51
|
Schäfer A. Gadd45 proteins: key players of repair-mediated DNA demethylation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 793:35-50. [PMID: 24104472 DOI: 10.1007/978-1-4614-8289-5_3] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The three growth arrest and DNA damage 45 (Gadd45) family genes encode for stress-response proteins that are rapidly induced upon cellular stress or differentiation cues. They are well-characterized regulators of cell cycle, senescence, survival, and apoptosis. More recently, it has become clear that Gadd45 proteins promote active DNA demethylation thereby mediating gene activation. This epigenetic function of Gadd45 is important for differentiation and transcriptional regulation during development. Mechanistically, Gadd45 acts as an adapter for DNA repair factors at gene-specific loci to promote removal of 5-methylcytosine from DNA. Hence, Gadd45 is a nexus between DNA repair and epigenetic gene regulation.
Collapse
|
52
|
Sultan FA, Sweatt JD. The Role of the Gadd45 Family in the Nervous System: A Focus on Neurodevelopment, Neuronal Injury, and Cognitive Neuroepigenetics. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 793:81-119. [DOI: 10.1007/978-1-4614-8289-5_6] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
53
|
Mezzomo LC, Gonzales PH, Pesce FG, Kretzmann Filho N, Ferreira NP, Oliveira MC, Kohek MBF. Expression of cell growth negative regulators MEG3 and GADD45γ is lost in most sporadic human pituitary adenomas. Pituitary 2012; 15:420-7. [PMID: 21850407 DOI: 10.1007/s11102-011-0340-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
We aimed at the evaluation of MEG3 and GADD45γ expression in sporadic functioning and clinically non-functioning human pituitary adenomas, morphologically characterized by immunohistochemistry analysis and their association with clinical features. Thirty eight patients who had undergone hypophysectomy at São José Hospital of Irmandade Santa Casa de Misericórdia in Porto Alegre, Brazil, were included in this study. We evaluated tumor-type specific MEG3 and GADD45γ expression by qRT-PCR in the pituitary adenomas, and its association with clinical features, as age, gender and tumor size, obtained from medical records. The patients consisted of 21 males and 17 females and the mean age was 47 ± 14 (mean ± SD), ranging from 18 to 73 years-old. Of these 14 were clinically non-functioning, 10 GH-secreting, 9 PRL-secreting, and 5 ACTH-secreting pituitary adenomas. All samples were macroadenomas, except four ACTH-secreting tumors, which were microadenomas. In summary, MEG3 and GADD45γ expression was significantly lost in most clinically non-functioning adenomas (78 and 92%, respectively). Other assessed pituitary tumor phenotypes expressed both genes at significantly different levels, and, in some cases, with overexpression. There was no significant association between gene expression and the analyzed clinical features. Our results confirm the previous report, which indicated that MEG3 and GADD45γ expression is lost in the majority of human pituitary tumors, mainly in clinically-nonfunctioning adenomas. Functioning tumors had differences of relative expression levels. The two groups of tumors are probably genetically different and may have a different natural history.
Collapse
Affiliation(s)
- Lisiane Cervieri Mezzomo
- Post Graduation Program of Pathology, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, CEP 90050-170, Brazil
| | | | | | | | | | | | | |
Collapse
|
54
|
Salerno DM, Tront JS, Hoffman B, Liebermann DA. Gadd45a and Gadd45b modulate innate immune functions of granulocytes and macrophages by differential regulation of p38 and JNK signaling. J Cell Physiol 2012; 227:3613-20. [DOI: 10.1002/jcp.24067] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
55
|
Tamura RE, de Vasconcellos JF, Sarkar D, Libermann TA, Fisher PB, Zerbini LF. GADD45 proteins: central players in tumorigenesis. Curr Mol Med 2012; 12:634-51. [PMID: 22515981 PMCID: PMC3797964 DOI: 10.2174/156652412800619978] [Citation(s) in RCA: 248] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Revised: 11/23/2011] [Accepted: 12/15/2011] [Indexed: 12/18/2022]
Abstract
The Growth Arrest and DNA Damage-inducible 45 (GADD45) proteins have been implicated in regulation of many cellular functions including DNA repair, cell cycle control, senescence and genotoxic stress. However, the pro-apoptotic activities have also positioned GADD45 as an essential player in oncogenesis. Emerging functional evidence implies that GADD45 proteins serve as tumor suppressors in response to diverse stimuli, connecting multiple cell signaling modules. Defects in the GADD45 pathway can be related to the initiation and progression of malignancies. Moreover, induction of GADD45 expression is an essential step for mediating anti-cancer activity of multiple chemotherapeutic drugs and the absence of GADD45 might abrogate their effects in cancer cells. In this review, we present a comprehensive discussion of the functions of GADD45 proteins, linking their regulation to effectors of cell cycle arrest, DNA repair and apoptosis. The ramifications regarding their roles as essential and central players in tumor growth suppression are also examined. We also extensively review recent literature to clarify how different chemotherapeutic drugs induce GADD45 gene expression and how its up-regulation and interaction with different molecular partners may benefit cancer chemotherapy and facilitate novel drug discovery.
Collapse
Affiliation(s)
- Rodrigo Esaki Tamura
- International Centre for Genetic Engineering and Biotechnology, and Medical Biochemistry Division, University of Cape Town, Cape Town, South Africa
| | - Jaíra Ferreira de Vasconcellos
- Centro Infantil Boldrini, Molecular Biology Laboratory, Campinas, Brazil
- State University of Campinas, Faculty of Medical Sciences, Department of Medical Genetics, Campinas, Brazil
| | - Devanand Sarkar
- Department of Human and Molecular Genetics, VCU Institute of Molecular Medicine, VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA
| | - Towia A Libermann
- BIDMC Genomics and Proteomics Center, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| | - Paul B Fisher
- Department of Human and Molecular Genetics, VCU Institute of Molecular Medicine, VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA
| | - Luiz Fernando Zerbini
- International Centre for Genetic Engineering and Biotechnology, and Medical Biochemistry Division, University of Cape Town, Cape Town, South Africa
- BIDMC Genomics and Proteomics Center, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
56
|
Zhang C, Wang J, Lü G, Li J, Lu X, Mantion G, Vuitton DA, Wen H, Lin R. Hepatocyte proliferation/growth arrest balance in the liver of mice during E. multilocularis infection: a coordinated 3-stage course. PLoS One 2012; 7:e30127. [PMID: 22253905 PMCID: PMC3254660 DOI: 10.1371/journal.pone.0030127] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Accepted: 12/12/2011] [Indexed: 12/24/2022] Open
Abstract
Background Alveolar echinococcosis (AE) is characterized by the tumor-like growth of Echinococcus (E.) multilocularis. Very little is known on the influence of helminth parasites which develop in the liver on the proliferation/growth arrest metabolic pathways in the hepatocytes of the infected liver over the various stages of infection. Methodology/Principal Findings Using Western blot analysis, qPCR and immunohistochemistry, we measured the levels of MAPKs activation, Cyclins, PCNA, Gadd45β, Gadd45γ, p53 and p21 expression in the murine AE model, from day 2 to 360 post-infection. Within the early (day 2–60) and middle (day60–180) stages, CyclinB1 and CyclinD1 gene expression increased up to day30 and then returned to control level after day60; Gadd45β, CyclinA and PCNA increased all over the period; ERK1/2 was permanently activated. Meanwhile, p53, p21 and Gadd45γ gene expression, and caspase 3 activation, gradually increased in a time-dependent manner. In the late stage (day180–360), p53, p21 and Gadd45γ gene expression were significantly higher in infected mice; JNK and caspase 3 were activated. TUNEL analysis showed apoptosis of hepatocytes. No significant change in CyclinE, p53 mRNA and p-p38 expression were observed at any time. Conclusions Our data support the concept of a sequential activation of metabolic pathways which 1) would first favor parasitic, liver and immune cell proliferation and survival, and thus promote metacestode fertility and tolerance by the host, and 2) would then favor liver damage/apoptosis, impairment in protein synthesis and xenobiotic metabolism, as well as promote immune deficiency, and thus contribute to the dissemination of the protoscoleces after metacestode fertility has been acquired. These findings give a rational explanation to the clinical observations of hepatomegaly and of unexpected survival of AE patients after major hepatic resections, and of chronic liver injury, necrosis and of hepatic failure at an advanced stage and in experimental animals.
Collapse
Affiliation(s)
- Chuanshan Zhang
- State Key Laboratory Incubation Base of Major Diseases in Xinjiang and Xinjiang Key Laboratory of Echinococcosis, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Junhua Wang
- State Key Laboratory Incubation Base of Major Diseases in Xinjiang and Xinjiang Key Laboratory of Echinococcosis, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Guodong Lü
- State Key Laboratory Incubation Base of Major Diseases in Xinjiang and Xinjiang Key Laboratory of Echinococcosis, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Jing Li
- State Key Laboratory Incubation Base of Major Diseases in Xinjiang and Xinjiang Key Laboratory of Echinococcosis, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Xiaomei Lu
- State Key Laboratory Incubation Base of Major Diseases in Xinjiang and Xinjiang Key Laboratory of Echinococcosis, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Georges Mantion
- World Health Organization-Collaborating Centre for the Prevention and Treatment of Human Echinococcosis, Department of Digestive Surgery; Jean Minjoz Hospital, University of Franche-Comté and University Hospital, Besançon, France
| | - Dominique A. Vuitton
- World Health Organization-Collaborating Centre for the Prevention and Treatment of Human Echinococcosis, Department of Digestive Surgery; Jean Minjoz Hospital, University of Franche-Comté and University Hospital, Besançon, France
- Research Unit EA 3181 “Epithelial Carcinogenesis: Predictive and Prognostic Factors,” University of Franche-Comté, Besançon, France
| | - Hao Wen
- State Key Laboratory Incubation Base of Major Diseases in Xinjiang and Xinjiang Key Laboratory of Echinococcosis, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
- * E-mail: (RL); (HW)
| | - Renyong Lin
- State Key Laboratory Incubation Base of Major Diseases in Xinjiang and Xinjiang Key Laboratory of Echinococcosis, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
- * E-mail: (RL); (HW)
| |
Collapse
|
57
|
Moskalev AA, Smit-McBride Z, Shaposhnikov MV, Plyusnina EN, Zhavoronkov A, Budovsky A, Tacutu R, Fraifeld VE. Gadd45 proteins: relevance to aging, longevity and age-related pathologies. Ageing Res Rev 2012; 11:51-66. [PMID: 21986581 PMCID: PMC3765067 DOI: 10.1016/j.arr.2011.09.003] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Revised: 09/25/2011] [Accepted: 09/27/2011] [Indexed: 12/12/2022]
Abstract
The Gadd45 proteins have been intensively studied, in view of their important role in key cellular processes. Indeed, the Gadd45 proteins stand at the crossroad of the cell fates by controlling the balance between cell (DNA) repair, eliminating (apoptosis) or preventing the expansion of potentially dangerous cells (cell cycle arrest, cellular senescence), and maintaining the stem cell pool. However, the biogerontological aspects have not thus far received sufficient attention. Here we analyzed the pathways and modes of action by which Gadd45 members are involved in aging, longevity and age-related diseases. Because of their pleiotropic action, a decreased inducibility of Gadd45 members may have far-reaching consequences including genome instability, accumulation of DNA damage, and disorders in cellular homeostasis - all of which may eventually contribute to the aging process and age-related disorders (promotion of tumorigenesis, immune disorders, insulin resistance and reduced responsiveness to stress). Most recently, the dGadd45 gene has been identified as a longevity regulator in Drosophila. Although further wide-scale research is warranted, it is becoming increasingly clear that Gadd45s are highly relevant to aging, age-related diseases (ARDs) and to the control of life span, suggesting them as potential therapeutic targets in ARDs and pro-longevity interventions.
