51
|
Surman M, Drożdż A, Stępień E, Przybyło M. Extracellular Vesicles as Drug Delivery Systems - Methods of Production and Potential Therapeutic Applications. Curr Pharm Des 2020; 25:132-154. [PMID: 30848183 DOI: 10.2174/1381612825666190306153318] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 03/01/2019] [Indexed: 01/08/2023]
Abstract
Drug delivery systems are created to achieve the desired therapeutic effect of a specific pharmaceutical compound. Numerous drawbacks and side effects such as unfavorable pharmacokinetics, lack of tissue selectivity, immunogenicity, increased systemic clearance and toxicity, have been observed for currently available drug delivery systems (DDSs). The use of natural and artificial extracellular vesicles (EVs) in drug delivery may help to solve the aforementioned problems faced by different DDSs. Due to their self-origin, small size, flexibility, the presence of multiple adhesive molecules on their surfaces as well as their function as biomolecules carriers, EVs are the perfect candidates for DDSs. Currently, several drug delivery systems based on EVs have been proposed. While the great potential of these particles in targeted drug delivery has been recognized in cancer, hepatitis C, neurodegenerative diseases, inflammatory states etc., this field is still in the early stage of development. Unfortunately, the use of EVs from natural sources (cell cultures, body fluids) results in numerous problems in terms of the heterogeneity of isolated vesicle population as well as the method of isolation thereof, which may influence vesicle composition and properties. Therefore, there is a significant need for the synthesis of artificial EV-based DDSs under strictly controlled laboratory conditions and from well-defined biomolecules (proteins and lipids). Vesicle-mimetic delivery systems, characterized by properties similar to natural EVs, will bring new opportunities to study the mechanisms of DDS internalization and their biological activity after delivering their cargo to a target cell.
Collapse
Affiliation(s)
- Magdalena Surman
- Department of Glycoconjugate Biochemistry, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Krakow, Poland
| | - Anna Drożdż
- Department of Medical Physics, M. Smoluchowski Institute of Physics, Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Krakow, Poland
| | - Ewa Stępień
- Department of Medical Physics, M. Smoluchowski Institute of Physics, Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Krakow, Poland
| | - Małgorzata Przybyło
- Department of Glycoconjugate Biochemistry, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Krakow, Poland
| |
Collapse
|
52
|
Akbari A, Jabbari N, Sharifi R, Ahmadi M, Vahhabi A, Seyedzadeh SJ, Nawaz M, Szafert S, Mahmoodi M, Jabbari E, Asghari R, Rezaie J. Free and hydrogel encapsulated exosome-based therapies in regenerative medicine. Life Sci 2020; 249:117447. [PMID: 32087234 DOI: 10.1016/j.lfs.2020.117447] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 02/09/2020] [Accepted: 02/17/2020] [Indexed: 12/21/2022]
Abstract
Over the last few decades, mesenchymal stem cells-derived exosomes (MSCs-Ex) have attracted a lot of attention as a therapeutic tool in regenerative medicine. Exosomes are extracellular vehicles (EVs) that play important roles in cell-cell communication through various processes such as stress response, senescence, angiogenesis, and cell differentiation. Success in the field of regenerative medicine sparked exploration of the potential use of exosomes as key therapeutic effectors of MSCs to promote tissue regeneration. Various approaches including direct injection, intravenous injection, intraperitoneal injection, oral administration, and hydrogel-based encapsulation have been exploited to deliver exosomes to target tissues in different disease models. Despite significant advances in exosome therapy, it is unclear which approach is more effective for administering exosomes. Herein, we critically review the emerging progress in the applications of exosomes in the form of free or association with hydrogels as therapeutic agents for applications in regenerative medicine.
Collapse
Affiliation(s)
- Ali Akbari
- Solid Tumor Research Center, Research Institute for Cellular and Molecular Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Nassrollah Jabbari
- Solid Tumor Research Center, Research Institute for Cellular and Molecular Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Roholah Sharifi
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, United States
| | - Mahdi Ahmadi
- Tuberculosis and lung Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Vahhabi
- Department of Immunology and Genetics, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Seyyed Javad Seyedzadeh
- Department of Medical Entomology and Vector Control, School of Public Health, Urmia University of Medical Sciences, Urmia, Iran; Social Determinants of Health Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Muhammad Nawaz
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Sweden
| | - Sławomir Szafert
- Faculty of Chemistry, University of Wrocław, F. Joliot Curie 14, 50383 Wrocław, Poland
| | - Monireh Mahmoodi
- Department of biology, Faculty of Science, Arak University, Arak, Iran
| | - Esmaiel Jabbari
- Department of Chemical Engineering, University of South Carolina, Columbia, SC, United States
| | - Rahim Asghari
- Department of Oncology, Imam Khomeini hospital, Urmia University of Medical Sciences, Urmia, Iran
| | - Jafar Rezaie
- Solid Tumor Research Center, Research Institute for Cellular and Molecular Medicine, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
53
|
Babuta M, Furi I, Bala S, Bukong TN, Lowe P, Catalano D, Calenda C, Kodys K, Szabo G. Dysregulated Autophagy and Lysosome Function Are Linked to Exosome Production by Micro-RNA 155 in Alcoholic Liver Disease. Hepatology 2019; 70:2123-2141. [PMID: 31090940 PMCID: PMC7453183 DOI: 10.1002/hep.30766] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 05/07/2019] [Indexed: 12/17/2022]
Abstract
Cellular homeostais, that is normally maintained through autophagy, is disrupted in alcoholic liver disease (ALD). Because autophagy and exosome biogenesis share common elements, we hypothesized that increased exosome production in ALD may be linked to disruption of autophagic function. We found impaired autophagy both in ALD and alcoholic hepatitis (AH) mouse models and human livers with ALD as indicated by increased hepatic p62 and LC3-II levels. Alcohol reduced autophagy flux in vivo in chloroquine-treated mice as well as in vitro in hepatocytes and macrophages treated with bafilomycin A. Our results revealed that alcohol targets multiple steps in the autophagy pathway. Alcohol-related decrease in mechanistic target of rapamycin (mTOR) and Ras homolog enriched in brain (Rheb), that initiate autophagy, correlated with increased Beclin1 and autophagy-related protein 7 (Atg7), proteins involved in phagophore-autophagosome formation, in ALD. We found that alcohol disrupted autophagy function at the lysosomal level through decreased lysosomal-associated membrane protein 1 (LAMP1) and lysosomal-associated membrane protein 2 (LAMP2) in livers with ALD. We identified that micro-RNA 155 (miR-155), that is increased by alcohol, targets mTOR, Rheb, LAMP1, and LAMP2 in the authophagy pathway. Consistent with this, miR-155-deficient mice were protected from alcohol-induced disruption of autophagy and showed attenuated exosome production. Mechanistically, down-regulation of LAMP1 or LAMP2 increased exosome release in hepatocytes and macrophages in the presence and absence of alcohol. These results suggested that the alcohol-induced increase in exosome production was linked to disruption of autophagy and impaired autophagosome and lysosome function. Conclusion: Alcohol affects multiple genes in the autophagy pathway and impairs autophagic flux at the lysosome level in ALD. Inhibition of LAMP1 and LAMP2 promotes exosome release in ALD. We identified miR-155 as a mediator of alcohol-related regulation of autophagy and exosome production in hepatocytes and macrophages.
Collapse
Affiliation(s)
- Mrigya Babuta
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA
| | - Istvan Furi
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA
| | - Shashi Bala
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA
| | - Terence N Bukong
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA
| | - Patrick Lowe
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA
| | - Donna Catalano
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA
| | - Charles Calenda
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA
| | - Karen Kodys
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA
| | - Gyongyi Szabo
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA
| |
Collapse
|
54
|
Seyfizadeh N, Seyfizadeh N, Borzouisileh S, Elahimanesh F, Hosseini V, Nouri M. Exosome-mediated therapeutic delivery: A new horizon for human neurodegenerative disorders’ treatment (with a focus on siRNA delivery improvement). Process Biochem 2019. [DOI: 10.1016/j.procbio.2019.06.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
55
|
Zieske JD, Hutcheon AEK, Guo X. Extracellular Vesicles and Cell-Cell Communication in the Cornea. Anat Rec (Hoboken) 2019; 303:1727-1734. [PMID: 31136100 PMCID: PMC6881515 DOI: 10.1002/ar.24181] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 11/30/2018] [Accepted: 12/22/2018] [Indexed: 12/13/2022]
Abstract
One question that has intrigued cell biologists for many years is, "How do cells interact to influence one another's activity?" The discovery of extracellular vesicles (EVs) and the fact that they carry cargo, which directs cells to undergo changes in morphology and gene expression, has revolutionized this field of research. Little is known regarding the role of EVs in the cornea; however, we have demonstrated that EVs isolated from corneal epithelial cells direct corneal keratocytes to initiate fibrosis. Intriguingly, our data suggest that EVs do not penetrate epithelial basement membrane (BM), perhaps providing a mechanism explaining the importance of BM in the lack of scarring in scrape wounds. Since over 100-million people worldwide suffer from visual impairment as a result of corneal scarring, the role of EVs may be vital to understanding the mechanisms of wound repair. Therefore, we investigated EVs in ex vivo and in vivo-like three-dimensional cultures of human corneal cells using transmission electron microscopy. Some of the major findings were all three major cell types (epithelial, fibroblast, and endothelial cells) appear to release EVs, EVs can be identified using TEM, and EVs appeared to be involved in cell-cell communication. Interestingly, while our previous publication suggests that EVs do not penetrate the epithelial BM, it appears that EVs penetrate the much thicker endothelial BM (Descemet's membrane). These findings indicate the huge potential of EV research in the cornea and wound healing, and suggest that during homeostasis the endothelium and stromal cells are in communication. Anat Rec, 2019. © 2019 The Authors. The Anatomical Record published by Wiley Periodicals, Inc. on behalf of American Association of Anatomists.
Collapse
Affiliation(s)
- James D Zieske
- Department of Ophthalmology, Schepens Eye Research Institute/Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts
| | - Audrey E K Hutcheon
- Department of Ophthalmology, Schepens Eye Research Institute/Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts
| | - Xiaoqing Guo
- Department of Ophthalmology, Schepens Eye Research Institute/Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
56
|
Abstract
Over the past decade, the amount of research and the number of publications on associations between circulating small and long non-coding RNAs (ncRNAs) and cancer have grown exponentially. Particular focus has been placed on the development of diagnostic and prognostic biomarkers to enable efficient patient management - from early detection of cancer to monitoring for disease recurrence or progression after treatment. Owing to their high abundance and stability, circulating ncRNAs have potential utility as non-invasive, blood-based biomarkers that can provide information on tumour biology and the effects of treatments, such as targeted therapies and immunotherapies. Increasing evidence highlights the roles of ncRNAs in cell-to-cell communication, with a number of ncRNAs having the capacity to regulate gene expression outside of the cell of origin through extracellular vesicle-mediated transfer to recipient cells, with implications for cancer progression and therapy resistance. Moreover, 'foreign' microRNAs (miRNAs) encoded by non-human genomes (so-called xeno-miRNAs), such as viral miRNAs, have been shown to be present in human body fluids and can be used as biomarkers. Herein, we review the latest developments in the use of circulating ncRNAs as diagnostic and prognostic biomarkers and discuss their roles in cell-to-cell communication in the context of cancer. We provide a compendium of miRNAs and long ncRNAs that have been reported in the literature to be present in human body fluids and that have the potential to be used as diagnostic and prognostic cancer biomarkers.
Collapse
|
57
|
Németh K, Darvasi O, Likó I, Szücs N, Czirják S, Reiniger L, Szabó B, Krokker L, Pállinger É, Igaz P, Patócs A, Butz H. Comprehensive analysis of circulating microRNAs in plasma of patients with pituitary adenomas. J Clin Endocrinol Metab 2019; 104:4151-4168. [PMID: 31112271 DOI: 10.1210/jc.2018-02479] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 05/15/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND Circulating miRNAs in pituitary adenoma would help patient care especially in non-functioning adenoma cases as minimally invasive biomarkers of tumor recurrence and progression. AIM Our aim was to investigate plasma miRNA profile in patients with pituitary adenoma. MATERIALS AND METHODS 149 plasma and extracellular vesicle (preoperative, early- and late postoperative) samples were collected from 45 pituitary adenoma patients. Adenomas were characterized based on anterior pituitary hormones and transcription factors by immunostaining. MiRNA next generation sequencing was performed on 36 samples (discovery set). Individual TaqMan assay was used for validation on extended sample set. PA tissue miRNAs were evaluated by TaqMan array and literature data. RESULTS Global downregulation of miRNA expression was observed in plasma samples of pituitary adenoma patients compared to normal samples. Expression of 29 miRNAs and isomiR variants were able to distinguish preoperative plasma samples and normal controls. MiRNAs with altered expression in both plasma and different adenoma tissues were identified. 3, 7 and 66 miRNAs expressed differentially between preoperative and postoperative plasma samples in growth hormone secreting, FSH/LH+ and hormone-immunonegative groups, respectively. MiR-143-3p was downregulated in late- but not in early postoperative plasma samples compared to preoperative ones exclusively in FSH/LH+ adenomas. Plasma level of miR-143-3p discriminated these samples with 81.8% sensitivity and 72.3% specificity (AUC=0.79; p=0.02). CONCLUSIONS Differentially expressed miRNAs in pituitary adenoma tissues have low abundance in plasma minimizing their role as biomarkers. Plasma miR-143-3p decreases in patients with FSH/LH+ adenoma indicated successful surgery, but its application for evaluating tumor recurrence needs further investigation.
