51
|
Clarke P, Tyler KL. Down-regulation of cFLIP following reovirus infection sensitizes human ovarian cancer cells to TRAIL-induced apoptosis. Apoptosis 2007; 12:211-23. [PMID: 17136319 PMCID: PMC2365758 DOI: 10.1007/s10495-006-0528-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Tumor necrosis factor-related apoptosis inducing ligand (TRAIL) shows promise as a chemotherapeutic agent. However, many human cancer cells are resistant to killing by TRAIL. We have previously demonstrated that reovirus infection increases the susceptibility of human lung (H157) and breast (ZR75-1) cancer cell lines to TRAIL-induced apoptosis. We now show that reovirus also increases the susceptibility of human ovarian cancer cell lines (OVCAR3, PA-1 and SKOV-3) to TRAIL-induced apoptosis. Reovirus-induced increases in susceptibility of OVCAR3 cells to TRAIL require virus uncoating and involve increased activation of caspases 3 and 8. Reovirus infection results in the down-regulation of cFLIP (cellular FLICE inhibitory protein) in OVCAR3 cells. Down-regulation of cFLIP following treatment of OVCAR3 cells with antisense cFLIP oligonucleotides or PI3 kinase inhibition also increases the susceptibility of OVCAR3 cells to TRAIL-induced apoptosis. Finally, over-expression of cFLIP blocks reovirus-induced sensitization of OVCAR3 cells to TRAIL-induced apoptosis. The combination of reovirus and TRAIL thus represents a promising new therapeutic approach for the treatment of ovarian cancer.
Collapse
Affiliation(s)
- Penny Clarke
- Department of Neurology, University of Colorado Health Sciences Center, 4200 East 9th Avenue, Box B182, Denver, Colorado 80262, USA.
| | | |
Collapse
|
52
|
Tazzari PL, Tabellini G, Bortul R, Papa V, Evangelisti C, Grafone T, Martinelli G, McCubrey JA, Martelli AM. The insulin-like growth factor-I receptor kinase inhibitor NVP-AEW541 induces apoptosis in acute myeloid leukemia cells exhibiting autocrine insulin-like growth factor-I secretion. Leukemia 2007; 21:886-96. [PMID: 17361225 DOI: 10.1038/sj.leu.2404643] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Insulin-like growth factor-I (IGF-I) and its receptor (IGF-IR) have been implicated in the pathophysiology of many human cancers, including those of hematopoietic lineage. We investigated the therapeutic potential of the novel IGF-IR tyrosine kinase activity inhibitor, NVP-AEW541, on human acute myeloid leukemia (AML) cells. NVP-AEW541 was tested on a HL60 cell subclone, which is dependent on autocrine secretion of IGF-I for survival and drug resistance, as well as primary drug resistant leukemia cells. NVP-AEW541 treatment (24 h) induced dephosphorylation of IGF-IR. NVP-AEW541 also caused Akt dephosphorylation and changes in the expression of key regulatory proteins of the cell cycle. At longer incubation times (48 h), NVP-AEW541-induced apoptotic cell death, as demonstrated by caspase-3 cleavage. Apoptosis was accompanied by decreased expression of anti-apoptotic proteins. NVP-AEW541 enhanced sensitivity of HL60 cells to either cytarabine or etoposide. Moreover, NVP-AEW541 reduced the clonogenic capacity of AML CD34(+) cells cultured in the presence of IGF-I. Chemoresistant AML blasts displayed enhanced IGF-I secretion, and were sensitized to etoposide-induced apoptosis by NVP-AEW541. Our findings indicate that NVP-AEW541 might be a promising therapeutic agent for the treatment of those AML cases characterized by IGF-I autocrine secretion.
Collapse
Affiliation(s)
- P L Tazzari
- Servizio di Immunoematologia e Trasfusionale, Policlinico S.Orsola-Malpighi, Bologna, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
53
|
Sloand EM, Pfannes L, Chen G, Shah S, Solomou EE, Barrett J, Young NS. CD34 cells from patients with trisomy 8 myelodysplastic syndrome (MDS) express early apoptotic markers but avoid programmed cell death by up-regulation of antiapoptotic proteins. Blood 2006; 109:2399-405. [PMID: 17090657 PMCID: PMC1852203 DOI: 10.1182/blood-2006-01-030643] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
CD34 cells from patients with trisomy 8 myelodysplastic syndrome (MDS) are distinguished from other MDS cells and from normal hematopoietic cells by their pronounced expression of apoptotic markers. Paradoxically, trisomy 8 clones can persist in patients with bone marrow failure and expand following immunosuppression. We previously demonstrated up-regulation of c-myc and CD1 by microarray analysis. Here, we confirmed these findings by real-time polymerase chain reaction (PCR), demonstrated up-regulation of survivin, c-myc, and CD1 protein expression, and documented comparable colony formation by annexin(+) trisomy 8(-) CD34(+) and annexin(-) CD34 cells. There were low levels of DNA degradation in annexin(+) trisomy 8 CD34 cells, which were comparable with annexin(-) CD34 cells. Trisomy 8 cells were resistant to apoptosis induced by gamma irradiation. Knock-down of survivin by siRNA resulted in preferential loss of trisomy 8 cells. These results suggest that trisomy 8 cells undergo incomplete apoptosis and are nonetheless capable of colony formation and growth.
Collapse
Affiliation(s)
- Elaine M Sloand
- National Heart Lung and Blood Institute, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | |
Collapse
|
54
|
Martelli AM, Nyåkern M, Tabellini G, Bortul R, Tazzari PL, Evangelisti C, Cocco L. Phosphoinositide 3-kinase/Akt signaling pathway and its therapeutical implications for human acute myeloid leukemia. Leukemia 2006; 20:911-28. [PMID: 16642045 DOI: 10.1038/sj.leu.2404245] [Citation(s) in RCA: 262] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The phosphoinositide 3-kinase (PI3K)/Akt signaling pathway is crucial to many aspects of cell growth, survival and apoptosis, and its constitutive activation has been implicated in the both the pathogenesis and the progression of a wide variety of neoplasias. Hence, this pathway is an attractive target for the development of novel anticancer strategies. Recent studies showed that PI3K/Akt signaling is frequently activated in acute myeloid leukemia (AML) patient blasts and strongly contributes to proliferation, survival and drug resistance of these cells. Upregulation of the PI3K/Akt network in AML may be due to several reasons, including FLT3, Ras or c-Kit mutations. Small molecules designed to selectively target key components of this signal transduction cascade induce apoptosis and/or markedly increase conventional drug sensitivity of AML blasts in vitro. Thus, inhibitory molecules are currently being developed for clinical use either as single agents or in combination with conventional therapies. However, the PI3K/Akt pathway is important for many physiological cellular functions and, in particular, for insulin signaling, so that its blockade in vivo might cause severe systemic side effects. In this review, we summarize the existing knowledge about PI3K/Akt signaling in AML cells and we examine the rationale for targeting this fundamental signal transduction network by means of selective pharmacological inhibitors.