Collapse
Affiliation(s)
- Alexey A Moskalev
- Group of Molecular Radiobiology and Gerontology, Institute of Biology, Komi Science Center of Russian Academy of Sciences.
| | | | | | | | | | | | | | | |
Collapse
|
58
|
Hanagata N, Zhuang F, Connolly S, Li J, Ogawa N, Xu M. Molecular responses of human lung epithelial cells to the toxicity of copper oxide nanoparticles inferred from whole genome expression analysis. ACS NANO 2011; 5:9326-38. [PMID: 22077320 DOI: 10.1021/nn202966t] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
This study proposes a molecular mechanism for lung epithelial A549 cell response to copper oxide nanoparticles (CuO-NPs) related to Cu ions released from CuO-NPs. Cells that survived exposure to CuO-NPs arrested the cell cycle as a result of the downregulation of proliferating cell nuclear antigen (PCNA), cell division control 2 (CDC2), cyclin B1 (CCNB1), target protein for Xklp2 (TPX2), and aurora kinase A (AURKA) and B (AURKB). Furthermore, cell death was avoided through the induced expression of nuclear receptors NR4A1 and NR4A3 and growth arrest and DNA damage-inducible 45 β and γ (GADD45B and GADD45G, respectively). The downregulation of CDC2, CCNB1, TPX2, AURKA, and AURKB, the expressions of which are involved in cell cycle arrest, was attributed to Cu ions released from CuO-NPs into medium. NR4A1 and NR4A3 expression was also induced by Cu ions released into the medium. The expression of GADD45B and GADD45G activated the p38 pathway that was involved in escape from cell death. The upregulation of GADD45B and GADD45G was not observed with Cu ions released into medium but was observed in cells exposed to CuO-NPs. However, because the expression of the genes was also induced by Cu ion concentrations higher than that released from CuO-NPs into the medium, the expression appeared to be triggered by Cu ions released from CuO-NPs taken up into cells. We infer that, for cells exposed to CuO-NPs, those able to make such a molecular response survived and those unable to do so eventually died.
Collapse
Affiliation(s)
- Nobutaka Hanagata
- Nanotechnology Innovation Station, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan.
| | | | | | | | | | | |
Collapse
|
59
|
Lee B, Morano A, Porcellini A, Muller MT. GADD45α inhibition of DNMT1 dependent DNA methylation during homology directed DNA repair. Nucleic Acids Res 2011; 40:2481-93. [PMID: 22135303 PMCID: PMC3315326 DOI: 10.1093/nar/gkr1115] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
In this work, we examine regulation of DNA methyltransferase 1 (DNMT1) by the DNA damage inducible protein, GADD45α. We used a system to induce homologous recombination (HR) at a unique double-strand DNA break in a GFP reporter in mammalian cells. After HR, the repaired DNA is hypermethylated in recombinant clones showing low GFP expression (HR-L expressor class), while in high expressor recombinants (HR-H clones) previous methylation patterns are erased. GADD45α, which is transiently induced by double-strand breaks, binds to chromatin undergoing HR repair. Ectopic overexpression of GADD45α during repair increases the HR-H fraction of cells (hypomethylated repaired DNA), without altering the recombination frequency. Conversely, silencing of GADD45α increases methylation of the recombined segment and amplifies the HR-L expressor (hypermethylated) population. GADD45α specifically interacts with the catalytic site of DNMT1 and inhibits methylation activity in vitro. We propose that double-strand DNA damage and the resulting HR process involves precise, strand selected DNA methylation by DNMT1 that is regulated by GADD45α. Since GADD45α binds with high avidity to hemimethylated DNA intermediates, it may also provide a barrier to spreading of methylation during or after HR repair.
Collapse
Affiliation(s)
- Bongyong Lee
- Department of Molecular Biology and Microbiology, College of Medicine, University of Central Florida, Orlando, FL 32826-3227, USA
| | | | | | | |
Collapse
|
60
|
Michaelis KA, Knox AJ, Xu M, Kiseljak-Vassiliades K, Edwards MG, Geraci M, Kleinschmidt-DeMasters BK, Lillehei KO, Wierman ME. Identification of growth arrest and DNA-damage-inducible gene beta (GADD45beta) as a novel tumor suppressor in pituitary gonadotrope tumors. Endocrinology 2011; 152:3603-13. [PMID: 21810943 PMCID: PMC4714647 DOI: 10.1210/en.2011-0109] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Gonadotrope and null cell pituitary tumors cause significant morbidity, often presenting with signs of hypogonadism together with visual disturbances due to mass effects. Surgery and radiation are the only therapeutic options to date. To identify dysregulated genes and pathways that may play a role in tumorigenesis and/or progression, molecular profiling was performed on 14 gonadotrope tumors, with nine normal human pituitaries obtained at autopsy serving as controls. Bioinformatic analysis identified putative downstream effectors of tumor protein 53 (p53) that were consistently repressed in gonadotrope pituitary tumors, including RPRM, P21, and PMAIP1, with concomitant inhibition of the upstream p53 regulator, PLAGL1(Zac1). Further analysis of the growth arrest and DNA damage-inducible (GADD45) family revealed no change in the p53 target, GADD45α, but identified repression of GADD45β in pituitary tumors in addition to the previously reported inhibition of GADD45γ. Overexpression of GADD45β in LβT2 mouse gonadotrope cells blocked tumor cell proliferation and increased rates of apoptosis in response to growth factor withdrawal. Stable gonadotrope cell transfectants expressing increased GADD45β showed decreased colony formation in soft agar, confirming its normal role as a tumor suppressor. Unlike previous studies of GADD45γ in pituitary tumors and α and β in other tumors, bisulfite sequencing showed no evidence of hypermethylation of the GADD45β promoter in human pituitary tumor samples to explain the repression of its expression. Thus, GADD45β is a novel pituitary tumor suppressor whose reexpression blocks proliferation, survival, and tumorigenesis. Together these studies identify new targets and mechanisms to explore in pituitary tumor initiation and progression.
Collapse
Affiliation(s)
- Katherine A Michaelis
- Department of Medicine, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado 80045, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
61
|
Refeeding with a high-protein diet after a 48 h fast causes acute hepatocellular injury in mice. Br J Nutr 2011; 107:1435-44. [PMID: 21902856 DOI: 10.1017/s0007114511004521] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Elucidating the effects of refeeding a high-protein diet after fasting on disease development is of interest in relation to excessive protein ingestion and irregular eating habits in developed countries. The objective of the present study was to address the hepatic effects of refeeding a high-protein diet after fasting. Mice were fasted for 48 h and then refed with a test diet containing 3, 15, 35, 40, 45 or 50 % casein. Serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activities and liver immediate-early gene expression levels were sequentially measured for the first 24 h after initiation of refeeding. Refeeding with a 50 % casein diet after 48 h of fasting led to a rapid (within 2-3 h) and abnormal elevation in serum ALT (P = 0·006) and AST (P = 0·001) activities and a marked increase in liver Finkel-Biskis-Jinkins (FBJ) osteosarcoma oncogene (P = 0·007) and nuclear receptor subfamily 4, group A, member 1 (P = 0·002) mRNA levels. In contrast, refeeding of the 3, 15 or 35 % casein diets produced no substantial increases in serum ALT and AST activities in mice. Refeeding of 40, 45 or 50 % casein increased serum ALT and AST activities in proportion to this dietary casein content. In mice refed the 3, 15 or 35, but not 50 %, casein diets, liver heat shock protein 72 transcript levels greatly increased. We conclude from these data that the consumption of a high-protein diet after fasting causes acute hepatocellular injury in healthy animals, and propose that careful attention should be paid to the use of such diets.
Collapse
|
62
|
Lin CR, Yang CH, Huang CE, Wu CH, Chen YS, Sheen-Chen SM, Huang HW, Chen KH. GADD45A protects against cell death in dorsal root ganglion neurons following peripheral nerve injury. J Neurosci Res 2011; 89:689-99. [PMID: 21337369 DOI: 10.1002/jnr.22589] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2010] [Revised: 10/28/2010] [Accepted: 12/03/2010] [Indexed: 11/06/2022]
Abstract
A significant loss of neurons in the dorsal root ganglia (DRG) has been reported in animal models of peripheral nerve injury. Neonatal sensory neurons are more susceptible than adult neurons to axotomy- or nerve growth factor (NGF) withdrawal-induced cell death. To develop therapies for preventing irreversible sensory cell loss, it is essential to understand the molecular mechanisms responsible for DRG cell death and survival. Here we describe how the expression of the growth arrest- and DNA damage-inducible gene 45α (GADD45A) is correlated with neuronal survival after axotomy in vivo and after NGF withdrawal in vitro. GADD45A expression is low at birth and does not change significantly after spinal nerve ligation (SNL). In contrast, GADD45A is robustly up-regulated in the adult rat DRG 24 hr after SNL, and this up-regulation persists as long as the injured fibers are prevented from regenerating. In vitro delivery of GADD45A protects neonatal rat DRG neurons from NGF withdrawal-induced cytochrome c release and cell death. In addition, in vivo knockdown of GADD45A expression in adult injured DRG by small hairpin RNA increased cell death. Our results indicate that GADD45A protects neuronal cells from SNL-induced cell death.
Collapse
Affiliation(s)
- Chung-Ren Lin
- Department of Anesthesiology, Chang Gung Memorial Hospital-Kaohsiung Medical Center, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
63
|
Liebermann DA, Tront JS, Sha X, Mukherjee K, Mohamed-Hadley A, Hoffman B. Gadd45 stress sensors in malignancy and leukemia. Crit Rev Oncog 2011; 16:129-40. [PMID: 22150313 PMCID: PMC3268054 DOI: 10.1615/critrevoncog.v16.i1-2.120] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Gadd45 proteins, including Gadd45a, Gadd45b, and Gadd45g, have been implicated in stress signaling in response to physiological and environmental stress, including oncogenic stress, which can result in cell cycle arrest, DNA repair, cell survival, senescence, and apoptosis. The function of Gadd45 as a stress sensor is mediated via a complex interplay of physical interactions with other cellular proteins implicated in cell cycle regulation and the response of cells to stress, notably PCNA, p21, cdc2/cyclinB1, and the p38 and JNK stress response kinases. Altered expression of Gadd45 has been observed in multiple types of solid tumors as well as in hematopoietic malignancies. Using genetically engineered mouse models and bone-marrow transplantation, evidence has been obtained indicating that Gadd45 proteins can function to either promote or suppress tumor development and leukemia; this is dependent on the molecular nature of the activated oncogene and the cell type, via engagement of different signaling pathways.
Collapse
Affiliation(s)
- Dan A Liebermann
- Fels Institute for Cancer Research and Molecular Biology, Temple University, Philadelphia, Pennsylvania 19140, USA.
| | | | | | | | | | | |
Collapse
|
64
|
Tront JS, Haung Y, Fornace AA, Hoffman B, Liebermann DA. Gadd45a functions as a promoter or suppressor of breast cancer dependent on the oncogenic stress. Cancer Res 2010; 70:9671-81. [PMID: 21098706 PMCID: PMC3199142 DOI: 10.1158/0008-5472.can-10-2177] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Gadd45a plays a pivotal role as a stress sensor that modulates cellular responses to various stress stimuli including oncogenic stress. We reported that the stress sensor Gadd45a gene functions as a tumor suppressor in Ras-driven breast tumorigenesis via increasing JNK-mediated apoptosis and p38-mediated senescence. In contrast, here, we show that Gadd45a promotes Myc-driven breast cancer by negatively regulating MMP10 via GSK3 β/β-catenin signaling, resulting in increased tumor vascularization and growth. These novel findings indicate that Gadd45a functions as either tumor promoter or suppressor, is dependent on the oncogenic stress, and is mediated via distinct signaling pathways. Collectively, these novel findings highlight the significance of the type of oncogenic alteration on how stress response genes function during initiation and progression of tumorigenesis. Because Gadd45a is a target for BRCA1 and p53, these findings have implications regarding BRCA1/p53 tumor suppressor functions.
