51
|
Gundaraniya S, Ambalam PS, Tomar RS. Metabolomic Profiling of Drought-Tolerant and Susceptible Peanut ( Arachis hypogaea L.) Genotypes in Response to Drought Stress. ACS OMEGA 2020; 5:31209-31219. [PMID: 33324830 PMCID: PMC7726923 DOI: 10.1021/acsomega.0c04601] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Accepted: 11/09/2020] [Indexed: 05/10/2023]
Abstract
Peanut is frequently constrained by extreme environmental conditions such as drought. To reveal the involvement of metabolites, TAG 24 (drought-tolerant) and JL 24 (drought-sensitive) peanut genotypes were investigated under control and 20% PEG 6000-mediated water scarcity conditions at the seedling stage. Samples were analyzed by gas chromatography-mass spectrometry (GC-MS) to identify untargeted metabolites and targeted metabolites, i.e., polyamines and polyphenols by high-performance liquid chromatography (HPLC) and ultrahigh-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS), respectively. The principal component analysis (PCA), partial least-squares discriminant analysis (PLS-DA), heat map, and cluster analysis were applied to the metabolomics data obtained by the GC-MS technique to determine the important metabolites for drought tolerance. Among 46 resulting metabolites, pentitol, phytol, xylonic acid, d-xylopyranose, stearic acid, and d-ribose were important drought-responsive metabolites. Agmatine and cadaverine were present in TAG 24 leaves and roots, respectively, during water-deficit conditions and believed to be the potential polyamines for drought tolerance. Polyphenols such as syringic acid and vanillic acid were produced more in the leaves of TAG 24, while catechin production was high in JL 24 during stress conditions. Seven metabolic pathways, namely, galactose metabolism, starch and sucrose metabolism, fructose and mannose metabolism, pentose and glucuronate interconversion, propanoate metabolism, amino sugar and nucleotide sugar metabolism, and biosynthesis of unsaturated fatty acids were significantly affected by water-deficit conditions. This study provides valuable information about the metabolic response of peanut to drought stress and metabolites identified, which encourages further study by transcriptome and proteomics to improve drought tolerance in peanut.
Collapse
Affiliation(s)
- Srutiben
A. Gundaraniya
- Department
of Biosciences, Saurashtra University, Rajkot, Gujarat 360005, India
- Christ
Campus, Vidya Niketan, Saurashtra University, Rajkot, Gujarat 360005, India
- Department
of Biotechnology and Biochemistry, Junagadh
Agricultural University, Junagadh, Gujarat 362001, India
| | - Padma S. Ambalam
- Christ
Campus, Vidya Niketan, Saurashtra University, Rajkot, Gujarat 360005, India
| | - Rukam S. Tomar
- Department
of Biotechnology and Biochemistry, Junagadh
Agricultural University, Junagadh, Gujarat 362001, India
- . Tel: +91 94260 37195
| |
Collapse
|
52
|
Lai JL, Zhang-Xuan D, Xiao-Hui JI, Xue-Gang L. Absorption and interaction mechanisms of uranium & cadmium in purple sweet potato(Ipomoea batatas L.). JOURNAL OF HAZARDOUS MATERIALS 2020; 400:123264. [PMID: 32947695 DOI: 10.1016/j.jhazmat.2020.123264] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 06/18/2020] [Accepted: 06/19/2020] [Indexed: 05/19/2023]
Abstract
The purpose of this study was to reveal the absorption and interaction mechanisms of uranium (U) & cadmium (Cd) in corps. Purple sweet potato (Ipomoea batatas L.) was selected as the experimental material. The absorption behavior of U and Cd in this crop and the effects on mineral nutrition were analyzed in a pot experiment. The interactions between U and Cd in purple sweet potato were analyzed using UPLC-MS metabolome analysis. The pot experiment confirmed that the root tuber of the purple sweet potato had accumulated U (1.68-5.16 mg kg-1) and Cd (0.78-2.02 mg kg-1) and would pose a health risk if consumed. Both U and Cd significantly interfered with the mineral nutrient of the roots. Metabolomics revealed that a total of 4865 metabolites were identified in roots. 643 (419 up; 224 down), 526 (332 up; 194 down) and 634 (428 up; 214 down) different metabolites (DEMs) were identified in the U, Cd, and U + Cd exposure groups. Metabolic pathway analysis showed that U and Cd induced the expression of plant hormones (the first messengers) and cyclic nucleotides (cAMP and cGMP, second messengers) in cells and regulated the primary/secondary metabolism of roots to induce resistance to U and Cd toxicity.
Collapse
Affiliation(s)
- Jin-Long Lai
- College of Environment and Resources, Southwest University of Science and Technology, Mianyang, 621010, China; School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China; Engineering Research Center of Biomass Materials, Ministry of Education, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Deng Zhang-Xuan
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China
| | - J I Xiao-Hui
- College of Environment and Resources, Southwest University of Science and Technology, Mianyang, 621010, China; College of Chemical and Environment Science, Shaanxi University of Technology, Hanzhong, 723000, China
| | - Luo Xue-Gang
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China; Engineering Research Center of Biomass Materials, Ministry of Education, Southwest University of Science and Technology, Mianyang, 621010, China.
| |
Collapse
|
53
|
Silva S, Ribeiro TP, Santos C, Pinto DCGA, Silva AMS. TiO 2 nanoparticles induced sugar impairments and metabolic pathway shift towards amino acid metabolism in wheat. JOURNAL OF HAZARDOUS MATERIALS 2020; 399:122982. [PMID: 32534391 DOI: 10.1016/j.jhazmat.2020.122982] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 05/06/2020] [Accepted: 05/16/2020] [Indexed: 06/11/2023]
Abstract
TiO2-nanoparticles (TiO2-NP) have the potential to impair plant development. Nevertheless, the metabolic processes behind the physiological responses to TiO2-NP are still far from being fully understood. In this study, Triticum aestivum plants were exposed for 21 days to different concentrations (0; 5; 50; 150 mg L-1) of TiO2-NP (P25). After treatment, the metabolite profiles of roots and leaves were analysed. The content of >70 % of the identified metabolites changed in response to P25 and the impact on metabolic pathways increased with TiO2-NP dose, with leaves showing higher alterations. Roots up-regulated monosaccharides, azelaic acid, and γ-aminobutanoic acid and triggered the tyrosine metabolism, whereas leaves up-regulated the metabolisms of reserve sugars and tocopherol, and the phenylalanine and tryptophan pathways. Both organs (mainly leaves) up-regulated the aspartate family pathway together with serine, alanine and valine metabolisms and the glycerolipids' biosynthesis. In addition, the citrate and glyoxylate metabolisms were down-regulated in both organs (highest dose). Sugar biosynthesis breakdown, due to photosynthetic disturbances, shifted the cell metabolism to use amino acids as an alternative energy source, and both ROS and sugars worked as signalling molecules activating organ dependent antioxidant responses. Concluding, these NP-pollutants severely impact multiple crop metabolic pathways and may ultimately compromise plant performance.
