51
|
Xu K, Han CX, Zhou H, Ding JM, Xu Z, Yang LY, He C, Akinyemi F, Zheng YM, Qin C, Luo HX, Meng H. Effective MSTN Gene Knockout by AdV-Delivered CRISPR/Cas9 in Postnatal Chick Leg Muscle. Int J Mol Sci 2020; 21:ijms21072584. [PMID: 32276422 PMCID: PMC7177447 DOI: 10.3390/ijms21072584] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/02/2020] [Accepted: 04/06/2020] [Indexed: 02/07/2023] Open
Abstract
Muscle growth and development are important aspects of chicken meat production, but the underlying regulatory mechanisms remain unclear and need further exploration. CRISPR has been used for gene editing to study gene function in mice, but less has been done in chick muscles. To verify whether postnatal gene editing could be achieved in chick muscles and determine the transcriptomic changes, we knocked out Myostatin (MSTN), a potential inhibitor of muscle growth and development, in chicks and performed transcriptome analysis on knock-out (KO) muscles and wild-type (WT) muscles at two post-natal days: 3d (3-day-old) and 14d (14-day-old). Large fragment deletions of MSTN (>5 kb) were achieved in all KO muscles, and the MSTN gene expression was significantly downregulated at 14d. The transcriptomic results indicated the presence of 1339 differentially expressed genes (DEGs) between the 3d KO and 3d WT muscles, as well as 597 DEGs between 14d KO and 14d WT muscles. Many DEGs were found to be related to cell differentiation and proliferation, muscle growth and energy metabolism. This method provides a potential means of postnatal gene editing in chicks, and the results presented here could provide a basis for further investigation of the mechanisms involved in muscle growth and development.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - He Meng
- Correspondence: ; Tel.: +86-021-34206146
| |
Collapse
|
52
|
Singh B, Mal G, Kues WA, Yadav PS. The domesticated buffalo - An emerging model for experimental and therapeutic use of extraembryonic tissues. Theriogenology 2020; 151:95-102. [PMID: 32320839 DOI: 10.1016/j.theriogenology.2020.04.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 03/12/2020] [Accepted: 04/04/2020] [Indexed: 12/16/2022]
Abstract
Large animals play important roles as model animals for biomedical sciences and translational research. The water buffalo (Bubalus bubalis) is an economically important, multipurpose livestock species. Important assisted reproduction techniques, such as in vitro fertilization, cryo-conservation of sperm and embryos, embryo transfer, somatic cell nuclear transfer, genetic engineering, and genome editing have been successfully applied to buffaloes. Recently, detailed whole genome data and transcriptome maps have been generated. In addition, rapid progress has been made in stem cell biology of the buffalo. Apart from embryonic stem cells, bubaline extra-embryonic stem cells have gained particular interest. The multipotency of non-embryonic stem cells has been revealed, and their utility in basic and applied research is currently investigated. In particular, success achieved in bubaline extra-embryonic stem cells may have important roles in experimental biology and therapeutic regenerative medicine. Progress in other farm animals in assisted reproduction techniques, stem cell biology and genetic engineering, which could be of importance for buffalo, will also be briefly summarized.
Collapse
Affiliation(s)
- Birbal Singh
- ICAR-Indian Veterinary Research Institute, Regional Station Palampur, 176 061, India
| | - Gorakh Mal
- ICAR-Indian Veterinary Research Institute, Regional Station Palampur, 176 061, India
| | | | - Prem S Yadav
- ICAR-Central Institute for Research on Buffaloes, Hisar, 125001, India.
| |
Collapse
|
53
|
CRISPR/Cas9-mediated Disruption of Fibroblast Growth Factor 5 in Rabbits Results in a Systemic Long Hair Phenotype by Prolonging Anagen. Genes (Basel) 2020; 11:genes11030297. [PMID: 32168764 PMCID: PMC7140871 DOI: 10.3390/genes11030297] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 03/05/2020] [Accepted: 03/09/2020] [Indexed: 02/07/2023] Open
Abstract
Hair growth and morphology are generally regulated by the hair cycle in mammals. Fibroblast Growth Factor 5 (FGF5), which is a hair cycle regulator, has a role in regulating the hair cycle during the transition from the anagen phase to the catagen phase, and a hereditary long hair phenotype has been widely reported when FGF5 is mutated in humans and other species. However, there has been no such report in rabbits. Thus, the first exon of rabbit FGF5 was disrupted by the CRISPR/Cas9 system, and the phenotype of FGF5-/- rabbits was characterized while using hematoxylin and eosin (H&E) staining, immunohistochemistry, quantitative PCR, scanning electron microscopy, and western blotting. The results showed a significant and systemic long hair phenotype in the FGF5-/- rabbits, which indicated that FGF5 is a negative regulator of hair growth. In addition, a decreased diameter of the fiber and a higher area proportion of hair follicle clusters were determined in FGF5-/- rabbits as compared with the WT rabbits. Further investigation verified that prolonging the anagen phase in rabbits, with decreased BMP2/4 pathway signaling and increased VERSICAN pathway signaling, caused the systemic long hair phenotype. Taken together, these results indicate a systemic long hair phenotype by prolonging anagen in FGF5-/- rabbits, which could be widely used for Fur production and an ideal model for studying the mechanism of long hair in the future.
Collapse
|
54
|
Mukai C, Nelson JL, Cheong SH, Diel de Amorim M, Travis AJ. Impacts of oocyte/zygote timing for in vitro fertilization and gene editing in the dog. Theriogenology 2020; 150:347-352. [PMID: 32088047 DOI: 10.1016/j.theriogenology.2020.02.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 02/02/2020] [Indexed: 12/21/2022]
Abstract
Previously, we reported the first live births of dogs using in vitro fertilization (IVF), embryo cryopreservation, and transfer. These techniques have potential applications in the conservation of endangered canids, and development of gene editing/repair technologies that could improve animal welfare by restoring normal gene function and removing predisposition to disease. Here, we used IVF as a springboard for initial attempts at genetic modification through gene editing/repair using the Clustered Regularly-Interspaced Short Palindromic Repeat (CRISPR)-CRISPR-associated endonuclease (Cas9) system. We showed previously that timing is critical for successful IVF in that the canine oocyte must be exposed to the oviductal environment beyond simply reaching metaphase II. Others have shown that timing of injection of CRISPR-Cas9 constructs is critical in gene editing, influencing the extent of genetic mosaicism. Therefore, we investigated whether timing of injection of the gene editing/repair constructs might influence the success of embryo production and gene editing in the dog. We achieved similar IVF success to our prior report in generating 2-cell control embryos, and found equally reduced embryo production whether injection was performed in oocytes prior to fertilization, or in presumptive single-cell zygotes already exposed to sperm. We had no success at generating offspring with precise single-nucleotide changes in KRT71 via homology-directed repair (HDR), but did identify mutation of FGF5 using non-homologous end joining (NHEJ). These findings underscore the difficulties inherent to gene repair, but represent important progress on reproducibility of canine IVF, improved techniques of oocyte/embryo handling, and impact of timing of injections on embryo development.
Collapse
Affiliation(s)
- Chinatsu Mukai
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA.
| | - Jacquelyn L Nelson
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA.
| | - Soon Hon Cheong
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA.
| | - Mariana Diel de Amorim
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA.
| | - Alexander J Travis
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
55
|
Redesigning small ruminant genomes with CRISPR toolkit: Overview and perspectives. Theriogenology 2020; 147:25-33. [PMID: 32086048 DOI: 10.1016/j.theriogenology.2020.02.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 01/24/2020] [Accepted: 02/08/2020] [Indexed: 12/11/2022]
Abstract
Genetic modification is a rapidly developing field in which numerous significant breakthroughs have been achieved. Over the last few decades, genetic modification has evolved from insertional transgenesis to gene targeting and editing and, more recently, to base and prime editing using CRISPR-derived systems. Currently, CRISPR-based genome editing systems are showing great potential for generating gene-edited offspring with defined genetic characteristics. Domestic small ruminants (sheep and goats) have shown great potential as large animal models for genome engineering. Ovine and caprine genomes have been engineered using CRISPR-based systems for numerous purposes. These include generating superior agricultural breeds, expression of therapeutic agents in mammary glands, and developing animal models to be used in the study of human genetic disorders and regenerative medicine. The creation of these models has been facilitated by the continuous emergence and development of genetic modification tools. In this review, we provide an overview on how CRISPR-based systems have been used in the generation of gene-edited small ruminants through the two main pathways (embryonic microinjection and somatic cell nuclear transfer) and highlight the ovine and caprine genes that have been targeted via knockout, knockin, HDR-mediated point mutation, and base editing approaches, as well as the aims of these specific manipulations.
Collapse
|
56
|
Bishop TF, Van Eenennaam AL. Genome editing approaches to augment livestock breeding programs. ACTA ACUST UNITED AC 2020; 223:223/Suppl_1/jeb207159. [PMID: 32034040 DOI: 10.1242/jeb.207159] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The prospect of genome editing offers a number of promising opportunities for livestock breeders. Firstly, these tools can be used in functional genomics to elucidate gene function, and identify causal variants underlying monogenic traits. Secondly, they can be used to precisely introduce useful genetic variation into structured livestock breeding programs. Such variation may include repair of genetic defects, the inactivation of undesired genes, and the moving of useful alleles and haplotypes between breeds in the absence of linkage drag. Editing could also be used to accelerate the rate of genetic progress by enabling the replacement of the germ cell lineage of commercial breeding animals with cells derived from genetically elite lines. In the future, editing may also provide a useful complement to evolving approaches to decrease the length of the generation interval through in vitro generation of gametes. For editing to be adopted, it will need to seamlessly integrate with livestock breeding schemes. This will likely involve introducing edits into multiple elite animals to avoid genetic bottlenecks. It will also require editing of different breeds and lines to maintain genetic diversity, and enable structured cross-breeding. This requirement is at odds with the process-based trigger and event-based regulatory approach that has been proposed for the products of genome editing by several countries. In the absence of regulatory harmony, researchers in some countries will have the ability to use genome editing in food animals, while others will not, resulting in disparate access to these tools, and ultimately the potential for global trade disruptions.
Collapse
|
57
|
Bi Y, Feng B, Wang Z, Zhu H, Qu L, Lan X, Pan C, Song X. Myostatin (MSTN) Gene Indel Variation and Its Associations with Body Traits in Shaanbei White Cashmere Goat. Animals (Basel) 2020; 10:E168. [PMID: 31963797 PMCID: PMC7022945 DOI: 10.3390/ani10010168] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/12/2020] [Accepted: 01/13/2020] [Indexed: 12/21/2022] Open
Abstract
Myostatin (MSTN) gene, also known as growth differentiation factor 8 (GDF8), is a member of the transforming growth factor-beta super-family and plays a negative role in muscle development. It acts as key points during pre- and post-natal life of amniotes that ultimately determine the overall muscle mass of animals. There are several studies that concentrate on the effect of a 5 bp insertion/deletion (indel) within the 5' untranslated region (5' UTR) of goat MSTN gene in goats. However, almost all sample sizes were below 150 individuals. Only in Boer goats, the sample sizes reached 482. Hence, whether the 5 bp indel was still associated with the growth traits of goats in large sample sizes which were more reliable is not clear. To find an effective and dependable DNA marker for goat rearing, we first enlarged the sample sizes (n = 1074, Shaanbei White Cashmere goat) which would enhance the robustness of the analysis and did the association analyses between the 5 bp indel and growth traits. Results uncovered that the 5 bp indel was significantly related to body height, height at hip cross, and chest width index (p < 0.05). In addition, individuals with DD genotype had a superior growing performance than those with the ID genotype. These findings suggested that the 5 bp indel in MSTN gene are significantly associated with growth traits and the specific genotype might be promising for maker-assisted selection (MAS) of goats.
Collapse
Affiliation(s)
- Yi Bi
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China; (Y.B.); (B.F.); (Z.W.); (X.L.)
| | - Bo Feng
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China; (Y.B.); (B.F.); (Z.W.); (X.L.)
| | - Zhen Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China; (Y.B.); (B.F.); (Z.W.); (X.L.)
- Shaanxi Provincial Engineering and Technology Research Center of Cashmere Goats, Yulin University, Yulin 719000, China; (H.Z.); (L.Q.)
- Life Science Research Center, Yulin University, Yulin 719000, China
| | - Haijing Zhu
- Shaanxi Provincial Engineering and Technology Research Center of Cashmere Goats, Yulin University, Yulin 719000, China; (H.Z.); (L.Q.)
- Life Science Research Center, Yulin University, Yulin 719000, China
| | - Lei Qu
- Shaanxi Provincial Engineering and Technology Research Center of Cashmere Goats, Yulin University, Yulin 719000, China; (H.Z.); (L.Q.)
- Life Science Research Center, Yulin University, Yulin 719000, China
| | - Xianyong Lan
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China; (Y.B.); (B.F.); (Z.W.); (X.L.)
| | - Chuanying Pan
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China; (Y.B.); (B.F.); (Z.W.); (X.L.)
| | - Xiaoyue Song
- Shaanxi Provincial Engineering and Technology Research Center of Cashmere Goats, Yulin University, Yulin 719000, China; (H.Z.); (L.Q.)
