51
|
Yu S, Han R, Gan R. The Wnt/β-catenin signalling pathway in Haematological Neoplasms. Biomark Res 2022; 10:74. [PMID: 36224652 PMCID: PMC9558365 DOI: 10.1186/s40364-022-00418-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/12/2022] [Accepted: 09/12/2022] [Indexed: 11/10/2022] Open
Abstract
Leukaemia and lymphoma are common malignancies. The Wnt pathway is a complex network of proteins regulating cell proliferation and differentiation, as well as cancer development, and is divided into the Wnt/β-catenin signalling pathway (the canonical Wnt signalling pathway) and the noncanonical Wnt signalling pathway. The Wnt/β-catenin signalling pathway is highly conserved evolutionarily, and activation or inhibition of either of the pathways may lead to cancer development and progression. The aim of this review is to analyse the mechanisms of action of related molecules in the Wnt/β-catenin pathway in haematologic malignancies and their feasibility as therapeutic targets.
Collapse
Affiliation(s)
- Siwei Yu
- Cancer Research Institute, Key Laboratory of Cancer Cellular and Molecular Pathology in Hunan Province, Hengyang Medical School, University of South China, 421001, Hengyang, Hunan, P. R. China
| | - Ruyue Han
- Cancer Research Institute, Key Laboratory of Cancer Cellular and Molecular Pathology in Hunan Province, Hengyang Medical School, University of South China, 421001, Hengyang, Hunan, P. R. China
| | - Runliang Gan
- Cancer Research Institute, Key Laboratory of Cancer Cellular and Molecular Pathology in Hunan Province, Hengyang Medical School, University of South China, 421001, Hengyang, Hunan, P. R. China.
| |
Collapse
|
52
|
Song Y, Pan S, Li K, Chen X, Wang ZP, Zhu X. Insight into the role of multiple signaling pathways in regulating cancer stem cells of gynecologic cancers. Semin Cancer Biol 2022; 85:219-233. [PMID: 34098106 DOI: 10.1016/j.semcancer.2021.06.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 05/24/2021] [Accepted: 06/01/2021] [Indexed: 12/29/2022]
Abstract
Mounting evidence has demonstrated that a myriad of developmental signaling pathways, such as the Wnt, Notch, Hedgehog and Hippo, are frequently deregulated and play a critical role in regulating cancer stem cell (CSC) activity in human cancers, including gynecologic malignancies. In this review article, we describe an overview of various signaling pathways in human cancers. We further discuss the developmental roles how these pathways regulate CSCs from experimental evidences in gynecologic cancers. Moreover, we mention several compounds targeting CSCs in gynecologic cancers to enhance the treatment outcomes. Therefore, these signaling pathways might be the potential targets for developing targeted therapy in gynecologic cancers.
Collapse
Affiliation(s)
- Yizuo Song
- Center of Uterine Cancer Diagnosis & Therapy Research of Zhejiang Province, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Shuya Pan
- Center of Uterine Cancer Diagnosis & Therapy Research of Zhejiang Province, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Kehan Li
- Center of Uterine Cancer Diagnosis & Therapy Research of Zhejiang Province, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Xin Chen
- Center of Uterine Cancer Diagnosis & Therapy Research of Zhejiang Province, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Z Peter Wang
- Center of Uterine Cancer Diagnosis & Therapy Research of Zhejiang Province, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang, China.
| | - Xueqiong Zhu
- Center of Uterine Cancer Diagnosis & Therapy Research of Zhejiang Province, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang, China.
| |
Collapse
|
53
|
Avery D, Morandini L, Sheakley LS, Shah AH, Bui L, Abaricia JO, Olivares-Navarrete R. Canonical Wnt signaling enhances pro-inflammatory response to titanium by macrophages. Biomaterials 2022; 289:121797. [PMID: 36156410 PMCID: PMC10262842 DOI: 10.1016/j.biomaterials.2022.121797] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 08/22/2022] [Accepted: 09/05/2022] [Indexed: 11/19/2022]
Abstract
Biomaterial characteristics like surface roughness and wettability can determine the phenotype of macrophages following implantation. We have demonstrated that inhibiting Wnt ligand secretion abolishes macrophage polarization in vitro and in vivo; however, the role of canonical Wnt signaling in macrophage activation in response to physical and chemical biomaterial cues is unknown. The aim of this study was to understand whether canonical Wnt signaling affects the response of macrophages to titanium (Ti) surface roughness or wettability in vitro and in vivo. Activating canonical Wnt signaling increased expression of toll-like receptors and interleukin receptors and secreted pro-inflammatory cytokines and reduced anti-inflammatory cytokines on Ti, regardless of surface properties. Inhibiting canonical Wnt signaling reduced pro-inflammatory cytokines on all Ti surfaces and increased anti-inflammatory cytokines on rough or rough-hydrophilic Ti. In vivo, activating canonical Wnt signaling increased total macrophages, pro-inflammatory macrophages, and T cells and decreased anti-inflammatory macrophages on both smooth and rough-hydrophilic implants. Functionally, canonical Wnt activation increases pro-inflammatory macrophage response to cell and cell-extracellular matrix lysates. These results demonstrate that activating canonical Wnt signaling primes macrophages to a pro-inflammatory phenotype that affects their response to Ti implants in vitro and in vivo.
Collapse
Affiliation(s)
- Derek Avery
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, Richmond, VA, United States
| | - Lais Morandini
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, Richmond, VA, United States
| | - Luke S Sheakley
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, Richmond, VA, United States
| | - Arth H Shah
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, Richmond, VA, United States
| | - Loc Bui
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, Richmond, VA, United States
| | - Jefferson O Abaricia
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, Richmond, VA, United States
| | - Rene Olivares-Navarrete
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, Richmond, VA, United States.
| |
Collapse
|
54
|
Chen LJ, Wu L, Wang W, Zhai LL, Xiang F, Li WB, Tang ZG. Long non‑coding RNA 01614 hyperactivates WNT/β‑catenin signaling to promote pancreatic cancer progression by suppressing GSK‑3β. Int J Oncol 2022; 61:116. [PMID: 35929518 PMCID: PMC9387559 DOI: 10.3892/ijo.2022.5406] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 06/24/2022] [Indexed: 11/06/2022] Open
Abstract
Pancreatic cancer (PC) is a lethal type of cancer for which effective therapies are limited. Long non-coding RNAs (lncRNAs) represent a critical type of regulator category, mediating the tumorigenesis and development of various tumor types, including PC. However, the expression patterns and functions of numerous lncRNAs in PC remain poorly understood. In the present study, linc01614 was identified as a PC-related lncRNA. linc01614 was notably upregulated in PC tissues and cell lines and was associated with the poor disease-free survival of patients with PC according to the analysis of The Cancer Genome Atlas-derived datasets. Functionally, linc01614 knockdown suppressed PC cell proliferation, migration and invasion in vitro, and inhibited tumor proliferation in vitro and in vivo. Mechanistically, linc01614 overexpression stabilized the level of β-catenin protein to hyperactivate the WNT/β-catenin signaling pathway in PC cells. Further analyses revealed that linc01614 bound to GSK-3β and perturbed the interaction between GSK-3β and AXIN1, thereby preventing the formation of the β-catenin degradation complex and reducing the degradation of β-catenin. In summary, the present findings reveal that linc01614 may function as an oncogene and promote the progression of PC and may thus be considered as a potential therapeutic target in the future.
Collapse
Affiliation(s)
- Long-Jiang Chen
- Department of Pancreatic Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Lun Wu
- Department of Breast and Τhyroid Surgery, Experiment Center of Medicine, Sinopharm Dongfeng General Hospital, Hubei University of Medicine, Shiyan, Hubei 442008, P.R. China
| | - Wei Wang
- Department of Pancreatic Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Lu-Lu Zhai
- Department of Pancreatic Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Feng Xiang
- Department of Pancreatic Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Wei-Bo Li
- Department of Pancreatic Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Zhi-Gang Tang
- Department of Pancreatic Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|
55
|
Parrish ML, Broaddus RR, Gladden AB. Mechanisms of mutant β-catenin in endometrial cancer progression. Front Oncol 2022; 12:1009345. [PMID: 36248967 PMCID: PMC9556987 DOI: 10.3389/fonc.2022.1009345] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 09/15/2022] [Indexed: 11/17/2022] Open
Abstract
Endometrial carcinoma (EC) is the most diagnosed gynecological malignancy in Western countries. Both incidence and mortality rates of EC have steadily risen in recent years. Despite generally favorable prognoses for patients with the endometrioid type of EC, a subset of patients has been identified with decreased progression-free survival. Patients in this group are distinguished from other endometrioid EC patients by the presence of exon 3 hotspot mutations in CTNNB1, the gene encoding for the β-catenin protein. β-catenin is an evolutionarily conserved protein with critical functions in both adherens junctions and Wnt-signaling. The exact mechanism by which exon 3 CTNNB1 mutations drive EC progression is not well understood. Further, the potential contribution of mutant β-catenin to adherens junctions' integrity is not known. Additionally, the magnitude of worsened progression-free survival in patients with CTNNB1 mutations is context dependent, and therefore the importance of this subset of patients can be obscured by improper categorization. This review will examine the history and functions of β-catenin, how these functions may change and drive EC progression in CTNNB1 mutant patients, and the importance of this patient group in the broader context of the disease.
Collapse
Affiliation(s)
- Molly L. Parrish
- Department of Pathology and Laboratory Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Pathobiology and Translational Science Graduate Program, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Russell R. Broaddus
- Department of Pathology and Laboratory Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Pathobiology and Translational Science Graduate Program, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Andrew B. Gladden
- Department of Pathology and Laboratory Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Pathobiology and Translational Science Graduate Program, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
56
|
Critical review on anti-obesity effects of phytochemicals through Wnt/β-catenin signaling pathway. Pharmacol Res 2022; 184:106461. [PMID: 36152739 DOI: 10.1016/j.phrs.2022.106461] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/06/2022] [Accepted: 09/19/2022] [Indexed: 11/23/2022]
Abstract
Phytochemicals have been used as one of the sources for the development of anti-obesity drugs. Plants are rich in a variety of bioactive compounds including polyphenols, saponins and terpenes. Phytochemicals inhibit adipocyte differentiation by inhibiting the transcription and translation of adipogenesis transcription factors such as C/EBPα and PPARγ. It has been proved that phytochemicals inhibit the genes and proteins associated with adipogenesis and lipid accumulation by activating Wnt/β-catenin signaling pathway. The activation of Wnt/β-catenin signaling pathway by phytochemicals is multi-target regulation, including the regulation of pathway critical factor β-catenin and its target gene, the downregulation of destruction complex, and the up-regulation of Wnt ligands, its cell surface receptor and Wnt antagonist. In this review, the literature on the anti-obesity effect of phytochemicals through Wnt/β-catenin signaling pathway is collected from Google Scholar, Scopus, PubMed, and Web of Science, and summarizes the regulation mechanism of phytochemicals in this pathway. As one of the alternative methods of weight loss drugs, Phytochemicals inhibit adipogenesis through Wnt/β-catenin signaling pathway. More progress in relevant fields may pose phytochemicals as the main source of anti-obesity treatment.
Collapse
|
57
|
Molecular pathogenesis of desmoid tumor and the role of γ-secretase inhibition. NPJ Precis Oncol 2022; 6:62. [PMID: 36068332 PMCID: PMC9448813 DOI: 10.1038/s41698-022-00308-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 08/23/2022] [Indexed: 11/08/2022] Open
Abstract
Desmoid tumor (DT) is a rare, soft tissue neoplasm associated with an unpredictable clinical course. Although lacking metastatic potential, DT is often locally aggressive and invasive, causing significant morbidity. Both sporadic DT and familial adenomatous polyposis (FAP)-associated DT are linked to constitutive activation of the Wnt signaling pathway with mutations in the β-catenin oncogene CTNNB1 or the tumor suppressor gene APC, respectively. Cross-talk between the Notch and Wnt pathways, as well as activation of the Notch pathway resulting from dysregulation of the Wnt pathway, suggest a possible therapeutic target for DT. Due to the role γ-secretase plays in Notch signaling through cleavage of the Notch intracellular domain (with subsequent translocation to the nucleus to activate gene transcription), γ-secretase inhibitors (GSIs) have emerged as a potential treatment for DT. Two GSIs, nirogacestat (PF-03084014) and AL102 are in later-stage clinical development; nirogacestat is being evaluated in a phase 3, randomized, placebo-controlled trial while AL102 is being evaluated in a phase 2/3, dose-finding (part A) and placebo-controlled (part B) trial. This review summarizes current understanding of the molecular pathogenesis of DT focusing on dysregulation of the Wnt signaling pathway, crosstalk with the Notch pathway, and the potential therapeutic role for GSIs in DT.
Collapse
|
58
|
Vlashi R, Zhang X, Wu M, Chen G. Wnt signaling: essential roles in osteoblast differentiation, bone metabolism and therapeutic implications for bone and skeletal disorders. Genes Dis 2022. [DOI: 10.1016/j.gendis.2022.07.011] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022] Open
|
59
|
Mouse Models for Application in Colorectal Cancer: Understanding the Pathogenesis and Relevance to the Human Condition. Biomedicines 2022; 10:biomedicines10071710. [PMID: 35885015 PMCID: PMC9313309 DOI: 10.3390/biomedicines10071710] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 07/07/2022] [Accepted: 07/13/2022] [Indexed: 11/17/2022] Open
Abstract
Colorectal cancer (CRC) is a malignant disease that is the second most common cancer worldwide. CRC arises from the complex interactions among a variety of genetic and environmental factors. To understand the mechanism of colon tumorigenesis, preclinical studies have developed various mouse models including carcinogen-induced and transgenic mice to recapitulate CRC in humans. Using these mouse models, scientific breakthroughs have been made on the understanding of the pathogenesis of this complex disease. Moreover, the availability of transgenic knock-in or knock-out mice further increases the potential of CRC mouse models. In this review, the overall features of carcinogen-induced (focusing on azoxymethane and azoxymethane/dextran sulfate sodium) and transgenic (focusing on ApcMin/+) mouse models, as well as their mechanisms to induce colon tumorigenesis, are explored. We also discuss limitations of these mouse models and their applications in the evaluation and study of drugs and treatment regimens against CRC. Through these mouse models, a better understanding of colon tumorigenesis can be achieved, thereby facilitating the discovery of novel therapeutic strategies against CRC.
