51
|
Gao H, Zhang Y, Jiang H, Hu X, Zhang Y, Zhou X, Zhong F, Lin C, Li J, Luo J, Zhang J. Crystal structures of human coronavirus NL63 main protease at different pH values. Acta Crystallogr F Struct Biol Commun 2021; 77:348-355. [PMID: 34605439 PMCID: PMC8488857 DOI: 10.1107/s2053230x21009523] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 09/13/2021] [Indexed: 12/13/2022] Open
Abstract
Human coronavirus NL63 (HCoV-NL63), which belongs to the genus Alphacoronavirus, mainly infects children and the immunocompromized and is responsible for a series of clinical manifestations, including cough, fever, rhinorrhoea, bronchiolitis and croup. HCoV-NL63, which was first isolated from a seven-month-old child in 2004, has led to infections worldwide and accounts for 10% of all respiratory illnesses caused by etiological agents. However, effective antivirals against HCoV-NL63 infection are currently unavailable. The HCoV-NL63 main protease (Mpro), also called 3C-like protease (3CLpro), plays a vital role in mediating viral replication and transcription by catalyzing the cleavage of replicase polyproteins (pp1a and pp1ab) into functional subunits. Moreover, Mpro is highly conserved among all coronaviruses, thus making it a prominent drug target for antiviral therapy. Here, four crystal structures of HCoV-NL63 Mpro in the apo form at different pH values are reported at resolutions of up to 1.78 Å. Comparison with Mpro from other human betacoronaviruses such as SARS-CoV-2 and SARS-CoV reveals common and distinct structural features in different genera and extends knowledge of the diversity, function and evolution of coronaviruses.
Collapse
Affiliation(s)
- Hongxia Gao
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, People’s Republic of China
| | - Yuting Zhang
- School of Basic Medical Sciences, Nanchang University, Nanchang, Jiangxi 330031, People’s Republic of China
| | - Haihai Jiang
- School of Basic Medical Sciences, Nanchang University, Nanchang, Jiangxi 330031, People’s Republic of China
| | - Xiaohui Hu
- School of Basic Medical Sciences, Nanchang University, Nanchang, Jiangxi 330031, People’s Republic of China
| | - Yuting Zhang
- School of Basic Medical Sciences, Nanchang University, Nanchang, Jiangxi 330031, People’s Republic of China
| | - Xuelan Zhou
- School of Basic Medical Sciences, Nanchang University, Nanchang, Jiangxi 330031, People’s Republic of China
- College of Pharmaceutical Sciences, Gannan Medical University, Ganzhou, Jiangxi 341000, People’s Republic of China
| | - Fanglin Zhong
- Shenzhen Crystalo Biopharmaceutical Co. Ltd, Shenzhen, Guangdong 518118, People’s Republic of China
- Jiangxi Jmerry Biopharmaceutical Co. Ltd, Ganzhou, Jiangxi 341000, People’s Republic of China
| | - Cheng Lin
- Shenzhen Crystalo Biopharmaceutical Co. Ltd, Shenzhen, Guangdong 518118, People’s Republic of China
- Jiangxi Jmerry Biopharmaceutical Co. Ltd, Ganzhou, Jiangxi 341000, People’s Republic of China
| | - Jian Li
- College of Pharmaceutical Sciences, Gannan Medical University, Ganzhou, Jiangxi 341000, People’s Republic of China
| | - Jun Luo
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, People’s Republic of China
| | - Jin Zhang
- School of Basic Medical Sciences, Nanchang University, Nanchang, Jiangxi 330031, People’s Republic of China
| |
Collapse
|
52
|
Structure-based discovery and structural basis of a novel broad-spectrum natural product against main protease of coronavirus. J Virol 2021; 96:e0125321. [PMID: 34586857 PMCID: PMC8754229 DOI: 10.1128/jvi.01253-21] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Over the past 20 years, the severe acute respiratory syndrome coronavirus (SARS-CoV), Middle East respiratory syndrome CoV (MERS-CoV), and SARS-CoV-2 emerged, causing severe human respiratory diseases throughout the globe. Developing broad-spectrum drugs would be invaluable in responding to new, emerging coronaviruses and to address unmet urgent clinical needs. Main protease (Mpro; also known as 3CLpro) has a major role in the coronavirus life cycle and is one of the most important targets for anti-coronavirus agents. We show that a natural product, noncovalent inhibitor, shikonin, is a pan-main protease inhibitor of SARS-CoV-2, SARS-CoV, MERS-CoV, human coronavirus (HCoV)-HKU1, HCoV-NL63, and HCoV-229E with micromolar half maximal inhibitory concentration (IC50) values. Structures of the main protease of different coronavirus genus, SARS-CoV from the betacoronavirus genus and HCoV-NL63 from the alphacoronavirus genus, were determined by X-ray crystallography and revealed that the inhibitor interacts with key active site residues in a unique mode. The structure of the main protease inhibitor complex presents an opportunity to discover a novel series of broad-spectrum inhibitors. These data provide substantial evidence that shikonin and its derivatives may be effective against most coronaviruses as well as emerging coronaviruses of the future. Given the importance of the main protease for coronavirus therapeutic indication, insights from these studies should accelerate the development and design of safer and more effective antiviral agents. IMPORTANCE The current pandemic has created an urgent need for broad-spectrum inhibitors of SARS-CoV-2. The main protease is relatively conservative compared to the spike protein and, thus, is one of the most promising targets in developing anti-coronavirus agents. We solved the crystal structures of the main protease of SARS-CoV and HCoV-NL63 that bound to shikonin. The structures provide important insights, have broad implications for understanding the structural basis underlying enzyme activity, and can facilitate rational design of broad-spectrum anti-coronavirus ligands as new therapeutic agents.
Collapse
|
53
|
Ferreira GM, Kronenberger T, Tonduru AK, Hirata RDC, Hirata MH, Poso A. SARS-COV-2 M pro conformational changes induced by covalently bound ligands. J Biomol Struct Dyn 2021; 40:12347-12357. [PMID: 34516349 PMCID: PMC8442757 DOI: 10.1080/07391102.2021.1970626] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 08/16/2021] [Indexed: 12/24/2022]
Abstract
SARS-CoV-2's main protease (Mpro) interaction with ligands has been explored with a myriad of crystal structures, most of the monomers. Nonetheless, Mpro is known to be active as a dimer but the relevance of the dimerization in the ligand-induced conformational changes has not been fully elucidated. We systematically simulated different Mpro-ligand complexes aiming to study their conformational changes and interactions, through molecular dynamics (MD). We focused on covalently bound ligands (N1 and N3, ∼9 μs per system both monomers and dimers) and compared these trajectories against the apostructure. Our results suggest that the monomeric simulations led to an unrealistically flexible active site. In contrast, the Mpro dimer displayed a stable oxyanion-loop conformation along the trajectory. Also, ligand interactions with residues His41, Gly143, His163, Glu166 and Gln189 are postulated to impact the ligands' inhibitory activity significantly. In dimeric simulations, especially Gly143 and His163 have increased interaction frequencies. In conclusion, long-timescale MD is a more suitable tool for exploring in silico the activity of bioactive compounds that potentially inhibit the dimeric form of SARS-CoV-2 Mpro.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Glaucio Monteiro Ferreira
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
- Department of Oncology and Pneumonology, Internal Medicine VIII, University Hospital Tübingen, Tübingen, Germany
| | - Thales Kronenberger
- Department of Oncology and Pneumonology, Internal Medicine VIII, University Hospital Tübingen, Tübingen, Germany
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Arun Kumar Tonduru
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Rosario Dominguez Crespo Hirata
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Mario Hiroyuki Hirata
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Antti Poso
- Department of Oncology and Pneumonology, Internal Medicine VIII, University Hospital Tübingen, Tübingen, Germany
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
54
|
Said MA, Khan DJO, Al-blewi FF, Al-Kaff NS, Ali AA, Rezki N, Aouad MR, Hagar M. New 1,2,3-Triazole Scaffold Schiff Bases as Potential Anti-COVID-19: Design, Synthesis, DFT-Molecular Docking, and Cytotoxicity Aspects. Vaccines (Basel) 2021; 9:vaccines9091012. [PMID: 34579249 PMCID: PMC8472185 DOI: 10.3390/vaccines9091012] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/24/2021] [Accepted: 09/01/2021] [Indexed: 11/16/2022] Open
Abstract
Schiff bases encompassing a 1,2,3-triazole motif were synthesized using an efficient multi-step synthesis. The formations of targeted Schiff base ligands were confirmed by different spectroscopic techniques (FT-IR, 1H NMR, 13C NMR, and CHN analysis). The spectral data analysis revealed that the newly designed hydrazones exist as a mixture of trans-E and cis-E diastereomers. Densityfunctional theory calculations (DFT) for the Schiff bases showed that the trans-trans form has the lowest energy structure with maximum stability compared to the other possible geometrical isomers that could be present due to the orientation of the amidic NH-C=O group. The energy differences between the trans-trans on one side and syn-syn and syn-trans isomers on the other side were 9.26 and 5.56 kcal/mol, respectively. A quantitative structure-activity relationship investigation was also performed in terms of density functional theory. The binding affinities of the newly synthesized bases are, maybe, attributed to the presence of hydrogen bonds together with many hydrophobic interactions between the ligands and the active amino acid residue of the receptor. The superposition of the inhibitor N3 and an example ligand into the binding pocket of 7BQY is also presented. Further interesting comparative docking analyses were performed. Quantitative structure-activity relationship calculations are presented, illustrating possible inhibitory activity. Further computer-aided cytotoxicity analysis by Drug2Way and PASS online software was carried out for Schiff base ligands against various cancer cell lines. Overall, the results of this study suggest that these Schiff base derivatives may be considered for further investigation as possible therapeutic agents for COVID-19.
Collapse
Affiliation(s)
- Musa A. Said
- Department of Chemistry, College of Science, Taibah University, Al-Madinah Al-Munawarah 30002, Saudi Arabia; (D.J.O.K.); (F.F.A.-b.); (A.A.A.); (N.R.)
- Correspondence: (M.A.S.); (M.R.A.)
| | - Daoud J. O. Khan
- Department of Chemistry, College of Science, Taibah University, Al-Madinah Al-Munawarah 30002, Saudi Arabia; (D.J.O.K.); (F.F.A.-b.); (A.A.A.); (N.R.)
| | - Fawzia F. Al-blewi
- Department of Chemistry, College of Science, Taibah University, Al-Madinah Al-Munawarah 30002, Saudi Arabia; (D.J.O.K.); (F.F.A.-b.); (A.A.A.); (N.R.)
| | - Nadia S. Al-Kaff
- Department of Biology, College of Science, Taibah University, Al-Madinah Al-Munawarah 30002, Saudi Arabia;
| | - Adeeb A. Ali
- Department of Chemistry, College of Science, Taibah University, Al-Madinah Al-Munawarah 30002, Saudi Arabia; (D.J.O.K.); (F.F.A.-b.); (A.A.A.); (N.R.)
| | - Nadjet Rezki
- Department of Chemistry, College of Science, Taibah University, Al-Madinah Al-Munawarah 30002, Saudi Arabia; (D.J.O.K.); (F.F.A.-b.); (A.A.A.); (N.R.)
| | - Mohamed Reda Aouad
- Department of Chemistry, College of Science, Taibah University, Al-Madinah Al-Munawarah 30002, Saudi Arabia; (D.J.O.K.); (F.F.A.-b.); (A.A.A.); (N.R.)
- Correspondence: (M.A.S.); (M.R.A.)
| | - Mohamed Hagar
- Chemistry Department, College of Sciences, Taibah University, Yanbu 30799, Saudi Arabia;
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria 21321, Egypt
| |
Collapse
|
55
|
Ancy I, Sivanandam M, Kumaradhas P. Possibility of HIV-1 protease inhibitors-clinical trial drugs as repurposed drugs for SARS-CoV-2 main protease: a molecular docking, molecular dynamics and binding free energy simulation study. J Biomol Struct Dyn 2021; 39:5368-5375. [PMID: 32627689 PMCID: PMC7441795 DOI: 10.1080/07391102.2020.1786459] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 06/18/2020] [Indexed: 12/15/2022]
Abstract
Initially, the SARS-CoV-2 virus was emerged from Wuhan, China and rapidly spreading across the world and urges the scientific community to develop antiviral therapeutic agents. Among several strategies, drug repurposing will help to react immediately to overcome the COVID-19 pandemic. In the present study, we have chosen two clinical trial drugs against HIV-1 protease namely, TMB607 and TMC310911 to use as the inhibitors of SARS-CoV-2 main protease (Mpro) enzyme. To make use of these two inhibitors as the repurposed drugs for COVID-19, it is essential to know the molecular basis of the binding mechanism of these two molecules with the SARS-CoV-2 Mpro. To understand the binding mechanism, we have performed molecular docking, molecular dynamics (MD) simulations, and binding free energy calculations against the SARS-CoV-2 Mpro. The docking results indicate that both molecules form intermolecular interactions with the active site amino acids of Mpro enzyme. However, during the MD simulations, TMB607 forms strong interaction with the key amino acids of Mpro, and remains intact. The RMSD and RMSF values of both complexes were stable throughout the MD simulations. The MM-GBSA binding free energy values of both complexes are -43.7 and -34.9 kcal/mol, respectively. This in silico study proves that the TMB607 molecule binds strongly with the SARS-CoV-2 Mpro enzyme and it may be suitable for the drug repurposing of COVID-19 and further drug designing.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Iruthayaraj Ancy
- Laboratory of Biocrystallography and Computational Molecular Biology, Department of Physics, Periyar University, Salem, India
| | - Mugudeeswaran Sivanandam
- Laboratory of Biocrystallography and Computational Molecular Biology, Department of Physics, Periyar University, Salem, India
| | - Poomani Kumaradhas
- Laboratory of Biocrystallography and Computational Molecular Biology, Department of Physics, Periyar University, Salem, India
| |
Collapse
|
56
|
García-Gutiérrez P, Zubillaga RA, Ibarra IA, Martínez A, Vargas R, Garza J. Non-conventional interactions of N3 inhibitor with the main protease of SARS-CoV and SARS-CoV-2. Comput Struct Biotechnol J 2021; 19:4669-4675. [PMID: 34401047 PMCID: PMC8357482 DOI: 10.1016/j.csbj.2021.08.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 08/09/2021] [Accepted: 08/09/2021] [Indexed: 12/21/2022] Open
Abstract
The extensive spread of COVID-19 in every continent shows that SARS-CoV-2 virus has a higher transmission rate than SARS-CoV virus which emerged in 2002. This results in a global pandemic that is difficult to control. In this investigation, we analyze the interaction of N3 inhibitor and the main protease of SARS-CoV and SARS-CoV-2 by quantum chemistry calculations. Non-covalent interactions involved in these systems were studied using a model of 469 atoms. Density Functional Theory and Quantum Theory of Atoms in Molecules calculations lead us to the conclusion that non-conventional hydrogen bonds are important to describe attractive interactions in these complexes. The energy of these non-conventional hydrogen bonds represents more than a half of the estimated interaction energy for non-covalent contacts. This means that hydrogen bonds are crucial to correctly describe the bonds between inhibitors and the main proteases. These results could be useful for the design of new drugs, since non-covalent interactions are related to possible mechanisms of action of molecules used against these viruses.
