51
|
Hussain S, Villarreal S, Ramirez N, Hussain A, Sumaya IC. Haloperidol-induced hypokinesia in rats is differentially affected by the light/dark phase, age, and melatonin. Behav Brain Res 2020; 379:112313. [PMID: 31715211 DOI: 10.1016/j.bbr.2019.112313] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 10/16/2019] [Accepted: 10/17/2019] [Indexed: 01/04/2023]
Abstract
It has been well established that the striatal dopaminergic system is compromised with aging, namely D2 receptor function. Also well documented is the age related decline of the neurohormone, melatonin, in both humans and nonhuman animals. What has not been well studied is the possible interaction between the D2 receptor system and the age related decline in melatonin with its unmistakable pattern of synthesis and release exclusively during the dark phase. We tested the effect of the D2 antagonist, haloperidol (1.0 mg/kg ip), in adolescent (2 mo old) and adult rats (10 mo old) in the light (ZT3) and dark phases (ZT 15) in rats kept in a 12 L/12D cycle and the effect of exogenous melatonin (15 mg/kg ip/day x 4 days for a total of 60 mg/kg) on D2 antagonism. Using the bar test, measuring the extrapyramidal side-effect of hypokinesia, we report haloperidol to work differentially depending on both age and phase. Adult rats experienced the effect of the D2 antagonist in both the light and dark phases, while younger rats did not show hypokinetic affects in the dark. By manipulated lighting, we were able to restore the effect of haloperidol in younger rats in the dark phase. We also found ameliorating effects of melatonin lessening time on the bar after treatment with haloperidol, however, this effect was only found in older rats. These data demonstrate the importance of the light/dark cycle and age in the susceptibility of extrapyramidal effects with use of drugs that target D2 receptor function.
Collapse
Affiliation(s)
- Samirah Hussain
- Department of Psychology, Behavioral Neuroscience Laboratory, California State University, Bakersfield, CA, 93311, United States
| | - Susie Villarreal
- Department of Psychology, Behavioral Neuroscience Laboratory, California State University, Bakersfield, CA, 93311, United States
| | - Nayeli Ramirez
- Department of Psychology, Behavioral Neuroscience Laboratory, California State University, Bakersfield, CA, 93311, United States
| | - Anjum Hussain
- Department of Psychology, Behavioral Neuroscience Laboratory, California State University, Bakersfield, CA, 93311, United States
| | - Isabel C Sumaya
- Department of Psychology, Behavioral Neuroscience Laboratory, California State University, Bakersfield, CA, 93311, United States.
| |
Collapse
|
52
|
Van Quan V, Phu HT, Thao PTT, Nam PC. Substituent effects on antioxidant activity of monosubstituted indole-3-carbinols: A DFT study. VIETNAM JOURNAL OF CHEMISTRY 2020. [DOI: 10.1002/vjch.2019000110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Vo Van Quan
- Quang Tri Teacher Training College; Km 3, No 9 Highway Dong Ha City, Quang Tri 48000 Viet Nam
| | - Ho Thi Phu
- Hue University of Sciences - Hue University; 77 Nguyen Hue Hue City 49000 Viet Nam
| | - Pham Thi Thu Thao
- Hue University of Sciences - Hue University; 77 Nguyen Hue Hue City 49000 Viet Nam
| | - Pham Cam Nam
- Department of Chemical Engineering; The University of Da Nang - University of Science and Technology; 54 Nguyen Luong Bang, Hoa Khanh Bach, Lien Chieu Da Nang City 50000 Viet Nam
| |
Collapse
|
53
|
Boulebd H, Mechler A, Hoa NT, Vo QV. Thermodynamic and kinetic studies of the antiradical activity of 5-hydroxymethylfurfural: computational insights. NEW J CHEM 2020. [DOI: 10.1039/d0nj01567a] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The antiradical properties of 5-HMF in the gas-phase and in physiological environments were examined by thermodynamic and kinetic calculations.