Collapse
Affiliation(s)
- Kinga Németh
- "Momentum" Hereditary Endocrine Tumours Research Group Semmelweis University, Budapest, Hungary
| | - Ottó Darvasi
- "Momentum" Hereditary Endocrine Tumours Research Group Semmelweis University, Budapest, Hungary
| | - István Likó
- "Momentum" Hereditary Endocrine Tumours Research Group Semmelweis University, Budapest, Hungary
| | - Nikolette Szücs
- 2nd Department of Internal Medicine, Semmelweis University, Budapest, Hungary
| | - Sándor Czirják
- National Institute of Clinical Neurosciences, Budapest, Hungary
| | - Lilla Reiniger
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Borbála Szabó
- "Momentum" Hereditary Endocrine Tumours Research Group Semmelweis University, Budapest, Hungary
- 2nd Department of Internal Medicine, Semmelweis University, Budapest, Hungary
| | - Lilla Krokker
- "Momentum" Hereditary Endocrine Tumours Research Group Semmelweis University, Budapest, Hungary
- 2nd Department of Internal Medicine, Semmelweis University, Budapest, Hungary
| | - Éva Pállinger
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary
| | - Péter Igaz
- 2nd Department of Internal Medicine, Semmelweis University, Budapest, Hungary
- MTA-SE Molecular Medicine Research Group, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary
| | - Attila Patócs
- "Momentum" Hereditary Endocrine Tumours Research Group Semmelweis University, Budapest, Hungary
- Department of Laboratory Medicine, Semmelweis University, Budapest, Hungary
| | - Henriett Butz
- "Momentum" Hereditary Endocrine Tumours Research Group Semmelweis University, Budapest, Hungary
- Department of Laboratory Medicine, Semmelweis University, Budapest, Hungary
| |
Collapse
|
58
|
Kalinec GM, Cohn W, Whitelegge JP, Faull KF, Kalinec F. Preliminary Characterization of Extracellular Vesicles From Auditory HEI-OC1 Cells. Ann Otol Rhinol Laryngol 2019; 128:52S-60S. [DOI: 10.1177/0003489419836226] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Objectives: Isolate, purify, and characterize extracellular vesicles (EVs) obtained from auditory HEI-OC1 cells, and evaluate their suitability for intracochlear transport and delivery of pharmacological drugs and/or pro-resolution mediators of acute inflammatory processes. Methods: HEI-OC1 EVs were isolated and purified using the exoEasy Maxi Kit, and their size was evaluated by nanoparticle tracking techniques. Bottom-up proteomics of the EVs, either freshly obtained or stored for up to 4 months at −20°C, was performed by LC-ESI-MS/MS. LC-ESI-MS/MS-MRM was used to measure the loading of dexamethasone inside EVs following co-incubation at room temperature for 1 hour with and without 5 minutes sonication. Results: Routinely, we were able to obtain purified fractions of >2 × 109 EVs/mL, with diameters varying between 50 and 800 nm. Bottom-up proteomics showed that among the most abundant EVs proteins, 19.2% were cytoplasmic, 17.2% were membrane localized, 12.3% were cytosolic, and 14.6% were nucleolar. No significant differences between fresh and stored EVs were detected. Importantly, co-incubation of HEI-OC1 EVs (1 × 108 EVs/mL) with dexamethasone (10 mM) resulted in the incorporation of 10.1 ± 1.9 nM dexamethasone per milliliter of EVs suspension. Conclusions: Altogether, the results suggest that EVs from HEI-OC1 cells could be advantageously used as biological nanocarriers for the delivery of specific molecules and pharmacological drugs into the inner ear.
Collapse
Affiliation(s)
- Gilda M. Kalinec
- Department of Head and Neck Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Whitaker Cohn
- Pasarow Mass Spectrometry Laboratory, Jane and Terry Semel Institute for Neuroscience and Human Behavior and Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Julian P. Whitelegge
- Pasarow Mass Spectrometry Laboratory, Jane and Terry Semel Institute for Neuroscience and Human Behavior and Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Kym F. Faull
- Pasarow Mass Spectrometry Laboratory, Jane and Terry Semel Institute for Neuroscience and Human Behavior and Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Federico Kalinec
- Department of Head and Neck Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| |
Collapse
|
59
|
Sato K, Kennedy L, Liangpunsakul S, Kusumanchi P, Yang Z, Meng F, Glaser S, Francis H, Alpini G. Intercellular Communication between Hepatic Cells in Liver Diseases. Int J Mol Sci 2019; 20:ijms20092180. [PMID: 31052525 PMCID: PMC6540342 DOI: 10.3390/ijms20092180] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 04/23/2019] [Accepted: 04/29/2019] [Indexed: 02/06/2023] Open
Abstract
Liver diseases are perpetuated by the orchestration of hepatocytes and other hepatic non-parenchymal cells. These cells communicate and regulate with each other by secreting mediators such as peptides, hormones, and cytokines. Extracellular vesicles (EVs), small particles secreted from cells, contain proteins, DNAs, and RNAs as cargos. EVs have attracted recent research interests since they can communicate information from donor cells to recipient cells thereby regulating physiological events via delivering of specific cargo mediators. Previous studies have demonstrated that liver cells secrete elevated numbers of EVs during diseased conditions, and those EVs are internalized into other liver cells inducing disease-related reactions such as inflammation, angiogenesis, and fibrogenesis. Reactions in recipient cells are caused by proteins and RNAs carried in disease-derived EVs. This review summarizes cell-to-cell communication especially via EVs in the pathogenesis of liver diseases and their potential as a novel therapeutic target.
Collapse
Grants
- R01 DK110035 NIDDK NIH HHS
- I01 BX000574 BLRD VA
- IK6 BX004601 BLRD VA
- R01 DK108959 NIDDK NIH HHS
- K01 AA026385 NIAAA NIH HHS
- I01 BX001724 BLRD VA
- DK054811, DK076898, DK107310, DK110035, DK062975, AA025997, DK108959, AA025208, DK107682, AA026917, AA026903, AA025157, and AA026385 NIH HHS
Collapse
Affiliation(s)
- Keisaku Sato
- Richard L. Roudebush VA Medical Center, Indianapolis, IN 46202, USA.
- Indiana Center for Liver Research, Division of Gastroenterology & Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | - Lindsey Kennedy
- Richard L. Roudebush VA Medical Center, Indianapolis, IN 46202, USA.
- Indiana Center for Liver Research, Division of Gastroenterology & Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | - Suthat Liangpunsakul
- Richard L. Roudebush VA Medical Center, Indianapolis, IN 46202, USA.
- Indiana Center for Liver Research, Division of Gastroenterology & Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | - Praveen Kusumanchi
- Richard L. Roudebush VA Medical Center, Indianapolis, IN 46202, USA.
- Indiana Center for Liver Research, Division of Gastroenterology & Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | - Zhihong Yang
- Richard L. Roudebush VA Medical Center, Indianapolis, IN 46202, USA.
- Indiana Center for Liver Research, Division of Gastroenterology & Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | - Fanyin Meng
- Richard L. Roudebush VA Medical Center, Indianapolis, IN 46202, USA.
- Indiana Center for Liver Research, Division of Gastroenterology & Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | - Shannon Glaser
- Department of Medical Physiology, Texas A&M University, Temple, TX 76504, USA.
| | - Heather Francis
- Richard L. Roudebush VA Medical Center, Indianapolis, IN 46202, USA.
- Indiana Center for Liver Research, Division of Gastroenterology & Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | - Gianfranco Alpini
- Richard L. Roudebush VA Medical Center, Indianapolis, IN 46202, USA.
- Indiana Center for Liver Research, Division of Gastroenterology & Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| |
Collapse
|
60
|
Kang JY, Park H, Kim H, Mun D, Park H, Yun N, Joung B. Human peripheral blood‑derived exosomes for microRNA delivery. Int J Mol Med 2019; 43:2319-2328. [PMID: 30942393 PMCID: PMC6488179 DOI: 10.3892/ijmm.2019.4150] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 03/27/2019] [Indexed: 12/20/2022] Open
Abstract
Exosomes serve important functions in cell-to-cell communication and biological functions by serving as a delivery cargo shuttle for various molecules. The application of an improved delivery method for microRNAs (miRNAs/miRs) may enhance their potential as a therapeutic tool in cardiac diseases. Thus, the present study investigated whether human peripheral blood-derived exosomes may be used as a delivery cargo system for miRNAs, and whether the delivery of miR-21 using a human peripheral blood derived-exosome may influence the degree of remodeling following myocardial infarction (MI). In H9C2 and HL-1 cells, miR-21 expression was successfully regulated by treatment with human peripheral blood derived-exosomes loaded with an miR-21 mimic or inhibitor compared with untreated cells. In addition, the mRNA and protein expression levels of SMAD family member 7 (Smad7), phosphatase and tensin homolog (PTEN) and matrix metalloproteinase 2 (MMP2), which are involved in cardiac fibrosis, were associated with the uptake of miR-21 mimic- or inhibitor-loaded exosomes. Similarly, the in vivo mRNA and protein expression of Smad7, PTEN and MMP2 were altered following treatment with miR-21 mimic- or inhibitor-loaded exosomes. Furthermore, miR-21 mimic-loaded exosomes enhanced fibrosis, whereas miR-21 inhibitor-loaded exosomes reduced fibrosis in a mouse MI model. These results suggested that miRNA-loaded human peripheral blood derived-exosomes may be used as a therapeutic tool for cardiac diseases.
Collapse
Affiliation(s)
- Ji-Young Kang
- Division of Cardiology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Hyewon Park
- Division of Cardiology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Hyoeun Kim
- Division of Cardiology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Dasom Mun
- Division of Cardiology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Hyelim Park
- Division of Cardiology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Nuri Yun
- Institute of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Boyoung Joung
- Division of Cardiology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| |
Collapse
|
61
|
Agliardi C, Guerini FR, Zanzottera M, Bianchi A, Nemni R, Clerici M. SNAP-25 in Serum Is Carried by Exosomes of Neuronal Origin and Is a Potential Biomarker of Alzheimer's Disease. Mol Neurobiol 2019; 56:5792-5798. [PMID: 30680692 DOI: 10.1007/s12035-019-1501-x] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 01/18/2019] [Indexed: 12/31/2022]
Abstract
A loss of synaptic density and connectivity is observed in multiple brain regions of Alzheimer's disease (AD) patients, resulting in a reduced expression of synaptic proteins such as SNAP-25 (synaptosomal-associated-protein-25). SNAP-25 alterations thus could be an index of the degree of synaptic degeneration in the central nervous system (CNS). We isolated from serum of both AD patients and healthy controls (HC) a population of neuron-derived exosomes (NDEs) and measured the concentrations of SNAP-25 contained in such NDEs. The levels of SNAP-25 carried by NDEs were reduced in AD patients (mean 459.05 ng/ml, SD 146.35 ng/ml) compared to HC (mean 686.42 ng/ml, SD 204.08 ng/ml) (p < 0.001). As a further confirmation of these results, ROC (receiver operating characteristic) analyses indicated that the level of SNAP-25 carried by NDEs has the power to discriminate between AD and HC (AUC = 0.826, sensitivity = 87.5%, specificity = 70.6%, p < 0.0001, cut-off value 587.07 ng/ml). Notably, a correlation between the levels of SNAP-25 carried by NDEs and levels and cognitive status measured by MMSE score (r = 0.465, 95% CI 0.11 to 0.714, p = 0.01) was detected. This is the first report of SNAP-25 measurement in serum. These data suggest that NDE-carried SNAP-25 could be an effective and accessible biomarker that reflects synapses integrity in the brain.