Collapse
Affiliation(s)
- Sónia Silva
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Tiago P Ribeiro
- i3S-Instituto de Investigação e Inovação em Saúde, University of Porto, Rua Alfredo Allen, 4200-135 Porto, Portugal; INEB-Instituto de Engenharia Biomédica, University of Porto, Rua Alfredo Allen, 4200-135 Porto, Portugal.
| | - Conceição Santos
- Department of Biology, Faculty of Sciences, LAQV-REQUIMTE, University of Porto, Rua Do Campo Alegre 4169-007, Porto, Portugal.
| | - Diana C G A Pinto
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Artur M S Silva
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
54
|
Junpha J, Wisitsoraat A, Prathumwan R, Chaengsawang W, Khomungkhun K, Subannajui K. Electronic tongue and cyclic voltammetric sensors based on carbon nanotube/polylactic composites fabricated by fused deposition modelling 3D printing. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 117:111319. [PMID: 32919677 DOI: 10.1016/j.msec.2020.111319] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 07/22/2020] [Accepted: 07/23/2020] [Indexed: 01/10/2023]
Abstract
In this work, 3D printed electrodes fabricated by blending Polylactic acid (PLA) with carbon nanotube (CNT), CNT/copper (Cu), CNT/zinc oxide (ZnO) composites were applied as cyclic voltammetric sensors for electronic tongue analysis. Porous rectangular rod-shape electrodes were fabricated by fused-deposition-modelling 3D printing of the CNT-based composites produced by a solution blending method. The physical and chemical properties of 3D printed electrodes were characterized by scanning electron microscopy, X-ray diffraction, Raman spectroscopy, Fourier transform infrared spectroscopy, four-point-probe electrical tests and thermoelectric measurements. The characterization results confirmed uniform distributions of CNTs, Cu particles and ZnO nanorods in the composites and high electrical conductivity of interconnected CNT networks. The additions of Cu and ZnO nanostructures slightly modified the electrical conductivity but significantly changed thermoelectric properties of the material. Cyclic voltammetric (CV) data demonstrated satisfactory stability of the composite materials under corrosive CV conditions. In addition, Cu and ZnO additives provided distinct electrochemical behaviors towards K4Fe(CN)6, H2O2 and nicotinamide adenine dinucleotide. Principal component analysis of CV features could effectively distinguish the three chemicals with various concentrations, illustrating the possibility to apply 3D printed CNT/PLA-based electrodes for electronic tongue applications.
Collapse
Affiliation(s)
- Jedsada Junpha
- Material Science and Engineering Program, School of Materials Science and Innovation, Faculty of Science, Mahidol University, Rama VI Soi 24, Thung Phaya Thai, Ratchathewi, Bangkok 10400, Thailand; Faculty of Science and Technology, Rajamangala University of Technology Suvarnabhumi, Thailand
| | - Anurat Wisitsoraat
- Graphene and Printed Electronics Research Team (GPE), National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Phahon Yothin Road, Klong Nueng, Klong Luang, Phathum Thani 12120, Thailand
| | - Rat Prathumwan
- Material Science and Engineering Program, School of Materials Science and Innovation, Faculty of Science, Mahidol University, Rama VI Soi 24, Thung Phaya Thai, Ratchathewi, Bangkok 10400, Thailand
| | - Wasitthi Chaengsawang
- Material Science and Engineering Program, School of Materials Science and Innovation, Faculty of Science, Mahidol University, Rama VI Soi 24, Thung Phaya Thai, Ratchathewi, Bangkok 10400, Thailand
| | - Kittikhun Khomungkhun
- Material Science and Engineering Program, School of Materials Science and Innovation, Faculty of Science, Mahidol University, Rama VI Soi 24, Thung Phaya Thai, Ratchathewi, Bangkok 10400, Thailand
| | - Kittitat Subannajui
- Material Science and Engineering Program, School of Materials Science and Innovation, Faculty of Science, Mahidol University, Rama VI Soi 24, Thung Phaya Thai, Ratchathewi, Bangkok 10400, Thailand.
| |
Collapse
|
55
|
Lamine M, Gargouri M, Mliki A. Identification of the NaCl-responsive metabolites in Citrus roots: A lipidomic and volatomic signature. PLANT SIGNALING & BEHAVIOR 2020; 15:1777376. [PMID: 32508206 PMCID: PMC8570732 DOI: 10.1080/15592324.2020.1777376] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 05/06/2020] [Accepted: 05/11/2020] [Indexed: 06/11/2023]
Abstract
It is known that the first osmotic phase affects the growth rates of roots immediately upon addition of salt; thus, dissecting metabolites profiling provides an opportunity to throw light into the basis of plant tolerance by searching for altered signatures that may be associated with tolerance at this organ. This study examined the influence of salt treatment on fatty acid composition and chemical composition of the essential oil of C. aurantium roots. Results proved that, under salt treatment, an increase of double bond index and linoleic desaturation ratio was pointed out. On the other hand, the reduction of saturated fatty acids was spotted. Such treatment also induced quantitative changes in the chemical composition of the essential oils from C. aurantium roots and increased markedly the rates of monoterpenes, while the sesquiterpenes decreased significantly. Both primary and secondary metabolites were found to be significantly salt responsive, including one fatty acid (palmitoleic acid) and six volatiles (E-2-dodecenal, tetradecanal, γ-Elemene, trans-caryophyllene, α-Terpinene and germacrene D). Plasticity at the metabolic level may allow Citrus plants to acclimatize their metabolic ranges in response to changing environmental conditions.