Collapse
Affiliation(s)
- Houssem Boulebd
- Laboratory of Synthesis of Molecules with Biological Interest
- University of Frères Mentouri Constantine 1
- Constantine
- Algeria
| | - Adam Mechler
- Department of Chemistry and Physics
- La Trobe University
- Australia
| | - Nguyen Thi Hoa
- Academic Affairs
- The University of Danang – University of Technology and Education
- Danang 550000
- Vietnam
| | - Quan V. Vo
- Institute of Research and Development
- Duy Tan University
- Danang 550000
- Vietnam
| |
Collapse
|
54
|
Ribaudo G, Bortoli M, Ongaro A, Oselladore E, Gianoncelli A, Zagotto G, Orian L. Fluoxetine scaffold to design tandem molecular antioxidants and green catalysts. RSC Adv 2020; 10:18583-18593. [PMID: 35518299 PMCID: PMC9053872 DOI: 10.1039/d0ra03509b] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 05/07/2020] [Indexed: 12/12/2022] Open
Abstract
Fluoxetine finds application in the treatment of depression and mood disorders. This selective serotonin-reuptake inhibitor (SSRI) also contrasts oxidative stress by direct ROS scavenging, modulation of the endogenous antioxidant defense system, and/or enhancement of the serotonin antioxidant capacity. We synthesised some fluoxetine analogues incorporating a selenium nucleus, thus expanding its antioxidant potential by enabling a hydroperoxides-inactivating, glutathione peroxidase (GPx)-like activity. Radical scavenging and peroxidatic activity were combined in a water-soluble, drug-like, tandem antioxidant molecule. Selenofluoxetine derivatives were reacted with H2O2 in water, and the mechanistic details of the reaction were unravelled combining nuclear magnetic resonance (NMR), electrospray ionisation-mass spectrometry (ESI-MS) and quantum chemistry calculations. The observed oxidation–elimination process led to the formation of seleninic acid and cinnamylamine in a trans-selective manner. This mechanism is likely to be extended to other substrates for the preparation of unsaturated cinnamylamines. We modified fluoxetine by incorporating a selenium nucleus enabling a hydroperoxide-inactivating, glutathione peroxidase (GPx)-like activity and paving the way for its use as green catalyst.![]()
Collapse
Affiliation(s)
- Giovanni Ribaudo
- Dipartimento di Medicina Molecolare e Traslazionale
- Università degli Studi di Brescia
- 25123 Brescia
- Italy
| | - Marco Bortoli
- Dipartimento di Scienze Chimiche
- Università degli Studi di Padova
- 35131 Padova
- Italy
| | - Alberto Ongaro
- Dipartimento di Medicina Molecolare e Traslazionale
- Università degli Studi di Brescia
- 25123 Brescia
- Italy
| | - Erika Oselladore
- Dipartimento di Scienze del Farmaco
- Università degli Studi di Padova
- 35131 Padova
- Italy
| | - Alessandra Gianoncelli
- Dipartimento di Medicina Molecolare e Traslazionale
- Università degli Studi di Brescia
- 25123 Brescia
- Italy
| | - Giuseppe Zagotto
- Dipartimento di Scienze del Farmaco
- Università degli Studi di Padova
- 35131 Padova
- Italy
| | - Laura Orian
- Dipartimento di Scienze Chimiche
- Università degli Studi di Padova
- 35131 Padova
- Italy
| |
Collapse
|
55
|
Vo QV, Tam NM, Bay MV, Mechler A. The radical scavenging activity of natural ramalin: A mechanistic and kinetic study. Chem Phys Lett 2020. [DOI: 10.1016/j.cplett.2019.137004] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
56
|
Vo QV, Van Bay M, Nam PC, Mechler A. Hydroxyl Radical Scavenging of Indole-3-Carbinol: A Mechanistic and Kinetic Study. ACS OMEGA 2019; 4:19375-19381. [PMID: 31763562 PMCID: PMC6868896 DOI: 10.1021/acsomega.9b02782] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 10/28/2019] [Indexed: 05/19/2023]
Abstract
Indole-3-carbinol (I3C) is the product of the enzymatic hydrolysis of glucobrassicin in the human body. I3C exhibits diverse bioactivities. It is used as a supplement to enhance the efficiency of some cancer therapies and is available as an over-the-counter dietary supplement described as a potential antioxidant, among other health benefits. Thus, it is important to develop an in-depth understanding of its antioxidant activity. In this study, the hydroxyl radical scavenging of I3C has been investigated in silico under physiologically relevant conditions (aqueous and lipid-mimetic pentyl ethanoate environment) using thermochemical and kinetic calculations. For benchmarking purposes, the results were compared to known experimental data. The overall reaction rate constant of the HO• radical scavenging of I3C in water was found to be 2.30 × 1010 M-1 s-1 and over two times lower in lipid-mimetic pentyl ethanoate solvent at 7.74 × 109 M-1 s-1. The results also highlighted that the HO• radical scavenging follows almost exclusively the radical adduct formation mechanism (>94%) in a lipid mimetic medium, whereas this mechanism contributes about 60% in aqueous environments. I3C is considered a dopamine-like antioxidant, its main function being prevention of oxidative degradation of lipids; our study supports this view.
Collapse
Affiliation(s)
- Quan V. Vo
- Department
for Management of Science and Technology Development, Ton Duc Thang University, Ho Chi Minh City 758307, Vietnam
- Faculty of Applied Sciences, Ton Duc Thang
University, Ho Chi
Minh City 758307, Vietnam
- E-mail:
| | - Mai Van Bay
- Department
of Chemistry, The University of Da Nang−University
of Science and Education, Da Nang 550000, Vietnam
| | - Pham Cam Nam
- Department
of Chemistry, The University of Da Nang−University
of Science and Technology, Da Nang 550000, Vietnam
| | - Adam Mechler
- Department
of Chemistry and Physics, La Trobe University, Melbourne Victoria 3086, Australia
| |
Collapse
|
57
|
Vo QV, Van Bay M, Nam PC, Mechler A. Is Indolinonic Hydroxylamine a Promising Artificial Antioxidant? J Phys Chem B 2019; 123:7777-7784. [PMID: 31462046 DOI: 10.1021/acs.jpcb.9b05160] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Indolinonic hydroxylamine (IH) is a new-generation artificial antioxidant that, due to its ability to fractionate into apolar environments, is considered for prevention against lipid peroxidation. For this reason, it is important to understand, and compare, its activity in polar and nonpolar environments. In this study, the antioxidant activity of IH has been evaluated against HO• and HOO• radicals in water and, for a lipid-mimetic environment, pentyl ethanoate solvent, using kinetic calculations. It was found that the overall reaction rate constant of the HO• radical scavenging is more than 7 times higher in aqueous (8.98 × 109 M-1 s-1) than in apolar (1.22 × 109 M-1 s-1) media. However, HOO• scavenging was 35 times faster in apolar media (1.00 × 105 M-1 s-1 vs 2.80 × 103 M-1 s-1). In a lipid environment, the HAT mechanism was favored for the antioxidant activity for both radical species, whereas in aqueous solution the SET mechanism defined the HO• scavenging, while HAT described the HOO• scavenging. IH was shown to be one of the most active antioxidants in lipid environment, an essential characteristic for the protection of biological systems.