Collapse
Affiliation(s)
- Cristina Agliardi
- Laboratory of Molecular Medicine and Biotechnology, IRCCS Fondazione Don Carlo Gnocchi, Via Capecelatro 66, 20148, Milan, Italy.
| | - Franca R Guerini
- Laboratory of Molecular Medicine and Biotechnology, IRCCS Fondazione Don Carlo Gnocchi, Via Capecelatro 66, 20148, Milan, Italy
| | - Milena Zanzottera
- Laboratory of Molecular Medicine and Biotechnology, IRCCS Fondazione Don Carlo Gnocchi, Via Capecelatro 66, 20148, Milan, Italy
| | - Anna Bianchi
- Laboratory of Molecular Medicine and Biotechnology, IRCCS Fondazione Don Carlo Gnocchi, Via Capecelatro 66, 20148, Milan, Italy
| | - Raffaello Nemni
- Laboratory of Molecular Medicine and Biotechnology, IRCCS Fondazione Don Carlo Gnocchi, Via Capecelatro 66, 20148, Milan, Italy.,Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Mario Clerici
- Laboratory of Molecular Medicine and Biotechnology, IRCCS Fondazione Don Carlo Gnocchi, Via Capecelatro 66, 20148, Milan, Italy.,Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| |
Collapse
|
62
|
Royo F, Cossío U, Ruiz de Angulo A, Llop J, Falcon-Perez JM. Modification of the glycosylation of extracellular vesicles alters their biodistribution in mice. NANOSCALE 2019; 11:1531-1537. [PMID: 30623961 DOI: 10.1039/c8nr03900c] [Citation(s) in RCA: 121] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Extracellular vesicles (EVs) are considered sophisticated vehicles for cell-to-cell communication, thanks to the possibility of handling a variable cargo in a shell with multiple types of decoders. Surface glycosylation of EVs is a method that could be used to control their interaction with different cells and, consequently, the biodistribution of the vesicles in the body. Herein, we produced EVs derived from mouse liver proliferative cells, and we treated them with neuraminidase, an enzyme that digests the terminal sialic acid residues from glycoproteins. Afterwards, we labeled the EVs directly with [124I]Na and injected them in mice intravenously or into the hock. The amount of radioactivity in major organs was measured at different time points after administration both in vivo using positron emission tomography and ex vivo (after animal sacrifice) using dissection and gamma counting. The results showed that intravenous injection leads to the rapid accumulation of EVs in the liver. Moreover, after some hours the distribution led to the presence of EVs in different organs including the brain. Glycosidase treatment induced an accumulation in the lungs, compared with the intact EVs. Furthermore, when the EVs were injected through the hock, the neuraminidase-treated vesicles distributed better at the axillary lymph nodes than the untreated EVs. This result shows that modification of the glycosylated complexes on the EV surface can affect the distribution of these vesicles, and specifically removing the sialic acid residues allows more EVs to reach and accumulate at the lungs.
Collapse
Affiliation(s)
- Felix Royo
- Exosomes Laboratory, CIC bioGUNE, CIBERehd, Bizkaia Technology Park, Derio, 48160, Bizkaia, Spain.
| | | | | | | | | |
Collapse
|
63
|
Exosomal Expression of CXCR4 Targets Cardioprotective Vesicles to Myocardial Infarction and Improves Outcome after Systemic Administration. Int J Mol Sci 2019; 20:ijms20030468. [PMID: 30678240 PMCID: PMC6386845 DOI: 10.3390/ijms20030468] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 01/20/2019] [Indexed: 02/07/2023] Open
Abstract
Cell therapy has been evaluated to enhance heart function after injury. Delivered cells mostly act via paracrine mechanisms, including secreted growth factors, cytokines, and vesicles, such as exosomes (Exo). Intramyocardial injection of cardiac-resident progenitor cells (CPC)-derived Exo reduced scarring and improved cardiac function after myocardial infarction in rats. Here, we explore a clinically relevant approach to enhance the homing process to cardiomyocytes (CM), which is crucial for therapeutic efficacy upon systemic delivery of Exo. By overexpressing exosomal CXCR4, we increased the efficacy of plasmatic injection of cardioprotective Exo-CPC by increasing their bioavailability to ischemic hearts. Intravenous injection of ExoCXCR4 significantly reduced infarct size and improved left ventricle ejection fraction at 4 weeks compared to ExoCTRL (p < 0.01). Hemodynamic measurements showed that ExoCXCR4 improved dp/dt min, as compared to ExoCTRL and PBS group. In vitro, ExoCXCR4 was more bioactive than ExoCTRL in preventing CM death. This in vitro effect was independent from SDF-1α, as shown by using AMD3100 as specific CXCR4 antagonist. We showed, for the first time, that systemic administration of Exo derived from CXCR4-overexpressing CPC improves heart function in a rat model of ischemia reperfusion injury These data represent a substantial step toward clinical application of Exo-based therapeutics in cardiovascular disease.
Collapse
|
64
|
Banales JM, Feldstein AE, Sänger H, Lukacs-Kornek V, Szabo G, Kornek M. Extracellular Vesicles in Liver Diseases: Meeting Report from the International Liver Congress 2018. Hepatol Commun 2019; 3:305-315. [PMID: 30766966 PMCID: PMC6357829 DOI: 10.1002/hep4.1300] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 11/12/2018] [Indexed: 02/06/2023] Open
Abstract
Extracellular vesicles (EVs) are small and heterogeneous membrane‐bound structures released by cells and found in all biological fluids. They are effective intercellular communicators, acting on a number of close and/or distant target cells. EV cargo may reflect the cell of origin as well as the specific stress that induces their formation and release. They transport a variety of bioactive molecules, including messenger RNA, noncoding RNAs, proteins, lipids, and metabolites, that can be transferred among cells, regulating various cell responses. Alteration in the concentration and composition of EVs in biological fluids is a typical hallmark of pathologies in different liver diseases. Circulating EVs can serve as biomarkers or as messengers following uptake by other cells. This review is a meeting report from the International Liver Congress 2018 (European Association for the Study of the Liver) celebrated in Paris (Symposium: Extracellular vesicles and signal transmission) that discusses the role of EVs in several liver diseases, highlighting their potential value as disease biomarkers and therapeutic opportunities.
Collapse
Affiliation(s)
- Jesus M Banales
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute, Donostia University Hospital University of the Basque Country, CIBERehd, Ikerbasque San Sebastian Spain
| | - Ariel E Feldstein
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition University of California San Diego San Diego CA
| | - Hanna Sänger
- Department of Medicine II, Saarland University Medical Center Saarland University Homburg Germany
| | - Veronika Lukacs-Kornek
- Institute of Experimental Immunology University Hospital of the Rheinische Friedrich-Wilhelms-University Bonn Germany
| | - Gyongyi Szabo
- Department of Medicine University of Massachusetts Medical School Worcester MA
| | - Miroslaw Kornek
- Department of Oncology, Hematology and Rheumatology University Hospital Bonn Bonn Germany.,Department of General, Visceral, and Thoracic Surgery German Armed Forces Central Hospital Koblenz Germany
| |
Collapse
|
65
|
Naseri Z, Oskuee RK, Jaafari MR, Forouzandeh Moghadam M. Exosome-mediated delivery of functionally active miRNA-142-3p inhibitor reduces tumorigenicity of breast cancer in vitro and in vivo. Int J Nanomedicine 2018; 13:7727-7747. [PMID: 30538455 PMCID: PMC6251455 DOI: 10.2147/ijn.s182384] [Citation(s) in RCA: 186] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Background Exosomes, widely recognized natural nanovesicles, represent one of the recently discovered modes of intercellular communication due to their ability to transmit crucial cellular information that can be engineered to have robust delivery and targeting capacity. MiR-142-3p, one of the upregulated microRNAs (miRNAs) in many types of breast cancer, activates the canonical Wnt signaling pathway and transactivates the miR-150 expression, and results in the hyperproliferation of cancer cells in vitro and mammary glands in vivo. Materials and methods In this study, we exploited the exosomes isolated from bone marrow-derived mesenchymal stem cells (MSCs-Exo) to deliver LNA (locked nucleic acid)-modified anti-miR-142-3p oligonucleotides to suppress the expression level of miR-142-3p and miR-150 in 4T1 and TUBO breast cancer cell lines. Results The in vitro results showed that the MSCs-Exo can efficiently deliver anti-miR-142-3p to reduce the miR-142-3p and miR-150 levels and increase the transcription of the regulatory target genes, APC and P2X7R. We also evaluated in vivo distribution of the MSCs-Exo in tumor-bearing mice. The in vivo result indicated that MSCs-Exo can penetrate the tumor site and are suitable nanovehicles to deliver the inhibitory oligonucleotides into the tumor tissues to downregulate the expression levels of miR-142-3p and miR-150. Conclusion We showed that MSCs-derived exosomes could be used as a feasible nanovehicle to deliver drug molecules like LNA-anti-miR-142-3p in both in vitro and in vivo studies.
Collapse
Affiliation(s)
- Zahra Naseri
- Department of Medical Biotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Reza Kazemi Oskuee
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Reza Jaafari
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran, .,Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran,
| | - Mehdi Forouzandeh Moghadam
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran,
| |
Collapse
|
66
|
Yoo KW, Li N, Makani V, Singh RN, Atala A, Lu B. Large-Scale Preparation of Extracellular Vesicles Enriched with Specific microRNA. Tissue Eng Part C Methods 2018; 24:637-644. [PMID: 30306827 PMCID: PMC6916128 DOI: 10.1089/ten.tec.2018.0249] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 10/08/2018] [Indexed: 12/20/2022] Open
Abstract
IMPACT STATEMENT This article describes a method for producing microRNA (miRNA)-enriched extracellular vesicles in large quantities. It enables in vivo delivery of specific miRNA for therapeutic applications.
Collapse
Affiliation(s)
- Kyung Whan Yoo
- Institute for Regenerative Medicine, Wake Forest University Health Sciences, Winston-Salem, North Carolina
| | - Ning Li
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Vishruti Makani
- Institute for Regenerative Medicine, Wake Forest University Health Sciences, Winston-Salem, North Carolina
| | - Ravi N. Singh
- Department of Cancer Biology, Wake Forest University Health Sciences, Winston-Salem, North Carolina
| | - Anthony Atala
- Institute for Regenerative Medicine, Wake Forest University Health Sciences, Winston-Salem, North Carolina
| | - Baisong Lu
- Institute for Regenerative Medicine, Wake Forest University Health Sciences, Winston-Salem, North Carolina
| |
Collapse
|
67
|
Silva AKA, Perretta S, Perrod G, Pidial L, Lindner V, Carn F, Lemieux S, Alloyeau D, Boucenna I, Menasché P, Dallemagne B, Gazeau F, Wilhelm C, Cellier C, Clément O, Rahmi G. Thermoresponsive Gel Embedded with Adipose Stem-Cell-Derived Extracellular Vesicles Promotes Esophageal Fistula Healing in a Thermo-Actuated Delivery Strategy. ACS NANO 2018; 12:9800-9814. [PMID: 30231208 DOI: 10.1021/acsnano.8b00117] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Extracellular vesicles (EVs) are increasingly envisioned as the next generation of biological pro-regenerative nanotherapeutic agents, as has already been demonstrated for heart, kidney, liver, and brain tissues; lung injury repair; and skin regeneration. Herein, we explore another potential EV therapeutic application, fistula healing, together with a local minimally invasive delivery strategy. Allogenic extracellular vesicles (EVs) from adipose tissue-derived stromal cells (ASCs) are administered in a porcine fistula model through a thermoresponsive Pluronic F-127 (PF-127) gel, injected locally at 4 °C and gelling at body temperature to retain EVs in the entire fistula tract. Complete fistula healing is reported to be 100% for the gel plus EVs group, 67% for the gel group, and 0% for the control, supporting the therapeutic use of Pluronic F-127 gel alone or combined with EVs. However, only the combination of gel and EVs results in a statistically significant (i) reduction of fibrosis, (ii) decline of inflammatory response, (iii) decrease in the density of myofibroblasts, and (iv) increase of angiogenesis. Overall, we demonstrate that ASC-EV delivery into a PF-127 gel represents a successful local minimally invasive strategy to induce a therapeutic effect in a swine fistula model. Our study presents prospects for EV administration strategies and for the management of post-operative fistulas.