Collapse
Affiliation(s)
- Ponciano García-Gutiérrez
- Departamento de Química, División de Ciencias Básicas e Ingeniería, Universidad Autónoma Metropolitana-Iztapalapa, San Rafael Atlixco 186, Col. Vicentina, Iztapalapa 09340, Ciudad de México, Mexico
| | - Rafael A. Zubillaga
- Departamento de Química, División de Ciencias Básicas e Ingeniería, Universidad Autónoma Metropolitana-Iztapalapa, San Rafael Atlixco 186, Col. Vicentina, Iztapalapa 09340, Ciudad de México, Mexico
| | - Ilich A. Ibarra
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior S. N., Ciudad Universitaria, Coyoacán 04510, Ciudad de México, Mexico
| | - Ana Martínez
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior S. N., Ciudad Universitaria, Coyoacán 04510, Ciudad de México, Mexico
| | - Rubicelia Vargas
- Departamento de Química, División de Ciencias Básicas e Ingeniería, Universidad Autónoma Metropolitana-Iztapalapa, San Rafael Atlixco 186, Col. Vicentina, Iztapalapa 09340, Ciudad de México, Mexico
| | - Jorge Garza
- Departamento de Química, División de Ciencias Básicas e Ingeniería, Universidad Autónoma Metropolitana-Iztapalapa, San Rafael Atlixco 186, Col. Vicentina, Iztapalapa 09340, Ciudad de México, Mexico
| |
Collapse
|
57
|
Bhavaniramya S, Ramar V, Vishnupriya S, Palaniappan R, Sibiya A, Baskaralingam V. Comprehensive analysis of SARS-COV-2 drug targets and pharmacological aspects in treating the COVID-19. Curr Mol Pharmacol 2021; 15:393-417. [PMID: 34382513 DOI: 10.2174/1874467214666210811120635] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/27/2021] [Accepted: 02/22/2021] [Indexed: 11/22/2022]
Abstract
Corona viruses are enveloped, single-stranded RNA (Ribonucleic acid) viruses and they cause pandemic diseases having a devastating effect on both human healthcare and the global economy. To date, six corona viruses have been identified as pathogenic organisms which are significantly responsible for the infection and also cause severe respiratory diseases. Among them, the novel SARS-CoV-2 (Severe acute respiratory syndrome coronavirus 2) caused a major outbreak of corona virus diseases 2019 (COVID-19). Coronaviridae family members can affects both humans and animals. In human, corona viruses cause severe acute respiratory syndrome with mild to severe outcomes. Several structural and genomics have been investigated, and the genome encodes about 28 proteins most of them with unknown function though it shares remarkable sequence identity with other proteins. There is no potent and licensed vaccine against SARS-CoV-2 and several trials are underway to investigate the possible therapeutic agents against viral infection. However, some of the antiviral drugs that have been investigated against SARS-CoV-2 are under clinical trials. In the current review we comparatively emphasize the emergence and pathogenicity of the SARS-CoV-2 and their infection and discuss the various putative drug targets of both viral and host receptors for developing effective vaccines and therapeutic combinations to overcome the viral outbreak.
Collapse
Affiliation(s)
- Sundaresan Bhavaniramya
- Biomaterials and Biotechnology in Animal Health Lab, Department of Animal Health and Management, Alagappa University, Karaikudi 630004, Tamil Nadu. India
| | - Vanajothi Ramar
- Department of Biomedical Science, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620024. India
| | - Selvaraju Vishnupriya
- College of Food and Dairy Technology, Tamil Nadu Veterinary and Animal Sciences University, Chennai 600052. India
| | - Ramasamy Palaniappan
- Research and Development Wing, Sree Balaji Medical College and Hospital, Bharath Institute of Higher Education (BIHER), Chennai-600044, Tamilnadu. India
| | - Ashokkumar Sibiya
- Biomaterials and Biotechnology in Animal Health Lab, Department of Animal Health and Management, Alagappa University, Karaikudi 630004, Tamil Nadu. India
| | - Vaseeharan Baskaralingam
- Biomaterials and Biotechnology in Animal Health Lab, Department of Animal Health and Management, Alagappa University, Karaikudi 630004, Tamil Nadu. India
| |
Collapse
|
58
|
Mishra D, Maurya RR, Kumar K, Munjal NS, Bahadur V, Sharma S, Singh P, Bahadur I. Structurally modified compounds of hydroxychloroquine, remdesivir and tetrahydrocannabinol against main protease of SARS-CoV-2, a possible hope for COVID-19: Docking and molecular dynamics simulation studies. J Mol Liq 2021; 335:116185. [PMID: 33879934 PMCID: PMC8051003 DOI: 10.1016/j.molliq.2021.116185] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 04/03/2021] [Accepted: 04/14/2021] [Indexed: 02/07/2023]
Abstract
Now a days, more than 200 countries faces the health crisis due to epidemiological disease COVID-19 caused by SARS-CoV-2 virus. It will cause a very high impact on world's economy and global health sector. Earlier the structure of main protease (Mpro) protein was deposited in the RCSB protein repository. Hydroxychloroquine (HCQ) and remdesivir were found to effective in treatment of COVID-19 patients. Here we have performed docking and molecule dynamic (MD) simulation study of HCQ and remdesivir with Mpro protein which gave promising results to inhibit Mpro protein in SARS-CoV-2. On the basis of results obtained we designed structurally modified 18 novel derivatives of HCQ, remdesivir and tetrahydrocannabinol (THC) and carried out docking studies of all the derivatives. From the docking studies six molecules DK4, DK7, DK10, DK16, DK17 and DK19 gave promising results and can be use as inhibitor for Mpro of SARS-CoV-2 to control COVID-19 very effectively. Further, molecular dynamics simulation of one derivative of HCQ and one derivative of tetrahydrocannabinol showing excellent docking score was performed along with the respective parent molecules. The two derivatives gave excellent docking score and higher stability than the parent molecule as validated with molecular dynamics (MD) simulation for the binding affinities towards Mpro of SARS-CoV-2 thus represented as strong inhibitors at very low concentration.
Collapse
Affiliation(s)
- Deepak Mishra
- Department of Chemistry, SRM University, Delhi-NCR Sonepa t, Haryana 131029, India
| | - Radha Raman Maurya
- Department of Chemistry, Ramjas College, University of Delhi, University Enclave, Delhi 110007, India
| | - Kamlesh Kumar
- Department of Chemistry, Kumaun University, Nainital 263001, UK, India,Corresponding authors
| | - Nupur S. Munjal
- Institute of Bioinformatics, International Technology Park, Bangalore 560066, India
| | - Vijay Bahadur
- Department of Chemistry, SRM University, Delhi-NCR Sonepa t, Haryana 131029, India
| | - Sandeep Sharma
- Department of Chemistry, SRM University, Delhi-NCR Sonepa t, Haryana 131029, India
| | - Prashant Singh
- Department of Chemistry, Atma Ram Sanatan Dharma (ARSD) College, Delhi University, New Delhi 110021, India
| | - Indra Bahadur
- Department of Chemistry, Faculty of Natural and Agricultural Sciences, North-West University, South Africa,Corresponding authors
| |
Collapse
|
59
|
Sztain T, Amaro R, McCammon JA. Elucidation of Cryptic and Allosteric Pockets within the SARS-CoV-2 Main Protease. J Chem Inf Model 2021; 61:3495-3501. [PMID: 33939913 PMCID: PMC8117783 DOI: 10.1021/acs.jcim.1c00140] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Indexed: 01/09/2023]
Abstract
The SARS-CoV-2 pandemic has rapidly spread across the globe, posing an urgent health concern. Many quests to computationally identify treatments against the virus rely on in silico small molecule docking to experimentally determined structures of viral proteins. One limit to these approaches is that protein dynamics are often unaccounted for, leading to overlooking transient, druggable conformational states. Using Gaussian accelerated molecular dynamics to enhance sampling of conformational space, we identified cryptic pockets within the SARS-CoV-2 main protease, including some within regions far from the active site. These simulations sampled comparable dynamics and pocket volumes to conventional brute force simulations carried out on two orders of magnitude greater timescales.
Collapse
Affiliation(s)
| | - Rommie Amaro
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
| | - J. Andrew McCammon
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
- Department of Pharmacology, University of California, San Diego, La Jolla, California 92093, United States
| |
Collapse
|
60
|
Ning S, Yu B, Wang Y, Wang F. SARS-CoV-2: Origin, Evolution, and Targeting Inhibition. Front Cell Infect Microbiol 2021; 11:676451. [PMID: 34222046 PMCID: PMC8248807 DOI: 10.3389/fcimb.2021.676451] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 05/28/2021] [Indexed: 01/18/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) caused an outbreak in Wuhan city, China and quickly spread worldwide. Currently, there are no specific drugs or antibodies that claim to cure severe acute respiratory diseases. For SARS-CoV-2, the spike (S) protein recognizes and binds to the angiotensin converting enzyme 2 (ACE2) receptor, allowing viral RNA to enter the host cell. The main protease (Mpro) is involved in the proteolytic process for mature non-structural proteins, and RNA-dependent RNA polymerase (RdRp) is responsible for the viral genome replication and transcription processes. Owing to the pivotal physiological roles in viral invasion and replication, S protein, Mpro, RdRp are regarded as the main therapeutic targets for coronavirus disease 2019 (COVID-19). In this review, we carried out an evolutionary analysis of SARS-CoV-2 in comparison with other mammal-infecting coronaviruses that have sprung up in the past few decades and described the pathogenic mechanism of SARS-CoV-2. We displayed the structural details of S protein, Mpro, and RdRp, as well as their complex structures with different chemical inhibitors or antibodies. Structural comparisons showed that some neutralizing antibodies and small molecule inhibitors could inhibit S protein, Mpro, or RdRp. Moreover, we analyzed the structural differences between SARS-CoV-2 ancestral S protein and D614G mutant, which led to a second wave of infection during the recent pandemic. In this context, we outline the methods that might potentially help cure COVID-19 and provide a summary of effective chemical molecules and neutralizing antibodies.
Collapse
Affiliation(s)
- Shuo Ning
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Beiming Yu
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Yanfeng Wang
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Feng Wang
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, China
| |
Collapse
|
61
|
Alam S, Kamal TB, Sarker MMR, Zhou JR, Rahman SMA, Mohamed IN. Therapeutic Effectiveness and Safety of Repurposing Drugs for the Treatment of COVID-19: Position Standing in 2021. Front Pharmacol 2021; 12:659577. [PMID: 34220503 PMCID: PMC8243370 DOI: 10.3389/fphar.2021.659577] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 04/28/2021] [Indexed: 02/06/2023] Open
Abstract
COVID-19, transmitted by SARS-CoV-2, is one of the most serious pandemic situations in the history of mankind, and has already infected a huge population across the globe. This horrendously contagious viral outbreak was first identified in China and within a very short time it affected the world's health, transport, economic, and academic sectors. Despite the recent approval of a few anti-COVID-19 vaccines, their unavailability and insufficiency along with the lack of other potential therapeutic options are continuing to worsen the situation, with valuable lives continuing to be lost. In this situation, researchers across the globe are focusing on repurposing prospective drugs and prophylaxis such as favipiravir, remdesivir, chloroquine, hydroxychloroquine, ivermectin, lopinavir-ritonavir, azithromycin, doxycycline, ACEIs/ARBs, rivaroxaban, and protease inhibitors, which were preliminarily based on in vitro and in vivo pharmacological and toxicological study reports followed by clinical applications. Based on available preliminary data derived from limited clinical trials, the US National Institute of Health (NIH) and USFDA also recommended a few drugs to be repurposed i.e., hydroxychloroquine, remdesivir, and favipiravir. However, World Health Organization later recommended against the use of chloroquine, hydroxychloroquine, remdesivir, and lopinavir/ritonavir in the treatment of COVID-19 infections. Combining basic knowledge of viral pathogenesis and pharmacodynamics of drug molecules as well as in silico approaches, many drug candidates have been investigated in clinical trials, some of which have been proven to be partially effective against COVID-19, and many of the other drugs are currently under extensive screening. The repurposing of prospective drug candidates from different stages of evaluation can be a handy wellspring in COVID-19 management and treatment along with approved anti-COVID-19 vaccines. This review article combined the information from completed clinical trials, case series, cohort studies, meta-analyses, and retrospective studies to focus on the current status of repurposing drugs in 2021.
Collapse
Affiliation(s)
- Safaet Alam
- Department of Pharmacy, State University of Bangladesh, Dhaka, Bangladesh
| | | | - Md. Moklesur Rahman Sarker
- Department of Pharmacy, State University of Bangladesh, Dhaka, Bangladesh
- Pharmacology and Toxicology Research Division, Health Med Science Research Limited, Dhaka, Bangladesh
| | - Jin-Rong Zhou
- Nutrition/Metabolism Laboratory, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - S. M. Abdur Rahman
- Department of Clinical Pharmacy and Pharmacology, Faculty of Pharmacy, University of Dhaka, Dhaka, Bangladesh
| | - Isa Naina Mohamed
- Pharmacology Department, Medical Faculty, Universiti Kebangsaan Malaysia (The National University of Malaysia), Kuala Lumpur, Malaysia
| |
Collapse
|
62
|
Molecular mechanism of anti-SARS-CoV2 activity of Ashwagandha-derived withanolides. Int J Biol Macromol 2021; 184:297-312. [PMID: 34118289 PMCID: PMC8188803 DOI: 10.1016/j.ijbiomac.2021.06.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 06/01/2021] [Accepted: 06/02/2021] [Indexed: 10/31/2022]
Abstract
COVID-19 caused by SARS-CoV-2 corona virus has become a global pandemic. In the absence of drugs and vaccine, and premises of time, efforts and cost required for their development, natural resources such as herbs are anticipated to provide some help and may also offer a promising resource for drug development. Here, we have investigated the therapeutic prospective of Ashwagandha for the COVID-19 pandemic. Nine withanolides were tested in silico for their potential to target and inhibit (i) cell surface receptor protein (TMPRSS2) that is required for entry of virus to host cells and (ii) viral protein (the main protease Mpro) that is essential for virus replication. We report that the withanolides possess capacity to inhibit the activity of TMPRSS2 and Mpro. Furthermore, withanolide-treated cells showed downregulation of TMPRSS2 expression and inhibition of SARS-CoV-2 replication in vitro, suggesting that Ashwagandha may provide a useful resource for COVID-19 treatment.
Collapse
|
63
|
Nicholls RA, Wojdyr M, Joosten RP, Catapano L, Long F, Fischer M, Emsley P, Murshudov GN. The missing link: covalent linkages in structural models. Acta Crystallogr D Struct Biol 2021; 77:727-745. [PMID: 34076588 PMCID: PMC8171067 DOI: 10.1107/s2059798321003934] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 04/13/2021] [Indexed: 11/10/2022] Open
Abstract
Covalent linkages between constituent blocks of macromolecules and ligands have been subject to inconsistent treatment during the model-building, refinement and deposition process. This may stem from a number of sources, including difficulties with initially detecting the covalent linkage, identifying the correct chemistry, obtaining an appropriate restraint dictionary and ensuring its correct application. The analysis presented herein assesses the extent of problems involving covalent linkages in the Protein Data Bank (PDB). Not only will this facilitate the remediation of existing models, but also, more importantly, it will inform and thus improve the quality of future linkages. By considering linkages of known type in the CCP4 Monomer Library (CCP4-ML), failure to model a covalent linkage is identified to result in inaccurate (systematically longer) interatomic distances. Scanning the PDB for proximal atom pairs that do not have a corresponding type in the CCP4-ML reveals a large number of commonly occurring types of unannotated potential linkages; in general, these may or may not be covalently linked. Manual consideration of the most commonly occurring cases identifies a number of genuine classes of covalent linkages. The recent expansion of the CCP4-ML is discussed, which has involved the addition of over 16 000 and the replacement of over 11 000 component dictionaries using AceDRG. As part of this effort, the CCP4-ML has also been extended using AceDRG link dictionaries for the aforementioned linkage types identified in this analysis. This will facilitate the identification of such linkage types in future modelling efforts, whilst concurrently easing the process involved in their application. The need for a universal standard for maintaining link records corresponding to covalent linkages, and references to the associated dictionaries used during modelling and refinement, following deposition to the PDB is emphasized. The importance of correctly modelling covalent linkages is demonstrated using a case study, which involves the covalent linkage of an inhibitor to the main protease in various viral species, including SARS-CoV-2. This example demonstrates the importance of properly modelling covalent linkages using a comprehensive restraint dictionary, as opposed to just using a single interatomic distance restraint or failing to model the covalent linkage at all.