Collapse
Affiliation(s)
- Myriam Lamine
- Laboratory of Plant Molecular Physiology, Biotechnology Center of Borj-Cedria, Hammam-Lif, Tunisia
| | - Mahmoud Gargouri
- Laboratory of Plant Molecular Physiology, Biotechnology Center of Borj-Cedria, Hammam-Lif, Tunisia
| | - Ahmed Mliki
- Laboratory of Plant Molecular Physiology, Biotechnology Center of Borj-Cedria, Hammam-Lif, Tunisia
| |
Collapse
|
56
|
Mun HI, Kim YX, Suh DH, Lee S, Singh D, Jung ES, Lee CH, Sung J. Metabolomic response of Perilla frutescens leaves, an edible-medicinal herb, to acclimatize magnesium oversupply. PLoS One 2020; 15:e0236813. [PMID: 32726342 PMCID: PMC7390343 DOI: 10.1371/journal.pone.0236813] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 07/14/2020] [Indexed: 01/26/2023] Open
Abstract
High salt accumulation, resulting from the rampant use of chemical fertilizers in greenhouse cultivation, has deleterious effects on plant growth and crop yield. Herein, we delineated the effects of magnesium (Mg) oversupply on Perilla frutescens leaves, a traditional edible and medicinal herb used in East-Asian countries. Mg oversupply resulted in significantly higher chlorophyll content coupled with lower antioxidant activities and growth, suggesting a direct effect on subtle metabolomes. The relative abundance of bioactive phytochemicals, such as triterpenoids, flavonoids, and cinnamic acids, was lower in the Mg-oversupplied plants than in the control. Correlation analysis between plant phenotypes (plant height, total fresh weight of the shoot, leaf chlorophyll content, and leaf antioxidant content) and the altered metabolomes in P. frutescens leaves suggested an acclimatization mechanism to Mg oversupply. In conclusion, P. frutescens preferentially accumulated compatible solutes, i.e., carbohydrates and amino acids, to cope with higher environmental Mg levels, instead of employing secondary and antioxidative metabolism.
Collapse
Affiliation(s)
- Ha In Mun
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, Korea
| | - Yangmin X. Kim
- National Institute of Agricultural Sciences, Rural Development Administration, Wanju, Republic of Korea
| | - Dong Ho Suh
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, Korea
| | - Seulbi Lee
- National Institute of Agricultural Sciences, Rural Development Administration, Wanju, Republic of Korea
| | - Digar Singh
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, Korea
| | - Eun Sung Jung
- Department of Systems Biotechnology, Konkuk University, Seoul, Korea
| | - Choong Hwan Lee
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, Korea
- Department of Systems Biotechnology, Konkuk University, Seoul, Korea
- Research Institute for Bioactive-Metabolome Network, Konkuk University, Seoul, Korea
- * E-mail: (CHL); (JS)
| | - Jwakyung Sung
- Department of Crop Science, College of Agriculture, Life and Environment Sciences, Chungbuk National University, Cheongju, Korea
- * E-mail: (CHL); (JS)
| |
Collapse
|
57
|
Phytoremediation of Cadmium: Physiological, Biochemical, and Molecular Mechanisms. BIOLOGY 2020; 9:biology9070177. [PMID: 32708065 PMCID: PMC7407403 DOI: 10.3390/biology9070177] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/14/2020] [Accepted: 07/15/2020] [Indexed: 12/15/2022]
Abstract
Cadmium (Cd) is one of the most toxic metals in the environment, and has noxious effects on plant growth and production. Cd-accumulating plants showed reduced growth and productivity. Therefore, remediation of this non-essential and toxic pollutant is a prerequisite. Plant-based phytoremediation methodology is considered as one a secure, environmentally friendly, and cost-effective approach for toxic metal remediation. Phytoremediating plants transport and accumulate Cd inside their roots, shoots, leaves, and vacuoles. Phytoremediation of Cd-contaminated sites through hyperaccumulator plants proves a ground-breaking and profitable choice to combat the contaminants. Moreover, the efficiency of Cd phytoremediation and Cd bioavailability can be improved by using plant growth-promoting bacteria (PGPB). Emerging modern molecular technologies have augmented our insight into the metabolic processes involved in Cd tolerance in regular cultivated crops and hyperaccumulator plants. Plants’ development via genetic engineering tools, like enhanced metal uptake, metal transport, Cd accumulation, and the overall Cd tolerance, unlocks new directions for phytoremediation. In this review, we outline the physiological, biochemical, and molecular mechanisms involved in Cd phytoremediation. Further, a focus on the potential of omics and genetic engineering strategies has been documented for the efficient remediation of a Cd-contaminated environment.
Collapse
|
58
|
Sun Y, Lu Q, Cao Y, Wang M, Cheng X, Yan Q. Comparative Transcriptome Analysis of the Molecular Mechanism of the Hairy Roots of Brassica campestris L. in Response to Cadmium Stress. Int J Mol Sci 2019; 21:ijms21010180. [PMID: 31888010 PMCID: PMC6981690 DOI: 10.3390/ijms21010180] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 12/20/2019] [Accepted: 12/20/2019] [Indexed: 02/07/2023] Open
Abstract
Brassica campestris L., a hyperaccumulator of cadmium (Cd), is considered a candidate plant for efficient phytoremediation. The hairy roots of Brassica campestris L are chosen here as a model plant system to investigate the response mechanism of Brassica campestris L. to Cd stress. High-throughput sequencing technology is used to identify genes related to Cd tolerance. A total of 2394 differentially expressed genes (DEGs) are identified by RNA-Seq analysis, among which 1564 genes are up-regulated, and 830 genes are down-regulated. Data from the gene ontology (GO) analysis indicate that DEGs are mainly involved in metabolic processes. Glutathione metabolism, in which glutathione synthetase and glutathione S-transferase are closely related to Cd stress, is identified in the Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. A Western blot shows that glutathione synthetase and glutathione S-transferase are involved in Cd tolerance. These results provide a preliminary understanding of the Cd tolerance mechanism of Brassica campestris L. and are, hence, of particular importance to the future development of an efficient phytoremediation process based on hairy root cultures, genetic modification, and the subsequent regeneration of the whole plant.
Collapse
Affiliation(s)
| | | | | | | | - Xiyu Cheng
- Correspondence: (X.C.); (Q.Y.); Tel.: +86-138-1027-4418 (X.C.); +86-138-1093-8871 (Q.Y.)
| | - Qiong Yan
- Correspondence: (X.C.); (Q.Y.); Tel.: +86-138-1027-4418 (X.C.); +86-138-1093-8871 (Q.Y.)
| |
Collapse
|
59
|
Zhang L, Ma C, Chao H, Long Y, Wu J, Li Z, Ge X, Xia H, Yin Y, Batley J, Li M. Integration of metabolome and transcriptome reveals flavonoid accumulation in the intergeneric hybrid between Brassica rapa and Raphanus sativus. Sci Rep 2019; 9:18368. [PMID: 31797999 PMCID: PMC6893016 DOI: 10.1038/s41598-019-54889-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 11/11/2019] [Indexed: 12/20/2022] Open
Abstract
Brassica rapa and Raphanus sativus are two important edible vegetables that contain numerous nutritional ingredients. However, the agronomic traits and nutritional components of the intergeneric hybrid of B. rapa and R. sativus remain poorly understood. In this study, we used a stably inherited intergeneric hybrid of B. rapa and R. sativus as a model to study its metabolome and transcriptome profiles. Morphological and cytological analysis showed the intergeneric hybrid had the expected chromosome number and normal meiosis behavior. Moreover, the metabolome analysis showed multiple important secondary metabolites, including flavonoids and glucosinolates, were significantly upregulated in the hybrid. Furthermore, transcriptome data revealed that the expression level of the important genes involved in phenylpropanoid and flavonoid pathways was significantly upregulated in the hybrid. Ultimately, our data indicate the intergeneric hybrid will be a valuable bioengineering resource and promise to become a new-type hybrid vegetable with great medicinal value in future.