Collapse
Affiliation(s)
- Amanda K A Silva
- Laboratoire Matières et Systèmes Complexes (MSC), UMR 7057 CNRS, Université Sorbonne Paris Cité (USPC) , Université Paris-Diderot , 10 rue Alice Domon et Léonie Duquet , 75205 Paris cedex 13 , France
| | - Silvana Perretta
- Department of Digestive and Endocrine Surgery , Hôpital Civil de Strasbourg, Institut de Recherche contre les Cancers de l'Appareil Digestif (IRCAD) , 67091 , Strasbourg , France
- IHU, Minimally Invasive Hybrid Surgical Institute , 67091 , Strasbourg , France
| | - Guillaume Perrod
- Laboratoire Imagerie de l'Angiogénèse, Plateforme d'Imagerie du Petit Animal, PARCC, INSERM U970, Université Sorbonne Paris Cité (USPC) , Université Paris Descartes , 56 rue Leblanc , 75015 , Paris , France
| | - Laetitia Pidial
- Laboratoire Imagerie de l'Angiogénèse, Plateforme d'Imagerie du Petit Animal, PARCC, INSERM U970, Université Sorbonne Paris Cité (USPC) , Université Paris Descartes , 56 rue Leblanc , 75015 , Paris , France
| | - Véronique Lindner
- Department of Pathology , Hôpital Hautepierre , 1, Avenue Molière , 67098 Strasbourg , France
| | - Florent Carn
- Laboratoire Matières et Systèmes Complexes (MSC), UMR 7057 CNRS, Université Sorbonne Paris Cité (USPC) , Université Paris-Diderot , 10 rue Alice Domon et Léonie Duquet , 75205 Paris cedex 13 , France
| | - Shony Lemieux
- Laboratoire Matières et Systèmes Complexes (MSC), UMR 7057 CNRS, Université Sorbonne Paris Cité (USPC) , Université Paris-Diderot , 10 rue Alice Domon et Léonie Duquet , 75205 Paris cedex 13 , France
| | - Damien Alloyeau
- Laboratoire Matériaux et Phénomènes Quantiques (MPQ) , UMR 7162 CNRS/Université Paris - Diderot , 10 rue Alice Domon et Léonie Duquet , 75205 Paris cedex 13 , France
| | - Imane Boucenna
- Laboratoire Matières et Systèmes Complexes (MSC), UMR 7057 CNRS, Université Sorbonne Paris Cité (USPC) , Université Paris-Diderot , 10 rue Alice Domon et Léonie Duquet , 75205 Paris cedex 13 , France
| | - Philippe Menasché
- Department of Cardiovascular Surgery , Hôpital Européen Georges Pompidou; Paris Cardiovascular Research Center, INSERM U970, Université Paris Descartes , Paris , 75015 France
| | - Bernard Dallemagne
- Department of Digestive and Endocrine Surgery , Hôpital Civil de Strasbourg, Institut de Recherche contre les Cancers de l'Appareil Digestif (IRCAD) , 67091 , Strasbourg , France
| | - Florence Gazeau
- Laboratoire Matières et Systèmes Complexes (MSC), UMR 7057 CNRS, Université Sorbonne Paris Cité (USPC) , Université Paris-Diderot , 10 rue Alice Domon et Léonie Duquet , 75205 Paris cedex 13 , France
| | - Claire Wilhelm
- Laboratoire Matières et Systèmes Complexes (MSC), UMR 7057 CNRS, Université Sorbonne Paris Cité (USPC) , Université Paris-Diderot , 10 rue Alice Domon et Léonie Duquet , 75205 Paris cedex 13 , France
| | | | - Olivier Clément
- Laboratoire Imagerie de l'Angiogénèse, Plateforme d'Imagerie du Petit Animal, PARCC, INSERM U970, Université Sorbonne Paris Cité (USPC) , Université Paris Descartes , 56 rue Leblanc , 75015 , Paris , France
| | - Gabriel Rahmi
- Laboratoire Imagerie de l'Angiogénèse, Plateforme d'Imagerie du Petit Animal, PARCC, INSERM U970, Université Sorbonne Paris Cité (USPC) , Université Paris Descartes , 56 rue Leblanc , 75015 , Paris , France
| |
Collapse
|
68
|
Colon Epithelial MicroRNA Network in Fatty Liver. Can J Gastroenterol Hepatol 2018; 2018:8246103. [PMID: 30345259 PMCID: PMC6174781 DOI: 10.1155/2018/8246103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 08/15/2018] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND & AIMS Intestinal barrier alterations are associated with fatty liver (FL) and metabolic syndrome (MetS), but microRNA (miR) signaling pathways in MetS-FL pathogenesis remain unclear. This study investigates an epithelial-focused miR network in colorectal cell models based on the previously reported MetS-FL miR trio of hsa-miR-142-3p, hsa-miR-18b, and hsa-miR-890. METHODS Each miR mimic construct of MetS-FL miR trio was transfected into human colorectal cells, CRL-1790 or Caco-2. Global miRNome changes posttransfection were profiled (nCounter® Human v3 miRNA, NanoString Technologies). Changes in barrier (transepithelial electrical resistance, TEER) and epithelial cell junction structure (Occludin and Zona Occludens-1/ZO-1 immunofluorescence staining-confocal microscopy) were examined pre- and posttransfection in Caco-2 cell monolayers. A signaling network was constructed from the MetS-FL miR trio, MetS-FL miR-induced colorectal miRNome changes, ZO-1, and Occludin. RESULTS Transfection of CRL-1790 cells with each MetS-FL miR mimic led to global changes in the cellular miRNome profile, with 288 miRs being altered in expression by more than twofold. Eleven miRs with known cytoskeletal and metabolic roles were commonly altered in expression by all three miR mimics. Transfection of Caco-2 cell monolayers with each MetS-FL miR mimic induced barrier-associated TEER variations and led to structural modifications of ZO-1 and Occludin within epithelial cell junctions. Pathway analysis incorporating the MetS-FL miR trio, eleven common target miRs, ZO-1, and Occludin revealed a signaling network centered on TNF and AKT2, which highlights injury, inflammation, and hyperplasia. CONCLUSIONS Colon-specific changes in epithelial barriers, cell junction structure, and a miRNome signaling network are described from functional studies of a MetS-FL miR trio signature.
Collapse
|
69
|
WITHDRAWN: Decoding the role of extracellular vesicles in liver diseases. LIVER RESEARCH 2018. [DOI: 10.1016/j.livres.2017.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
70
|
Liao TL, Hsieh SL, Chen YM, Chen HH, Liu HJ, Lee HC, Chen DY. Rituximab May Cause Increased Hepatitis C Virus Viremia in Rheumatoid Arthritis Patients Through Declining Exosomal MicroRNA-155. Arthritis Rheumatol 2018; 70:1209-1219. [PMID: 29575671 DOI: 10.1002/art.40495] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 03/08/2018] [Indexed: 12/18/2022]
Abstract
OBJECTIVE Several studies have shown that rituximab may enhance hepatitis C virus (HCV) activity. MicroRNAs (miRNAs) have been implicated in modulating the host immune response in HCV infection; miRNAs can be packaged into the exosomes and then shuttled by the exosomes to aid biologic functions. However, the role of exosomal miRNAs (exo-miRNAs) in rituximab-related HCV activity enhancement remains unclear. METHODS The association between rituximab and increased HCV activity was examined using an in vitro cell-based assay. Purified exosomes were confirmed using immunoblotting and flow cytometry and quantified using enzyme-linked immunosorbent assay. Exosomal miRNA-155 (exo-miR-155) levels were measured using quantitative reverse transcription-polymerase chain reaction. RESULTS In vitro data showed that B cell-derived miR-155 could inhibit HCV replication in hepatocytes through exosome transmission. Rituximab could both induce B cell depletion and affect intracellular miR-155 production as well as exo-miR-155 transmission and then enhance HCV activity in hepatocytes (P < 0.005). Serum exosome levels were increased in rheumatoid arthritis (RA) patients with HCV infection compared with the levels in RA patients without HCV infection (P < 0.01). The exo-miR-155 levels were significantly increased in RA patients with HCV infection compared with those without infection (P < 0.01). A significantly greater decrement of exo-miR-155 expression was observed after rituximab therapy compared with those observed before therapy (P < 0.01), and hepatitis C viral loads increased simultaneously (P < 0.05). CONCLUSION Circulating exo-miR-155 levels were negatively correlated with hepatitis C viral loads and subsequently associated with rituximab-related HCV activity enhancement in RA patients. Exo-miR-155 may become a potential diagnostic biomarker or therapeutic target.
Collapse
Affiliation(s)
- Tsai-Ling Liao
- Taichung Veterans General Hospital and National Chung Hsing University, Taichung, Taiwan
| | - Shie-Liang Hsieh
- Genomics Research Center, Academia Sinica and National Yang Ming University, Taipei, Taiwan
| | - Yi-Ming Chen
- Taichung Veterans General Hospital and National Chung Hsing University, Taichung, Taiwan, and National Yang Ming University, Taipei, Taiwan
| | - Hsin-Hua Chen
- Taichung Veterans General Hospital and National Chung Hsing University, Taichung, Taiwan, and National Yang Ming University, Taipei, Taiwan
| | - Hung-Jen Liu
- National Chung Hsing University, Taichung, Taiwan
| | - Hsiu-Chin Lee
- Taichung Veterans General Hospital, Taichung, Taiwan
| | - Der-Yuan Chen
- Taichung Veterans General Hospital, China Medical University Hospital, and China Medical University, Taichung, Taiwan
| |
Collapse
|
71
|
Nooshabadi VT, Mardpour S, Yousefi-Ahmadipour A, Allahverdi A, Izadpanah M, Daneshimehr F, Ai J, Banafshe HR, Ebrahimi-Barough S. The extracellular vesicles-derived from mesenchymal stromal cells: A new therapeutic option in regenerative medicine. J Cell Biochem 2018; 119:8048-8073. [PMID: 29377241 DOI: 10.1002/jcb.26726] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 01/24/2018] [Indexed: 12/12/2022]
Abstract
Mesenchymal stem cells (MSCs) are adult multipotent cells that due to their ability to homing to damaged tissues and differentiate into specialized cells, are remarkable cells in the field of regenerative medicine. It's suggested that the predominant mechanism of MSCs in tissue repair might be related to their paracrine activity. The utilization of MSCs for tissue repair is initially based on the differentiation ability of these cells; however now it has been revealed that only a small fraction of the transplanted MSCs actually fuse and survive in host tissues. Indeed, MSCs supply the microenvironment with the secretion of soluble trophic factors, survival signals and the release of extracellular vesicles (EVs) such as exosome. Also, the paracrine activity of EVs could mediate the cellular communication to induce cell-differentiation/self-renewal. Recent findings suggest that EVs released by MSCs may also be critical in the physiological function of these cells. This review provides an overview of MSC-derived extracellular vesicles as a hopeful opportunity to advance novel cell-free therapy strategies that might prevail over the obstacles and risks associated with the use of native or engineered stem cells. EVs are very stable; they can pass the biological barriers without rejection and can shuttle bioactive molecules from one cell to another, causing the exchange of genetic information and reprogramming of the recipient cells. Moreover, extracellular vesicles may provide therapeutic cargo for a wide range of diseases and cancer therapy.
Collapse
Affiliation(s)
| | - Soura Mardpour
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Aliakbar Yousefi-Ahmadipour
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Allahverdi
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehrnaz Izadpanah
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Daneshimehr
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Jafar Ai
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamid R Banafshe
- Department of Applied Cell Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Somayeh Ebrahimi-Barough
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
72
|
Kibria G, Ramos EK, Wan Y, Gius DR, Liu H. Exosomes as a Drug Delivery System in Cancer Therapy: Potential and Challenges. Mol Pharm 2018; 15:3625-3633. [PMID: 29771531 DOI: 10.1021/acs.molpharmaceut.8b00277] [Citation(s) in RCA: 141] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Exosomes play a pivotal role in mediating intercellular communications and package delivery. They have recently been discovered to serve as diagnostic biomarkers as well as a possible drug delivery vehicle based on their nanometer size range and capability to transfer biological materials to recipient cells. Their unique biocompatibility, high stability, preferred tumor homing, and adjustable targeting efficiency can make exosomes an attractive and potentially effective tool of drug delivery in cancer therapy. While exosomes possess properties that make them uniquely suitable for delivery of bioactive molecules, there remains a to-be-filled gap between the current understanding about exosome biology and the ideal application scenarios. In this review, we summarize the characteristics enabling the potential of exosomes for drug delivery as well as the outstanding questions related to exosome composition and function, production and purification, bioengineering and targeting, uptake and biodistribution, efficacy and immune regulation, etc. Advanced technologies are demanded to visualize, characterize, and sort heterogeneous exosome populations. We are positive that the deeper and more comprehensive understanding of exosome biology as well as advanced nanotechnology will certainly accelerate its therapeutic applications.
