Accepted: 07/19/2019] [Indexed: 12/17/2022] Open
Abstract
Sepsis is the main cause of mortality in patients admitted to intensive care units. During sepsis, endothelial permeability is severely augmented, contributing to renal dysfunction and patient mortality. Ca2+ influx and the subsequent increase in intracellular [Ca2+]i in endothelial cells (ECs) are key steps in the establishment of endothelial hyperpermeability. Transient receptor potential melastatin 7 (TRPM7) ion channels are permeable to Ca2+ and are expressed in a broad range of cell types and tissues, including ECs and kidneys. However, the role of TRPM7 on endothelial hyperpermeability during sepsis has remained elusive. Therefore, we investigated the participation of TRPM7 in renal vascular hyperpermeability, renal dysfunction, and enhanced mortality induced by endotoxemia. Our results showed that endotoxin increases endothelial hyperpermeability and Ca2+ overload through the TLR4/NOX-2/ROS/NF-κB pathway. Moreover, endotoxin exposure was shown to downregulate the expression of VE-cadherin, compromising monolayer integrity and enhancing vascular hyperpermeability. Notably, endotoxin-induced endothelial hyperpermeability was substantially inhibited by pharmacological inhibition and specific suppression of TRPM7 expression. The endotoxin was shown to upregulate the expression of TRPM7 via the TLR4/NOX-2/ROS/NF-κB pathway and induce a TRPM7-dependent EC Ca2+ overload. Remarkably, in vivo experiments performed in endotoxemic animals showed that pharmacological inhibition and specific suppression of TRPM7 expression inhibits renal vascular hyperpermeability, prevents kidney dysfunction, and improves survival in endotoxemic animals. Therefore, our results showed that TRPM7 mediates endotoxemia-induced endothelial hyperpermeability, renal dysfunction, and enhanced mortality, revealing a novel molecular target for treating renal vascular hyperpermeability and kidney dysfunction during endotoxemia, sepsis, and other inflammatory diseases.
Collapse
|
84
|
Zieschang S, Büttner S, Geiger H, Herrmann E, Hauser IA. Nonopportunistic Pneumonia After Kidney Transplant: Risk Factors Associated With Mortality. Transplant Proc 2020; 52:212-218. [DOI: 10.1016/j.transproceed.2019.11.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 10/16/2019] [Accepted: 11/10/2019] [Indexed: 01/18/2023]
|
85
|
Zhao L, Han F, Wang J, Chen J. Current understanding of the administration of mesenchymal stem cells in acute kidney injury to chronic kidney disease transition: a review with a focus on preclinical models. Stem Cell Res Ther 2019; 10:385. [PMID: 31843011 PMCID: PMC6916462 DOI: 10.1186/s13287-019-1507-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 11/03/2019] [Accepted: 11/22/2019] [Indexed: 12/11/2022] Open
Abstract
Incomplete recovery from acute kidney injury (AKI) can result in long-term functional deficits and has been recognized as a major contributor to chronic kidney disease (CKD), which is termed the AKI-CKD transition. Currently, an effective intervention for this disorder is still lacking. Principally, therapeutic strategies targeting the AKI-CKD transition can be divided into those reducing the severity of AKI or promoting the regenerative process towards beneficially adaptive repair pathways. Considering the fact that mesenchymal stem cells (MSCs) have the potential to address both aspects, therapeutic regimens based on MSCs have a promising future. In light of this information, we focus on the currently available evidence associated with MSC therapy involved in the treatment of the AKI-CKD transition and the underlying mechanisms. All of these discussions will contribute to the establishment of a reliable therapeutic strategy for patients with this problem, who can be easily ignored by physicians, and will lead to a better clinical outcome for them.
Collapse
Affiliation(s)
- Lingfei Zhao
- Kidney Disease Center, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China.,Key Laboratory of Kidney Disease Prevention and Control Technology, Zhejiang Province, Institute of Nephrology, Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China
| | - Fei Han
- Kidney Disease Center, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China.,Key Laboratory of Kidney Disease Prevention and Control Technology, Zhejiang Province, Institute of Nephrology, Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China
| | - Junni Wang
- Kidney Disease Center, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China.,Key Laboratory of Kidney Disease Prevention and Control Technology, Zhejiang Province, Institute of Nephrology, Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China
| | - Jianghua Chen
- Kidney Disease Center, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China. .,Key Laboratory of Kidney Disease Prevention and Control Technology, Zhejiang Province, Institute of Nephrology, Zhejiang University, Hangzhou, Zhejiang Province, People's Republic of China.