Collapse
|
60
|
Horiguchi H, Kadomatsu T, Yumoto S, Masuda T, Miyata K, Yamamura S, Sato M, Morinaga J, Ohtsuki S, Baba H, Moroishi T, Oike Y. Tumor cell-derived ANGPTL2 promotes β-catenin-driven intestinal tumorigenesis. Oncogene 2022; 41:4028-4041. [PMID: 35831580 DOI: 10.1038/s41388-022-02405-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 06/24/2022] [Accepted: 06/29/2022] [Indexed: 11/09/2022]
Abstract
Uncontrolled proliferation of intestinal epithelial cells caused by mutations in genes of the WNT/β-catenin pathway is associated with development of intestinal cancers. We previously reported that intestinal stromal cell-derived angiopoietin-like protein 2 (ANGPTL2) controls epithelial regeneration and intestinal immune responses. However, the role of tumor cell-derived ANGPTL2 in intestinal tumorigenesis remained unclear. Here, we show that tumor cell-derived ANGPTL2 promotes β-catenin-driven intestinal tumorigenesis. ANGPTL2 deficiency suppressed intestinal tumor development in an experimental mouse model of sporadic colon cancer. We also found that increased ANGPTL2 expression in colorectal cancer (CRC) cells augments β-catenin pathway signaling and promotes tumor cell proliferation. Relevant to mechanism, our findings suggest that tumor cell-derived ANGPTL2 upregulates expression of OB-cadherin, which then interacts with β-catenin, blocking destruction complex-independent proteasomal degradation of β-catenin proteins. Moreover, our observations support a model whereby ANGPTL2-induced OB-cadherin expression in CRC cells is accompanied by decreased cell surface integrin α5β1 expression. These findings overall provide novel insight into mechanisms of β-catenin-driven intestinal tumorigenesis.
Collapse
Affiliation(s)
- Haruki Horiguchi
- Department of Molecular Genetics, Graduate School of Medical Science, Kumamoto University, Kumamoto, 860-8556, Japan.,Department of Aging and Geriatric Medicine, Graduate School of Medical Science, Kumamoto University, Kumamoto, 860-8556, Japan
| | - Tsuyoshi Kadomatsu
- Department of Molecular Genetics, Graduate School of Medical Science, Kumamoto University, Kumamoto, 860-8556, Japan. .,Center for Metabolic Regulation of Healthy Aging (CMHA), Graduate School of Medical Sciences, Kumamoto University, Kumamoto, 860-8556, Japan.
| | - Shinsei Yumoto
- Department of Molecular Genetics, Graduate School of Medical Science, Kumamoto University, Kumamoto, 860-8556, Japan.,Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, 860-8556, Japan
| | - Takeshi Masuda
- Department of Pharmaceutical Microbiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, 860-8556, Japan
| | - Keishi Miyata
- Department of Molecular Genetics, Graduate School of Medical Science, Kumamoto University, Kumamoto, 860-8556, Japan.,Center for Metabolic Regulation of Healthy Aging (CMHA), Graduate School of Medical Sciences, Kumamoto University, Kumamoto, 860-8556, Japan
| | - Shuji Yamamura
- Department of Molecular Genetics, Graduate School of Medical Science, Kumamoto University, Kumamoto, 860-8556, Japan
| | - Michio Sato
- Department of Molecular Genetics, Graduate School of Medical Science, Kumamoto University, Kumamoto, 860-8556, Japan
| | - Jun Morinaga
- Department of Molecular Genetics, Graduate School of Medical Science, Kumamoto University, Kumamoto, 860-8556, Japan
| | - Sumio Ohtsuki
- Department of Pharmaceutical Microbiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, 860-8556, Japan
| | - Hideo Baba
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, 860-8556, Japan
| | - Toshiro Moroishi
- Center for Metabolic Regulation of Healthy Aging (CMHA), Graduate School of Medical Sciences, Kumamoto University, Kumamoto, 860-8556, Japan.,Department of Cell Signaling and Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto, 860-8556, Japan
| | - Yuichi Oike
- Department of Molecular Genetics, Graduate School of Medical Science, Kumamoto University, Kumamoto, 860-8556, Japan. .,Department of Aging and Geriatric Medicine, Graduate School of Medical Science, Kumamoto University, Kumamoto, 860-8556, Japan. .,Center for Metabolic Regulation of Healthy Aging (CMHA), Graduate School of Medical Sciences, Kumamoto University, Kumamoto, 860-8556, Japan.
| |
Collapse
|
61
|
Huang Y, Zeng J, Liu T, Xu Q, Song X, Zeng J. Deubiquitinating enzyme JOSD2 promotes hepatocellular carcinoma progression through interacting with and inhibiting CTNNB1 degradation. Cell Biol Int 2022; 46:1089-1097. [PMID: 35568970 DOI: 10.1002/cbin.11812] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 02/16/2022] [Accepted: 02/22/2022] [Indexed: 12/12/2022]
Abstract
Although a variety of molecular targets have been identified, hepatocellular carcinoma (HCC) remains among the leading causes of death. As functions of they deubiquitinating enzyme Josephin domain containing 2 (JOSD2) in cancers are still poorly understood, we investigated its function and molecular mechanism in the regulation of HCC progression. Here, we indicated that JOSD2 expression is elevated in patient samples with HCC and positively associated with poor prognosis. Moreover, the promoting roles of JOSD2 in HCC cell survival, migration, and invasion were determined using in vitro models. Importantly, a mechanistic study revealed that JOSD2 binds to and decreases the ubiquitination level of catenin beta 1 (CTNNB1), a key component of Wnt signaling, thereby augmenting Wnt pathway transduction. Furthermore, a series of rescue experiments confirmed the significance of CTNNB1 in the modulation of HCC progression by JOSD2. Our study uncovered JOSD2 as a novel prognostic marker for patients with HCC and identified CTNNB1 as a pivotal partner and downstream target protein of JOSD2, which may aid in the development of JOSD2 as a promising molecular target for HCC treatment.
Collapse
Affiliation(s)
- Yao Huang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
- Department of Hepatic Surgery, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, China
| | - Jianxing Zeng
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Teng Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Qingyi Xu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Xianglin Song
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Jinhua Zeng
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
- Department of Hepatic Surgery, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, China
| |
Collapse
|
62
|
Fan L, Yang X, Zheng M, Yang X, Ning Y, Gao M, Zhang S. Regulation of SUMOylation Targets Associated With Wnt/β-Catenin Pathway. Front Oncol 2022; 12:943683. [PMID: 35847921 PMCID: PMC9280480 DOI: 10.3389/fonc.2022.943683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 06/07/2022] [Indexed: 11/23/2022] Open
Abstract
Wnt/β-catenin signaling is a delicate and complex signal transduction pathway mediated by multiple signaling molecules, which plays a significant role in regulating human physiology and pathology. Abnormally activated Wnt/β-catenin signaling pathway plays a crucial role in promoting malignant tumor occurrence, development, recurrence, and metastasis, particularly in cancer stem cells. Studies have shown that the Wnt/β-catenin signaling pathway controls cell fate and function through the transcriptional and post-translational regulation of omics networks. Therefore, precise regulation of Wnt/β-catenin signaling as a cancer-targeting strategy may contribute to the treatment of some malignancies. SUMOylation is a post-translational modification of proteins that has been found to play a major role in the Wnt/β-catenin signaling pathway. Here, we review the complex regulation of Wnt/β-catenin signaling by SUMOylation and discuss the potential targets of SUMOylation therapy.
Collapse
Affiliation(s)
- Linlin Fan
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xudong Yang
- Tianjin Rehabilitation Center, Tianjin, China
| | - Minying Zheng
- Department of Pathology, Tianjin Union Medical Center, Tianjin, China
| | - Xiaohui Yang
- Nankai University School of Medicine, Nankai University, Tianjin, China
| | - Yidi Ning
- Nankai University School of Medicine, Nankai University, Tianjin, China
| | - Ming Gao
- Department of Thyroid Surgery, Tianjin Union Medical Center, Tianjin, China
| | - Shiwu Zhang
- Department of Pathology, Tianjin Union Medical Center, Tianjin, China
| |
Collapse
|
63
|
Lee MY. Embryonic Programs in Cancer and Metastasis—Insights From the Mammary Gland. Front Cell Dev Biol 2022; 10:938625. [PMID: 35846378 PMCID: PMC9277484 DOI: 10.3389/fcell.2022.938625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 06/07/2022] [Indexed: 11/24/2022] Open
Abstract
Cancer is characterized as a reversion of a differentiated cell to a primitive cell state that recapitulates, in many aspects, features of embryonic cells. This review explores the current knowledge of developmental mechanisms that are essential for embryonic mouse mammary gland development, with a particular focus on genes and signaling pathway components that are essential for the induction, morphogenesis, and lineage specification of the mammary gland. The roles of these same genes and signaling pathways in mammary gland or breast tumorigenesis and metastasis are then summarized. Strikingly, key embryonic developmental pathways are often reactivated or dysregulated during tumorigenesis and metastasis in processes such as aberrant proliferation, epithelial-to-mesenchymal transition (EMT), and stem cell potency which affects cellular lineage hierarchy. These observations are in line with findings from recent studies using lineage tracing as well as bulk- and single-cell transcriptomics that have uncovered features of embryonic cells in cancer and metastasis through the identification of cell types, cell states and characterisation of their dynamic changes. Given the many overlapping features and similarities of the molecular signatures of normal development and cancer, embryonic molecular signatures could be useful prognostic markers for cancer. In this way, the study of embryonic development will continue to complement the understanding of the mechanisms of cancer and aid in the discovery of novel therapeutic targets and strategies.
Collapse
|
64
|
Rowling PJE, Murton BL, Du Z, Itzhaki LS. Multivalent Interaction of Beta-Catenin With its Intrinsically Disordered Binding Partner Adenomatous Polyposis Coli. Front Mol Biosci 2022; 9:896493. [PMID: 35755812 PMCID: PMC9214244 DOI: 10.3389/fmolb.2022.896493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 05/02/2022] [Indexed: 11/13/2022] Open
Abstract
The Wnt signalling pathway plays key roles in cell proliferation, differentiation and fate decisions in embryonic development and maintenance of adult tissues, and the twelve Armadillo (ARM) repeat-containing protein β-catenin acts as the signal transducer in this pathway. Here we investigate the interaction between β-catenin's ARM repeat domain and the intrinsically disordered protein adenomatous polyposis coli (APC). APC is a giant multivalent scaffold that brings together the different components of the so-called "β-catenin destruction complex", which drives β-catenin degradation via the ubiquitin-proteasome pathway. Mutations and truncations in APC, resulting in loss of APC function and hence elevated β-catenin levels and upregulation of Wnt signalling, are associated with numerous cancers including colorectal carcinomas. APC has a long intrinsically disordered region (IDR) that contains a series of 15-residue and 20-residue binding regions for β-catenin. Here we explore the multivalent nature of the interaction of β-catenin with the highest affinity APC repeat, both at equilibrium and under kinetic conditions. We use a combination of single-site substitutions, deletions and insertions to dissect the mechanism of molecular recognition and the roles of the three β-catenin-binding subdomains of APC.
Collapse
Affiliation(s)
| | | | | | - Laura S. Itzhaki
- Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
65
|
Bian R, Zhao J, Yao Z, Cai Y, Shou C, Lou D, Zhou L, Qian Y. Knockdown of Obg-like ATPase 1 enhances sorafenib sensitivity by inhibition of GSK-3β/β-catenin signaling in hepatocellular carcinoma cells. J Gastrointest Oncol 2022; 13:1255-1265. [PMID: 35837205 PMCID: PMC9274060 DOI: 10.21037/jgo-22-458] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 06/20/2022] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND To clarify the molecular mechanism of hepatocellular carcinoma (HCC), conducive to developing an effective HCC therapy. Owing to the severe drug resistance, the clinical use of sorafenib, which is approved for HCC treatment, is limited. The precise molecular mechanisms of sorafenib drug resistance remain unclear. In the current work, we evaluated the role of Obg-like ATPase 1 (OLA1) in sorafenib resistance in HCC. METHODS The survival of HCC patients between OLA1 expression and sorafenib treatment was analyzed by Kaplan-Meier plotter. Cell viability was measured by cell counting kit-8 (CCK-8) and colony formation assays. Cell death was detected by propidium iodide (PI) and trypan blue staining. The mRNA and protein levels were measured by real-time quantitative polymerase chain reaction (RT-qPCR) and western blot (WB), respectively. RESULTS We found that OLA1 was highly correlated with sorafenib resistance of HCC through a public database. Further study showed that knockdown of OLA1 enhanced cell proliferation inhibition and cell death induced by sorafenib, along with a reduction of proliferation-associated proteins (c-Myc and cyclin D1) and increase of apoptosis-related proteins (cleaved caspase-3 and cleaved PARP) in HCC cells. In addition, knockdown of OLA1 reduced the activation of glycogen synthase kinase 3β (GSK-3β)/β-catenin. CONCLUSIONS Our results proved that OLA1 can be a potential target to enhance sorafenib sensitivity in HCC.