Collapse
MESH Headings
- Animals
- Blotting, Western
- Cell Cycle Proteins/genetics
- Cell Cycle Proteins/metabolism
- Cell Cycle Proteins/physiology
- Female
- Gene Expression Regulation, Neoplastic
- Genes, myc/genetics
- Genes, myc/physiology
- Glycogen Synthase Kinase 3/metabolism
- Glycogen Synthase Kinase 3 beta
- Immunohistochemistry
- Male
- Mammary Neoplasms, Animal/genetics
- Mammary Neoplasms, Animal/metabolism
- Mammary Neoplasms, Animal/pathology
- Matrix Metalloproteinase 10/genetics
- Matrix Metalloproteinase 10/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Neovascularization, Pathologic/pathology
- Nuclear Proteins/genetics
- Nuclear Proteins/metabolism
- Nuclear Proteins/physiology
- RNA Interference
- Signal Transduction
- Tumor Burden
- Tumor Suppressor Proteins/genetics
- Tumor Suppressor Proteins/metabolism
- Tumor Suppressor Proteins/physiology
- beta Catenin/metabolism
Collapse
Affiliation(s)
- Jennifer S. Tront
- Fels Institute for Cancer Research and Molecular Biology, Temple University, Philadelphia, Pa
| | - Yajue Haung
- Department of Pathology and Laboratory Medicine, Temple University, Philadelphia, Pa
| | - Albert A. Fornace
- Lombardi Comprehensive Cancer Center and Department of Biochemistry Georgetown University, Georgetown, Washington, DC, USA
| | - Barbara Hoffman
- Fels Institute for Cancer Research and Molecular Biology, Temple University, Philadelphia, Pa
- Department of Biochemistry, Temple University, Philadelphia, Pa
| | - Dan A. Liebermann
- Fels Institute for Cancer Research and Molecular Biology, Temple University, Philadelphia, Pa
- Department of Biochemistry, Temple University, Philadelphia, Pa
| |
Collapse
|
65
|
Flores O, Burnstein KL. GADD45gamma: a new vitamin D-regulated gene that is antiproliferative in prostate cancer cells. Endocrinology 2010; 151:4654-64. [PMID: 20739400 PMCID: PMC2946153 DOI: 10.1210/en.2010-0434] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
1,25-dihydroxyvitamin D3 [1,25-(OH)2D3] inhibits proliferation of normal and malignant prostate epithelial cells at least in part through inhibition of G1 to S phase cell cycle progression. The mechanisms of the antiproliferative effects of 1,25-(OH)2D3 have yet to be fully elucidated but are known to require the vitamin D receptor. We previously developed a 1,25-(OH)2D3-resistant derivative of the human prostate cancer cell line, LNCaP, which retains active vitamin D receptors but is not growth inhibited by 1,25-(OH)2D3. Gene expression profiling revealed two novel 1,25-(OH)2D3-inducible genes, growth arrest and DNA damage-inducible gene gamma (GADD45γ) and mitogen induced gene 6 (MIG6), in LNCaP but not in 1,25-(OH)2D3-resistant cells. GADD45γ up-regulation was associated with growth inhibition by 1,25-(OH)2D3 in human prostate cancer cells. Ectopic expression of GADD45γ in either LNCaP or ALVA31 cells resulted in G1 accumulation and inhibition of proliferation equal to or greater than that caused by 1,25-(OH)2D3 treatment. In contrast, ectopic expression of MIG6 had only minimal effects on cell cycle distribution and proliferation. Whereas GADD45γ has been shown to be induced by androgens in prostate cancer cells, up-regulation of GADD45γ by 1,25-(OH)2D3 was not dependent on androgen receptor signaling, further refuting a requirement for androgens/androgen receptor in vitamin D-mediated growth inhibition. These data introduce two novel 1,25-(OH)2D3-regulated genes and establish GADD45γ as a growth-inhibitory protein in prostate cancer. Furthermore, the induction of GADD45γ gene expression by 1,25-(OH)2D3 may mark therapeutic response in prostate cancer.
Collapse
Affiliation(s)
- Omar Flores
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, 1600 NW 10th Avenue, R-189, Room 6155 Rosenstiel Building, Miami, Florida 33136, USA
| | | |
Collapse
|
66
|
Uddin MN, Horvat D, Demorrow S, Agunanne E, Puschett JB. Marinobufagenin is an upstream modulator of Gadd45a stress signaling in preeclampsia. Biochim Biophys Acta Mol Basis Dis 2010; 1812:49-58. [PMID: 20851181 DOI: 10.1016/j.bbadis.2010.09.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2010] [Revised: 09/09/2010] [Accepted: 09/13/2010] [Indexed: 11/18/2022]
Abstract
Preeclampsia (PE) is a hypertensive disorder of pregnancy, in which marinobufagenin (MBG), a circulating cardiotonic steroid, is increased. The Gadd45a stress sensor protein is an upstream modulator of the pathophysiological changes observed in PE. However, the effects of MBG on Gadd45a stress signaling remain unknown. We examined the expression of Gadd45a, the sFlt-1 receptor, and p38, as well as caspase 3 and 8 activities in placental samples from four groups of rats. These were: normal pregnant (NP, n=8); pregnant rats which received weekly injections of desoxycorticosterone acetate and 0.9% saline as their drinking water (PDS, n=9); normal pregnant rats injected with MBG (NPM, n=8); and PDS rats injected with resibufogenin (RBG), an in vivo antagonist of MBG (PDSR, n=8). Utilizing human cytotrophoblast (CTB) cells, we examined the effect of MBG on these stress signaling proteins in vitro. Placental Gadd45a expression, caspase 3 and 8 activities, sFlt-1 concentrations, and sFlt-1 receptor expression were significantly higher in PDS and NPM compared to NP and PDSR rats. Gadd45a protein was significantly upregulated in the CTB cells when MBG was present in concentrations ≥1nM. Treatment with MBG (≥1nM) also significantly arrested cell cycle progression and activated the expression of the Gadd45a-mediated stress signaling proteins. Inhibition of Gadd45a through RNAi-mediation attenuated MBG-induced CTB cell stress signaling. In conclusion, MBG is involved in the alteration in Gadd45a stress signaling both in vivo and in vitro and RBG prevents these changes when administered in vivo.
Collapse
Affiliation(s)
- Mohammad N Uddin
- Division of Nephrology and Hypertension, Department of Medicine, Texas A&M Health Science Center College of Medicine and Scott & White Memorial Hospital, Temple, TX 76508, USA
| | | | | | | | | |
Collapse
|
67
|
Zhang W, Li T, Shao Y, Zhang C, Wu Q, Yang H, Zhang J, Guan M, Yu B, Wan J. Semi-quantitative detection of GADD45-gamma methylation levels in gastric, colorectal and pancreatic cancers using methylation-sensitive high-resolution melting analysis. J Cancer Res Clin Oncol 2010; 136:1267-73. [PMID: 20111973 DOI: 10.1007/s00432-010-0777-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2009] [Accepted: 01/14/2010] [Indexed: 01/22/2023]
Abstract
PURPOSE GADD45 is a family of proteins involved in DNA damage response and cell growth arrest. GADD45G was identified as an interleukin-2-induced immediate-early gene, and methylation of GADD45G was studied in various tumor cell lines and a few primary tumor samples. High-resolution melting (HRM) analysis has been used as a novel tool for analysis of promoter methylation. METHODS In our study, we used HRM analysis to detect the methylation levels of GADD45G gene in 100 gastric cancers, 100 colorectal cancers, 70 pancreatic cancers and equal number of adjacent normal tissues. RESULTS The frequency of GADD45G methylation in all three types of cancers was significantly higher than that in normal tissues. Consistent with previous reports, expression levels of GADD45G were inversely correlated with methylation levels. But we did not find significant association between GADD45G methylation status and TNM staging in all three types of cancers. CONCLUSIONS In summary, application of HRM analysis to large amount of clinical samples proves to be a fast and high-throughput way to investigate the epigenetic status of GADD45G. And this is the first study to evaluate the prevalence of GADD45G methylation based on large amount of tumor samples, showing that epigenetic regulation of GADD45G was associated with carcinogenesis.
Collapse
Affiliation(s)
- Wei Zhang
- JNU-HKUST Joint Lab, Jinan University, Guangdong, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
68
|
Na YK, Lee SM, Hong HS, Kim JB, Park JY, Kim DS. Hypermethylation of growth arrest DNA-damage-inducible gene 45 in non-small cell lung cancer and its relationship with clinicopathologic features. Mol Cells 2010; 30:89-92. [PMID: 20652500 DOI: 10.1007/s10059-010-0092-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2010] [Revised: 03/22/2010] [Accepted: 03/31/2010] [Indexed: 11/24/2022] Open
Abstract
The growth arrest DNA-damage-inducible protein 45 (GADD45) can serve as a key coordinator of the stress response by regulating cell cycle progression, genomic stability, DNA repair, and other stress-related responses. Although deregulation of GADD45 expression has been reported in several types of human tumors, its role in lung cancer is still unknown. DNA hypermethylation of promoter CpG islands is known to be a major mechanism for epigenetic inactivation of tumor suppressor genes. We investigated the methylation status of GADD45 family genes (GADD45A, B, and G) in 139 patients with non-small cell lung cancer (NSCLC) using methylation-specific PCR (MSP) and correlated the results with clinicopathologic features of the patients. Methylation frequencies in tumors were 1.4% for GADD45A, 7.2% for GADD45B, and 31.6% for GADD45G. RT-PCR and MSP analysis showed that promoter methylation of the GADD45G gene resulted in downregulation of its mRNA expression. GADD45G methylation was significantly more frequent in female patients than male patients (P = 0.035). This finding suggests that methylation-associated down-regulation of the GADD45G gene may be involved in lung tumorigenesis.
Collapse
Affiliation(s)
- Yeon Kyung Na
- Department of Anatomy, School of Medicine, Kyungpook National University, Daegu 702-422, Korea
| | | | | | | | | | | |
Collapse
|
69
|
Zhang MM, Yang S, Gao FL, Ma HJ, Pi KJ, Cui DL, Zhang ZK. Apoptosis of hepatic stellate cells (HSC-T6) induced by sodium nitroprusside and mechanisms involved. Shijie Huaren Xiaohua Zazhi 2010; 18:761-766. [DOI: 10.11569/wcjd.v18.i8.761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate whether nitric oxide (NO) donor sodium nitroprusside (SNP) can induce the apoptosis of hepatic stellate cells (HSC-T6) and to explore potential mechanisms involved.
METHODS: The apoptosis of HSC-T6 cells was determined by flow cytometry and Hoechst staining. The nuclear translocation of nuclear factor-κB (NF-κB) p65 was detected by laser scanning confocal microscopy. The expression of tissue inhibitor of matrix metalloproteinase-1 (TIMP-1), type I procollagen (procollagen I), and growth arrest and DNA damage-inducible protein (GADD45β) mRNAs was detected by real-time reverse transcription-polymerase chain reaction (RT-PCR).
RESULTS: The apoptosis rate was significantly higher in HSC-T6 cells treated with SNP than in control cells (20.78% ± 5.91%vs 3.25% ± 1.26%, P = 0.031). Apoptotic HSC-T6 cells showed dense nuclear staining or granular fluorescence after Hoechst staining. Tumor necrosis factor-α (TNF-α)-mediated nuclear translocation of NF-κB p65 was inhibited by SNP treatment. With the increase in SNP dose, the expression levels of TIMP-1, procollagen I and GADD45β mRNAs were reduced (all P < 0.05).
CONCLUSION: SNP can induce the apoptosis of HSC-T6 cells and reduce the expression of TIMP-1 and procollagen I mRNAs perhaps by inhibiting NF-κB activity and reducing GADD45β mRNA expression.
Collapse
|
70
|
Yang Z, Song L, Huang C. Gadd45 proteins as critical signal transducers linking NF-kappaB to MAPK cascades. Curr Cancer Drug Targets 2009; 9:915-30. [PMID: 20025601 PMCID: PMC3762688 DOI: 10.2174/156800909790192383] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The growth arrest and DNA damage-inducible 45 (Gadd45) proteins are a group of critical signal transducers that are involved in regulations of many cellular functions. Accumulated data indicate that all three Gadd45 proteins (i.e., Gadd45alpha, Gadd45beta, and Gadd45gamma) play essential roles in connecting an upstream sensor module, the transcription Nuclear Factor-kappaB (NF-kappaB), to a transcriptional regulating module, mitogen-activated protein kinase (MAPK). This NF-kappaB-Gadd45(s)-MAPK pathway responds to various kinds of extracellular stimuli and regulates such cell activities as growth arrest, differentiation, cell survival, and apoptosis. Defects in this pathway can also be related to oncogenesis. In the first part of this review, the functions of Gadd45 proteins, and briefly NF-kappaB and MAPK, are summarized. In the second part, the mechanisms by which Gadd45 proteins are regulated by NF-kappaB, and how they affect MAPK activation, are reviewed.