| |
Collapse
|
86
|
Isenberg JS, Roberts DD. The role of CD47 in pathogenesis and treatment of renal ischemia reperfusion injury. Pediatr Nephrol 2019; 34:2479-2494. [PMID: 30392076 PMCID: PMC6677644 DOI: 10.1007/s00467-018-4123-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 10/01/2018] [Accepted: 10/18/2018] [Indexed: 01/05/2023]
Abstract
Ischemia reperfusion (IR) injury is a process defined by the temporary loss of blood flow and tissue perfusion followed later by restoration of the same. Brief periods of IR can be tolerated with little permanent deficit, but sensitivity varies for different target cells and tissues. Ischemia reperfusion injuries have multiple causes including peripheral vascular disease and surgical interventions that disrupt soft tissue and organ perfusion as occurs in general and reconstructive surgery. Ischemia reperfusion injury is especially prominent in organ transplantation where substantial effort has been focused on protecting the transplanted organ from the consequences of IR. A number of factors mediate IR injury including the production of reactive oxygen species and inflammatory cell infiltration and activation. In the kidney, IR injury is a major cause of acute injury and secondary loss of renal function. Transplant-initiated renal IR is also a stimulus for innate and adaptive immune-mediated transplant dysfunction. The cell surface molecule CD47 negatively modulates cell and tissue responses to stress through limitation of specific homeostatic pathways and initiation of cell death pathways. Herein, a summary of the maladaptive activities of renal CD47 will be considered as well as the possible therapeutic benefit of interfering with CD47 to limit renal IR.
Collapse
Affiliation(s)
- Jeffrey S. Isenberg
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA
| | - David D. Roberts
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, Corresponding author: David D. Roberts, , 301-480-4368
| |
Collapse
|
87
|
Zhou Y, Liu S, Zhao M, Wang C, Li L, Yuan Y, Li L, Liao G, Bresette W, Zhang J, Chen Y, Cheng J, Lu Y, Liu J. Injectable extracellular vesicle-released self-assembling peptide nanofiber hydrogel as an enhanced cell-free therapy for tissue regeneration. J Control Release 2019; 316:93-104. [PMID: 31704110 DOI: 10.1016/j.jconrel.2019.11.003] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 10/30/2019] [Accepted: 11/01/2019] [Indexed: 02/05/2023]
Abstract
Mesenchymal stem cell-derived extracellular vesicles (MSC-EVs) have shown great potential for tissue repair, but their therapeutic capacity is limited by rapid clearance and short half-life. Herein, we purposed a hydrogel-based slow release strategy to enhance the therapeutic potency of EVs. A matrix metalloproteinase-2 (MMP2) sensitive self-assembling peptide (KMP2) hydrogel was used for the local delivery of MSC-EVs. The structure and controlled release properties of the KMP2 hydrogel were analyzed. The effects of the EV-loaded KMP2 hydrogel (KMP2-EVs) on cell apoptosis, inflammation and angiogenesis were evaluated in mice with renal ischemia-reperfusion (I/R) injury. In vitro, KMP2 formed a cross-linked nanofiber hydrogel to encapsulate MSC-EVs. KMP2 showed greater degradation and EV release in response to MMP2. The released EVs had similar structures and bioactivities as fresh, isolated EVs. In vivo, I/R mice treated with KMP2-EVs showed improved renal function by reducing tubular cell apoptosis, pro-inflammatory cytokine expression, and macrophage infiltration than mice receiving either EVs or KMP2. Moreover, KMP2-EVs showed better efficacy on promoting endothelial cell proliferation and angiogenesis than KMP2 or EVs alone, which subsequently decreased chronic renal fibrosis in I/R mice. This study highlighted that the EV-released KMP2 hydrogel is a promising cell-free therapy for tissue repair.
Collapse
Affiliation(s)
- Yijie Zhou
- Key Laboratory of Transplant Engineering and Immunology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Shuyun Liu
- Key Laboratory of Transplant Engineering and Immunology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Meng Zhao
- Key Laboratory of Transplant Engineering and Immunology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Chengshi Wang
- Key Laboratory of Transplant Engineering and Immunology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Ling Li
- Division of Nephrology, West China Hospital, Sichuan University, Chengdu, China
| | - Yujia Yuan
- Key Laboratory of Transplant Engineering and Immunology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Lan Li
- Key Laboratory of Transplant Engineering and Immunology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Guangneng Liao
- Animal Center, West China Hospital, Sichuan University, Chengdu, China
| | - William Bresette
- College of Health Solutions, Arizona State University, Scottsdale, AZ, USA
| | - Jie Zhang
- Key Laboratory of Transplant Engineering and Immunology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Younan Chen
- Key Laboratory of Transplant Engineering and Immunology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Jingqiu Cheng
- Key Laboratory of Transplant Engineering and Immunology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Yanrong Lu
- Key Laboratory of Transplant Engineering and Immunology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Jingping Liu
- Key Laboratory of Transplant Engineering and Immunology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
88
|
Dupre TV, Jenkins DP, Muise-Helmericks RC, Schnellmann RG. The 5-hydroxytryptamine receptor 1F stimulates mitochondrial biogenesis and angiogenesis in endothelial cells. Biochem Pharmacol 2019; 169:113644. [PMID: 31542386 PMCID: PMC7749638 DOI: 10.1016/j.bcp.2019.113644] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 09/17/2019] [Indexed: 12/19/2022]
Abstract
A hallmark of acute kidney injury (AKI) is vascular rarefication and mitochondrial dysfunction. Promoting vascular recovery following AKI could facilitate kidney repair as the vasculature is responsible for oxygen and nutrient delivery to extravascular tissues. Little is known about mitochondrial biogenesis (MB) in endothelial cells, and the role of 5-HT1F receptor signaling in MB has only been studied in epithelial cells. Our laboratory has shown that stimulating MB through the 5-HT1F receptor promotes recovery from AKI and that 5-HT1F receptor knockout mice have decreased MB and poor renal recovery. We hypothesized that the 5-HT1F receptor plays a role in vascular homeostasis and mediates MB in renal endothelial cells. 5-HT1F receptor knockout mice had decreased renal vascular content, as evidenced by decreased CD31+ endothelial cells and αSMA+ vessels. Human glomerular endothelial cells (HEC) and mouse glomerular endothelial cells (MEC) expressed the 5-HT1F receptor. Treatment of HEC and MEC with 5-HT1F receptor agonists LY344864 or lasmiditan (0-500 nM) induced MB as evidenced by maximal mitochondrial respiration, a marker of MB. HEC and MEC treated with lasmiditan or LY344864 also had increased nuclear- and mitochondrial-encoded proteins (PGC1α, COX-1, and VDAC), and mitochondrial number, confirming MB. Treatment of HEC with LY344864 or lasmiditan enhanced endothelial branching morphogenesis and migration, indicating a role for 5-HT1F receptor stimulation in angiogenic pathways. We propose that stimulation of 5-HT1F receptor is involved in MB in endothelial cells and that treatment with 5-HT1F receptor agonists could restore stimulate repair and recovery following kidney injury.