Collapse
Affiliation(s)
- Robert A. Nicholls
- Structural Studies, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom
| | - Marcin Wojdyr
- Global Phasing Limited, Sheraton House, Castle Park, Cambridge CB3 0AX, United Kingdom
| | - Robbie P. Joosten
- Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
- Oncode Institute, The Netherlands
| | - Lucrezia Catapano
- Structural Studies, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom
- Randall Centre for Cell and Molecular Biophysics, Faculty of Life Sciences and Medicine, King’s College London, London SE1 9RT, United Kingdom
| | - Fei Long
- Structural Studies, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom
| | - Marcus Fischer
- Chemical Biology and Therapeutics and Structural Biology, St Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105-3678, USA
| | - Paul Emsley
- Structural Studies, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom
| | - Garib N. Murshudov
- Structural Studies, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom
| |
Collapse
|
64
|
Ben Hadda T, Berredjem M, Almalki FA, Rastija V, Jamalis J, Emran TB, Abu-Izneid T, Esharkawy E, Rodriguez LC, Alqahtani AM. How to face COVID-19: proposed treatments based on remdesivir and hydroxychloroquine in the presence of zinc sulfate. Docking/DFT/POM structural analysis. J Biomol Struct Dyn 2021; 40:9429-9442. [PMID: 34033727 PMCID: PMC8171014 DOI: 10.1080/07391102.2021.1930161] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Remdesivir and hydroxychloroquine derivatives form two important classes of heterocyclic compounds. They are known for their anti-malarial biological activity. This research aims to analyze the physicochemical properties of remdesivir and hydroxychloroquine compounds by the computational approach. DFT, docking, and POM analyses also identify antiviral pharmacophore sites of both compounds. The antiviral activity of hydroxychloroquine compound's in the presence of zinc sulfate and azithromycin is evaluated through its capacity to coordinate transition metals (M = Cu, Ni, Zn, Co, Ru, Pt). The obtained bioinformatic results showed the potent antiviral/antibacterial activity of the prepared mixture (Hydroxychloroquine/Azithromycin/Zinc sulfate) for all the opportunistic Gram-positive, Gram-negative in the presence of coronavirus compared with the complexes Polypyridine-Ruthenium-di-aquo. The postulated zinc(II) complex of hydroxychloroquine derivatives are indeed an effective antibacterial and antiviral agent against coronavirus and should be extended to other pathogens. The combination of a pharmacophore site with a redox [Metal(OH2)2] moiety is of crucial role to fight against viruses and bacteria strains. [Formula: see text]Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Taibi Ben Hadda
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia,Laboratory of Applied Chemistry & Environment, Faculty of Science, University Mohammed the first, Oujda, Morocco,CONTACT Taibi Ben Hadda Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Umm Al-Qura University, Makkah, Almukkarramah 21955, Saudi Arabia; Malika Berredjem Laboratory of Applied Organic Chemistry LCOA, Synthesis of Biomolecules and Molecular Modelling Group, Badji-Mokhtar - Annaba University, Box 12, 23000, Annaba, Algeria
| | - Malika Berredjem
- Laboratory of Applied Organic Chemistry LCOA, Synthesis of Biomolecules and Molecular Modelling Group, Badji-Mokhtar - Annaba University, Annaba, Algeria,CONTACT Taibi Ben Hadda Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Umm Al-Qura University, Makkah, Almukkarramah 21955, Saudi Arabia; Malika Berredjem Laboratory of Applied Organic Chemistry LCOA, Synthesis of Biomolecules and Molecular Modelling Group, Badji-Mokhtar - Annaba University, Box 12, 23000, Annaba, Algeria
| | - Faisal A. Almalki
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Vesna Rastija
- Department of Agroecology and Environmental Protection, Faculty of Agrobiotechnical Sciences Osijek, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Joazaizulfazli Jamalis
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, Johor, Malaysia
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong, Bangladesh,Drug Discovery, GUSTO A Research Group, Chittagong, Bangladesh
| | - Tareq Abu-Izneid
- Pharmaceutical Sciences, College of Pharmacy, Al Ain University, Al Ain, UAE
| | - Eman Esharkawy
- Department of Plant Ecology and Range Management, Ecology and Dry Lands Agriculture Division, Desert Research Center, Mathef El-Mataria, Egypt,Department of Chemistry, Science Faculty for Girls, Northern Border University ARAR, North Region, Saudi Arabia
| | - Luis Cruz Rodriguez
- ELIDAN Dynamic LLC, Tampa, FL, USA,ELIDAN Genome SAS, Montereau Fault Yonne, France,Environmental Biotechnology Department, ExCELab Co, Ltd, St Ann, Jamaica
| | - Ali M. Alqahtani
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| |
Collapse
|
65
|
Rocha REO, Chaves EJF, Fischer PHC, Costa LSC, Grillo IB, da Cruz LEG, Guedes FC, da Silveira CH, Scotti MT, Camargo AD, Machado KS, Werhli AV, Ferreira RS, Rocha GB, de Lima LHF. A higher flexibility at the SARS-CoV-2 main protease active site compared to SARS-CoV and its potentialities for new inhibitor virtual screening targeting multi-conformers. J Biomol Struct Dyn 2021; 40:9214-9234. [PMID: 33970798 PMCID: PMC8127201 DOI: 10.1080/07391102.2021.1924271] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 04/26/2021] [Indexed: 12/14/2022]
Abstract
The main-protease (Mpro) catalyzes a crucial step for the SARS-CoV-2 life cycle. The recent SARS-CoV-2 presents the main protease (MCoV2pro) with 12 mutations compared to SARS-CoV (MCoV1pro). Recent studies point out that these subtle differences lead to mobility variances at the active site loops with functional implications. We use metadynamics simulations and a sort of computational analysis to probe the dynamic, pharmacophoric and catalytic environment differences between the monomers of both enzymes. So, we verify how much intrinsic distinctions are preserved in the functional dimer of MCoV2pro, as well as its implications for ligand accessibility and optimized drug screening. We find a significantly higher accessibility to open binding conformers in the MCoV2pro monomer compared to MCoV1pro. A higher hydration propensity for the MCoV2pro S2 loop with the A46S substitution seems to exercise a key role. Quantum calculations suggest that the wider conformations for MCoV2pro are less catalytically active in the monomer. However, the statistics for contacts involving the N-finger suggest higher maintenance of this activity at the dimer. Docking analyses suggest that the ability to vary the active site width can be important to improve the access of the ligand to the active site in different ways. So, we carry out a multiconformational virtual screening with different ligand bases. The results point to the importance of taking into account the protein conformational multiplicity for new promissors anti MCoV2pro ligands. We hope these results will be useful in prospecting, repurposing and/or designing new anti SARS-CoV-2 drugs.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Rafael E. O. Rocha
- Laboratory of Molecular Modeling and Drug Design, Department of Biochemistry and Imunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Laboratory of Structural Biology, Department of Molecular Biology, Universität Salzburg, Salzburg, Austria
| | - Elton J. F. Chaves
- Laboratory of Computational and Quantum Chemistry, Department of Chemistry, Universidade Federal da Paraíba, João Pessoa, Brazil
| | - Pedro H. C. Fischer
- Laboratory of Molecular Modeling and Bioinformatics, Department of Exact and Biological Sciences, Universidade Federal de São João Del Rei, Sete Lagoas, Brazil
| | - Leon S. C. Costa
- Comp. Modeling Coordination, Laboratório Nacional de Computação Científica, Petrópolis, Brazil
| | - Igor Barden Grillo
- Laboratory of Computational and Quantum Chemistry, Department of Chemistry, Universidade Federal da Paraíba, João Pessoa, Brazil
| | - Luiz E. G. da Cruz
- Laboratory of Computational and Quantum Chemistry, Department of Chemistry, Universidade Federal da Paraíba, João Pessoa, Brazil
| | - Fabiana C. Guedes
- Structural Bioinformatic Laboratory, Institute of Technological Sciences, Universidade Federal de Itajubá, Itabira, Brazil
| | - Carlos H. da Silveira
- Structural Bioinformatic Laboratory, Institute of Technological Sciences, Universidade Federal de Itajubá, Itabira, Brazil
| | - Marcus T. Scotti
- Graduate Program in Natural and Synthetic Bioactive Products; Universidade Federal da Paraíba, João Pessoa, Brazil
| | - Alex D. Camargo
- Computational Biology Laboratory, Center for computational sciences, Universidade Federal do Rio Grande, Rio Grande, Brazil
| | - Karina S. Machado
- Computational Biology Laboratory, Center for computational sciences, Universidade Federal do Rio Grande, Rio Grande, Brazil
| | - Adriano V. Werhli
- Computational Biology Laboratory, Center for computational sciences, Universidade Federal do Rio Grande, Rio Grande, Brazil
| | - Rafaela S. Ferreira
- Laboratory of Molecular Modeling and Drug Design, Department of Biochemistry and Imunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Gerd B. Rocha
- Laboratory of Computational and Quantum Chemistry, Department of Chemistry, Universidade Federal da Paraíba, João Pessoa, Brazil
| | - Leonardo H. F. de Lima
- Laboratory of Molecular Modeling and Bioinformatics, Department of Exact and Biological Sciences, Universidade Federal de São João Del Rei, Sete Lagoas, Brazil
| |
Collapse
|
66
|
Anirudhan V, Lee H, Cheng H, Cooper L, Rong L. Targeting SARS-CoV-2 viral proteases as a therapeutic strategy to treat COVID-19. J Med Virol 2021; 93:2722-2734. [PMID: 33475167 PMCID: PMC8014870 DOI: 10.1002/jmv.26814] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 01/15/2021] [Accepted: 01/18/2021] [Indexed: 12/14/2022]
Abstract
The 21st century has witnessed three outbreaks of coronavirus (CoVs) infections caused by severe acute respiratory syndrome (SARS)-CoV, Middle East respiratory syndrome (MERS)-CoV, and SARS-CoV-2. Coronavirus disease 2019 (COVID-19), caused by SARS-CoV-2, spreads rapidly and since the discovery of the first COVID-19 infection in December 2019, has caused 1.2 million deaths worldwide and 226,777 deaths in the United States alone. The high amino acid similarity between SARS-CoV and SARS-CoV-2 viral proteins supports testing therapeutic molecules that were designed to treat SARS infections during the 2003 epidemic. In this review, we provide information on possible COVID-19 treatment strategies that act via inhibition of the two essential proteins of the virus, 3C-like protease (3CLpro ) or papain-like protease (PLpro ).
Collapse
Affiliation(s)
- Varada Anirudhan
- Department of Microbiology and ImmunologyUniversity of Illinois at ChicagoChicagoIllinoisUSA
| | - Hyun Lee
- Department of Pharmaceutical Sciences, Center for Biomolecular Sciences, College of Pharmacy, Biophysics Core at Research Resources CenterUniversity of Illinois at ChicagoChicagoIllinoisUSA
| | - Han Cheng
- Department of Microbiology and ImmunologyUniversity of Illinois at ChicagoChicagoIllinoisUSA
| | - Laura Cooper
- Department of Microbiology and ImmunologyUniversity of Illinois at ChicagoChicagoIllinoisUSA
| | - Lijun Rong
- Department of Microbiology and ImmunologyUniversity of Illinois at ChicagoChicagoIllinoisUSA
| |
Collapse
|
67
|
Yan S, Wu G. Potential 3-chymotrypsin-like cysteine protease cleavage sites in the coronavirus polyproteins pp1a and pp1ab and their possible relevance to COVID-19 vaccine and drug development. FASEB J 2021; 35:e21573. [PMID: 33913206 PMCID: PMC8206714 DOI: 10.1096/fj.202100280rr] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 03/04/2021] [Accepted: 03/19/2021] [Indexed: 02/06/2023]
Abstract
Coronavirus (CoV) 3-chymotrypsin (C)-like cysteine protease (3CLpro ) is a target for anti-CoV drug development and drug repurposing because along with papain-like protease, it cleaves CoV-encoded polyproteins (pp1a and pp1ab) into nonstructural proteins (nsps) for viral replication. However, the cleavage sites of 3CLpro and their relevant nsps remain unclear, which is the subject of this perspective. Here, we address the subject from three standpoints. First, we explore the inconsistency in the cleavage sites and relevant nsps across CoVs, and investigate the function of nsp11. Second, we consider the nsp16 mRNA overlapping of the spike protein mRNA, and analyze the effect of this overlapping on mRNA vaccines. Finally, we study nsp12, whose existence depends on ribosomal frameshifting, and investigate whether 3CLpro requires a large number of inhibitors to achieve full inhibition. This perspective helps us to clarify viral replication and is useful for developing anti-CoV drugs with 3CLpro as a target in the current coronavirus disease 2019 (COVID-19) pandemic.
Collapse
Affiliation(s)
- Shaomin Yan
- National Engineering Research Center for Non‐Food Biorefinery, State Key Laboratory of Non‐Food Biomass and Enzyme Technology, Guangxi Biomass Engineering Technology Research Center, Guangxi Key Laboratory of BiorefineryGuangxi Academy of SciencesNanningChina
| | - Guang Wu
- National Engineering Research Center for Non‐Food Biorefinery, State Key Laboratory of Non‐Food Biomass and Enzyme Technology, Guangxi Biomass Engineering Technology Research Center, Guangxi Key Laboratory of BiorefineryGuangxi Academy of SciencesNanningChina
| |
Collapse
|
68
|
Sabbah DA, Hajjo R, Bardaweel SK, Zhong HA. An Updated Review on SARS-CoV-2 Main Proteinase (M Pro): Protein Structure and Small-Molecule Inhibitors. Curr Top Med Chem 2021; 21:442-460. [PMID: 33292134 DOI: 10.2174/1568026620666201207095117] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/02/2020] [Accepted: 11/17/2020] [Indexed: 11/22/2022]
Abstract
[Coronaviruses (CoVs) are enveloped positive-stranded RNA viruses with spike (S) protein projections that allow the virus to enter and infect host cells. The S protein is a key virulence factor determining viral pathogenesis, host tropism, and disease pathogenesis. There are currently diverse corona viruses that are known to cause disease in humans. The occurrence of Middle East respiratory syndrome coronavirus (MERS-CoV) and Severe Acute Respiratory Syndrome coronavirus (SARS-CoV), as fatal human CoV diseases, has induced significant interest in the medical field. The novel coronavirus disease (COVID-19) is an infectious disease caused by a novel strain of coronavirus (SAR-CoV-2). The SARS-CoV2 outbreak has been evolved in Wuhan, China, in December 2019, and identified as a pandemic in March 2020, resulting in 53.24 M cases and 1.20M deaths worldwide. SARS-CoV-2 main proteinase (MPro), a key protease of CoV-2, mediates viral replication and transcription. SARS-CoV-2 MPro has been emerged as an attractive target for SARS-CoV-2 drug design and development. Diverse scaffolds have been released targeting SARS-CoV-2 MPro. In this review, we culminate the latest published information about SARS-CoV-2 main proteinase (MPro) and reported inhibitors.
Collapse
Affiliation(s)
- Dima A Sabbah
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, P.O. Box 130, Amman 11733, Jordan
| | - Rima Hajjo
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, P.O. Box 130, Amman 11733, Jordan
| | - Sanaa K Bardaweel
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Jordan, Amman 11942, Jordan
| | - Haizhen A Zhong
- Department of Chemistry, The University of Nebraska at Omaha, 6001 Dodge Street, Omaha, Nebraska 68182, United States
| |
Collapse
|
69
|
Zhuo LS, Wang MS, Yang JF, Xu HC, Huang W, Shang LQ, Yang GF. Insights into SARS-CoV-2: Medicinal Chemistry Approaches to Combat Its Structural and Functional Biology. Top Curr Chem (Cham) 2021; 379:23. [PMID: 33886017 PMCID: PMC8061463 DOI: 10.1007/s41061-021-00335-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 04/03/2021] [Indexed: 01/18/2023]
Abstract
Coronavirus disease 2019, caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is still a pandemic around the world. Currently, specific antiviral drugs to control the epidemic remain deficient. Understanding the details of SARS-CoV-2 structural biology is extremely important for development of antiviral agents that will enable regulation of its life cycle. This review focuses on the structural biology and medicinal chemistry of various key proteins (Spike, ACE2, TMPRSS2, RdRp and Mpro) in the life cycle of SARS-CoV-2, as well as their inhibitors/drug candidates. Representative broad-spectrum antiviral drugs, especially those against the homologous virus SARS-CoV, are summarized with the expectation they will drive the development of effective, broad-spectrum inhibitors against coronaviruses. We are hopeful that this review will be a useful aid for discovery of novel, potent anti-SARS-CoV-2 drugs with excellent therapeutic results in the near future.