Collapse
Affiliation(s)
- Z. Yang
- Nelson Institute of Environmental Medicine, New York University School of Medicine, 57 Old Forge Road, Tuxedo, NY 10987, USA
| | - L. Song
- Nelson Institute of Environmental Medicine, New York University School of Medicine, 57 Old Forge Road, Tuxedo, NY 10987, USA
- Department of Cellular Immunology, Beijing Institute of Basic Medical Sciences, 27 Taiping Road, Beijing 100850, China
| | - C. Huang
- Nelson Institute of Environmental Medicine, New York University School of Medicine, 57 Old Forge Road, Tuxedo, NY 10987, USA
| |
Collapse
|
71
|
Xiong Y, Liebermann DA, Tront JS, Holtzman EJ, Huang Y, Hoffman B, Geifman-Holtzman O. Gadd45a stress signaling regulates sFlt-1 expression in preeclampsia. J Cell Physiol 2009; 220:632-9. [PMID: 19452502 DOI: 10.1002/jcp.21800] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Preeclampsia, which affects approximately 5-8% of all pregnancies and is one of the leading causes of maternal and fetal morbidity and mortality, is a pregnancy induced complex of multiple pathological changes, including elevated blood pressure, proteinuria and edema manifested after 20 weeks gestation. There is growing evidence that placental stresses during pregnancy, notably hypoxia, and an increase in circulating soluble Flt-1 (sFlt-1) are important in the etiopathogenesis of preeclampsia. How placental stress results in elevated sFlt-1 expression is currently unknown. Here we provide novel data implicating the Gadd45a stress sensor protein as an upstream modulator of pathophysiological changes observed in preeclampsia. It is shown that Gadd45a expression and activation of its downstream effector p38 kinase are elevated in preeclamptic placentas compared to non-preeclamptic controls, and correlate with elevated sFlt-1. Furthermore, a regulatory loop is demonstrated where stress, including hypoxia, IL-6 or hypertonic stress, caused induction of Gadd45a, leading to p38 activation and ultimately increasing sFlt-1 secretion in endothelial cells. These data provide a compelling working frame to further test the role of Gadd45 stress sensors in the etiology of preeclampsia, and set the stage for considering novel therapeutic regimens, including p38 inhibitors, for treatment of preeclampsia.
Collapse
Affiliation(s)
- Yali Xiong
- Department of Obstetrics & Gynecology, and Reproductive Sciences, Temple University School of Medicine, Philadelphia, Pennsylvania,USA
| | | | | | | | | | | | | |
Collapse
|
72
|
Carletti MZ, Christenson LK. Rapid effects of LH on gene expression in the mural granulosa cells of mouse periovulatory follicles. Reproduction 2009; 137:843-55. [PMID: 19225042 PMCID: PMC3118672 DOI: 10.1530/rep-08-0457] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
LH acts on periovulatory granulosa cells by activating the PKA pathway as well as other cell signaling cascades to increase the transcription of specific genes necessary for ovulation and luteinization. Collectively, these cell signaling responses occur rapidly (within minutes); however, presently no high throughput studies have reported changes before 4 h after the LH surge. To identify early response genes that are likely critical for initiation of ovulation and luteinization, mouse granulosa cells were collected before and 1 h after hCG. Fifty-seven gene transcripts were significantly (P<0.05) upregulated and three downregulated following hCG. Twenty-four of these transcripts were known to be expressed after the LH/hCG surge at later time points, while 36 were unknown to be expressed by periovulatory granulosa cells. Temporal expression of several transcripts, including the transcription factors Nr4a1, Nr4a2, Egr1, Egr2, Btg1, and Btg2, and the epidermal growth factor (EGF)-like ligands Areg and Ereg, were analyzed by quantitative RT-PCR, and their putative roles in granulosa cell function are discussed. Epigen (Epgn), another member of the family of EGF-like ligands was identified for the first time in granulosa cells as rapidly induced by LH/hCG. We demonstrate that Epgn initiates cumulus expansion, similar to the other EGF-receptor ligands Areg and Ereg. These studies illustrate that a number of changes in gene expression occur in vivo in response to LH, and that many of the differentially expressed genes are transcription factors that we would predict in turn modulate granulosa cell gene expression to ultimately impact the processes of ovulation and luteinization.
Collapse
Affiliation(s)
- Martha Z Carletti
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, 3075 KLSIC, 3901 Rainbow Boulevard, Kansas City, Kansas 66160, USA
| | | |
Collapse
|
73
|
Morrison JP, Ton TV, Collins JB, Switzer RC, Little PB, Morgan DL, Sills RC. Gene Expression Studies Reveal That DNA Damage, Vascular Perturbation, and Inflammation Contribute to the Pathogenesis of Carbonyl Sulfide Neurotoxicity. Toxicol Pathol 2009; 37:502-11. [DOI: 10.1177/0192623309335631] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Carbonyl sulfide (COS) is an odorless gas that produces highly reproducible lesions in the central nervous system. In the present study, the time course for the development of the neurotoxicological lesions was defined and the gene expression changes occurring in the posterior colliculus upon exposure to COS were characterized. Fischer 344 rats were exposed to 0 or 500 ppm COS for one, two, three, four, five, eight, or ten days, six hours per day. On days 1 and 2, no morphological changes were detected; on day 3, 10/10 (100%) rats had necrosis in the posterior colliculi; and on day 4 and later, necrosis was observed in numerous areas of the brain. Important gene expression changes occurring in the posterior colliculi after one or two days of COS exposure that were predictive of the subsequent morphological findings included up-regulation of genes associated with DNA damage and G1/S checkpoint regulation (KLF4, BTG2, GADD45g), apoptosis (TGM2, GADD45g, RIPK3), and vascular mediators (ADAMTS, CTGF, CYR61, VEGFC). Proinflammatory mediators (CCL2, CEBPD) were up-regulated prior to increases in expression of the astrocytic marker GFAP and macrophage marker CSF2rb1. These gene expression findings were predictive of later CNS lesions caused by COS exposure and serve as a model for future investigations into the mechanisms of disease in the central nervous system.
Collapse
Affiliation(s)
- James P. Morrison
- Charles River Laboratories, Pathology Associates, Durham, NC 27703, USA
| | - Thai-Vu Ton
- Cellular and Molecular Pathology Branch, National Institute of Environmental Health Sciences (NIEHS), Research Triangle Park, NC 27709, USA
| | - Jennifer B. Collins
- Laboratory of Molecular Toxicology, National Institute of Environmental Health Sciences (NIEHS), Research Triangle Park, NC 27709, USA
| | | | - Peter B. Little
- Charles River Laboratories, Pathology Associates, Durham, NC 27703, USA
| | - Daniel L. Morgan
- Laboratory of Molecular Toxicology, National Institute of Environmental Health Sciences (NIEHS), Research Triangle Park, NC 27709, USA
| | - Robert C. Sills
- Cellular and Molecular Pathology Branch, National Institute of Environmental Health Sciences (NIEHS), Research Triangle Park, NC 27709, USA
| |
Collapse
|
74
|
D'Angelo V, Crisci S, Casale F, Addeo R, Giuliano M, Pota E, Finsinger P, Baldi A, Rondelli R, Abbruzzese A, Caraglia M, Indolfi P. High Erk-1 activation and Gadd45a expression as prognostic markers in high risk pediatric haemolymphoproliferative diseases. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2009; 28:39. [PMID: 19298651 PMCID: PMC2664791 DOI: 10.1186/1756-9966-28-39] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2008] [Accepted: 03/19/2009] [Indexed: 01/13/2023]
Abstract
Studies on activated cell-signaling pathways responsible for neoplastic transformation are numerous in solid tumors and in adult leukemias. Despite of positive results in the evolution of pediatric hematopoietic neoplasias, there are some high-risk subtypes at worse prognosis. The aim of this study was to asses the expression and activation status of crucial proteins involved in cell-signaling pathways in order to identify molecular alterations responsible for the proliferation and/or escape from apoptosis of leukemic blasts. The quantitative and qualitative expression and activation of Erk-1, c-Jun, Caspase8, and Gadd45a was analyzed, by immunocytochemical (ICC) and western blotting methods, in bone marrow blasts of 72 patients affected by acute myeloid leukemia (AML), T-cell acute lymphoblastic leukemia (ALL) and stage IV non-Hodgkin Lymphoma (NHL). We found an upregulation of Erk-1, Caspase8, c-Jun, and Gadd45a proteins with a constitutive activation in 95.8%, 91.7%, 86.2%, 83.4% of analyzed specimens, respectively. It is worth noting that all AML patients showed an upregulation of all proteins studied and the high expression of GADD45a was associated to the lowest DFS median (p = 0.04). On univariate analysis, only Erk-1 phosphorylation status was found to be correlated with a significantly shorter 5-years DFS in all disease subgroups (p = 0.033) and the lowest DFS median in ALL/NHL subgroup (p = 0.04). Moreover, the simultaneous activation of multiple kinases, as we found for c-Jun and Erk-1 (r = 0.26; p = 0.025), might synergistically enhance survival and proliferation potential of leukemic cells. These results demonstrate an involvement of these proteins in survival of blast cells and, consequently, on relapse percentages of the different subgroups of patients.
Collapse
Affiliation(s)
- Velia D'Angelo
- Pediatric Oncology Service, Pediatric Department, F Fede, II University of Naples, Naples, Italy.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
75
|
Wei YC, Zhou FL, He DL, Bai JR, Hui LY, Wang XY, Nan KJ. The level of oxidative stress and the expression of genes involved in DNA-damage signaling pathways in depressive patients with colorectal carcinoma. J Psychosom Res 2009; 66:259-66. [PMID: 19232240 DOI: 10.1016/j.jpsychores.2008.09.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2008] [Revised: 07/22/2008] [Accepted: 09/02/2008] [Indexed: 12/28/2022]
Abstract
OBJECTIVES This study investigated the connection among the oxidative stress, depression and expression of specific genes involved in DNA-damage signaling pathways in patients with colorectal carcinoma (CRC). METHODS A unique Dukes'C subset of patients with newly diagnosed colorectal adenocarcinoma were assessed using the Hamilton Depression Rating Scale (HAMD), Zung Self-rating Depression Scale (SDS), Zung Self-rating Anxiety Scale (SAS), Symptom Checklist 90 (SCL-90) and other multiple-item questionnaires. Oxidative-stress-related parameters in sera and the expression of genes were monitored during a pretreatment period. RESULTS Eighty-two eligibility cases were divided into 2 groups based on an HAMD score cutoff of 20: the mean score was 28.29 in Group A (depression, n=52) and 16.50 in Group B (nondepression, n=30). The serum total antioxidant capacity, catalase, and superoxide dismutase concentrations were lower in Group A, whereas those of nitric oxide and malondialdehyde were higher in Group A. Importantly, the 8-hydroxy-deoxyguanosine level was higher in Group A than in Group B (P<.05). Microarray analysis revealed that the expressions of p34, PA26, and ABL were higher in Group A, whereas those of HRAD51, CR6, and XRCC3 were higher in Group B. CONCLUSION Oxidative stress is capable of causing neuronal toxicity via lipid peroxidation, DNA damage, and abnormalities of gene expression, and therefore is a possible pathogenic mechanism underlying depression in patients with CRC.