Collapse
Affiliation(s)
- Quan V Vo
- Department for Management of Science and Technology Development , Ton Duc Thang University , Ho Chi Minh City 700000 , Vietnam.,Faculty of Applied Sciences , Ton Duc Thang University , Ho Chi Minh City 700000 , Vietnam
| | - Mai Van Bay
- Department of Chemistry , The University of Da Nang-University of Science and Education , Da Nang 550000 , Vietnam
| | - Pham Cam Nam
- Department of Chemical Engineering , The University of Da Nang, University of Science and Technology , Da Nang 550000 , Vietnam
| | - Adam Mechler
- Department of Chemistry and Physics , La Trobe University , Melbourne , Victoria 3086 , Australia
| |
Collapse
|
58
|
Major Depressive Disorder and Oxidative Stress: In Silico Investigation of Fluoxetine Activity against ROS. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9173631] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Major depressive disorder is a psychiatric disease having approximately a 20% lifetime prevalence in adults in the United States (U.S.), as reported by Hasin et al. in JAMA Psichiatry 2018 75, 336–346. Symptoms include low mood, anhedonia, decreased energy, alteration in appetite and weight, irritability, sleep disturbances, and cognitive deficits. Comorbidity is frequent, and patients show decreased social functioning and a high mortality rate. Environmental and genetic factors favor the development of depression, but the mechanisms by which stress negatively impacts on the brain are still not fully understood. Several recent works, mainly published during the last five years, aim at investigating the correlation between treatment with fluoxetine, a non-tricyclic antidepressant drug, and the amelioration of oxidative stress. In this work, the antioxidant activity of fluoxetine was investigated using a computational protocol based on the density functional theory approach. Particularly, the scavenging of five radicals (HO•, HOO•, CH3OO•, CH2=CHOO•, and CH3O•) was considered, focusing on hydrogen atom transfer (HAT) and radical adduct formation (RAF) mechanisms. Thermodynamic as well as kinetic aspects are discussed, and, for completeness, two metabolites of fluoxetine and serotonin, whose extracellular concentration is enhanced by fluoxetine, are included in our analysis. Indeed, fluoxetine may act as a radical scavenger, and exhibits selectivity for HO• and CH3O•, but is inefficient toward peroxyl radicals. In contrast, the radical scavenging efficiency of serotonin, which has been demonstrated in vitro, is significant, and this supports the idea of an indirect antioxidant efficiency of fluoxetine.
Collapse
|
59
|
Ramis R, Ortega-Castro J, Caballero C, Casasnovas R, Cerrillo A, Vilanova B, Adrover M, Frau J. How Does Pyridoxamine Inhibit the Formation of Advanced Glycation End Products? The Role of Its Primary Antioxidant Activity. Antioxidants (Basel) 2019; 8:E344. [PMID: 31480509 PMCID: PMC6770850 DOI: 10.3390/antiox8090344] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 08/16/2019] [Accepted: 08/22/2019] [Indexed: 12/28/2022] Open
Abstract
Pyridoxamine, one of the natural forms of vitamin B6, is known to be an effective inhibitor of the formation of advanced glycation end products (AGEs), which are closely related to various human diseases. Pyridoxamine forms stable complexes with metal ions that catalyze the oxidative reactions taking place in the advanced stages of the protein glycation cascade. It also reacts with reactive carbonyl compounds generated as byproducts of protein glycation, thereby preventing further protein damage. We applied Density Functional Theory to study the primary antioxidant activity of pyridoxamine towards three oxygen-centered radicals (•OOH, •OOCH3 and •OCH3) to find out whether this activity may also play a crucial role in the context of protein glycation inhibition. Our results show that, at physiological pH, pyridoxamine can trap the •OCH3 radical, in both aqueous and lipidic media, with rate constants in the diffusion limit (>1.0 × 108 M - 1 s - 1 ). The quickest pathways involve the transfer of the hydrogen atoms from the protonated pyridine nitrogen, the protonated amino group or the phenolic group. Its reactivity towards •OOH and •OOCH3 is smaller, but pyridoxamine can still scavenge them with moderate rate constants in aqueous media. Since reactive oxygen species are also involved in the formation of AGEs, these results highlight that the antioxidant capacity of pyridoxamine is also relevant to explain its inhibitory role on the glycation process.
Collapse
Affiliation(s)
- Rafael Ramis
- Institut Universitari d'Investigació en Ciències de la Salut (IUNICS), Departament de Química, Universitat de les Illes Balears, 07122 Palma de Mallorca, Spain
- Institut d'Investigació Sanitària Illes Balears (IdISBa), 07120 Palma de Mallorca, Spain
| | - Joaquín Ortega-Castro
- Institut Universitari d'Investigació en Ciències de la Salut (IUNICS), Departament de Química, Universitat de les Illes Balears, 07122 Palma de Mallorca, Spain.