Collapse
Affiliation(s)
- Libin Zhang
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Chuang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, China
| | - Hongbo Chao
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Long
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jiangsheng Wu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Zaiyun Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Xianhong Ge
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Heng Xia
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Yongtai Yin
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Jacqueline Batley
- School of Plant Biology, The University of Western Australia, Crawley, Australia
| | - Maoteng Li
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
60
|
Gao Y, Li X, Gao J, Zhang Z, Feng Y, Nie J, Zhu W, Zhang S, Cao J. Metabolomic Analysis of Radiation-Induced Lung Injury in Rats: The Potential Radioprotective Role of Taurine. Dose Response 2019; 17:1559325819883479. [PMID: 31700502 PMCID: PMC6823985 DOI: 10.1177/1559325819883479] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 09/16/2019] [Accepted: 09/24/2019] [Indexed: 12/17/2022] Open
Abstract
Radiation-induced lung injury is a major dose-limiting toxicity that occurs due to thoracic radiotherapy. Metabolomics is a powerful quantitative measurement of low-molecular-weight metabolites in response to environmental disturbances. However, the metabolomic profiles of radiation-induced lung injury have not been reported yet. In this study, male Sprague-Dawley rats were subjected to a single dose of 10 or 20 Gy irradiation to the right lung. One week after radiation, the obvious morphological alteration of lung tissues after radiation was observed by hematoxylin and eosin staining through a transmission electron microscope. We then analyzed the metabolites and related pathways of radiation-induced lung injury by gas chromatography-mass spectrometry, and a total of 453 metabolites were identified. Compared to the nonirradiated left lung, 19 metabolites (8 upregulated and 11 downregulated) showed a significant difference in 10 Gy irradiated lung tissues, including mucic acid, methyl-β-d-galactopyranoside, quinoline-4-carboxylic acid, and pyridoxine. There were 31 differential metabolites (16 upregulated and 15 downregulated) between 20 Gy irradiated and nonirradiated lung tissues, including taurine, piperine, 1,2,4-benzenetriol, and lactamide. The Kyoto Encyclopedia of Genes and Genomes-based pathway analysis enriched 32 metabolic pathways between the irradiated and nonirradiated lung tissues, including pyrimidine metabolism, ATP-binding cassette transporters, aminoacyl-tRNA biosynthesis, and β-alanine metabolism. Among the dysregulated metabolites, we found that taurine promoted clonogenic survival and reduced radiation-induced necrosis in human embryonic lung fibroblast (HELF) cells. This study provides evidence indicating that radiation induces metabolic alterations of the lung. These findings significantly advance our understanding of the pathophysiology of radiation-induced lung injury from the perspective of metabolism.
Collapse
Affiliation(s)
- Yiying Gao
- School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, China
- State Key Lab of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
- Sichuan Center for Disease Control and Prevention, Sichuan, China
| | - Xugang Li
- Anshan Cancer Hospital, Anshan, China
| | | | | | - Yang Feng
- School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, China
- State Key Lab of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| | - Jihua Nie
- School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, China
- State Key Lab of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| | - Wei Zhu
- School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, China
- State Key Lab of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| | - Shuyu Zhang
- State Key Lab of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
- The Second Affiliated Hospital of Chengdu Medical College (China National Nuclear Corporation 416 Hospital), Chengdu, China
| | - Jianping Cao
- School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, China
- State Key Lab of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| |
Collapse
|
61
|
Berrier KL, Reaser BC, Pinkerton DK, Synovec RE. Examination of the two-dimensional mass channel cluster plot method for gas chromatography – mass spectrometry in the context of the statistical model of overlap. J Chromatogr A 2019; 1601:319-326. [DOI: 10.1016/j.chroma.2019.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 04/30/2019] [Accepted: 05/03/2019] [Indexed: 10/26/2022]
|
62
|
Nigam N, Khare P, Yadav V, Mishra D, Jain S, Karak T, Panja S, Tandon S. Biochar-mediated sequestration of Pb and Cd leads to enhanced productivity in Mentha arvensis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 172:411-422. [PMID: 30735973 DOI: 10.1016/j.ecoenv.2019.02.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 01/31/2019] [Accepted: 02/01/2019] [Indexed: 05/08/2023]
Abstract
Immobilization of cadmium (Cd) and lead (Pb) along with the alleviation of their phytotoxicity in Mentha arvensis by biochar was examined in this investigation. A greenhouse experiment was executed to evaluate the effect of biochar (BC) amended Cd and Pb spiked soil on their immobilization and uptake, plant growth, photosynthetic attributes (total chlorophyll, photosynthetic rate, transpiration rate, and stomatal activity) and oxidative enzymes (guaiacol peroxidase: POD; catalase: CAT and superoxide dismutase: SOD). In the present study, the photosynthetic attributes showed that BC significantly improved the total chlorophyll, photosynthetic, transpiration rates, and stomatal activity in the plants. The incorporation of BC in soil increase the Pb and Cd tolerance in M. arvensis vis-à-vis improved the biomass yield and nutrient intake. In addition, biochar has also reduced the POD, CAT, and SOD in the plant as well as improved the soil pH and enzymatic activities. Overall, BC immobilized the Cd and Pb in soil by providing the binding site to the metals and reduced the phytotoxicity in M. arvensis. However, large-scale field trials of BC are required for safe cultivation of M. arvensis which is known for its phytopharmaceuticals importance.
Collapse
Affiliation(s)
- Nidhi Nigam
- Agronomy and Soil Science Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow 226015, India
| | - Puja Khare
- Agronomy and Soil Science Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow 226015, India.