Collapse
Affiliation(s)
- Yong-chang Wei
- Department of Clinical Oncology, First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China.
| | | | | | | | | | | | | |
Collapse
|
76
|
Hoffman B, Liebermann DA. Gadd45 modulation of intrinsic and extrinsic stress responses in myeloid cells. J Cell Physiol 2009; 218:26-31. [PMID: 18780287 DOI: 10.1002/jcp.21582] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Gadd45 proteins modulate signaling in response to physiological and environmental stressors. Expression of gadd45 genes is rapidly induced by different stressors, including differentiation-inducing cytokines and genotoxic stress. Induction of gadd45 genes at the onset of myeloid differentiation suggested that Gadd45 protein(s) play a role in hematopoiesis, yet no apparent abnormalities were observed in either the bone marrow (BM) or peripheral blood compartments of mice deficient for either gadd45a or gadd45b. However, under conditions of hematological stress, including acute stimulation with cytokines, myelo-ablation and inflammation, both gadd45a-deficient and gadd45b-deficient mice exhibited deficiencies. This is discussed within the context of what is known about Gadd45 proteins in stress signaling, hematopoietic development and the innate immune response. Furthermore, myeloid enriched BM cells from gadd45a and gadd45b deficient mice were observed to be more sensitive to ultraviolet radiation (UVC), VP-16 and daunorubicin (DNR) induced apoptosis compared to wild-type (WT) cells, displaying defective G2/M arrest following exposure to UVC and VP-16, but not to DNR. Novel mechanisms that mediate the pro-survival functions of Gadd45 in hematopoietic cells following UV irradiation were demonstrated, involving activation of the Gadd45a-p38-NF-kappaB survival pathway and Gadd45b mediated inhibition of the stress response MKK4-JNK apoptotic pathway. The ramifications regarding the pathogenesis of different leukemias and the response of normal and malignant hematopoietic cells to chemo- and radiation-therapy, as well as other challenges to the hematopoietic compartment, are discussed.
Collapse
Affiliation(s)
- Barbara Hoffman
- Department of Biochemistry, Fels Institute for Cancer Research and Molecular Biology, Temple University School of Medicine, Philadelphia, Pennsylvania, USA.
| | | |
Collapse
|
77
|
Zhang W, Zhao M, Li J, Li X, Zeng Z, Rao Z. Purification, crystallization and preliminary X-ray diffraction analysis of human Gadd45gamma. Acta Crystallogr Sect F Struct Biol Cryst Commun 2008; 64:1070-3. [PMID: 18997345 PMCID: PMC2581695 DOI: 10.1107/s174430910803306x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2008] [Accepted: 10/13/2008] [Indexed: 11/10/2022]
Abstract
Gadd45, MyD118 and CR6 (also termed Gadd45alpha, Gadd45beta and Gadd45gamma, respectively) comprise a family of proteins that play important roles in negative growth control, maintenance of genomic stability, DNA repair, cell-cycle control and apoptosis. Recombinant human Gadd45gamma and its selenomethionine derivative were expressed in an Escherichia coli expression system and purified; they were then crystallized using the hanging-drop vapour-diffusion method. Diffraction-quality crystals were grown at 291 K using PEG 3350 as precipitant. Using synchrotron radiation, the best diffraction data were collected to 2.3 A resolution for native crystals at 100 K; selenomethionyl derivative data were collected to 3.3 A resolution. All the crystals belonged to space group I2(1)3, with approximate unit-cell parameters a = b = c = 126 A.
Collapse
Affiliation(s)
- Wenzheng Zhang
- National Laboratory of Biomacromolecules, Institute of Biophysics (IBP), Chinese Academy of Sciences, Beijing 100101, People’s Republic of China
- Laboratory of Structural Biology, Tsinghua University, Beijing 100084, People’s Republic of China
- College of Life Sciences and Tianjin State Laboratory of Protein Sciences, Nankai University, Tianjin 300071, People’s Republic of China
| | - Mingzhuo Zhao
- School of Physics, Hunan University of Science and Technology, Xiangtan 411201, People’s Republic of China
| | - Jianhui Li
- National Laboratory of Biomacromolecules, Institute of Biophysics (IBP), Chinese Academy of Sciences, Beijing 100101, People’s Republic of China
| | - Xuemei Li
- National Laboratory of Biomacromolecules, Institute of Biophysics (IBP), Chinese Academy of Sciences, Beijing 100101, People’s Republic of China
| | - ZongHao Zeng
- National Laboratory of Biomacromolecules, Institute of Biophysics (IBP), Chinese Academy of Sciences, Beijing 100101, People’s Republic of China
| | - Zihe Rao
- National Laboratory of Biomacromolecules, Institute of Biophysics (IBP), Chinese Academy of Sciences, Beijing 100101, People’s Republic of China
- Laboratory of Structural Biology, Tsinghua University, Beijing 100084, People’s Republic of China
- College of Life Sciences and Tianjin State Laboratory of Protein Sciences, Nankai University, Tianjin 300071, People’s Republic of China
| |
Collapse
|
78
|
Abstract
Gadd45 genes have been implicated in stress signaling in response to physiological or environmental stressors, which results in cell cycle arrest, DNA repair, cell survival and senescence, or apoptosis. Evidence accumulated implies that Gadd45 proteins function as stress sensors is mediated by a complex interplay of physical interactions with other cellular proteins that are implicated in cell cycle regulation and the response of cells to stress. These include PCNA, p21, cdc2/cyclinB1, and the p38 and JNK stress response kinases. What deterministic factors dictate whether Gadd45 and partner proteins function in either cell survival or apoptosis remains to be determined. An attractive working model to consider is that the extent of cellular/DNA damage, in a given cell type, dictates the association of different Gadd45 proteins with particular partner proteins, which determines the outcome.
Collapse
Affiliation(s)
- Dan A Liebermann
- Fels Institute for Cancer Research & Molecular Biology, & Department of Biochemistry, Temple University School of Medicine, Philadelphia, PA 19140, USA.
| | | |
Collapse
|
79
|
Ishibashi M, Nakayama K, Yeasmin S, Katagiri A, Iida K, Nakayama N, Fukumoto M, Miyazaki K. A BTB/POZ gene, NAC-1, a tumor recurrence-associated gene, as a potential target for Taxol resistance in ovarian cancer. Clin Cancer Res 2008; 14:3149-55. [PMID: 18483383 DOI: 10.1158/1078-0432.ccr-07-4358] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE We previously determined that NAC-1, a transcription factor and member of the BTB/POZ gene family, is associated with recurrent ovarian carcinomas. In the current study, we investigated further the relationship between NAC-1 expression and ovarian cancer. EXPERIMENTAL DESIGN NAC-1 expression was assessed by immunohistochemistry, and clinical variables were collected by retrospective chart review. SiRNA system and NAC-1 gene transfection were used to asses NAC-1 function in Taxol resistance in vivo. RESULTS Overexpression of NAC-1 correlated with shorter relapse-free survival in patients with advanced stage (stage III/IV) ovarian carcinoma treated with platinum and taxane chemotherapy. Furthermore, overexpression of NAC-1 in primary tumors predicted recurrence within 6 months after primary cytoreductive surgery followed by standard platinum and taxane chemotherapy. NAC-1 expression levels were measured and compared among the human ovarian cancer cell line (KF28), cisplatin-resistant cell line (KFr13) induced from KF28, and paclitaxel-resistant cell lines (KF28TX and KFr13TX) induced by exposing KF28 and KFr13 to dose-escalating paclitaxel. Overexpression of NAC-1 was observed in only the Taxol-resistant KF28TX and KFr13 TX cells but not in KF28 or cisplatin-resistant KFr13 cells. To confirm that NAC-1 expression was related to Taxol resistance, we used two independent but complementary approaches. NAC-1 gene knockdown in both KF28TX and KFr13TX rescued paclitaxel sensitivity. Additionally, engineered expression of NAC-1 in RK3E cells induced paclitaxel resistance. CONCLUSIONS These results suggest that NAC-1 regulates Taxol resistance in ovarian cancer and may provide an effective target for chemotherapeutic intervention in Taxol-resistant tumors.
Collapse
Affiliation(s)
- Masako Ishibashi
- Department of Obstetrics and Gynecology, Shimane University School of Medicine, Tohoku University, Sendai, Japan
| | | | | | | | | | | | | | | |
Collapse
|
80
|
Schrag JD, Jiralerspong S, Banville M, Jaramillo ML, O'Connor-McCourt MD. The crystal structure and dimerization interface of GADD45gamma. Proc Natl Acad Sci U S A 2008; 105:6566-71. [PMID: 18445651 PMCID: PMC2373355 DOI: 10.1073/pnas.0800086105] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2008] [Indexed: 01/27/2023] Open
Abstract
Gadd45 proteins are recognized as tumor and autoimmune suppressors whose expression can be induced by genotoxic stresses. These proteins are involved in cell cycle control, growth arrest, and apoptosis through interactions with a wide variety of binding partners. We report here the crystal structure of Gadd45gamma, which reveals a fold comprising an alphabetaalpha sandwich with a central five-stranded mixed beta-sheet with alpha-helices packed on either side. Based on crystallographic symmetry we identified the dimer interface of Gadd45gamma dimers by generating point mutants that compromised dimerization while leaving the tertiary structure of the monomer intact. The dimer interface comprises a four-helix bundle involving residues that are the most highly conserved among Gadd45 isoforms. Cell-based assays using these point mutants demonstrate that dimerization is essential for growth inhibition. This structural information provides a new context for evaluation of the plethora of protein-protein interactions that govern the many functions of the Gadd45 family of proteins.
Collapse
Affiliation(s)
- Joseph D Schrag
- Biotechnology Research Institute, National Research Council Canada, 6100 Royalmount Avenue, Montreal, QC, Canada.
| | | | | | | | | |
Collapse
|
81
|
Hoffman B, Liebermann DA. Role of gadd45 in myeloid cells in response to hematopoietic stress. Blood Cells Mol Dis 2007; 39:344-7. [PMID: 17686638 PMCID: PMC2684334 DOI: 10.1016/j.bcmd.2007.06.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2007] [Accepted: 06/21/2007] [Indexed: 12/23/2022]
Abstract
The gadd45 family of genes is rapidly induced by different stressors, including differentiation-inducing cytokines, and there is a large body of evidence that their cognate proteins are key players in cellular stress responses. Induction of gadd45 genes at the onset of myeloid differentiation suggested that Gadd45 protein(s) play a role in hematopoiesis, yet no apparent abnormalities were observed in either the bone marrow or peripheral blood compartments of mice deficient for either gadd45a or gadd45b. However, under conditions of hematological stress, including acute stimulation with cytokines, myelo-ablation and inflammation, both gadd45a-deficient and gadd45b-deficient mice exhibited deficiencies. This topic is discussed within the context of what is known about Gadd45 proteins in stress signaling, hematopoietic development and the innate immune response.
Collapse
Affiliation(s)
- Barbara Hoffman
- Fels Institute for Cancer Research and Molecular Biology, Department of Biochemistry, 3307 N. Broad Street, Temple University School of Medicine, Philadelphia, PA 19140, USA.
| | | |
Collapse
|
82
|
Liebermann DA, Hoffman B. Gadd45 in the response of hematopoietic cells to genotoxic stress. Blood Cells Mol Dis 2007; 39:329-35. [PMID: 17659913 PMCID: PMC3268059 DOI: 10.1016/j.bcmd.2007.06.006] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2007] [Accepted: 06/08/2007] [Indexed: 10/23/2022]
Abstract
Gadd45 genes have been implicated in stress signaling in response to physiological or environmental stressors, which results in either cell cycle arrest, DNA repair, cell survival and senescence, or apoptosis. Evidence accumulated implies that Gadd45 proteins function as stress sensors is mediated by a complex interplay of physical interactions with other cellular proteins that are implicated in cell cycle regulation and the response of cells to stress. These include PCNA, p21, cdc2/cyclinB1, and the p38 and JNK stress response kinases. Recently we have taken advantage of gadd45a and gadd45b deficient mice to determine the role gadd45a and gadd45b play in the response of bone marrow (BM) cells to genotoxic stress. Myeloid enriched BM cells from gadd45a and gadd45b deficient mice were observed to be more sensitive to ultraviolet radiation (UVC), VP-16, and daunorubicin (DNR)-induced apoptosis compared to wild-type (wt) cells. The increased apoptosis in gadd45a and gadd45b deficient cells was evident also by enhanced activation of caspase-3 and PARP cleavage and decreased expression of cIAP-1, Bcl-2, and Bcl-xL compared to wt cells. Reintroduction of gadd45 into gadd45 deficient BM cells restored the wt apoptotic phenotype. Both gadd45a and gadd45b deficient BM cells also displayed defective G2/M arrest following exposure to UVC and VP-16, but not to DNR, indicating the existence of different G2/M checkpoints that are either dependent or independent of gadd45. Additional work conducted in this laboratory has shown that in hematopoietic cells exposed to UV radiation gaddd45a and gadd45b cooperate to promote cell survival via two distinct signaling pathways involving activation of the Gadd45a-p38-NF-kB-mediated survival pathway and Gadd45b-mediated inhibition of the stress response MKK4-JNK pathway [O. Kovalsky, F.D. Lung, P.P. Roller, A.J. Fornace, Jr. Oligomerization of human Gadd45a protein. J Biol Chem. 276 (42) (2001) 39330-39339]. These data reveal novel mechanisms that mediate the pro-survival functions of gadd45a and gadd45b in hematopoietic cells following UV irradiation. Taken together, these findings identify gadd45a and gadd45b as anti-apoptotic genes that increase the survival of hematopoietic cells following exposure to UV radiation and certain anticancer drugs. This knowledge should contribute to a greater understanding of the genetic events involved in the pathogenesis of different leukemias and response of normal and malignant hematopoietic cells to chemo and radiation therapy. These observations set the stage to evaluate, in clinically relevant settings, the impact that the status of gadd45a and gadd45b might have on the efficacy of DNR or VP-16 in killing leukemic cells.