- Life Science Research Center, Yulin University, Yulin 719000, China
| |
Collapse
|
58
|
Liu Z, Shan H, Chen S, Chen M, Song Y, Lai L, Li Z. Highly efficient base editing with expanded targeting scope using SpCas9-NG in rabbits. FASEB J 2019; 34:588-596. [PMID: 31914687 DOI: 10.1096/fj.201901587r] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 10/29/2019] [Accepted: 10/30/2019] [Indexed: 12/16/2022]
Abstract
Base editors, composed of a cytidine deaminase or an evolved adenine deaminase fused to Cas9 nickase, enable efficient C-to-T or A-to-G conversion in various organisms. However, the NGG protospacer adjacent motif (PAM) requirement of Streptococcus pyogenes Cas9 (SpCas9) substantially limits the target sites suitable for base editing. Quite recently, a new engineered SpCas9-NG variant, which can recognize minimal NG PAMs more efficiently than the present xCas9 variant. Here, we investigated the efficiency and PAM compatibility of SpCas9-NG-assisted cytidine base editors (CBEs) and adenine base editors (ABEs) in rabbits. In this study, we showed that NG-BE4max and NG-ABEmax systems can achieve a targeted mutation efficiency of 75%-100% and 80%-100% with excellent PAM compatibility of NGN PAMs in rabbit embryos, respectively. In addition, both base editors were successfully applied to create new rabbit models with precise point mutations, demonstrating their high efficiency and expanded genome-targeting scope in rabbits. Meanwhile, NG-ABEmax can be used to precisely mimic human Hoxc13 p.Q271R missense mutation in Founder (F0) rabbits, which is arduous for conventional ABEs to achieve due to a NGA PAM requirement. Collectively, NG-BE4max and NG-ABEmax systems provide promising tools to perform efficient base editing with expanded targeting scope in rabbits and enhances its capacity to model human diseases.
Collapse
Affiliation(s)
- Zhiquan Liu
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Science, Jilin University, Changchun, China
| | - Huanhuan Shan
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Science, Jilin University, Changchun, China
| | - Siyu Chen
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Science, Jilin University, Changchun, China
| | - Mao Chen
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Science, Jilin University, Changchun, China
| | - Yuning Song
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Science, Jilin University, Changchun, China
| | - Liangxue Lai
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Science, Jilin University, Changchun, China.,CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Guangzhou Regenerative Medicine and Health Guang Dong Laboratory (GRMH-GDL), Guangzhou, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| | - Zhanjun Li
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Science, Jilin University, Changchun, China
| |
Collapse
|
59
|
Guo J, Zhong J, Li L, Zhong T, Wang L, Song T, Zhang H. Comparative genome analyses reveal the unique genetic composition and selection signals underlying the phenotypic characteristics of three Chinese domestic goat breeds. Genet Sel Evol 2019; 51:70. [PMID: 31771503 PMCID: PMC6880376 DOI: 10.1186/s12711-019-0512-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 11/15/2019] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND As one of the important livestock species around the world, goats provide abundant meat, milk, and fiber to fulfill basic human needs. However, the genetic loci that underlie phenotypic variations in domestic goats are largely unknown, particularly for economically important traits. In this study, we sequenced the whole genome of 38 goats from three Chinese breeds (Chengdu Brown, Jintang Black, and Tibetan Cashmere) and downloaded the genome sequence data of 30 goats from five other breeds (four non-Chinese and one Chinese breed) and 21 Bezoar ibexes to investigate the genetic composition and selection signatures of the Chinese goat breeds after domestication. RESULTS Based on population structure analysis and FST values (average FST = 0.22), the genetic composition of Chengdu Brown goats differs considerably from that of Bezoar ibexes as a result of geographic isolation. Strikingly, the genes under selection that we identified in Tibetan Cashmere goats were significantly enriched in the categories hair growth and bone and nervous system development, possibly because they are involved in adaptation to high-altitude. In particular, we found a large difference in allele frequency of one novel SNP (c.-253G>A) in the 5'-UTR of FGF5 between Cashmere goats and goat breeds with short hair. The mutation at this site introduces a start codon that results in the occurrence of a premature FGF5 protein and is likely a natural causal variant that is involved in the long hair phenotype of cashmere goats. The haplotype tagged with the AGG-allele in exon 12 of DSG3, which encodes a cell adhesion molecule that is expressed mainly in the skin, was almost fixed in Tibetan Cashmere goats, whereas this locus still segregates in the lowland goat breeds. The pigmentation gene KITLG showed a strong signature of selection in Tibetan Cashmere goats. The genes ASIP and LCORL were identified as being under positive selection in Jintang Black goats. CONCLUSIONS After domestication, geographic isolation of some goat breeds has resulted in distinct genetic structures. Furthermore, our work highlights several positively selected genes that likely contributed to breed-related traits in domestic goats.
Collapse
Affiliation(s)
- Jiazhong Guo
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130 China
| | - Jie Zhong
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130 China
| | - Li Li
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130 China
| | - Tao Zhong
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130 China
| | - Linjie Wang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130 China
| | - Tianzeng Song
- Institute of Animal Science, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, 850009 China
| | - Hongping Zhang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130 China
| |
Collapse
|
60
|
Kalds P, Zhou S, Cai B, Liu J, Wang Y, Petersen B, Sonstegard T, Wang X, Chen Y. Sheep and Goat Genome Engineering: From Random Transgenesis to the CRISPR Era. Front Genet 2019; 10:750. [PMID: 31552084 PMCID: PMC6735269 DOI: 10.3389/fgene.2019.00750] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 07/17/2019] [Indexed: 12/16/2022] Open
Abstract
Sheep and goats are valuable livestock species that have been raised for their production of meat, milk, fiber, and other by-products. Due to their suitable size, short gestation period, and abundant secretion of milk, sheep and goats have become important model animals in agricultural, pharmaceutical, and biomedical research. Genome engineering has been widely applied to sheep and goat research. Pronuclear injection and somatic cell nuclear transfer represent the two primary procedures for the generation of genetically modified sheep and goats. Further assisted tools have emerged to enhance the efficiency of genetic modification and to simplify the generation of genetically modified founders. These tools include sperm-mediated gene transfer, viral vectors, RNA interference, recombinases, transposons, and endonucleases. Of these tools, the four classes of site-specific endonucleases (meganucleases, ZFNs, TALENs, and CRISPRs) have attracted wide attention due to their DNA double-strand break-inducing role, which enable desired DNA modifications based on the stimulation of native cellular DNA repair mechanisms. Currently, CRISPR systems dominate the field of genome editing. Gene-edited sheep and goats, generated using these tools, provide valuable models for investigations on gene functions, improving animal breeding, producing pharmaceuticals in milk, improving animal disease resistance, recapitulating human diseases, and providing hosts for the growth of human organs. In addition, more promising derivative tools of CRISPR systems have emerged such as base editors which enable the induction of single-base alterations without any requirements for homology-directed repair or DNA donor. These precise editors are helpful for revealing desirable phenotypes and correcting genetic diseases controlled by single bases. This review highlights the advances of genome engineering in sheep and goats over the past four decades with particular emphasis on the application of CRISPR/Cas9 systems.
Collapse
Affiliation(s)
- Peter Kalds
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
- Department of Animal and Poultry Production, Faculty of Environmental Agricultural Sciences, Arish University, El-Arish, Egypt
| | - Shiwei Zhou
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Bei Cai
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Jiao Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Ying Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Bjoern Petersen
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut, Neustadt, Germany
| | | | - Xiaolong Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Yulin Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| |
Collapse
|
61
|
Li G, Zhou S, Li C, Cai B, Yu H, Ma B, Huang Y, Ding Y, Liu Y, Ding Q, He C, Zhou J, Wang Y, Zhou G, Li Y, Yan Y, Hua J, Petersen B, Jiang Y, Sonstegard T, Huang X, Chen Y, Wang X. Base pair editing in goat: nonsense codon introgression into FGF5 results in longer hair. FEBS J 2019; 286:4675-4692. [PMID: 31276295 DOI: 10.1111/febs.14983] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 04/21/2019] [Accepted: 07/03/2019] [Indexed: 12/26/2022]
Abstract
The ability to alter single bases without homology directed repair (HDR) of double-strand breaks provides a potential solution for editing livestock genomes for economic traits, which are often multigenic. Progress toward multiplex editing in large animals has been hampered by the costly inefficiencies of HDR via microinjection of in vitro manipulated embryos. Here, we designed sgRNAs to induce nonsense codons (C-to-T transitions) at four target sites in caprine FGF5, which is a crucial regulator of hair length in mammals. Initial transfections of the third generation Base Editor (BE3) plasmid and four different sgRNAs into caprine fibroblasts were ineffective in altering FGF5. In contrast, all five progenies produced from microinjected single-cell embryos had alleles with a targeted nonsense mutation. The effectiveness of BE3 to make single base changes varied considerably based on sgRNA design. In addition, the rate of mosaicism differed between animals, target sites, and tissue type. The phenotypic effects on hair fiber were characterized by hematoxylin and eosin, immunofluorescence staining, and western blotting. Differences in morphology were detectable, even though mosaicism was probably affecting the levels of FGF5 expression. PCR amplicon and whole-genome resequencing analyses for off-target changes caused by BE3 were low at a genome-wide scale. This study provided the first evidence of base editing in large mammals produced from microinjected single-cell embryos. Our results support further optimization of BEs for introgressing complex human disease alleles into large animal models, to evaluate potential genetic improvement of complex health and production traits in a single generation.
Collapse
Affiliation(s)
- Guanwei Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Shiwei Zhou
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Chao Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Bei Cai
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Honghao Yu
- College of Biotechnology, Guilin Medical University, China
| | - Baohua Ma
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Yu Huang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Yige Ding
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Yao Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Qiang Ding
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Chong He
- College of Information and Engineering, Northwest A&F University, Yangling, China
| | - Jiankui Zhou
- School of Life Science and Technology, ShanghaiTech University, China
| | - Ying Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Guangxian Zhou
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Yan Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Yuan Yan
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Jinlian Hua
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Bjoern Petersen
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut, Neustadt, Germany
| | - Yu Jiang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | | | - Xingxu Huang
- School of Life Science and Technology, ShanghaiTech University, China
| | - Yulin Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Xiaolong Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| |
Collapse
|
62
|
Gao Y, Jin M, Niu Y, Yan H, Zhou G, Chen Y. CRISPR/Cas9-mediated VDR knockout plays an essential role in the growth of dermal papilla cells through enhanced relative genes. PeerJ 2019; 7:e7230. [PMID: 31309000 PMCID: PMC6612256 DOI: 10.7717/peerj.7230] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 06/01/2019] [Indexed: 11/20/2022] Open
Abstract
Background Hair follicles in cashmere goats are divided into primary and secondary hair follicles (HFs). HF development, which determines the morphological structure, is regulated by a large number of vital genes; however, the key functional genes and their interaction networks are still unclear. Although the vitamin D receptor (VDR) is related to cashmere goat HF formation, its precise effects are largely unknown. In the present study, we verified the functions of key genes identified in previous studies using hair dermal papilla (DP) cells as an experimental model. Furthermore, we used CRISPR/Cas9 technology to modify the VDR in DP cells to dissect the molecular mechanism underlying HF formation in cashmere goats. Results The VDR expression levels in nine tissues of Shaanbei white cashmere goats differed significantly between embryonic day 60 (E60) and embryonic day 120 (E120). At E120, VDR expression was highest in the skin. At the newborn and E120 stages, the VDR protein was highly expressed in the root sheath and hair ball region of Shaanbei cashmere goats. We cloned the complete CDS of VDR in the Shaanbei white cashmere goat and constructed a VDR-deficient DP cell model by CRISPR/Cas9. Heterozygous and homozygous mutant DP cells were produced. The growth rate of mutant DP cells was significantly lower than that of wild-type DP cells (P < 0.05) and VDR mRNA levels in DP cells decreased significantly after VDR knockdown (P < 0.05). Further, the expression levels of VGF, Noggin, Lef1, and β-catenin were significantly downregulated (P < 0.05). Conclusions Our results indicated that VDR has a vital role in DP cells, and that its effects are mediated by Wnt and BMP4 signaling.