- Institut d'Investigació Sanitària Illes Balears (IdISBa), 07120 Palma de Mallorca, Spain.
| | - Carmen Caballero
- Institut Universitari d'Investigació en Ciències de la Salut (IUNICS), Departament de Química, Universitat de les Illes Balears, 07122 Palma de Mallorca, Spain
- Institut d'Investigació Sanitària Illes Balears (IdISBa), 07120 Palma de Mallorca, Spain
| | - Rodrigo Casasnovas
- Institut Universitari d'Investigació en Ciències de la Salut (IUNICS), Departament de Química, Universitat de les Illes Balears, 07122 Palma de Mallorca, Spain
- Institut d'Investigació Sanitària Illes Balears (IdISBa), 07120 Palma de Mallorca, Spain
| | - Antonia Cerrillo
- Institut Universitari d'Investigació en Ciències de la Salut (IUNICS), Departament de Química, Universitat de les Illes Balears, 07122 Palma de Mallorca, Spain
- Institut d'Investigació Sanitària Illes Balears (IdISBa), 07120 Palma de Mallorca, Spain
| | - Bartolomé Vilanova
- Institut Universitari d'Investigació en Ciències de la Salut (IUNICS), Departament de Química, Universitat de les Illes Balears, 07122 Palma de Mallorca, Spain
- Institut d'Investigació Sanitària Illes Balears (IdISBa), 07120 Palma de Mallorca, Spain
| | - Miquel Adrover
- Institut Universitari d'Investigació en Ciències de la Salut (IUNICS), Departament de Química, Universitat de les Illes Balears, 07122 Palma de Mallorca, Spain
- Institut d'Investigació Sanitària Illes Balears (IdISBa), 07120 Palma de Mallorca, Spain
| | - Juan Frau
- Institut Universitari d'Investigació en Ciències de la Salut (IUNICS), Departament de Química, Universitat de les Illes Balears, 07122 Palma de Mallorca, Spain
- Institut d'Investigació Sanitària Illes Balears (IdISBa), 07120 Palma de Mallorca, Spain
| |
Collapse
|
60
|
Wang J, Wang X, He Y, Jia L, Yang CS, Reiter RJ, Zhang J. Antioxidant and Pro-Oxidant Activities of Melatonin in the Presence of Copper and Polyphenols In Vitro and In Vivo. Cells 2019; 8:cells8080903. [PMID: 31443259 PMCID: PMC6721667 DOI: 10.3390/cells8080903] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 08/10/2019] [Accepted: 08/12/2019] [Indexed: 12/13/2022] Open
Abstract
Melatonin is a well-documented antioxidant. Physicochemical analysis using the density functional theory suggests that melatonin is a copper chelating agent; however, experimental evidence is still in demand. The present study investigated the influence of melatonin on reactive oxygen species (ROS) generated from polyphenol autoxidation in the presence of copper. Surprisingly, we found that melatonin paradoxically enhanced ROS formation in a redox system containing low concentrations of copper and quercetin (Que) or (−)-epigallocatechin-3-gallate (EGCG), due to reduction of cupric to cuprous ion by melatonin. Addition of DNA to this system inhibited ROS production, because DNA bound to copper and inhibited copper reduction by melatonin. When melatonin was added to a system containing high concentrations of copper and Que or EGCG, it diminished hydroxyl radical formation as expected. Upon addition of DNA to high concentrations of copper and Que, this pro-oxidative system generated ROS and caused DNA damage. The DNA damage was not prevented by typical scavengers of hydroxyl radical DMSO or mannitol. Under these conditions, melatonin or bathocuproine disulfonate (a copper chelator) protected the DNA from damage by chelating copper. When melatonin was administered intraperitoneally to mice, it inhibited hepatotoxicity and DNA damage evoked by EGCG plus diethyldithiocarbamate (a copper ionophore). Overall, the present study demonstrates the pro-oxidant and antioxidant activities of melatonin in the redox system of copper and polyphenols. The pro-oxidant effect is inhibited by the presence of DNA, which prevents copper reduction by melatonin. Interestingly, in-vivo melatonin protects against copper/polyphenol-induced DNA damage probably via acting as a copper-chelating agent rather than a hydroxyl radical scavenger. Melatonin with a dual function of scavenging hydroxyl radical and chelating copper is a more reliable DNA guardian than antioxidants that only have a single function of scavenging hydroxyl radical.
Collapse
Affiliation(s)
- Jiajia Wang
- Laboratory of Redox Biology, State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science, Anhui Agricultural University, Hefei 230000, China
| | - Xiaoxiao Wang
- Laboratory of Redox Biology, State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science, Anhui Agricultural University, Hefei 230000, China
| | - Yufeng He
- Laboratory of Redox Biology, State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science, Anhui Agricultural University, Hefei 230000, China
| | - Lijie Jia
- Laboratory of Redox Biology, State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science, Anhui Agricultural University, Hefei 230000, China
| | - Chung S Yang
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, Hefei 230000, China
| | - Russel J Reiter
- Department of Cellular and Structural Biology, UT Health Science Center, San Antonio, TX 78229, USA.
| | - Jinsong Zhang
- Laboratory of Redox Biology, State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science, Anhui Agricultural University, Hefei 230000, China.