Collapse
Affiliation(s)
- Rong Bian
- Medication Department, Zhuji People’s Hospital of Zhejiang Province, Shaoxing, China
| | - Jinkai Zhao
- Medication Department, Zhuji People’s Hospital of Zhejiang Province, Shaoxing, China
| | - Zhongcai Yao
- Medication Department, Zhuji People’s Hospital of Zhejiang Province, Shaoxing, China
| | - Yajun Cai
- Medication Department, Zhuji People’s Hospital of Zhejiang Province, Shaoxing, China
| | - Chenting Shou
- Medication Department, Zhuji People’s Hospital of Zhejiang Province, Shaoxing, China
| | - Dayong Lou
- Medication Department, Zhuji People’s Hospital of Zhejiang Province, Shaoxing, China
| | - Liqin Zhou
- Medication Department, Zhuji People’s Hospital of Zhejiang Province, Shaoxing, China
| | - Yuanyuan Qian
- Basic Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
66
|
Tarnow G, McLachlan A. Selective effect of β-catenin on nuclear receptor-dependent hepatitis B virus transcription and replication. Virology 2022; 571:52-58. [PMID: 35509137 PMCID: PMC12000910 DOI: 10.1016/j.virol.2022.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 03/07/2022] [Accepted: 04/25/2022] [Indexed: 10/18/2022]
Abstract
β-catenin regulates HBV transcription in cell culture and viral biosynthesis in vivo in the transgenic mouse model of chronic HBV infection. Therefore, it is important to understand which transcription factor activities are coactivated by β-catenin to enhance HBV biosynthesis. The effect of β-catenin expression in the context of nuclear receptor-mediated HBV transcription was evaluated initially in the human embryonic kidney cell line, HEK293T. Reporter gene and viral replication assays revealed that β-catenin can coactivate HBV transcription through some, most predominantly liver receptor homolog 1 (LRH1), but not all nuclear receptors known to activate viral biosynthesis. Similarly, β-catenin activated nuclear receptor-mediated HBV transcription and replication in the human hepatoma cell line, Huh7, primarily through its effect on the farnesoid X receptor α (FXRα). These data indicate that β-catenin can enhance nuclear receptor-mediated HBV biosynthesis, but the relative importance of various transcription factors is dependent upon the precise cellular environment.
Collapse
Affiliation(s)
- Grant Tarnow
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, 909 South Wolcott Avenue, Chicago, IL, 60612, USA
| | - Alan McLachlan
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, 909 South Wolcott Avenue, Chicago, IL, 60612, USA.
| |
Collapse
|
67
|
Integrative proteogenomic characterization of hepatocellular carcinoma across etiologies and stages. Nat Commun 2022; 13:2436. [PMID: 35508466 PMCID: PMC9068765 DOI: 10.1038/s41467-022-29960-8] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 04/09/2022] [Indexed: 12/13/2022] Open
Abstract
Proteogenomic analyses of hepatocellular carcinomas (HCC) have focused on early-stage, HBV-associated HCCs. Here we present an integrated proteogenomic analysis of HCCs across clinical stages and etiologies. Pathways related to cell cycle, transcriptional and translational control, signaling transduction, and metabolism are dysregulated and differentially regulated on the genomic, transcriptomic, proteomic and phosphoproteomic levels. We describe candidate copy number-driven driver genes involved in epithelial-to-mesenchymal transition, the Wnt-β-catenin, AKT/mTOR and Notch pathways, cell cycle and DNA damage regulation. The targetable aurora kinase A and CDKs are upregulated. CTNNB1 and TP53 mutations are associated with altered protein phosphorylation related to actin filament organization and lipid metabolism, respectively. Integrative proteogenomic clusters show that HCC constitutes heterogeneous subgroups with distinct regulation of biological processes, metabolic reprogramming and kinase activation. Our study provides a comprehensive overview of the proteomic and phophoproteomic landscapes of HCCs, revealing the major pathways altered in the (phospho)proteome. Proteogenomic analyses of hepatocellular carcinomas (HCC) have focused on early-stage, HBV-associated tumours and lacked information about the phosphoproteome. Here, the authors present a comprehensive HCC proteogenomics and phosphoproteomics study in patient samples from multiple etiologies and stages.
Collapse
|
68
|
Bjørge IM, de Sousa BM, Patrício SG, Silva AS, Nogueira LP, Santos LF, Vieira SI, Haugen HJ, Correia CR, Mano JF. Bioengineered Hierarchical Bonelike Compartmentalized Microconstructs Using Nanogrooved Microdiscs. ACS APPLIED MATERIALS & INTERFACES 2022; 14:19116-19128. [PMID: 35446549 DOI: 10.1021/acsami.2c01161] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Fabrication of vascularized large-scale constructs for regenerative medicine remains elusive since most strategies rely solely on cell self-organization or overly control cell positioning, failing to address nutrient diffusion limitations. We propose a modular and hierarchical tissue-engineering strategy to produce bonelike tissues carrying signals to promote prevascularization. In these 3D systems, disc-shaped microcarriers featuring nanogrooved topographical cues guide cell behavior by harnessing mechanotransduction mechanisms. A sequential seeding strategy of adipose-derived stromal cells and endothelial cells is implemented within compartmentalized, liquefied-core macrocapsules in a self-organizing and dynamic system. Importantly, our system autonomously promotes osteogenesis and construct's mineralization while promoting a favorable environment for prevascular-like endothelial organization. Given its modular and self-organizing nature, our strategy may be applied for the fabrication of larger constructs with a highly controlled starting point to be used for local regeneration upon implantation or as drug-screening platforms.
Collapse
Affiliation(s)
- Isabel M Bjørge
- Department of Chemistry, CICECO─Aveiro Institute of Materials, University of Aveiro, Aveiro 3810-168, Portugal
| | - Bárbara M de Sousa
- Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, Aveiro 3810-193, Portugal
| | - Sónia G Patrício
- Department of Chemistry, CICECO─Aveiro Institute of Materials, University of Aveiro, Aveiro 3810-168, Portugal
| | - Ana Sofia Silva
- Department of Chemistry, CICECO─Aveiro Institute of Materials, University of Aveiro, Aveiro 3810-168, Portugal
| | - Liebert P Nogueira
- Oral Research Laboratory, Institute of Clinical Dentistry, University of Oslo, Oslo 0455, Norway
| | - Lúcia F Santos
- Department of Chemistry, CICECO─Aveiro Institute of Materials, University of Aveiro, Aveiro 3810-168, Portugal
| | - Sandra I Vieira
- Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, Aveiro 3810-193, Portugal
| | - Håvard J Haugen
- Department of Biomaterials, Institute of Clinical Dentistry, University of Oslo, Oslo 0455, Norway
| | - Clara R Correia
- Department of Chemistry, CICECO─Aveiro Institute of Materials, University of Aveiro, Aveiro 3810-168, Portugal
| | - João F Mano
- Department of Chemistry, CICECO─Aveiro Institute of Materials, University of Aveiro, Aveiro 3810-168, Portugal
| |
Collapse
|
69
|
The Role of CTNNB1 in Endometrial Cancer. DISEASE MARKERS 2022; 2022:1442441. [PMID: 35531470 PMCID: PMC9072012 DOI: 10.1155/2022/1442441] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 03/28/2022] [Indexed: 01/08/2023]
Abstract
Endometrial cancer (EC) is the most common gynaecologic malignancy in the developed countries. Recent evidence suggests that histopathological subtyping together with molecular subgrouping can lead to more accurate assessment of the risk profile for the patient. Clinical studies suggest the currently used molecular classification improves the risk assessment of women with endometrial cancer but does not explain the differences in recurrence profiles clearly. This could be improved by novel markers. One of such are mutations in the β-catenin (CTNNB1) gene, a frequently mutated gene in endometrial cancer. This shows mutations mostly at phosphorylation sites of the β-catenin and almost exclusively in the endometrial subgroup of no specific molecular profile. CTNNB1 mutations lead to alterations in the Wnt/β-catenin signalling pathway, involved in the carcinogenesis and progression of EC by inducing transcription of target genes, whose function is to regulate the cell cycle. Although tumours with mutations in CTNNB1 tend to have low-risk characteristics, they are related to worse outcomes with significantly increased rate of disease recurrence and lower overall survival.
Collapse
|
70
|
Glycogen Synthase Kinase 3: Ion Channels, Plasticity, and Diseases. Int J Mol Sci 2022; 23:ijms23084413. [PMID: 35457230 PMCID: PMC9028019 DOI: 10.3390/ijms23084413] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/13/2022] [Accepted: 04/14/2022] [Indexed: 12/15/2022] Open
Abstract
Glycogen synthase kinase 3β (GSK3) is a multifaceted serine/threonine (S/T) kinase expressed in all eukaryotic cells. GSK3β is highly enriched in neurons in the central nervous system where it acts as a central hub for intracellular signaling downstream of receptors critical for neuronal function. Unlike other kinases, GSK3β is constitutively active, and its modulation mainly involves inhibition via upstream regulatory pathways rather than increased activation. Through an intricate converging signaling system, a fine-tuned balance of active and inactive GSK3β acts as a central point for the phosphorylation of numerous primed and unprimed substrates. Although the full range of molecular targets is still unknown, recent results show that voltage-gated ion channels are among the downstream targets of GSK3β. Here, we discuss the direct and indirect mechanisms by which GSK3β phosphorylates voltage-gated Na+ channels (Nav1.2 and Nav1.6) and voltage-gated K+ channels (Kv4 and Kv7) and their physiological effects on intrinsic excitability, neuronal plasticity, and behavior. We also present evidence for how unbalanced GSK3β activity can lead to maladaptive plasticity that ultimately renders neuronal circuitry more vulnerable, increasing the risk for developing neuropsychiatric disorders. In conclusion, GSK3β-dependent modulation of voltage-gated ion channels may serve as an important pharmacological target for neurotherapeutic development.
Collapse
|
71
|
Xu Y, Yu X, Sun Z, He Y, Guo W. Roles of lncRNAs Mediating Wnt/β-Catenin Signaling in HCC. Front Oncol 2022; 12:831366. [PMID: 35356220 PMCID: PMC8959654 DOI: 10.3389/fonc.2022.831366] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 02/14/2022] [Indexed: 11/18/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is considered the second most deadly cancer worldwide. Due to the absence of early diagnostic markers and effective therapeutic approaches, distant metastasis and increasing recurrence rates are major difficulties in the clinical treatment of HCC. Further understanding of its pathogenesis has become an urgent goal in HCC research. Recently, abnormal expression of long noncoding RNAs (lncRNAs) was identified as a vital regulator involved in the initiation and development of HCC. Activation of the Wnt/β-catenin pathway has been reported to obviously impact cell proliferation, invasion, and migration of HCC. This article reviews specific interactions, significant mechanisms and molecules related to HCC initiation and progression to provide promising strategies for treatment.
Collapse
Affiliation(s)
- Yating Xu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Open and Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, China.,Zhengzhou Key Laboratory of Hepatobiliary & Pancreatic Diseases and Organ Transplantation Medicine, Zhengzhou, China
| | - Xiao Yu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Open and Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, China.,Zhengzhou Key Laboratory of Hepatobiliary & Pancreatic Diseases and Organ Transplantation Medicine, Zhengzhou, China
| | - Zongzong Sun
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yuting He
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Open and Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, China.,Zhengzhou Key Laboratory of Hepatobiliary & Pancreatic Diseases and Organ Transplantation Medicine, Zhengzhou, China
| | - Wenzhi Guo
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Open and Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, China.,Zhengzhou Key Laboratory of Hepatobiliary & Pancreatic Diseases and Organ Transplantation Medicine, Zhengzhou, China
| |
Collapse
|
72
|
Liu K, Cheng L, Zhu K, Wang J, Shu Q. The cancer/testis antigen HORMAD1 mediates epithelial-mesenchymal transition to promote tumor growth and metastasis by activating the Wnt/β-catenin signaling pathway in lung cancer. Cell Death Dis 2022; 8:136. [PMID: 35347116 PMCID: PMC8960869 DOI: 10.1038/s41420-022-00946-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 02/26/2022] [Accepted: 03/15/2022] [Indexed: 01/03/2023]
Abstract
The cancer/testis antigen HORMAD1 is a mechanical regulator that modulates DNA homologous recombination repair and mismatch repair in multiple cancers. However, the role and underlying regulatory mechanisms of HORMAD1 in lung cancer progression remain unknown. Here, we show that HORMAD1 is upregulated in lung adenocarcinoma tissues compared with adjacent normal tissues and that aberrant HORMAD1 expression predicts poor prognosis. We further demonstrate that HORMAD1 promotes the proliferation, migration and invasion of lung cancer cells both in vitro and in vivo by inducing epithelial-mesenchymal transition (EMT). Subsequent mechanistic investigations revealed that HORMAD1 activates the Wnt/β-catenin pathway by increasing the phosphorylation level of AKT at Ser473 and that of GSK-3β at Ser9 in lung cancer cells, which decreases the phosphorylation level of β-catenin at Ser33/37/Thr41, enhances the cytoplasmic and nuclear accumulation of β-catenin and its transcriptional activity, consequently promoting EMT and lung cancer growth and metastasis. Our results provide new insights into the functional role and regulatory mechanism of HORMAD1 in lung cancer progression and identify HORMAD1 as a promising prognostic biomarker and therapeutic target for lung cancer.