Collapse
Affiliation(s)
- A M Martelli
- Cell Signalling Laboratory, Dipartimento di Scienze Anatomiche Umane e Fisiopatologia dell'Apparato Locomotore, Sezione di Anatomia Umana, Università di Bologna, Bologna, Italy.
| | | | | | | | | | | | | |
Collapse
|
55
|
Cheng J, Hylander BL, Baer MR, Chen X, Repasky EA. Multiple mechanisms underlie resistance of leukemia cells to Apo2 Ligand/TRAIL. Mol Cancer Ther 2006; 5:1844-53. [PMID: 16891471 DOI: 10.1158/1535-7163.mct-06-0050] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Targeting death receptors with tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) has the remarkable potential to selectively kill malignant cells whereas normal cells are largely unaffected by this treatment. However, some tumor cells, including leukemia cells, exhibit resistance to this molecule. To investigate the basis for resistance of leukemia cells to the zinc-bound form of Apo2 ligand (Apo2L)/TRAIL, which is currently being evaluated in clinical trial, we isolated several resistant HL60 clones from parental HL60 cells by selection using the recombinant Apo2L/TRAIL. Differing resistance mechanisms were identified and characterized in these Apo2L/TRAIL-resistant clones. In one case, the level of the cell-surface death receptor DR4, but not DR5, was significantly decreased. However, these cells did undergo apoptosis in response to another form of recombinant TRAIL, histidine-tagged TRAIL, suggesting differing contributions of DR4 and DR5 in the response to these two forms of TRAIL. In the case of other clones, expression of procaspase-8 protein was lost and this was associated with a novel Leu(22)-->Phe(22) point mutation in CASP-8 gene. These results show that cells within a given tumor can have widely distinct mechanisms underlying resistance to Apo2L/TRAIL.
Collapse
Affiliation(s)
- Jinrong Cheng
- Department of Immunology, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263, USA
| | | | | | | | | |
Collapse
|
56
|
Nagy K, Székely-Szüts K, Izeradjene K, Douglas L, Tillman M, Barti-Juhász H, Dominici M, Spano C, Luca Cervo G, Conte P, Houghton JA, Mihalik R, Kopper L, Peták I. Proteasome inhibitors sensitize colon carcinoma cells to TRAIL-induced apoptosis via enhanced release of smac/DIABLO from the mitochondria. Pathol Oncol Res 2006; 12:133-42. [PMID: 16998592 DOI: 10.1007/bf02893359] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2006] [Accepted: 09/08/2006] [Indexed: 02/02/2023]
Abstract
The synergistic interaction between proteasome inhibitors and tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) is a promising approach to induce cell death in tumor cells. However, the molecular and biochemical mechanisms of this synergism have been proven to be cell type specific. We therefore focused our investigation on TRAIL-resistant colon carcinoma cells in this study. DNA fragmentation, mitochondrial membrane depolarization and increased caspase-3-like enzyme activity was exclusively induced only by combined treatment with proteasome inhibitors (epoxomicin, MG132, bortezomib/PS-341) and TRAIL. The expression level of anti-apoptotic proteins (XIAP, survivin, Bcl-2, Bcl-XL), regulated by NF-kappaB transcription factor, was not effected by any of these treatments. TRAIL alone induced only partial activation of caspase-3 (p20), while the combination of TRAIL and proteasome inhibition led to the full proteolytic activation of caspase-3 (p17). Only the combination treatment induced marked membrane depolarization and the release of cytochrome c, HtrA2/Omi and Smac/DIABLO. Apoptosis-inducing factor (AIF) was not released in any of these conditions. These results are consistent with a model where the full activation of caspase-3 by caspase-8 is dependent on the release of Smac/DIABLO in response to the combined treatment. This molecular mechanism, independent of the inhibition NF-kappaB activity, may provide rationale for the combination treatment of colon carcinomas with proteasome inhibitors and recombinant TRAIL or agonistic antibody of TRAIL receptors.
Collapse
Affiliation(s)
- Katalin Nagy
- Ist Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
57
|
Hughes PJ, Zhao Y, Chandraratna RA, Brown G. Retinoid-mediated stimulation of steroid sulfatase activity in myeloid leukemic cell lines requires RARalpha and RXR and involves the phosphoinositide 3-kinase and ERK-MAP kinase pathways. J Cell Biochem 2006; 97:327-50. [PMID: 16178010 DOI: 10.1002/jcb.20579] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
All-trans retinoic acid and 9-cis-retinoic acid stimulate the activity of steroid sulfatase in HL60 acute myeloid leukemia cells in a concentration- and time-dependent manner. Neither of these 'natural retinoids' augmented steroid sulfatase activity in a HL60 sub-line that expresses a dominant-negative retinoic acid receptor alpha (RARalpha). Experiments with synthetic RAR and RXR agonists and antagonists suggest that RARalpha/RXR heterodimers play a role in the retinoid-stimulated increase in steroid sulfatase activity. The retinoid-driven increase in steroid sulfatase activity was attenuated by inhibition of phospholipase D (PLD), but not by inhibitors of phospholipase C. Experiments with inhibitors of protein kinase C (PKC) show that PKCalpha and PKCdelta play an important role in modulating the retinoid-stimulation of steroid sulfatase activity in HL60 cells. Furthermore, we show that pharmacological inhibition of the RAF-1 and ERK MAP kinases blocked the retinoid-stimulated increase in steroid sulfatase activity in HL60 cells and, by contrast, inhibition of the p38-MAP kinase or JNK-MAP kinase had no effect. Pharmacological inhibitors of the phosphatidylinositol 3-kinase, Akt, and PDK-1 also abrogated the retinoid-stimulated increase in steroid sulfatase activity in HL60 cells. These results show that crosstalk between the retinoid-stimulated genomic and non-genomic pathways is necessary to increase steroid sulfatase activity in HL60 cells.