Collapse
|
73
|
Saha B, Momen-Heravi F, Furi I, Kodys K, Catalano D, Gangopadhyay A, Haraszti R, Satishchandran A, Iracheta-Vellve A, Adejumo A, Shaffer SA, Szabo G. Extracellular vesicles from mice with alcoholic liver disease carry a distinct protein cargo and induce macrophage activation through heat shock protein 90. Hepatology 2018; 67:1986-2000. [PMID: 29251792 PMCID: PMC5906190 DOI: 10.1002/hep.29732] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 11/22/2017] [Accepted: 12/12/2017] [Indexed: 12/17/2022]
Abstract
UNLABELLED A salient feature of alcoholic liver disease (ALD) is Kupffer cell (KC) activation and recruitment of inflammatory monocytes and macrophages (MØs). These key cellular events of ALD pathogenesis may be mediated by extracellular vesicles (EVs). EVs transfer biomaterials, including proteins and microRNAs, and have recently emerged as important effectors of intercellular communication. We hypothesized that circulating EVs from mice with ALD have a protein cargo characteristic of the disease and mediate biological effects by activating immune cells. The total number of circulating EVs was increased in mice with ALD compared to pair-fed controls. Mass spectrometric analysis of circulating EVs revealed a distinct signature for proteins involved in inflammatory responses, cellular development, and cellular movement between ALD EVs and control EVs. We also identified uniquely important proteins in ALD EVs that were not present in control EVs. When ALD EVs were injected intravenously into alcohol-naive mice, we found evidence of uptake of ALD EVs in recipient livers in hepatocytes and MØs. Hepatocytes isolated from mice after transfer of ALD EVs, but not control EVs, showed increased monocyte chemoattractant protein 1 mRNA and protein expression, suggesting a biological effect of ALD EVs. Compared to control EV recipient mice, ALD EV recipient mice had increased numbers of F4/80hi cluster of differentiation 11b (CD11b)lo KCs and increased percentages of tumor necrosis factor alpha-positive/interleukin 12/23-positive (inflammatory/M1) KCs and infiltrating monocytes (F4/80int CD11bhi ), while the percentage of CD206+ CD163+ (anti-inflammatory/M2) KCs was decreased. In vitro, ALD EVs increased tumor necrosis factor alpha and interleukin-1β production in MØs and reduced CD163 and CD206 expression. We identified heat shock protein 90 in ALD EVs as the mediator of ALD-EV-induced MØ activation. CONCLUSION Our study indicates a specific protein signature of ALD EVs and demonstrates a functional role of circulating EVs containing heat shock protein 90 in mediating KC/MØ activation in the liver. (Hepatology 2018;67:1986-2000).
Collapse
Affiliation(s)
- Banishree Saha
- Department of Medicine, University of Massachusetts Medical
School,Department of Polymer Science and Engineering, University of
Massachusetts Amherst
| | - Fatemeh Momen-Heravi
- Department of Medicine, University of Massachusetts Medical
School,College of Dental Medicine, Columbia University
| | - Istvan Furi
- Department of Medicine, University of Massachusetts Medical
School
| | - Karen Kodys
- Department of Medicine, University of Massachusetts Medical
School
| | - Donna Catalano
- Department of Medicine, University of Massachusetts Medical
School
| | | | - Reka Haraszti
- RNA Therapeutics Institute, University of Massachusetts Medical
School
| | | | | | - Adeyinka Adejumo
- Department of Medicine, University of Massachusetts Medical
School,North Shore Medical Center, Salem, MA
| | - Scott A. Shaffer
- Proteomics and Mass Spectrometry Facility and Department of
Biochemistry and Molecular Pharmacology, University of Massachusetts Medical
School
| | - Gyongyi Szabo
- Department of Medicine, University of Massachusetts Medical
School
| |
Collapse
|
74
|
Vandergriff A, Huang K, Shen D, Hu S, Hensley MT, Caranasos TG, Qian L, Cheng K. Targeting regenerative exosomes to myocardial infarction using cardiac homing peptide. Theranostics 2018; 8:1869-1878. [PMID: 29556361 PMCID: PMC5858505 DOI: 10.7150/thno.20524] [Citation(s) in RCA: 257] [Impact Index Per Article: 42.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 01/23/2018] [Indexed: 12/24/2022] Open
Abstract
Rationale: Cardiac stem cell-derived exosomes have been demonstrated to promote cardiac regeneration following myocardial infarction in preclinical studies. Recent studies have used intramyocardial injection in order to concentrate exosomes in the infarct. Though effective in a research setting, this method is not clinically appealing due to its invasive nature. We propose the use of a targeting peptide, cardiac homing peptide (CHP), to target intravenously-infused exosomes to the infarcted heart. Methods: Exosomes were conjugated with CHP through a DOPE-NHS linker. Ex vivo targeting was analyzed by incubating organ sections with the CHP exosomes and analyzing with fluorescence microscopy. In vitro assays were performed on neonatal rat cardiomyocytes and H9C2 cells. For the animal study, we utilized an ischemia/reperfusion rat model. Animals were treated with either saline, scramble peptide exosomes, or CHP exosomes 24 h after surgery. Echocardiography was performed 4 h after surgery and 21 d after surgery. At 21 d, animals were sacrificed, and organs were collected for analysis. Results: By conjugating the exosomes with CHP, we demonstrate increased retention of the exosomes within heart sections ex vivo and in vitro with neonatal rat cardiomyocytes. In vitro studies showed improved viability, reduced apoptosis and increased exosome uptake when using CHP-XOs. Using an animal model of ischemia/reperfusion injury, we measured the heart function, infarct size, cellular proliferation, and angiogenesis, with improved outcomes with the CHP exosomes. Conclusions: Our results demonstrate a novel method for increasing delivery of for treatment of myocardial infarction. By targeting exosomes to the infarcted heart, there was a significant improvement in outcomes with reduced fibrosis and scar size, and increased cellular proliferation and angiogenesis.
Collapse
Affiliation(s)
- Adam Vandergriff
- Joint Department of Biomedical Engineering at University of North Carolina at Chapel Hill and North Carolina State University
- Department of Molecular and Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina
| | - Ke Huang
- Department of Molecular and Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina
| | - Deliang Shen
- Department of Cardiovascular Medicine, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Shiqi Hu
- Joint Department of Biomedical Engineering at University of North Carolina at Chapel Hill and North Carolina State University
- Department of Molecular and Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina
| | - Michael Taylor Hensley
- Department of Molecular and Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina
| | - Thomas G. Caranasos
- Department of Cardiothoracic Surgery, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Li Qian
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Ke Cheng
- Joint Department of Biomedical Engineering at University of North Carolina at Chapel Hill and North Carolina State University
- Department of Molecular and Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina
| |
Collapse
|
75
|
Abstract
Historically, small molecules, including steroid hormones and cytokines, have been attributed a role in paracrine and endocrine signaling, and now include a new player: biological nanoparticles, or 'exosomes'. Generated intracellularly, and defined simply as nanoparticulate packages of signaling moieties, exosomes have emerged as vehicles for highly specialized local and distant intercellular communication. Exosomes are increasingly being recognized as contributing factors in many diseases, and their potential as biomarkers and in therapeutics is rapidly emerging. This review highlights recent advances in the exploitation of exosomes in diagnostic and therapeutic applications. We discuss various facets of nanoparticles, namely the isolation and manipulation of exosomes, the construction of synthetic exosome-like particles in vivo, and their potential use in the treatment of various diseases.
Collapse
|
76
|
|
77
|
Deng F, Magee N, Zhang Y. Decoding the Role of Extracellular Vesicles in Liver Diseases. LIVER RESEARCH 2017; 1:147-155. [PMID: 29552373 PMCID: PMC5851463 DOI: 10.1016/j.livres.2017.11.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cell-to-cell communication is a fascinating process that is essential for maintaining tissue and whole-body homeostasis. Extracellular vesicles (EVs) are cell-derived membrane-bound nanoparticles that are a means of communication between cells. Accumulating evidence indicates that EVs can render either beneficial or harmful outcomes, depending on the specific cargos (e.g. proteins, lipids, RNAs) transferred between cells. EVs also have great value as diagnostic and prognostic markers of disease because they are present in a variety of biological fluids and carry bioactive molecules from their cells or tissues of origin. Liver cells can both release and receive EVs derived from other cells and emerging evidence indicates that liver EVs play important roles in the pathogenesis of various liver diseases, including liver cancer, viral hepatitis, non-alcoholic fatty liver disease, and alcoholic liver disease. This review provides an overview of the biogenesis and secretion of EVs and summarizes the most recent advances in understanding the role of EVs in liver physiology and diseases. Additionally, we discuss potential applications of liver EVs as biomarkers and in therapeutic approaches to treat liver diseases.
Collapse
Affiliation(s)
- Fengyan Deng
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Nancy Magee
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Yuxia Zhang
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|
78
|
Szabo G, Momen-Heravi F. Extracellular vesicles in liver disease and potential as biomarkers and therapeutic targets. Nat Rev Gastroenterol Hepatol 2017; 14. [PMID: 28634412 PMCID: PMC6380505 DOI: 10.1038/nrgastro.2017.71] [Citation(s) in RCA: 202] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Extracellular vesicles (EVs) are membranous vesicles originating from different cells in the liver. The pathophysiological role of EVs is increasingly recognized in liver diseases, including alcoholic liver disease, NAFLD, viral hepatitis and hepatocellular carcinoma. EVs, via their cargo, can provide communication between different cell types in the liver and between organs. EVs are explored as biomarkers of disease and could also represent therapeutic targets and vehicles for treatment delivery. Here, we review advances in understanding the role of EVs in liver diseases and discuss their utility in biomarker discovery and therapeutics.
Collapse
|
79
|
Lu M, Xing H, Yang Z, Sun Y, Yang T, Zhao X, Cai C, Wang D, Ding P. Recent advances on extracellular vesicles in therapeutic delivery: Challenges, solutions, and opportunities. Eur J Pharm Biopharm 2017; 119:381-395. [PMID: 28739288 DOI: 10.1016/j.ejpb.2017.07.010] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 06/24/2017] [Accepted: 07/20/2017] [Indexed: 12/21/2022]
Abstract
Extracellular vesicles (EVs) are intrinsic mediators of intercellular communication in our body, allowing functional transfer of biomolecules (lipids, proteins, and nucleic acid) between diverse locations. Such an instrumental role evokes a surge of interest within the drug delivery community in tailoring EVs for therapeutic delivery. These vesicles represent a novel generation of drug delivery systems, providing high delivery efficiency, intrinsic targeting properties, and low immunogenicity. In the recent years, considerable research efforts have been directed toward developing safe and efficient EV-based delivery vehicles. Although EVs are shown to harbor great promise in therapeutic delivery, substantial improvements in exploring standardized isolation techniques with high efficiency and robust yield, scalable production, standard procedures for EV storage, efficient loading methods without damaging EV integrity, understanding their in vivo trafficking, and developing novel EV-based nanocarriers are still required before their clinical transformation. In this review, we seek to summarize the recent advance on harnessing EVs for drug delivery with focus on state-of-the-art solutions for overcoming major challenges.
Collapse
Affiliation(s)
- Mei Lu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Haonan Xing
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Zhen Yang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Yanping Sun
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Tianzhi Yang
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, Husson University, Bangor, ME, USA
| | - Xiaoyun Zhao
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, China
| | - Cuifang Cai
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Dongkai Wang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China.
| | - Pingtian Ding
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China.
| |
Collapse
|
80
|
Sierzega M, Kaczor M, Kolodziejczyk P, Kulig J, Sanak M, Richter P. Evaluation of serum microRNA biomarkers for gastric cancer based on blood and tissue pools profiling: the importance of miR-21 and miR-331. Br J Cancer 2017. [PMID: 28641313 PMCID: PMC5520523 DOI: 10.1038/bjc.2017.190] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND High stability and disease-specific disarrangements suggest that microRNA molecules (miRNAs) present in body fluids are ideally suited for diagnostic applications, including gastric cancer (GC). However, the actual source of circulating miRNA biomarkers in GC has not been adequately evaluated, particularly in the Western populations that have some distinct characteristics compared with Asian patients. METHODS Twenty treatment-naive patients with GC along with 20 cancer-free controls were recruited. miRCURY LNA miRNA microarrays were used for miRNA expression profiling in primary tumours and adjacent healthy mucosa. Differentially expressed serum miRNAs were identified with a high throughput TaqMan OpenArray technology in tumour-draining veins of the portal system, as well as peripheral blood of the patients and controls. RESULTS Tissue profiling identified 108 sequences differentially expressed between primary tumours and adjacent mucosa (87 upregulated and 21 downregulated). Twenty miRNAs found in serum of GC patients showed expression levels higher than in controls. However, only seven of these molecules were overexpressed in primary tumours (miR-130a, miR-331, miR-19a, miR-223, miR-106a, miR-21, and miR-374). Moreover, expression of miR-331 and miR-21 was significantly higher in the peripheral circulation compared to tumour-draining veins of the portal system. CONCLUSIONS The results indicate that the majority of potential serum miRNA biomarkers may originate from tissues other than the primary tumour.