Collapse
Affiliation(s)
- Ye Gao
- Department of Neurology, Institute of Brain Science, Medical School, Shanxi Datong University, Datong, China.,Shanxi key Laboratory of Inflammatory Neurodegenerative Disease, Institute of Brain Science, Shanxi Datong University, Datong, China
| | - Miaohan Jin
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Yiyuan Niu
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Hailong Yan
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Guangxian Zhou
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Yulin Chen
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| |
Collapse
|
63
|
Namula Z, Wittayarat M, Hirata M, Hirano T, Nguyen NT, Le QA, Fahrudin M, Tanihara F, Otoi T. Genome mutation after the introduction of the gene editing by electroporation of Cas9 protein (GEEP) system into bovine putative zygotes. In Vitro Cell Dev Biol Anim 2019; 55:598-603. [PMID: 31297696 DOI: 10.1007/s11626-019-00385-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 07/01/2019] [Indexed: 12/21/2022]
Abstract
The present study was designed to investigate the effects of voltage strength on embryonic developmental rate and mutation efficiency in bovine putative zygotes during electroporation with the CRISPR/Cas9 system to target the MSTN gene at different time points after insemination. Results showed that there was no significant interaction between electroporation time and voltage strength on the embryonic cleavage and blastocyst formation rates. However, increasing the voltage strength to 20 V/mm to electroporate the zygotes at 10 h after the start of insemination yielded significantly lower blastocyst formation rates (P < 0.05) than those of the 10-V/mm electroporated zygotes. Mutation efficiency was then assessed in individual blastocysts by DNA sequence analysis of the target sites in the MSTN gene. A positive correlation between mutation rate and voltage strength was observed. The mutation efficiency in mutant blastocysts was significantly higher in the zygotes electroporated with 20 V/mm at 10 h after the start of insemination (P < 0.05) than in the zygotes electroporated at 15 h, irrespective of the voltage strength. We also noted that a certain number of blastocysts from zygotes that were electroporated with more than 15 V/mm at 10 h (4.8-16.7%) and 20 V/mm at 15 h (4.8%) were biallelic mutants. Our results suggest that the voltage strength during electroporation as well as electroporation time certainly have effects on the embryonic developmental rate and mutation efficiency in bovine putative zygotes.
Collapse
Affiliation(s)
- Zhao Namula
- Faculty of Veterinary Science, Guangdong Ocean University, Zhanjiang, China
| | - Manita Wittayarat
- Faculty of Veterinary Science, Prince of Songkla University, Songkhla, Thailand
| | - Maki Hirata
- Faculty of Veterinary Science, Guangdong Ocean University, Zhanjiang, China.,Laboratory of Animal Reproduction, Faculty of Bioscience and Bioindustry, Tokushima University, 2272-1 Ishii, Myozai-gun, Tokushima, 779-3233, Japan
| | - Takayuki Hirano
- Laboratory of Animal Reproduction, Faculty of Bioscience and Bioindustry, Tokushima University, 2272-1 Ishii, Myozai-gun, Tokushima, 779-3233, Japan
| | - Nhien Thi Nguyen
- Laboratory of Animal Reproduction, Faculty of Bioscience and Bioindustry, Tokushima University, 2272-1 Ishii, Myozai-gun, Tokushima, 779-3233, Japan
| | - Quynh Anh Le
- Laboratory of Animal Reproduction, Faculty of Bioscience and Bioindustry, Tokushima University, 2272-1 Ishii, Myozai-gun, Tokushima, 779-3233, Japan
| | - Mokhamad Fahrudin
- Faculty of Veterinary Science, Bogor Agricultural University, Bogor, Indonesia
| | - Fuminori Tanihara
- Faculty of Veterinary Science, Guangdong Ocean University, Zhanjiang, China. .,Laboratory of Animal Reproduction, Faculty of Bioscience and Bioindustry, Tokushima University, 2272-1 Ishii, Myozai-gun, Tokushima, 779-3233, Japan.
| | - Takeshige Otoi
- Faculty of Veterinary Science, Guangdong Ocean University, Zhanjiang, China.,Laboratory of Animal Reproduction, Faculty of Bioscience and Bioindustry, Tokushima University, 2272-1 Ishii, Myozai-gun, Tokushima, 779-3233, Japan
| |
Collapse
|
64
|
Wang L, Ma S, Ding Q, Wang X, Chen Y. CRISPR/Cas9-mediated MSTN gene editing induced mitochondrial alterations in C2C12 myoblast cells. ELECTRON J BIOTECHN 2019. [DOI: 10.1016/j.ejbt.2019.03.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
65
|
Hudson M, Mead ATP, Chagné D, Roskruge N, Morrison S, Wilcox PL, Allan AC. Indigenous Perspectives and Gene Editing in Aotearoa New Zealand. Front Bioeng Biotechnol 2019; 7:70. [PMID: 31032252 PMCID: PMC6470265 DOI: 10.3389/fbioe.2019.00070] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 03/12/2019] [Indexed: 11/13/2022] Open
Abstract
Gene editing is arguably the most significant recent addition to the modern biotechnology toolbox, bringing both profoundly challenging and enabling opportunities. From a technical point of view the specificity and relative simplicity of these new tools has broadened the potential applications. However, from an ethical point of view it has re-ignited the debates generated by earlier forms of genetic modification. In New Zealand gene editing is currently considered genetic modification and is subject to approval processes under the Environmental Protection Authority (EPA). This process requires decision makers to take into account Māori perspectives. This article outlines previously articulated Māori perspectives on genetic modification and considers the continuing influence of those cultural and ethical arguments within the new context of gene editing. It also explores the range of ways cultural values might be used to analyse the risks and benefits of gene editing in the Aotearoa New Zealand context. Methods used to obtain these perspectives consisted of (a) review of relevant literature regarding lessons learned from the responses of Maori to genetic modification, (b) interviews of selected 'key Maori informants' and (c) surveys of self-selected individuals from groups with interests in either genetics or environmental management. The outcomes of this pilot study identified that while Māori informants were not categorically opposed to new and emerging gene editing technologies a priori, they suggest a dynamic approach to regulation is required where specific uses or types of uses are approved on a case by case basis. This study demonstrates how the cultural cues that Māori referenced in the genetic modification debate continue to be relevant in the context of gene editing but that further work is required to characterize the strength of various positions across the broader community.
Collapse
Affiliation(s)
- Maui Hudson
- Faculty of Māori and Indigenous Studies, University of Waikato, Hamilton, New Zealand
| | | | - David Chagné
- Plant and Food Research, Palmerston North, New Zealand
| | - Nick Roskruge
- School of Agriculture and Environment, Massey University, Palmerston North, New Zealand
| | - Sandy Morrison
- Faculty of Māori and Indigenous Studies, University of Waikato, Hamilton, New Zealand
| | - Phillip L Wilcox
- Department of Mathematics and Statistics, University of Otago, Dunedin, New Zealand
| | - Andrew C Allan
- Plant and Food Research, Auckland, New Zealand.,School of Biological Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
66
|
Zhou S, Cai B, He C, Wang Y, Ding Q, Liu J, Liu Y, Ding Y, Zhao X, Li G, Li C, Yu H, Kou Q, Niu W, Petersen B, Sonstegard T, Ma B, Chen Y, Wang X. Programmable Base Editing of the Sheep Genome Revealed No Genome-Wide Off-Target Mutations. Front Genet 2019; 10:215. [PMID: 30930940 PMCID: PMC6428697 DOI: 10.3389/fgene.2019.00215] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 02/27/2019] [Indexed: 12/23/2022] Open
Abstract
Since its emergence, CRISPR/Cas9-mediated base editors (BEs) with cytosine deaminase activity have been used to precisely and efficiently introduce single-base mutations in genomes, including those of human cells, mice, and crop species. Most production traits in livestock are induced by point mutations, and genome editing using BEs without homology-directed repair of double-strand breaks can directly alter single nucleotides. The p.96R > C variant of Suppressor cytokine signaling 2 (SOCS2) has profound effects on body weight, body size, and milk production in sheep. In the present study, we successfully obtained lambs with defined point mutations resulting in a p.96R > C substitution in SOCS2 by the co-injection of BE3 mRNA and a single guide RNA (sgRNA) into sheep zygotes. The observed efficiency of the single nucleotide exchange in newborn animals was as high as 25%. Observations of body size and body weight in the edited group showed that gene modification contributes to enhanced growth traits in sheep. Moreover, targeted deep sequencing and unbiased family trio-based whole genome sequencing revealed undetectable off-target mutations in the edited animals. This study demonstrates the potential for the application of BE-mediated point mutations in large animals for the improvement of production traits in livestock species.
Collapse
Affiliation(s)
- Shiwei Zhou
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Bei Cai
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Chong He
- College of Information Engineering, Northwest A&F University, Yangling, China
| | - Ying Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Qiang Ding
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Jiao Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Yao Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Yige Ding
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Xiaoe Zhao
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Guanwei Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Chao Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Honghao Yu
- Guilin Medical University, Guilin, China
| | - Qifang Kou
- Ningxia Tianyuan Tan Sheep Farm, Hongsibu, China
| | - Wenzhi Niu
- Ningxia Tianyuan Tan Sheep Farm, Hongsibu, China
| | - Bjoern Petersen
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut, Neustadt, Germany
| | | | - Baohua Ma
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Yulin Chen
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Xiaolong Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| |
Collapse
|
67
|
Ferreira de Camargo GM. The role of molecular genetics in livestock production. ANIMAL PRODUCTION SCIENCE 2019. [DOI: 10.1071/an18013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Genetic variations that lead to easy-to-identify phenotypic changes have always been of interest to livestock breeders since domestication. Molecular genetics has opened up possibilities for identifying these variations and understanding their biological and population effects. Moreover, molecular genetics is part of the most diverse approaches and applications in animal production nowadays, including paternity testing, selection based on genetic variants, diagnostic of genetic diseases, reproductive biotechniques, fraud identification, differentiation of hybrids, parasite identification, genetic evaluation, diversity studies, and genome editing, among others. Therefore, the objective of this review was to describe the different applications of molecular genetics in livestock production, contextualising them with examples and highlighting the importance of the study of these topics and their applications.
Collapse
|
68
|
Zhang XX, Ran JS, Lian T, Li ZQ, Yang CW, Jiang XS, Du HR, Cui ZF, Liu YP. THE SINGLE NUCLEOTIDE POLYMORPHISMS OF MYOSTATIN GENE AND THEIR ASSOCIATIONS WITH GROWTH AND CARCASS TRAITS IN DAHENG BROILER. BRAZILIAN JOURNAL OF POULTRY SCIENCE 2019. [DOI: 10.1590/1806-9061-2018-0808] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- XX Zhang
- Sichuan Agricultural University, China
| | - JS Ran
- Sichuan Agricultural University, China
| | - T Lian
- Sichuan Agricultural University, China
| | - ZQ Li
- Sichuan Agricultural University, China
| | - CW Yang
- Sichuan Animal Science Academy, China; Animal Breeding and Genetics key Laboratory of Sichuan Province, China
| | - XS Jiang
- Sichuan Animal Science Academy, China; Animal Breeding and Genetics key Laboratory of Sichuan Province, China
| | - HR Du
- Sichuan Animal Science Academy, China; Animal Breeding and Genetics key Laboratory of Sichuan Province, China
| | - ZF Cui
- Sichuan Agricultural University, China
| | - YP Liu
- Sichuan Agricultural University, China
| |
Collapse
|
69
|
Use of CRISPR/Cas9 technology efficiently targetted goat myostatin through zygotes microinjection resulting in double-muscled phenotype in goats. Biosci Rep 2018; 38:BSR20180742. [PMID: 30201688 PMCID: PMC6239268 DOI: 10.1042/bsr20180742] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Revised: 08/18/2018] [Accepted: 08/21/2018] [Indexed: 12/26/2022] Open
Abstract
Myostatin gene (MSTN) can inhibit the proliferation of myoblast, which in turn promotes muscle growth and inhibits adipocyte differentiation in livestock. MSTN mutation may lead to muscle hypertrophy or double-muscled (DM) phenotype. MSTN mutation animal, such as sheep, dog, and rabbit have been generated through CRISPR/Cas9 technology. However, goats with promising MSTN mutation have not been generated. We designed two sgRNAs loci targetting exon3 of MSTN gene to destroy the MSTN cysteines knots. We got seven goats from seven recipients, in which six were MSTN knocked-out (KO) goats, with a mutation rate of 85.7%. Destroyed cysteine knots caused MSTN structure inactivation. The average body weight gain (BWG) per day of MSTN KO goats was significantly higher than that of wild-type (WT) goats. MSTN KO goats showed abnormal sugar, fat, and protein metabolism compared with wild-type controls (MSTN+/+). Inheritance of mutations was observed in offspring of MSTN KO goats by PCR analysis.
Collapse
|
70
|
Zhou S, Yu H, Zhao X, Cai B, Ding Q, Huang Y, Li Y, Li Y, Niu Y, Lei A, Kou Q, Huang X, Petersen B, Ma B, Chen Y, Wang X. Generation of gene-edited sheep with a defined Booroola fecundity gene (FecB B) mutation in bone morphogenetic protein receptor type 1B (BMPR1B) via clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated (Cas) 9. Reprod Fertil Dev 2018; 30:1616-1621. [PMID: 31039970 DOI: 10.1071/rd18086] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 05/03/2018] [Indexed: 12/15/2022] Open
Abstract
Since its emergence, the clustered regularly interspaced short palindromic repeat (CRISPR)-CRISPR-associated (Cas) 9 system has been increasingly used to generate animals for economically important traits. However, most CRISPR/Cas9 applications have been focused on non-homologous end joining, which results in base deletions and insertions, leading to a functional knockout of the targeted gene. The Booroola fecundity gene (FecBB) mutation (p.Q249R) in bone morphogenetic protein receptor type 1B (BMPR1B) has been demonstrated to exert a profound effect on fecundity in many breeds of sheep. In the present study, we successfully obtained lambs with defined point mutations resulting in a p.249Q>R substitution through the coinjection of Cas9 mRNA, a single guide RNA and single-stranded DNA oligonucleotides into Tan sheep zygotes. In the newborn lambs, the observed efficiency of the single nucleotide exchange was as high as 23.8%. We believe that our findings will contribute to improved reproduction traits in sheep, as well as to the generation of defined point mutations in other large animals.