Collapse
Affiliation(s)
- Dan A Liebermann
- Fels Institute for Cancer Research and Molecular Biology, and Department of Biochemistry, Temple University School of Medicine, 3307 N Broad St. Philadelphia, PA 19140, USA.
| | | |
Collapse
|
83
|
Nakayama K, Nakayama N, Wang TL, Shih IM. NAC-1 controls cell growth and survival by repressing transcription of Gadd45GIP1, a candidate tumor suppressor. Cancer Res 2007; 67:8058-64. [PMID: 17804717 DOI: 10.1158/0008-5472.can-07-1357] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cancer mortality and morbidity are primarily related to recurrent tumors, and characterization of recurrence-associated genes should illuminate fundamental properties of tumor progression and provide new therapeutic targets. We have previously identified NAC-1, a member of the BTB/POZ gene family and a transcription repressor, as a gene associated with recurrent ovarian carcinomas after chemotherapy. We further showed that homodimerization of NAC-1 proteins is essential for tumor growth and survival. In this study, we applied serial analysis of gene expression and identified growth arrest and DNA-damage-inducible 45-gamma interacting protein (Gadd45GIP1) as one of the downstream genes negatively regulated by NAC-1. NAC-1 knockdown in both SKOV3 and HeLa cells that expressed abundant endogenous NAC-1 induced Gadd45GIP1 expression transcriptionally; on the other hand, engineered expression of NAC-1 in NAC-1-negative RK3E and HEK293 cells suppressed endogenous Gadd45GIP1 expression. In NAC-1-expressing tumor cells, induction of dominant negative NAC-1 conferred a growth-inhibitory effect that can be partially reversed by Gadd45GIP1 knockdown. Induced Gadd45GIP1 expression resulted in growth arrest in SKOV3 and HeLa cells both in vitro and in vivo. In summary, NAC-1 contributes to tumor growth and survival by at least inhibiting Gadd45GIP1 expression, which has a tumor suppressor effect in cancer cells.
Collapse
Affiliation(s)
- Kentaro Nakayama
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD 21231, USA
| | | | | | | |
Collapse
|
84
|
Campanero MR, Herrero A, Calvo V. The histone deacetylase inhibitor trichostatin A induces GADD45 gamma expression via Oct and NF-Y binding sites. Oncogene 2007; 27:1263-72. [PMID: 17724474 DOI: 10.1038/sj.onc.1210735] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The GADD45gamma protein is a potential tumor suppressor whose expression is reduced in several tumors. However, very little is known about the regulation of its expression. We have determined that the most relevant region of its promoter lies between nucleotides -112 and -54, relative to the transcription start site. Putative Oct and NF-Y elements were found in this region and factors belonging to these families interacted with these elements in vitro and with the promoter in vivo. Mutation of these elements reduced the basal activity of the promoter, suggesting that both sites are essential for basal expression. These factors interact with chromatin modifying proteins and we found that histone deacetylase 1 or silencing mediator for retinoid and thyroid hormone receptor overexpression reduced the basal activity of the promoter. In contrast, forced expression of the histone acetylase protein PCAF or cell treatment with the HDAC inhibitor trichostatin A increased GADD45gamma mRNA levels and induced GADD45gamma promoter activity through its Oct and NF-Y elements. Moreover, ectopic expression of a dominant-negative version of NF-YA strongly inhibited trichostatin A-induced activation of the promoter. Our data strongly suggest that inhibition of deacetylase activity could potentially be used for treatment of tumors where GADD45gamma expression is reduced.
Collapse
Affiliation(s)
- M R Campanero
- Instituto de Investigaciones Biomédicas, CSIC-UAM, Arturo Duperier, Madrid, Spain
| | | | | |
Collapse
|
85
|
Qiu W, Zhou B, Chu PG, Luh F, Yen Y. The induction of growth arrest DNA damage-inducible gene 45 beta in human hepatoma cell lines by S-adenosylmethionine. THE AMERICAN JOURNAL OF PATHOLOGY 2007; 171:287-96. [PMID: 17591973 PMCID: PMC1941600 DOI: 10.2353/ajpath.2007.070121] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Down-regulation of GADD45beta, which is known to influence cell growth control, apoptosis, and cellular response to DNA damage, has been verified to be specific in hepatocellular carcinoma and consistent with the degree of malignancy. Here, we identified promoter elements for several transcriptional factors in the proximal promoter of GADD45beta using the luciferase assay. As a methyl donor for biological transmethylation reactions, S-adenosylmethionine (SAMe) could restore GADD45beta expression in HepG2 in Northern blot analyses and quantitative real-time polymerase chain reaction. Activity and binding capacity of nuclear factor (NF)-kappaB were confirmed to be specifically induced by SAMe, as evidenced by electrophoretic mobility shift assay, enzyme-linked immunosorbent assay, and a decrease of IkappaBalpha in Western blot analyses. The most upstream NF-kappaB-binding site was crucial for transcriptional activation. In contrast to NF-kappaB, although there is an E2F-1-binding site adjacent to the NF-kappaB sites, treatment with SAMe could not induce E2F-1-binding activity. Despite showing a similar GADD45beta promoter regulatory pattern as HepG2 (p53 wild type), Hep3B (p53-null) did not exhibit GADD45beta induction by SAMe, and the induction could be partially recovered on reconstituting p53 in Hep3B. Thus, our results suggest that GADD45beta induction by SAMe via NF-kappaB may represent a novel mechanism of SAMe-mediated hepatoprotection, with p53 playing an important role.
Collapse
Affiliation(s)
- Weihua Qiu
- Department of Clinical and Molecular Pharmacology, City of Hope National Medical Center, Duarte, CA 91010-3000, USA
| | | | | | | | | |
Collapse
|
86
|
Hesling C, Oliveira CC, Castilho BA, Zanchin NIT. The Shwachman-Bodian-Diamond syndrome associated protein interacts with HsNip7 and its down-regulation affects gene expression at the transcriptional and translational levels. Exp Cell Res 2007; 313:4180-95. [PMID: 17643419 DOI: 10.1016/j.yexcr.2007.06.024] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2007] [Revised: 06/27/2007] [Accepted: 06/28/2007] [Indexed: 02/08/2023]
Abstract
The Shwachman-Bodian-Diamond syndrome (SDS) is an autosomal disorder with pleiotropic phenotypes including pancreatic, skeletal and bone marrow deficiencies and predisposition to hematological dysfunctions. SDS has been associated to mutations in the SBDS gene, encoding a highly conserved protein that was shown to function in ribosome biogenesis in yeast. In this work, we show that SBDS is found in complexes containing the human Nip7 ortholog. Analysis of pre-rRNA processing in a stable SBDS knock-down HEK293-derivative cell line revealed accumulation of a small RNA which is a further indication of SBDS involvement in rRNA biosynthesis. Global transcription and polysome-bound mRNA profiling revealed that SBDS knock-down affects expression of critical genes involved in brain development and function, bone morphogenesis, blood cell proliferation and differentiation, and cell adhesion. Expression of a group of growth and signal transduction factors and of DNA damage response genes is also affected. In SBDS knock-down cells, 34 mRNAs showed decreased and 55 mRNAs showed increased association to polysomes, among which is a group encoding proteins involved in alternative splicing and RNA modification. These results indicate that SBDS is required for accurate expression of genes important for proper brain, skeletal, and blood cell development.
Collapse
Affiliation(s)
- Cédric Hesling
- Center for Structural Molecular Biology, Brazilian Synchrotron Light Laboratory, LNLS Rua Giuseppe Maximo Scolfaro 10000, PO Box 6192, CEP 13084-971, Campinas, SP, Brazil
| | | | | | | |
Collapse
|
87
|
Jirmanova L, Jankovic D, Fornace AJ, Ashwell JD. Gadd45α Regulates p38-Dependent Dendritic Cell Cytokine Production and Th1 Differentiation. THE JOURNAL OF IMMUNOLOGY 2007; 178:4153-8. [PMID: 17371971 DOI: 10.4049/jimmunol.178.7.4153] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Gadd45alpha inhibits the activation of p38 by the T cell alternative pathway involving phosphorylation of p38 Tyr(323). Given that T cell p38 may play a role in Th1 development, the response to Th-skewing Ags was analyzed in Gadd45alpha(-/-) mice. Despite constitutively increased p38 activity in Gadd45alpha(-/-) T cells, the Th1 immune response to Toxoplasma gondii Ag (STAg), was diminished. In contrast to T cells, dendritic cells (DC) lacked the alternative p38 activation pathway. Gadd45alpha(-/-) DCs responded to STAg with low levels of MAP kinase cascade-dependent p38 activation, IL-12 production, and CD40 expression. Wild-type T cells transferred into Gadd45alpha(-/-) recipients had a diminished Th1 response to STAg, whereas Gadd45alpha(-/-) T cells transferred into wild-type hosts behaved normally. Therefore, Gadd45alpha has tissue-specific and opposing functions on p38 activity, and Gadd45alpha-regulated p38 activation in DCs is a critical event in Th1 polarization in vivo.
Collapse
Affiliation(s)
- Ludmila Jirmanova
- Laboratory of Immune Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
88
|
Cai Q, Dmitrieva NI, Ferraris JD, Michea LF, Salvador JM, Hollander MC, Fornace AJ, Fenton RA, Burg MB. Effects of expression of p53 and Gadd45 on osmotic tolerance of renal inner medullary cells. Am J Physiol Renal Physiol 2006; 291:F341-9. [PMID: 16597604 DOI: 10.1152/ajprenal.00518.2005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The response of renal inner medullary (IM) collecting duct cells (mIMCD3) to high NaCl involves increased expression of Gadd45 and p53, both of which have important effects on growth and survival of the cells. However, mIMCD3 cells, being immortalized by SV40, proliferate rapidly, which is known to sensitize cells to high NaCl, whereas IM cells in situ proliferate very slowly and survive much higher levels of NaCl. In the present studies, we have examined the importance of Gadd45 and p53 for survival of normal IM cells in their usual high-NaCl environment by using more slowly proliferating second-passage mouse inner medullary epithelial (p2mIME) cells and comparing cells from wild-type and gene knockout mice. Acutely elevating NaCl (and/or urea) reduces Gadd45a, but increases Gadd45b and Gadd45g mRNA, depending on the mix of NaCl and urea and the rate of increase of osmolality. Nevertheless, p2mIME cells from Gadd45b−/−, Gadd45g−/−, and Gadd45bg−/− mice survive elevation of NaCl (or urea) essentially the same as do wild-type cells. p53−/− Cells do not tolerate as high a concentration of NaCl (or urea) as p53+/+ cells, but urinary concentrating ability of p53−/− mice is normal, as is the histology of inner medullas from p53−/− and Gadd45abg−/− mice. Thus although Gadd45 and p53 may play roles in osmotically stressed mIMCD3 cells, we do not find that their expression makes an important difference, either for Gadd45 in slower proliferating p2mIME cells or for Gadd45 or p53 in normal inner medullary epithelial cells in situ.