Collapse
Affiliation(s)
- Lin-Sheng Zhuo
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, People's Republic of China
| | - Ming-Shu Wang
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, People's Republic of China
| | - Jing-Fang Yang
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, People's Republic of China
| | - Hong-Chuang Xu
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, People's Republic of China
| | - Wei Huang
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, People's Republic of China
| | - Lu-Qing Shang
- College of Pharmacy, State Key Laboratory of Medicinal Chemical Biology and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300350, People's Republic of China.
| | - Guang-Fu Yang
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, People's Republic of China.
| |
Collapse
|
70
|
Aouad MR, Khan DJO, Said MA, Al‐Kaff NS, Rezki N, Ali AA, Bouqellah N, Hagar M. Novel 1,2,3-Triazole Derivatives as Potential Inhibitors against Covid-19 Main Protease: Synthesis, Characterization, Molecular Docking and DFT Studies. ChemistrySelect 2021; 6:3468-3486. [PMID: 34230893 PMCID: PMC8250976 DOI: 10.1002/slct.202100522] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 03/25/2021] [Indexed: 12/15/2022]
Abstract
The highly contagious nature of Covid-19 attracted us to this challenging area of research, mainly because the disease is spreading very fast and until now, no effective method of a safe treatment or a vaccine is developed. A library of novel 1,2,3-triazoles based 1,2,4-triazole, 1,3,4-oxadiazole and/or 1,3,4-thiadiazole scaffolds were designed and successfully synthesized. Different spectroscopic tools efficiently characterized all the newly synthesized hybrid molecules. An interesting finding is that some of the newly designed compounds revealed two isomeric forms. The ratio is affected by the size of the attached group as well as the type of the heteroatom forming the side ring attached to the central 1,2,3-triazole ring. The experimental spectroscopic data is in agreement with the DFT calculations at B3LYP 6-31G (d,p) with regard to the geometrical conformation of the prepared compounds. The DFT results revealed that the stability of one isomeric form over the other in the range of 0.057-0.161 Kcal mol-1. A docking study was performed using PyRx and AutoDockVina to investigate the activity of the prepared 1,2,3-triazoles as antiviral agents. Bond affinity scores of the 1,2,3-triazole derivatives were detected in the range of -6.0 to -8.8 kcal/mol showing binding to the active sites of the 6LU7 protease and hence could be anticipated to inhibit the activity of the enzyme. Verification of the docking results was performed using the Mpro alignment of coronaviruses substrate-binding pockets of COVID-19 against the ligands. As per these results, it can be proposed that the title hybrid molecules are acceptable candidates against COVID-19 for possible medicinal agents.
Collapse
Affiliation(s)
- Mohamed Reda Aouad
- Department of Chemistry, College of ScienceTaibah UniversityAl-Madinah Al-Munawarah30002Saudi Arabia
| | - Daoud J. O. Khan
- Department of Chemistry, College of ScienceTaibah UniversityAl-Madinah Al-Munawarah30002Saudi Arabia
| | - Musa A. Said
- Department of Chemistry, College of ScienceTaibah UniversityAl-Madinah Al-Munawarah30002Saudi Arabia
| | - Nadia S. Al‐Kaff
- Department of BiologyCollege of ScienceTaibah UniversityAl-Madinah Al-Munawarah30002Saudi Arabia
| | - Nadjet Rezki
- Department of Chemistry, College of ScienceTaibah UniversityAl-Madinah Al-Munawarah30002Saudi Arabia
| | - Adeeb A. Ali
- Department of Chemistry, College of ScienceTaibah UniversityAl-Madinah Al-Munawarah30002Saudi Arabia
| | - Nahla Bouqellah
- Department of BiologyCollege of ScienceTaibah UniversityAl-Madinah Al-Munawarah30002Saudi Arabia
| | - Mohamed Hagar
- Department of ChemistryCollege of Sciences, YanbuTaibah UniversityYanbu30799Saudi Arabia
- Department of ChemistryFaculty of ScienceAlexandria UniversityAlexandria21321Egypt
| |
Collapse
|
71
|
Serafim MS, Gertrudes JC, Costa DM, Oliveira PR, Maltarollo VG, Honorio KM. Knowing and combating the enemy: a brief review on SARS-CoV-2 and computational approaches applied to the discovery of drug candidates. Biosci Rep 2021; 41:BSR20202616. [PMID: 33624754 PMCID: PMC7982772 DOI: 10.1042/bsr20202616] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 02/15/2021] [Accepted: 02/23/2021] [Indexed: 01/18/2023] Open
Abstract
Since the emergence of the new severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) at the end of December 2019 in China, and with the urge of the coronavirus disease 2019 (COVID-19) pandemic, there have been huge efforts of many research teams and governmental institutions worldwide to mitigate the current scenario. Reaching more than 1,377,000 deaths in the world and still with a growing number of infections, SARS-CoV-2 remains a critical issue for global health and economic systems, with an urgency for available therapeutic options. In this scenario, as drug repurposing and discovery remains a challenge, computer-aided drug design (CADD) approaches, including machine learning (ML) techniques, can be useful tools to the design and discovery of novel potential antiviral inhibitors against SARS-CoV-2. In this work, we describe and review the current knowledge on this virus and the pandemic, the latest strategies and computational approaches applied to search for treatment options, as well as the challenges to overcome COVID-19.
Collapse
Affiliation(s)
- Mateus S.M. Serafim
- Department of Microbiology, Biological Sciences Institute, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Jadson C. Gertrudes
- Department of Computer Science, Federal University of Ouro Preto (UFOP), Ouro Preto, MG, Brazil
| | - Débora M.A. Costa
- Department of Pharmaceutical Products, Faculty of Pharmacy, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Patricia R. Oliveira
- School of Arts, Sciences and Humanities, University of São Paulo (USP), 03828-000, São Paulo, SP, Brazil
| | - Vinicius G. Maltarollo
- Department of Pharmaceutical Products, Faculty of Pharmacy, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Kathia M. Honorio
- School of Arts, Sciences and Humanities, University of São Paulo (USP), 03828-000, São Paulo, SP, Brazil
- Center for Natural and Human Sciences, Federal University of ABC (UFABC), Santo Andre, SP, Brazil
| |
Collapse
|
72
|
Rui Y, Su J, Shen S, Hu Y, Huang D, Zheng W, Lou M, Shi Y, Wang M, Chen S, Zhao N, Dong Q, Cai Y, Xu R, Zheng S, Yu XF. Unique and complementary suppression of cGAS-STING and RNA sensing- triggered innate immune responses by SARS-CoV-2 proteins. Signal Transduct Target Ther 2021; 6:123. [PMID: 33723219 PMCID: PMC7958565 DOI: 10.1038/s41392-021-00515-5] [Citation(s) in RCA: 90] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 12/28/2020] [Accepted: 01/20/2021] [Indexed: 12/11/2022] Open
Abstract
The emergence of SARS-CoV-2 has resulted in the COVID-19 pandemic, leading to millions of infections and hundreds of thousands of human deaths. The efficient replication and population spread of SARS-CoV-2 indicates an effective evasion of human innate immune responses, although the viral proteins responsible for this immune evasion are not clear. In this study, we identified SARS-CoV-2 structural proteins, accessory proteins, and the main viral protease as potent inhibitors of host innate immune responses of distinct pathways. In particular, the main viral protease was a potent inhibitor of both the RLR and cGAS-STING pathways. Viral accessory protein ORF3a had the unique ability to inhibit STING, but not the RLR response. On the other hand, structural protein N was a unique RLR inhibitor. ORF3a bound STING in a unique fashion and blocked the nuclear accumulation of p65 to inhibit nuclear factor-κB signaling. 3CL of SARS-CoV-2 inhibited K63-ubiquitin modification of STING to disrupt the assembly of the STING functional complex and downstream signaling. Diverse vertebrate STINGs, including those from humans, mice, and chickens, could be inhibited by ORF3a and 3CL of SARS-CoV-2. The existence of more effective innate immune suppressors in pathogenic coronaviruses may allow them to replicate more efficiently in vivo. Since evasion of host innate immune responses is essential for the survival of all viruses, our study provides insights into the design of therapeutic agents against SARS-CoV-2.
Collapse
Affiliation(s)
- Yajuan Rui
- Cancer Institute, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Jiaming Su
- Cancer Institute, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Si Shen
- Cancer Institute, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Ying Hu
- Cancer Institute, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Dingbo Huang
- Cancer Institute, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Wenwen Zheng
- Cancer Institute, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Meng Lou
- Cancer Institute, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Yifei Shi
- Cancer Institute, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Meng Wang
- Cancer Institute, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Shiqi Chen
- Cancer Institute, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Na Zhao
- Cancer Institute, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Qi Dong
- Cancer Institute, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Yong Cai
- School of Life Science, Jilin University, Changchun, China
| | - Rongzhen Xu
- Department of Hematology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Shu Zheng
- Cancer Institute, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Xiao-Fang Yu
- Cancer Institute, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.
| |
Collapse
|
73
|
Yanmei H, Chunlong M, Szeto T, Hurst B, Tarbet B, Wang J. Boceprevir, Calpain Inhibitors II and XII, and GC-376 Have Broad-Spectrum Antiviral Activity against Coronaviruses. ACS Infect Dis 2021; 7:586-597. [PMID: 33645977 PMCID: PMC7944397 DOI: 10.1021/acsinfecdis.0c00761] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Indexed: 02/06/2023]
Abstract
As the COVID-19 pandemic continues to unfold, the morbidity and mortality are increasing daily. Effective treatment for SARS-CoV-2 is urgently needed. We recently discovered four SARS-CoV-2 main protease (Mpro) inhibitors including boceprevir, calpain inhibitors II and XII, and GC-376 with potent antiviral activity against infectious SARS-CoV-2 in cell culture. In this study, we further characterized the mechanism of action of these four compounds using the SARS-CoV-2 pseudovirus neutralization assay. It was found that GC-376 and calpain inhibitors II and XII have a dual mechanism of action by inhibiting both viral Mpro and host cathepsin L in Vero cells. To rule out the cell-type dependent effect, the antiviral activity of these four compounds against SARS-CoV-2 was also confirmed in type 2 transmembrane serine protease-expressing Caco-2 cells using the viral yield reduction assay. In addition, we found that these four compounds have broad-spectrum antiviral activity in inhibiting not only SARS-CoV-2 but also SARS-CoV, and MERS-CoV, as well as human coronaviruses (CoVs) 229E, OC43, and NL63. The mechanism of action is through targeting the viral Mpro, which was supported by the thermal shift-binding assay and enzymatic fluorescence resonance energy transfer assay. We further showed that these four compounds have additive antiviral effect when combined with remdesivir. Altogether, these results suggest that boceprevir, calpain inhibitors II and XII, and GC-376 might be promising starting points for further development against existing human coronaviruses as well as future emerging CoVs.
Collapse
Affiliation(s)
- Hu Yanmei
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson, AZ, USA, 85721
| | - Ma Chunlong
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson, AZ, USA, 85721
| | - Tommy Szeto
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson, AZ, USA, 85721
| | - Brett Hurst
- Institute for Antiviral Research, Utah State University, Logan, UT, USA, 84322
| | - Bart Tarbet
- Institute for Antiviral Research, Utah State University, Logan, UT, USA, 84322
| | - Jun Wang
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson, AZ, USA, 85721
| |
Collapse
|
74
|
Sardanelli AM, Isgrò C, Palese LL. SARS-CoV-2 Main Protease Active Site Ligands in the Human Metabolome. Molecules 2021; 26:1409. [PMID: 33807773 PMCID: PMC7961382 DOI: 10.3390/molecules26051409] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/28/2021] [Accepted: 03/01/2021] [Indexed: 12/13/2022] Open
Abstract
In late 2019, a global pandemic occurred. The causative agent was identified as a member of the Coronaviridae family, called severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). In this study, we present an analysis on the substances identified in the human metabolome capable of binding the active site of the SARS-CoV-2 main protease (Mpro). The substances present in the human metabolome have both endogenous and exogenous origins. The aim of this research was to find molecules whose biochemical and toxicological profile was known that could be the starting point for the development of antiviral therapies. Our analysis revealed numerous metabolites-including xenobiotics-that bind this protease, which are essential to the lifecycle of the virus. Among these substances, silybin, a flavolignan compound and the main active component of silymarin, is particularly noteworthy. Silymarin is a standardized extract of milk thistle, Silybum marianum, and has been shown to exhibit antioxidant, hepatoprotective, antineoplastic, and antiviral activities. Our results-obtained in silico and in vitro-prove that silybin and silymarin, respectively, are able to inhibit Mpro, representing a possible food-derived natural compound that is useful as a therapeutic strategy against COVID-19.
Collapse
Affiliation(s)
- Anna Maria Sardanelli
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari “Aldo Moro”, Piazza G. Cesare 11, 70124 Bari, Italy;
- Department of Medicine, University Campus Bio-Medico of Rome, Via Alvaro del Portillo 21, 00128 Rome, Italy
| | - Camilla Isgrò
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari “Aldo Moro”, Piazza G. Cesare 11, 70124 Bari, Italy;
- Department of Medicine, University Campus Bio-Medico of Rome, Via Alvaro del Portillo 21, 00128 Rome, Italy
| | - Luigi Leonardo Palese
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari “Aldo Moro”, Piazza G. Cesare 11, 70124 Bari, Italy;
| |
Collapse
|
75
|
Roe MK, Junod NA, Young AR, Beachboard DC, Stobart CC. Targeting novel structural and functional features of coronavirus protease nsp5 (3CL pro, M pro) in the age of COVID-19. J Gen Virol 2021; 102:001558. [PMID: 33507143 PMCID: PMC8515871 DOI: 10.1099/jgv.0.001558] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 01/08/2021] [Indexed: 01/18/2023] Open
Abstract
Coronavirus protease nsp5 (Mpro, 3CLpro) remains a primary target for coronavirus therapeutics due to its indispensable and conserved role in the proteolytic processing of the viral replicase polyproteins. In this review, we discuss the diversity of known coronaviruses, the role of nsp5 in coronavirus biology, and the structure and function of this protease across the diversity of known coronaviruses, and evaluate past and present efforts to develop inhibitors to the nsp5 protease with a particular emphasis on new and mostly unexplored potential targets of inhibition. With the recent emergence of pandemic SARS-CoV-2, this review provides novel and potentially innovative strategies and directions to develop effective therapeutics against the coronavirus protease nsp5.