Collapse
Affiliation(s)
- Shiwei Zhou
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Honghao Yu
- Guilin Medical University, Guilin 541004, China
| | - Xiaoe Zhao
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Bei Cai
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Qiang Ding
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Yu Huang
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Yaxin Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Yan Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Yiyuan Niu
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Anmin Lei
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Qifang Kou
- Ningxia Tianyuan Sheep Farm, Hongsibu, 751999, China
| | - Xingxu Huang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Björn Petersen
- Institute of Farm Animal Genetics, Friedrich Loeffler Institute, Neustadt 31535, Germany
| | - Baohua Ma
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Yulin Chen
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Xiaolong Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| |
Collapse
|
71
|
Li C, Zhou S, Li Y, Li G, Ding Y, Li L, Liu J, Qu L, Sonstegard T, Huang X, Jiang Y, Chen Y, Petersen B, Wang X. Trio-Based Deep Sequencing Reveals a Low Incidence of Off-Target Mutations in the Offspring of Genetically Edited Goats. Front Genet 2018; 9:449. [PMID: 30356875 PMCID: PMC6190895 DOI: 10.3389/fgene.2018.00449] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 09/18/2018] [Indexed: 12/26/2022] Open
Abstract
Unintended off-target mutations induced by CRISPR/Cas9 nucleases may result in unwanted consequences, which will impede the efficient applicability of this technology for genetic improvement. We have recently edited the goat genome through CRISPR/Cas9 by targeting MSTN and FGF5, which increased muscle fiber diameter and hair fiber length, respectively. Using family trio-based sequencing that allow better discrimination of variant origins, we herein generated offspring from edited goats, and sequenced the members of four family trios (gene-edited goats and their offspring) to an average of ∼36.8× coverage. This data was to systematically examined for mutation profiles using a stringent pipeline that comprehensively analyzed the sequence data for de novo single nucleotide variants, indels, and structural variants from the genome. Our results revealed that the incidence of de novo mutations in the offspring was equivalent to normal populations. We further conducted RNA sequencing using muscle and skin tissues from the offspring and control animals, the differentially expressed genes (DEGs) were related to muscle fiber development in muscles, skin development, and immune responses in skin tissues. Furthermore, in contrast to recently reports of Cas9 triggered p53 expression alterations in cultured cells, we provide primary evidence to show that Cas9-mediated genetic modification does not induce apparent p53 expression changes in animal tissues. This work provides adequate molecular evidence to support the reliability of conducting Cas9-mediated genome editing in large animal models for biomedicine and agriculture.
Collapse
Affiliation(s)
- Chao Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Shiwei Zhou
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Yan Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Guanwei Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Yige Ding
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Lan Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Jing Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Lei Qu
- Life Science Research Center, Yulin University, Yulin, China
| | | | - Xingxu Huang
- School of Life Sciences and Technology, ShanghaiTech University, Shanghai, China
| | - Yu Jiang
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Yulin Chen
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Bjoern Petersen
- Institut für Nutztiergenetik, Friedrich-Loeffler-Institut, Neustadt an der Weinstraße, Germany
| | - Xiaolong Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| |
Collapse
|
72
|
Spontaneous severe hypercholesterolemia and atherosclerosis lesions in rabbits with deficiency of low-density lipoprotein receptor (LDLR) on exon 7. EBioMedicine 2018; 36:29-38. [PMID: 30243490 PMCID: PMC6197696 DOI: 10.1016/j.ebiom.2018.09.020] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 09/02/2018] [Accepted: 09/12/2018] [Indexed: 11/20/2022] Open
Abstract
Rabbits (Oryctolagus cuniculus) have been the very frequently used as animal models in the study of human lipid metabolism and atherosclerosis, because they have similar lipoprotein metabolism to humans. Most of hyperlipidemia and atherosclerosis rabbit models are produced by feeding rabbits a high-cholesterol diet. Gene editing or knockout (KO) offered another means of producing rabbit models for study of the metabolism of lipids and lipoproteins. Even so, apolipoprotein (Apo)E KO rabbits must be fed a high-cholesterol diet to induce hyperlipidemia. In this study, we used the CRISPR/Cas9 system anchored exon 7 of low-density lipoprotein receptor (LDLR) in an attempt to generate KO rabbits. We designed two sgRNA sequences located in E7:g.7055-7074 and E7:g.7102-7124 of rabbit LDLR gene, respectively. Seven LDLR-KO founder rabbits were generated, and all of them contained biallelic modifications. Various mutational LDLR amino acid sequences of the 7 founder rabbits were subjected to tertiary structure modeling with SWISS-MODEL, and results showed that the structure of EGF-A domain of each protein differs from the wild-type. All the founder rabbits spontaneously developed hypercholesterolemia and atherosclerosis on a normal chow (NC) diet. Analysis of their plasma lipids and lipoproteins at the age of 12 weeks revealed that all these KO rabbits exhibited markedly increased levels of plasma TC (the highest of which was 1013.15 mg/dl, 20-fold higher than wild-type rabbits), LDL-C (the highest of which was 730.00 mg/dl, 35-fold higher than wild-type rabbits) and TG accompanied by reduced HDL-C levels. Pathological examinations of a founder rabbit showed prominent aortic atherosclerosis lesions and coronary artery atherosclerosis.In conclusion, we have reported the generation LDLR-KO rabbit model for the study of spontaneous hypercholesterolemia and atherosclerosis on a NC diet. The LDLR-KO rabbits should be a useful rabbit model of human familial hypercholesterolemia (FH) for the simulations of human primary hypercholesterolemia and such models would allow more exact research into cardio-cerebrovascular disease.
Collapse
|
73
|
Niu Y, Zhao X, Zhou J, Li Y, Huang Y, Cai B, Liu Y, Ding Q, Zhou S, Zhao J, Zhou G, Ma B, Huang X, Wang X, Chen Y. Efficient generation of goats with defined point mutation (I397V) in GDF9 through CRISPR/Cas9. Reprod Fertil Dev 2018; 30:307-312. [PMID: 28692815 DOI: 10.1071/rd17068] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 06/09/2017] [Indexed: 12/17/2022] Open
Abstract
The recent emergence of the clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated (Cas) 9 system has attracted significant attention for its potential to improve traits of agricultural importance. However, most applications in livestock species to date have depended on aberrant DNA repair to generate frameshifting indels. Whether this genomic engineering technique involving homology-dependent repair (HDR) can be used to introduce defined point mutations has been less explored. Previously, we reported a G→A point mutation (g.231A>G, p.Val397Ile) in the growth differentiation factor 9 (GDF9) gene that has a large effect on the litter size of cashmere goats. In the present study we report that by co-injecting synthesised RNAs and single-stranded oligo deoxynucleotide (ssODN) donor sequences into goat zygotes, we successfully introduced defined point mutations resulting in single amino acid substitutions in the proteins as expected. The efficiency of this precise single-nucleotide substitution in newborn kids was as high as 24% (4/17), indicating that ssODN-directed HDR via zygote injection is efficient at introducing point mutations in the goat genome. The findings of the present study further highlight the complex genome modifications facilitated by the CRISPR/Cas9 system, which is able to introduce defined point mutations. This represents a significant development for the improvement of reproduction traits in goats, as well as for validating the roles of specific nucleotides in functional genetic elements in large animals.
Collapse
Affiliation(s)
- Yiyuan Niu
- College of Animal Science and Technology, Northwest A&F University, #22, Xinong Road, Yangling 712100, China
| | - Xiaoe Zhao
- College of Veterinary Medicine, Northwest A&F University, #22, Xinong Road, Yangling 712100, China
| | - Jiankui Zhou
- School of Life Science and Technology, ShanghaiTech University, #100, Haike Road, Shanghai 201210, China
| | - Yan Li
- College of Animal Science and Technology, Northwest A&F University, #22, Xinong Road, Yangling 712100, China
| | - Yu Huang
- College of Animal Science and Technology, Northwest A&F University, #22, Xinong Road, Yangling 712100, China
| | - Bei Cai
- College of Animal Science and Technology, Northwest A&F University, #22, Xinong Road, Yangling 712100, China
| | - Yutai Liu
- College of Veterinary Medicine, Northwest A&F University, #22, Xinong Road, Yangling 712100, China
| | - Qiang Ding
- College of Animal Science and Technology, Northwest A&F University, #22, Xinong Road, Yangling 712100, China
| | - Shiwei Zhou
- College of Animal Science and Technology, Northwest A&F University, #22, Xinong Road, Yangling 712100, China
| | - Jin Zhao
- College of Animal Science and Technology, Northwest A&F University, #22, Xinong Road, Yangling 712100, China
| | - Guangxian Zhou
- College of Animal Science and Technology, Northwest A&F University, #22, Xinong Road, Yangling 712100, China
| | - Baohua Ma
- College of Veterinary Medicine, Northwest A&F University, #22, Xinong Road, Yangling 712100, China
| | - Xingxu Huang
- School of Life Science and Technology, ShanghaiTech University, #100, Haike Road, Shanghai 201210, China
| | - Xiaolong Wang
- College of Animal Science and Technology, Northwest A&F University, #22, Xinong Road, Yangling 712100, China
| | - Yulin Chen
- College of Animal Science and Technology, Northwest A&F University, #22, Xinong Road, Yangling 712100, China
| |
Collapse
|
74
|
Lamas-Toranzo I, Ramos-Ibeas P, Pericuesta E, Bermejo-Álvarez P. Directions and applications of CRISPR technology in livestock research. Anim Reprod 2018; 15:292-300. [PMID: 34178152 PMCID: PMC8202460 DOI: 10.21451/1984-3143-ar2018-0075] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The ablation (KO) or targeted insertion (KI) of specific genes or sequences has been essential
to test their roles on a particular biological process. Unfortunately, such genome modifications
have been largely limited to the mouse model, as the only way to achieve targeted mutagenesis
in other mammals required from somatic cell nuclear transfer, a time- and resource-consuming
technique. This difficulty has left research in livestock species largely devoided of KO
and targeted KI models, crucial tools to uncover the molecular roots of any physiological
or pathological process. Luckily, the eruption of site-specific endonucleases, and particularly
CRISPR technology, has empowered farm animal scientists to consider projects that could
not develop before. In this sense, the availability of genome modification in livestock species
is meant to change the way research is performed on many fields, switching from descriptive
and correlational approaches to experimental research. In this review we will provide some
guidance about how the genome can be edited by CRISPR and the possible strategies to achieve
KO or KI, paying special attention to an initially overlooked phenomenon: mosaicism. Mosaicism
is produced when the zygote´s genome edition occurs after its DNA has replicated,
and is characterized by the presence of more than two alleles in the same individual, an undesirable
outcome when attempting direct KO generation. Finally, the possible applications on different
fields of livestock research, such as reproduction or infectious diseases are discussed.
Collapse
Affiliation(s)
| | | | - Eva Pericuesta
- Department Reproducción Animal, INIA, 28040 Madrid, Spain
| | | |
Collapse
|
75
|
Polkoff K, Piedrahita JA. The transformational impact of site-specific DNA modifiers on biomedicine and agriculture. Anim Reprod 2018; 15:171-179. [PMID: 34178139 PMCID: PMC8202236 DOI: 10.21451/1984-3143-ar2018-0065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The development of genetically modified livestock has been dependent on incremental technological
advances such as embryo transfer, homologous recombination, and somatic cell nuclear transfer
(SCNT). This development rate has increased exponentially with the advent of targeted gene
modifiers such as zinc finger nucleases, TAL-effector nucleases (TALENs) and clustered
regularly interspaced short palindromic repeats (CRISPR-Cas). CRISPR-Cas based systems
in particular have broad applicability, and have low technical and economic barriers for
their implementation. As a result, they are having, and will continue to have, a transformational
impact in the field of gene editing in domestic animals. With these advances also comes the
responsibility to properly apply this technology so it has a beneficial effect throughout
all levels of society.
Collapse
Affiliation(s)
- Kathryn Polkoff
- Comparative Medicine Institute, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, 27606, USA.,Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, 27606, USA
| | - Jorge A Piedrahita
- Comparative Medicine Institute, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, 27606, USA.,Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, 27606, USA
| |
Collapse
|
76
|
Zhang J, Cui ML, Nie YW, Dai B, Li FR, Liu DJ, Liang H, Cang M. CRISPR/Cas9-mediated specific integration of fat-1 at the goat MSTN locus. FEBS J 2018; 285:2828-2839. [PMID: 29802684 DOI: 10.1111/febs.14520] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 04/30/2018] [Accepted: 05/23/2018] [Indexed: 01/15/2023]
Abstract
Recent advances in understanding the CRISPR/Cas9 system have provided a precise and versatile approach for genome editing in various species. However, no study has reported simultaneous knockout of endogenous genes and site-specific knockin of exogenous genes in large animal models. Using the CRISPR/Cas9 system, this study specifically inserted the fat-1 gene into the goat MSTN locus, thereby achieving simultaneous fat-1 insertion and MSTN mutation. We introduced the Cas9, MSTN knockout small guide RNA and fat-1 knockin vectors into goat fetal fibroblasts by electroporation, and obtained a total of 156 positive clonal cell lines. PCR and sequencing were performed for identification. Of the 156 clonal strains, 40 (25.6%) had simultaneous MSTN knockout and fat-1 insertion at the MSTN locus without drug selection, and 55 (35.25%) and 101 (67.3%) had MSTN mutations and fat-1 insertions, respectively. We generated a site-specific knockin Arbas cashmere goat model using a combination of CRISPR/Cas9 and somatic cell nuclear transfer for the first time. For biosafety, we mainly focused on unmarked and non-resistant gene screening, and point-specific gene editing. The results showed that simultaneous editing of the two genes (simultaneous knockout and knockin) was achieved in large animals, demonstrating that the CRISPR/Cas9 system has the potential to become an important and applicable gene engineering tool in safe animal breeding.