Collapse
Affiliation(s)
- Qi Cai
- Laboratory of Kidney and Electrolyte Metabolism, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892-1603, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
89
|
Gupta SK, Gupta M, Hoffman B, Liebermann DA. Hematopoietic cells from gadd45a-deficient and gadd45b-deficient mice exhibit impaired stress responses to acute stimulation with cytokines, myeloablation and inflammation. Oncogene 2006; 25:5537-46. [PMID: 16732331 DOI: 10.1038/sj.onc.1209555] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The gadd45 family of gene(s) is rapidly induced by genotoxic stress or by differentiation-inducing cytokines. Using bone marrow (BM) from gadd45a-/-, gadd45b-/- and wild-type (wt) mice, we investigated their role in stress responses of myeloid cells to acute stimulation with differentiating cytokines, myelotoxic agents and inflammatory substances. Bone marrow cells from gadd45a-/- and gadd45b-/- mice displayed compromised myeloid differentiation and higher apoptosis in vitro, following acute stimulation with a variety of differentiating cytokines. Intriguingly, gadd45a-/- and gadd45b-/- colony forming units granulocyte/macrophage progenitors displayed prolonged proliferation capacity compared to wt controls upon re-plating in methylcellulose supplemented with interleukin-3. The recovery of the BM myeloid compartment following 5-Fluorouracil-induced myelo-ablation was much slower in gadd45a-/- and gadd45b-/- mice compared to wt controls. Furthermore, the response of myeloid cells to inflammatory stress, inflicted via intraperitoneal administration of sodium caseinate was impaired in gadd45a-/- and gadd45b-/- mice compared to age-matched wt mice, as indicated by lower percentage of Gr-1-positive cells in the BM and lower number of myeloid cells in peritoneal exudates. Overall, these data indicate that both gadd45a and gadd45b play a role in modulating physiological stress responses of myeloid cells to acute stimulation with differentiating cytokines, myelo-ablation and inflammation. These findings should aid in understanding the response of normal and malignant hematopoietic cells to physiological and chemical stressors including anticancer agents.
Collapse
Affiliation(s)
- S K Gupta
- Department of Biochemistry, Fels Institute for Cancer Research & Molecular Biology, Temple University School of Medicine, Philadelphia, PA 19104, USA
| | | | | | | |
Collapse
|
90
|
Gupta M, Gupta SK, Hoffman B, Liebermann DA. Gadd45a and Gadd45b protect hematopoietic cells from UV-induced apoptosis via distinct signaling pathways, including p38 activation and JNK inhibition. J Biol Chem 2006; 281:17552-8. [PMID: 16636063 DOI: 10.1074/jbc.m600950200] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Gadd45a, Gadd45b, and Gadd45g (Gadd45/MyD118/CR6) are genes that are rapidly induced by genotoxic stress and have been implicated in genotoxic stress-induced responses, notably in apoptosis. Recently, using myeloid-enriched bone marrow (BM) cells obtained from wild-type (WT), Gadd45a-deficient, and Gadd45b-deficient mice, we have shown that in hematopoietic cells Gadd45a and Gadd45b play a survival function to protect hematopoietic cells from DNA-damaging agents, including ultra violet (UV)-induced apoptosis. The present study was undertaken to decipher the molecular paths that mediate the survival functions of Gadd45a and Gadd45b against genotoxic stress induced by UV radiation. It is shown that in hematopoietic cells exposed to UV radiation Gaddd45a and Gadd45b cooperate to promote cell survival via two distinct signaling pathways involving activation of the GADD45a-p38-NF-kappaB-mediated survival pathway and GADD45b-mediated inhibition of the stress response MKK4-JNK pathway.
Collapse
Affiliation(s)
- Mamta Gupta
- Fels Institute of Cancer Research and Molecular Biology and Department of Biochemistry, Temple University School of Medicine, 3307 N. Broad Street, Philadelphia, PA 19140, USA
| | | | | | | |
Collapse
|
91
|
Huo JS, McEachin RC, Cui TX, Duggal NK, Hai T, States DJ, Schwartz J. Profiles of Growth Hormone (GH)-regulated Genes Reveal Time-dependent Responses and Identify a Mechanism for Regulation of Activating Transcription Factor 3 By GH. J Biol Chem 2006; 281:4132-41. [PMID: 16326703 DOI: 10.1074/jbc.m508492200] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In examination of mechanisms regulating metabolic responses to growth hormone (GH), microarray analysis identified 561 probe sets showing time-dependent patterns of expression in GH-treated 3T3-F442A adipocytes. Biological functions significantly over-represented among GH-regulated genes include regulators of transcription at early times, and lipid biosynthesis, cholesterol biosynthesis, and mediators of immune responses at later times (48 h). One novel GH-induced gene encodes activating transcription factor 3 (ATF3). Atf3 mRNA expression and promoter activity were stimulated by GH. Genes for ATF3 and growth arrest and DNA damage-inducible gene 45 gamma (GADD45gamma) showed similar time-dependent patterns of responses to GH, suggesting similar regulatory mechanisms. A conserved sequence in the promoters of the Atf3 and Gadd45gamma genes contains a CCAAT/enhancer-binding protein (C/EBP) site previously observed in the Gadd45gamma promoter, suggesting a novel corresponding C/EBP site in the Atf3 promoter. C/EBPbeta was found to bind to the predicted Atf3 C/EBP site, and C/EBPbeta enhanced the activation of the wild-type Atf3 promoter. Mutation of the predicted Atf3 C/EBP site disrupted Atf3 promoter activation not only by C/EBPbeta but also by GH. These findings suggest that GH regulates transcription of Atf3 through a mechanism utilizing factors, such as C/EBPbeta, which bind to a novel C/EBP site.
Collapse
Affiliation(s)
- Jeffrey S Huo
- Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, 48109, USA
| | | | | | | | | | | | | |
Collapse
|
92
|
Gupta M, Gupta SK, Balliet AG, Hollander MC, Fornace AJ, Hoffman B, Liebermann DA. Hematopoietic cells from Gadd45a- and Gadd45b-deficient mice are sensitized to genotoxic-stress-induced apoptosis. Oncogene 2005; 24:7170-9. [PMID: 16170381 DOI: 10.1038/sj.onc.1208847] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2005] [Revised: 05/12/2005] [Accepted: 05/12/2005] [Indexed: 12/20/2022]
Abstract
Gadd45a, gadd45b and gadd45g (Gadd45/MyD118/CR6) are genes that are rapidly induced by genotoxic stress. However, the exact function of Gadd45 proteins in the response of mammalian cells to genotoxic stress is unclear. Here, advantage was taken of gadd45a- and gadd45b-deficient mice to determine the role gadd45a and gadd45b play in the response of bone marrow (BM) cells to genotoxic stress. BM cells from gadd45a- and gadd45b-deficient mice were observed to be more sensitive to ultraviolet radiation chemotherapy (UVC), VP-16 and daunorubicin (DNR)-induced apoptosis compared to wild-type (wt) cells. The increased apoptosis in gadd45a- and gadd45b-deficient cells was evident also by enhanced activation of caspase-3 and poly-ADP-ribose polymerase cleavage and decreased expression of c-inhibitor of apoptotic protein-1, Bcl-2, Bcl-xL compared to wt cells. Reintroduction of gadd45 into gadd45-deficient BM cells restored the wt apoptotic phenotype. Both gadd45a- and gadd45b-deficient BM cells also displayed defective G2/M arrest following exposure to UVC and VP-16, but not to DNR, indicating the existence of different G2/M checkpoints that are either dependent or independent of gadd45. Taken together, these findings identify gadd45a and gadd45b as anti-apoptotic genes that increase the survival of hematopoietic cells following exposure to UV radiation and certain anticancer drugs.
Collapse
Affiliation(s)
- Mamta Gupta
- Fels Institute of Cancer Research and Molecular Biology, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | | | | | | | | | | | | |
Collapse
|
93
|
Lum CT, Yang ZF, Li HY, Wai-Yin Sun R, Fan ST, Poon RTP, Lin MCM, Che CM, Kung HF. Gold(III) compound is a novel chemocytotoxic agent for hepatocellular carcinoma. Int J Cancer 2005; 118:1527-38. [PMID: 16206274 DOI: 10.1002/ijc.21484] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Recently, a series of gold(III) meso-tetraarylporphyrins that are stable against demetallation in physiological conditions have been synthesized. In the present study, the antitumor effects of one of these compounds, gold(III) meso-tetraarylporphyrin 1a (gold-1a) was investigated in an orthotopic rat hepatocellular carcinoma (HCC) model as well as using a HCC cell line. The rat HCC model was induced by injection of rat hepatoma cells, McA-RH7777, into the left lobe of the liver. Seven days after tumor cell inoculation, gold-1a was injected directly into the tumor nodule at different doses, followed by the same doses via intraperitoneal injection twice a week. Gold-1a administration significantly prolonged the survival of HCC-bearing rats. Importantly, gold-1a induced necrosis as well as apoptosis in the tumor tissues, but not in the normal liver tissues. Furthermore, gold-1a treatment neither caused significant drop in body weight of the rats nor affected plasma aspartate aminotransferase level. In the in vitro studies, we observed that gold-1a treatment inhibited the proliferation of McA-RH7777 cells. Gold-1a upregulated genes that increase apoptosis, stabilize p53, decrease proliferation and downregulated genes playing roles in angiogenesis, invasion, and metabolism, as demonstrated by microarray. In particular, the compound upregulated 2 members of the growth arrest and DNA damage (Gadd) inducible gene family, Gadd34 and Gadd153. Suppression of Gadd34 and Gadd153 in McA-RH7777 cells by small hairpin RNA reduced the gold-1a-induced apoptosis and growth inhibition, indicating that gold-1a mediated its effects via upregulation of Gadd34 and Gadd153. Results from our study demonstrated that gold-1a might be a novel promising chemocytotoxic agent for treating HCC.
Collapse
Affiliation(s)
- Ching Tung Lum
- Department of Chemistry and Open Laboratory of Chemical Biology of the Institute of Molecular Technology for Drug Discovery and Synthesis, The University of Hong Kong, Hong Kong, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
94
|
Minematsu T, Miyai S, Kajiya H, Suzuki M, Sanno N, Takekoshi S, Teramoto A, Osamura RY. Recent progress in studies of pituitary tumor pathogenesis. Endocrine 2005; 28:37-41. [PMID: 16311408 DOI: 10.1385/endo:28:1:037] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2005] [Accepted: 06/28/2005] [Indexed: 11/11/2022]
Abstract
The mechanisms of tumorigenesis of the human pituitary have been elucidated to a limited extent. Classically, pituitary tumor formation was shown to be induced by thyroidectomy and estrogen administration. Molecular biological and immunohistochemical studies have revealed several aspects of pituitary tumorigenesis. Translineage cell differentiation has been shown to be induced by the aberrant expression of transcription factors and co-factors, such as Pit-1, Prop-1, and estrogen receptor. Defects or overexpression of cell cycle regulators, such as CDK inhibitors, PTTG, and GADD45gamma, result in the abnormal proliferation of pituitary cells. Recently, epigenetic regulation has been suggested to be related to pituitary tumor formation. This article presents a review and update of recent progress in studies of the development and differentiation of pituitary tumors.