- International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, Hefei 230000, China.
| |
Collapse
|
61
|
de Moura Alvorcem L, Britto R, Parmeggiani B, Glanzel NM, da Rosa-Junior NT, Cecatto C, Bobermin LD, Amaral AU, Wajner M, Leipnitz G. Evidence that thiol group modification and reactive oxygen species are involved in hydrogen sulfide-induced mitochondrial permeability transition pore opening in rat cerebellum. Mitochondrion 2019; 47:141-150. [DOI: 10.1016/j.mito.2018.11.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 08/01/2018] [Accepted: 11/02/2018] [Indexed: 12/16/2022]
|
62
|
Lespade L. First Principle Molecular Dynamics of the Oxidation of Methyl‐Hydroxybenzoic Acid Esters by Hydroxyl Radical in Water: Importance of the Number of Hydroxyl Groups. ChemistrySelect 2019. [DOI: 10.1002/slct.201803262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Laure Lespade
- Institut des Sciences Moléculaires, UMR 5255Univ. Bordeaux, 351 crs de la Libération 33400 Talence France
| |
Collapse
|
63
|
Bortoli M, Dalla Tiezza M, Muraro C, Pavan C, Ribaudo G, Rodighiero A, Tubaro C, Zagotto G, Orian L. Psychiatric Disorders and Oxidative Injury: Antioxidant Effects of Zolpidem Therapy disclosed In Silico. Comput Struct Biotechnol J 2019; 17:311-318. [PMID: 30867894 PMCID: PMC6396081 DOI: 10.1016/j.csbj.2019.02.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 02/01/2019] [Accepted: 02/02/2019] [Indexed: 01/09/2023] Open
Abstract
Zolpidem (N,N-Dimethyl-2-[6-methyl-2-(4-methylphenyl)imidazo[1,2-a]pyridin-3-yl]acetamide) is a well-known drug for the treatment of sleeping disorders. Recent literature reports on positive effects of zolpidem therapy on improving renal damage after cisplatin and on reducing akinesia without sleep induction. This has been ascribed to the antioxidant and neuroprotective capacity of this molecule, and tentatively explained according to a generic structural similarity between zolpidem and melatonin. In this work, we investigate in silico the antioxidant potential of zolpidem as scavenger of five ROSs, acting via hydrogen atom transfer (HAT) mechanism; computational methodologies based on density functional theory are employed. For completeness, the analysis is extended to six metabolites. Thermodynamic and kinetic results disclose that indeed zolpidem is an efficient radical scavenger, similarly to melatonin and Trolox, supporting the biomedical evidence that the antioxidant potential of zolpidem therapy may have a beneficial effect against oxidative injury, which is emerging as an important etiopathogenesis in numerous severe diseases, including psychiatric disorders.
Collapse
Key Words
- Antioxidant activity
- DFT calculations
- DFT, Density Functional Theory
- HAT, Hydrogen Atom Transfer (mechanism)
- M06-2X, Minnesota Hybrid functional with 54% Hartree-Fock exchange
- NBO, Natural Bond Orbitals
- NPA, Natural Population Analysis
- Oxidative stress
- PC, Product Complex
- Psychiatric disorders
- RAF, Radical Adduct Formation (mechanism)
- RC, Reactant Complex
- ROS, Reactive Oxygen Species
- Radical scavenging
- SMD, Solvation Model based on Density
- TS, Transition State
- Zolpidem
Collapse
Affiliation(s)
- Marco Bortoli
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova, Via Marzolo 1, 35131 Padova, Italy
| | - Marco Dalla Tiezza
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova, Via Marzolo 1, 35131 Padova, Italy
| | - Cecilia Muraro
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova, Via Marzolo 1, 35131 Padova, Italy
| | - Chiara Pavan
- Dipartimento di Medicina, Università degli Studi di Padova, Via Giustiniani 2, 35128 Padova, Italy
| | - Giovanni Ribaudo
- Dipartimento di Scienze del Farmaco, Università degli Studi di Padova, Via Marzolo 5, 35131 Padova, Italy
| | - Anna Rodighiero
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova, Via Marzolo 1, 35131 Padova, Italy
| | - Cristina Tubaro
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova, Via Marzolo 1, 35131 Padova, Italy
| | - Giuseppe Zagotto
- Dipartimento di Scienze del Farmaco, Università degli Studi di Padova, Via Marzolo 5, 35131 Padova, Italy
| | - Laura Orian
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova, Via Marzolo 1, 35131 Padova, Italy
| |
Collapse
|
64
|
Tabrizi L, Nguyen TLA, Dao DQ. Experimental and theoretical investigation of cyclometalated phenylpyridine iridium(iii) complex based on flavonol and ibuprofen ligands as potent antioxidant. RSC Adv 2019; 9:17220-17237. [PMID: 35519868 PMCID: PMC9064460 DOI: 10.1039/c9ra02726b] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 05/14/2019] [Indexed: 12/13/2022] Open
Abstract