Collapse
Affiliation(s)
- Molly K. Roe
- Department of Biological Sciences, Butler University, Indianapolis, IN, USA
| | - Nathan A. Junod
- Department of Biological Sciences, Butler University, Indianapolis, IN, USA
| | - Audrey R. Young
- Department of Biological Sciences, Butler University, Indianapolis, IN, USA
| | | | | |
Collapse
|
76
|
Banerjee R, Perera L, Tillekeratne LMV. Potential SARS-CoV-2 main protease inhibitors. Drug Discov Today 2021; 26:804-816. [PMID: 33309533 PMCID: PMC7724992 DOI: 10.1016/j.drudis.2020.12.005] [Citation(s) in RCA: 110] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 07/16/2020] [Accepted: 12/03/2020] [Indexed: 01/12/2023]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic has prompted an urgent need for new treatment strategies. No target-specific drugs are currently available for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), but new drug candidates targeting the viral replication cycle are being explored. A prime target of drug-discovery efforts is the SARS-CoV-2 main protease (Mpro). The main proteases of different coronaviruses, including SARS-CoV-2, SARS-CoV and Middle East respiratory syndrome coronavirus (MERS-CoV), share a structurally conserved substrate-binding region that can be exploited to design new protease inhibitors. With the recent reporting of the X-ray crystal structure of the SARS-CoV-2 Mpro, studies to discover Mpro inhibitors using both virtual and in vitro screening are progressing rapidly. This review focusses on the recent developments in the search for small-molecule inhibitors targeting the SARS-CoV-2 Mpro.
Collapse
Affiliation(s)
- Riddhidev Banerjee
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH 43606, USA
| | - Lalith Perera
- Laboratory of Genome Integrity and Structural Biology, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC 27709, USA.
| | - L M Viranga Tillekeratne
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH 43606, USA.
| |
Collapse
|
77
|
Rutwick Surya U, Praveen N. A molecular docking study of SARS-CoV-2 main protease against phytochemicals of Boerhavia diffusa Linn. for novel COVID-19 drug discovery. Virusdisease 2021; 32:46-54. [PMID: 33758772 PMCID: PMC7971947 DOI: 10.1007/s13337-021-00683-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 03/06/2021] [Indexed: 12/19/2022] Open
Abstract
SARS-CoV-2, the causative virus of the Corona virus disease that was first recorded in 2019 (COVID-19), has already affected over 110 million people across the world with no clear targeted drug therapy that can be efficiently administered to the wide spread victims. This study tries to discover a novel potential inhibitor to the main protease of the virus, by computer aided drug discovery where various major active phytochemicals of the plant Boerhavia diffusa Linn. namely 2-3-4 beta-Ecdysone, Bioquercetin, Biorobin, Boeravinone J, Boerhavisterol, kaempferol, Liriodendrin, quercetin and trans-caftaric acid were docked to SAR-CoV-2 Main Protease using Molecular docking server. The ligands that showed the least binding energy were Biorobin with - 8.17 kcal/mol, Bioquercetin with - 7.97 kcal/mol and Boerhavisterol with - 6.77 kcal/mol. These binding energies were found to be favorable for an efficient docking and resultant inhibition of the viral main protease. The graphical illustrations and visualizations of the docking were obtained along with inhibition constant, intermolecular energy (total and degenerate), interaction surfaces and HB Plot for all the successfully docked conditions of all the 9 ligands mentioned. Additionally the druglikeness of the top 3 hits namely Bioquercetin, Biorobin and Boeravisterol were tested by ADME studies and Boeravisterol was found to be a suitable candidate obeying the Lipinsky's rule. Since the main protease of SARS has been reported to possess structural similarity with the main protease of MERS, comparative docking of these ligands were also carried out on the MERS Mpro, however the binding energies for this target was found to be unfavorable for spontaneous binding. From these results, it was concluded that Boerhavia diffusa possess potential therapeutic properties against COVID-19. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13337-021-00683-6.
Collapse
Affiliation(s)
- U. Rutwick Surya
- Department of Life Sciences, CHRIST (Deemed To Be University), Hosur Road, Bengaluru, 560029 Karnataka India
| | - N. Praveen
- Department of Life Sciences, CHRIST (Deemed To Be University), Hosur Road, Bengaluru, 560029 Karnataka India
| |
Collapse
|
78
|
Pseudo-Dipeptide Bearing α,α-Difluoromethyl Ketone Moiety as Electrophilic Warhead with Activity against Coronaviruses. Int J Mol Sci 2021; 22:ijms22031398. [PMID: 33573283 PMCID: PMC7866854 DOI: 10.3390/ijms22031398] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 01/26/2021] [Indexed: 12/18/2022] Open
Abstract
The synthesis of α-fluorinated methyl ketones has always been challenging. New methods based on the homologation chemistry via nucleophilic halocarbenoid transfer, carried out recently in our labs, allowed us to design and synthesize a target-directed dipeptidyl α,α-difluoromethyl ketone (DFMK) 8 as a potential antiviral agent with activity against human coronaviruses. The ability of the newly synthesized compound to inhibit viral replication was evaluated by a viral cytopathic effect (CPE)-based assay performed on MCR5 cells infected with one of the four human coronaviruses associated with respiratory distress, i.e., hCoV-229E, showing antiproliferative activity in the micromolar range (EC50 = 12.9 ± 1.22 µM), with a very low cytotoxicity profile (CC50 = 170 ± 3.79 µM, 307 ± 11.63 µM, and 174 ± 7.6 µM for A549, human embryonic lung fibroblasts (HELFs), and MRC5 cells, respectively). Docking and molecular dynamics simulations studies indicated that 8 efficaciously binds to the intended target hCoV-229E main protease (Mpro). Moreover, due to the high similarity between hCoV-229E Mpro and SARS-CoV-2 Mpro, we also performed the in silico analysis towards the second target, which showed results comparable to those obtained for hCoV-229E Mpro and promising in terms of energy of binding and docking pose.
Collapse
|
79
|
Jin Z, Wang H, Duan Y, Yang H. The main protease and RNA-dependent RNA polymerase are two prime targets for SARS-CoV-2. Biochem Biophys Res Commun 2021; 538:63-71. [PMID: 33288200 PMCID: PMC7680044 DOI: 10.1016/j.bbrc.2020.10.091] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 10/20/2020] [Indexed: 01/18/2023]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic, caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), poses an unprecedented global health crisis. It is particularly urgent to develop clinically effective therapies to contain the pandemic. The main protease (Mpro) and the RNA-dependent RNA polymerase (RdRP), which are responsible for the viral polyprotein proteolytic process and viral genome replication and transcription, respectively, are two attractive drug targets for SARS-CoV-2. This review summarizes up-to-date progress in the structural and pharmacological aspects of those two key targets above. Different classes of inhibitors individually targeting Mpro and RdRP are discussed, which could promote drug development to treat SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Zhenming Jin
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China,School of Life Sciences and School of Medicine, Tsinghua University, Beijing, China
| | - Haofeng Wang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China,School of Life Sciences, Tianjin University, Tianjin, China,Corresponding author. Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China
| | - Yinkai Duan
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China
| | - Haitao Yang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China,Corresponding author
| |
Collapse
|
80
|
Xiong M, Su H, Zhao W, Xie H, Shao Q, Xu Y. What coronavirus 3C-like protease tells us: From structure, substrate selectivity, to inhibitor design. Med Res Rev 2021; 41:1965-1998. [PMID: 33460213 PMCID: PMC8014231 DOI: 10.1002/med.21783] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 12/17/2020] [Accepted: 01/05/2021] [Indexed: 12/13/2022]
Abstract
The emergence of a variety of coronaviruses (CoVs) in the last decades has posed huge threats to human health. Especially, the ongoing pandemic of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has led to more than 70 million infections and over 1.6 million of deaths worldwide in the past few months. None of the efficacious antiviral agents against human CoVs have been approved yet. 3C-like protease (3CLpro ) is an attractive target for antiviral intervention due to its essential role in processing polyproteins translated from viral RNA, and its conserved structural feature and substrate specificity among CoVs in spite of the sequence variation. This review focuses on all available crystal structures of 12 CoV 3CLpro s and their inhibitors, and intends to provide a comprehensive understanding of this protease from multiple aspects including its structural features, substrate specificity, inhibitor binding modes, and more importantly, to recapitulate the similarity and diversity among different CoV 3CLpro s and the structure-activity relationship of various types of inhibitors. Such an attempt could gain a deep insight into the inhibition mechanisms and drive future structure-based drug discovery targeting 3CLpro s.
Collapse
Affiliation(s)
- Muya Xiong
- CAS Key Laboratory of Receptor Research
- Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Haixia Su
- CAS Key Laboratory of Receptor Research
- Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Wenfeng Zhao
- CAS Key Laboratory of Receptor Research
- Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Hang Xie
- CAS Key Laboratory of Receptor Research
- Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Qiang Shao
- CAS Key Laboratory of Receptor Research
- Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yechun Xu
- CAS Key Laboratory of Receptor Research
- Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China.,School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| |
Collapse
|
81
|
Isgrò C, Sardanelli AM, Palese LL. Systematic Search for SARS-CoV-2 Main Protease Inhibitors for Drug Repurposing: Ethacrynic Acid as a Potential Drug. Viruses 2021; 13:v13010106. [PMID: 33451132 PMCID: PMC7828626 DOI: 10.3390/v13010106] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 01/04/2021] [Accepted: 01/08/2021] [Indexed: 12/24/2022] Open
Abstract
In 2019 an outbreak occurred which resulted in a global pandemic. The causative agent has been identified in a virus belonging to the Coronaviridae family, similar to the agent of SARS, referred to as SARS-CoV-2. This epidemic spread rapidly globally with high morbidity and mortality. Although vaccine development is at a very advanced stage, there are currently no truly effective antiviral drugs to treat SARS-CoV-2 infection. In this study we present systematic and integrative antiviral drug repurposing effort aimed at identifying, among the drugs already authorized for clinical use, some active inhibitors of the SARS-CoV-2 main protease. The most important result of this analysis is the demonstration that ethacrynic acid, a powerful diuretic, is revealed to be an effective inhibitor of SARS-CoV-2 main protease. Even with all the necessary cautions, given the particular nature of this drug, these data can be the starting point for the development of an effective therapeutic strategy against SARS-CoV-2.
Collapse
Affiliation(s)
- Camilla Isgrò
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari Aldo Moro, Piazza G. Cesare 11, 70124 Bari, Italy;
- Department of Medicine, University Campus Bio-Medico of Rome, Via Alvaro del Portillo 21, 00128 Rome, Italy
| | - Anna Maria Sardanelli
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari Aldo Moro, Piazza G. Cesare 11, 70124 Bari, Italy;
- Department of Medicine, University Campus Bio-Medico of Rome, Via Alvaro del Portillo 21, 00128 Rome, Italy
- Correspondence: or (A.M.S.); (L.L.P.)
| | - Luigi Leonardo Palese
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari Aldo Moro, Piazza G. Cesare 11, 70124 Bari, Italy;
- Correspondence: or (A.M.S.); (L.L.P.)
| |
Collapse
|
82
|
de Sá ÉRA, Costa AN, Costa RKM, Souza JL, Ramos RM, Lima FDCA. In silico study of the interactions of Pilocarpus microphyllus imidazolic alkaloids with the main protease (Mpro) of SARS-CoV-2. MOLECULAR SIMULATION 2021. [PMCID: PMC7814572 DOI: 10.1080/08927022.2021.1873321] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The disease outbreak caused by SARS-CoV-2 continues to rise worldwide, even in countries which have considered it controlled. As new cases appear daily, infecting millions of people and causing thousands of deaths, the current in silico study aims to investigate the imidazolic alkaloids of the species Pilocarpus microphyllus (Jaborandi) as a potential inhibitory activity against the Mpro protease from SARS-CoV-2, since it plays a fundamental role in the processing of polyproteins that are translated from viral RNA. Jaborandi is distributed in some Brazilian biomes, being easily identified, yet little researched, with proven anti-inflammatory, contraceptive, anti-diabetic and gastroprotective activities. In this work, DFT calculation of thermodynamic properties, electrostatic potential surface, frontier molecular orbitals and descriptors of chemical reactivity of imidazolic alkaloids were associated with the use of molecular docking techniques, molecular dynamics and ADMET predictions. One can verify a good reactivity chemistry and energetic stability of epiisopiloturine, epiisopilosine, isopilosine and e pilosine with some residues of amino acids present in the active site of the main protease of COVID-19. In this sense, the results point out to the imidazolic alkaloids of Jaborandi as promising targets for in vitro and in vivo tests, as possible candidates for inhibitors of the enzyme Mpro.
Collapse
Affiliation(s)
- Ézio R. A. de Sá
- Federal Institute of Education, Science and Technology of Piauí, IFPI, Picos, Brazil
| | - Allan N. Costa
- Federal Institute of Education, Science and Technology of Pará, IFPA, Conceição do Araguaia, Brazil
| | - Rayla K. M. Costa
- Research Laboratory of the Computational Quantum Chemistry and Drug Planning Group, Chemistry Department, State Univerty of Piauí, GQQC&PF/UESPI, Teresina, Brazil
| | - Janilson L. Souza
- Federal Institute of Education, Science and Technology of Maranhão, IFMA, Bacabal, Brazil
| | - Ricardo M. Ramos
- Research Laboratory in Information Systems, Information Department, Environment, Health and Food Production, Federal Institute of Education, Science and Technology of Piauí, LaPeSI/IFPI, Teresina, Brazil
| | - Francisco das C. A. Lima
- Research Laboratory of the Computational Quantum Chemistry and Drug Planning Group, Chemistry Department, State Univerty of Piauí, GQQC&PF/UESPI, Teresina, Brazil
| |
Collapse
|
83
|
Wu Y, Li Z, Zhao YS, Huang YY, Jiang MY, Luo HB. Therapeutic targets and potential agents for the treatment of COVID-19. Med Res Rev 2021; 41:1775-1797. [PMID: 33393116 DOI: 10.1002/med.21776] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 12/11/2020] [Accepted: 12/12/2020] [Indexed: 01/18/2023]
Abstract
The outbreak of coronavirus disease 2019 (COVID-19), which is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, has become a global crisis. As of November 9, COVID-19 has already spread to more than 190 countries with 50,000,000 infections and 1,250,000 deaths. Effective therapeutics and drugs are in high demand. The structure of SARS-CoV-2 is highly conserved with those of SARS-CoV and Middle East respiratory syndrome-CoV. Enzymes, including RdRp, Mpro /3CLpro , and PLpro , which play important roles in viral transcription and replication, have been regarded as key targets for therapies against coronaviruses, including SARS-CoV-2. The identification of readily available drugs for repositioning in COVID-19 therapy is a relatively rapid approach for clinical treatment, and a series of approved or candidate drugs have been proven to be efficient against COVID-19 in preclinical or clinical studies. This review summarizes recent progress in the development of drugs against SARS-CoV-2 and the targets involved.
Collapse
Affiliation(s)
- Yinuo Wu
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Zhe Li
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Yun-Song Zhao
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Yi-You Huang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Mei-Yan Jiang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Hai-Bin Luo
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China.,Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Life and Pharmaceutical Sciences, Hainan University, Haikou, Hainan, China
| |
Collapse
|
84
|
Domínguez-Villa FX, Durán-Iturbide NA, Ávila-Zárraga JG. Synthesis, molecular docking, and in silico ADME/Tox profiling studies of new 1-aryl-5-(3-azidopropyl)indol-4-ones: Potential inhibitors of SARS CoV-2 main protease. Bioorg Chem 2021; 106:104497. [PMID: 33261847 PMCID: PMC7683933 DOI: 10.1016/j.bioorg.2020.104497] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 10/13/2020] [Accepted: 11/19/2020] [Indexed: 12/12/2022]
Abstract
The virus SARS CoV-2, which causes the respiratory infection COVID-19, continues its spread across the world and to date has caused more than a million deaths. Although COVID-19 vaccine development appears to be progressing rapidly, scientists continue the search for different therapeutic options to treat this new illness. In this work, we synthesized five new 1-aryl-5-(3-azidopropyl)indol-4-ones and showed them to be potential inhibitors of the SARS CoV-2 main protease (3CLpro). The compounds were obtained in good overall yields and molecular docking indicated favorable binding with 3CLpro. In silico ADME/Tox profile of the new compounds were calculated using the SwissADME and pkCSM-pharmacokinetics web tools, and indicated adequate values of absorption, distribution and excretion, features related to bioavailability. Moreover, low values of toxicity were indicated for these compounds. And drug-likeness levels of the compounds were also predicted according to the Lipinski and Veber rules.