Collapse
Affiliation(s)
- Philip J Hughes
- Division of Immunity and Infection, The Medical School, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom.
| | | | | | | |
Collapse
|
58
|
Efron PA, Chen MK, Iyengar M, Dai W, Nagaram A, Beierle EA. Differential response of neuroblastoma cells to TRAIL is independent of PI3K/AKT. J Pediatr Surg 2006; 41:1072-80. [PMID: 16769337 DOI: 10.1016/j.jpedsurg.2006.02.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
BACKGROUND In many human tumor cells, tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) induces apoptosis through caspase activation, whereas activation of the phosphatidylinositol 3-kinase (PI3K)/Akt pathway prevents apoptosis. We hypothesized that inhibition of PI3K/Akt would increase TRAIL-induced apoptosis in neuroblastoma cells. METHODS SK-N-AS, SH-SY5Y, and IMR-32 neuroblastoma cells were cultured with either standard media or media with PI3K/Akt inhibitor for 24 hours. These cells were then exposed to 100 ng/mL of TRAIL for 90 minutes and harvested. Cells either underwent flow cytometric analysis of apoptosis, had protein extracted for Western blot, had RNA extracted for reverse transcription-polymerase chain reaction, or had cell lysates analyzed for caspase-3, -8, and -9. RESULTS Baseline expression of TRAIL receptors and Akt varied among the cell lines. Inhibition of PI3K/Akt decreased caspase-3 activation in the AS and SY cells, but did not alter TRAIL-induced apoptosis in any of the cell lines. Activity of caspase-8 and -9 was also unaffected by PI3K/Akt attenuation. CONCLUSIONS Inhibition of the PI3K/Akt pathway does not increase the sensitivity of neuroblastoma cell lines to TRAIL-induced apoptosis. Neuroblastoma is unique in that activation of the PI3K/Akt pathway is either not essential to its TRAIL resistance or counteracted because of the multiple repetitive pathways of TRAIL resistance.
Collapse
Affiliation(s)
- Philip A Efron
- Division of Pediatric Surgery, Department of Surgery, University of Florida College of Medicine, Box 100286, JHMHSC, Gainesville, FL 32610-0286, USA
| | | | | | | | | | | |
Collapse
|
59
|
Szegezdi E, Cahill S, Meyer M, O'Dwyer M, Samali A. TRAIL sensitisation by arsenic trioxide is caspase-8 dependent and involves modulation of death receptor components and Akt. Br J Cancer 2006; 94:398-406. [PMID: 16434995 PMCID: PMC2361137 DOI: 10.1038/sj.bjc.6602954] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The majority of leukaemic cells are resistant to apoptosis induced by tumour necrosis factor-related apoptosis-inducing ligand (TRAIL). Here, we show that sublethal concentrations of arsenic trioxide (ATO) specifically enhanced TRAIL-induced apoptosis in leukaemic but not in other tumour cell lines. The combination of ATO and TRAIL synergistically enhanced cleavage of caspase-8, which was blocked by the caspase inhibitor IETD.fmk as well as in cells deficient for caspase-8, suggesting a requirement for the death-inducing signalling complex. Arsenic trioxide led to increased cell surface expression of DR5 (death receptor 5), inhibition of the serine/threonine kinase Akt and downregulation of the short isoform of FLIP (FLICE-inhibitory protein, FLIPS). Inhibition of the phosphatidylinositol 3 kinase (PI3K) was equally efficient in sensitising leukaemic cells to TRAIL with similar effects on DR5 and FLIPS expression, suggesting that ATO may in part act through inhibition of the PI3K/Akt signalling pathway. These results indicate that the enhancement in TRAIL-mediated apoptosis induced by ATO is due to alteration in the levels of multiple components and regulators of the death receptor-mediated pathway. These findings offer a promising and novel strategy involving a combination of TRAIL and ATO, or more specific Akt inhibitors in the treatment of various haematopoietic malignancies.
Collapse
Affiliation(s)
- E Szegezdi
- Department of Biochemistry, National University of Ireland,University Road, Galway, Ireland
- The National Centre for Biomedical Engineering Science, National University of Ireland, University Road, Galway, Ireland
| | - S Cahill
- Department of Biochemistry, National University of Ireland,University Road, Galway, Ireland
- The National Centre for Biomedical Engineering Science, National University of Ireland, University Road, Galway, Ireland
| | - M Meyer
- Department of Biochemistry, National University of Ireland,University Road, Galway, Ireland
- The National Centre for Biomedical Engineering Science, National University of Ireland, University Road, Galway, Ireland
| | - M O'Dwyer
- Department of Haematology, University College Hospital Galway, Newcastle Road, Galway, Ireland
| | - A Samali
- Department of Biochemistry, National University of Ireland,University Road, Galway, Ireland
- The National Centre for Biomedical Engineering Science, National University of Ireland, University Road, Galway, Ireland
- Department of Biochemistry, National University of Ireland,University Road, Galway, Ireland. E-mail:
| |
Collapse
|
60
|
Nyåkern M, Tazzari PL, Finelli C, Bosi C, Follo MY, Grafone T, Piccaluga PP, Martinelli G, Cocco L, Martelli AM. Frequent elevation of Akt kinase phosphorylation in blood marrow and peripheral blood mononuclear cells from high-risk myelodysplastic syndrome patients. Leukemia 2006; 20:230-8. [PMID: 16341040 DOI: 10.1038/sj.leu.2404057] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The serine/threonine kinase Akt, a downstream effector of phosphatidylinositol 3-kinase (PI3K), is known to play an important role in antiapoptotic signaling and has been implicated in the aggressiveness of a number of different human cancers including acute myeloid leukemia (AML). The progression of myelodysplastic syndromes (MDSs) to AML is thought to be associated with abrogation of apoptotic control mechanisms. However, little is known about signal transduction pathways which may be involved in enhanced survival of MDS cells. In this report, we have performed immunocytochemical and flow cytometric analysis to evaluate the levels of activated Akt in bone marrow or peripheral blood mononuclear cells from patients diagnosed with MDS. We observed high levels of Ser473 phosphorylated Akt (p-Akt) staining in 90% of the cases (n=22) diagnosed as high-risk MDS, whereas mononuclear cells from normal bone marrow or low-risk MDS patients showed low or absent Ser473 p-Akt staining. Furthermore, all high-risk MDS patients also demonstrated high expression of the Class I PI3K p110delta catalytic subunit and a decreased expression of PTEN. Taken together, our results suggest that Akt activation might be one of the factors contributing to the decreased apoptosis rate observed in patients with high-risk MDS.