Collapse
Affiliation(s)
- Marek Sierzega
- First Department of Surgery, Jagiellonian University Medical College, 40 Kopernika Street, Kraków 31-501, Poland
| | - Marcin Kaczor
- Second Department of Internal Medicine, Jagiellonian University Medical College, 8 Skawińska Street, Kraków 31-066, Poland
| | - Piotr Kolodziejczyk
- First Department of Surgery, Jagiellonian University Medical College, 40 Kopernika Street, Kraków 31-501, Poland
| | - Jan Kulig
- First Department of Surgery, Jagiellonian University Medical College, 40 Kopernika Street, Kraków 31-501, Poland
| | - Marek Sanak
- Second Department of Internal Medicine, Jagiellonian University Medical College, 8 Skawińska Street, Kraków 31-066, Poland
| | - Piotr Richter
- First Department of Surgery, Jagiellonian University Medical College, 40 Kopernika Street, Kraków 31-501, Poland
| |
Collapse
|
81
|
Bala S, Csak T, Kodys K, Catalano D, Ambade A, Furi I, Lowe P, Cho Y, Iracheta-Vellve A, Szabo G. Alcohol-induced miR-155 and HDAC11 inhibit negative regulators of the TLR4 pathway and lead to increased LPS responsiveness of Kupffer cells in alcoholic liver disease. J Leukoc Biol 2017; 102:487-498. [PMID: 28584078 PMCID: PMC6608073 DOI: 10.1189/jlb.3a0716-310r] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 04/11/2017] [Accepted: 05/04/2017] [Indexed: 12/13/2022] Open
Abstract
Inflammation promotes the progression of alcoholic liver disease. Alcohol sensitizes KCs to gut-derived endotoxin (LPS); however, signaling pathways that perpetuate inflammation in alcoholic liver disease are only partially understood. We found that chronic alcohol feeding in mice induced miR-155, an inflammatory miRNA in isolated KCs. We hypothesized that miR-155 might increase the responsiveness of KCs to LPS via targeting the negative regulators of LPS signaling. Our results revealed that KCs that were isolated from alcohol-fed mice showed a decrease in IRAK-M, SHIP1, and PU.1, and an increase in TNF-α levels. This was specific to KCs, as no significant differences were observed in these genes in hepatocytes. We found a causal effect of miR-155 deficiency on LPS responsiveness, as KCs that were isolated from miR-155 KO mice showed a greater induction of IRAK-M, SHIP1, and suppressor of cytokine signaling 1 after LPS treatment. C/EBPβ, a validated miR-155 target, stimulates IL-10 transcription. We found a higher induction of C/EBPβ and IL-10 in KCs that were isolated from miR-155 KO mice after LPS treatment. Gain- and loss-of-function studies affirmed that alcohol-induced miR-155 directly regulates IRAK-M, SHIP1, suppressor of cytokine signaling 1, and C/EBPβ, as miR-155 inhibition increased and miR-155 overexpression decreased these genes in LPS or alcohol-pretreated wild-type KCs. HDAC11, a regulator of IL-10, was significantly increased and IL-10 was decreased in KCs that were isolated from alcohol-fed mice. Functionally, knockdown of HDAC11 with small interfering RNA resulted in an IL-10 increase in LPS or alcohol-pretreated Mϕ. We found that acetaldehyde and NF-κB pathways regulate HDAC11 levels. Collectively, our results indicate that the alcohol-induced responsiveness of KCs to LPS, in part, is governed by miR-155 and HDAC11.
Collapse
Affiliation(s)
- Shashi Bala
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Timea Csak
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Karen Kodys
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Donna Catalano
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Aditya Ambade
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Istvan Furi
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Patrick Lowe
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Yeonhee Cho
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Arvin Iracheta-Vellve
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Gyongyi Szabo
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| |
Collapse
|
82
|
Mustapic M, Eitan E, Werner JK, Berkowitz ST, Lazaropoulos MP, Tran J, Goetzl EJ, Kapogiannis D. Plasma Extracellular Vesicles Enriched for Neuronal Origin: A Potential Window into Brain Pathologic Processes. Front Neurosci 2017; 11:278. [PMID: 28588440 PMCID: PMC5439289 DOI: 10.3389/fnins.2017.00278] [Citation(s) in RCA: 289] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 04/30/2017] [Indexed: 01/15/2023] Open
Abstract
Our team has been a pioneer in harvesting extracellular vesicles (EVs) enriched for neuronal origin from peripheral blood and using them as a biomarker discovery platform for neurological disorders. This methodology has demonstrated excellent diagnostic and predictive performance for Alzheimer's and other neurodegenerative diseases in multiple studies, providing a strong proof of concept for this approach. Here, we describe our methodology in detail and offer further evidence that isolated EVs are enriched for neuronal origin. In addition, we present evidence that EVs enriched for neuronal origin represent a more sensitive and accurate base for biomarkers than plasma, serum, or non-enriched total plasma EVs. Finally, we proceed to investigate the protein content of EVs enriched for neuronal origin and compare it with other relevant enriched and non-enriched populations of plasma EVs. Neuronal-origin enriched plasma EVs contain higher levels of signaling molecules of great interest for cellular metabolism, survival, and repair, which may be useful as biomarkers and to follow response to therapeutic interventions in a mechanism-specific manner.
Collapse
Affiliation(s)
- Maja Mustapic
- Intramural Research Program, Laboratory of Neurosciences, National Institute on Aging, National Institutes of Health (NIA/NIH)Baltimore, MD, United States
| | - Erez Eitan
- Intramural Research Program, Laboratory of Neurosciences, National Institute on Aging, National Institutes of Health (NIA/NIH)Baltimore, MD, United States
| | - John K. Werner
- Intramural Research Program, Laboratory of Neurosciences, National Institute on Aging, National Institutes of Health (NIA/NIH)Baltimore, MD, United States
- Department of Neurology, Johns Hopkins School of Medicine, Johns Hopkins UniversityBaltimore, MD, United States
| | - Sean T. Berkowitz
- Intramural Research Program, Laboratory of Neurosciences, National Institute on Aging, National Institutes of Health (NIA/NIH)Baltimore, MD, United States
| | - Michael P. Lazaropoulos
- Intramural Research Program, Laboratory of Neurosciences, National Institute on Aging, National Institutes of Health (NIA/NIH)Baltimore, MD, United States
| | - Joyce Tran
- Intramural Research Program, Laboratory of Neurosciences, National Institute on Aging, National Institutes of Health (NIA/NIH)Baltimore, MD, United States
| | - Edward J. Goetzl
- Department of Medicine, University of California, San FranciscoSan Francisco, CA, United States
- Jewish Home of San FranciscoSan Francisco, CA, United States
| | - Dimitrios Kapogiannis
- Intramural Research Program, Laboratory of Neurosciences, National Institute on Aging, National Institutes of Health (NIA/NIH)Baltimore, MD, United States
| |
Collapse
|
83
|
Rezaie J, Ajezi S, Avci ÇB, Karimipour M, Geranmayeh MH, Nourazarian A, Sokullu E, Rezabakhsh A, Rahbarghazi R. Exosomes and their Application in Biomedical Field: Difficulties and Advantages. Mol Neurobiol 2017; 55:3372-3393. [DOI: 10.1007/s12035-017-0582-7] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 04/27/2017] [Indexed: 12/31/2022]
|
84
|
Ulivieri C, Baldari CT. Regulation of T Cell Activation and Differentiation by Extracellular Vesicles and Their Pathogenic Role in Systemic Lupus Erythematosus and Multiple Sclerosis. Molecules 2017; 22:molecules22020225. [PMID: 28157168 PMCID: PMC6155914 DOI: 10.3390/molecules22020225] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 01/30/2017] [Indexed: 02/07/2023] Open
Abstract
How autoreactive tissue-infiltrated effector T cells are induced and sustained in autoimmune disease, usually dominated by the Th1 and Th17 subsets, is still largely unknown. In organ-specific autoimmunity, self-reactive T cells initially activated by dendritic cells (DCs) in the lymph nodes migrate and infiltrate into the target tissues where their reactivation by peripheral tissue antigen is a prerequisite for effector cytokine production and tissue destruction. The target tissue microenvironment, as well as the local microenvironment at the immune synapse formed by T cells that encounter cognate antigen presenting cells (APCs) shave recently emerged as critical factors in shaping the differentiation and function of self-reactive effector T cells, providing the signals required for their activation in the form of the self-antigen and cytokine milieu. Moreover, depending on the specific microenvironment, self-reactive effector T cells have the ability to change their phenotype, especially Th17 and regulatory T (Treg) cells, which are characterized by the highest instability. In this context, cell-derived extracellular vesicles, i.e., vesicles carrying cytosolic proteins and nucleic acids protected by a phospholipid bilayer, as well as membrane-associated proteins, with the ability to spread throughout the body by means of biological fluids, are emerging as key mediators in intercellular communications and in the modulation of the microenvironment. In this review, we will discuss recent findings implicating extracellular vesicles (EVs) at different steps of CD4+ T cell differentiation to specific effectors, with a focus on the Th17/Treg balance and its alterations in systemic lupus erythematosus and multiple sclerosis.
Collapse
Affiliation(s)
- Cristina Ulivieri
- Department of Life Sciences, University of Siena, Via Aldo Moro, 2 53100, Siena, Italy.
| | - Cosima T Baldari
- Department of Life Sciences, University of Siena, Via Aldo Moro, 2 53100, Siena, Italy.
| |
Collapse
|
85
|
Cai S, Cheng X, Pan X, Li J. Emerging role of exosomes in liver physiology and pathology. Hepatol Res 2017; 47:194-203. [PMID: 27539153 DOI: 10.1111/hepr.12794] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 07/21/2016] [Accepted: 08/10/2016] [Indexed: 12/13/2022]
Abstract
Exosomes can mediate intercellular communication by conveying various bioactive molecules. Plentiful evidence suggests that exosomes are involved in many liver diseases including hepatitis C virus infection, hepatitis B virus infection, hepatocellular carcinoma, liver fibrosis, cirrhosis, non-alcoholic fatty liver disease, and alcoholic liver disease. Moreover, exosomes are present in nearly all human body fluids. Therefore, exosomal miRNA or proteins have the potential to be novel biomarkers of liver diseases. In the treatment of liver diseases, exosomes could participate in adaptive immune response and mesenchymal stem cell-based therapy. Exosomes can also be used as vehicles for genetic materials and drug delivery.