An Ir(iii) complex was synthesized using mixed ligands of biological importance, namely ibuprofen, flavonol and 2-phenylpyridine. The compound was characterized by 1H-NMR, 13C-NMR and TOF-MS spectroscopies and elemental analysis. Structures of the complex and its ligands were also calculated by density functional theory using B3LYP/Lanl2dz//6-31G(d) level of theory. Analyses of electrostatic potential, natural population, and frontier orbitals of the molecules as well as the calculation of intrinsic thermochemical properties such as bond dissociation enthalpy, ionization potential, electron affinity and proton affinity in the gas phase and in solvents (water and pentylethanoate) give the first indication that the complex is a potential antioxidant. The latter even shows better antioxidant capacity than the parent ligands. The antioxidant properties of the complex and its ligands were experimentally evaluated by studying the free radical scavenging activity towards HO˙, NO˙, DPPH˙ and ABTS˙+ radicals. Further computational work on the antioxidant processes such as the single electron transfer, the proton loss, the formal hydrogen transfer (FHT) and the radical adduct formation reactions was conducted. Results show that the FHT reaction is the mechanism responsible for the radical scavenging activity of the complex towards HO˙, HOO˙, NO˙ and DPPH˙ radicals while ABTS˙+ seems to be scavenged by an electron-donating mechanism. The FHT was further determined as a hydrogen-atom transfer but not a proton-couple electron transfer mechanism. A cyclometalated phenylpyridine iridium(iii) complex based on flavonol and ibuprofen was designed and its antioxidant activity was evaluated via experimental and theoretical studies.![]()
Collapse
Affiliation(s)
- Leila Tabrizi
- School of Chemistry
- National University of Ireland
- Galway
- Ireland
| | - Thi Le Anh Nguyen
- Institute of Research and Development
- Duy Tan University
- Danang
- Vietnam
| | - Duy Quang Dao
- Institute of Research and Development
- Duy Tan University
- Danang
- Vietnam
| |
Collapse
|
65
|
Vo QV, Cam Nam P, Bay MV, Minh Thong N, Hieu LT, Mechler A. A theoretical study of the radical scavenging activity of natural stilbenes. RSC Adv 2019; 9:42020-42028. [PMID: 35542856 PMCID: PMC9076562 DOI: 10.1039/c9ra08381b] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 12/11/2019] [Indexed: 12/24/2022] Open
Abstract
Oxidative stress is implicated in aging and aging-related diseases, including cancer.
Collapse
Affiliation(s)
- Quan V. Vo
- Institute of Research and Development
- Duy Tan University
- Danang 550000
- Vietnam
| | - Pham Cam Nam
- Department of Chemical Engineering
- The University of Da Nang – University of Science and Technology
- Danang 550000
- Vietnam
| | - Mai Van Bay
- Department of Chemistry
- The University of Da Nang – University of Education
- Danang 550000
- Vietnam
| | | | | | - Adam Mechler
- Department of Chemistry and Physics
- La Trobe University
- Victoria 3086
- Australia
| |
Collapse
|
66
|
Reiter RJ, Tan DX, Rosales-Corral S, Galano A, Jou MJ, Acuna-Castroviejo D. Melatonin Mitigates Mitochondrial Meltdown: Interactions with SIRT3. Int J Mol Sci 2018; 19:E2439. [PMID: 30126181 PMCID: PMC6121285 DOI: 10.3390/ijms19082439] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 08/03/2018] [Accepted: 08/08/2018] [Indexed: 02/07/2023] Open
Abstract
Melatonin exhibits extraordinary diversity in terms of its functions and distribution. When discovered, it was thought to be uniquely of pineal gland origin. Subsequently, melatonin synthesis was identified in a variety of organs and recently it was shown to be produced in the mitochondria. Since mitochondria exist in every cell, with a few exceptions, it means that every vertebrate, invertebrate, and plant cell produces melatonin. The mitochondrial synthesis of melatonin is not photoperiod-dependent, but it may be inducible under conditions of stress. Mitochondria-produced melatonin is not released into the systemic circulation, but rather is used primarily in its cell of origin. Melatonin's functions in the mitochondria are highly diverse, not unlike those of sirtuin 3 (SIRT3). SIRT3 is an NAD+-dependent deacetylase which regulates, among many functions, the redox state of the mitochondria. Recent data proves that melatonin and SIRT3 post-translationally collaborate in regulating free radical generation and removal from mitochondria. Since melatonin and SIRT3 have cohabitated in the mitochondria for many eons, we predict that these molecules interact in many other ways to control mitochondrial physiology. It is predicted that these mutual functions will be intensely investigated in the next decade and importantly, we assume that the findings will have significant applications for preventing/delaying some age-related diseases and aging itself.