Collapse
Affiliation(s)
- Ju Zhang
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, China
| | - Meng-Lan Cui
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, China
| | - Yong-Wei Nie
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, China
| | - Bai Dai
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, China
| | - Fei-Ran Li
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, China
| | - Dong-Jun Liu
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, China
| | - Hao Liang
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, China
| | - Ming Cang
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, China
| |
Collapse
|
77
|
Menchaca A, dos Santos-Neto PC, Cuadro F, Souza-Neves M, Crispo M. From reproductive technologies to genome editing in small ruminants: an embryo's journey. Anim Reprod 2018; 15:984-995. [PMID: 36249839 PMCID: PMC9536050 DOI: 10.21451/1984-3143-ar2018-0022] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Accepted: 05/03/2018] [Indexed: 11/06/2022] Open
Abstract
The beginning of this century has witnessed great advances in the understanding of ovarian physiology and embryo development, in the improvement of assisted reproductive technologies (ARTs), and in the arrival of the revolutionary genome editing technology through zygote manipulation. Particularly in sheep and goats, the current knowledge on follicular dynamics enables the design of novel strategies for ovarian control, enhancing artificial insemination and embryo production programs applied to genetic improvement. In vitro embryo production (IVEP) has evolved due to a better understanding of the processes that occur during oocyte maturation, fertilization and early embryo development. Moreover, interesting advances have been achieved in embryo and oocyte cryopreservation, thereby reducing the gap between the bench and on-farm application of IVEP technology. Nevertheless, the major breakthrough of this century has been the arrival of the CRISPR/Cas system for genome editing. By joining diverse disciplines such as molecular biology, genetic engineering and reproductive technologies, CRISPR allows the generation of knock-out and knock-in animals in a novel way never achieved before. The innumerable applications of this disruptive biotechnology are challenging the imagination of those who intend to build the animals of the future.
Collapse
Affiliation(s)
- Alejo Menchaca
- Instituto de Reproducción Animal Uruguay (IRAUy), Montevideo, Uruguay
| | | | - Frederico Cuadro
- Instituto de Reproducción Animal Uruguay (IRAUy), Montevideo, Uruguay
| | | | - Martina Crispo
- Unidad de Animales Transgénicos y de Experimentación, Institut Pasteur de Montevideo, Uruguay
| |
Collapse
|
78
|
Wei J, Wagner S, Maclean P, Brophy B, Cole S, Smolenski G, Carlson DF, Fahrenkrug SC, Wells DN, Laible G. Cattle with a precise, zygote-mediated deletion safely eliminate the major milk allergen beta-lactoglobulin. Sci Rep 2018; 8:7661. [PMID: 29769555 PMCID: PMC5955954 DOI: 10.1038/s41598-018-25654-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 04/19/2018] [Indexed: 12/26/2022] Open
Abstract
We applied precise zygote-mediated genome editing to eliminate beta-lactoglobulin (BLG), a major allergen in cows’ milk. To efficiently generate LGB knockout cows, biopsied embryos were screened to transfer only appropriately modified embryos. Transfer of 13 pre-selected embryos into surrogate cows resulted in the birth of three calves, one dying shortly after birth. Deep sequencing results confirmed conversion of the genotype from wild type to the edited nine bp deletion by more than 97% in the two male calves. The third calf, a healthy female, had in addition to the expected nine bp deletion (81%), alleles with an in frame 21 bp deletion (<17%) at the target site. While her milk was free of any mature BLG, we detected low levels of a BLG variant derived from the minor deletion allele. This confirmed that the nine bp deletion genotype completely knocks out production of BLG. In addition, we showed that the LGB knockout animals are free of any TALEN-mediated off-target mutations or vector integration events using an unbiased whole genome analysis. Our study demonstrates the feasibility of generating precisely biallelically edited cattle by zygote-mediated editing for the safe production of hypoallergenic milk.
Collapse
Affiliation(s)
- Jingwei Wei
- AgResearch, Ruakura Research Centre, Hamilton, 3240, New Zealand
| | - Stefan Wagner
- AgResearch, Ruakura Research Centre, Hamilton, 3240, New Zealand.,Rowett Institute, Aberdeen, AB25 2ZD, United Kingdom
| | - Paul Maclean
- AgResearch, Ruakura Research Centre, Hamilton, 3240, New Zealand
| | - Brigid Brophy
- AgResearch, Ruakura Research Centre, Hamilton, 3240, New Zealand
| | - Sally Cole
- AgResearch, Ruakura Research Centre, Hamilton, 3240, New Zealand
| | - Grant Smolenski
- AgResearch, Ruakura Research Centre, Hamilton, 3240, New Zealand.,MS3 Solutions Ltd., Ruakura Research Centre, Hamilton, 3240, New Zealand
| | | | | | - David N Wells
- AgResearch, Ruakura Research Centre, Hamilton, 3240, New Zealand
| | - Götz Laible
- AgResearch, Ruakura Research Centre, Hamilton, 3240, New Zealand.
| |
Collapse
|
79
|
Huang L, Hua Z, Xiao H, Cheng Y, Xu K, Gao Q, Xia Y, Liu Y, Zhang X, Zheng X, Mu Y, Li K. CRISPR/Cas9-mediated ApoE-/- and LDLR-/- double gene knockout in pigs elevates serum LDL-C and TC levels. Oncotarget 2018; 8:37751-37760. [PMID: 28465483 PMCID: PMC5514946 DOI: 10.18632/oncotarget.17154] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 03/28/2017] [Indexed: 12/13/2022] Open
Abstract
The traditional method to establish a cardiovascular disease model induced by high fat and high cholesterol diets is time consuming and laborious and may not be appropriate in all circumstances. A suitable pig model to study metabolic disorders and subsequent atherosclerosis is not currently available. For this purpose, we applied the CRISPR/Cas9 system to Bama minipigs, targeting apolipoprotein E (ApoE) and low density lipoprotein receptor (LDLR) gene simultaneously. Six biallelic knockout pigs of these two genes were obtained successfully in a single step. No off-target incidents or mosaic mutations were detected by an unbiased analysis. Serum biochemical analyses of gene-modified piglets showed that the levels of low density lipoprotein choleserol (LDL-C), total cholesterol (TC) and apolipoprotein B (APOB) were elevated significantly. This model should prove valuable for the study of human cardiovascular disease and related translational research.
Collapse
Affiliation(s)
- Lei Huang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China.,Animal Functional Genomics Group, Agricultural Genomes Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Zaidong Hua
- Hubei Key Laboratory of Animal Embryo Engineering and Molecular Breeding, Institute of Animal Science and Veterinary Medicine, Hubei Academy of Agricultural Science, Wuhan 430064, China
| | - Hongwei Xiao
- Hubei Key Laboratory of Animal Embryo Engineering and Molecular Breeding, Institute of Animal Science and Veterinary Medicine, Hubei Academy of Agricultural Science, Wuhan 430064, China
| | - Ying Cheng
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Kui Xu
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Qian Gao
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Ying Xia
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yang Liu
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xue Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xinming Zheng
- Hubei Key Laboratory of Animal Embryo Engineering and Molecular Breeding, Institute of Animal Science and Veterinary Medicine, Hubei Academy of Agricultural Science, Wuhan 430064, China
| | - Yulian Mu
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Kui Li
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
80
|
Abstract
Prokaryotic type II adaptive immune systems have been developed into the versatile CRISPR technology, which has been widely applied in site-specific genome editing and has revolutionized biomedical research due to its superior efficiency and flexibility. Recent studies have greatly diversified CRISPR technologies by coupling it with various DNA repair mechanisms and targeting strategies. These new advances have significantly expanded the generation of genetically modified animal models, either by including species in which targeted genetic modification could not be achieved previously, or through introducing complex genetic modifications that take multiple steps and cost years to achieve using traditional methods. Herein, we review the recent developments and applications of CRISPR-based technology in generating various animal models, and discuss the everlasting impact of this new progress on biomedical research.
Collapse
Affiliation(s)
- Xun Ma
- Key Laboratory for Regenerative Medicine in Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China.
| | - Avery Sum-Yu Wong
- Key Laboratory for Regenerative Medicine in Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China.
| | - Hei-Yin Tam
- Key Laboratory for Regenerative Medicine in Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China.
| | - Samuel Yung-Kin Tsui
- Key Laboratory for Regenerative Medicine in Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China.
| | - Dittman Lai-Shun Chung
- Key Laboratory for Regenerative Medicine in Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China.
| | - Bo Feng
- Key Laboratory for Regenerative Medicine in Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China. .,Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Guangdong 510530, China.,SBS Core Laboratory, CUHK Shenzhen Research Institute, Shenzhen Guangdong 518057, China
| |
Collapse
|
81
|
Malpotra S, Vats A, Kumar S, Gautam D, De S. Generation of Genomic Deletions (of Rig-I GENE) in Goat Primary Cell Culture Using CRISPR/CAS9 Method. Anim Biotechnol 2018; 29:142-152. [PMID: 28662369 DOI: 10.1080/10495398.2017.1331915] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
CRISPR/Cas9 system is a natural immune system in prokaryotes protecting them from infectious viral or plasmid DNA invading the cells. This RNA-guided system can act as powerful tool for introducing genomic alterations in eukaryotic cells with high efficiency. In the present study, Rig-Igene is taken as model gene to study the efficiency of CRISPR/Cas9 system induced gene deletion in primary fibroblast cell culture. Rig-I(retinoic acid-inducible gene-1) is involved in regulating immune response in mammals. In this study, we optimized the CRISPR/Cas9 method for knocking out Rig-Igene in Goat primary fibroblasts by using a NHEJ pathway. Cells were screened for inactivation of the Rig-Igene and two positive clones were found out of thirty colonies screened. Thus, cells containing Rig-Igene inactivation could be achieved by CRISPR/Cas9 in goat fibroblast cells.
Collapse
Affiliation(s)
- Shivani Malpotra
- a Animal Genomics Lab, Animal Biotechnology Centre , National Dairy Research Institute , Karnal , Haryana , India
| | - Ashutosh Vats
- a Animal Genomics Lab, Animal Biotechnology Centre , National Dairy Research Institute , Karnal , Haryana , India
| | - Sushil Kumar
- a Animal Genomics Lab, Animal Biotechnology Centre , National Dairy Research Institute , Karnal , Haryana , India
| | - Devika Gautam
- a Animal Genomics Lab, Animal Biotechnology Centre , National Dairy Research Institute , Karnal , Haryana , India
| | - Sachinandan De
- a Animal Genomics Lab, Animal Biotechnology Centre , National Dairy Research Institute , Karnal , Haryana , India
| |
Collapse
|
82
|
Hao F, Yan W, Li X, Wang H, Wang Y, Hu X, Liu X, Liang H, Liu D. Generation of Cashmere Goats Carrying an EDAR Gene Mutant Using CRISPR-Cas9-Mediated Genome Editing. Int J Biol Sci 2018; 14:427-436. [PMID: 29725264 PMCID: PMC5930475 DOI: 10.7150/ijbs.23890] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 02/25/2018] [Indexed: 12/19/2022] Open
Abstract
In recent years, while the use of the clustered regularly interspaced short palindromic repeat (CRISPR)-CRISPR-associated protein 9 (Cas9) (CRISPR-Cas9) system for targeted genome editing has become a research hotspot, it has, to date, not proved adequate for genome editing in large mammals, such as goats. In this study, two opposite single-guide RNAs (sgRNAs) were designed for complete EDAR gene targeting in Cashmere goats, and co-transfected with a plasmid encoding Cas9 into goat fibroblasts. Among the 89 cell lines obtained through the cultivation of clonal cell lines, 62 were positive for EDAR gene targeting. Nine types of mutations were identified by sequencing analysis, and the mutation efficiency was 69.7%. Using one of these cell lines, EDAR gene-targeted Cashmere goat embryos were prepared by somatic cell cloning. Developed embryos were transferred to 79 Cashmere goat recipients, and, after a gestation period of five months six male EDAR gene-targeted Cashmere goats were born. Although only two of these goats survived, they had abnormal primary hair follicles and no hair on the top of their heads, which are the distinctive features of the EDAR gene-targeted Cashmere goats. Thus, this study provides a valuable animal model for future studies on EDAR gene-related phenotypes and hair follicle growth and development and shows that the CRISPR-Cas9 system can be used to edit genes in large mammals.