Collapse
Affiliation(s)
- Kang Liu
- The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center For Child Health, Hangzhou, China
| | - Li Cheng
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, Zhejiang Chinese Medical University, Hangzhou, China
| | - Kun Zhu
- Department of Pathology, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jinhu Wang
- Department of Surgical Oncology, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Qiang Shu
- The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center For Child Health, Hangzhou, China. .,Department of Pediatric Surgery, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
73
|
Swoboda J, Mittelsdorf P, Chen Y, Weiskirchen R, Stallhofer J, Schüle S, Gassler N. Intestinal Wnt in the transition from physiology to oncology. World J Clin Oncol 2022; 13:168-185. [PMID: 35433295 PMCID: PMC8966512 DOI: 10.5306/wjco.v13.i3.168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 09/07/2021] [Accepted: 02/19/2022] [Indexed: 02/06/2023] Open
Abstract
Adult stem cells are necessary for self-renewal tissues and regeneration after damage. Especially in the intestine, which self-renews every few days, they play a key role in tissue homeostasis. Therefore, complex regulatory mechanisms are needed to prevent hyperproliferation, which can lead in the worst case to carcinogenesis or under-activation of stem cells, which can result in dysfunctional epithelial. One main regulatory signaling pathway is the Wnt/β-catenin signaling pathway. It is a highly conserved pathway, with β-catenin, a transcription factor, as target protein. Translocation of β-catenin from cytoplasm to nucleus activates the transcription of numerous genes involved in regulating stem cell pluripo-tency, proliferation, cell differentiation and regulation of cell death. This review presents a brief overview of the Wnt/β-catenin signaling pathway, the regulatory mechanism of this pathway and its role in intestinal homeostasis. Additionally, this review highlights the molecular mechanisms and the histomorphological features of Wnt hyperactivation. Furthermore, the central role of the Wnt signaling pathway in intestinal carcinogenesis as well as its clinical relevance in colorectal carcinoma are discussed.
Collapse
Affiliation(s)
- Julia Swoboda
- Section Pathology, Institute of Forensic Medicine, Jena University Hospital, Jena 07747, Germany
| | - Patrick Mittelsdorf
- Section Pathology, Institute of Forensic Medicine, Jena University Hospital, Jena 07747, Germany
| | - Yuan Chen
- Section Pathology, Institute of Forensic Medicine, Jena University Hospital, Jena 07747, Germany
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry, RWTH University Hospital Aachen, Aachen 52074, Germany
| | - Johannes Stallhofer
- Department of Internal Medicine IV (Gastroenterology, Hepatology, and Infectious Diseases), Jena University Hospital, Jena 07747, Germany
| | - Silke Schüle
- Department of General, Visceral and Vascular Surgery, Jena University Hospital, Jena 07747, Germany
| | - Nikolaus Gassler
- Section Pathology, Institute of Forensic Medicine, Jena University Hospital, Jena 07747, Germany
| |
Collapse
|
74
|
Bondos SE, Dunker AK, Uversky VN. Intrinsically disordered proteins play diverse roles in cell signaling. Cell Commun Signal 2022; 20:20. [PMID: 35177069 PMCID: PMC8851865 DOI: 10.1186/s12964-022-00821-7] [Citation(s) in RCA: 98] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 12/11/2021] [Indexed: 11/29/2022] Open
Abstract
Signaling pathways allow cells to detect and respond to a wide variety of chemical (e.g. Ca2+ or chemokine proteins) and physical stimuli (e.g., sheer stress, light). Together, these pathways form an extensive communication network that regulates basic cell activities and coordinates the function of multiple cells or tissues. The process of cell signaling imposes many demands on the proteins that comprise these pathways, including the abilities to form active and inactive states, and to engage in multiple protein interactions. Furthermore, successful signaling often requires amplifying the signal, regulating or tuning the response to the signal, combining information sourced from multiple pathways, all while ensuring fidelity of the process. This sensitivity, adaptability, and tunability are possible, in part, due to the inclusion of intrinsically disordered regions in many proteins involved in cell signaling. The goal of this collection is to highlight the many roles of intrinsic disorder in cell signaling. Following an overview of resources that can be used to study intrinsically disordered proteins, this review highlights the critical role of intrinsically disordered proteins for signaling in widely diverse organisms (animals, plants, bacteria, fungi), in every category of cell signaling pathway (autocrine, juxtacrine, intracrine, paracrine, and endocrine) and at each stage (ligand, receptor, transducer, effector, terminator) in the cell signaling process. Thus, a cell signaling pathway cannot be fully described without understanding how intrinsically disordered protein regions contribute to its function. The ubiquitous presence of intrinsic disorder in different stages of diverse cell signaling pathways suggest that more mechanisms by which disorder modulates intra- and inter-cell signals remain to be discovered.
Collapse
Affiliation(s)
- Sarah E. Bondos
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, TX 77843 USA
| | - A. Keith Dunker
- Center for Computational Biology and Bioinformatics, Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202 USA
| | - Vladimir N. Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer’s Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612 USA
- Institute for Biological Instrumentation of the Russian Academy of Sciences, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, Pushchino, Moscow Region, Russia 142290
| |
Collapse
|
75
|
Gianferrara T, Cescon E, Grieco I, Spalluto G, Federico S. Glycogen Synthase Kinase 3β Involvement in Neuroinflammation and Neurodegenerative Diseases. Curr Med Chem 2022; 29:4631-4697. [PMID: 35170406 DOI: 10.2174/0929867329666220216113517] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 11/24/2021] [Accepted: 12/19/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND GSK-3β activity has been strictly related to neuroinflammation and neurodegeneration. Alzheimer's disease is the most studied neurodegenerative disease, but GSK-3β seems to be involved in almost all neurodegenerative diseases including Parkinson's disease, amyotrophic lateral sclerosis, frontotemporal dementia, Huntington's disease and the autoimmune disease multiple sclerosis. OBJECTIVE The aim of this review is to help researchers both working on this research topic or not to have a comprehensive overview on GSK-3β in the context of neuroinflammation and neurodegeneration. METHOD Literature has been searched using PubMed and SciFinder databases by inserting specific keywords. A total of more than 500 articles have been discussed. RESULTS First of all, the structure and regulation of the kinase were briefly discussed and then, specific GSK-3β implications in neuroinflammation and neurodegenerative diseases were illustrated also with the help of figures, to conclude with a comprehensive overview on the most important GSK-3β and multitarget inhibitors. For all discussed compounds, the structure and IC50 values at the target kinase have been reported. CONCLUSION GSK-3β is involved in several signaling pathways both in neurons as well as in glial cells and immune cells. The fine regulation and interconnection of all these pathways are at the base of the rationale use of GSK-3β inhibitors in neuroinflammation and neurodegeneration. In fact, some compounds are now under clinical trials. Despite this, pharmacodynamic and ADME/Tox profiles of the compounds were often not fully characterized and this is deleterious in such a complex system.
Collapse
Affiliation(s)
- Teresa Gianferrara
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste, Italy
| | - Eleonora Cescon
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste, Italy
| | - Ilenia Grieco
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste, Italy
| | - Giampiero Spalluto
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste, Italy
| | - Stephanie Federico
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste, Italy
| |
Collapse
|
76
|
Yin Y, Kong D, He K, Xia Q. Aurora kinase A regulates liver regeneration through macrophages polarization and Wnt/β-catenin signalling. Liver Int 2022; 42:468-478. [PMID: 34719108 DOI: 10.1111/liv.15094] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 10/25/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND AIMS Liver regeneration is a complex process regulated by a variety of cells, cytokines and biological pathways. Aurora kinase A (AURKA) is a serine/threonine kinase that plays a role in centrosome maturation and spindle formation during the cell division cycle. The purpose of this study was to further explore the mechanism of AURKA on liver regeneration and to identify new possible targets for liver regeneration. METHODS The effect and mechanism of AURKA on liver regeneration were studied using a 70% hepatectomy model. Human liver organoids were used as an in vitro model to investigate the effect of AURKA on hepatocyte proliferation. RESULTS AURKA inhibition significantly reduced the level of β-catenin protein by reducing the phosphorylation level of glycogen synthase kinase-3β (GSK-3β), leading to the inhibition of liver regeneration. Further studies showed that AURKA co-localized and interacted with GSK-3β in the cytoplasm of hepatocytes. When phosphorylation of GSK-3β was enhanced, the total GSK-3β level remained unchanged, while AURKA was not affected, and β-catenin protein levels were increased. In addition, AURKA inhibition affected the formation and proliferation of human liver organoids. Furthermore, AURKA inhibition led to the polarization of M1 macrophages and the release of interleukin-6 and Tumour necrosis factor α, which also led to reduced liver regeneration and increased liver injury. CONCLUSIONS These results provide more details on the mechanism of liver regeneration and suggest that AURKA is an important regulator of this mechanism.
Collapse
Affiliation(s)
- Yanze Yin
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Defu Kong
- Department of Hepatology & Gastroenterology, University Medical Center Groningen, Groningen, Netherlands
| | - Kang He
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qiang Xia
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
77
|
Qiu T, Zhang D, Xu J, Li X, Wang D, Zhao F, Qian Y, Xu J, Xu T, Zhang H, Chen X. Yes-associated protein gene overexpression regulated by β-catenin promotes gastric cancer cell tumorigenesi. Technol Health Care 2022; 30:425-440. [PMID: 35124617 PMCID: PMC9028613 DOI: 10.3233/thc-thc228039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND: Yes-associated protein (YAP) has been reported to act as a candidate human oncogene and played a critical role in the development of multiple cancer types. OBJECTIVE: We aimed to investigate the expression, function, and underlying mechanisms of YAP in gastric cancer (GC). METHODS: Expression levels of YAP in gastric tissues were tested. CCK8 assay, clonogenic assay, apoptosis assay, transwell assay, cell scratch assay and animal study were conducted to explore the function of YAP. Chromatin immunoprecipitation (ChIP) assay and luciferase reporter assay were performed to explore the underlying mechanism. Survival analysis was carried out to reveal the relationship between YAP and clinical outcome. RESULTS: YAP was upregulated in gastric cancer tissues and correlates with poor prognosis. YAP could promote GC cells proliferation, metastatic capacity, inhibit GC cells apoptosis in vitro and in vivo. Bothβ-catenin and YAP were mainly localized withi the tumor cell nuclei. β-catenincould upregulate YAP expression by binding to the promotor region of YAP. Patients with both YAP and β-catenin negetive expression had a better prognosis than others. CONCLUSIONS: YAP overexpression is driven by aberrant Wnt β-catenin signalingand then contributed to the GC tumorigenesis and progression. Thus, YAP might be a potential target for GC treatment.
Collapse
Affiliation(s)
- Tianzhu Qiu
- Department of Oncology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Oncology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Diancai Zhang
- Department of General Surgery, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Oncology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jing Xu
- Department of Oncology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Oncology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiao Li
- Department of Pathology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Deqiang Wang
- Department of Medical Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Fengjiao Zhao
- Department of Oncology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yingying Qian
- Department of Respiratory, Nanjing First Hospital, Nanjing Medical University Nanjing, Jiangsu, China
| | - Jin Xu
- Department of Maternal, Child and Adolescent Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Tongpeng Xu
- Department of Oncology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hao Zhang
- Department of Oncology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiaofeng Chen
- Department of Oncology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Oncology, PuKou Branch Hospital of Jiangsu Province Hospital (NanJing PuKou Central Hospital), Nanjing, Jiangsu, China
| |
Collapse
|
78
|
Ramos-García P, González-Moles MÁ. Prognostic and Clinicopathological Significance of the Aberrant Expression of β-Catenin in Oral Squamous Cell Carcinoma: A Systematic Review and Meta-Analysis. Cancers (Basel) 2022; 14:cancers14030479. [PMID: 35158747 PMCID: PMC8833491 DOI: 10.3390/cancers14030479] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/14/2022] [Accepted: 01/15/2022] [Indexed: 01/27/2023] Open
Abstract
Simple Summary β-catenin is a multifunctional protein whose physiological functions are mainly related to the maintenance of cell-cell adhesion by forming complexes with the adhesion molecule E-cadherin, both responsible for the preservation of squamous epithelia homeostasis. The loss of β-catenin expression in the cell membrane, the failure of cytoplasmic degradation mechanisms—essentially related to the activation of Wnt canonical oncogenic pathway—and/or its translocation to the nucleus—developing actions as a transcription factor of oncogenes—are aberrant mechanisms with oncogenic implications in oral carcinogenesis. In this systematic review and meta-analysis on 41 studies and 2746 oral squamous cell carcinoma (OSCC) patients we demonstrate that the aberrant expression of β-catenin—mainly the immunohistochemical analysis of its loss in the cell membrane—behaves as a prognostic biomarker, significantly associated with poor survival, essentially linked to the increased risk for the development of lymph node metastases, higher tumour size and clinical stage in these patients. Abstract This systematic review and meta-analysis aims to evaluate the prognostic and clinicopathological significance of the aberrant expression of β-catenin (assessed through the immunohistochemical loss of membrane expression, cytoplasmic and nuclear expression) in oral squamous cell carcinoma (OSCC). We searched for primary-level studies published before October-2021 through PubMed, Embase, Web of Science, Scopus, and Google Scholar, with no limitation in regard to their publication date or language. We evaluated the methodological quality and risk of bias of the studies included using the QUIPS tool, carried out meta-analyses, explored heterogeneity and their sources across subgroups and meta-regression, and conducted sensitivity and small-study effects analyses. Forty-one studies (2746 patients) met inclusion criteria. The aberrant immunohistochemical expression of β-catenin was statistically associated with poor overall survival (HR = 1.77, 95% CI = 1.20–2.60, p = 0.004), disease-free survival (HR = 2.44, 95% CI = 1.10–5.50, p = 0.03), N+ status (OR = 2.39, 95% CI = 1.68–3.40, p < 0.001), higher clinical stage (OR = 2.40, 95% CI = 1.58–3.63, p < 0.001), higher tumour size (OR = 1.76, 95% CI = 1.23–2.53, p = 0.004), and moderately-poorly differentiated OSCC (OR = 1.57, 95% CI = 1.09–2.25, p = 0.02). The loss of β-catenin in the cell membrane showed the largest effect size in most of meta-analyses (singularly for poor overall survival [HR = 2.37, 95% CI = 1.55–3.62, p < 0.001], N+ status [OR = 3.44, 95% CI = 2.40–4.93, p < 0.001] and higher clinical stage [OR = 2.51, 95% CI = 1.17–5.35, p = 0.02]). In conclusion, our findings indicate that immunohistochemical assessment of the aberrant expression of β-catenin could be incorporated as an additional and complementary routine prognostic biomarker for the assessment of patients with OSCC.