Collapse
Affiliation(s)
- Tess V Dupre
- Dept. of Pharmacology and Toxicology, University of Arizona, Tucson, AZ 85721, United States
| | - Dorea P Jenkins
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, United States
| | - Robin C Muise-Helmericks
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, United States
| | - Rick G Schnellmann
- Dept. of Pharmacology and Toxicology, University of Arizona, Tucson, AZ 85721, United States; Southern Arizona VA Health Care System, Tucson, AZ, United States.
| |
Collapse
|
89
|
Molecular Mechanisms of the Acute Kidney Injury to Chronic Kidney Disease Transition: An Updated View. Int J Mol Sci 2019; 20:ijms20194941. [PMID: 31590461 PMCID: PMC6801733 DOI: 10.3390/ijms20194941] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 10/03/2019] [Accepted: 10/04/2019] [Indexed: 02/08/2023] Open
Abstract
Increasing evidence has demonstrated the bidirectional link between acute kidney injury (AKI) and chronic kidney disease (CKD) such that, in the clinical setting, the new concept of a unified syndrome has been proposed. The pathophysiological reasons, along with the cellular and molecular mechanisms, behind the ability of a single, acute, apparently self-limiting event to drive chronic kidney disease progression are yet to be explained. This acute injury could promote progression to chronic disease through different pathways involving the endothelium, the inflammatory response and the development of fibrosis. The interplay among endothelial cells, macrophages and other immune cells, pericytes and fibroblasts often converge in the tubular epithelial cells that play a central role. Recent evidence has strengthened this concept by demonstrating that injured tubules respond to acute tubular necrosis through two main mechanisms: The polyploidization of tubular cells and the proliferation of a small population of self-renewing renal progenitors. This alternative pathophysiological interpretation could better characterize functional recovery after AKI.
Collapse
|
90
|
Sun X, Wei W, Ren J, Liang Y, Wang M, Gui Y, Xue X, Li J, Dai C. Inhibition of 4E-BP1 phosphorylation promotes tubular cell escaping from G2/M arrest and ameliorates kidney fibrosis. Cell Signal 2019; 62:109331. [DOI: 10.1016/j.cellsig.2019.05.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 05/29/2019] [Accepted: 05/29/2019] [Indexed: 01/17/2023]
|
91
|
Hoff U, Bubalo G, Fechner M, Blum M, Zhu Y, Pohlmann A, Hentschel J, Arakelyan K, Seeliger E, Flemming B, Gürgen D, Rothe M, Niendorf T, Manthati VL, Falck JR, Haase M, Schunck W, Dragun D. A synthetic epoxyeicosatrienoic acid analogue prevents the initiation of ischemic acute kidney injury. Acta Physiol (Oxf) 2019; 227:e13297. [PMID: 31077555 DOI: 10.1111/apha.13297] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 05/08/2019] [Accepted: 05/08/2019] [Indexed: 12/19/2022]
Abstract
AIM Imbalances in cytochrome P450 (CYP)-dependent eicosanoid formation may play a central role in ischemic acute kidney injury (AKI). We reported previously that inhibition of 20-hydroxyeicosatetraenoic acid (20-HETE) action ameliorated ischemia/reperfusion (I/R)-induced AKI in rats. Now we tested the hypothesis that enhancement of epoxyeicosatrienoic acid (EET) actions may counteract the detrimental effects of 20-HETE and prevent the initiation of AKI. METHODS Male Lewis rats underwent right nephrectomy and ischemia was induced by 45 min clamping of the left renal pedicle followed by up to 48 h of reperfusion. Circulating CYP-eicosanoid profiles were compared in patients who underwent cardiac surgery with (n = 21) and without (n = 38) developing postoperative AKI. RESULTS Ischemia induced an about eightfold increase of renal 20-HETE levels, whereas free EETs were not accumulated. To compensate for this imbalance, a synthetic 14,15-EET analogue was administered by intrarenal infusion before ischemia. The EET analogue improved renal reoxygenation as monitored by in vivo parametric MRI during the initial 2 h reperfusion phase. The EET analogue improved PI3K- as well as mTORC2-dependent rephosphorylation of Akt, induced inactivation of GSK-3β, reduced the development of tubular apoptosis and attenuated inflammatory cell infiltration. The EET analogue also significantly alleviated the I/R-induced drop in creatinine clearance. Patients developing postoperative AKI featured increased preoperative 20-HETE and 8,9-EET levels. CONCLUSIONS Pharmacological interventions targeting the CYP-eicosanoid pathway could offer promising new options for AKI prevention. Individual differences in CYP-eicosanoid formation may contribute to the risk of developing AKI in clinical settings.