Collapse
Affiliation(s)
- Francisco Xavier Domínguez-Villa
- Facultad de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, 04510 Coyoacán, DF, Mexico
| | - Noemi Angeles Durán-Iturbide
- Facultad de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, 04510 Coyoacán, DF, Mexico
| | - José Gustavo Ávila-Zárraga
- Facultad de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, 04510 Coyoacán, DF, Mexico.
| |
Collapse
|
85
|
Franco LS, Maia RC, Barreiro EJ. Identification of LASSBio-1945 as an inhibitor of SARS-CoV-2 main protease (M PRO) through in silico screening supported by molecular docking and a fragment-based pharmacophore model. RSC Med Chem 2021; 12:110-119. [PMID: 34046603 PMCID: PMC8130624 DOI: 10.1039/d0md00282h] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 10/11/2020] [Indexed: 12/19/2022] Open
Abstract
In December 2019, an infectious disease was detected in Wuhan, China, caused by a new pathogenic coronavirus, named SARS-CoV-2. It spread very rapidly, and on March 11th of 2020, the outbreak was declared a pandemic by the World Health Organization. Currently, effective treatment options remain limited. SARS-CoV-2 enzyme main protease (MPRO) plays a pivotal role in the viral life cycle, making it a putative drug target. In order to identify suitable hits to develop inhibitors with adequate antiviral properties, we explored the LASSBio Chemical Library employing multiple strategies of virtual screening. A fragment-based pharmacophore model enabled the identification of key interactions involved in the molecular recognition at the catalytic site of MPRO, namely, with amino acid residues His41, His163 and Glu166. Docking-based virtual screening was performed, leading to the identification of LASSBio-1945 (9), a new hit of MPRO, presenting an IC50 = 15.97 μM. This compound, an 1,3-benzodioxolyl sulfonamide, represents an interesting starting point for subsequent hit-to-lead optimization steps and, to the best of our knowledge, a new distinct chemotype for MPRO inhibition.
Collapse
Affiliation(s)
- Lucas S Franco
- Programa de Pós-Graduação em Farmacologia e Química Medicinal, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro Avenida Carlos Chagas Filho, 373, Ilha do Fundão 21941-912 Rio de Janeiro RJ Brazil
- Laboratório de Avaliação e Síntese de Substâncias Bioativas (LASSBio®, http://www.lassbio.icb.ufrj.br), Instituto de Ciências Biomédicas, CCS, Universidade Federal do Rio de Janeiro, Cidade Universitária Rio de Janeiro RJ Brazil
| | - Rodolfo C Maia
- Laboratório de Avaliação e Síntese de Substâncias Bioativas (LASSBio®, http://www.lassbio.icb.ufrj.br), Instituto de Ciências Biomédicas, CCS, Universidade Federal do Rio de Janeiro, Cidade Universitária Rio de Janeiro RJ Brazil
- Instituto Nacional de Ciência e Tecnologia de Fármacos e Medicamentos (INCT-INOFAR; http://www.inct-inofar.ccs.ufrj.br/), CCS, Universidade Federal do Rio de Janeiro, Cidade Universitária Rio de Janeiro RJ Brazil
| | - Eliezer J Barreiro
- Programa de Pós-Graduação em Farmacologia e Química Medicinal, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro Avenida Carlos Chagas Filho, 373, Ilha do Fundão 21941-912 Rio de Janeiro RJ Brazil
- Laboratório de Avaliação e Síntese de Substâncias Bioativas (LASSBio®, http://www.lassbio.icb.ufrj.br), Instituto de Ciências Biomédicas, CCS, Universidade Federal do Rio de Janeiro, Cidade Universitária Rio de Janeiro RJ Brazil
- Instituto Nacional de Ciência e Tecnologia de Fármacos e Medicamentos (INCT-INOFAR; http://www.inct-inofar.ccs.ufrj.br/), CCS, Universidade Federal do Rio de Janeiro, Cidade Universitária Rio de Janeiro RJ Brazil
| |
Collapse
|
86
|
Hartini Y, Saputra B, Wahono B, Auw Z, Indayani F, Adelya L, Namba G, Hariono M. Biflavonoid as potential 3-chymotrypsin-like protease (3CLpro) inhibitor of SARS-Coronavirus. RESULTS IN CHEMISTRY 2021; 3:100087. [PMID: 33520632 PMCID: PMC7832947 DOI: 10.1016/j.rechem.2020.100087] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 12/15/2020] [Indexed: 12/23/2022] Open
Abstract
3CL protease is one of the key proteins expressed by SARS-Coronavirus-2 cell, the potential to be targeted in the discovery of antivirus during this COVID-19 pandemic. This protein regulates the proteolysis of viral polypeptide essential in forming RNA virus. 3CL protease (3CLpro) was commonly targeted in the previous SARS-Coronavirus including bat and MERS, hence, by blocking this protein activity, the coronavirus should be eradicated. This study aims to review the potency of biflavonoid as the SARS-Coronavirus-2 3CLpro inhibitor. The review was initiated by describing the chemical structure of biflavonoid and followed by listing its natural source. Instead, the synthetic pathway of biflavonoid was also elaborated. The 3CLpro structure and its function were also illustrated followed by the list of its 3D-crystal structure available in a protein data bank. Lastly, the pharmacophores of biflavonoid have been identified as a protease inhibitor, was also discussed. This review hopefully will help researchers to obtain packed information about biflavonoid which could lead to the study in designing and discovering a novel SARS-Coronavirus-2 drug by targetting the 3CLpro enzyme.
Collapse
Affiliation(s)
- Yustina Hartini
- Faculty of Pharmacy, Sanata Dharma University, Campus III, Paingan, Maguwoharjo, Depok, Sleman 55282, Yogyakarta, Indonesia
| | - Bakti Saputra
- Faculty of Pharmacy, Sanata Dharma University, Campus III, Paingan, Maguwoharjo, Depok, Sleman 55282, Yogyakarta, Indonesia
| | - Bryan Wahono
- Faculty of Pharmacy, Sanata Dharma University, Campus III, Paingan, Maguwoharjo, Depok, Sleman 55282, Yogyakarta, Indonesia
| | - Zerlinda Auw
- Faculty of Pharmacy, Sanata Dharma University, Campus III, Paingan, Maguwoharjo, Depok, Sleman 55282, Yogyakarta, Indonesia
| | - Friska Indayani
- Faculty of Pharmacy, Sanata Dharma University, Campus III, Paingan, Maguwoharjo, Depok, Sleman 55282, Yogyakarta, Indonesia
| | - Lintang Adelya
- Faculty of Pharmacy, Sanata Dharma University, Campus III, Paingan, Maguwoharjo, Depok, Sleman 55282, Yogyakarta, Indonesia
| | - Gabriel Namba
- Faculty of Pharmacy, Sanata Dharma University, Campus III, Paingan, Maguwoharjo, Depok, Sleman 55282, Yogyakarta, Indonesia
| | - Maywan Hariono
- Faculty of Pharmacy, Sanata Dharma University, Campus III, Paingan, Maguwoharjo, Depok, Sleman 55282, Yogyakarta, Indonesia
| |
Collapse
|
87
|
Pillaiyar T, Wendt LL, Manickam M, Easwaran M. The recent outbreaks of human coronaviruses: A medicinal chemistry perspective. Med Res Rev 2021; 41:72-135. [PMID: 32852058 PMCID: PMC7461420 DOI: 10.1002/med.21724] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/22/2020] [Accepted: 08/08/2020] [Indexed: 01/18/2023]
Abstract
Coronaviruses (CoVs) infect both humans and animals. In humans, CoVs can cause respiratory, kidney, heart, brain, and intestinal infections that can range from mild to lethal. Since the start of the 21st century, three β-coronaviruses have crossed the species barrier to infect humans: severe-acute respiratory syndrome (SARS)-CoV-1, Middle East respiratory syndrome (MERS)-CoV, and SARS-CoV-2 (2019-nCoV). These viruses are dangerous and can easily be transmitted from human to human. Therefore, the development of anticoronaviral therapies is urgently needed. However, to date, no approved vaccines or drugs against CoV infections are available. In this review, we focus on the medicinal chemistry efforts toward the development of antiviral agents against SARS-CoV-1, MERS-CoV, SARS-CoV-2, targeting biochemical events important for viral replication and its life cycle. These targets include the spike glycoprotein and its host-receptors for viral entry, proteases that are essential for cleaving polyproteins to produce functional proteins, and RNA-dependent RNA polymerase for viral RNA replication.
Collapse
Affiliation(s)
- Thanigaimalai Pillaiyar
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal ChemistryUniversity of BonnBonnGermany
| | - Lukas L. Wendt
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal ChemistryUniversity of BonnBonnGermany
| | - Manoj Manickam
- Department of ChemistryPSG Institute of Technology and Applied ResearchCoimbatoreTamil NaduIndia
| | - Maheswaran Easwaran
- Department of Biomedical EngineeringSethu Institute of TechnologyVirudhunagarTamilnaduIndia
| |
Collapse
|
88
|
Kumar S, Sharma PP, Shankar U, Kumar D, Joshi SK, Pena L, Durvasula R, Kumar A, Kempaiah P, Poonam, Rathi B. Discovery of New Hydroxyethylamine Analogs against 3CL pro Protein Target of SARS-CoV-2: Molecular Docking, Molecular Dynamics Simulation, and Structure-Activity Relationship Studies. J Chem Inf Model 2020; 60:5754-5770. [PMID: 32551639 PMCID: PMC7304236 DOI: 10.1021/acs.jcim.0c00326] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Indexed: 12/15/2022]
Abstract
The novel coronavirus, SARS-CoV-2, has caused a recent pandemic called COVID-19 and a severe health threat around the world. In the current situation, the virus is rapidly spreading worldwide, and the discovery of a vaccine and potential therapeutics are critically essential. The crystal structure for the main protease (Mpro) of SARS-CoV-2, 3-chymotrypsin-like cysteine protease (3CLpro), was recently made available and is considerably similar to the previously reported SARS-CoV. Due to its essentiality in viral replication, it represents a potential drug target. Herein, a computer-aided drug design (CADD) approach was implemented for the initial screening of 13 approved antiviral drugs. Molecular docking of 13 antivirals against the 3-chymotrypsin-like cysteine protease (3CLpro) enzyme was accomplished, and indinavir was described as a lead drug with a docking score of -8.824 and a XP Gscore of -9.466 kcal/mol. Indinavir possesses an important pharmacophore, hydroxyethylamine (HEA), and thus, a new library of HEA compounds (>2500) was subjected to virtual screening that led to 25 hits with a docking score more than indinavir. Exclusively, compound 16 with a docking score of -8.955 adhered to drug-like parameters, and the structure-activity relationship (SAR) analysis was demonstrated to highlight the importance of chemical scaffolds therein. Molecular dynamics (MD) simulation analysis performed at 100 ns supported the stability of 16 within the binding pocket. Largely, our results supported that this novel compound 16 binds with domains I and II, and the domain II-III linker of the 3CLpro protein, suggesting its suitability as a strong candidate for therapeutic discovery against COVID-19.
Collapse
Affiliation(s)
- Sumit Kumar
- Department of Chemistry, Miranda House,
University of Delhi, Delhi 110007,
India
| | - Prem Prakash Sharma
- Laboratory for Translational Chemistry and Drug
Discovery, Hansraj College, University of Delhi, Delhi 110007,
India
| | - Uma Shankar
- Descipline of Bioscience and Biomedical Engineering,
Indian Institute of Technology, Indore, Simrol, Indore
453552, India
| | - Dhruv Kumar
- Amity Institute of Molecular Medicine & Stem Cell
Research (AIMMSCR), Amity University Uttar Pradesh, Sec-125,
Noida 201313, India
| | - Sanjeev K. Joshi
- Technology Advisor, Defence Research
& Development Organization, HQ, Rajaji Marg, New Delhi 110011,
India
| | - Lindomar Pena
- Department of Virology, Aggeu Magalhaes
Institute (IAM), Oswaldo Cruz Foundation (Fiocruz), Recife, 50670-420
Pernambuco, Brazil
| | - Ravi Durvasula
- Department of Medicine, Loyola University
Stritch School of Medicine, 2160 South First Avenue, Chicago, Illinois
60153, United States
| | - Amit Kumar
- Descipline of Bioscience and Biomedical Engineering,
Indian Institute of Technology, Indore, Simrol, Indore
453552, India
| | - Prakasha Kempaiah
- Department of Medicine, Loyola University
Stritch School of Medicine, 2160 South First Avenue, Chicago, Illinois
60153, United States
| | - Poonam
- Department of Chemistry, Miranda House,
University of Delhi, Delhi 110007,
India
| | - Brijesh Rathi
- Laboratory for Translational Chemistry and Drug
Discovery, Hansraj College, University of Delhi, Delhi 110007,
India
| |
Collapse
|
89
|
Acharya A, Agarwal R, Baker M, Baudry J, Bhowmik D, Boehm S, Byler KG, Chen S, Coates L, Cooper C, Demerdash O, Daidone I, Eblen J, Ellingson S, Forli S, Glaser J, Gumbart JC, Gunnels J, Hernandez O, Irle S, Kneller D, Kovalevsky A, Larkin J, Lawrence T, LeGrand S, Liu SH, Mitchell J, Park G, Parks J, Pavlova A, Petridis L, Poole D, Pouchard L, Ramanathan A, Rogers D, Santos-Martins D, Scheinberg A, Sedova A, Shen Y, Smith J, Smith M, Soto C, Tsaris A, Thavappiragasam M, Tillack A, Vermaas J, Vuong V, Yin J, Yoo S, Zahran M, Zanetti-Polzi L. Supercomputer-Based Ensemble Docking Drug Discovery Pipeline with Application to Covid-19. J Chem Inf Model 2020; 60:5832-5852. [PMID: 33326239 PMCID: PMC7754786 DOI: 10.1021/acs.jcim.0c01010] [Citation(s) in RCA: 118] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Indexed: 01/18/2023]
Abstract
We present a supercomputer-driven pipeline for in silico drug discovery using enhanced sampling molecular dynamics (MD) and ensemble docking. Ensemble docking makes use of MD results by docking compound databases into representative protein binding-site conformations, thus taking into account the dynamic properties of the binding sites. We also describe preliminary results obtained for 24 systems involving eight proteins of the proteome of SARS-CoV-2. The MD involves temperature replica exchange enhanced sampling, making use of massively parallel supercomputing to quickly sample the configurational space of protein drug targets. Using the Summit supercomputer at the Oak Ridge National Laboratory, more than 1 ms of enhanced sampling MD can be generated per day. We have ensemble docked repurposing databases to 10 configurations of each of the 24 SARS-CoV-2 systems using AutoDock Vina. Comparison to experiment demonstrates remarkably high hit rates for the top scoring tranches of compounds identified by our ensemble approach. We also demonstrate that, using Autodock-GPU on Summit, it is possible to perform exhaustive docking of one billion compounds in under 24 h. Finally, we discuss preliminary results and planned improvements to the pipeline, including the use of quantum mechanical (QM), machine learning, and artificial intelligence (AI) methods to cluster MD trajectories and rescore docking poses.