Collapse
Affiliation(s)
- Pablo Ramos-García
- School of Dentistry, University of Granada, 18011 Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain
- Correspondence: (P.R.-G.); (M.Á.G.-M.)
| | - Miguel Á. González-Moles
- School of Dentistry, University of Granada, 18011 Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain
- Correspondence: (P.R.-G.); (M.Á.G.-M.)
| |
Collapse
|
79
|
Oliveira LFS, Predes D, Borges HL, Abreu JG. Therapeutic Potential of Naturally Occurring Small Molecules to Target the Wnt/β-Catenin Signaling Pathway in Colorectal Cancer. Cancers (Basel) 2022; 14:cancers14020403. [PMID: 35053565 PMCID: PMC8774030 DOI: 10.3390/cancers14020403] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 12/29/2021] [Accepted: 01/06/2022] [Indexed: 12/20/2022] Open
Abstract
Simple Summary Colorectal cancer (CRC) is an emerging public health problem and the second leading cause of death worldwide, with a significant socioeconomic impact in several countries. The 5-year survival rate is only 12% due to the lack of early diagnosis and resistance to available treatments, and the canonical Wnt signaling pathway is involved in this process. This review underlines the importance of understanding the fundamental roles of this pathway in physiological and pathological contexts and analyzes the use of naturally occurring small molecules that inhibits the Wnt/β-catenin pathway in experimental models of CRC. We also discuss the progress and challenges of moving these small molecules off the laboratory bench into the clinical platform. Abstract Colorectal cancer (CRC) ranks second in the number of cancer deaths worldwide, mainly due to late diagnoses, which restrict treatment in the potentially curable stages and decrease patient survival. The treatment of CRC involves surgery to remove the tumor tissue, in addition to radiotherapy and systemic chemotherapy sessions. However, almost half of patients are resistant to these treatments, especially in metastatic cases, where the 5-year survival rate is only 12%. This factor may be related to the intratumoral heterogeneity, tumor microenvironment (TME), and the presence of cancer stem cells (CSCs), which is impossible to resolve with the standard approaches currently available in clinical practice. CSCs are APC-deficient, and the search for alternative therapeutic agents such as small molecules from natural sources is a promising strategy, as these substances have several antitumor properties. Many of those interfere with the regulation of signaling pathways at the central core of CRC development, such as the Wnt/β-catenin, which plays a crucial role in the cell proliferation and stemness in the tumor. This review will discuss the use of naturally occurring small molecules inhibiting the Wnt/β-catenin pathway in experimental CRC models over the past decade, highlighting the molecular targets in the Wnt/β-catenin pathway and the mechanisms through which these molecules perform their antitumor activities.
Collapse
|
80
|
Kadota A, Moriguchi M, Watanabe T, Sekine Y, Nakamura S, Yasuno T, Ohe T, Mashino T, Fujimuro M. A pyridinium‑type fullerene derivative suppresses primary effusion lymphoma cell viability via the downregulation of the Wnt signaling pathway through the destabilization of β‑catenin. Oncol Rep 2022; 47:46. [PMID: 35014678 PMCID: PMC8771160 DOI: 10.3892/or.2022.8257] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 11/18/2021] [Indexed: 11/16/2022] Open
Abstract
Primary effusion lymphoma (PEL) is defined as a rare subtype of non-Hodgkin's B cell lymphoma, which is caused by Kaposi's sarcoma-associated herpesvirus (KSHV) in immunosuppressed patients. PEL is an aggressive type of lymphoma and is frequently resistant to conventional chemotherapeutics. Therefore, the discovery of novel drug candidates for the treatment of PEL is of utmost importance. In order to discover potential novel anti-tumor compounds against PEL, the authors previously developed a pyrrolidinium-type fullerene derivative, 1,1,1′,1′-tetramethyl [60]fullerenodipyrrolidinium diiodide (derivative #1), which induced the apoptosis of PEL cells via caspase-9 activation. In the present study, the growth inhibitory effects of pyrrolidinium-type (derivatives #1 and #2), pyridinium-type (derivatives #3 and #5 to #9) and anilinium-type fullerene derivatives (derivative #4) against PEL cells were evaluated. This analysis revealed a pyridinium-type derivative (derivative #5; 3- 5′-(etho-xycarbonyl)-1′,5′-dihydro-2′H-[5,6]fullereno-C60-Ih-[1,9-c]pyrrol-2′-yl]-1-methylpyridinium iodide), which exhibited antitumor activity against PEL cells via the downregulation of Wnt/β-catenin signaling. Derivative #5 suppressed the viability of KSHV-infected PEL cells compared with KSHV-uninfected B-lymphoma cells. Furthermore, derivative #5 induced the destabilization of β-catenin and suppressed β-catenin-TCF4 transcriptional activity in PEL cells. It is known that the constitutive activation of Wnt/β-catenin signaling is essential for the growth of KSHV-infected cells. The Wnt/β-catenin activation in KSHV-infected cells is mediated by KSHV latency-associated nuclear antigen (LANA). The data demonstrated that derivative #5 increased β-catenin phosphorylation, which resulted in β-catenin polyubiquitination and subsequent degradation. Thus, derivative #5 overcame LANA-mediated β-catenin stabilization. Furthermore, the administration of derivative #5 suppressed the development of PEL cells in the ascites of SCID mice with tumor xenografts derived from PEL cells. On the whole, these findings provide evidence that the pyridinium-type fullerene derivative #5 exhibits antitumor activity against PEL cells in vitro and in vivo. Thus, derivative #5 may be utilized as a novel therapeutic agent for the treatment of PEL.
Collapse
Affiliation(s)
- Ayano Kadota
- Department of Cell Biology, Kyoto Pharmaceutical University, Yamashinaku, Kyoto 607‑8412, Japan
| | - Misato Moriguchi
- Department of Cell Biology, Kyoto Pharmaceutical University, Yamashinaku, Kyoto 607‑8412, Japan
| | - Tadashi Watanabe
- Department of Cell Biology, Kyoto Pharmaceutical University, Yamashinaku, Kyoto 607‑8412, Japan
| | - Yuichi Sekine
- Department of Cell Biology, Kyoto Pharmaceutical University, Yamashinaku, Kyoto 607‑8412, Japan
| | - Shigeo Nakamura
- Department of Chemistry, Nippon Medical School, Musashino, Tokyo 180‑0023, Japan
| | - Takumi Yasuno
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Keio University, Tokyo 105‑8512, Japan
| | - Tomoyuki Ohe
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Keio University, Tokyo 105‑8512, Japan
| | - Tadahiko Mashino
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Keio University, Tokyo 105‑8512, Japan
| | - Masahiro Fujimuro
- Department of Cell Biology, Kyoto Pharmaceutical University, Yamashinaku, Kyoto 607‑8412, Japan
| |
Collapse
|
81
|
Wang X, Dong L, Cheng J, Verdine GL, Lin A, Chu Q. Targeted β-catenin ubiquitination and degradation by multifunctional stapled peptides. J Pept Sci 2021; 28:e3389. [PMID: 34937123 DOI: 10.1002/psc.3389] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 11/10/2021] [Accepted: 11/26/2021] [Indexed: 12/21/2022]
Abstract
Aberrant activation of the Wnt signaling pathway has been identified in numerous types of cancer. One common feature of oncogenic Wnt regulation involves an increase in the cellular levels of β-catenin due to interference with its constitutive ubiquitin-dependent degradation. Targeting β-catenin has therefore emerged as an appealing approach for the treatment of Wnt-dependent cancers. Here, we report a strategy that employs multifunctional stapled peptides to recruit an E3 ubiquitin ligase to β-catenin, thereby rescuing β-catenin degradation by hijacking the endogenous ubiquitin-proteasome pathway. Specifically, we designed, synthesized, and evaluated a panel of multifunctional stapled peptides that have a β-catenin binding moiety (StAx-35) covalently linked to a second stapled peptide moiety (SAH-p53-8), which is capable to interact with the E3 ubiquitin ligase MDM2. We found that in vitro these multifunctional peptides can recruit the MDM2 protein to β-catenin and induce poly-ubiquitination on β-catenin. In cellulo, treatment of the human colorectal cancer cell line SW480 with the multifunctional stapled peptides showed dose-dependent degradation of endogenous β-catenin levels. In addition, a luciferase reporter assay showed that the multifunctional stapled peptides can suppress β-catenin-mediated gene expression via the Wnt signaling pathway. Therefore, these multifunctional stapled peptides provide a unique research tool for examining the Wnt signaling pathway by targeted knockdown of β-catenin at the protein level, and may serve as leads for potential drug candidates in the treatment of Wnt-dependent cancers.
Collapse
Affiliation(s)
- Xiaofeng Wang
- Key Laboratory of Advanced Functional Materials of Nanjing, Nanjing Xiaozhuang University, Nanjing, China
| | - Liuli Dong
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing, China
| | - Jiongjia Cheng
- Key Laboratory of Advanced Functional Materials of Nanjing, Nanjing Xiaozhuang University, Nanjing, China
| | - Gregory L Verdine
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Aijun Lin
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing, China
| | - Qian Chu
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
82
|
He X, Wang J, Zhou R, Yu S, Jiang J, Zhou Q. Kinesin family member 23 exerts a protumor function in breast cancer via stimulation of the Wnt/β-catenin pathway. Toxicol Appl Pharmacol 2021; 435:115834. [PMID: 34933054 DOI: 10.1016/j.taap.2021.115834] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/14/2021] [Accepted: 12/16/2021] [Indexed: 01/22/2023]
Abstract
Kinesin family member 23 (KIF23) has been described as one of the main genes that are associated with malignant transformation in numerous cancers. However, the exact significance of KIF23 in breast cancer has not been well-addressed. The present study was dedicated to the comprehensive investigation of KIF23 in breast cancer. Initial expression analysis through The Cancer Genome Atlas (TCGA) demonstrated high KIF23 levels in breast cancer compared with normal controls. These in silico data showing high levels of KIF23 in breast cancer were verified by assessing clinical specimens using real-time quantitative PCR and immunoblot assays. Moreover, a high KIF23 level was correlated with adverse clinical outcomes in breast cancer patients. Cellular functional experiments showed that the down-regulation of KIF23 affected the malignant behaviors of breast cancer cells in vitro, whereas the forced expression of KIF23 stimulated them. Mechanistic studies revealed that KIF23 restraint down-regulated the levels of phosphorylated glycogen synthetase kinase-3β (GSK-3β), β-catenin, cyclin D1 and c-myc in breast cancer cells, showing an inhibitory effect on the Wnt/β-catenin pathway. The suppression of GSK-3β was able to reverse KIF23-silencing-induced inactivation of the Wnt/β-catenin pathway. Inhibition of the Wnt/β-catenin pathway abolished KIF23 overexpression-mediated protumor effects in breast cancer. A xenograft assay confirmed the in vivo antitumor function of KIF23 inhibition. In conclusion, these findings suggest that KIF23 may exert a protumor function in breast cancer by stimulating the Wnt/β-catenin pathway. This work suggests that KIF23 has potential values for targeted therapy and prognosis in breast cancer.
Collapse
Affiliation(s)
- Xin He
- Department of Ultrasound, The Second Affiliated Hospital of Xi'an Jiaotong University, 157 Xiwu Road, Xi'an, Shaanxi 710004, PR China
| | - Juan Wang
- Department of Ultrasound, The Second Affiliated Hospital of Xi'an Jiaotong University, 157 Xiwu Road, Xi'an, Shaanxi 710004, PR China
| | - Ru Zhou
- Department of Ultrasound, The Second Affiliated Hospital of Xi'an Jiaotong University, 157 Xiwu Road, Xi'an, Shaanxi 710004, PR China
| | - Shanshan Yu
- Department of Ultrasound, The Second Affiliated Hospital of Xi'an Jiaotong University, 157 Xiwu Road, Xi'an, Shaanxi 710004, PR China
| | - Jue Jiang
- Department of Ultrasound, The Second Affiliated Hospital of Xi'an Jiaotong University, 157 Xiwu Road, Xi'an, Shaanxi 710004, PR China.
| | - Qi Zhou
- Department of Ultrasound, The Second Affiliated Hospital of Xi'an Jiaotong University, 157 Xiwu Road, Xi'an, Shaanxi 710004, PR China.
| |
Collapse
|
83
|
Wu F, Li B, Hu X, Yu F, Shi Y, Ye L. Wnt7b Inhibits Osteoclastogenesis via AKT Activation and Glucose Metabolic Rewiring. Front Cell Dev Biol 2021; 9:771336. [PMID: 34881243 PMCID: PMC8645835 DOI: 10.3389/fcell.2021.771336] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 10/12/2021] [Indexed: 02/05/2023] Open
Abstract
The imbalance between bone formation and bone resorption causes osteoporosis, which leads to severe bone fractures. It is known that increases in osteoclast numbers and activities are the main reasons for increasing bone resorption. Although extensive studies have investigated the regulation of osteoclastogenesis of bone marrow macrophages (BMMs), new pharmacological avenues still need to be unveiled for clinical purpose. Wnt ligands have been widely demonstrated as stimulators of bone formation; however, the inhibitory effect of the Wnt pathway in osteoclastogenesis is largely unknown. Here, we demonstrate that Wnt7b, a potent Wnt ligand that enhances bone formation and increases bone mass, also abolishes osteoclastogenesis in vitro. Importantly, enforced expression of Wnt in bone marrow macrophage lineage cells significantly disrupts osteoclast formation and activity, which leads to a dramatic increase in bone mass. Mechanistically, Wnt7b impacts the glucose metabolic process and AKT activation during osteoclastogenesis. Thus, we demonstrate that Wnt7b diminishes osteoclast formation, which will be beneficial for osteoporosis therapy in the future.