Collapse
Affiliation(s)
- Uwe Hoff
- Nephrology and Intensive Care Medicine, Center for Cardiovascular Research Charité‐Universitätsmedizin Berlin Berlin Germany
| | - Gordana Bubalo
- Nephrology and Intensive Care Medicine, Center for Cardiovascular Research Charité‐Universitätsmedizin Berlin Berlin Germany
| | - Mandy Fechner
- Nephrology and Intensive Care Medicine, Center for Cardiovascular Research Charité‐Universitätsmedizin Berlin Berlin Germany
| | | | - Ye Zhu
- Nephrology and Intensive Care Medicine, Center for Cardiovascular Research Charité‐Universitätsmedizin Berlin Berlin Germany
- Department of Nephrology The Fifth Affiliated Hospital of Sun Yat‐sun University Zhuhai China
| | - Andreas Pohlmann
- Berlin Ultrahigh Field Facility (B.U.F.F.) Max Delbrueck Center for Molecular Medicine Berlin Germany
| | - Jan Hentschel
- Berlin Ultrahigh Field Facility (B.U.F.F.) Max Delbrueck Center for Molecular Medicine Berlin Germany
| | - Karen Arakelyan
- Berlin Ultrahigh Field Facility (B.U.F.F.) Max Delbrueck Center for Molecular Medicine Berlin Germany
- Center for Cardiovascular Research, Institute of Physiology Charité‐Universitätsmedizin Berlin Berlin Germany
| | - Erdmann Seeliger
- Center for Cardiovascular Research, Institute of Physiology Charité‐Universitätsmedizin Berlin Berlin Germany
| | - Bert Flemming
- Center for Cardiovascular Research, Institute of Physiology Charité‐Universitätsmedizin Berlin Berlin Germany
| | - Dennis Gürgen
- Nephrology and Intensive Care Medicine, Center for Cardiovascular Research Charité‐Universitätsmedizin Berlin Berlin Germany
| | | | - Thoralf Niendorf
- Max Delbrueck Center for Molecular Medicine Berlin Germany
- Berlin Ultrahigh Field Facility (B.U.F.F.) Max Delbrueck Center for Molecular Medicine Berlin Germany
| | | | - John R. Falck
- Biochemistry Department UT Southwestern Dallas Texas
| | - Michael Haase
- Medical Faculty Otto‐von‐Guericke University Magdeburg Germany
- Diaverum Deutschland Potsdam Germany
| | | | - Duska Dragun
- Nephrology and Intensive Care Medicine, Center for Cardiovascular Research Charité‐Universitätsmedizin Berlin Berlin Germany
| |
Collapse
|
92
|
Perry HM, Görldt N, Sung SSJ, Huang L, Rudnicka KP, Encarnacion IM, Bajwa A, Tanaka S, Poudel N, Yao J, Rosin DL, Schrader J, Okusa MD. Perivascular CD73 + cells attenuate inflammation and interstitial fibrosis in the kidney microenvironment. Am J Physiol Renal Physiol 2019; 317:F658-F669. [PMID: 31364375 PMCID: PMC6766625 DOI: 10.1152/ajprenal.00243.2019] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 07/15/2019] [Accepted: 07/16/2019] [Indexed: 02/07/2023] Open
Abstract
Progressive tubulointerstitial fibrosis may occur after acute kidney injury due to persistent inflammation. Purinergic signaling by 5'-ectonucleotidase, CD73, an enzyme that converts AMP to adenosine on the extracellular surface, can suppress inflammation. The role of CD73 in progressive kidney fibrosis has not been elucidated. We evaluated the effect of deletion of CD73 from kidney perivascular cells (including pericytes and/or fibroblasts of the Foxd1+ lineage) on fibrosis. Perivascular cell expression of CD73 was necessary to suppress inflammation and prevent kidney fibrosis in Foxd1CreCD73fl/fl mice evaluated 14 days after unilateral ischemia-reperfusion injury or folic acid treatment (250 mg/kg). Kidneys of Foxd1CreCD73fl/fl mice had greater collagen deposition, expression of proinflammatory markers (including various macrophage markers), and platelet-derived growth factor recepetor-β immunoreactivity than CD73fl/fl mice. Kidney dysfunction and fibrosis were rescued by administration of soluble CD73 or by macrophage deletion. Isolated CD73-/- kidney pericytes displayed an activated phenotype (increased proliferation and α-smooth muscle actin mRNA expression) compared with wild-type controls. In conclusion, CD73 in perivascular cells may act to suppress myofibroblast transformation and influence macrophages to promote a wound healing response. These results suggest that the purinergic signaling pathway in the kidney interstitial microenvironment orchestrates perivascular cells and macrophages to suppress inflammation and prevent progressive fibrosis.