Collapse
Affiliation(s)
- M Nyåkern
- Dipartimento di Scienze Anatomiche Umane e Fisiopatologia dell'Apparato Locomotore, Sezione di Anatomia, Cell Signalling Laboratory, Università di Bologna, Bologna, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
61
|
Voelkel-Johnson C, Hannun YA, El-Zawahry A. Resistance to TRAIL is associated with defects in ceramide signaling that can be overcome by exogenous C6-ceramide without requiring down-regulation of cellular FLICE inhibitory protein. Mol Cancer Ther 2006; 4:1320-7. [PMID: 16170023 DOI: 10.1158/1535-7163.mct-05-0086] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a member of the tumor necrosis factor superfamily that selectively induces apoptosis in malignant cells. However, not all cancer cells are susceptible to TRAIL and mechanisms of resistance and new strategies to enhance sensitivity are an area of intense investigation. Glucose withdrawal or paclitaxel increase intracellular ceramide, down-regulate cellular FLICE inhibitory protein (cFLIP), and sensitize cells to TRAIL. Therefore, we investigated whether TRAIL resistance is due to ceramide levels and/or defects in ceramide generation following ligand binding. Colon cancer cells isolated from the primary tumor (SW480) and a subsequent metastasis (SW620) of the same patient have different sensitivities to TRAIL. Mass spectrometry was used to compare ceramide content in untreated and TRAIL-treated cells. Overall levels of ceramide were comparable in the cell lines but TRAIL-sensitive SW480 cells contained a higher percentage of C(16)-, and C(18)-ceramide and lower C(24)-ceramides than TRAIL-resistant SW620 cells. Upon TRAIL treatment, ceramide (primarily C(16)-ceramide) increased in SW480 but not SW620 cells. The increase in ceramide occurred with slow kinetics, paralleling caspase-3/7 activation. Combination of C(6)-ceramide with TRAIL resulted in apoptosis of SW620 cells. However, exogenous C(6)-ceramide did not affect levels of cFLIP nor did pretreatment sensitize cells to TRAIL. Exposure to TRAIL prior to ceramide was required to induce apoptosis, suggesting that ceramide plays a role in enhancing or amplifying TRAIL-mediated signaling. Our results suggest that ceramide plays a role in promoting TRAIL-mediated apoptosis and that TRAIL-resistant cancers may benefit from combination therapy with ceramide or agents that enhance ceramide accumulation.
Collapse
Affiliation(s)
- Christina Voelkel-Johnson
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, 29403, USA.
| | | | | |
Collapse
|
62
|
Poh TW, Pervaiz S. LY294002 and LY303511 sensitize tumor cells to drug-induced apoptosis via intracellular hydrogen peroxide production independent of the phosphoinositide 3-kinase-Akt pathway. Cancer Res 2005; 65:6264-74. [PMID: 16024628 DOI: 10.1158/0008-5472.can-05-0152] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The phosphoinositide 3-kinase (PI3K)-Akt pathway is constitutively active in many tumors, and inhibitors of this prosurvival network, such as LY294002, have been shown to sensitize tumor cells to death stimuli. Here, we report a novel, PI3K-independent mechanism of LY-mediated sensitization of LNCaP prostate carcinoma cells to drug-induced apoptosis. Preincubation of tumor cells to LY294002 or its inactive analogue LY303511 resulted in a significant increase in intracellular hydrogen peroxide (H2O2) production and enhanced sensitivity to non-apoptotic concentrations of the chemotherapeutic agent vincristine. The critical role of intracellular H2O2 in LY-induced death sensitization is corroborated by transient transfection of cells with a vector containing human catalase gene. Indeed, overexpression of catalase significantly blocked the amplifying effect of LY pretreatment on caspase-2 and caspase-3 activation and cell death triggered by vincristine. Furthermore, the inability of wortmannin, another inhibitor of PI3K, to induce an increase in H2O2 production at doses that effectively blocked Akt phosphorylation provides strong evidence to unlink inhibition of PI3K from intracellular H2O2 production. These data strongly support death-sensitizing effect of LY compounds independent of the PI3K pathway and underscore the critical role of H2O2 in creating a permissive intracellular milieu for efficient drug-induced execution of tumor cells.
Collapse
Affiliation(s)
- Tze Wei Poh
- Department of Physiology, National University Medical Institute, Faculty of Medicine, National University of Singapore, Singapore, Singapore
| | | |
Collapse
|
63
|
Drees BE, Mills GB, Rommel C, Prestwich GD. Therapeutic potential of phosphoinositide 3-kinase inhibitors. Expert Opin Ther Pat 2005. [DOI: 10.1517/13543776.14.5.703] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
64
|
Zauli G, Sancilio S, Cataldi A, Sabatini N, Bosco D, Di Pietro R. PI-3K/Akt and NF-kappaB/IkappaBalpha pathways are activated in Jurkat T cells in response to TRAIL treatment. J Cell Physiol 2005; 202:900-11. [PMID: 15389633 DOI: 10.1002/jcp.20202] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The aim of this work was to evaluate the involvement of survival pathways in the response of Jurkat T leukaemic cells sensitive to the cytotoxic action of tumour necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL)/Apo2L. Jurkat T cells express TRAIL-R2/DR5 and TRAIL-R4/DcR2 receptors and start to die by apoptosis early (3 h) upon TRAIL administration reaching a dose-dependent increase in the percentage of dead cells within 48 h (up to 85-90%). This increase in cell death is accompanied by a dose-dependent significant (P < 0.05) increase in the G0/G1 phase of the cell cycle and reverted by the treatment with a broad inhibitor of caspases, z-VAD-fmk. Co-treatment of the cells with inhibitors of PI-3 kinase (LY294002) and nuclear factor kappa B (NF-kappaB) (SN50) pathways leads to an earlier significantly increased cytotoxicity, respectively in the form of apoptosis and necrosis. Consistently with the data obtained with the pharmacological inhibitors, the activation and nuclear translocation of both PI-3K and NF-kappaB were observed. In summary, our results provide evidence that even in sensitive neoplastic cells TRAIL paradoxically activates pro-survival pathways, which protect against TRAIL-mediated death since their inhibition leads to an earlier and increased cytotoxicity.