Collapse
Affiliation(s)
- Fanzi Wu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Boer Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xuchen Hu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Fanyuan Yu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yu Shi
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ling Ye
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
84
|
Tian L, Wang Y, Jang YY. Wnt signaling in biliary development, proliferation, and fibrosis. Exp Biol Med (Maywood) 2021; 247:360-367. [PMID: 34861115 DOI: 10.1177/15353702211061376] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Biliary fibrosis is an important pathological indicator of hepatobiliary damage. Cholangiocyte is the key cell type involved in this process. To reveal the pathogenesis of biliary fibrosis, it is essential to understand the normal development as well as the aberrant generation and proliferation of cholangiocytes. Numerous reports suggest that the Wnt signaling pathway is implicated in the physiological and pathological processes of cholangiocyte development and ductular reaction. In this review, we summarize the effects of Wnt pathway in cholangiocyte development from embryonic stem cells, as well as the underlying mechanisms of cholangiocyte responses to adult ductal damage. Wnt signaling pathway is regulated in a step-wise manner during each of the liver differentiation stages from embryonic stem cells to functional mature cholangiocytes. With the modulation of Wnt pathway, cholangiocytes can also be generated from adult liver progenitor cells and mature hepatocytes to repair liver damage. Non-canonical Wnt signaling is triggered in the active ductal cells during biliary fibrosis. Targeted control of the Wnt signaling may hold the great potential to reduce and/or reverse the biliary fibrogenic process.
Collapse
Affiliation(s)
- Lipeng Tian
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Yichen Wang
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Yoon Young Jang
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
85
|
El Sabeh M, Saha SK, Afrin S, Borahay MA. Simvastatin Inhibits Wnt/β-Catenin Pathway in Uterine Leiomyoma. Endocrinology 2021; 162:6382454. [PMID: 34614511 PMCID: PMC8557633 DOI: 10.1210/endocr/bqab211] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Indexed: 12/16/2022]
Abstract
The Wnt/β-catenin pathway is upregulated in uterine leiomyomas, the most common benign tumors in the female reproductive tract. Simvastatin is an antihyperlipidemic drug, and previous in vitro and in vivo reports showed that it may have therapeutic effects in treating leiomyomas. The objective of this study was to examine the effects of simvastatin on the Wnt/β-catenin signaling pathway in leiomyoma. We treated primary and immortalized human leiomyoma cells with simvastatin and examined its effects using quantitative real-time polymerase chain reaction, Western blotting, and immunocytochemistry. We also examined the effects using human leiomyoma tissues from an ongoing randomized controlled trial in which women with symptomatic leiomyoma received simvastatin (40 mg) or placebo for 3 months prior to their surgery. The results of this study revealed that simvastatin significantly reduced the expression of Wnt4 and its co-receptor LRP5. After simvastatin treatment, levels of total β-catenin and its active form, nonphosphorylated β-catenin, were reduced in both cell types. Additionally, simvastatin reduced the expression of Wnt4 and total β-catenin, as well as nonphosphorylated β-catenin protein expression in response to estrogen and progesterone. Simvastatin also inhibited the expression of c-Myc, a downstream target of the Wnt/β-catenin pathway. The effect of simvastatin on nonphosphorylated-β-catenin, the key regulator of the Wnt/β-catenin pathway, was recapitulated in human leiomyoma tissue. These results suggest that simvastatin may have a beneficial effect on uterine leiomyoma through suppressing the overactive Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Malak El Sabeh
- Department of Gynecology & Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Subbroto Kumar Saha
- Department of Gynecology & Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Sadia Afrin
- Department of Gynecology & Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Mostafa A Borahay
- Department of Gynecology & Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Correspondence: Mostafa A. Borahay, M.D., Ph.D., Johns Hopkins University School of Medicine, 720 Rutland Avenue, Baltimore, MD 21205, USA.
| |
Collapse
|
86
|
Heparanase-Induced Activation of AKT Stabilizes β-Catenin and Modulates Wnt/β-Catenin Signaling during Herpes Simplex Virus 1 Infection. mBio 2021; 12:e0279221. [PMID: 34749529 PMCID: PMC8576534 DOI: 10.1128/mbio.02792-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Under pathological conditions like herpes simplex virus 1 (HSV-1) infection, host-pathogen interactions lead to major reconstruction of the host protein network, which contributes to the dysregulation of signaling pathways and disease onset. Of note is the upregulation of a multifunctional host protein, heparanase (HPSE), following infection, which serves as a mediator in HSV-1 replication. In this study, we identify a novel function of HPSE and highlight it as a key regulator of β-catenin signal transduction. The regulatory role of HPSE on the activation, nuclear translocation, and signal transduction of β-catenin disrupts cellular homeostasis and establishes a pathogenic environment that promotes viral replication. Under normal physiological conditions, β-catenin is bound to a group of proteins, referred to as the destruction complex, and targeted for ubiquitination and, ultimately, degradation. We show that virus-induced upregulation of HPSE leads to the activation of Akt and subsequent stabilization and activation of β-catenin through (i) the release of β-catenin from the destruction complex, and (ii) direct phosphorylation of β-catenin at Ser552. This study also provides an in-depth characterization of the proviral role of β-catenin signaling during HSV-1 replication using physiologically relevant cell lines and in vivo models of ocular infection. Furthermore, pharmacological inhibitors of this pathway generated a robust antiviral state against multiple laboratory and clinical strains of HSV-1. Collectively, our findings assign a novel regulatory role to HPSE as a driver of β-catenin signaling in HSV-1 infection. IMPORTANCE Heparanase (HPSE) and β-catenin have independently been implicated in regulating key pathophysiological processes, including neovascularization, angiogenesis, and inflammation; however, the relationship between the two proteins has remained elusive thus far. For that reason, characterizing this relationship is crucial and can lead to the development of novel therapeutics. For HSV-1 specifically, current antivirals are not able to abolish the virus from the host, leaving patients susceptible to episodes of viral reactivation. Identifying a host-based intervention can provide a better alternative with enhanced efficacy and sustained relief.
Collapse
|
87
|
Wnt/β-catenin signaling acts cell-autonomously to promote cardiomyocyte regeneration in the zebrafish heart. Dev Biol 2021; 481:226-237. [PMID: 34748730 DOI: 10.1016/j.ydbio.2021.11.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 10/15/2021] [Accepted: 11/02/2021] [Indexed: 12/22/2022]
Abstract
Zebrafish can achieve scar-free healing of heart injuries, and robustly replace all cardiomyocytes lost to injury via dedifferentiation and proliferation of mature cardiomyocytes. Previous studies suggested that Wnt/β-catenin signaling is active in the injured zebrafish heart, where it induces fibrosis and prevents cardiomyocyte cell cycling. Here, via targeting the destruction complex of the Wnt/β-catenin pathway with pharmacological and genetic tools, we demonstrate that Wnt/β-catenin activity is required for cardiomyocyte proliferation and dedifferentiation, as well as for maturation of the scar during regeneration. Using cardiomyocyte-specific conditional inhibition of the pathway, we show that Wnt/β-catenin signaling acts cell-autonomously to promote cardiomyocyte proliferation. Our results stand in contrast to previous reports and rather support a model in which Wnt/β-catenin signaling plays a positive role during heart regeneration in zebrafish.
Collapse
|
88
|
Wang L, Li J, Di LJ. Glycogen synthesis and beyond, a comprehensive review of GSK3 as a key regulator of metabolic pathways and a therapeutic target for treating metabolic diseases. Med Res Rev 2021; 42:946-982. [PMID: 34729791 PMCID: PMC9298385 DOI: 10.1002/med.21867] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 08/01/2021] [Accepted: 10/24/2021] [Indexed: 12/19/2022]
Abstract
Glycogen synthase kinase‐3 (GSK3) is a highly evolutionarily conserved serine/threonine protein kinase first identified as an enzyme that regulates glycogen synthase (GS) in response to insulin stimulation, which involves GSK3 regulation of glucose metabolism and energy homeostasis. Both isoforms of GSK3, GSK3α, and GSK3β, have been implicated in many biological and pathophysiological processes. The various functions of GSK3 are indicated by its widespread distribution in multiple cell types and tissues. The studies of GSK3 activity using animal models and the observed effects of GSK3‐specific inhibitors provide more insights into the roles of GSK3 in regulating energy metabolism and homeostasis. The cross‐talk between GSK3 and some important energy regulators and sensors and the regulation of GSK3 in mitochondrial activity and component function further highlight the molecular mechanisms in which GSK3 is involved to regulate the metabolic activity, beyond its classical regulatory effect on GS. In this review, we summarize the specific roles of GSK3 in energy metabolism regulation in tissues that are tightly associated with energy metabolism and the functions of GSK3 in the development of metabolic disorders. We also address the impacts of GSK3 on the regulation of mitochondrial function, activity and associated metabolic regulation. The application of GSK3 inhibitors in clinical tests will be highlighted too. Interactions between GSK3 and important energy regulators and GSK3‐mediated responses to different stresses that are related to metabolism are described to provide a brief overview of previously less‐appreciated biological functions of GSK3 in energy metabolism and associated diseases through its regulation of GS and other functions.
Collapse
Affiliation(s)
- Li Wang
- Proteomics, Metabolomics, and Drug Development Core, Faculty of Health Sciences, University of Macau, Macau, China.,Department of Biomedical Sciences, Faculty of Health Sciences, Macau, China.,Cancer Center of the Faculty of Health Sciences, University of Macau, Macau, China.,Institute of Translational Medicine, University of Macau, Macau, China.,Ministry of Education, Frontiers Science Center for Precision Oncology, University of Macau, Macau, China
| | - Jiajia Li
- Department of Biomedical Sciences, Faculty of Health Sciences, Macau, China.,Cancer Center of the Faculty of Health Sciences, University of Macau, Macau, China.,Institute of Translational Medicine, University of Macau, Macau, China.,Ministry of Education, Frontiers Science Center for Precision Oncology, University of Macau, Macau, China
| | - Li-Jun Di
- Department of Biomedical Sciences, Faculty of Health Sciences, Macau, China.,Cancer Center of the Faculty of Health Sciences, University of Macau, Macau, China.,Institute of Translational Medicine, University of Macau, Macau, China.,Ministry of Education, Frontiers Science Center for Precision Oncology, University of Macau, Macau, China
| |
Collapse
|
89
|
WNT/β-Catenin Pathway in Soft Tissue Sarcomas: New Therapeutic Opportunities? Cancers (Basel) 2021; 13:cancers13215521. [PMID: 34771683 PMCID: PMC8583315 DOI: 10.3390/cancers13215521] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/27/2021] [Accepted: 10/28/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary The WNT/β-catenin signaling pathway is involved in fundamental processes for the proliferation and differentiation of mesenchymal stem cells. However, little is known about its relevance for mesenchymal neoplasms, such us soft tissue sarcomas (STS). Chemotherapy based on doxorubicin (DXR) still remains the standard first-line treatment for locally advanced unresectable or metastatic STS, although overall survival could not be improved by combination with other chemotherapeutics. In this sense, the development of new therapeutic approaches continues to be an unmatched goal. This review covers the most important molecular alterations of the WNT signaling pathway in STS, broadening the current knowledge about STS as well as identifying novel drug targets. Furthermore, the current therapeutic options and drug candidates to modulate WNT signaling, which are usually classified by their interaction site upstream or downstream of β-catenin, and their presumable clinical impact on STS are discussed. Abstract Soft tissue sarcomas (STS) are a very heterogeneous group of rare tumors, comprising more than 50 different histological subtypes that originate from mesenchymal tissue. Despite their heterogeneity, chemotherapy based on doxorubicin (DXR) has been in use for forty years now and remains the standard first-line treatment for locally advanced unresectable or metastatic STS, although overall survival could not be improved by combination with other chemotherapeutics. In this sense, the development of new therapeutic approaches continues to be a largely unmatched goal. The WNT/β-catenin signaling pathway is involved in various fundamental processes for embryogenic development, including the proliferation and differentiation of mesenchymal stem cells. Although the role of this pathway has been widely researched in neoplasms of epithelial origin, little is known about its relevance for mesenchymal neoplasms. This review covers the most important molecular alterations of the WNT signaling pathway in STS. The detection of these alterations and the understanding of their functional consequences for those pathways controlling sarcomagenesis development and progression are crucial to broaden the current knowledge about STS as well as to identify novel drug targets. In this regard, the current therapeutic options and drug candidates to modulate WNT signaling, which are usually classified by their interaction site upstream or downstream of β-catenin, and their presumable clinical impact on STS are also discussed.