Collapse
Affiliation(s)
- A. Acharya
- School of Physics, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - R. Agarwal
- UT/ORNL Center for Molecular Biophysics, Oak Ridge National Laboratory, TN, 37830, USA
- The University of Tennessee, Knoxville. Department of Biochemistry & Cellular and Molecular Biology, 309 Ken and Blaire Mossman Bldg. 1311 Cumberland Avenue Knoxville, TN, 37996, USA
- Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN, 37996, USA
| | - M. Baker
- Computer Science and Mathematics Division, Oak Ridge National Lab, Oak Ridge, TN 37830, USA
| | - J. Baudry
- The University of Alabama in Huntsville, Department of Biological Sciences. 301 Sparkman Drive, Huntsville, AL 35899, USA
| | - D. Bhowmik
- Computational Sciences and Engineering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - S. Boehm
- Computer Science and Mathematics Division, Oak Ridge National Lab, Oak Ridge, TN 37830, USA
| | - K. G. Byler
- The University of Alabama in Huntsville, Department of Biological Sciences. 301 Sparkman Drive, Huntsville, AL 35899, USA
| | - S.Y. Chen
- Computational Science Initiative, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - L. Coates
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - C.J. Cooper
- UT/ORNL Center for Molecular Biophysics, Oak Ridge National Laboratory, TN, 37830, USA
- Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN, 37996, USA
| | - O. Demerdash
- Biosciences Division, Oak Ridge National Lab, Oak Ridge, TN 37830, USA
| | - I. Daidone
- Department of Physical and Chemical Sciences, University of L’Aquila, I-67010 L’Aquila, Italy
| | - J.D. Eblen
- UT/ORNL Center for Molecular Biophysics, Oak Ridge National Laboratory, TN, 37830, USA
- The University of Tennessee, Knoxville. Department of Biochemistry & Cellular and Molecular Biology, 309 Ken and Blaire Mossman Bldg. 1311 Cumberland Avenue Knoxville, TN, 37996, USA
| | - S. Ellingson
- University of Kentucky, Division of Biomedical Informatics, College of Medicine, UK Medical Center MN 150, Lexington KY, 40536, USA
| | - S. Forli
- Scripps Research, La Jolla, CA, 92037, USA
| | - J. Glaser
- National Center for Computational Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
| | - J. C. Gumbart
- School of Physics, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - J. Gunnels
- HPC Engineering, Amazon Web Services, Seattle, WA 98121, USA
| | - O. Hernandez
- Computer Science and Mathematics Division, Oak Ridge National Lab, Oak Ridge, TN 37830, USA
| | - S. Irle
- Computational Sciences and Engineering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee, Knoxville, TN 37996, USA
| | - D.W. Kneller
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - A. Kovalevsky
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - J. Larkin
- NVIDIA Corporation, Santa Clara, CA 95051, USA
| | - T.J. Lawrence
- Biosciences Division, Oak Ridge National Lab, Oak Ridge, TN 37830, USA
| | - S. LeGrand
- NVIDIA Corporation, Santa Clara, CA 95051, USA
| | - S.-H. Liu
- UT/ORNL Center for Molecular Biophysics, Oak Ridge National Laboratory, TN, 37830, USA
- The University of Tennessee, Knoxville. Department of Biochemistry & Cellular and Molecular Biology, 309 Ken and Blaire Mossman Bldg. 1311 Cumberland Avenue Knoxville, TN, 37996, USA
| | - J.C. Mitchell
- Biosciences Division, Oak Ridge National Lab, Oak Ridge, TN 37830, USA
| | - G. Park
- Computational Science Initiative, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - J.M. Parks
- UT/ORNL Center for Molecular Biophysics, Oak Ridge National Laboratory, TN, 37830, USA
- The University of Tennessee, Knoxville. Department of Biochemistry & Cellular and Molecular Biology, 309 Ken and Blaire Mossman Bldg. 1311 Cumberland Avenue Knoxville, TN, 37996, USA
- Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN, 37996, USA
| | - A. Pavlova
- School of Physics, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - L. Petridis
- UT/ORNL Center for Molecular Biophysics, Oak Ridge National Laboratory, TN, 37830, USA
- The University of Tennessee, Knoxville. Department of Biochemistry & Cellular and Molecular Biology, 309 Ken and Blaire Mossman Bldg. 1311 Cumberland Avenue Knoxville, TN, 37996, USA
| | - D. Poole
- NVIDIA Corporation, Santa Clara, CA 95051, USA
| | - L. Pouchard
- Computational Science Initiative, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - A. Ramanathan
- Data Science and Learning Division, Argonne National Lab, Lemont, IL 60439, USA
| | - D. Rogers
- National Center for Computational Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
| | | | | | - A. Sedova
- Biosciences Division, Oak Ridge National Lab, Oak Ridge, TN 37830, USA
| | - Y. Shen
- UT/ORNL Center for Molecular Biophysics, Oak Ridge National Laboratory, TN, 37830, USA
- The University of Tennessee, Knoxville. Department of Biochemistry & Cellular and Molecular Biology, 309 Ken and Blaire Mossman Bldg. 1311 Cumberland Avenue Knoxville, TN, 37996, USA
- Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN, 37996, USA
| | - J.C. Smith
- UT/ORNL Center for Molecular Biophysics, Oak Ridge National Laboratory, TN, 37830, USA
- The University of Tennessee, Knoxville. Department of Biochemistry & Cellular and Molecular Biology, 309 Ken and Blaire Mossman Bldg. 1311 Cumberland Avenue Knoxville, TN, 37996, USA
| | - M.D. Smith
- UT/ORNL Center for Molecular Biophysics, Oak Ridge National Laboratory, TN, 37830, USA
- The University of Tennessee, Knoxville. Department of Biochemistry & Cellular and Molecular Biology, 309 Ken and Blaire Mossman Bldg. 1311 Cumberland Avenue Knoxville, TN, 37996, USA
| | - C. Soto
- Computational Science Initiative, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - A. Tsaris
- National Center for Computational Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
| | | | | | - J.V. Vermaas
- National Center for Computational Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
| | - V.Q. Vuong
- Computational Sciences and Engineering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee, Knoxville, TN 37996, USA
| | - J. Yin
- National Center for Computational Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
| | - S. Yoo
- Computational Science Initiative, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - M. Zahran
- Department of Biological Sciences, New York City College of Technology, The City University of New York (CUNY), Brooklyn, NY 11201, USA
| | | |
Collapse
|
90
|
Nguyen H, Thai NQ, Truong DT, Li MS. Remdesivir Strongly Binds to Both RNA-Dependent RNA Polymerase and Main Protease of SARS-CoV-2: Evidence from Molecular Simulations. J Phys Chem B 2020; 124:11337-11348. [PMID: 33264025 PMCID: PMC7724981 DOI: 10.1021/acs.jpcb.0c07312] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 11/12/2020] [Indexed: 02/07/2023]
Abstract
The outbreak of a new coronavirus SARS-CoV-2 (severe acute respiratory syndrome-coronavirus 2) has caused a global COVID-19 (coronavirus disease 2019) pandemic, resulting in millions of infections and thousands of deaths around the world. There is currently no drug or vaccine for COVID-19, but it has been revealed that some commercially available drugs are promising, at least for treating symptoms. Among them, remdesivir, which can block the activity of RNA-dependent RNA polymerase (RdRp) in old SARS-CoV and MERS-CoV viruses, has been prescribed to COVID-19 patients in many countries. A recent experiment showed that remdesivir binds to SARS-CoV-2 with an inhibition constant of μM, but the exact target has not been reported. In this work, combining molecular docking, steered molecular dynamics, and umbrella sampling, we examined its binding affinity to two targets including the main protease (Mpro), also known as 3C-like protease, and RdRp. We showed that remdesivir binds to Mpro slightly weaker than to RdRp, and the corresponding inhibition constants, consistent with the experiment, fall to the μM range. The binding mechanisms of remdesivir to two targets differ in that the electrostatic interaction is the main force in stabilizing the RdRp-remdesivir complex, while the van der Waals interaction dominates in the Mpro-remdesivir case. Our result indicates that remdesivir can target not only RdRp but also Mpro, which can be invoked to explain why this drug is effective in treating COVID-19. We have identified residues of the target protein that make the most important contribution to binding affinity, and this information is useful for drug development for this disease.
Collapse
Affiliation(s)
- Hoang
Linh Nguyen
- Life Science Lab, Institute for Computational Science and Technology, Quang Trung Software City, Tan Chanh
Hiep Ward, District 12, Ho Chi Minh City 700000, Vietnam
| | - Nguyen Quoc Thai
- Life Science Lab, Institute for Computational Science and Technology, Quang Trung Software City, Tan Chanh
Hiep Ward, District 12, Ho Chi Minh City 700000, Vietnam
- Dong
Thap University, 783 Pham Huu Lau Street, Ward 6, Cao Lanh
City 870000, Dong Thap, Vietnam
| | - Duc Toan Truong
- Life Science Lab, Institute for Computational Science and Technology, Quang Trung Software City, Tan Chanh
Hiep Ward, District 12, Ho Chi Minh City 700000, Vietnam
| | - Mai Suan Li
- Institute of Physics, Polish Academy of Sciences, al. Lotnikow 32/46, Warsaw 02-668, Poland
| |
Collapse
|
91
|
Cui W, Yang K, Yang H. Recent Progress in the Drug Development Targeting SARS-CoV-2 Main Protease as Treatment for COVID-19. Front Mol Biosci 2020; 7:616341. [PMID: 33344509 PMCID: PMC7746807 DOI: 10.3389/fmolb.2020.616341] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 11/17/2020] [Indexed: 12/28/2022] Open
Abstract
The sudden outbreak of 2019 novel coronavirus (2019-nCoV, later named SARS-CoV-2) rapidly turned into an unprecedented pandemic of coronavirus disease 2019 (COVID-19). This global healthcare emergency marked the third occurrence of a deadly coronavirus (CoV) into the human society after entering the new millennium, which overwhelmed the worldwide healthcare system and affected the global economy. However, therapeutic options for COVID-19 are still very limited. Developing drugs targeting vital proteins in viral life cycle is a feasible approach to overcome this dilemma. Main protease (Mpro) plays a dominant role in processing CoV-encoded polyproteins which mediate the assembly of replication-transcription machinery and is thus recognized as an ideal antiviral target. Here we summarize the recent progress in the discovery of anti-SARS-CoV-2 agents against Mpro. Combining structural study, virtual screen, and experimental screen, numerous therapeutic candidates including repurposed drugs and ab initio designed compounds have been proposed. Such collaborative effort from the scientific community would accelerate the pace of developing efficacious treatment for COVID-19.
Collapse
Affiliation(s)
- Wen Cui
- Institute of Life Sciences, Chongqing Medical University, Chongqing, China.,School of Life Science and Technology, Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China
| | - Kailin Yang
- Taussig Cancer Center, Cleveland Clinic, Cleveland, OH, United States
| | - Haitao Yang
- School of Life Science and Technology, Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China.,Tianjin International Joint Academy of Biomedicine, Tianjin, China
| |
Collapse
|
92
|
Geranii Herba as a Potential Inhibitor of SARS-CoV-2 Main 3CL pro, Spike RBD, and Regulation of Unfolded Protein Response: An In Silico Approach. Antibiotics (Basel) 2020; 9:antibiotics9120863. [PMID: 33287311 PMCID: PMC7761775 DOI: 10.3390/antibiotics9120863] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 11/24/2020] [Accepted: 12/01/2020] [Indexed: 12/19/2022] Open
Abstract
Background: Since the first patient identified with SARS-CoV-2 symptoms in December 2019, the trend of a spreading coronavirus disease 2019 (COVID-19) infection has remained to date. As for now, there is an urgent need to develop novel drugs or vaccines for the SARS-CoV-2 virus. Methods: Polyphenolic compounds have potential as drug candidates for various diseases, including viral infections. In this study, polyphenolic compounds contained in Geranii Herba were chosen for an in silico approach. The SARS-CoV-2 receptor-binding domain (RBD), 3CLpro (Replicase polyprotein 1ab), and the cell surface receptor glucose-regulated protein 78 (GRP78) were chosen as target proteins. Results: Based on the molecular docking analysis, ellagic acid, gallic acid, geraniin, kaempferitrin, kaempferol, and quercetin showed significant binding interactions with the target proteins. Besides, the molecular dynamic simulation studies support Geranii Herba’s inhibition efficiency on the SARS-CoV-2 RBD. We assume that the active compounds in Geranii Herba might inhibit SARS-CoV-2 cell entry through the ACE2 receptor and inhibit the proteolytic process. Besides, these compounds may help to regulate the cell signaling under the unfolded protein response in endoplasmic reticulum stress through the binding with GRP78 and avoid the SARS-CoV-2 interaction. Conclusions: Hence, the compounds present in Geranii Herba could be used as possible drug candidates for the prevention/treatment of SARS-CoV-2 infection.
Collapse
|
93
|
Bello M. Prediction of potential inhibitors of the dimeric SARS-CoV2 main proteinase through the MM/GBSA approach. J Mol Graph Model 2020; 101:107762. [PMID: 33022569 PMCID: PMC7511853 DOI: 10.1016/j.jmgm.2020.107762] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 09/15/2020] [Accepted: 09/21/2020] [Indexed: 01/27/2023]
Abstract
Since the emergence of SARS-CoV2, to date, no effective antiviral drug has been approved to treat the disease, and no vaccine against SARS-CoV2 is available. Under this scenario, the combination of two HIV-1 protease inhibitors, lopinavir and ritonavir, has attracted attention since they have been previously employed against the SARS-CoV main proteinase (Mpro) and exhibited some signs of effectiveness. Recently, the 3D structure of SARS-CoV2 Mpro was constructed based on the monomeric SARS-CoV Mpro and employed to identify potential approved small inhibitors against SARS-CoV2 Mpro, allowing the selection of 15 drugs among 1903 approved drugs to be employed. In this study, we performed docking of these 15 approved drugs against the recently solved X-ray crystallography structure of SARS-CoV2 Mpro in the monomeric and dimeric states; the latter is the functional state that was determined in a biological context, and these were submitted to molecular dynamics (MD) simulations coupled with the molecular mechanics generalized Born surface area (MM/GBSA) approach to obtain insight into the inhibitory activity of these compounds. Similar studies were performed with lopinavir and ritonavir coupled to monomeric and dimeric SARS-CoV Mpro and SARS-CoV2 Mpro to compare the inhibitory differences. Our study provides the structural and energetic basis of the inhibitory properties of lopinavir and ritonavir on SARS-CoV Mpro and SARS-CoV2 Mpro, allowing us to identify two FDA-approved drugs that can be used against SARS-CoV2 Mpro. This study also demonstrated that drug discovery requires the dimeric state to obtain good results.
Collapse
Affiliation(s)
- Martiniano Bello
- Laboratorio de Modelado Molecular, Bioinformática y Diseño de Fármacos de La Escuela Superior de Medicina, Instituto Politécnico Nacional, México. Plan de San Luis Y Diaz Mirón S/N, Col. Casco de Santo Tomas, México City, CP, 11340, Mexico.
| |
Collapse
|
94
|
Artese A, Svicher V, Costa G, Salpini R, Di Maio VC, Alkhatib M, Ambrosio FA, Santoro MM, Assaraf YG, Alcaro S, Ceccherini-Silberstein F. Current status of antivirals and druggable targets of SARS CoV-2 and other human pathogenic coronaviruses. Drug Resist Updat 2020; 53:100721. [PMID: 33132205 PMCID: PMC7448791 DOI: 10.1016/j.drup.2020.100721] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/13/2020] [Accepted: 08/17/2020] [Indexed: 12/15/2022]
Abstract
Coronaviridae is a peculiar viral family, with a very large RNA genome and characteristic appearance, endowed with remarkable tendency to transfer from animals to humans. Since the beginning of the 21st century, three highly transmissible and pathogenic coronaviruses have crossed the species barrier and caused deadly pneumonia, inflicting severe outbreaks and causing human health emergencies of inconceivable magnitude. Indeed, in the past two decades, two human coronaviruses emerged causing serious respiratory illness: severe acute respiratory syndrome coronavirus (SARS-CoV-1) and Middle Eastern respiratory syndrome coronavirus (MERS-CoV), causing more than 10,000 cumulative cases, with mortality rates of 10 % for SARS-CoV-1 and 34.4 % for MERS-CoV. More recently, the severe acute respiratory syndrome coronavirus virus 2 (SARS-CoV-2) has emerged in China and has been identified as the etiological agent of the recent COVID-19 pandemic outbreak. It has rapidly spread throughout the world, causing nearly 22 million cases and ∼ 770,000 deaths worldwide, with an estimated mortality rate of ∼3.6 %, hence posing serious challenges for adequate and effective prevention and treatment. Currently, with the exception of the nucleotide analogue prodrug remdesivir, and despite several efforts, there is no known specific, proven, pharmacological treatment capable of efficiently and rapidly inducing viral containment and clearance of SARS-CoV-2 infection as well as no broad-spectrum drug for other human pathogenic coronaviruses. Another confounding factor is the paucity of molecular information regarding the tendency of coronaviruses to acquire drug resistance, a gap that should be filled in order to optimize the efficacy of antiviral drugs. In this light, the present review provides a systematic update on the current knowledge of the marked global efforts towards the development of antiviral strategies aimed at coping with the infection sustained by SARS-CoV-2 and other human pathogenic coronaviruses, displaying drug resistance profiles. The attention has been focused on antiviral drugs mainly targeting viral protease, RNA polymerase and spike glycoprotein, that have been tested in vitro and/or in clinical trials as well as on promising compounds proven to be active against coronaviruses by an in silico drug repurposing approach. In this respect, novel insights on compounds, identified by structure-based virtual screening on the DrugBank database endowed by multi-targeting profile, are also reported. We specifically identified 14 promising compounds characterized by a good in silico binding affinity towards, at least, two of the four studied targets (viral and host proteins). Among which, ceftolozane and NADH showed the best multi-targeting profile, thus potentially reducing the emergence of resistant virus strains. We also focused on potentially novel pharmacological targets for the development of compounds with anti-pan coronavirus activity. Through the analysis of a large set of viral genomic sequences, the current review provides a comprehensive and specific map of conserved regions across human coronavirus proteins which are essential for virus replication and thus with no or very limited tendency to mutate. Hence, these represent key druggable targets for novel compounds against this virus family. In this respect, the identification of highly effective and innovative pharmacological strategies is of paramount importance for the treatment and/or prophylaxis of the current pandemic but potentially also for future and unavoidable outbreaks of human pathogenic coronaviruses.