Collapse
Affiliation(s)
- Giorgio Zauli
- Dipartimento di Morfologia Umana Normale, Università di Trieste, Via Manzoni, Trieste, Italy
| | | | | | | | | | | |
Collapse
|
65
|
Cho YL, Lee KS, Lee SJ, Namkoong S, Kim YM, Lee H, Ha KS, Han JA, Kwon YG, Kim YM. Amiloride potentiates TRAIL-induced tumor cell apoptosis by intracellular acidification-dependent Akt inactivation. Biochem Biophys Res Commun 2005; 326:752-8. [PMID: 15607733 DOI: 10.1016/j.bbrc.2004.11.109] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2004] [Indexed: 01/26/2023]
Abstract
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), a member of the tumor necrosis factor gene family, is considered as one of the most promising cancer therapeutic agents due to its ability to selectively induce tumor cell apoptosis. In this study, we investigated whether the Na(+)/H(+) exchanger inhibitor, amiloride, promotes TRAIL-induced apoptotic death both in sensitive and resistant tumor cells, HeLa and LNCaP cells, respectively, and its underlying molecular mechanism. Amiloride enhanced TRAIL-induced apoptosis and activation of caspase-3 and -8 in both cells. This compound increased TRAIL-induced mitochondrial cytochrome c release and poly(ADP-ribose) polymerase cleavage. Moreover, amiloride-induced intracellular acidification, and inhibited the phosphorylated activation of the serine/threonine kinase Akt, which is known to promote cell survival, in both tumor cells. These data suggest that amiloride sensitizes both tumor cells to TRAIL-induced apoptosis by promoting Akt dephosphorylation and caspase-8 activation via the intracellular acidification and that Na(+)/H(+) exchanger inhibitors may play an important role in the anti-cancer activity of TRAIL, especially, in TRAIL-resistant tumors with highly active and expressed Akt.
Collapse
Affiliation(s)
- Young-Lai Cho
- Vascular System Research Center, Kangwon National University, Chunchon, Kangwon-do, Republic of Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
66
|
Tabellini G, Cappellini A, Tazzari PL, Falà F, Billi AM, Manzoli L, Cocco L, Martelli AM. Phosphoinositide 3-kinase/Akt involvement in arsenic trioxide resistance of human leukemia cells. J Cell Physiol 2005; 202:623-34. [PMID: 15316930 DOI: 10.1002/jcp.20153] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The purpose of this study was to evaluate the possible involvement of the phosphoinositide 3-kinase (PI3K)/Akt survival pathway in determining resistance to arsenic trioxide (As2O3)-induced apoptosis. We employed a HL60 cell clone (HL60AR) with a constitutively active PI3K/Akt survival pathway, as well as U937 and K562 cells. In addition, we used parental (PT) HL60 cells overexpressing a constitutively active Akt. Selective pharmacological inhibitors of the PI3K/Akt axis (LY294002, wortmannin) were employed to influence the sensitivity to As2O3. While HL60PT cells were sensitive to 2.5 microM As2O3 and died of apoptosis, HL60AR cells were resistant up to 5 microM As2O3. Treatment with either LY294002 or wortmannin lowered resistance of HL60AR cells to As2O3. Also in U937 and K562 cells, inhibitors of the PI3K/Akt axis caused a decrease in As2O3 resistance. Overexpression of constitutively active Akt in HL60PT cells caused the induction of resistance to 2.5 microM As2O3. Conversely, forced expression of a dominant negative Akt in HL60AR cells resulted in a decrease in As2O3 resistance. Moreover, HL60 cell resistance to 2.5 microM As2O3 could be significantly reduced by incubation with SN50, a peptide inhibitor selective for the NF-kappaB transcription factor. Taken together our findings suggest that a constitutive activation of the PI3K/Akt pathway, which is increasingly detected in some types of acute myeloid leukemia, may contribute to As2O3 resistance, most likely through NF-kappaB activation. Selective pharmacological inhibitors of this survival pathway, as well as of NF-kappaB, might be usefully employed in the future to reverse resistance to this treatment.
Collapse
Affiliation(s)
- Giovanna Tabellini
- Dipartimento di Scienze Anatomiche Umane e Fisiopatologia dell'Apparato Locomotore, Sezione di Anatomia, Cell Signalling Laboratory, Università di Bologna, Italy
| | | | | | | | | | | | | | | |
Collapse
|
67
|
Di Pietro R, Zauli G. Emerging non-apoptotic functions of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)/Apo2L. J Cell Physiol 2004; 201:331-40. [PMID: 15389537 DOI: 10.1002/jcp.20099] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Tumor necrosis factor (TNF) is a cytokine that mediates tumor necrosis. To date, 20 different members of the TNF super-family and 21 different receptors have been identified. All ligands of the TNF super-family have been found to activate transcription factor NF-kappa B and c-Jun kinase. Members of this family have diverse biological effects, including induction of apoptosis, promotion of cell survival, and regulation of the immune system and hematopoiesis. The current review focuses on the biological effects of TNF-related apoptosis-inducing ligand (TRAIL), a TNF super-family member which, a few years ago, generated considerable enthusiasm for its anticancer activity, not accompanied by general toxicity in most normal tissues and organs.
Collapse
Affiliation(s)
- Roberta Di Pietro
- Dipartimento di Biomorfologia, Università G. d'Annunzio, Via dei Vestini, Chieti Scalo, Italy.
| | | |
Collapse
|
68
|
Tamagiku Y, Sonoda Y, Kunisawa M, Ichikawa D, Murakami Y, Aizu-Yokota E, Kasahara T. Down-regulation of procaspase-8 expression by focal adhesion kinase protects HL-60 cells from TRAIL-induced apoptosis. Biochem Biophys Res Commun 2004; 323:445-52. [PMID: 15369772 DOI: 10.1016/j.bbrc.2004.08.115] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2004] [Indexed: 11/16/2022]
Abstract
We have demonstrated that focal adhesion kinase (FAK)-overexpressed (HL-60/FAK) cells have marked resistance against various apoptotic stimuli such as hydrogen peroxide, etoposide, and ionizing radiation compared with the vector-transfected (HL-60/Vect) cells. HL-60/FAK cells are highly resistant to TRAIL-induced apoptosis, while original HL-60 or HL-60/Vect cells were sensitive. TRAIL at 500 ng/ml induced significant DNA fragmentation, activation of caspase-8 and 3, the processing of a proapoptotic BID, and mitochondrial release of cytochrome c in HL-60/Vect cells, whereas no such events were observed in the HL-60/FAK cells. In particular, the expression of procaspase-8 gene and subsequent cleavage of caspase-8 were markedly reduced in HL-60/FAK cells, while expression of TRAIL-receptor 2 and 3, TRADD, and FADD was equivalent in both types of cells. In HL-60/FAK cells, the phosphoinositide 3 (PI3)-kinase/Akt survival pathway was constitutively activated, accompanied by significant induction of inhibitor-of-apoptosis proteins, XIAP, RIP, and Bcl-XL. The introduction of FAK siRNA in HL-60/FAK cells sensitized them against TRAIL-induced apoptosis, confirming that overexpressed FAK downregulates procaspase-8 expression, which subsequently inhibits downstream apoptosis pathway in the HL-60/FAK cells.