Collapse
Affiliation(s)
- Fei Hao
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, 010070, P. R. China.,Wulanchabu Academy of Agricultural and Animal Husbandry Sciences, Wulanchabu, 012000, P. R. China
| | - Wei Yan
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, 010070, P. R. China
| | - Xiaocong Li
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, 010070, P. R. China
| | - Hui Wang
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, 010070, P. R. China
| | - Yingmin Wang
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, 010070, P. R. China
| | - Xiao Hu
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, 010070, P. R. China
| | - Xu Liu
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, 010070, P. R. China
| | - Hao Liang
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, 010070, P. R. China
| | - Dongjun Liu
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, 010070, P. R. China
| |
Collapse
|
83
|
Petersen B. Basics of genome editing technology and its application in livestock species. Reprod Domest Anim 2018; 52 Suppl 3:4-13. [PMID: 28815851 DOI: 10.1111/rda.13012] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In the last decade, the research community has witnessed a blooming of targeted genome editing tools and applications. Novel programmable DNA nucleases such as zinc finger nucleases (ZFNs), transcription activator-like endonucleases (TALENs) and the clustered regularly interspaced short palindromic repeats/Cas9 system (CRISPR/Cas9) possess long recognition sites and are capable of cutting DNA in a very specific manner. These DNA nucleases mediate targeted genetic alterations by enhancing the DNA mutation rate via induction of double-strand breaks at a predetermined genomic site. Compared to conventional homologous recombination-based gene targeting, DNA nucleases, also referred to as Genome Editors (GEs), can increase the targeting rate around 10,000- to 100,000-fold. The successful application of different GEs has been shown in a myriad of different organisms, including insects, amphibians, plants, nematodes and several mammalian species, including human cells and embryos. In contrast to all other DNA nucleases, that rely on protein-DNA binding, CRISPR/Cas9 uses RNA to establish a specific binding of its DNA nuclease. Besides its capability to facilitate multiplexed genomic modifications in one shot, the CRISPR/Cas is much easier to design compared to all other DNA nucleases. Current results indicate that any DNA nuclease can be successfully employed in a broad range of organisms which renders them useful for improving the understanding of complex physiological systems such as reproduction, producing transgenic animals, including creating large animal models for human diseases, creating specific cell lines, and plants, and even for treating human genetic diseases. This review provides an update on DNA nucleases, their underlying mechanism and focuses on their application to edit the genome of livestock species.
Collapse
Affiliation(s)
- Bjoern Petersen
- Friedrich-Loeffler-Institut, Institute of Farm Animal Genetics, Neustadt am Rbge, Germany
| |
Collapse
|
84
|
Single step production of Cas9 mRNA for zygote injection. Biotechniques 2018; 64:118-124. [PMID: 29570443 DOI: 10.2144/btn-2017-0116] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 02/19/2018] [Indexed: 12/27/2022] Open
Abstract
Production of Cas9 mRNA in vitro typically requires the addition of a 5´ cap and 3´ polyadenylation. A plasmid was constructed that harbored the T7 promoter followed by the EMCV IRES and a Cas9 coding region. We hypothesized that the use of the metastasis associated lung adenocarcinoma transcript 1 (Malat1) triplex structure downstream of an IRES/Cas9 expression cassette would make polyadenylation of in vitro produced mRNA unnecessary. A sequence from the mMalat1 gene was cloned downstream of the IRES/Cas9 cassette described above. An mRNA concentration curve was constructed with either commercially available Cas9 mRNA or the IRES/ Cas9/triplex, by injection into porcine zygotes. Blastocysts were genotyped to determine if differences existed in the percent of embryos modified. The concentration curve identified differences due to concentration and RNA type injected. Single step production of Cas9 mRNA provides an alternative source of Cas9 for use in zygote injections.
Collapse
|
85
|
Ahmad G, Amiji M. Use of CRISPR/Cas9 gene-editing tools for developing models in drug discovery. Drug Discov Today 2018; 23:519-533. [DOI: 10.1016/j.drudis.2018.01.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 11/09/2017] [Accepted: 01/04/2018] [Indexed: 12/20/2022]
|
86
|
Yu H, Long W, Zhang X, Xu K, Guo J, Zhao H, Li H, Qing Y, Pan W, Jia B, Zhao HY, Huang X, Wei HJ. Generation of GHR-modified pigs as Laron syndrome models via a dual-sgRNAs/Cas9 system and somatic cell nuclear transfer. J Transl Med 2018; 16:41. [PMID: 29482569 PMCID: PMC5828148 DOI: 10.1186/s12967-018-1409-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Accepted: 02/14/2018] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Laron syndrome is an autosomal disease resulting from mutations in the growth hormone receptor (GHR) gene. The only therapeutic treatment for Laron syndrome is recombinant insulin-like growth factor I (IGF-I), which has been shown to have various side effects. The improved Laron syndrome models are important for better understanding the pathogenesis of the disease and developing corresponding therapeutics. Pigs have become attractive biomedical models for human condition due to similarities in anatomy, physiology, and metabolism relative to humans, which could serve as an appropriate model for Laron syndrome. METHODS To further improve the GHR knockout (GHRKO) efficiency and explore the feasibility of precise DNA deletion at targeted sites, the dual-sgRNAs/Cas9 system was designed to target GHR exon 3 in pig fetal fibroblasts (PFFs). The vectors encoding sgRNAs and Cas9 were co-transfected into PFFs by electroporation and GHRKO cell lines were established by single cell cloning culture. Two biallelic knockout cell lines were selected as the donor cell line for somatic cell nuclear transfer for the generation of GHRKO pigs. The genotype of colonies, cloned fetuses and piglets were identified by T7 endonuclease I (T7ENI) assay and sequencing. The GHR expression in the fibroblasts and piglets was analyzed by confocal microscopy, quantitative polymerase chain reaction (q-PCR), western blotting (WB) and immunohistochemical (IHC) staining. The phenotype of GHRKO pigs was recapitulated through level detection of IGF-I and glucose, and measurement of body weight and body size. GHRKO F1 generation were generated by crossing with wild-type pigs, and their genotype was detected by T7ENI assay and sequencing. GHRKO F2 generation was obtained via self-cross of GHRKO F1 pigs. Their genotypes of GHRKO F2 generation was also detected by Sanger sequencing. RESULTS In total, 19 of 20 single-cell colonies exhibited biallelic modified GHR (95%), and the efficiency of DNA deletion mediated by dual-sgRNAs/Cas9 was as high as 90% in 40 GHR alleles of 20 single-cell colonies. Two types of GHR allelic single-cell colonies (GHR-47/-1, GHR-47/-46) were selected as donor cells for the generation of GHRKO pigs. The reconstructed embryos were transferred into 15 recipient gilts, resulting in 15 GHRKO newborn piglets and 2 fetuses. The GHRKO pigs exhibited slow growth rates and small body sizes. From birth to 13 months old, the average body weight of wild-type pigs varied from 0.6 to 89.5 kg, but that of GHRKO pigs varied from only 0.9 to 37.0 kg. Biochemically, the knockout pigs exhibited decreased serum levels of IGF-I and glucose. Furthermore, the GHRKO pigs had normal reproduction ability, as eighteen GHRKO F1 piglets were obtained via mating a GHRKO pig with wild-type pigs and five GHRKO F2 piglets were obtained by self-cross of F1 generation, indicating that modified GHR alleles can pass to the next generation via germline transmission. CONCLUSION The dual-sgRNAs/Cas9 is a reliable system for DNA deletion and that GHRKO pigs conform to typical phenotypes of those observed in Laron patients, suggesting that these pigs could serve as an appropriate model for Laron syndrome.
Collapse
Affiliation(s)
- Honghao Yu
- School of Life Science and Technology, ShanghaiTech University, 100 Haike Rd., Pudong New Area, Shanghai, 201210 China
- College of Biotechnology, Guilin Medical University, Guilin, 541100 China
| | - Weihu Long
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201 China
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201 China
| | - Xuezeng Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201 China
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201 China
| | - Kaixiang Xu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201 China
| | - Jianxiong Guo
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201 China
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201 China
| | - Heng Zhao
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201 China
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201 China
| | - Honghui Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201 China
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201 China
| | - Yubo Qing
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201 China
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201 China
| | - Weirong Pan
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201 China
| | - Baoyu Jia
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201 China
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201 China
| | - Hong-Ye Zhao
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201 China
| | - Xingxu Huang
- School of Life Science and Technology, ShanghaiTech University, 100 Haike Rd., Pudong New Area, Shanghai, 201210 China
| | - Hong-Jiang Wei
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201 China
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, 650201 China
| |
Collapse
|
87
|
Wang X, Niu Y, Zhou J, Zhu H, Ma B, Yu H, Yan H, Hua J, Huang X, Qu L, Chen Y. CRISPR/Cas9-mediatedMSTNdisruption and heritable mutagenesis in goats causes increased body mass. Anim Genet 2018; 49:43-51. [DOI: 10.1111/age.12626] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/09/2017] [Indexed: 12/16/2022]
Affiliation(s)
- X. Wang
- College of Animal Science and Technology; Northwest A&F University; Yangling 712100 China
| | - Y. Niu
- College of Animal Science and Technology; Northwest A&F University; Yangling 712100 China
| | - J. Zhou
- School of Life Science and Technology; ShanghaiTech University; Shanghai 201210 China
| | - H. Zhu
- Shaanxi Provincial Engineering and Technology Research Center of Cashmere Goats; Yulin 719000 China
- Life Science Research Center; Yulin University; Yulin 719000 China
| | - B. Ma
- College of Veterinary Medicine; Shaanxi Centre of Stem Cells Engineering & Technology; Northwest A&F University; Yangling 712100 China
| | - H. Yu
- Shaanxi Provincial Engineering and Technology Research Center of Cashmere Goats; Yulin 719000 China
- Life Science Research Center; Yulin University; Yulin 719000 China
| | - H. Yan
- College of Animal Science and Technology; Northwest A&F University; Yangling 712100 China
- Shaanxi Provincial Engineering and Technology Research Center of Cashmere Goats; Yulin 719000 China
- Life Science Research Center; Yulin University; Yulin 719000 China
| | - J. Hua
- College of Veterinary Medicine; Shaanxi Centre of Stem Cells Engineering & Technology; Northwest A&F University; Yangling 712100 China
| | - X. Huang
- School of Life Science and Technology; ShanghaiTech University; Shanghai 201210 China
| | - L. Qu
- Shaanxi Provincial Engineering and Technology Research Center of Cashmere Goats; Yulin 719000 China
- Life Science Research Center; Yulin University; Yulin 719000 China
| | - Y. Chen
- College of Animal Science and Technology; Northwest A&F University; Yangling 712100 China
| |
Collapse
|
88
|
Abstract
The performance of the molecular tool using CRISPR-Cas9, which makes it possible to induce targeted modifications of the DNA, has found numerous applications in research and open promising prospects in human clinic. CRISPR-Cas9 has been widely used to generate transgenic animals after targeted modification of the genome at the zygotic stage. It was also tested on human embryos on an experimental basis. Although there are potential medical indications that may justify a targeted modification of the embryo or germ cell genome, the uncertainties regarding the efficacy and safety of the method do not allow us to consider implementing such germline gene therapy in the short-term. However, it is necessary to weigh the scientific and ethical issues involved in this approach.
Collapse
Affiliation(s)
- Pierre Jouannet
- Université Paris Descartes, 12 Rue de l'École de Médecine, 75006 Paris, France
| |
Collapse
|
89
|
Hu R, Fan ZY, Wang BY, Deng SL, Zhang XS, Zhang JL, Han HB, Lian ZX. RAPID COMMUNICATION: Generation of FGF5 knockout sheep via the CRISPR/Cas9 system. J Anim Sci 2018; 95:2019-2024. [PMID: 28727005 DOI: 10.2527/jas.2017.1503] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Sheep are an important source of fiber production. Fibroblast growth factor 5 (FGF5) is a dominant inhibitor of length of the anagen phase of the hair cycle. Knockout or silencing of the gene results in a wooly coat in mice, donkeys, dogs, and rabbits. In sheep breeding, wool length is one of the most important wool quality traits. However, traditional breeding cannot accurately and efficiently mediate an advanced genotype into the sheep genome. In this study, we generated 3 knockout sheep via the 1-step clustered regularly interspaced short palindromic repeat (CRISPR)/Cas9 system. Sequencing analysis confirmed that mutations in the gene existed in all germ lines of 3 founders: besides the intact sequence, 3 kinds of deletions in the gene (including 5, 13, and 33 bp) were detected. The changes in the primary and senior structure of the FGF5 protein due to the 3 deletions in founders suggested that the FGF5 protein was dysfunctional. In addition, the expression level of intact mRNA in heterozygous individuals decreased compared with the wild types ( < 0.01). Functionally, we discovered that wool length in founders was significantly longer than in wild types ( < 0.05). Collectively, the knockout sheep with the longer wool length phenotype will provide an efficient way for fast genetic improvement of sheep breeding and promote the development of wool industry.