Collapse
Affiliation(s)
- Russel J Reiter
- Department of Cell Systems and Anatomy, UT Health San Antonio, San Antonio, TX 78229, USA.
| | - Dun Xian Tan
- Department of Cell Systems and Anatomy, UT Health San Antonio, San Antonio, TX 78229, USA.
| | - Sergio Rosales-Corral
- Centro de Investigacion Biomedica de Occidente, Instituto Mexicano del Seguro Social, Guardalajara, 4436 Jalisco, Mexico.
| | - Annia Galano
- Departamento de Quimica, Universidad Antonoma Metropolitana-Unidad Iztapalapa, San Rafael Atlixco 186, Col. Vicentina, Iztapalapa, C.P. 09340 Mexico D.F., Mexico.
| | - Mei-Jie Jou
- Department of Physiology and Pharmacology, Chang Gung University, 259 Wen-Hwa 1st Road, Kwei-Shan, Tao-Yuan 333, Taiwan.
| | - Dario Acuna-Castroviejo
- Departamento de Fisiologia, Instituto de Biotecnologia, Universidad de Granada, Avenida de Conocimiento S/U, 18016 Granada, Spain.
| |
Collapse
|
67
|
Galano A, Reiter RJ. Melatonin and its metabolites vs oxidative stress: From individual actions to collective protection. J Pineal Res 2018; 65:e12514. [PMID: 29888508 DOI: 10.1111/jpi.12514] [Citation(s) in RCA: 210] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 06/05/2018] [Indexed: 12/11/2022]
Abstract
Oxidative stress (OS) represents a threat to the chemical integrity of biomolecules including lipids, proteins, and DNA. The associated molecular damage frequently results in serious health issues, which justifies our concern about this phenomenon. In addition to enzymatic defense mechanisms, there are compounds (usually referred to as antioxidants) that offer chemical protection against oxidative events. Among them, melatonin and its metabolites constitute a particularly efficient chemical family. They offer protection against OS as individual chemical entities through a wide variety of mechanisms including electron transfer, hydrogen transfer, radical adduct formation, and metal chelation, and by repairing biological targets. In fact, many of them including melatonin can be classified as multipurpose antioxidants. However, what seems to be unique to the melatonin's family is their collective effects. Because the members of this family are metabolically related, most of them are expected to be present in living organisms wherever melatonin is produced. Therefore, the protection exerted by melatonin against OS may be viewed as a result of the combined antioxidant effects of the parent molecule and its metabolites. Melatonin's family is rather exceptional in this regard, offering versatile and collective antioxidant protection against OS. It certainly seems that melatonin is one of the best nature's defenses against oxidative damage.
Collapse
Affiliation(s)
- Annia Galano
- Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, México City, México
| | - Russel J Reiter
- Department of Cellular and Structural Biology, UT Health Science Center, San Antonio, TX, USA
| |
Collapse
|
68
|
Grings M, Parmeggiani B, Moura AP, de Moura Alvorcem L, Wyse ATS, Wajner M, Leipnitz G. Evidence that Thiosulfate Inhibits Creatine Kinase Activity in Rat Striatum via Thiol Group Oxidation. Neurotox Res 2018; 34:693-705. [DOI: 10.1007/s12640-018-9934-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 07/06/2018] [Accepted: 07/17/2018] [Indexed: 12/13/2022]
|
69
|
Bentz EN, Lobayan RM, Martínez H, Redondo P, Largo A. Intrinsic Antioxidant Potential of the Aminoindole Structure: A Computational Kinetics Study of Tryptamine. J Phys Chem B 2018; 122:6386-6395. [DOI: 10.1021/acs.jpcb.8b03807] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Erika N. Bentz
- Departamento de Física, Facultad de Ciencias Exactas y Naturales y Agrimensura, Universidad Nacional del Nordeste, Avda. libertad 5300, 3400 Corrientes, Argentina
| | - Rosana M. Lobayan
- Departamento de Física, Facultad de Ciencias Exactas y Naturales y Agrimensura, Universidad Nacional del Nordeste, Avda. libertad 5300, 3400 Corrientes, Argentina
| | - Henar Martínez
- Departamento de Química Orgánica, Escuela de Ingenierías Industriales, Universidad de Valladolid, Campus Esgueva, Paseo del Cauce 59, 47011 Valladolid, Spain
| | - Pilar Redondo
- Departamento de Química Física y Química Inorgánica, Facultad de Ciencias, Universidad de Valladolid, Campus Miguel Delibes, Paseo de Belén 7, 47011 Valladolid, Spain
| | - Antonio Largo
- Departamento de Química Física y Química Inorgánica, Facultad de Ciencias, Universidad de Valladolid, Campus Miguel Delibes, Paseo de Belén 7, 47011 Valladolid, Spain
| |
Collapse
|
70
|
Pshenichnyuk SA, Modelli A, Komolov AS. Interconnections between dissociative electron attachment and electron-driven biological processes. INT REV PHYS CHEM 2018. [DOI: 10.1080/0144235x.2018.1461347] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Stanislav A. Pshenichnyuk
- Institute of Molecule and Crystal Physics – Subdivision of the Ufa Research Centre of the Russian Academy of Sciences, Ufa, Russia
| | - Alberto Modelli
- Dipartimento di Chimica ‘G. Ciamician’, Università di Bologna, Bologna, Italy
- Centro Interdipartimentale di Ricerca in Scienze Ambientali, Ravenna, Italy
| | - Alexei S. Komolov
- Department of Solid State Electronics, St. Petersburg State University, St. Petersburg, Russia
| |
Collapse
|
71
|
Melatonin: A Versatile Protector against Oxidative DNA Damage. Molecules 2018; 23:molecules23030530. [PMID: 29495460 PMCID: PMC6017920 DOI: 10.3390/molecules23030530] [Citation(s) in RCA: 165] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 02/13/2018] [Accepted: 02/22/2018] [Indexed: 12/15/2022] Open
Abstract
Oxidative damage to DNA has important implications for human health and has been identified as a key factor in the onset and development of numerous diseases. Thus, it is evident that preventing DNA from oxidative damage is crucial for humans and for any living organism. Melatonin is an astonishingly versatile molecule in this context. It can offer both direct and indirect protection against a wide variety of damaging agents and through multiple pathways, which may (or may not) take place simultaneously. They include direct antioxidative protection, which is mediated by melatonin's free radical scavenging activity, and also indirect ways of action. The latter include, at least: (i) inhibition of metal-induced DNA damage; (ii) protection against non-radical triggers of oxidative DNA damage; (iii) continuous protection after being metabolized; (iv) activation of antioxidative enzymes; (v) inhibition of pro-oxidative enzymes; and (vi) boosting of the DNA repair machinery. The rather unique capability of melatonin to exhibit multiple neutralizing actions against diverse threatening factors, together with its low toxicity and its ability to cross biological barriers, are all significant to its efficiency for preventing oxidative damage to DNA.