Collapse
Affiliation(s)
- Yuji Tamagiku
- Department of Biochemistry, Kyoritsu University of Pharmacy, Shibakoen 1-5-30, Minato-ku, Tokyo 105-8512, Japan
| | | | | | | | | | | | | |
Collapse
|
69
|
Tabellini G, Tazzari PL, Bortul R, Billi AM, Conte R, Manzoli L, Cocco L, Martelli AM. Novel 2′-substituted, 3′-deoxy-phosphatidyl-myo-inositol analogues reduce drug resistance in human leukaemia cell lines with an activated phosphoinositide 3-kinase/Akt pathway. Br J Haematol 2004; 126:574-82. [PMID: 15287952 DOI: 10.1111/j.1365-2141.2004.05073.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Activation of the phosphoinositide 3-kinase (PI3-K)/Akt signalling pathway has been linked with resistance to chemotherapeutic drugs, and its down-regulation, by means of pharmacological inhibitors of PI3-K, considerably lowers resistance to various types of therapy in cell lines derived from solid tumours. Recently, a new class of Akt inhibitors, referred to as phosphatidylinositol ether lipids (PIAs), have been synthesized. We tested whether two new PIAs could lower the sensitivity threshold to chemotherapeutic drugs of human leukaemia cell lines with an activated PI3-K/Akt network. We used HL60AR (for apoptosis resistant), K562 and U937 cells. The two pharmacological inhibitors, used at 5 micromol/l, down-regulated Akt kinase activity and phosphorylation. Neither of the two chemicals affected the activity of other signalling proteins in the Akt pathway, such as phosphoinositide-dependent protein kinase-1 or PTEN. When employed at 5 micromol/l, the Akt inhibitors markedly reduced the resistance of the leukaemic cell lines to etoposide or cytarabine. Remarkably, a 5 micromol/l concentration of the inhibitors did not negatively affect the survival rate of human cord blood CD34(+) cells. Overall, our results indicate that new selective Akt pharmacological inhibitors might be used in the future for overcoming Akt-mediated resistance to therapeutic treatments of acute leukaemia cells.
Collapse
Affiliation(s)
- Giovanna Tabellini
- Dipartimento di Scienze Anatomiche Umane e Fisiopatologia dell'Apparato Locomotore, Sezione di Anatomia, Cell Signaling Laboratory, Università di Bologna, Bologna, Italy
| | | | | | | | | | | | | | | |
Collapse
|
70
|
Ruiz de Almodóvar C, López-Rivas A, Redondo JM, Rodríguez A. Transcriptional regulation of the TRAIL-R3 gene. VITAMINS AND HORMONES 2004; 67:51-63. [PMID: 15110171 DOI: 10.1016/s0083-6729(04)67004-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
TRAIL-R3 is a decoy receptor for TRAIL (tumor necrosis factor-related apoptosis-inducing ligand), a member of the tumor necrosis factor (TNF) ligand family. TRAIL induces apoptosis in a broad range of cancer cell lines, but not in many normal cells-a finding that generated extraordinary excitement about its potential as a specific antitumor agent. In several cell types, decoy receptors inhibit TRAIL-induced apoptosis by binding to it and preventing its binding to TRAIL proapoptotic or death receptors. However, recently published data regarding the role of these receptors in TRAIL-induced cellular death are contradictory. The key to resolving this controversy may lie in the regulation and cellular localization of TRAIL receptors. In this regard, cloning and analysis of the TRAIL-R3 promoter will help to identify the cellular factors that regulate its transcriptional expression. This chapter summarizes current knowledge in this field and outlines directions for future research.
Collapse
Affiliation(s)
- Carmen Ruiz de Almodóvar
- Department of Cellular Biology and Immunology Instituto de Parasitología y Biomedicina Consejo Superior de Investigaciones Cientificas Granada E-18001, Spain
| | | | | | | |
Collapse
|
71
|
Whang YE, Yuan XJ, Liu Y, Majumder S, Lewis TD. Regulation of sensitivity to TRAIL by the PTEN tumor suppressor. VITAMINS AND HORMONES 2004; 67:409-26. [PMID: 15110188 DOI: 10.1016/s0083-6729(04)67021-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The ability of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) to induce apoptosis preferentially in cancer cells is attractive for its development as a novel cancer therapeutic agent, but many cancer cell lines are resistant to TRAIL. While the molecular basis for TRAIL resistance is not always clear, a number of factors have been proposed to mediate TRAIL resistance, including decoy receptor, c-FLIP, nuclear factor (NF)-kappaB, and activation of antiapoptotic kinase signaling. Many growth factor receptors mediate their survival signals through the pathway involving recruitment and activation of phosphatidylinositol (PI) 3-kinase and the serine?threonine kinase Akt. The PTEN tumor suppressor is a phosphatase that dephosphorylates the phospholipids phosphorylated by PI-3 kinase, thereby opposing the action of PI 3-kinase, and acts as the primary negative regulator of the PI-3 kinase?Akt pathway in the cell. Loss of PTEN function occurs frequently in human tumors and leads to constitutive activation of Akt in cancer cells. Constitutively active Akt protects cells from TRAIL-induced apoptosis in multiple tumor types. Growth factors such as epidermal growth factor or insulin-like growth factor-1 also inhibit TRAIL-induced apoptosis through the Akt pathway. Akt exerts its antiapoptotic function by its ability to phosphorylate many key components of the cellular apoptotic regulatory circuit, such as BAD, MDM2, FOXO Forkhead transcription factors, and PED?PEA-15 as well as by its role in activating NF-kappaB. Because PTEN loss is common in tumors, strategies to inactivate Akt may be necessary to overcome TRAIL resistance and make TRAIL-based therapy more effective.