Collapse
|
90
|
Wang L, Cai B, Zhou S, Zhu H, Qu L, Wang X, Chen Y. RNA-seq reveals transcriptome changes in goats following myostatin gene knockout. PLoS One 2017; 12:e0187966. [PMID: 29228005 PMCID: PMC5724853 DOI: 10.1371/journal.pone.0187966] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Accepted: 10/30/2017] [Indexed: 12/17/2022] Open
Abstract
Myostatin (MSTN) is a powerful negative regulator of skeletal muscle mass in mammalian species that is primarily expressed in skeletal muscles, and mutations of its encoding gene can result in the double-muscling trait. In this study, the CRISPR/Cas9 technique was used to edit MSTN in Shaanbei Cashmere goats and generate knockout animals. RNA sequencing was used to determine and compare the transcriptome profiles of the muscles from three wild-type (WT) goats, three fibroblast growth factor 5 (FGF5) knockout goats (FGF5+/- group) and three goats with disrupted expression of both the FGF5 and MSTN genes (FM+/- group). The sequence reads were obtained using the Illumina HiSeq 2000 system and mapped to the Capra hircus reference genome using TopHat (v2.0.9). In total, 68.93, 62.04 and 66.26 million clean sequencing reads were obtained from the WT, FM+/- and FGF5+/- groups, respectively. There were 201 differentially expressed genes (DEGs) between the WT and FGF5+/- groups, with 86 down- and 115 up-regulated genes in the FGF5+/- group. Between the WT and FM+/- groups, 121 DEGs were identified, including 81 down- and 40 up-regulated genes in the FM+/- group. A total of 198 DEGs were detected between the FGF5+/- group and FM+/- group, with 128 down- and 70 up-regulated genes in the FM+/- group. At the transcriptome level, we found substantial changes in genes involved in fatty acid metabolism and the biosynthesis of unsaturated fatty acids, such as stearoyl-CoA dehydrogenase, 3-hydroxyacyl-CoA dehydratase 2, ELOVL fatty acid elongase 6 and fatty acid synthase, suggesting that the expression levels of these genes may be directly regulated by MSTN and that these genes are likely downstream targets of MSTN with potential roles in lipid metabolism in goats. Moreover, five randomly selected DEGs were further validated with qRT-PCR, and the results were consistent with the transcriptome analysis. The present study provides insight into the unique transcriptome profile of the MSTN knockout goat, which is a valuable resource for studying goat genomics.
Collapse
Affiliation(s)
- Lamei Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Bei Cai
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Shiwei Zhou
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Haijing Zhu
- Shaanxi Provincial Engineering and Technology Research Center of Cashmere Goats, Yulin, China
- Life Science Research Center, Yulin University, Yulin, China
| | - Lei Qu
- Shaanxi Provincial Engineering and Technology Research Center of Cashmere Goats, Yulin, China
- Life Science Research Center, Yulin University, Yulin, China
| | - Xiaolong Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Yulin Chen
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| |
Collapse
|
91
|
Salamone DF, Canel NG, Rodríguez MB. Intracytoplasmic sperm injection in domestic and wild mammals. Reproduction 2017; 154:F111-F124. [PMID: 29196493 DOI: 10.1530/rep-17-0357] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 11/21/2017] [Accepted: 12/01/2017] [Indexed: 11/08/2022]
Abstract
Intracytoplasmic sperm injection (ICSI) has become a useful technique for clinical applications in the horse-breeding industry. However, both ICSI blastocyst and offspring production continues to be limited for most farm and wild species. This article reviews technical differences of ICSI performance among species, possible biological and methodological reasons for the variable efficiency and potential strategies to improve the outcomes. One of the major applications of ICSI in animal production is the reproduction of high-value specimens. Unfortunately, some domestic species like the bovine show low rates of pronuclei formation after sperm injection, which led to the development of various artificial activation protocols and sperm pre-treatments that are discussed in this article. The impact of ICSI technique on equine breeding programs is considered in detail, since in contrast to other species, its use for elite horse reproduction has increased in recent years. ICSI has also been used to produce genetically modified animals; however, despite numerous attempts in several domestic species, only transgenic pigs have been consistently produced. Finally, the ICSI is a promising tool for genetic rescue of endangered and wild species. In conclusion, while ICSI has become a consistent ART for some species, it needs further development for others. The low results obtained for some domestic species, the high training needed and the equipment required have limited this technique to the production of elite specimens or for research purposes.
Collapse
Affiliation(s)
- Daniel F Salamone
- Laboratorio de Biotecnologia Animal, Facultad de Agronomia, Universidad de Buenos Aires-CONICETBuenos Aires, Argentina
| | - Natalia G Canel
- Laboratorio de Biotecnologia Animal, Facultad de Agronomia, Universidad de Buenos Aires-CONICETBuenos Aires, Argentina
| | - María Belén Rodríguez
- Laboratorio de Biotecnologia Animal, Facultad de Agronomia, Universidad de Buenos Aires-CONICETBuenos Aires, Argentina
| |
Collapse
|
92
|
Genome editing in livestock: Are we ready for a revolution in animal breeding industry? Transgenic Res 2017; 26:715-726. [DOI: 10.1007/s11248-017-0049-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Accepted: 10/24/2017] [Indexed: 12/25/2022]
|
93
|
Lamas-Toranzo I, Guerrero-Sánchez J, Miralles-Bover H, Alegre-Cid G, Pericuesta E, Bermejo-Álvarez P. CRISPR is knocking on barn door. Reprod Domest Anim 2017; 52 Suppl 4:39-47. [DOI: 10.1111/rda.13047] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
| | | | | | - G Alegre-Cid
- Departamento de Reproducción Animal; INIA; Madrid Spain
| | - E Pericuesta
- Departamento de Reproducción Animal; INIA; Madrid Spain
| | | |
Collapse
|
94
|
Zhou W, Wan Y, Guo R, Deng M, Deng K, Wang Z, Zhang Y, Wang F. Generation of beta-lactoglobulin knock-out goats using CRISPR/Cas9. PLoS One 2017; 12:e0186056. [PMID: 29016691 PMCID: PMC5634636 DOI: 10.1371/journal.pone.0186056] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 09/25/2017] [Indexed: 12/12/2022] Open
Abstract
Goat's milk, considered a substitute for cow's milk, has a high nutritional value. However, goat's milk contains various allergens, predominantly β-lactoglobulin (BLG). In this study, we employed the CRISPR/Cas9 system to target the BLG locus in goat fibroblasts for sgRNA optimization and generate BLG knock-out goats through co-injection of Cas9 mRNA and small guide RNAs (sgRNAs) into goat embryos at the one-cell stage. We firstly tested sgRNA editing efficiencies in goat fibroblast cells, and approximately 8.00%-9.09% of the cells were modified in single sgRNA-guided targeting experiment. Among the kids, the genome-targeting efficiencies of single sgRNA were 12.5% (10 ng/μL sg1) and 0% (10 ng/μL sg2) and efficiencies of dual sgRNAs were 25.0% (25 ng/μL sg2+sg3 group) and 28.6% (50 ng/μL sg2+sg3 group). Relative expression of BLG in BLG knock-out goat mammary glands significantly (p < 0.01) decreased as well as other milk protein coding genes, such as CSN1S1, CSN1S2, CSN2, CSN3 and LALBA (p < 0.05). As expected, BLG protein had been abolished in the milk of the BLG knock-out goat. In addition, most of the targeted kids were chimeric (3/4), and their various body tissues were edited simultaneously. Our study thus provides a basis for optimizing the quality of goat milk, which can be applied to biomedical and agricultural research.
Collapse
Affiliation(s)
- Wenjun Zhou
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing, Jiangsu, PR, China
| | - Yongjie Wan
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing, Jiangsu, PR, China
| | - Rihong Guo
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing, Jiangsu, PR, China
| | - Mingtian Deng
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing, Jiangsu, PR, China
| | - Kaiping Deng
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing, Jiangsu, PR, China
| | - Zhen Wang
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing, Jiangsu, PR, China
| | - Yanli Zhang
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing, Jiangsu, PR, China
| | - Feng Wang
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing, Jiangsu, PR, China
| |
Collapse
|
95
|
Zhang X, Li W, Liu C, Peng X, Lin J, He S, Li X, Han B, Zhang N, Wu Y, Chen L, Wang L, MaYila, Huang J, Liu M. Alteration of sheep coat color pattern by disruption of ASIP gene via CRISPR Cas9. Sci Rep 2017; 7:8149. [PMID: 28811591 PMCID: PMC5557758 DOI: 10.1038/s41598-017-08636-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 07/14/2017] [Indexed: 11/30/2022] Open
Abstract
Coat color is an important characteristic and economic trait in domestic sheep. Aiming at alteration of Chinese merino sheep coat color by genome manipulation, we disrupted sheep agouti signaling protein gene by CRISPR/Cas9. A total of seven indels were identified in 5 of 6 born lambs. Each targeted lamb happened at least two kinds of modifications, and targeted lambs with multiple modifications displayed variety of coat color patterns. Three lambs with 4 bp deletion showed badgerface with black body coat color in two lambs, and brown coat color with light ventral pigmentation in another one. The black-white spotted color was observed in two lambs with 2 bp deletion. Further analysis unraveled that modifications happened in one or more than two copies of ASIP gene, and moreover, the additional spontaneous mutations of D9 and/or D5 preceding the targeting modification could also involve the formation of coat color patterns. Taken together, the entanglement of ASIP modifications by CRISPR/Cas9, spontaneous D9/D5 mutations, and ASIP gene duplications contributed to the variety of coat color patterns in targeted lambs.
Collapse
Affiliation(s)
- Xuemei Zhang
- Key Laboratory of Genetics, Breeding and Reproduction of Grass-Feeding Livestock, Ministry of Agriculture(MOA), Key Laboratory of Animal Biotechnology of Xinjiang, Urumqi, Xinjiang, 830026, China
- Institute of Animal Biotechnology, Xinjiang Academy of Animal Science, Urumqi, Xinjiang, 830026, China
| | - Wenrong Li
- Key Laboratory of Genetics, Breeding and Reproduction of Grass-Feeding Livestock, Ministry of Agriculture(MOA), Key Laboratory of Animal Biotechnology of Xinjiang, Urumqi, Xinjiang, 830026, China
- Institute of Animal Biotechnology, Xinjiang Academy of Animal Science, Urumqi, Xinjiang, 830026, China
| | - Chenxi Liu
- Key Laboratory of Genetics, Breeding and Reproduction of Grass-Feeding Livestock, Ministry of Agriculture(MOA), Key Laboratory of Animal Biotechnology of Xinjiang, Urumqi, Xinjiang, 830026, China
- Institute of Animal Biotechnology, Xinjiang Academy of Animal Science, Urumqi, Xinjiang, 830026, China
| | - Xinrong Peng
- Key Laboratory of Genetics, Breeding and Reproduction of Grass-Feeding Livestock, Ministry of Agriculture(MOA), Key Laboratory of Animal Biotechnology of Xinjiang, Urumqi, Xinjiang, 830026, China
- Institute of Animal Biotechnology, Xinjiang Academy of Animal Science, Urumqi, Xinjiang, 830026, China
| | - Jiapeng Lin
- Key Laboratory of Genetics, Breeding and Reproduction of Grass-Feeding Livestock, Ministry of Agriculture(MOA), Key Laboratory of Animal Biotechnology of Xinjiang, Urumqi, Xinjiang, 830026, China
- Institute of Animal Biotechnology, Xinjiang Academy of Animal Science, Urumqi, Xinjiang, 830026, China
| | - Sangang He
- Key Laboratory of Genetics, Breeding and Reproduction of Grass-Feeding Livestock, Ministry of Agriculture(MOA), Key Laboratory of Animal Biotechnology of Xinjiang, Urumqi, Xinjiang, 830026, China
- Institute of Animal Biotechnology, Xinjiang Academy of Animal Science, Urumqi, Xinjiang, 830026, China
| | - Xuejiao Li
- Key Laboratory of Genetics, Breeding and Reproduction of Grass-Feeding Livestock, Ministry of Agriculture(MOA), Key Laboratory of Animal Biotechnology of Xinjiang, Urumqi, Xinjiang, 830026, China
- Institute of Animal Biotechnology, Xinjiang Academy of Animal Science, Urumqi, Xinjiang, 830026, China
| | - Bing Han
- Key Laboratory of Genetics, Breeding and Reproduction of Grass-Feeding Livestock, Ministry of Agriculture(MOA), Key Laboratory of Animal Biotechnology of Xinjiang, Urumqi, Xinjiang, 830026, China
- Institute of Animal Biotechnology, Xinjiang Academy of Animal Science, Urumqi, Xinjiang, 830026, China
| | - Ning Zhang
- Key Laboratory of Genetics, Breeding and Reproduction of Grass-Feeding Livestock, Ministry of Agriculture(MOA), Key Laboratory of Animal Biotechnology of Xinjiang, Urumqi, Xinjiang, 830026, China
- Institute of Animal Biotechnology, Xinjiang Academy of Animal Science, Urumqi, Xinjiang, 830026, China
| | - Yangsheng Wu
- Key Laboratory of Genetics, Breeding and Reproduction of Grass-Feeding Livestock, Ministry of Agriculture(MOA), Key Laboratory of Animal Biotechnology of Xinjiang, Urumqi, Xinjiang, 830026, China
- Institute of Animal Biotechnology, Xinjiang Academy of Animal Science, Urumqi, Xinjiang, 830026, China
| | - Lei Chen
- Key Laboratory of Genetics, Breeding and Reproduction of Grass-Feeding Livestock, Ministry of Agriculture(MOA), Key Laboratory of Animal Biotechnology of Xinjiang, Urumqi, Xinjiang, 830026, China
- Institute of Animal Biotechnology, Xinjiang Academy of Animal Science, Urumqi, Xinjiang, 830026, China
| | - Liqin Wang
- Key Laboratory of Genetics, Breeding and Reproduction of Grass-Feeding Livestock, Ministry of Agriculture(MOA), Key Laboratory of Animal Biotechnology of Xinjiang, Urumqi, Xinjiang, 830026, China
- Institute of Animal Biotechnology, Xinjiang Academy of Animal Science, Urumqi, Xinjiang, 830026, China
| | - MaYila
- Key Laboratory of Genetics, Breeding and Reproduction of Grass-Feeding Livestock, Ministry of Agriculture(MOA), Key Laboratory of Animal Biotechnology of Xinjiang, Urumqi, Xinjiang, 830026, China
- Institute of Animal Biotechnology, Xinjiang Academy of Animal Science, Urumqi, Xinjiang, 830026, China
| | - Juncheng Huang
- Key Laboratory of Genetics, Breeding and Reproduction of Grass-Feeding Livestock, Ministry of Agriculture(MOA), Key Laboratory of Animal Biotechnology of Xinjiang, Urumqi, Xinjiang, 830026, China
- Institute of Animal Biotechnology, Xinjiang Academy of Animal Science, Urumqi, Xinjiang, 830026, China
| | - Mingjun Liu
- Key Laboratory of Genetics, Breeding and Reproduction of Grass-Feeding Livestock, Ministry of Agriculture(MOA), Key Laboratory of Animal Biotechnology of Xinjiang, Urumqi, Xinjiang, 830026, China.