Collapse
MESH Headings
- 5'-Nucleotidase/deficiency
- 5'-Nucleotidase/genetics
- 5'-Nucleotidase/metabolism
- Actins/metabolism
- Animals
- Cell Proliferation
- Cells, Cultured
- Cellular Microenvironment
- Collagen/metabolism
- Disease Models, Animal
- Fibroblasts/metabolism
- Fibroblasts/pathology
- Fibrosis
- Forkhead Transcription Factors/genetics
- Forkhead Transcription Factors/metabolism
- GPI-Linked Proteins/deficiency
- GPI-Linked Proteins/genetics
- GPI-Linked Proteins/metabolism
- Inflammation Mediators/metabolism
- Kidney/immunology
- Kidney/metabolism
- Kidney/pathology
- Macrophages/metabolism
- Macrophages/pathology
- Male
- Mice, 129 Strain
- Mice, Inbred C57BL
- Mice, Knockout
- Nephritis, Interstitial/genetics
- Nephritis, Interstitial/immunology
- Nephritis, Interstitial/metabolism
- Nephritis, Interstitial/pathology
- Pericytes/metabolism
- Pericytes/pathology
- Receptor, Platelet-Derived Growth Factor beta/metabolism
- Reperfusion Injury/genetics
- Reperfusion Injury/immunology
- Reperfusion Injury/metabolism
- Reperfusion Injury/pathology
- Signal Transduction
- Wound Healing
Collapse
Affiliation(s)
- Heather M Perry
- Division of Nephrology and Center for Immunity, Inflammation and Regenerative Medicine, University of Virginia, Charlottesville, Virginia
| | - Nicole Görldt
- Division of Nephrology and Center for Immunity, Inflammation and Regenerative Medicine, University of Virginia, Charlottesville, Virginia
- Institute of Molecular Cardiology, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Sun-Sang J Sung
- Division of Nephrology and Center for Immunity, Inflammation and Regenerative Medicine, University of Virginia, Charlottesville, Virginia
| | - Liping Huang
- Division of Nephrology and Center for Immunity, Inflammation and Regenerative Medicine, University of Virginia, Charlottesville, Virginia
| | - Kinga P Rudnicka
- Division of Nephrology and Center for Immunity, Inflammation and Regenerative Medicine, University of Virginia, Charlottesville, Virginia
| | - Iain M Encarnacion
- Division of Nephrology and Center for Immunity, Inflammation and Regenerative Medicine, University of Virginia, Charlottesville, Virginia
| | - Amandeep Bajwa
- Division of Nephrology and Center for Immunity, Inflammation and Regenerative Medicine, University of Virginia, Charlottesville, Virginia
| | - Shinji Tanaka
- Division of Nephrology and Center for Immunity, Inflammation and Regenerative Medicine, University of Virginia, Charlottesville, Virginia
| | - Nabin Poudel
- Division of Nephrology and Center for Immunity, Inflammation and Regenerative Medicine, University of Virginia, Charlottesville, Virginia
| | - Junlan Yao
- Division of Nephrology and Center for Immunity, Inflammation and Regenerative Medicine, University of Virginia, Charlottesville, Virginia
| | - Diane L Rosin
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia
| | - Jürgen Schrader
- Institute of Molecular Cardiology, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Mark D Okusa
- Division of Nephrology and Center for Immunity, Inflammation and Regenerative Medicine, University of Virginia, Charlottesville, Virginia
| |
Collapse
|
93
|
Perico N, Askenazi D, Cortinovis M, Remuzzi G. Maternal and environmental risk factors for neonatal AKI and its long-term consequences. Nat Rev Nephrol 2019; 14:688-703. [PMID: 30224767 DOI: 10.1038/s41581-018-0054-y] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Acute kidney injury (AKI) is a common and life-threatening complication in critically ill neonates. Gestational risk factors for AKI include premature birth, intrauterine growth restriction and low birthweight, which are associated with poor nephron development and are often the consequence of pre-gestational and gestational factors, such as poor nutritional status. Our understanding of how to best optimize renal development and prevent AKI is in its infancy; however, the identification of pre-gestational and gestational factors that increase the risk of adverse neonatal outcomes and the implementation of interventions, such as improving nutritional status early in pregnancy, have the potential to optimize fetal growth and reduce the risk of preterm birth, thereby improving kidney health. The overall risk of AKI among critically ill and premature neonates is exacerbated postnatally as these infants are often exposed to dehydration, septic shock and potentially nephrotoxic medications. Strategies to improve outcomes - for example, through careful evaluation of nephrotoxic drugs - may reduce the incidence of AKI and its consequences among this population. Management strategies and updated technology that will support neonates with AKI are greatly needed. Extremely premature infants and those who survive an episode of AKI should be screened for chronic kidney disease until early adulthood. Here, we provide an overview of our current understanding of neonatal AKI, focusing on its relationship to preterm birth and growth restriction. We describe factors that prevent optimal nephrogenesis during pregnancy and provide a framework for future explorations designed to maximize outcomes in this vulnerable population.