Collapse
Affiliation(s)
- Young E Whang
- Lineberger Comprehensive Cancer Center, Department of Medicine and Pathology and Laboratory Medicine, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599-7295, USA
| | | | | | | | | |
Collapse
|
72
|
Abstract
Encouragingly, some types of cancer can now be considered treatable, with patients reasonably expecting their disease to be cured. Chemotherapy and radiation therapy are effective against these cancers because they activate the so-called intrinsic apoptosis pathways within the cancer cells. Unfortunately currently available treatments are only effective against a subset of tumor types. In contrast, other cancers, such as malignant glioma, typically do not respond to currently available therapies. Some of this resistance can be attributed to these tumor cells failing to undergo apoptosis upon anticancer treatment. Recently, considerable research attention has focused on triggering apoptosis in chemotherapy- and radiation-therapy-resistant cancer cells via an alternative route-the "extrinsic" pathway, as a means of bypassing this block in apoptosis. Binding of members of the tumor necrosis factor-alpha (TNF-alpha) family of death ligands to their receptors on the cell surface triggers this pathway. Death ligands can kill some cancer cells that are resistant to the apoptotic pathway triggered by conventional anticancer treatments. Some death ligands, such as TNF-alpha and FasL, cause unacceptable toxicity to normal cells and are therefore not suitable anticancer agents. However another death ligand, TNF-related apoptosis-inducing ligand (TRAIL)/Apo-2L, and antibodies that emulate its actions, show greater promise as candidate anticancer drugs because they have negligible effects on normal cells. This review will discuss the ability of TRAIL to induce apoptosis in malignant glioma cells and the potential clinical applications of TRAIL-based agents for glioma treatment.
Collapse
Affiliation(s)
- Christine J Hawkins
- Murdoch Children's Research Institute Department of Haematology and Oncology, Royal Children's Hospital Department of Paediatrics, University of Melbourne Parkville, Victoria 3052, Australia
| |
Collapse
|
73
|
Abstract
Death ligands (such as Fas/CD95 ligand and TRAIL?Apo2L) and death receptors (such as Fas/CD95, TRAIL-R1?DR4, and TRAIL-R2/DR5) are involved in immune-mediated neutralization of activated or autoreactive lymphocytes, virus-infected cells, and tumor cells. Consequently, dysregulation of death receptor-dependent apoptotic signaling pathways has been implicated in the development of autoimmune diseases, immunodeficiency, and cancer. Moreover, the death ligand TRAIL has gained considerable interest as a potential anticancer agent, given its ability to induce apoptosis of tumor cells without affecting most types of untransformed cells. The FLICE-inhibitory protein (FLIP) potently blocks TRAIL-mediated cell death by interfering with caspase-8 activation. Pharmacologic down-regulation of FLIP might serve as a therapeutic means to sensitize tumor cells to apoptosis induction by TRAIL.
Collapse
Affiliation(s)
- Wilfried Roth
- The Burnham Institute, La Jolla, California 92037, USA
| | | |
Collapse
|
74
|
Suh WS, Kim YS, Schimmer AD, Kitada S, Minden M, Andreeff M, Suh N, Sporn M, Reed JC. Synthetic triterpenoids activate a pathway for apoptosis in AML cells involving downregulation of FLIP and sensitization to TRAIL. Leukemia 2003; 17:2122-9. [PMID: 12931220 DOI: 10.1038/sj.leu.2403112] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Acute myelogenous leukemia (AML) remains a deadly disease for most adult patients, due primarily to the emergence of chemoresistant cells. Defects in apoptosis pathways make important contributions to chemoresistance, suggesting a need to restore apoptosis sensitivity or to identify alternative pathways for apoptosis induction. Triterpenoids represent a class of naturally occurring and synthetic compounds with demonstrated antitumor activity, including 2-cyano-3,12-dioxoolean-1,9-dien-28-oic acid (CDDO) and its methyl ester (CDDO-m). We explored the effects of CDDO and CDDO-m in vitro on established AML cell lines (HL-60, U937, AML-2) and on freshly isolated AML blasts. CDDO and CDDO-m reduced the viability of all AML cell lines tested in a dose-dependent manner, with effective doses for killing 50% of cells (ED(50)) within 48 h of approximately 1 and 0.5 muM, respectively. CDDO or CDDO-m also induced substantial increases in cell death in five out of 10 samples of primary AML blasts. Cell death induced by CDDO and CDDO-m was attributed to apoptosis, based on characteristic cell morphology and evidence of caspase activation. Immunoblot analysis demonstrated proteolytic processing of caspase-3, -7, and -8, but not caspase-9, suggesting the involvement of the 'extrinsic' pathway, linked to apoptosis induction by TNF-family death receptors. Accordingly, CDDO and CDDO-m induced concentration-dependent reductions in the levels of FLIP protein, an endogenous antagonist of caspase-8, without altering the levels of several other apoptosis-relevant proteins. Reductions in FLIP were rapid, detectable within 3 h after exposure of AML cell lines to CDDO or CDDO-m. CDDO and CDDO-m also sensitized two of four leukemia lines to TRAIL, a TNF-family death ligand. The findings suggest that synthetic triterpenoids warrant further investigation in the treatment of AML, alone or in combination with TRAIL or other immune-based therapies.