| | - Vineet Yadav
- Agronomy and Soil Science Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow 226015, India
| | - Disha Mishra
- Agronomy and Soil Science Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow 226015, India
| | - Shilpi Jain
- Agronomy and Soil Science Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow 226015, India
| | - Tanmoy Karak
- Upper Assam Advisory Centre, Tea Research Association, Dikom, 786101 Dibrugarh, Assam, India; Department of Civil, Environmental and Ocean Engineering, Stevens Institute of Technology, 1 Castle Point Terrace, Hoboken, NJ 07030, USA
| | - Saumik Panja
- Department of Civil, Environmental and Ocean Engineering, Stevens Institute of Technology, 1 Castle Point Terrace, Hoboken, NJ 07030, USA
| | - S Tandon
- Chemical Processing and Technology Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow 226015, India
| |
Collapse
|
63
|
Dubey S, Shri M, Gupta A, Rani V, Chakrabarty D. Toxicity and detoxification of heavy metals during plant growth and metabolism. ENVIRONMENTAL CHEMISTRY LETTERS 2018; 16:1169-1192. [DOI: 10.1007/s10311-018-0741-8] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 04/19/2018] [Indexed: 06/27/2023]
|
64
|
Baig MA, Ahmad J, Bagheri R, Ali AA, Al-Huqail AA, Ibrahim MM, Qureshi MI. Proteomic and ecophysiological responses of soybean (Glycine max L.) root nodules to Pb and hg stress. BMC PLANT BIOLOGY 2018; 18:283. [PMID: 30428829 PMCID: PMC6237034 DOI: 10.1186/s12870-018-1499-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 10/25/2018] [Indexed: 05/19/2023]
Abstract
BACKGROUND Lead (Pb) and mercury (Hg) are persistent hazardous metals in industrially polluted soils which can be toxic in low quantities. Metal toxicity can cause changes at cellular and molecular level which should be studied for better understanding of tolerance mechanism in plants. Soybean (Glycine max L.) is an important oilseed crop of the world including India. Indian soils growing soybean are often contaminated by Pb and Hg. The aim of this study was to explore how soybean root nodule responds to Pb and Hg through proteomic and ecophysiological alterations in order to enhance tolerance to metal stress. RESULTS Soybean plants were exposed to Pb (30 ppm PbCl2) and Hg (0.5 ppm HgCl2) to study histological, histochemical, biochemical and molecular response of N2-fixing symbiotic nodules. Both Pb and Hg treatment increased the level of oxidative stress in leaves and nodules. Chlorosis in leaves and morphological/anatomical changes in nodules were observed. Activities of ascorbate peroxidase, glutathione reductase and catalase were also modulated. Significant changes were observed in abundance of 76 proteins by Pb and Hg. Pb and Hg influenced abundance of 33 proteins (17 up and 16 down) and 43 proteins (33 up and 10 down), respectively. MS/MS ion search identified 55 proteins which were functionally associated with numerous cellular functions. Six crucial proteins namely catalase (CAT), allene oxide synthase (AOS), glutathione S-transferase (GST), calcineurin B like (CBL), calmodulin like (CML) and rapid alkalinisation factor (RAF) were selected for transcript abundance estimation. The qRT-PCR based real time expression exhibited a positive correlation with proteomics expression except for GST and RAF. CONCLUSION Soybean root nodule responds to metal stress by increased abundance of defence, development and repair related proteins. An efficient proteomic modulation might lead to metal-induced stress tolerance in N2-fixing nodules. Although concentrations of Pb and Hg used in the study cannot be considered equimolar, yet Hg seems to induce more changes in nodule proteomic profile, and higher damage to both bacteroides and root anatomy.
Collapse
Affiliation(s)
- Mohd Affan Baig
- Proteomics and Bioinformatics Lab, Department of Biotechnology, Jamia Millia Islamia (A Central University), New Delhi, 110025 India
| | - Javed Ahmad
- Proteomics and Bioinformatics Lab, Department of Biotechnology, Jamia Millia Islamia (A Central University), New Delhi, 110025 India
| | - Rita Bagheri
- Proteomics and Bioinformatics Lab, Department of Biotechnology, Jamia Millia Islamia (A Central University), New Delhi, 110025 India
| | - Arlene Asthana Ali
- Proteomics and Bioinformatics Lab, Department of Biotechnology, Jamia Millia Islamia (A Central University), New Delhi, 110025 India
| | - Asma Abdulkareem Al-Huqail
- Department of Botany and Microbiology, Science College, King Saud University, 11495, Riyadh, Saudi Arabia
| | - Mohamed Mohamed Ibrahim
- Department of Botany and Microbiology, Faculty of Science, Alexandria University, P.O. Box 21511, Alexandria, Egypt
| | - Mohammad Irfan Qureshi
- Proteomics and Bioinformatics Lab, Department of Biotechnology, Jamia Millia Islamia (A Central University), New Delhi, 110025 India
| |
Collapse
|
65
|
Fernandes J, Hu X, Ryan Smith M, Go YM, Jones DP. Selenium at the redox interface of the genome, metabolome and exposome. Free Radic Biol Med 2018; 127:215-227. [PMID: 29883789 PMCID: PMC6168380 DOI: 10.1016/j.freeradbiomed.2018.06.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 05/19/2018] [Accepted: 06/02/2018] [Indexed: 02/06/2023]
Abstract
Selenium (Se) is a redox-active environmental mineral that is converted to only a small number of metabolites and required for a relatively small number of mammalian enzymes. Despite this, dietary and environmental Se has extensive impact on every layer of omics space. This highlights a need for global network response structures to provide reference for targeted, hypothesis-driven Se research. In this review, we survey the Se research literature from the perspective of the responsive physical and chemical barrier between an organism (functional genome) and its environment (exposome), which we have previously termed the redox interface. Recent advances in metabolomics allow molecular phenotyping of the integrated genome-metabolome-exposome structure. Use of metabolomics with transcriptomics to map functional network responses to supplemental Se in mice revealed complex network responses linked to dyslipidemia and weight gain. Central metabolic hubs in the network structure in liver were not directly linked to transcripts for selenoproteins but were, instead, linked to transcripts for glucose transport and fatty acid β-oxidation. The experimental results confirm the survey of research literature in showing that Se interacts with the functional genome through a complex network response structure. The results imply that systematic application of data-driven integrated omics methods to models with controlled Se exposure could disentangle health benefits and risks from Se exposures and also serve more broadly as an experimental paradigm for exposome research.
Collapse
Affiliation(s)
- Jolyn Fernandes
- Department of Medicine, Emory University, Atlanta, GA 30322, United States
| | - Xin Hu
- Department of Medicine, Emory University, Atlanta, GA 30322, United States
| | - M Ryan Smith
- Department of Medicine, Emory University, Atlanta, GA 30322, United States
| | - Young-Mi Go
- Department of Medicine, Emory University, Atlanta, GA 30322, United States.
| | - Dean P Jones
- Department of Medicine, Emory University, Atlanta, GA 30322, United States.
| |
Collapse
|
66
|
Michaletti A, Naghavi MR, Toorchi M, Zolla L, Rinalducci S. Metabolomics and proteomics reveal drought-stress responses of leaf tissues from spring-wheat. Sci Rep 2018; 8:5710. [PMID: 29632386 PMCID: PMC5890255 DOI: 10.1038/s41598-018-24012-y] [Citation(s) in RCA: 123] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 03/20/2018] [Indexed: 12/21/2022] Open
Abstract
To reveal the integrative biochemical networks of wheat leaves in response to water deficient conditions, proteomics and metabolomics were applied to two spring-wheat cultivars (Bahar, drought-susceptible; Kavir, drought-tolerant). Drought stress induced detrimental effects on Bahar leaf proteome, resulting in a severe decrease of total protein content, with impairments mainly in photosynthetic proteins and in enzymes involved in sugar and nitrogen metabolism, as well as in the capacity of detoxifying harmful molecules. On the contrary, only minor perturbations were observed at the protein level in Kavir stressed leaves. Metabolome analysis indicated amino acids, organic acids, and sugars as the main metabolites changed in abundance upon water deficiency. In particular, Bahar cv showed increased levels in proline, methionine, arginine, lysine, aromatic and branched chain amino acids. Tryptophan accumulation via shikimate pathway seems to sustain auxin production (indoleacrylic acid), whereas glutamate reduction is reasonably linked to polyamine (spermine) synthesis. Kavir metabolome was affected by drought stress to a less extent with only two pathways significantly changed, one of them being purine metabolism. These results comprehensively provide a framework for better understanding the mechanisms that govern plant cell response to drought stress, with insights into molecules that can be used for crop improvement projects.