Collapse
Affiliation(s)
- Norberto Perico
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - David Askenazi
- Pediatric and Infant Center for Acute Nephrology, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Monica Cortinovis
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Giuseppe Remuzzi
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy. .,Unit of Nephrology and Dialysis, Azienda Socio Sanitaria Territoriale Papa Giovanni XXIII, Bergamo, Italy. .,L. Sacco Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy.
| |
Collapse
|
94
|
Abstract
Acute kidney injury (AKI), a major public health problem associated with high mortality and increased risk of progression towards end-stage renal disease, is characterized by the activation of intra-renal haemostatic and inflammatory processes. Platelets, which are present in high numbers in the circulation and can rapidly release a broad spectrum of bioactive mediators, are important acute modulators of inflammation and haemostasis, as they are the first cells to arrive at sites of acute injury, where they interact with endothelial cells and leukocytes. Diminished control of platelet reactivity by endothelial cells and/or an increased release of platelet-activating mediators can lead to uncontrolled platelet activation in AKI. As increased platelet sequestration and increased expression levels of the markers P-selectin, thromboxane A2, CC-chemokine ligand 5 and platelet factor 4 on platelets have been reported in kidneys following AKI, platelet activation likely plays a part in AKI pathology. Results from animal models and some clinical studies highlight the potential of antiplatelet therapies in the preservation of renal function in the context of AKI, but as current strategies also affect other cell types and non-platelet-derived mediators, additional studies are required to further elucidate the extent of platelet contribution to the pathology of AKI and to determine the best therapeutic approach by which to specifically target related pathogenic pathways.
Collapse
Affiliation(s)
- Marcel P B Jansen
- Department of Pathology, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Sandrine Florquin
- Department of Pathology, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Joris J T H Roelofs
- Department of Pathology, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands.
| |
Collapse
|
95
|
Silver SA, Gerarduzzi C. Found in Translation: Reasons for Optimism in the Pursuit to Prevent Chronic Kidney Disease After Acute Kidney Injury. Can J Kidney Health Dis 2019; 6:2054358119868740. [PMID: 31452903 PMCID: PMC6698989 DOI: 10.1177/2054358119868740] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 06/21/2019] [Indexed: 12/14/2022] Open
Abstract
Purpose of review: The current review will discuss on the progress of studying the transition
phase between acute kidney injury (AKI) and chronic kidney disease (CKD)
through improved animal models, common AKI and CKD pathways, and how human
studies may inform different translational approaches. Sources of information: PubMed and Google Scholar. Methods: A narrative review was performed using the main terms “acute kidney injury,”
“chronic kidney disease,” “end-stage renal disease,” “animal models,”
“review,” “decision-making,” and “translational research.” Key findings: The last decade has shown much progress in the study of AKI, including
evidence of a pathophysiological link between AKI and CKD. We are now in a
phase of redesigning animal models and discovering mechanisms that can
replicate the pathological conditions of the AKI-to-CKD continuum.
Translating these findings into the clinic is a barrier that must be
overcome. To this end, current efforts include prediction of AKI onset and
maladaptive repair, detecting patients susceptible to the progression of
chronic maladaptive repair, and understanding shared signaling mechanisms
between AKI and CKD. Limitations: This is a narrative review of the literature that is partially influenced by
the knowledge, perspectives, and experiences of the authors and their
research background. Implications: Overall, this new knowledge from the AKI-to-CKD continuum will help bridge
the discontinuity that exists between animal models and patients, resulting
in more effective translational biomarkers and therapeutics to test in known
AKI pathologies thereby preventing the chronicity of kidney injury
progression.
Collapse
Affiliation(s)
- Samuel A. Silver
- Division of Nephrology, Kingston Health
Sciences Center, Queen’s University, Kingston, ON, Canada
| | - Casimiro Gerarduzzi
- Division de Néphrologie, Centre de
recherche de l’Hôpital Maisonneuve-Rosemont, Montréal, Québec, Canada
- Département de Médecine, Faculté de
Médecine, Université de Montréal, Montréal, Québec, Canada
- Casimiro Gerarduzzi, Division de
Néphrologie, Centre de recherche de l’Hôpital Maisonneuve-Rosemont, 5345,
boulevard de l’Assomption, Montreal, QC H1T 2M4, Canada.