Collapse
Affiliation(s)
- W-S Suh
- The Burnham Institute, La Jolla, CA 92037, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
75
|
Cappellini A, Tabellini G, Zweyer M, Bortul R, Tazzari PL, Billi AM, Falà F, Cocco L, Martelli AM. The phosphoinositide 3-kinase/Akt pathway regulates cell cycle progression of HL60 human leukemia cells through cytoplasmic relocalization of the cyclin-dependent kinase inhibitor p27(Kip1) and control of cyclin D1 expression. Leukemia 2003; 17:2157-67. [PMID: 12931221 DOI: 10.1038/sj.leu.2403111] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The serine/threonine protein kinase Akt, a downstream effector of phosphoinositide 3-kinase (PI3K), plays a pivotal role in tumorigenesis because it affects the growth and survival of cancer cells. Several laboratories have demonstrated that Akt inhibits transcriptional activation of a number of related forkhead transcription factors now referred to as FoxO1, FoxO3, and FoxO4. Akt-regulated forkhead transcription factors are involved in the control of the expression of both the cyclin-dependent kinase (cdk) inhibitor p27(Kip1) and proapoptotic Bim protein. Very little information is available concerning the importance of the PI3K/Akt pathway in HL60 human leukemia cells. Here, we present our findings showing that the PI3K/Akt axis regulates cell cycle progression of HL60 cells through multiple mechanisms also involving the control of FoxO1 and FoxO3. To this end, we took advantage of a HL60 cell clone (HL60AR cells) with a constitutively activated PI3K/Akt axis. When compared with parental (PT) HL60 cells, HL60AR cells displayed higher levels of phosphorylated FoxO1 and FoxO3. In AR cells forkhead factors localized predominantly in the cytoplasm, whereas in PT cells they were mostly nuclear. AR cells proliferated faster than PT cells and showed a lower amount of the cdk inhibitor p27(Kip1), which was mainly found in the cytoplasm and was hyperphosphorylated on threonine residues. AR cells also displayed higher levels of cyclin D1 and phosphorylated p110 Retinoblastoma protein. The protein levels of cdk2, cdk4, and cdk6 were not altered in HL60AR cells, whereas the activities of both ckd2 and cdk6 were higher in AR than in PT cells. These results show that in HL60 cells the PI3K/Akt signaling pathway may be involved in the control of the cell cycle progression most likely through mechanisms involving the activation of forkhead transcription factors.
Collapse
Affiliation(s)
- A Cappellini
- Dipartimento di Scienze Anatomiche Umane e Fisiopatologia dell'Apparato Locomotore, Sezione di Anatomia, Cell Signalling Laboratory, Università di Bologna, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
76
|
Martelli AM, Tazzari PL, Tabellini G, Bortul R, Billi AM, Manzoli L, Ruggeri A, Conte R, Cocco L. A new selective AKT pharmacological inhibitor reduces resistance to chemotherapeutic drugs, TRAIL, all-trans-retinoic acid, and ionizing radiation of human leukemia cells. Leukemia 2003; 17:1794-805. [PMID: 12970779 DOI: 10.1038/sj.leu.2403044] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
It is now well established that the reduced capacity of tumor cells of undergoing cell death through apoptosis plays a key role both in the pathogenesis of cancer and in therapeutic treatment failure. Indeed, tumor cells frequently display multiple alterations in signal transduction pathways leading to either cell survival or apoptosis. In mammals, the pathway based on phosphoinositide 3-kinase (PI3K)/Akt conveys survival signals of extreme importance and its downregulation, by means of pharmacological inhibitors of PI3K, considerably lowers resistance to various types of therapy in solid tumors. We recently described an HL60 leukemia cell clone (HL60AR cells) with a constitutively active PI3K/Akt pathway. These cells were resistant to multiple chemotherapeutic drugs, all-trans-retinoic acid (ATRA), and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL). Treatment with two pharmacological inhibitors of PI3K, wortmannin and Ly294002, restored sensitivity of HL60AR cells to the aforementioned treatments. However, these inhibitors have some drawbacks that may severely limit or impede their clinical use. Here, we have tested whether or not a new selective Akt inhibitor, 1L-6-hydroxymethyl-chiro-inositol 2(R)-2-O-methyl-3-O-octadecylcarbonate (Akt inhibitor), was as effective as Ly294002 in lowering the sensitivity threshold of HL60 cells to chemotherapeutic drugs, TRAIL, ATRA, and ionizing radiation. Our findings demonstrate that, at a concentration which does not affect PI3K activity, the Akt inhibitor markedly reduced resistance of HL60AR cells to etoposide, cytarabine, TRAIL, ATRA, and ionizing radiation. This effect was likely achieved through downregulation of expression of antiapoptotic proteins such as c-IAP1, c-IAP2, cFLIP(L), and of Bad phosphorylation on Ser 136. The Akt inhibitor did not influence PTEN activity. At variance with Ly294002, the Akt inhibitor did not negatively affect phosphorylation of protein kinase C-zeta and it was less effective in downregulating p70S6 kinase (p70S6K) activity. The Akt inhibitor increased sensitivity to apoptotic inducers of K562 and U937, but not of MOLT-4, leukemia cells. Overall, our results indicate that selective Akt pharmacological inhibitors might be used in the future for enhancing the sensitivity of leukemia cells to therapeutic treatments that induce apoptosis or for overcoming resistance to these treatments.
Collapse
Affiliation(s)
- A M Martelli
- Dipartimento di Scienze Anatomiche Umane e Fisiopatologia dell'Apparato Locomotore, Sezione di Anatomia, Cell Signalling Laboratory, Università di Bologna, Bologna, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
77
|
Grambihler A, Higuchi H, Bronk SF, Gores GJ. cFLIP-L inhibits p38 MAPK activation: an additional anti-apoptotic mechanism in bile acid-mediated apoptosis. J Biol Chem 2003; 278:26831-7. [PMID: 12746452 DOI: 10.1074/jbc.m303229200] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
In cholestasis, toxic bile acids accumulate within the liver inducing hepatocyte apoptosis, which exacerbates liver injury. Although bile acids activate both death receptors and mitogen-activated kinase (MAPK) pathways, the mechanistic link between death receptor signaling and MAPK activation in bile acid apoptosis remains unclear. The aim of this study was to ascertain if MAPKs contribute to bile acid cytotoxicity. Although deoxycholate induced apoptosis and activated all three classic mediators of the MAPK pathways including JNK 1/2, p38, and p42/44, only p38 MAPK inhibition attenuated apoptosis. Suppressing FADD expression with siRNA or employing a caspase inhibitor, zVAD-fmk, did not block p38 MAPK activation suggesting its activation was not death receptor-dependent. Unexpectedly, expression of cFLIP-L in a stably transfected cell line blocked apoptosis and p38 MAPK phosphorylation. Based on these data we postulated a direct effect of cFLIP on p38 MAPK activation. The nonphosphorylated but not the phosphorylated/active form of p38 MAPK co-immunoprecipitated with cFLIP-L. In reverse immunoprecipitation experiments, cFLIP-L long but not cFLIP-S co-immunoprecipitate with p38 MAPK. In conclusion, these data suggest that cFLIP-L exerts its anti-apoptotic activity, in part, by inhibiting p38 MAPK activation, an additional anti-apoptotic effect for this protein.
Collapse
Affiliation(s)
- Annette Grambihler
- Division of Gastroenterology and Hepatology, Mayo Medical School, Clinic, and Foundation, Rochester, Minnesota 55905, USA
| | | | | | | |
Collapse
|