Collapse
Affiliation(s)
- Anna Michaletti
- Department of Ecological and Biological Sciences (DEB), University of Tuscia, Viterbo, Italy
| | | | - Mahmoud Toorchi
- Department of Biotechnology and Plant Breeding, University of Tabriz, Tabriz, Iran
| | - Lello Zolla
- Department of Science and Technology for Agriculture, Forestry, Nature and Energy (DAFNE), University of Tuscia, Viterbo, Italy.
| | - Sara Rinalducci
- Department of Ecological and Biological Sciences (DEB), University of Tuscia, Viterbo, Italy.
| |
Collapse
|
67
|
Cho S, Khan A, Jee SH, Lee HS, Hwang MS, Koo YE, Park YH. High resolution metabolomics to determines the risk associated with bisphenol A exposure in humans. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2018; 58:1-10. [PMID: 29276974 DOI: 10.1016/j.etap.2017.12.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 12/13/2017] [Accepted: 12/15/2017] [Indexed: 06/07/2023]
Abstract
Although high BPA exposure has been correlated with several metabolic diseases, the underlying mechanisms are unclear. In the present study, a metabolomics approach was used to explore the metabolic variations caused by low or high BPA exposure in female (n = 96) and male (n = 98) urine. Fatty acid elongation and sphingolipid metabolism were affected by high BPA exposure in males and females. Fatty acid elongation and sphingolipid metabolism were further investigated among age groups consisted of 30-39 yrs old, 40-49 yrs old, and 50-59 yrs old males and females with high or low urinary BPA. High BPA-exposed males in 30 s and females in 40 s were found with significant disturbance in fatty acid elongation and sphingolipid metabolism, respectively. Additionally, females in 40 s showed elevated inflammatory metabolites: 6-ketoprostaglandin E1 and thromboxane. In the present study, we have demonstrated that environmental metabolomics is useful to elucidate the health effects of BPA exposure.
Collapse
Affiliation(s)
- Seongha Cho
- College of Pharmacy, Korea University, Sejong, 30019, Republic of Korea
| | - Adnan Khan
- College of Pharmacy, Korea University, Sejong, 30019, Republic of Korea
| | - Sun Ha Jee
- Department of Epidemiology and Health Promotion, and Institute for Health Promotion, Graduate School of Public Health, Yonsei University, Seoul, 03722, Republic of Korea
| | - Hee-Seok Lee
- Food Safety Risk Assessment Division, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju, 28159, Republic of Korea
| | - Myung-Sil Hwang
- Food Safety Risk Assessment Division, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju, 28159, Republic of Korea
| | - Yong Eui Koo
- Food Safety Risk Assessment Division, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju, 28159, Republic of Korea
| | - Youngja H Park
- College of Pharmacy, Korea University, Sejong, 30019, Republic of Korea.
| |
Collapse
|
68
|
Ullah N, Yüce M, Neslihan Öztürk Gökçe Z, Budak H. Comparative metabolite profiling of drought stress in roots and leaves of seven Triticeae species. BMC Genomics 2017; 18:969. [PMID: 29246190 PMCID: PMC5731210 DOI: 10.1186/s12864-017-4321-2] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 11/21/2017] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Drought is a lifestyle disease. Plant metabolomics has been exercised for understanding the fine-tuning of the potential pathways to surmount the adverse effects of drought stress. A broad spectrum of morphological and metabolic responses from seven Triticeae species including wild types with different drought tolerance/susceptibility level was investigated under control and water scarcity conditions. RESULTS Significant morphological parameters measured were root length, surface area, average root diameter and overall root development. Principal Component Analysis, Partial Least-Squares-Discriminant Analysis and Hierarchical Cluster Analysis were applied to the metabolomic data obtained by Gas Chromatography-Mass Spectrometry technique in order to determine the important metabolites of the drought tolerance across seven different Triticeae species. The metabolites showing significant accumulation under the drought stress were considered as the key metabolites and correlated with potential biochemical pathways, enzymes or gene locations for a better understanding of the tolerance mechanisms. In all tested species, 45 significantly active metabolites with possible roles in drought stress were identified. Twenty-one metabolites out of forty-five including sugars, amino acids, organic acids and low molecular weight compounds increased in both leaf and root samples of TR39477, IG132864 and Bolal under the drought stress, contrasting to TTD-22, Tosunbey, Ligustica and Meyeri samples. Three metabolites including succinate, aspartate and trehalose were selected for further genome analysis due to their increased levels in TR39477, IG132864, and Bolal upon drought stress treatment as well as their significant role in energy producing biochemical pathways. CONCLUSION These results demonstrated that the genotypes with high drought tolerance skills, especially wild emmer wheat, have a great potential to be a genetic model system for experiments aiming to validate metabolomics-genomics networks.
Collapse
Affiliation(s)
- Naimat Ullah
- Faculty of Engineering and Natural Sciences, Sabanci University, 34956, Istanbul, Turkey
| | - Meral Yüce
- Nanotechnology Research and Application Centre, Sabanci University, 34956, Istanbul, Turkey
| | - Z Neslihan Öztürk Gökçe
- Ayhan Sahenk Faculty of Agricultural Sciences and Technologies, Nigde Omer Halisdemir University, 51240, Nigde, Turkey
| | - Hikmet Budak
- Department of Plant Science and Plant Pathology, Montana State University, Bozeman, MT, USA.
| |
Collapse
|
69
|
Zhong M, Li S, Huang F, Qiu J, Zhang J, Sheng Z, Tang S, Wei X, Hu P. The Phosphoproteomic Response of Rice Seedlings to Cadmium Stress. Int J Mol Sci 2017; 18:ijms18102055. [PMID: 28953215 PMCID: PMC5666737 DOI: 10.3390/ijms18102055] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 09/19/2017] [Accepted: 09/22/2017] [Indexed: 01/16/2023] Open
Abstract
The environmental damage caused by cadmium (Cd) pollution is of increasing concern in China. While the overall plant response to Cd has been investigated in some depth, the contribution (if any) of protein phosphorylation to the detoxification of Cd and the expression of tolerance is uncertain. Here, the molecular basis of the plant response has been explored in hydroponically raised rice seedlings exposed to 10 μΜ and 100 μΜ Cd2+ stress. An analysis of the seedlings’ quantitative phosphoproteome identified 2454 phosphosites, associated with 1244 proteins. A total of 482 of these proteins became differentially phosphorylated as a result of exposure to Cd stress; the number of proteins affected in this way was six times greater in the 100 μΜ Cd2+ treatment than in the 10 μΜ treatment. A functional analysis of the differentially phosphorylated proteins implied that a significant number was involved in signaling, in stress tolerance and in the neutralization of reactive oxygen species, while there was also a marked representation of transcription factors.