| |
Collapse
|
96
|
Wang C, Zhang B, Wang H, Kong H, Gao F, Wang X, Yang M, Zhang J. A feasibility study of using noninvasive renal oxygenation imaging for the early assessment of ischemic acute kidney injury in an embolization model. Magn Reson Imaging 2019; 63:178-184. [PMID: 31425814 DOI: 10.1016/j.mri.2019.08.027] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 06/18/2019] [Accepted: 08/15/2019] [Indexed: 12/15/2022]
Abstract
PURPOSE To investigate the feasibility of using MRI based oxygenation imaging for early assessment of ischemic acute kidney injury (AKI) in an embolization model. METHODS Ischemic AKI model was induced in 40 rabbits by injection of microspheres into the right renal arteries. Animals were grouped according to the dose of microspheres: Severe AKI group, 2.0 mg (N = 10); Moderate AKI group, 1.0 mg (N = 10); Mild AKI group, 0.5 mg (N = 10); Control group, saline without microspheres (N = 10). A serial MRI examination was performed at intervals of 1 h, 1 day, 1 week and 4 weeks to evaluate the deterioration of renal function. A multi-echo ASE sequence was implemented for renal oxygenation measurement 1 h after surgery. Pathological examinations were performed 4 weeks after the surgery. RESULTS In renal cortex, renal oxygen extraction fraction (OEF) raised significantly after embolization procedures in all experimental groups (severe AKI: 0.39 ± 0.05, P < 0.05; moderate AKI: 0.36 ± 0.03, P < 0.05; mild AKI: 0.34 ± 0.02, P < 0.05) compared to the control group (0.29 ± 0.02). In outer medulla, significant difference was observed between control group (0.29 ± 0.03) and severe AKI group (0.35 ± 0.03, P < 0.05), and between control group and moderate AKI group (0.34 ± 0.04, P < 0.05). Corresponding lesions were found in pathological examinations 4 weeks after the procedure. CONCLUSION This study demonstrates the feasibility of using oxygenation imaging to assess the embolization induced ischemic AKI at an early stage.
Collapse
Affiliation(s)
- Chengyan Wang
- Human Phenome Institute, Fudan University, Shanghai, China; Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Bihui Zhang
- Department of Interventional Radiology and Vascular Surgery, Peking University First Hospital, Beijing, China
| | - Haochen Wang
- Department of Interventional Radiology, Beijing Friendship Hospital, Beijing, China
| | - Hanjing Kong
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Fei Gao
- College of Engineering, Peking University, Beijing, China
| | - Xiaoying Wang
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China; Department of Radiology, Peking University First Hospital, Beijing, China
| | - Min Yang
- Department of Interventional Radiology and Vascular Surgery, Peking University First Hospital, Beijing, China.
| | - Jue Zhang
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China; College of Engineering, Peking University, Beijing, China.
| |
Collapse
|
97
|
Cell-free MicroRNA miR-505-3p in Graft Preservation Fluid Is an Independent Predictor of Delayed Graft Function After Kidney Transplantation. Transplantation 2019; 103:329-335. [PMID: 30444806 DOI: 10.1097/tp.0000000000002527] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Delayed graft function (DGF), a common complication after transplantation of deceased donor kidneys, affects both short- and long-term outcomes. Currently available biomarkers during graft preservation lack sensitivity in predicting risk for DGF. The aim of this study is to identify cell-free micro ribonucleic acid (miRNA) biomarkers in graft preservation fluid predictive of DGF after kidney transplantation. METHODS Vascular bed preservation fluid was collected from 48 kidney grafts from donation after circulatory death (DCD) or donation after brain death (DBD) donors. miRNA profiles were determined by polymerase chain reaction (PCR) array (n = 8) and validated by reverse transcription and quantitative PCR (n = 40). Graft function posttransplantation was defined as immediate good function (IF) or DGF. RESULTS A total of 223 miRNAs fulfilled the preset parameters (Ct < 40 in 3 or more samples) and were included in the analysis. Thirty-two miRNAs were significantly different between DGF and IF kidney grafts (P < 0.05) but, after correction for multiple testing, only miR-505-3p remained significant. The significant association of high miR-505-3p levels with DGF was confirmed in an independent validation cohort using conventional reverse transcription and quantitative PCR detection. Multivariate analyses showed miR-505-3p as an independent predictor for DGF (odds ratio, 1.12; P = 0.028). If stratified for donor type, miR-505-3p levels remained significantly different between IF and DGF in DCD grafts (P < 0.01), but not in DBD grafts. Receiver operating characteristic curve analysis showed a high sensitivity and specificity (area under the curve, 0.833). CONCLUSIONS In DCD grafts, high levels of miR-505-3p in preservation fluid are associated with increased risk of DGF after kidney transplantation. Further study is required to confirm the utility of cell-free miR-505-3p as prognostic biomarker for DGF.