Collapse
Affiliation(s)
- Shuangpeng Cai
- School of Pharmacy, Laboratory of Bioactivity of Natural Products, Anhui Medical University, Hefei, China.,Institute for Liver Diseases of Anhui Medical University (ILD-AMU), Anhui Medical University, Hefei, China
| | - Xiaoyu Cheng
- School of Pharmacy, Laboratory of Bioactivity of Natural Products, Anhui Medical University, Hefei, China.,Institute for Liver Diseases of Anhui Medical University (ILD-AMU), Anhui Medical University, Hefei, China
| | - Xueyin Pan
- School of Pharmacy, Laboratory of Bioactivity of Natural Products, Anhui Medical University, Hefei, China.,Institute for Liver Diseases of Anhui Medical University (ILD-AMU), Anhui Medical University, Hefei, China
| | - Jun Li
- School of Pharmacy, Laboratory of Bioactivity of Natural Products, Anhui Medical University, Hefei, China.,Institute for Liver Diseases of Anhui Medical University (ILD-AMU), Anhui Medical University, Hefei, China
| |
Collapse
|
86
|
Extracellular Vesicles: Immunomodulatory messengers in the context of tissue repair/regeneration. Eur J Pharm Sci 2017; 98:86-95. [DOI: 10.1016/j.ejps.2016.09.017] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 09/09/2016] [Accepted: 09/12/2016] [Indexed: 12/16/2022]
|
87
|
Yue J, Song D, Lu W, Lu Y, Zhou W, Tan X, Zhang L, Huang D. Expression Profiles of Inflammation-associated microRNAs in Periapical Lesions and Human Periodontal Ligament Fibroblasts Inflammation. J Endod 2016; 42:1773-1778. [DOI: 10.1016/j.joen.2016.08.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Revised: 08/15/2016] [Accepted: 08/15/2016] [Indexed: 12/14/2022]
|
88
|
Heilmeier U, Hackl M, Skalicky S, Weilner S, Schroeder F, Vierlinger K, Patsch JM, Baum T, Oberbauer E, Lobach I, Burghardt AJ, Schwartz AV, Grillari J, Link TM. Serum miRNA Signatures Are Indicative of Skeletal Fractures in Postmenopausal Women With and Without Type 2 Diabetes and Influence Osteogenic and Adipogenic Differentiation of Adipose Tissue-Derived Mesenchymal Stem Cells In Vitro. J Bone Miner Res 2016; 31:2173-2192. [PMID: 27345526 DOI: 10.1002/jbmr.2897] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 06/15/2016] [Accepted: 06/23/2016] [Indexed: 12/21/2022]
Abstract
Standard DXA measurements, including Fracture Risk Assessment Tool (FRAX) scores, have shown limitations in assessing fracture risk in Type 2 Diabetes (T2D), underscoring the need for novel biomarkers and suggesting that other pathomechanisms may drive diabetic bone fragility. MicroRNAs (miRNAs) are secreted into the circulation from cells of various tissues proportional to local disease severity and were recently found to be crucial to bone homeostasis and T2D. Here, we studied, if and which circulating miRNAs or combinations of miRNAs can discriminate best fracture status in a well-characterized study of diabetic bone disease and postmenopausal osteoporosis (n = 80 postmenopausal women). We then tested the most discriminative and most frequent miRNAs in vitro. Using miRNA-qPCR-arrays, we showed that 48 miRNAs can differentiate fracture status in T2D women and that several combinations of four miRNAs can discriminate diabetes-related fractures with high specificity and sensitivity (area under the receiver-operating characteristic curve values [AUCs], 0.92 to 0.96; 95% CI, 0.88 to 0.98). For the osteoporotic study arm, 23 miRNAs were fracture-indicative and potential combinations of four miRNAs showed AUCs from 0.97 to 1.00 (95% CI, 0.93 to 1.00). Because a role in bone homeostasis for those miRNAs that were most discriminative and most present among all miRNA combinations had not been described, we performed in vitro functional studies in human adipose tissue-derived mesenchymal stem cells to investigate the effect of miR-550a-5p, miR-188-3p, and miR-382-3p on osteogenesis, adipogenesis, and cell proliferation. We found that miR-382-3p significantly enhanced osteogenic differentiation (p < 0.001), whereas miR-550a-5p inhibited this process (p < 0.001). Both miRNAs, miR-382-3p and miR-550a-5p, impaired adipogenic differentiation, whereas miR-188-3p did not exert an effect on adipogenesis. None of the miRNAs affected significantly cell proliferation. Our data suggest for the first time that miRNAs are linked to fragility fractures in T2D postmenopausal women and should be further investigated for their diagnostic potential and their detailed function in diabetic bone. © 2016 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Ursula Heilmeier
- Musculoskeletal Quantitative Imaging Research Group, Department of Radiology & Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | | | | | | | - Fabian Schroeder
- Department of Molecular Diagnostics, Austrian Institute of Technology (AIT), Vienna, Austria
| | - Klemens Vierlinger
- Department of Molecular Diagnostics, Austrian Institute of Technology (AIT), Vienna, Austria
| | - Janina M Patsch
- Musculoskeletal Quantitative Imaging Research Group, Department of Radiology & Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA.,Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Austria
| | - Thomas Baum
- Musculoskeletal Quantitative Imaging Research Group, Department of Radiology & Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Eleni Oberbauer
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Forschungszentrum für Traumatologie der Allgemeinen Unfallversicherungsanstalt (AUVA) Research Center, Linz/Vienna, Austria
| | - Iryna Lobach
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA, USA
| | - Andrew J Burghardt
- Musculoskeletal Quantitative Imaging Research Group, Department of Radiology & Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Ann V Schwartz
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA, USA
| | - Johannes Grillari
- Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Thomas M Link
- Musculoskeletal Quantitative Imaging Research Group, Department of Radiology & Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
89
|
Inflammation Related MicroRNAs Are Modulated in Total Plasma and in Extracellular Vesicles from Rats with Chronic Ingestion of Sucrose. BIOMED RESEARCH INTERNATIONAL 2016; 2016:2489479. [PMID: 27999792 PMCID: PMC5143695 DOI: 10.1155/2016/2489479] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 10/18/2016] [Accepted: 10/31/2016] [Indexed: 01/09/2023]
Abstract
Circulating microRNAs (miRNAs) and the functional implications of miRNAs contained in extracellular vesicles (EVs) have gained attention in the last decade. Little is known about the regulation of the abundance of plasma miRNAs in response to chronic ingestion of carbohydrates. Therefore, we explored the circulating levels of miR-21, miR-146a, miR-155, and miR-223 in rats consuming sucrose in drinking water. Weanling Wistar rats were 25 weeks with 30% sucrose in drinking water, and miRNAs expression was determined in total plasma and in microvesicles, by RT-qPCR with TaqMan probe based assays for miR-21, miR-146a, miR-155, and miR-223, using cel-miR-39 (as spike in control and reference). Endotoxemia was also measured. Sucrose-fed animals showed higher body weight and retroperitoneal adipose tissue as well as higher glucose and triglyceride plasma levels than controls. Plasma endotoxin levels were low and not different among groups. Plasma miR-21 and miR-223 were higher in the sucrose group (p < 0.05), whereas miR-155 tended to be lower (p = 0.0661), and miR-146a did not show significant differences. In the plasma EVs the same trend was found except for miR-146a that showed significantly higher levels (p < 0.05). Overall, our results show that high carbohydrate ingestion modulates circulating miRNAs levels related to an inflammatory response.
Collapse
|
90
|
Towards Therapeutic Delivery of Extracellular Vesicles: Strategies for In Vivo Tracking and Biodistribution Analysis. Stem Cells Int 2016; 2016:5029619. [PMID: 27994623 PMCID: PMC5141304 DOI: 10.1155/2016/5029619] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 09/16/2016] [Accepted: 10/13/2016] [Indexed: 12/15/2022] Open
Abstract
Extracellular vesicles (EVs), such as microvesicles and exosomes, are membranous structures containing bioactive material released by several cells types, including mesenchymal stem/stromal cells (MSCs). Increasing lines of evidences point to EVs as paracrine mediators of the beneficial effects on tissue remodeling associated with cell therapy. Administration of MSCs-derived EVs has therefore the potential to open new and safer therapeutic avenues, alternative to cell-based approaches, for degenerative diseases. However, an enhanced knowledge about in vivo EVs trafficking upon delivery is required before effective clinical translation. Only a few studies have focused on the biodistribution analysis of exogenously administered MSCs-derived EVs. Nevertheless, current strategies for in vivo tracking in animal models have provided valuable insights on the biodistribution upon systemic delivery of EVs isolated from several cellular sources, indicating in liver, spleen, and lungs the preferential target organs. Different strategies for targeting EVs to specific tissues to enhance their therapeutic efficacy and reduce possible off-target effects have been investigated. Here, in the context of a possible clinical application of MSC-derived EVs for tissue regeneration, we review the existing strategies for in vivo tracking and targeting of EVs isolated from different cellular sources and the studies elucidating the biodistribution of exogenously administered EVs.
Collapse
|
91
|
Vader P, Mol EA, Pasterkamp G, Schiffelers RM. Extracellular vesicles for drug delivery. Adv Drug Deliv Rev 2016; 106:148-156. [PMID: 26928656 DOI: 10.1016/j.addr.2016.02.006] [Citation(s) in RCA: 792] [Impact Index Per Article: 99.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 02/11/2016] [Accepted: 02/17/2016] [Indexed: 01/05/2023]
Abstract
Extracellular vesicles (EVs) are cell-derived membrane vesicles, and represent an endogenous mechanism for intercellular communication. Since the discovery that EVs are capable of functionally transferring biological information, the potential use of EVs as drug delivery vehicles has gained considerable scientific interest. EVs may have multiple advantages over currently available drug delivery vehicles, such as their ability to overcome natural barriers, their intrinsic cell targeting properties, and stability in the circulation. However, therapeutic applications of EVs as drug delivery systems have been limited due to a lack of methods for scalable EV isolation and efficient drug loading. Furthermore, in order to achieve targeted drug delivery, their intrinsic cell targeting properties should be tuned through EV engineering. Here, we review and discuss recent progress and remaining challenges in the development of EVs as drug delivery vehicles.
Collapse
Affiliation(s)
- Pieter Vader
- Department of Clinical Chemistry and Hematology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands.
| | - Emma A Mol
- Department of Experimental Cardiology, University Medical Center Utrecht, the Netherlands, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Gerard Pasterkamp
- Department of Clinical Chemistry and Hematology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands; Department of Experimental Cardiology, University Medical Center Utrecht, the Netherlands, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Raymond M Schiffelers
- Department of Clinical Chemistry and Hematology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands.
| |
Collapse
|
92
|
Xin H, Wang F, Li Y, Lu QE, Cheung WL, Zhang Y, Zhang ZG, Chopp M. Secondary Release of Exosomes From Astrocytes Contributes to the Increase in Neural Plasticity and Improvement of Functional Recovery After Stroke in Rats Treated With Exosomes Harvested From MicroRNA 133b-Overexpressing Multipotent Mesenchymal Stromal Cells. Cell Transplant 2016; 26:243-257. [PMID: 27677799 DOI: 10.3727/096368916x693031] [Citation(s) in RCA: 195] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
We previously demonstrated that multipotent mesenchymal stromal cells (MSCs) that overexpress microRNA 133b (miR-133b) significantly improve functional recovery in rats subjected to middle cerebral artery occlusion (MCAO) compared with naive MSCs and that exosomes generated from naive MSCs mediate the therapeutic benefits of MSC therapy for stroke. Here we investigated whether exosomes isolated from miR-133b-overexpressing MSCs (Ex-miR-133b+) exert amplified therapeutic effects. Rats subjected to 2 h of MCAO were intra-arterially injected with Ex-miR-133b+, exosomes from MSCs infected by blank vector (Ex-Con), or phosphate-buffered saline (PBS) and were sacrificed 28 days after MCAO. Compared with the PBS treatment, both exosome treatment groups exhibited significant improvement of functional recovery. Ex-miR-133b+ treatment significantly increased functional improvement and neurite remodeling/brain plasticity in the ischemic boundary area compared with the Ex-Con treatment. Treatment with Ex-miR-133b+ also significantly increased brain exosome content compared with Ex-Con treatment. To elucidate mechanisms underlying the enhanced therapeutic effects of Ex-miR-133b+, astrocytes cultured under oxygen- and glucose-deprived (OGD) conditions were incubated with exosomes harvested from naive MSCs (Ex-Naive), miR-133b downregulated MSCs (Ex-miR-133b-), and Ex-miR-133b+. Compared with the Ex-Naive treatment, Ex-miR-133b+ significantly increased exosomes released by OGD astrocytes, whereas Ex-miR-133b- significantly decreased the release. Also, exosomes harvested from OGD astrocytes treated with Ex-miR-133b+ significantly increased neurite branching and elongation of cultured cortical embryonic rat neurons compared with the exosomes from OGD astrocytes subjected to Ex-Con. Our data suggest that exosomes harvested from miR-133b-overexpressing MSCs improve neural plasticity and functional recovery after stroke with a contribution from a stimulated secondary release of neurite-promoting exosomes from astrocytes.
Collapse
|
93
|
MicroRNAs: Potential Biomarkers and Therapeutic Targets for Alveolar Bone Loss in Periodontal Disease. Int J Mol Sci 2016; 17:ijms17081317. [PMID: 27529224 PMCID: PMC5000714 DOI: 10.3390/ijms17081317] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 07/24/2016] [Accepted: 08/03/2016] [Indexed: 12/14/2022] Open
Abstract
Periodontal disease is an inflammatory disease caused by bacterial infection of tooth-supporting structures, which results in the destruction of alveolar bone. Osteoclasts play a central role in bone destruction. Osteoclasts are tartrate-resistant acid phosphatase (TRAP)-positive multinucleated giant cells derived from hematopoietic stem cells. Recently, we and other researchers revealed that microRNAs are involved in osteoclast differentiation. MicroRNAs are novel, single-stranded, non-coding, small (20–22 nucleotides) RNAs that act in a sequence-specific manner to regulate gene expression at the post-transcriptional level through cleavage or translational repression of their target mRNAs. They regulate various biological activities such as cellular differentiation, apoptosis, cancer development, and inflammatory responses. In this review, the roles of microRNAs in osteoclast differentiation and function during alveolar bone destruction in periodontal disease are described.
Collapse
|
94
|
Teixeira JH, Silva AM, Almeida MI, Barbosa MA, Santos SG. Circulating extracellular vesicles: Their role in tissue repair and regeneration. Transfus Apher Sci 2016; 55:53-61. [DOI: 10.1016/j.transci.2016.07.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
95
|
Watson DC, Bayik D, Srivatsan A, Bergamaschi C, Valentin A, Niu G, Bear J, Monninger M, Sun M, Morales-Kastresana A, Jones JC, Felber BK, Chen X, Gursel I, Pavlakis GN. Efficient production and enhanced tumor delivery of engineered extracellular vesicles. Biomaterials 2016; 105:195-205. [PMID: 27522254 DOI: 10.1016/j.biomaterials.2016.07.003] [Citation(s) in RCA: 261] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 07/01/2016] [Accepted: 07/05/2016] [Indexed: 12/20/2022]
Abstract
Extracellular vesicles (EV), including exosomes and microvesicles, are nano-sized intercellular communication vehicles that participate in a multitude of physiological processes. Due to their biological properties, they are also promising candidates for the systemic delivery of therapeutic compounds, such as cytokines, chemotherapeutic drugs, siRNAs and viral vectors. However, low EV production yield and rapid clearance of administered EV by liver macrophages limit their potential use as therapeutic vehicles. We have used a hollow-fiber bioreactor for the efficient production of bioactive EV bearing the heterodimeric cytokine complex Interleukin-15:Interleukin-15 receptor alpha. Bioreactor culture yielded ∼40-fold more EV per mL conditioned medium, as compared to conventional cell culture. Biophysical analysis and comparative proteomics suggested a more diverse population of EV in the bioreactor preparations, while serum protein contaminants were detectable only in conventional culture EV preparations. We also identified the Scavenger Receptor Class A family (SR-A) as a novel monocyte/macrophage uptake receptor for EV. In vivo blockade of SR-A with dextran sulfate dramatically decreased EV liver clearance in mice, while enhancing tumor accumulation. These findings facilitate development of EV therapeutic methods.