Collapse
Affiliation(s)
- Min Zhong
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China.
- College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, China.
| | - Sanfeng Li
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China.
| | - Fenglin Huang
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China.
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China.
| | - Jiehua Qiu
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China.
| | - Jian Zhang
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China.
| | - Zhonghua Sheng
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China.
| | - Shaoqing Tang
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China.
| | - Xiangjin Wei
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China.
| | - Peisong Hu
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China.
| |
Collapse
|
70
|
Sheng N, Zheng H, Xiao Y, Wang Z, Li M, Zhang J. Chiral separation and chemical profile of Dengzhan Shengmai by integrating comprehensive with multiple heart-cutting two-dimensional liquid chromatography coupled with quadrupole time-of-flight mass spectrometry. J Chromatogr A 2017; 1517:97-107. [DOI: 10.1016/j.chroma.2017.08.037] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 07/25/2017] [Accepted: 08/12/2017] [Indexed: 10/19/2022]
|
71
|
Hurtado C, Parastar H, Matamoros V, Piña B, Tauler R, Bayona JM. Linking the morphological and metabolomic response of Lactuca sativa L exposed to emerging contaminants using GC × GC-MS and chemometric tools. Sci Rep 2017; 7:6546. [PMID: 28747703 PMCID: PMC5529569 DOI: 10.1038/s41598-017-06773-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 06/16/2017] [Indexed: 02/05/2023] Open
Abstract
The occurrence of contaminants of emerging concern (CECs) in irrigation waters (up to low μg L-1) and irrigated crops (ng g-1 in dry weight) has been reported, but the linkage between plant morphological changes and plant metabolomic response has not yet been addressed. In this study, a non-targeted metabolomic analysis was performed on lettuce (Lactuca sativa L) exposed to 11 CECs (pharmaceuticals, personal care products, anticorrosive agents and surfactants) by irrigation. The plants were watered with different CEC concentrations (0-50 µg L-1) for 34 days under controlled conditions and then harvested, extracted, derivatised and analysed by comprehensive two-dimensional gas chromatography coupled to a time-of-flight mass spectrometer (GC × GC-TOFMS). The resulting raw data were analysed using multivariate curve resolution (MCR) and partial least squares (PLS) methods. The metabolic response indicates that exposure to CECs at environmentally relevant concentrations (0.05 µg L-1) can cause significant metabolic alterations in plants (carbohydrate metabolism, the citric acid cycle, pentose phosphate pathway and glutathione pathway) linked to changes in morphological parameters (leaf height, stem width) and chlorophyll content.
Collapse
Affiliation(s)
- Carlos Hurtado
- Department of Environmental Chemistry, IDAEA-CSIC, c/Jordi Girona, 18-26, E-08034, Barcelona, Spain
| | - Hadi Parastar
- Department of Chemistry, Sharif University of Technology, Tehran, Iran
| | - Víctor Matamoros
- Department of Environmental Chemistry, IDAEA-CSIC, c/Jordi Girona, 18-26, E-08034, Barcelona, Spain
| | - Benjamín Piña
- Department of Environmental Chemistry, IDAEA-CSIC, c/Jordi Girona, 18-26, E-08034, Barcelona, Spain
| | - Romà Tauler
- Department of Environmental Chemistry, IDAEA-CSIC, c/Jordi Girona, 18-26, E-08034, Barcelona, Spain
| | - Josep M Bayona
- Department of Environmental Chemistry, IDAEA-CSIC, c/Jordi Girona, 18-26, E-08034, Barcelona, Spain.
| |
Collapse
|
72
|
Khan WU, Ahmad SR, Yasin NA, Ali A, Ahmad A. Effect of Pseudomonas fluorescens RB4 and Bacillus subtilis 189 on the phytoremediation potential of Catharanthus roseus (L.) in Cu and Pb-contaminated soils. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2017; 19:514-521. [PMID: 27819493 DOI: 10.1080/15226514.2016.1254154] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The remediation of heavy metal-contaminated soils has become a critical issue due to toxic effects of these metals on living organisms. The current research was conducted to study the effect of Pseudomonas fluorescens RB4 and Bacillus subtilis 189 on the growth and phytoremediation potential of Catharanthus roseus in Cu- and Pb-contaminated soils. The bacterial strains exhibited significantly higher level of water-extractable Pb and Cu in Pb, Cu, and Cu+Pb-contaminated. The P. fluorescens RB4 inoculated plants, produced 102%, 48%, and 45% higher fresh weight (FW) in soils contaminated with Cu, Pb, and both elements, respectively, as compared to un-inoculated control plants. Similarly, B. subtilis 189 inoculated plants produced 108%, 43%, and 114% more FW in the presence of Cu, Pb, and both elements. The plants co-cultivated with both bacteria exhibited 121%, 102%, and 177% higher FW, in Cu, Pb, and both elements contaminated soils, as compared to respective un-inoculated control. Co-cultivation of P. fluorescens RB4, B. subtilis 189, and P. fluorescens RB4 + B. subtilis 189 resulted in higher accumulation of Cu and Pb in shoots of the C. roseus grown in contaminated soils as compared to un-inoculated control. Bacterial treatments also improved the translocation and metal bioconcentration factors. The growth and phytoextraction capability of C. roseus was improved by inoculation of P. fluorescens RB4 and B. subtilis 189.