Collapse
|
98
|
Liu Y, Yang B, Zhao X, Xi M, Yin Z. E-Selectin-Binding Peptide-Modified Bovine Serum Albumin Nanoparticles for the Treatment of Acute Lung Injury. AAPS PharmSciTech 2019; 20:270. [PMID: 31363872 DOI: 10.1208/s12249-019-1403-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 04/23/2019] [Indexed: 01/11/2023] Open
Abstract
Currently, there is no specific treatment for acute lung injury (ALI). E-selectin-binding peptide (Esbp), a high-affinity peptide that delivers drugs targeting inflammatory vascular endothelial cells, can bind to E-selectin and act as a targeting ligand for selective drug delivery. In this study, we coupled the thiol groups of Esbp to the amino groups on the surface of bovine serum albumin (BSA) using succinimidyl iodoacetic acid to make Esbp-modified BSA nanoparticles (BSANPs) at the average ratio of 19.3 μg Esbp to 1 mg BSA. The Esbp-modified BSANPs were spherical in shape and had a particle size of 266.7 ± 2.7 nm, polydispersity index of 0.165 ± 0.02, zeta potential of - 33.64 ± 1.23 mV, encapsulation efficiency of 84.3 ± 2.3%, and drug loading of 6.7 ± 0.32%. The cumulative release rate of dexamethasone-loaded Esbp-modified BSANPs was 51.2% within 12 h, significantly lower than that of 88.2% of free drugs. Moreover, Esbp-modified BSANPs could be uptaken in vitro by activated human umbilical vein endothelial cells and in vivo by the lungs of the established ALI mouse model. These results indicated that our Esbp-modified BSANPs delivery system has characteristics of good targeting ability and biocompatibility and is able to inhibit inflammation. Overall, our Esbp-modified BSANPs delivery system has therapeutic potentials as a new targeting drug system for the treatment of ALI in the future.
Collapse
|
99
|
Neferine inhibits LPS-ATP-induced endothelial cell pyroptosis via regulation of ROS/NLRP3/Caspase-1 signaling pathway. Inflamm Res 2019; 68:727-738. [PMID: 31172209 DOI: 10.1007/s00011-019-01256-6] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 05/14/2019] [Accepted: 05/29/2019] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Oxidative stress-induced endothelial dysfunction and pyroptosis play an important role during chronic kidney disease (CKD) progression. Neferine, which is an alkaloid ingredient from the lotus seed embryo, has many biological actions such as anti-inflammatory, anticancer and antioxidant. However, the role of neferine in endothelial cell pyroptosis and the involved mechanism remain obscure. The aim is to probe the protective effects of neferine on cell pyroptosis and the involved underlying mechanism. METHODS After the HUVECs were primed with neferine treatment for 2 h prior to LPS and ATP exposure for 24 h, the cell proliferation was determined by BrdU; the cell LDH release was detected by LDH kits; the levels of intracellular ROS, MDA and SOD were tested by detection kits; Caspase-1 activity kit was used to determine caspase-1 activity; the contents of NLRP3, ASC, caspase-1, IL-1β, IL-18 and GSDMD were tested by RT-PCR and western blot. RESULTS We found that neferine could inhibit LPS-ATP-induced oxidative stress and the activation of NLRP3 inflammasome signaling, and increased the endothelial cell viability and SOD production. siRNA which mediated the knockdown of NLRP3 promoted the neferine-induced inhibition effects of cell pyroptosis. Furthermore, these neferine-induced effects were reversed by the over-expression of NLRP3. CONCLUSIONS Our findings indicated neferine may reduce ROS by anti-oxidation and inhibit LPS-ATP-induced endothelial cell pyroptosis via blocking ROS/NLRP3/Caspase-1 signaling pathway, which provides the evidence for therapeutic effect in CKD.
Collapse
|
100
|
Situmorang GR, Sheerin NS. Ischaemia reperfusion injury: mechanisms of progression to chronic graft dysfunction. Pediatr Nephrol 2019; 34:951-963. [PMID: 29603016 PMCID: PMC6477994 DOI: 10.1007/s00467-018-3940-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 02/18/2018] [Accepted: 03/02/2018] [Indexed: 12/18/2022]
Abstract
The increasing use of extended criteria organs to meet the demand for kidney transplantation raises an important question of how the severity of early ischaemic injury influences long-term outcomes. Significant acute ischaemic kidney injury is associated with delayed graft function, increased immune-associated events and, ultimately, earlier deterioration of graft function. A comprehensive understanding of immediate molecular events that ensue post-ischaemia and their potential long-term consequences are key to the discovery of novel therapeutic targets. Acute ischaemic injury primarily affects tubular structure and function. Depending on the severity and persistence of the insult, this may resolve completely, leading to restoration of normal function, or be sustained, resulting in persistent renal impairment and progressive functional loss. Long-term effects of acute renal ischaemia are mediated by several mechanisms including hypoxia, HIF-1 activation, endothelial dysfunction leading to vascular rarefaction, sustained pro-inflammatory stimuli involving innate and adaptive immune responses, failure of tubular cells to recover and epigenetic changes. This review describes the biological relevance and interaction of these mechanisms based on currently available evidence.
Collapse
Affiliation(s)
- Gerhard R Situmorang
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
- Urology Department, Faculty of Medicine Universitas Indonesia - Cipto Mangunkusumo Hospital, Jakarta, 10430, Indonesia
| | - Neil S Sheerin
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK.
| |
Collapse
|