Collapse
Affiliation(s)
- Anna Artese
- Dipartimento di Scienze della Salute, Università “Magna Græcia” di Catanzaro, Campus “S. Venuta”, Catanzaro, Italy,Net4Science Academic Spin-Off, Università “Magna Græcia” di Catanzaro, Campus “S. Venuta”, Catanzaro, Italy
| | - Valentina Svicher
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Giosuè Costa
- Dipartimento di Scienze della Salute, Università “Magna Græcia” di Catanzaro, Campus “S. Venuta”, Catanzaro, Italy,Net4Science Academic Spin-Off, Università “Magna Græcia” di Catanzaro, Campus “S. Venuta”, Catanzaro, Italy
| | - Romina Salpini
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Velia Chiara Di Maio
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Mohammad Alkhatib
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy
| | | | | | - Yehuda G. Assaraf
- The Fred Wyszkowski Cancer Research Lab, Faculty of Biology, Technion, Israel Institute of Technology, Haifa, Israel
| | - Stefano Alcaro
- Dipartimento di Scienze della Salute, Università “Magna Græcia” di Catanzaro, Campus “S. Venuta”, Catanzaro, Italy,Net4Science Academic Spin-Off, Università “Magna Græcia” di Catanzaro, Campus “S. Venuta”, Catanzaro, Italy
| | | |
Collapse
|
95
|
Farooq S, Ngaini Z. Natural and Synthetic Drugs as Potential Treatment for Coronavirus Disease 2019 (COVID-2019). CHEMISTRY AFRICA 2020. [PMCID: PMC7682129 DOI: 10.1007/s42250-020-00203-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Coronavirus disease 2019 (COVID-19) has become a global pandemic in a short period, where a tragically large number of human lives being lost. It is an infectious pandemic that recently infected more than two hundred countries in the world. Many potential treatments have been introduced, which are considered potent antiviral drugs and commonly reported as herbal or traditional and medicinal treatments. A variety of bioactive metabolites extracts from natural herbal have been reported for coronaviruses with some effective results. Food and Drug Administration (FDA) has approved numerous drugs to be introduced against COVID-19, which commercially available as antiviral drugs and vaccines. In this study, a comprehensive review is discussed on the potential antiviral remedies based on natural and synthetic drugs. This review highlighted the potential remedies of COVID-19 which successfully applied to patients with high cytopathic inhibition potency for cell-to-cell spread and replication of coronavirus.
Collapse
|
96
|
Liu XH, Zhang X, Lu ZH, Zhu YS, Wang T. Potential molecular targets of nonstructural proteins for the development of antiviral drugs against SARS-CoV-2 infection. Biomed Pharmacother 2020; 133:111035. [PMID: 33254013 PMCID: PMC7671653 DOI: 10.1016/j.biopha.2020.111035] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 11/10/2020] [Accepted: 11/15/2020] [Indexed: 02/08/2023] Open
Abstract
The pandemic of SARS-CoV-2 has posed significant threats to public health worldwide. Target-based drug development is a promising approach against SARS-CoV-2 infection. Nonstructural proteins may play critical roles from drug design perspectives. Insights into NSPs of different viruses could streamline novel drug development.
Outbreaks of severe acute respiratory syndrome coronavirus (SARS-CoV), Middle East respiratory syndrome coronavirus (MERS-CoV), and SARS-CoV-2 have produced high pathogenicity and mortality rates in human populations. However, to meet the increasing demand for treatment of these pathogenic coronaviruses, accelerating novel antiviral drug development as much as possible has become a public concern. Target-based drug development may be a promising approach to achieve this goal. In this review, the relevant features of potential molecular targets in human coronaviruses (HCoVs) are highlighted, including the viral protease, RNA-dependent RNA polymerase, and methyltransferases. Additionally, recent advances in the development of antivirals based on these targets are summarized. This review is expected to provide new insights and potential strategies for the development of novel antiviral drugs to treat SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Xiao-Huan Liu
- School of Biological Science, Jining Medical University, Jining, China
| | - Xiao Zhang
- School of Biological Science, Jining Medical University, Jining, China
| | - Zhen-Hua Lu
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - You-Shuang Zhu
- School of Biological Science, Jining Medical University, Jining, China
| | - Tao Wang
- School of Biological Science, Jining Medical University, Jining, China.
| |
Collapse
|
97
|
Koudelka T, Boger J, Henkel A, Schönherr R, Krantz S, Fuchs S, Rodríguez E, Redecke L, Tholey A. N-Terminomics for the Identification of In Vitro Substrates and Cleavage Site Specificity of the SARS-CoV-2 Main Protease. Proteomics 2020; 21:e2000246. [PMID: 33111431 PMCID: PMC7645863 DOI: 10.1002/pmic.202000246] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/21/2020] [Indexed: 01/11/2023]
Abstract
The genome of coronaviruses, including SARS‐CoV‐2, encodes for two proteases, a papain like (PLpro) protease and the so‐called main protease (Mpro), a chymotrypsin‐like cysteine protease, also named 3CLpro or non‐structural protein 5 (nsp5). Mpro is activated by autoproteolysis and is the main protease responsible for cutting the viral polyprotein into functional units. Aside from this, it is described that Mpro proteases are also capable of processing host proteins, including those involved in the host innate immune response. To identify substrates of the three main proteases from SARS‐CoV, SARS‐CoV‐2, and hCoV‐NL63 coronviruses, an LC‐MS based N‐terminomics in vitro analysis is performed using recombinantly expressed proteases and lung epithelial and endothelial cell lysates as substrate pools. For SARS‐CoV‐2 Mpro, 445 cleavage events from more than 300 proteins are identified, while 151 and 331 Mpro derived cleavage events are identified for SARS‐CoV and hCoV‐NL63, respectively. These data enable to better understand the cleavage site specificity of the viral proteases and will help to identify novel substrates in vivo. All data are available via ProteomeXchange with identifier PXD021406.
Collapse
Affiliation(s)
- Tomas Koudelka
- Systematic Proteome Research and BioanalyticsInstitute for Experimental Medicine, Christian‐Albrechts‐Universität zu KielKiel24105Germany
| | - Juliane Boger
- Institute of BiochemistryUniversity of LuebeckLuebeck23562Germany
| | | | - Robert Schönherr
- Institute of BiochemistryUniversity of LuebeckLuebeck23562Germany
- Photon ScienceDeutsches Elektronen Synchrotron (DESY)Hamburg22607Germany
| | - Stefanie Krantz
- Experimental Trauma Surgery, Department of Trauma Surgery and OrthopedicsUniversity Medical Center Schleswig‐HolsteinKiel24105Germany
| | - Sabine Fuchs
- Experimental Trauma Surgery, Department of Trauma Surgery and OrthopedicsUniversity Medical Center Schleswig‐HolsteinKiel24105Germany
| | - Estefanía Rodríguez
- Virology DepartmentBernhard Nocht Institute for Tropical MedicineGerman Center for Infection Research (DZIF), Partner site Hamburg‐Lübeck‐Borstel‐Riems, Hamburg, GermanyHamburg20359Germany
| | - Lars Redecke
- Institute of BiochemistryUniversity of LuebeckLuebeck23562Germany
- Photon ScienceDeutsches Elektronen Synchrotron (DESY)Hamburg22607Germany
| | - Andreas Tholey
- Systematic Proteome Research and BioanalyticsInstitute for Experimental Medicine, Christian‐Albrechts‐Universität zu KielKiel24105Germany
| |
Collapse
|
98
|
Alshammari MB, Ramadan M, Aly AA, El-Sheref EM, Bakht MA, Ibrahim MAA, Shawky AM. Synthesis of potentially new schiff bases of N-substituted-2-quinolonylacetohydrazides as anti-COVID-19 agents. J Mol Struct 2020; 1230:129649. [PMID: 33223566 PMCID: PMC7668221 DOI: 10.1016/j.molstruc.2020.129649] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 11/07/2020] [Accepted: 11/11/2020] [Indexed: 02/07/2023]
Abstract
We report herein a new series of synthesized N-substituted-2-quinolonylacetohydrazides aiming to evaluate their activity towards SARS-CoV-2. The structures of the obtained products were fully confirmed by NMR, mass, IR spectra and elemental analysis as well. Molecular docking calculations showed that most of the tested compounds possessed good binding affinity to the SARS-CoV-2 main protease (Mpro) comparable toRemdesivir.
Collapse
Affiliation(s)
- Mohammed B Alshammari
- Chemistry Department, College of Sciences and Humanities, Prince Sattam bin Abdulaziz University, P.O. Box 83, Al-Kharij 11942, Saudi Arabia
| | - Mohamed Ramadan
- Department of Organic Pharmacy, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Egypt
| | - Ashraf A Aly
- Chemistry Department, Faculty of Science, Minia University, El-Minia 61519, Egypt
| | - Essmat M El-Sheref
- Chemistry Department, Faculty of Science, Minia University, El-Minia 61519, Egypt
| | - Md Afroz Bakht
- Chemistry Department, College of Sciences and Humanities, Prince Sattam bin Abdulaziz University, P.O. Box 83, Al-Kharij 11942, Saudi Arabia
| | - Mahmoud A A Ibrahim
- Chemistry Department, Faculty of Science, Minia University, El-Minia 61519, Egypt
| | - Ahmed M Shawky
- Science and Technology Unit (STU), Umm Al-Qura University, Makkah 21955, Saudi Arabia
| |
Collapse
|
99
|
Singh DD, Han I, Choi EH, Yadav DK. Recent Advances in Pathophysiology, Drug Development and Future Perspectives of SARS-CoV-2. Front Cell Dev Biol 2020; 8:580202. [PMID: 33240881 PMCID: PMC7677140 DOI: 10.3389/fcell.2020.580202] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 09/22/2020] [Indexed: 12/15/2022] Open
Abstract
The coronavirus (SARS-CoV-2) pandemic is a rapidly transmitting and highly pathogenic disease. The spike protein of SARS-CoV-2 binds to the surface of angiotensin-converting enzyme-2 (ACE2) receptors along the upper respiratory tract and intestinal epithelial cells. SARS-CoV-2 patients develop acute respiratory distress, lymphocytic myocarditis, disseminated intravascular coagulation, lymphocytic infiltration, and other serious complications. A SARS-CoV-2 diagnosis is conducted using quantitative reverse-transcription PCR and computed tomography (CT) imaging. In addition, IgM or IgG antibodies are used to identify acute and convalescent illness. Recent clinical data have been generated by health workers and researchers and have shown that there is an urgent requirement in the effective clinical and treatment of patients, as well as other developments for dealing with SARS-CoV-2 infection. A broad spectrum of clinical trials of different vaccines and drug treatment has been evaluated for use against SARS-CoV-2. This review includes the emergence of SARS-CoV-2 pneumonia as a way to recognize and eliminate any barriers that affect rapid patient care and public health management against the SARS-CoV-2 epidemic based on the natural history of the disease, its transmission, pathogenesis, immune response, epidemiology, diagnosis, clinical presentation, possible treatment, drug and vaccine development, prevention, and future perspective.
Collapse
Affiliation(s)
- Desh Deepak Singh
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, India
| | - Ihn Han
- Plasma Bioscience Research Center, Applied Plasma Medicine Center, Department of Electrical and Biological Physics, Kwangwoon University, Seoul, South Korea
| | - Eun-Ha Choi
- Plasma Bioscience Research Center, Applied Plasma Medicine Center, Department of Electrical and Biological Physics, Kwangwoon University, Seoul, South Korea
| | - Dharmendra K. Yadav
- College of Pharmacy, Gachon University of Medicine and Science, Incheon, South Korea
| |
Collapse
|
100
|
Singh E, Khan RJ, Jha RK, Amera GM, Jain M, Singh RP, Muthukumaran J, Singh AK. A comprehensive review on promising anti-viral therapeutic candidates identified against main protease from SARS-CoV-2 through various computational methods. J Genet Eng Biotechnol 2020; 18:69. [PMID: 33141358 PMCID: PMC7607901 DOI: 10.1186/s43141-020-00085-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 10/14/2020] [Indexed: 02/08/2023]
Abstract
Background The COVID-19 pandemic caused by SARS-CoV-2 has shown an exponential trend of infected people across the planet. Crediting its virulent nature, it becomes imperative to identify potential therapeutic agents against the deadly virus. The 3-chymotrypsin-like protease (3CLpro) is a cysteine protease which causes the proteolysis of the replicase polyproteins to generate functional proteins, which is a crucial step for viral replication and infection. Computational methods have been applied in recent studies to identify promising inhibitors against 3CLpro to inhibit the viral activity. Main body of the abstract This review provides an overview of promising drug/lead candidates identified so far against 3CLpro through various in silico approaches such as structure-based virtual screening (SBVS), ligand-based virtual screening (LBVS) and drug-repurposing/drug-reprofiling/drug-retasking. Further, the drugs have been classified according to their chemical structures or biological activity into flavonoids, peptides, terpenes, quinolines, nucleoside and nucleotide analogues, protease inhibitors, phenalene and antibiotic derivatives. These are then individually discussed based on the various structural parameters namely estimated free energy of binding (ΔG), key interacting residues, types of intermolecular interactions and structural stability of 3CLpro-ligand complexes obtained from the results of molecular dynamics (MD) simulations. Conclusion The review provides comprehensive information of potential inhibitors identified through several computational methods thus far against 3CLpro from SARS-CoV-2 and provides a better understanding of their interaction patterns and dynamic states of free and ligand-bound 3CLpro structures.
Collapse
Affiliation(s)
- Ekampreet Singh
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, U.P, P.C. 201310, India
| | - Rameez Jabeer Khan
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, U.P, P.C. 201310, India
| | - Rajat Kumar Jha
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, U.P, P.C. 201310, India
| | - Gizachew Muluneh Amera
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, U.P, P.C. 201310, India
| | - Monika Jain
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, U.P, P.C. 201310, India
| | - Rashmi Prabha Singh
- Department of Biotechnology, IILM College of Engineering & Technology, Greater Noida, U.P, India
| | - Jayaraman Muthukumaran
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, U.P, P.C. 201310, India.
| | - Amit Kumar Singh
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, U.P, P.C. 201310, India.
| |
Collapse
|