Collapse
|
90
|
G3BP1 promotes human breast cancer cell proliferation through coordinating with GSK-3β and stabilizing β-catenin. Acta Pharmacol Sin 2021; 42:1900-1912. [PMID: 33536604 PMCID: PMC8563869 DOI: 10.1038/s41401-020-00598-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 12/13/2020] [Indexed: 01/30/2023]
Abstract
Ras-GTPase activating SH3 domain-binding protein 1 (G3BP1) is a multifunctional binding protein involved in the development of a variety of human cancers. However, the role of G3BP1 in breast cancer progression remains largely unknown. In this study, we report that G3BP1 is upregulated and correlated with poor prognosis in breast cancer. Overexpression of G3BP1 promotes breast cancer cell proliferation by stimulating β-catenin signaling, which upregulates a number of proliferation-related genes. We further show that G3BP1 improves the stability of β-catenin by inhibiting its ubiquitin-proteasome degradation rather than affecting the transcription of β-catenin. Mechanistically, elevated G3BP1 interacts with and inactivates GSK-3β to suppress β-catenin phosphorylation and degradation. Disturbing the G3BP1-GSK-3β interaction accelerates the degradation of β-catenin, impairing the proliferative capacity of breast cancer cells. Our study demonstrates that the regulatory mechanism of the G3BP1/GSK-3β/β-catenin axis may be a potential therapeutic target for breast cancer.
Collapse
|
91
|
Papukashvili D, Rcheulishvili N, Liu C, Xie F, Tyagi D, He Y, Wang PG. Perspectives on miRNAs Targeting DKK1 for Developing Hair Regeneration Therapy. Cells 2021; 10:2957. [PMID: 34831180 PMCID: PMC8616136 DOI: 10.3390/cells10112957] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 10/22/2021] [Accepted: 10/26/2021] [Indexed: 02/08/2023] Open
Abstract
Androgenetic alopecia (AGA) remains an unsolved problem for the well-being of humankind, although multiple important involvements in hair growth have been discovered. Up until now, there is no ideal therapy in clinical practice in terms of efficacy and safety. Ultimately, there is a strong need for developing a feasible remedy for preventing and treating AGA. The Wnt/β-catenin signaling pathway is critical in hair restoration. Thus, AGA treatment via modulating this pathway is rational, although challenging. Dickkopf-related protein 1 (DKK1) is distinctly identified as an inhibitor of canonical Wnt/β-catenin signaling. Thus, in order to stimulate the Wnt/β-catenin signaling pathway, inhibition of DKK1 is greatly demanding. Studying DKK1-targeting microRNAs (miRNAs) involved in the Wnt/β-catenin signaling pathway may lay the groundwork for the promotion of hair growth. Bearing in mind that DKK1 inhibition in the balding scalp of AGA certainly makes sense, this review sheds light on the perspectives of miRNA-mediated hair growth for treating AGA via regulating DKK1 and, eventually, modulating Wnt/β-catenin signaling. Consequently, certain miRNAs regulating the Wnt/β-catenin signaling pathway via DKK1 inhibition might represent attractive candidates for further studies focusing on promoting hair growth and AGA therapy.
Collapse
Affiliation(s)
| | | | | | | | | | - Yunjiao He
- School of Medicine, Southern University of Science and Technology, Shenzhen 518000, China; (D.P.); (N.R.); (C.L.); (F.X.); (D.T.)
| | - Peng George Wang
- School of Medicine, Southern University of Science and Technology, Shenzhen 518000, China; (D.P.); (N.R.); (C.L.); (F.X.); (D.T.)
| |
Collapse
|
92
|
Karabicici M, Azbazdar Y, Iscan E, Ozhan G. Misregulation of Wnt Signaling Pathways at the Plasma Membrane in Brain and Metabolic Diseases. MEMBRANES 2021; 11:844. [PMID: 34832073 PMCID: PMC8621778 DOI: 10.3390/membranes11110844] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/23/2021] [Accepted: 10/27/2021] [Indexed: 12/26/2022]
Abstract
Wnt signaling pathways constitute a group of signal transduction pathways that direct many physiological processes, such as development, growth, and differentiation. Dysregulation of these pathways is thus associated with many pathological processes, including neurodegenerative diseases, metabolic disorders, and cancer. At the same time, alterations are observed in plasma membrane compositions, lipid organizations, and ordered membrane domains in brain and metabolic diseases that are associated with Wnt signaling pathway activation. Here, we discuss the relationships between plasma membrane components-specifically ligands, (co) receptors, and extracellular or membrane-associated modulators-to activate Wnt pathways in several brain and metabolic diseases. Thus, the Wnt-receptor complex can be targeted based on the composition and organization of the plasma membrane, in order to develop effective targeted therapy drugs.
Collapse
Affiliation(s)
- Mustafa Karabicici
- Izmir Biomedicine and Genome Center (IBG), Dokuz Eylul University Health Campus, Inciralti-Balcova, Izmir 35340, Turkey; (M.K.); (Y.A.); (E.I.)
- Izmir International Biomedicine and Genome Institute (IBG-Izmir), Dokuz Eylul University, Inciralti-Balcova, Izmir 35340, Turkey
| | - Yagmur Azbazdar
- Izmir Biomedicine and Genome Center (IBG), Dokuz Eylul University Health Campus, Inciralti-Balcova, Izmir 35340, Turkey; (M.K.); (Y.A.); (E.I.)
- Izmir International Biomedicine and Genome Institute (IBG-Izmir), Dokuz Eylul University, Inciralti-Balcova, Izmir 35340, Turkey
| | - Evin Iscan
- Izmir Biomedicine and Genome Center (IBG), Dokuz Eylul University Health Campus, Inciralti-Balcova, Izmir 35340, Turkey; (M.K.); (Y.A.); (E.I.)
- Izmir International Biomedicine and Genome Institute (IBG-Izmir), Dokuz Eylul University, Inciralti-Balcova, Izmir 35340, Turkey
| | - Gunes Ozhan
- Izmir Biomedicine and Genome Center (IBG), Dokuz Eylul University Health Campus, Inciralti-Balcova, Izmir 35340, Turkey; (M.K.); (Y.A.); (E.I.)
- Izmir International Biomedicine and Genome Institute (IBG-Izmir), Dokuz Eylul University, Inciralti-Balcova, Izmir 35340, Turkey
| |
Collapse
|
93
|
Wang X, Liu H, Ni Y, Shen P, Han X. Lactate shuttle: from substance exchange to regulatory mechanism. Hum Cell 2021; 35:1-14. [PMID: 34606041 DOI: 10.1007/s13577-021-00622-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 09/24/2021] [Indexed: 12/13/2022]
Abstract
Lactate, as the product of glycolytic metabolism and the substrate of energy metabolism, is an intermediate link between cancer cell and tumor microenvironment metabolism. The exchange of lactate between the two cells via mono-carboxylate transporters (MCTs) is known as the lactate shuttle in cancer. Lactate shuttle is the core of cancer cell metabolic reprogramming between two cells such as aerobic cancer cells and hypoxic cancer cells, tumor cells and stromal cells, cancer cells and vascular endothelial cells. Cancer cells absorb lactate by mono-carboxylate transporter 1 (MCT1) and convert lactate to pyruvate via intracellular lactate dehydrogenase B (LDH-B) to maintain their growth and metabolism. Since lactate shuttle may play a critical role in energy metabolism of cancer cells, components related to lactate shuttle may be a crucial target for tumor antimetabolic therapy. In this review, we describe the lactate shuttle in terms of both substance exchange and regulatory mechanisms in cancer. Meanwhile, we summarize the difference of key proteins of lactate shuttle in common types of cancer.
Collapse
Affiliation(s)
- Xingchen Wang
- Department of Pharmacology, School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, Jinan, 250012, China
| | - He Liu
- Department of Pharmacology, School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, Jinan, 250012, China
| | - Yingqian Ni
- Department of Pharmacology, School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, Jinan, 250012, China
| | - Peibo Shen
- Department of Pharmacology, School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, Jinan, 250012, China
| | - Xiuzhen Han
- Department of Pharmacology, School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, Jinan, 250012, China. .,Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, Jinan, 250012, China. .,Shandong Cancer Hospital and Institute, 440 Jiyan Road, Jinan, 250117, Shandong, China.
| |
Collapse
|
94
|
Poitras TM, Munchrath E, Zochodne DW. Neurobiological Opportunities in Diabetic Polyneuropathy. Neurotherapeutics 2021; 18:2303-2323. [PMID: 34935118 PMCID: PMC8804062 DOI: 10.1007/s13311-021-01138-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/01/2021] [Indexed: 12/29/2022] Open
Abstract
This review highlights a selection of potential translational directions for the treatment of diabetic polyneuropathy (DPN) currently irreversible and without approved interventions beyond pain management. The list does not include all diabetic targets that have been generated over several decades of research but focuses on newer work. The emphasis is firstly on approaches that support the viability and growth of peripheral neurons and their ability to withstand a barrage of diabetic alterations. We include a section describing Schwann cell targets and finally how mitochondrial damage has been a common element in discussing neuropathic damage. Most of the molecules and pathways described here have not yet reached clinical trials, but many trials have been negative to date. Nonetheless, these failures clear the pathway for new thoughts over reversing DPN.
Collapse
Affiliation(s)
- Trevor M Poitras
- Peripheral Nerve Research Laboratory, Division of Neurology, Department of Medicine and the Neuroscience and Mental Health Institute, University of Alberta, 7-132A Clinical Sciences Building, 11350-83 Ave, Edmonton, AB, T6G 2G3, Canada
| | - Easton Munchrath
- Peripheral Nerve Research Laboratory, Division of Neurology, Department of Medicine and the Neuroscience and Mental Health Institute, University of Alberta, 7-132A Clinical Sciences Building, 11350-83 Ave, Edmonton, AB, T6G 2G3, Canada
| | - Douglas W Zochodne
- Peripheral Nerve Research Laboratory, Division of Neurology, Department of Medicine and the Neuroscience and Mental Health Institute, University of Alberta, 7-132A Clinical Sciences Building, 11350-83 Ave, Edmonton, AB, T6G 2G3, Canada.
| |
Collapse
|
95
|
Maleki Dana P, Sadoughi F, Mansournia MA, Mirzaei H, Asemi Z, Yousefi B. Targeting Wnt signaling pathway by polyphenols: implication for aging and age-related diseases. Biogerontology 2021; 22:479-494. [PMID: 34480268 DOI: 10.1007/s10522-021-09934-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 08/26/2021] [Indexed: 12/14/2022]
Abstract
Age is an important risk factor for different diseases. The same mechanisms that promote aging are involved in the development and progression of age-associated diseases. Polyphenols are organic compounds found in fruits and vegetables. Due to their beneficial properties (e.g. antioxidant and anti-inflammatory), polyphenols have been extensively used for treating chronic diseases. To exert their functions, polyphenols target various molecular mechanisms and signaling pathways, such as mTOR, NF-κB, and Wnt/β-catenin. Wnt signaling is a critical pathway for developmental processes. Besides, dysregulation of this signaling pathway has been observed in various diseases. Several investigations have been conducted on Wnt inhibitors at pre-clinical stages, showing promising results. Herein, we review the studies dealing with the role of polyphenols in targeting the Wnt signaling pathways in aging processes and age-associated diseases, including cancer, diabetes, Alzheimer's disease, osteoporosis, and Parkinson's disease.
Collapse
Affiliation(s)
- Parisa Maleki Dana
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Islamic Republic of Iran
| | - Fatemeh Sadoughi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Islamic Republic of Iran
| | - Mohammad Ali Mansournia
- Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Islamic Republic of Iran
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Islamic Republic of Iran.
| | - Bahman Yousefi
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Islamic Republic of Iran.
- Department of Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Islamic Republic of Iran.
| |
Collapse
|
96
|
Abou Azar F, Lim GE. Metabolic Contributions of Wnt Signaling: More Than Controlling Flight. Front Cell Dev Biol 2021; 9:709823. [PMID: 34568323 PMCID: PMC8458764 DOI: 10.3389/fcell.2021.709823] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 08/16/2021] [Indexed: 12/12/2022] Open
Abstract
The canonical Wnt signaling pathway is ubiquitous throughout the body and influences a diverse array of physiological processes. Following the initial discovery of the Wnt signaling pathway during wing development in Drosophila melanogaster, it is now widely appreciated that active Wnt signaling in mammals is necessary for the development and growth of various tissues involved in whole-body metabolism, such as brain, liver, pancreas, muscle, and adipose. Moreover, elegant gain- and loss-of-function studies have dissected the tissue-specific roles of various downstream effector molecules in the regulation of energy homeostasis. This review attempts to highlight and summarize the contributions of the Wnt signaling pathway and its downstream effectors on whole-body metabolism and their influence on the development of metabolic diseases, such as diabetes and obesity. A better understanding of the Wnt signaling pathway in these tissues may aid in guiding the development of future therapeutics to treat metabolic diseases.