Collapse
Affiliation(s)
- Takeo Minematsu
- Department of Pathology, Tokai University School of Medicine. Boseidai, Isehara, Kanagawa 259-1193, Japan
| | | | | | | | | | | | | | | |
Collapse
|
95
|
Ying J, Srivastava G, Hsieh WS, Gao Z, Murray P, Liao SK, Ambinder R, Tao Q. The Stress-Responsive Gene GADD45G Is a Functional Tumor Suppressor, with Its Response to Environmental Stresses Frequently Disrupted Epigenetically in Multiple Tumors. Clin Cancer Res 2005; 11:6442-9. [PMID: 16166418 DOI: 10.1158/1078-0432.ccr-05-0267] [Citation(s) in RCA: 168] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The CpG island of GADD45G was identified as a target sequence during the identification of hypermethylated genes using methylation-sensitive representational difference analysis combined with 5-aza-2'-deoxycytidine demethylation. Located at the commonly deleted region 9q22, GADD45G is a member of the DNA damage-inducible gene family. In response to stress shock, GADD45G inhibits cell growth and induces apoptosis. Same as other GADD45 members, GADD45G is ubiquitously expressed in all normal adult and fetal tissues. However, its transcriptional silencing or down-regulation and promoter hypermethylation were frequently detected in tumor cell lines, including 11 of 13 (85%) non-Hodgkin's lymphoma, 3 of 6 (50%) Hodgkin's lymphoma, 8 of 11 (73%) nasopharyngeal carcinoma, 2 of 4 (50%) cervical carcinoma, 5 of 17 (29%) esophageal carcinoma, and 2 of 5 (40%) lung carcinoma and other cell lines but not in any immortalized normal epithelial cell line, normal tissue, or peripheral blood mononuclear cells. The silencing of GADD45G could be reversed by 5-aza-2'-deoxycytidine or genetic double knockout of DNMT1 and DNMT3B, indicating a direct epigenetic mechanism. Aberrant methylation was further frequently detected in primary lymphomas although less frequently in primary carcinomas. Only one single sequence change in the coding region was detected in 1 of 25 cell lines examined, indicating that genetic inactivation of GADD45G is very rare. GADD45G could be induced by heat shock or UV irradiation in unmethylated cell lines; however, this stress response was abolished when its promoter becomes hypermethylated. Ectopic expression of GADD45G strongly suppressed tumor cell growth and colony formation in silenced cell lines. These results show that GADD45G can act as a functional new-age tumor suppressor but being frequently inactivated epigenetically in multiple tumors.
Collapse
|
96
|
Han J, Yang L, Puri RK. Analysis of target genes induced by IL-13 cytotoxin in human glioblastoma cells. J Neurooncol 2005; 72:35-46. [PMID: 15803373 DOI: 10.1007/s11060-004-3119-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
IL-13 cytotoxin comprised of IL-13 and a mutated form of Pseudomonas exotoxin (fusion protein termed IL-13-PE38QQR) has been shown to inhibit protein synthesis leading to necrotic and apoptotic cell death in glioblastoma cells that express high levels of interleukin-13 receptors (IL-13R). To identify target genes of cell death and other cellular genes with IL-13 receptors in glioblastoma cells, we utilized the cDNA microarrays to analyze global gene expression profiles after IL-13 cytotoxin and IL-13 treatment. IL-13 cytotoxin mediated cytotoxicity to U251 cells in a dose-dependent manner. Hierarchical cluster analysis of differentially expressed genes in U251 glioma cells at different time points after IL-13 cytotoxin treatment showed three major groups, each representing a specific expression pattern. Randomly selected differentially expressed genes from each group were confirmed by RT-PCR analysis. Most down-regulated genes belong to cell adhesion, motility, angiogenesis, DNA repair, and metabolic pathways. While up-regulated genes belong to cell cycle arrest, apoptosis, signaling and various metabolic pathways. Unexpectedly, at early time points, both IL-13 and IL-13 cytotoxin induced several genes belonging to different pathways most notably IL-8, DIO2, END1, and ALDH1A3 indicating that these genes are early response genes and their products may be associated with IL-13R. In addition, IL-13 cytotoxin induced IL-13Ralpha2 mRNA expression during the treatment in glioma cells. Our results indicate that novel cellular genes are involved with IL-13 receptors and that IL-13 cytotoxin induced cell death involves various target genes in human glioblastoma cells. On going studies will determine the role of associated genes and their products in the IL-13R functions in glioma cells.
Collapse
Affiliation(s)
- Jing Han
- Laboratory of Molecular Tumor Biology, CBER/NCI Genomics Program, Division of Cellular and Gene Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, CBER/FDA, NIH, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
97
|
Qiu W, Zhou B, Zou H, Liu X, Chu PG, Lopez R, Shih J, Chung C, Yen Y. Hypermethylation of growth arrest DNA damage-inducible gene 45 beta promoter in human hepatocellular carcinoma. THE AMERICAN JOURNAL OF PATHOLOGY 2004; 165:1689-99. [PMID: 15509538 PMCID: PMC1618679 DOI: 10.1016/s0002-9440(10)63425-6] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/22/2004] [Indexed: 01/02/2023]
Abstract
Growth arrest DNA damage-inducible gene 45 beta (GADD45beta) has been known to regulate cell growth, apoptotic cell death, and cellular response to DNA damage. Down-regulation of GADD45beta has been verified to be specific in hepatocellular cancer (HCC) and consistent with the p53 mutant, and degree of malignancy of HCC. This observation was further confirmed by eight HCC cell lines and paired human normal and HCC tumor tissues by Northern blot and immunohistochemistry. To better understand the transcription regulation, we cloned and characterized the active promoter region of GADD45beta in luciferase-expressing vector. Using the luciferase assay, three nuclear factor-kappaB binding sites, one E2F-1 binding site, and one putative inhibition region were identified in the proximal promoter of GADD45beta from -865/+6. Of interest, no marked putative binding sites could be identified in the inhibition region between -520/-470, which corresponds to CpG-rich region. The demethylating agent 5-Aza-dC was used and demonstrated restoration of the GADD45beta expression in HepG2 in a dose-dependent manner. The methylation status in the promoter was further examined in one normal liver cell, eight HCC cell lines, eight HCC tissues, and five corresponding nonneoplastic liver tissues. Methylation-specific polymerase chain reaction and sequencing of the sodium bisulfite-treated DNA from HCC cell lines and HCC samples revealed a high percentage of hypermethylation of the CpG islands. Comparatively, the five nonneoplastic correspondent liver tissues demonstrated very low levels of methylation. To further understand the functional role of GADD45beta under-expression in HCC the GADD45beta cDNA constructed plasmid was transfected into HepG2 (p53 WT) and Hep3B (p53 null) cells. The transforming growth factor-beta was assayed by enzyme-linked immunosorbent assay, which revealed a decrease to 40% in transfectant of HepG2, but no significant change in Hep3B transfectant. Whereas, Hep3B co-transfected with p53 and GADD45beta demonstrated significantly reduced transforming growth factor-beta. The colony formation was further examined and revealed a decrease in HepG2-GADD45beta transfectant and Hep3B-p53/GADD45beta co-transfectant. These findings suggested that methylation might play a crucial role in the epigenetic regulation of GADD45beta in hepatocyte transformation that may be directed by p53 status. Thus, our results provided a deeper understanding of the molecular mechanism of GADD45beta down-regulation in HCC.
Collapse
Affiliation(s)
- Weihua Qiu
- Department of Medical Oncology and Therapeutic Research, City of Hope National Medical Center, 1500 E. Duarte Rd., Duarte, CA 91010-3000, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
98
|
Papa S, Zazzeroni F, Pham CG, Bubici C, Franzoso G. Linking JNK signaling to NF-kappaB: a key to survival. J Cell Sci 2004; 117:5197-208. [PMID: 15483317 DOI: 10.1242/jcs.01483] [Citation(s) in RCA: 237] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
In addition to marshalling immune and inflammatory responses, transcription factors of the NF-kappaB family control cell survival. This control is crucial to a wide range of biological processes, including B and T lymphopoiesis, adaptive immunity, oncogenesis and cancer chemoresistance. During an inflammatory response, NF-kappaB activation antagonizes apoptosis induced by tumor necrosis factor (TNF)-alpha, a protective activity that involves suppression of the Jun N-terminal kinase (JNK) cascade. This suppression can involve upregulation of the Gadd45-family member Gadd45beta/Myd118, which associates with the JNK kinase MKK7/JNKK2 and blocks its catalytic activity. Upregulation of XIAP, A20 and blockers of reactive oxygen species (ROS) appear to be important additional means by which NF-kappaB blunts JNK signaling. These recent findings might open up entirely new avenues for therapeutic intervention in chronic inflammatory diseases and certain cancers; indeed, the Gadd45beta-MKK7 interaction might be a key target for such intervention.
Collapse
Affiliation(s)
- Salvatore Papa
- The Ben May Institute for Cancer Research, The University of Chicago, 924 East 57th Street, Chicago, IL 60637, USA
| | | | | | | | | |
Collapse
|
99
|
Mak SK, Kültz D. Gadd45 Proteins Induce G2/M Arrest and Modulate Apoptosis in Kidney Cells Exposed to Hyperosmotic Stress. J Biol Chem 2004; 279:39075-84. [PMID: 15262964 DOI: 10.1074/jbc.m406643200] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Gadd45 proteins are induced by hyperosmolality in renal inner medullary (IM) cells, but their role for cell adaptation to osmotic stress is not known. We show that a cell line derived from murine renal IM cells responds to moderate hyperosmotic stress (540 mosmol/kg) by activation of G(2)/M arrest without significant apoptosis. If the severity of hyperosmotic stress exceeds the tolerance limit of this cell line (620 mosmol/kg) apoptosis is strongly induced. Using transient overexpression of ectopic Gadd45 proteins and simultaneous analysis of transfected versus non-transfected cells by laser-scanning cytometry, we were able to measure the effects of Gadd45 super-induction during hyperosmolality on G(2)/M arrest and apoptosis. Our results demonstrate that induction of all three Gadd45 isoforms inhibits mitosis and promotes G(2)/M arrest during moderate hyperosmotic stress but not in isosmotic controls. Furthermore, all three Gadd45 proteins are also involved in control of apoptosis during severe hyperosmotic stress. Under these conditions Gadd45gamma induction strongly potentiates apoptosis. In contrast, Gadd45alpha/beta induction transiently increases caspase 3/7 and annexin V binding before 12 h but inhibits later stages of apoptosis during severe hyperosmolality. These results show that Gadd45 isoforms function in common but also in distinct pathways during hyperosmolality and that their increased abundance contributes to the low mitotic index and protection of genomic integrity in cells of the mammalian renal inner medulla.
Collapse
Affiliation(s)
- Sally K Mak
- Physiological Genomics Group, Department of Animal Sciences, University of California, Davis, California 95616, USA
| | | |
Collapse
|
100
|
Candal E, Thermes V, Joly JS, Bourrat F. Medaka as a model system for the characterisation of cell cycle regulators: a functional analysis of Ol-Gadd45gamma during early embryogenesis. Mech Dev 2004; 121:945-58. [PMID: 15210198 DOI: 10.1016/j.mod.2004.03.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2004] [Revised: 03/15/2004] [Accepted: 03/16/2004] [Indexed: 11/23/2022]
Abstract
Numerous studies, mostly performed on mammalian cell cultures, have implicated the Gadd45 family of small acidic proteins in cell cycle control (arrest and/or engagement in the apoptotic pathway). We report here the cloning, detailled expression pattern and functional characterisation in embryonic development of Ol-Gadd45gamma, the Oryzias latipes ortholog of mammalian Gadd45gamma. Its expression pattern, notably in the developing brain (optic tectum) strongly suggests that it is involved in cell cycle exit. Gain-of-function experiments (through mRNA injection) slowed down early development, and produced embryos clearly reduced in size, while morpholino knockdowns resulted in small embryos over-sensitive to DNA damage (UV irradiation). We further demonstrated that, following Ol-Gadd45gamma overexpression, cells are proliferation-arrested before both G1/S and G2/M cell cycle checkpoints, while in the MO-Ol-Gadd45 loss-of-function experiments cells are engaged in apoptosis rather than prevented from proliferating. These results show that Ol-Gadd45gamma is likely to play an important role in coordinating cell fate decisions during neurogenesis; they also demonstrate that the medakafish is a promising model to analyse in vivo the developmental control of the cell cycle.
Collapse
Affiliation(s)
- Eva Candal
- INRA/CNRS Group, DEPSN, Institut Fessard, CNRS, 1 Avenue de la Terrasse, 91 198 Gif-sur-Yvette, France.
| | | | | | | |
Collapse
|