Collapse
Affiliation(s)
- Waheed Ullah Khan
- a College of Earth and Environmental Sciences , University of the Punjab , Lahore , Pakistan
| | - Sajid Rashid Ahmad
- a College of Earth and Environmental Sciences , University of the Punjab , Lahore , Pakistan
| | | | - Aamir Ali
- c Department of Botany , University of Sargodha , Sargodha , Pakistan
| | - Aqeel Ahmad
- d Institute for Medicinal Plants, College of Plant Science and Technology , Huazhong Agricultural University , Wuhan , China
| |
Collapse
|
73
|
GC-MS Metabolomic Analysis to Reveal the Metabolites and Biological Pathways Involved in the Developmental Stages and Tissue Response of Panax ginseng. Molecules 2017; 22:molecules22030496. [PMID: 28335577 PMCID: PMC6155413 DOI: 10.3390/molecules22030496] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 03/14/2017] [Accepted: 03/16/2017] [Indexed: 11/16/2022] Open
Abstract
Ginsenosides, the major compounds present in ginseng, are known to have numerous physiological and pharmacological effects. The physiological processes, enzymes and genes involved in ginsenoside synthesis in P. ginseng have been well characterized. However, relatively little information is known about the dynamic metabolic changes that occur during ginsenoside accumulation in ginseng. To explore this topic, we isolated metabolites from different tissues at different growth stages, and identified and characterized them by using gas chromatography coupled with mass spectrometry (GC-MS). The results showed that a total of 30, 16, 20, 36 and 31 metabolites were identified and involved in different developmental stages in leaf, stem, petiole, lateral root and main root, respectively. To investigate the contribution of tissue to the biosynthesis of ginsenosides, we examined the metabolic changes of leaf, stem, petiole, lateral root and main root during five development stages: 1-, 2-, 3-, 4- and 5-years. The score plots of partial least squares-discriminate analysis (PLS-DA) showed clear discrimination between growth stages and tissue samples. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis in the same tissue at different growth stages indicated profound biochemical changes in several pathways, including carbohydrate metabolism and pentose phosphate metabolism, in addition, the tissues displayed significant variations in amino acid metabolism, sugar metabolism and energy metabolism. These results should facilitate further dissection of the metabolic flux regulation of ginsenoside accumulation in different developmental stages or different tissues of ginseng.
Collapse
|
74
|
Corpas FJ, Barroso JB. Lead-induced stress, which triggers the production of nitric oxide (NO) and superoxide anion (O 2·-) in Arabidopsis peroxisomes, affects catalase activity. Nitric Oxide 2016; 68:103-110. [PMID: 28039072 DOI: 10.1016/j.niox.2016.12.010] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Revised: 12/12/2016] [Accepted: 12/22/2016] [Indexed: 01/06/2023]
Abstract
Lead (Pb) contamination has a toxic effect on plant metabolisms, leading to a decrease in biomass production. The free radical nitric oxide (NO) is involved in the mechanism of response to a wide range of abiotic stresses. However, little is known about the interplay between Pb-induced stress and NO metabolism. Peroxisomes are sub-cellular compartments involved in multiple cellular metabolic pathways which are characterized by an active nitro-oxidative metabolism. Thus, Arabidopsis thaliana mutants expressing cyan fluorescent protein (CFP) through the addition of peroxisomal targeting signal 1 (PTS1), which enables peroxisomes to be visualized in vivo by confocal laser scanning microscopy (CLSM) combined with fluorescent probes for nitric oxide (NO), superoxide anion (O2·-) and peroxynitrite (ONOO-), were used to evaluate the potential involvement of these organelles in the mechanism of response to 150 μM lead-induced stress. Both NO and O2·- radicals, and consequently ONOO-, were overproduced under Pb-stress. Additionally, biochemical and gene expression analyses of peroxisomal enzymes, including the antioxidant catalase (CAT) and two photorespiration enzymes, such as glycolate oxidase (GOX) and hydroxypyruvate reductase (HPR), show that, under Pb-stress, only the catalase was negatively affected, while the two photorespiration enzymes remained unaffected. These results corroborate the involvement of plant peroxisomal metabolisms in the mechanism of response to lead contamination and highlight the importance of the peroxisomal NO metabolism.
Collapse
Affiliation(s)
- Francisco J Corpas
- Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, C/Profesor Albareda 1, E-18008 Granada, Spain.
| | - Juan B Barroso
- Group of Biochemistry and Cell Signaling in Nitric Oxide, Department of Biochemistry and Molecular Biology, University of Jaén, Campus "Las Lagunillas", E-23071 Jaén, Spain
| |
Collapse
|
75
|
Wang Y, Xu L, Tang M, Jiang H, Chen W, Zhang W, Wang R, Liu L. Functional and Integrative Analysis of the Proteomic Profile of Radish Root under Pb Exposure. FRONTIERS IN PLANT SCIENCE 2016; 7:1871. [PMID: 28018404 PMCID: PMC5156831 DOI: 10.3389/fpls.2016.01871] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 11/28/2016] [Indexed: 05/22/2023]
Abstract
Lead (Pb) is one of the most abundant heavy metal (HM) pollutants, which can penetrate the plant through the root and then enter the food chain causing potential health risks for human beings. Radish is an important root vegetable crop worldwide. To investigate the mechanism underlying plant response to Pb stress in radish, the protein profile changes of radish roots respectively upon Pb(NO3)2 at 500 mg L-1(Pb500) and 1000 mg L-1(Pb1000), were comprehensively analyzed using iTRAQ (Isobaric Tag for Relative and Absolute Quantification). A total of 3898 protein species were successfully detected and 2141 were quantified. Among them, a subset of 721 protein species were differentially accumulated upon at least one Pb treatment, and 135 ones showed significantly abundance changes under both two Pb-stressed conditions. Many critical protein species related to protein translation, processing, and degradation, reactive oxygen species (ROS) scavenging, photosynthesis, and respiration and carbon metabolism were successfully identified. Gene Ontology (GO) and pathway enrichment analysis of the 135 differential abundance protein species (DAPS) revealed that the overrepresented GO terms included "cell wall," "apoplast," "response to metal ion," "vacuole," and "peroxidase activity," and the critical enriched pathways were involved in "citric acid (TCA) cycle and respiratory electron transport," "pyruvate metabolism," "phenylalanine metabolism," "phenylpropanoid biosynthesis," and "carbon metabolism." Furthermore, the integrative analysis of transcriptomic, miRNA, degradome, metabolomics and proteomic data provided a strengthened understanding of radish response to Pb stress at multiple levels. Under Pb stress, many key enzymes (i.e., ATP citrate lyase, Isocitrate dehydrogenase, fumarate hydratase and malate dehydrogenase) involved in the glycolysis and TCA cycle were severely affected, which ultimately cause alteration of some metabolites including glucose, citrate and malate. Meanwhile, a series of other defense responses including ascorbate (ASA)-glutathione (GSH) cycle for ROS scavenging and Pb-defense protein species (glutaredoxin, aldose 1-epimerase malate dehydrogenase and thioredoxin), were triggered to cope with Pb-induced injuries. These results would be helpful for further dissecting molecular mechanism underlying plant response to HM stresses, and facilitate effective management of HM contamination in vegetable crops by genetic manipulation.
Collapse
|