Collapse
Affiliation(s)
- Dionysios C Watson
- Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, United States; Department of Medicine, University of Patras, Greece
| | - Defne Bayik
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, United States; Department of Molecular Biology and Genetics, Bilkent University, Ankara, 06800 Turkey
| | - Avinash Srivatsan
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, United States
| | - Cristina Bergamaschi
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, United States
| | - Antonio Valentin
- Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, United States
| | - Gang Niu
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, United States
| | - Jenifer Bear
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, United States
| | - Mitchell Monninger
- Pathology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702, United States
| | - Mei Sun
- Pathology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702, United States
| | - Aizea Morales-Kastresana
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, United States
| | - Jennifer C Jones
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, United States
| | - Barbara K Felber
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, United States
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, United States
| | - Ihsan Gursel
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, 06800 Turkey
| | - George N Pavlakis
- Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, United States.
| |
Collapse
|
96
|
Sato K, Meng F, Glaser S, Alpini G. Exosomes in liver pathology. J Hepatol 2016; 65:213-221. [PMID: 26988731 PMCID: PMC4912847 DOI: 10.1016/j.jhep.2016.03.004] [Citation(s) in RCA: 132] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 03/04/2016] [Accepted: 03/07/2016] [Indexed: 02/08/2023]
Abstract
Exosomes are small (∼100nm) membrane-bound extracellular vesicles released by various types of cells into biological fluids. They contain proteins, mRNAs and miRNAs as cargo. Different cell types can take up exosomes by endocytosis and the cargo contained within them can be transferred horizontally to these recipient cells. Exosomal proteins and miRNAs can be functional and regulate physiological cell events modifying the microenvironment in target cells, a key event of liver pathology. Exosome-mediated cell-cell communication can alter tumor growth, cell migration, antiviral infection and hepatocyte regeneration, indicating that exosomes have great potential for development as diagnostic or therapeutic tools. Analyses of circulating total or exosomal miRNAs have identified a large number of candidate miRNAs that are regulated in liver diseases, and the diagnostic testing using single or multiple miRNAs shows good sensitivity and specificity. Some candidate miRNAs have been identified to play an important role in various liver disorders. This review summarizes recent findings on the role of extracellular vesicles in liver diseases and their diagnostic and therapeutic potential, mainly focusing on exosomes but also includes microvesicles in liver pathology.
Collapse
Affiliation(s)
- Keisaku Sato
- Research, Central Texas Veterans Health Care System, Temple, TX 76504,Department of Medicine, Texas A&M Health Science Center, College of Medicine, Temple, TX 76504
| | - Fanyin Meng
- Research, Central Texas Veterans Health Care System, Temple, TX 76504,Department of Medicine, Texas A&M Health Science Center, College of Medicine, Temple, TX 76504,Scott & White Digestive Disease Research Center, Scott & White, Temple, TX 76504,Academic Research Integration, Baylor Scott & White Healthcare, Temple, TX 76504
| | - Shannon Glaser
- Research, Central Texas Veterans Health Care System, Temple, TX 76504,Department of Medicine, Texas A&M Health Science Center, College of Medicine, Temple, TX 76504,Scott & White Digestive Disease Research Center, Scott & White, Temple, TX 76504
| | - Gianfranco Alpini
- Research, Central Texas Veterans Health Care System, USA; Department of Medicine, Texas A&M Health Science Center, College of Medicine, USA; Scott & White Digestive Disease Research Center, Scott & White, USA.
| |
Collapse
|
97
|
Intracellular and extracellular microRNA: An update on localization and biological role. ACTA ACUST UNITED AC 2016; 51:33-49. [PMID: 27396686 DOI: 10.1016/j.proghi.2016.06.001] [Citation(s) in RCA: 153] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 06/24/2016] [Accepted: 06/24/2016] [Indexed: 12/12/2022]
Abstract
MicroRNA (miRNA) is a class of small non-coding RNAs which mediate post-transcriptional gene silencing (PTGS) by sequence-specific inhibition of target mRNAs translation and/or lowering their half-lives in the cytoplasm. Together with their binding partners, Argonaute (AGO) proteins, miRNAs form cores of RNA-induced silencing complexes (RISC). Despite a substantial progress in understanding RISC structure, until recently little was known about its localization in the cell. This review is aimed to provide an overview of the emerging picture of miRNA and RISC localization and function both in the intracellular space and outside of the cell. In contrast to the common assumption that PTGS occurs in the cytoplasm, it was found to operate mainly on the membranes of the endoplasmic reticulum (ER). Besides ER membranes miRNAs were found in all main cellular compartments including nucleus, nucleolus and mitochondria where they regulate various processes including transcription, translation, alternative splicing and DNA repair. Moreover, a certain pool of miRNAs may not be associated with RISC and carry completely different functions. Finally, the discovery of cell-free miRNAs in all biological fluids suggests that miRNAs might also act as signaling molecules outside the cell, and may be utilized as biomarkers for a variety of diseases. In this review we discuss miRNA secretion mechanisms and possible pathways of cell-cell communication via miRNA-containing exosomes in vivo.
Collapse
|
98
|
Jahagirdar D, Purohit S, Jain A, Sharma NK. Export of microRNAs: A Bridge between Breast Carcinoma and Their Neighboring Cells. Front Oncol 2016; 6:147. [PMID: 27379209 PMCID: PMC4913210 DOI: 10.3389/fonc.2016.00147] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 05/30/2016] [Indexed: 12/11/2022] Open
Abstract
Breast cancer is a leading type of cancer among women in India as well as worldwide. According to the WHO 2015 report, it has been anticipated that there would be a twofold rise in the death due to breast cancer among women. The heterogeneous property of breast carcinoma has been suggested to be linked with dedicated set of communication and signaling pathway with their surroundings, which culminate into progression and development of the cancer. Among the plethora of communication tools in the hand of breast carcinoma cells is the recently appreciated exocytosis of the tightly packed short non-coding RNA molecules, predominantly the microRNAs (miRNAs). Recent studies suggest that miRNAs may work as courier messengers to participate in endocrine and paracrine signaling to facilitate information transfer between breast carcinoma and their neighboring cells. Evidence suggests that breast tumor cells communicate via packaged miRNAs in the tumor-released microvesicles, which enrich the tumor microenvironment. There is a strong view that dissecting out the mechanistic and regulatory aspects of miRNA export and role may uncover many prospects for overcoming the signaling defects and thereby controlling aberrant cell division. The detection of circulating miRNAs associated with breast carcinoma can also be used as biomarkers for early diagnosis. This review article is an attempt to provide updated knowledge on implications of short RNAs and their transport in the breast cancer pathophysiology.
Collapse
Affiliation(s)
- Devashree Jahagirdar
- Cancer and Translational Research Lab, Dr. D.Y. Patil Biotechnology & Bioinformatics Institute, Dr. D.Y. Patil Vidyapeeth, Pune, India
| | - Shruti Purohit
- Cancer and Translational Research Lab, Dr. D.Y. Patil Biotechnology & Bioinformatics Institute, Dr. D.Y. Patil Vidyapeeth, Pune, India
| | - Aayushi Jain
- Cancer and Translational Research Lab, Dr. D.Y. Patil Biotechnology & Bioinformatics Institute, Dr. D.Y. Patil Vidyapeeth, Pune, India
| | - Nilesh Kumar Sharma
- Cancer and Translational Research Lab, Dr. D.Y. Patil Biotechnology & Bioinformatics Institute, Dr. D.Y. Patil Vidyapeeth, Pune, India
| |
Collapse
|
99
|
Bala S, Csak T, Saha B, Zatsiorsky J, Kodys K, Catalano D, Satishchandran A, Szabo G. The pro-inflammatory effects of miR-155 promote liver fibrosis and alcohol-induced steatohepatitis. J Hepatol 2016; 64:1378-87. [PMID: 26867493 PMCID: PMC4874886 DOI: 10.1016/j.jhep.2016.01.035] [Citation(s) in RCA: 199] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 01/11/2016] [Accepted: 01/25/2016] [Indexed: 12/13/2022]
Abstract
BACKGROUND & AIMS Alcoholic liver disease (ALD) ranges from fatty liver to inflammation and cirrhosis. miRNA-155 is an important regulator of inflammation. In this study, we describe the in vivo role of miR-155 in ALD. METHODS Wild-type (WT) (C57/BL6J) or miR-155 knockout (KO) and TLR4 KO mice received Lieber DeCarli diet for 5weeks. Some mice received corn oil or CCl4 for 2 or 9weeks. RESULTS We found that miR-155 KO mice are protected from alcohol-induced steatosis and inflammation. The reduction in alcohol-induced fat accumulation in miR-155 KO mice was associated with increased peroxisome proliferator-activated receptor response element (PPRE) and peroxisome proliferator-activated receptors (PPAR)α (miR-155 target) binding and decreased MCP1 production. Treatment with a miR-155 inhibitor increased PPARγ expression in naïve and alcohol treated RAW macrophages. Alcohol increased lipid metabolism gene expression (FABP4, LXRα, ACC1 and LDLR) in WT mice and this was prevented in KO mice. Alcohol diet caused an increase in the number of CD163(+) CD206(+) infiltrating macrophages and neutrophils in WT mice, which was prevented in miR-155 KO mice. Kupffer cells isolated from miR-155 KO mice exhibited predominance of M2 phenotype when exposed to M1 polarized signals and this was due to increased C/EBPβ. Pro-fibrotic genes were attenuated in miR-155 KO mice after alcohol diet or CCl4 treatment. Compared to WT mice, attenuation in CCl4 induced hydroxyproline and α-SMA was observed in KO mice. Finally, we show TLR4 signaling regulates miR-155 as TLR4 KO mice showed no induction of miR-155 after alcohol diet. CONCLUSIONS Collectively our results demonstrated the role of miR-155 in alcohol-induced steatohepatitis and fibrosis in vivo.
Collapse
Affiliation(s)
- Shashi Bala
- Department of Medicine, University of Massachusetts Medical School, Worcester 01604, MA, USA
| | - Timea Csak
- Department of Medicine, University of Massachusetts Medical School, Worcester 01604, MA, USA; Brookdale University Hospital and Medical Center, Brooklyn, NY, USA
| | - Banishree Saha
- Department of Medicine, University of Massachusetts Medical School, Worcester 01604, MA, USA
| | - James Zatsiorsky
- Department of Medicine, University of Massachusetts Medical School, Worcester 01604, MA, USA
| | - Karen Kodys
- Department of Medicine, University of Massachusetts Medical School, Worcester 01604, MA, USA
| | - Donna Catalano
- Department of Medicine, University of Massachusetts Medical School, Worcester 01604, MA, USA
| | - Abhishek Satishchandran
- Department of Medicine, University of Massachusetts Medical School, Worcester 01604, MA, USA
| | - Gyongyi Szabo
- Department of Medicine, University of Massachusetts Medical School, Worcester 01604, MA, USA.
| |
Collapse
|
100
|
Abstract
MicroRNAs (miRNAs) are highly conserved, small, 18-25 nucleotide, non-coding RNAs that regulate gene expression at the post-transcriptional level. Each miRNA can regulate hundreds of target genes, and vice versa each target gene can be regulated by numerous miRNAs, suggesting a very complex network and explaining how miRNAs play pivotal roles in fine-tuning essentially all biological processes in all cell types in the liver. Here, we summarize the current knowledge on the role of miRNAs in the pathogenesis and diagnosis of nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH) with an outlook to the broader aspects of metabolic syndrome. Furthermore, we discuss the role of miRNAs as potential biomarkers and therapeutic targets in NAFLD/NASH.
Collapse
Affiliation(s)
- Gyongyi Szabo
- Department of Medicine, University of Massachusetts Medical School, LRB215, 364 Plantation Street, Worcester, MA, 01605, USA.
| | - Timea Csak
- Department of Medicine, University of Massachusetts Medical School, LRB215, 364 Plantation Street, Worcester, MA, 01605, USA
- Brookdale University Hospital and Medical Center, 1 Brookdale Plaza, Brooklyn, NY, 11212, USA
| |
Collapse
|