Collapse
Affiliation(s)
- Frederic Abou Azar
- Department of Medicine, Université de Montréal, Montreal, QC, Canada.,Cardiometabolic Axis, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC, Canada
| | - Gareth E Lim
- Department of Medicine, Université de Montréal, Montreal, QC, Canada.,Cardiometabolic Axis, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC, Canada
| |
Collapse
|
97
|
Lei WL, Li YY, Meng TG, Ning Y, Sun SM, Zhang CH, Gui Y, Wang ZB, Qian WP, Sun QY. Specific deletion of protein phosphatase 6 catalytic subunit in Sertoli cells leads to disruption of spermatogenesis. Cell Death Dis 2021; 12:883. [PMID: 34580275 PMCID: PMC8476514 DOI: 10.1038/s41419-021-04172-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 08/25/2021] [Accepted: 09/15/2021] [Indexed: 12/14/2022]
Abstract
Protein phosphatase 6 (PP6) is a member of the PP2A-like subfamily, which plays significant roles in numerous fundamental biological activities. We found that PPP6C plays important roles in male germ cells recently. Spermatogenesis is supported by the Sertoli cells in the seminiferous epithelium. In this study, we crossed Ppp6cF/F mice with AMH-Cre mice to gain mutant mice with specific depletion of the Ppp6c gene in the Sertoli cells. We discovered that the PPP6C cKO male mice were absolutely infertile and germ cells were largely lost during spermatogenesis. By combing phosphoproteome with bioinformatics analysis, we showed that the phosphorylation status of β-catenin at S552 (a marker of adherens junctions) was significantly upregulated in mutant mice. Abnormal β-catenin accumulation resulted in impaired testicular junction integrity, thus led to abnormal structure and functions of BTB. Taken together, our study reveals a novel function for PPP6C in male germ cell survival and differentiation by regulating the cell-cell communication through dephosphorylating β-catenin at S552.
Collapse
Affiliation(s)
- Wen-Long Lei
- Department of Reproductive Medicine, Peking University Shenzhen Hospital, Shenzhen, 518036, China
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Institute of Urology, Peking University Shenzhen Hospital, Shenzhen PKU-HKUST Medical Center, Shenzhen, 518036, China
| | - Yuan-Yuan Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Tie-Gang Meng
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Fertility Preservation Lab, Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, 510317, China
| | - Yan Ning
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Si-Min Sun
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Chun-Hui Zhang
- Department of Reproductive Medicine, Peking University Shenzhen Hospital, Shenzhen, 518036, China
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Institute of Urology, Peking University Shenzhen Hospital, Shenzhen PKU-HKUST Medical Center, Shenzhen, 518036, China
| | - Yaoting Gui
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Institute of Urology, Peking University Shenzhen Hospital, Shenzhen PKU-HKUST Medical Center, Shenzhen, 518036, China
| | - Zhen-Bo Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Wei-Ping Qian
- Department of Reproductive Medicine, Peking University Shenzhen Hospital, Shenzhen, 518036, China.
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Institute of Urology, Peking University Shenzhen Hospital, Shenzhen PKU-HKUST Medical Center, Shenzhen, 518036, China.
| | - Qing-Yuan Sun
- Fertility Preservation Lab, Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, 510317, China.
| |
Collapse
|
98
|
Meng Y, Zhang T, Zheng R, Ding S, Yang J, Liu R, Jiang Y, Jiang W. Depletion of Demethylase KDM6 Enhances Early Neuroectoderm Commitment of Human PSCs. Front Cell Dev Biol 2021; 9:702462. [PMID: 34568320 PMCID: PMC8455897 DOI: 10.3389/fcell.2021.702462] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 08/04/2021] [Indexed: 12/24/2022] Open
Abstract
Epigenetic modifications play a crucial role in neurogenesis, learning, and memory, but the study of their role in early neuroectoderm commitment from pluripotent inner cell mass is relatively lacking. Here we utilized the system of directed neuroectoderm differentiation from human embryonic stem cells and identified that KDM6B, an enzyme responsible to erase H3K27me3, was the most upregulated enzyme of histone methylation during neuroectoderm differentiation by transcriptome analysis. We then constructed KDM6B-null embryonic stem cells and found strikingly that the pluripotent stem cells with KDM6B knockout exhibited much higher neuroectoderm induction efficiency. Furthermore, we constructed a series of embryonic stem cell lines knocking out the other H3K27 demethylase KDM6A, and depleting both KDM6A and KDM6B, respectively. These cell lines together confirmed that KDM6 impeded early neuroectoderm commitment. By RNA-seq, we found that the expression levels of a panel of WNT genes were significantly affected upon depletion of KDM6. Importantly, the result that WNT agonist and antagonist could abolish the differential neuroectoderm induction due to manipulating KDM6 further demonstrated that WNT was the major downstream of KDM6 during early neural induction. Moreover, we found that the chemical GSK-J1, an inhibitor of KDM6, could enhance neuroectoderm induction from both embryonic stem cells and induced pluripotent stem cells. Taken together, our findings not only illustrated the important role of the histone methylation modifier KDM6 in early neurogenesis, providing insights into the precise epigenetic regulation in cell fate determination, but also showed that the inhibitor of KDM6 could facilitate neuroectoderm differentiation from human pluripotent stem cells.
Collapse
Affiliation(s)
- Yajing Meng
- Department of Biological Repositories, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Tianzhe Zhang
- Department of Biological Repositories, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Ran Zheng
- Department of Biological Repositories, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Song Ding
- Department of Biological Repositories, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Jie Yang
- Department of Biological Repositories, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Ran Liu
- Department of Biological Repositories, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Yingan Jiang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, China
| | - Wei Jiang
- Department of Biological Repositories, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- Human Genetics Resource Preservation Center of Wuhan University, Wuhan, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, China
| |
Collapse
|
99
|
Yuan X, Xue J, Tan Y, Yang Q, Qin Z, Bao X, Li S, Pan L, Jiang Z, Wang Y, Lou Y, Jiang L, Du J. Albuca Bracteate Polysaccharides Synergistically Enhance the Anti-Tumor Efficacy of 5-Fluorouracil Against Colorectal Cancer by Modulating β-Catenin Signaling and Intestinal Flora. Front Pharmacol 2021; 12:736627. [PMID: 34552494 PMCID: PMC8450769 DOI: 10.3389/fphar.2021.736627] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 08/12/2021] [Indexed: 01/05/2023] Open
Abstract
The first-line treatment for colorectal cancer (CRC) is 5-fluorouracil (5-FU). However, the efficacy of this treatment is sometimes limited owing to chemoresistance as well as treatment-associated intestinal mucositis and other adverse events. Growing evidence suggests that certain phytochemicals have therapeutic and cancer-preventing properties. Further, the synergistic interactions between many such plant-derived products and chemotherapeutic drugs have been linked to improved therapeutic efficacy. Polysaccharides extracted from Albuca bracteata (Thunb.) J.C.Manning and Goldblatt (ABP) have been reported to exhibit anti-oxidant, anti-inflammatory, and anti-tumor properties. In this study, murine CRC cells (CT26) and a murine model of CRC were used to examine the anti-tumor properties of ABP and explore the mechanism underlying the synergistic interactions between ABP and 5-FU. Our results revealed that ABP could inhibit tumor cell proliferation, invasion, and migratory activity in vitro and inhibited tumor progression in vivo by suppressing β-catenin signaling. Additionally, treatment with a combination of ABP and 5-FU resulted in better outcomes than treatment with either agent alone. Moreover, this combination therapy resulted in the specific enrichment of Ruminococcus, Anaerostipes, and Oscillospira in the intestinal microbiota and increased fecal short-chain fatty acid (SCFA) levels (acetic acid, propionic acid, and butyric acid). The improvement in the intestinal microbiota and the increase in beneficial SCFAs contributed to enhanced therapeutic outcomes and reduced the adverse effects of 5-FU. Together, these data suggest that ABP exhibits anti-neoplastic activity and can effectively enhance the efficacy of 5-FU in CRC treatment. Therefore, further research on the application of ABP in the development of novel anti-tumor drugs and adjuvant compounds is warranted and could improve the outcomes of CRC patients.
Collapse
Affiliation(s)
- Xinyu Yuan
- Wenzhou Key Laboratory of Sanitary Microbiology, Department of Microbiology and Immunology, School of Laboratory Medicine, Wenzhou Medical University, Wenzhou, China
| | - Jiao Xue
- Wenzhou Key Laboratory of Sanitary Microbiology, Department of Microbiology and Immunology, School of Laboratory Medicine, Wenzhou Medical University, Wenzhou, China
| | - Yingxia Tan
- Central Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Qingguo Yang
- Wenzhou Key Laboratory of Sanitary Microbiology, Department of Microbiology and Immunology, School of Laboratory Medicine, Wenzhou Medical University, Wenzhou, China
| | - Ziyan Qin
- Wenzhou Key Laboratory of Sanitary Microbiology, Department of Microbiology and Immunology, School of Laboratory Medicine, Wenzhou Medical University, Wenzhou, China
| | - Xiaodong Bao
- Central Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Shengkai Li
- Wenzhou Key Laboratory of Sanitary Microbiology, Department of Microbiology and Immunology, School of Laboratory Medicine, Wenzhou Medical University, Wenzhou, China
| | - Liangliang Pan
- Wenzhou Key Laboratory of Sanitary Microbiology, Department of Microbiology and Immunology, School of Laboratory Medicine, Wenzhou Medical University, Wenzhou, China
| | - Ziqing Jiang
- Wenzhou Key Laboratory of Sanitary Microbiology, Department of Microbiology and Immunology, School of Laboratory Medicine, Wenzhou Medical University, Wenzhou, China
| | - Yu Wang
- Wenzhou Key Laboratory of Sanitary Microbiology, Department of Microbiology and Immunology, School of Laboratory Medicine, Wenzhou Medical University, Wenzhou, China
| | - Yongliang Lou
- Wenzhou Key Laboratory of Sanitary Microbiology, Department of Microbiology and Immunology, School of Laboratory Medicine, Wenzhou Medical University, Wenzhou, China
| | - Lei Jiang
- Central Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jimei Du
- Wenzhou Key Laboratory of Sanitary Microbiology, Department of Microbiology and Immunology, School of Laboratory Medicine, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
100
|
Keikhosravani P, Maleki-Ghaleh H, Kahaie Khosrowshahi A, Bodaghi M, Dargahi Z, Kavanlouei M, Khademi-Azandehi P, Fallah A, Beygi-Khosrowshahi Y, Siadati MH. Bioactivity and Antibacterial Behaviors of Nanostructured Lithium-Doped Hydroxyapatite for Bone Scaffold Application. Int J Mol Sci 2021; 22:ijms22179214. [PMID: 34502124 PMCID: PMC8430817 DOI: 10.3390/ijms22179214] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/15/2021] [Accepted: 08/19/2021] [Indexed: 12/11/2022] Open
Abstract
The material for bone scaffold replacement should be biocompatible and antibacterial to prevent scaffold-associated infection. We biofunctionalized the hydroxyapatite (HA) properties by doping it with lithium (Li). The HA and 4 Li-doped HA (0.5, 1.0, 2.0, 4.0 wt.%) samples were investigated to find the most suitable Li content for both aspects. The synthesized nanoparticles, by the mechanical alloying method, were cold-pressed uniaxially and then sintered for 2 h at 1250 °C. Characterization using field-emission scanning electron microscopy (FE-SEM) revealed particle sizes in the range of 60 to 120 nm. The XRD analysis proved the formation of HA and Li-doped HA nanoparticles with crystal sizes ranging from 59 to 89 nm. The bioactivity of samples was investigated in simulated body fluid (SBF), and the growth of apatite formed on surfaces was evaluated using SEM and EDS. Cellular behavior was estimated by MG63 osteoblast-like cells. The results of apatite growth and cell analysis showed that 1.0 wt.% Li doping was optimal to maximize the bioactivity of HA. Antibacterial characteristics against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) were performed by colony-forming unit (CFU) tests. The results showed that Li in the structure of HA increases its antibacterial properties. HA biofunctionalized by Li doping can be considered a suitable option for the fabrication of bone scaffolds due to its antibacterial and unique bioactivity properties.
Collapse
Affiliation(s)
- Pardis Keikhosravani
- Department of Materials Science and Engineering, K. N. Toosi University of Technology, Tehran P.O. Box 19919-43344, Iran; (P.K.); (M.H.S.)
- Department of Orthopedics, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Hossein Maleki-Ghaleh
- Department of Materials Science and Engineering, K. N. Toosi University of Technology, Tehran P.O. Box 19919-43344, Iran; (P.K.); (M.H.S.)
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz 51368, Iran
- Correspondence: (H.M.-G.); (Y.B.-K.); Tel.: +98-919-110-5425 (H.M.-G.)
| | - Amir Kahaie Khosrowshahi
- Department of Chemical Engineering, Sahand University of Technology, Tabriz P.O. Box 51335-1996, Iran;
- Tissue Engineering and Stem Cells Research Center, Sahand University of Technology, Tabriz P.O. Box 51335-1996, Iran
| | - Mahdi Bodaghi
- Department of Engineering, School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK;
| | - Ziba Dargahi
- Department of Materials Engineering, University of Tabriz, Tabriz 51368, Iran;
| | - Majid Kavanlouei
- Materials Engineering Department, Faculty of Engineering, Urmia University, Urmia P.O. Box 57561-51818, Iran;
| | - Pooriya Khademi-Azandehi
- Research Center for Advanced Materials, Faculty of Materials Engineering, Sahand University of Technology, Tabriz P.O. Box 51335-1996, Iran;
| | - Ali Fallah
- Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul 34956, Turkey;
- Nanotechnology Research and Application Center (SUNUM), Sabanci University, Istanbul 34956, Turkey
| | - Younes Beygi-Khosrowshahi
- Chemical Engineering Group, Faculty of Engineering, Azarbaijan Shahid Madani University, Tabriz P.O. Box 53751-71379, Iran
- Correspondence: (H.M.-G.); (Y.B.-K.); Tel.: +98-919-110-5425 (H.M.-G.)
| | - M. Hossein Siadati
- Department of Materials Science and Engineering, K. N. Toosi University of Technology, Tehran P.O. Box 19919-43344, Iran; (P.K.); (M.H.S.)
| |
Collapse
|