- Institute of Animal Biotechnology, Xinjiang Academy of Animal Science, Urumqi, Xinjiang, 830026, China.
| |
Collapse
|
96
|
Khalil K, Elayat M, Khalifa E, Daghash S, Elaswad A, Miller M, Abdelrahman H, Ye Z, Odin R, Drescher D, Vo K, Gosh K, Bugg W, Robinson D, Dunham R. Generation of Myostatin Gene-Edited Channel Catfish (Ictalurus punctatus) via Zygote Injection of CRISPR/Cas9 System. Sci Rep 2017; 7:7301. [PMID: 28779173 PMCID: PMC5544710 DOI: 10.1038/s41598-017-07223-7] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 06/26/2017] [Indexed: 11/23/2022] Open
Abstract
The myostatin (MSTN) gene is important because of its role in regulation of skeletal muscle growth in all vertebrates. In this study, CRISPR/Cas9 was utilized to successfully target the channel catfish, Ictalurus punctatus, muscle suppressor gene MSTN. CRISPR/Cas9 induced high rates (88-100%) of mutagenesis in the target protein-encoding sites of MSTN. MSTN-edited fry had more muscle cells (p < 0.001) than controls, and the mean body weight of gene-edited fry increased by 29.7%. The nucleic acid alignment of the mutated sequences against the wild-type sequence revealed multiple insertions and deletions. These results demonstrate that CRISPR/Cas9 is a highly efficient tool for editing the channel catfish genome, and opens ways for facilitating channel catfish genetic enhancement and functional genomics. This approach may produce growth-enhanced channel catfish and increase productivity.
Collapse
Affiliation(s)
- Karim Khalil
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA.
- Anatomy and Embryology Department, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt.
| | - Medhat Elayat
- Anatomy and Embryology Department, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Elsayed Khalifa
- Anatomy and Embryology Department, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Samer Daghash
- Anatomy and Embryology Department, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Ahmed Elaswad
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA.
- Department of Animal Wealth Development, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt.
| | - Michael Miller
- Harrison School of Pharmacy, Auburn University, Auburn, AL, 36849, USA
| | - Hisham Abdelrahman
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
- Department of Veterinary Hygiene and Management, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Zhi Ye
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Ramjie Odin
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - David Drescher
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Khoi Vo
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Kamal Gosh
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - William Bugg
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Dalton Robinson
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Rex Dunham
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA.
| |
Collapse
|
97
|
Li WR, Liu CX, Zhang XM, Chen L, Peng XR, He SG, Lin JP, Han B, Wang LQ, Huang JC, Liu MJ. CRISPR/Cas9-mediated loss of FGF5 function increases wool staple length in sheep. FEBS J 2017. [PMID: 28631368 DOI: 10.1111/febs.14144] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Fibroblast growth factor 5 (FGF5) regulates hair length in humans and a variety of other animals. To investigate whether FGF5 has similar effects in sheep, we used clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated 9 (Cas9) to generate loss-of-function mutations with the FGF5 gene in Chinese Merino sheep. A total of 16 lambs were identified with genetic mutations within the targeting locus: 13 lambs had biallelic modifications and three lambs had monoallelic modifications. Characterization of the modifications revealed that 13 were frameshift mutations that led to premature termination, whereas the other three were in-frame deletions. Thus, CRISPR/Cas9 efficiently generated loss-of-function mutations in the sheep FGF5 gene. We then investigated the effect of loss of FGF5 function on wool traits in 12 lambs and found that wool staple length and stretched length of genetically modified (GM) yearling sheep were significantly longer compared with that of wild-type (WT) control animals. The greasy fleece weight of GM yearling sheep was also significantly greater compared with that of WT sheep. Moreover, the mean fiber diameter in GM sheep showed no significant difference compared with WT sheep, suggesting that the increase in greasy fleece weight was likely attributed to the increase in wool length. The results of this study suggest that CRISPR/Cas9-mediated loss of FGF5 activity could promote wool growth and, consequently, increase wool length and yield.
Collapse
Affiliation(s)
- Wen-Rong Li
- College of Life Science and Technology, Xinjiang University, Urumqi, China.,Key Laboratory of Genetics, Breeding & Reproduction of Grass-Feeding Livestock, Ministry of Agriculture, Urumqi, China.,Key Laboratory of Animal Biotechnology of Xinjiang Institute of Animal Biotechnology, Xinjiang Academy of Animal Science, Urumqi, China
| | - Chen-Xi Liu
- Key Laboratory of Genetics, Breeding & Reproduction of Grass-Feeding Livestock, Ministry of Agriculture, Urumqi, China.,Key Laboratory of Animal Biotechnology of Xinjiang Institute of Animal Biotechnology, Xinjiang Academy of Animal Science, Urumqi, China
| | - Xue-Mei Zhang
- Key Laboratory of Genetics, Breeding & Reproduction of Grass-Feeding Livestock, Ministry of Agriculture, Urumqi, China.,Key Laboratory of Animal Biotechnology of Xinjiang Institute of Animal Biotechnology, Xinjiang Academy of Animal Science, Urumqi, China
| | - Lei Chen
- Key Laboratory of Genetics, Breeding & Reproduction of Grass-Feeding Livestock, Ministry of Agriculture, Urumqi, China.,Key Laboratory of Animal Biotechnology of Xinjiang Institute of Animal Biotechnology, Xinjiang Academy of Animal Science, Urumqi, China
| | - Xin-Rong Peng
- Key Laboratory of Genetics, Breeding & Reproduction of Grass-Feeding Livestock, Ministry of Agriculture, Urumqi, China.,Key Laboratory of Animal Biotechnology of Xinjiang Institute of Animal Biotechnology, Xinjiang Academy of Animal Science, Urumqi, China
| | - San-Gang He
- Key Laboratory of Genetics, Breeding & Reproduction of Grass-Feeding Livestock, Ministry of Agriculture, Urumqi, China.,Key Laboratory of Animal Biotechnology of Xinjiang Institute of Animal Biotechnology, Xinjiang Academy of Animal Science, Urumqi, China
| | - Jia-Peng Lin
- Key Laboratory of Genetics, Breeding & Reproduction of Grass-Feeding Livestock, Ministry of Agriculture, Urumqi, China.,Key Laboratory of Animal Biotechnology of Xinjiang Institute of Animal Biotechnology, Xinjiang Academy of Animal Science, Urumqi, China
| | - Bin Han
- Key Laboratory of Genetics, Breeding & Reproduction of Grass-Feeding Livestock, Ministry of Agriculture, Urumqi, China.,Key Laboratory of Animal Biotechnology of Xinjiang Institute of Animal Biotechnology, Xinjiang Academy of Animal Science, Urumqi, China
| | - Li-Qin Wang
- Key Laboratory of Genetics, Breeding & Reproduction of Grass-Feeding Livestock, Ministry of Agriculture, Urumqi, China.,Key Laboratory of Animal Biotechnology of Xinjiang Institute of Animal Biotechnology, Xinjiang Academy of Animal Science, Urumqi, China
| | - Jun-Cheng Huang
- Key Laboratory of Genetics, Breeding & Reproduction of Grass-Feeding Livestock, Ministry of Agriculture, Urumqi, China.,Key Laboratory of Animal Biotechnology of Xinjiang Institute of Animal Biotechnology, Xinjiang Academy of Animal Science, Urumqi, China
| | - Ming-Jun Liu
- Key Laboratory of Genetics, Breeding & Reproduction of Grass-Feeding Livestock, Ministry of Agriculture, Urumqi, China.,Key Laboratory of Animal Biotechnology of Xinjiang Institute of Animal Biotechnology, Xinjiang Academy of Animal Science, Urumqi, China
| |
Collapse
|
98
|
Telugu BP, Park KE, Park CH. Genome editing and genetic engineering in livestock for advancing agricultural and biomedical applications. Mamm Genome 2017; 28:338-347. [PMID: 28712062 DOI: 10.1007/s00335-017-9709-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Accepted: 07/08/2017] [Indexed: 01/23/2023]
Abstract
Genetic modification of livestock has a longstanding and successful history, starting with domestication several thousand years ago. Modern animal breeding strategies predominantly based on marker-assisted and genomic selection, artificial insemination, and embryo transfer have led to significant improvement in the performance of domestic animals, and are the basis for regular supply of high quality animal derived food. However, the current strategy of breeding animals over multiple generations to introduce novel traits is not realistic in responding to the unprecedented challenges such as changing climate, pandemic diseases, and feeding an anticipated 3 billion increase in global population in the next three decades. Consequently, sophisticated genetic modifications that allow for seamless introgression of novel alleles or traits and introduction of precise modifications without affecting the overall genetic merit of the animal are required for addressing these pressing challenges. The requirement for precise modifications is especially important in the context of modeling human diseases for the development of therapeutic interventions. The animal science community envisions the genome editors as essential tools in addressing these critical priorities in agriculture and biomedicine, and for advancing livestock genetic engineering for agriculture, biomedical as well as "dual purpose" applications.
Collapse
Affiliation(s)
- Bhanu P Telugu
- Animal and Avian Science, University of Maryland, Bhanu Telugu, 2121 ANSC Building, College Park, MD, 20742, USA. .,Animal Bioscience and Biotechnology Laboratory, ARS, USDA, Beltsville, MD, USA. .,RenOVAte Biosciences Inc, Reisterstown, MD, USA.
| | - Ki-Eun Park
- Animal and Avian Science, University of Maryland, Bhanu Telugu, 2121 ANSC Building, College Park, MD, 20742, USA.,Animal Bioscience and Biotechnology Laboratory, ARS, USDA, Beltsville, MD, USA.,RenOVAte Biosciences Inc, Reisterstown, MD, USA
| | - Chi-Hun Park
- Animal and Avian Science, University of Maryland, Bhanu Telugu, 2121 ANSC Building, College Park, MD, 20742, USA.,Animal Bioscience and Biotechnology Laboratory, ARS, USDA, Beltsville, MD, USA
| |
Collapse
|
99
|
Niu Y, Ding Y, Wang X, Chen Y. Multiplex Gene Editing via CRISPR/Cas9 System in Sheep. Bio Protoc 2017; 7:e2385. [PMID: 34541123 DOI: 10.21769/bioprotoc.2385] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Revised: 06/11/2017] [Accepted: 06/14/2017] [Indexed: 11/02/2022] Open
Abstract
Sheep is a major large animal model for studying development and disease in biomedical research. We utilized CRISPR/Cas9 system successfully to modify multiple genes in sheep. Here we provide a detailed protocol for one-cell-stage embryo manipulation by co-injecting Cas9 mRNA and RNA guides targeting three genes (MSTN, ASIP, and BCO2) to create genetic-modified sheep. Procedure described sgRNA design, construction of gRNA-Cas9 plasmid, efficient detection in fibroblast, embryos and sheep, and some manipulative technologies. Our findings suggested that the CRISPR/Cas9 method can be exploited as a powerful tool for livestock improvement by targeting multiple genes that are in charge of economically significant traits simultaneously.
Collapse
Affiliation(s)
- Yiyuan Niu
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Yi Ding
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Xiaolong Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Yulin Chen
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| |
Collapse
|
100
|
Fernández A, Josa S, Montoliu L. A history of genome editing in mammals. Mamm Genome 2017; 28:237-246. [DOI: 10.1007/s00335-017-9699-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 05/31/2017] [Indexed: 12/28/2022]
|