Collapse
|
72
|
Reiter RJ, Tan DX, Rosales-Corral S, Galano A, Zhou XJ, Xu B. Mitochondria: Central Organelles for Melatonin's Antioxidant and Anti-Aging Actions. Molecules 2018; 23:E509. [PMID: 29495303 PMCID: PMC6017324 DOI: 10.3390/molecules23020509] [Citation(s) in RCA: 243] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 02/13/2018] [Accepted: 02/16/2018] [Indexed: 02/07/2023] Open
Abstract
Melatonin, along with its metabolites, have long been known to significantly reduce the oxidative stress burden of aging cells or cells exposed to toxins. Oxidative damage is a result of free radicals produced in cells, especially in mitochondria. When measured, melatonin, a potent antioxidant, was found to be in higher concentrations in mitochondria than in other organelles or subcellular locations. Recent evidence indicates that mitochondrial membranes possess transporters that aid in the rapid uptake of melatonin by these organelles against a gradient. Moreover, we predicted several years ago that, because of their origin from melatonin-producing bacteria, mitochondria likely also synthesize melatonin. Data accumulated within the last year supports this prediction. A high content of melatonin in mitochondria would be fortuitous, since these organelles produce an abundance of free radicals. Thus, melatonin is optimally positioned to scavenge the radicals and reduce the degree of oxidative damage. In light of the "free radical theory of aging", including all of its iterations, high melatonin levels in mitochondria would be expected to protect against age-related organismal decline. Also, there are many age-associated diseases that have, as a contributing factor, free radical damage. These multiple diseases may likely be deferred in their onset or progression if mitochondrial levels of melatonin can be maintained into advanced age.
Collapse
Affiliation(s)
- Russel J Reiter
- Department of Cellular and Structural Biology UT Health San Antonio, San Antonio, SD 78229, USA.
| | - Dun Xian Tan
- Department of Cellular and Structural Biology UT Health San Antonio, San Antonio, SD 78229, USA.
| | - Sergio Rosales-Corral
- Centro de Investigacion Biomedica de Occidente, Instituo Mexicana del Seguro Social, Guadalajara 44346, Mexico.
| | - Annia Galano
- Departamento de Quimica, Universidad Autonoma Metropolitana-Iztapatapa, Mexico D.F. 09340, Mexico.
| | - Xin Jia Zhou
- Department of Cellular and Structural Biology UT Health San Antonio, San Antonio, SD 78229, USA.
| | - Bing Xu
- Department of Cellular and Structural Biology UT Health San Antonio, San Antonio, SD 78229, USA.
| |
Collapse
|
73
|
Reina M, Martínez A. A new free radical scavenging cascade involving melatonin and three of its metabolites (3OHM, AFMK and AMK). COMPUT THEOR CHEM 2018. [DOI: 10.1016/j.comptc.2017.11.017] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
74
|
Reiter RJ, Rosales-Corral S, Tan DX, Jou MJ, Galano A, Xu B. Melatonin as a mitochondria-targeted antioxidant: one of evolution's best ideas. Cell Mol Life Sci 2017; 74:3863-3881. [PMID: 28864909 PMCID: PMC11107735 DOI: 10.1007/s00018-017-2609-7] [Citation(s) in RCA: 344] [Impact Index Per Article: 49.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 08/03/2017] [Indexed: 01/27/2023]
Abstract
Melatonin is an ancient antioxidant. After its initial development in bacteria, it has been retained throughout evolution such that it may be or may have been present in every species that have existed. Even though it has been maintained throughout evolution during the diversification of species, melatonin's chemical structure has never changed; thus, the melatonin present in currently living humans is identical to that present in cyanobacteria that have existed on Earth for billions of years. Melatonin in the systemic circulation of mammals quickly disappears from the blood presumably due to its uptake by cells, particularly when they are under high oxidative stress conditions. The measurement of the subcellular distribution of melatonin has shown that the concentration of this indole in the mitochondria greatly exceeds that in the blood. Melatonin presumably enters mitochondria through oligopeptide transporters, PEPT1, and PEPT2. Thus, melatonin is specifically targeted to the mitochondria where it seems to function as an apex antioxidant. In addition to being taken up from the circulation, melatonin may be produced in the mitochondria as well. During evolution, mitochondria likely originated when melatonin-forming bacteria were engulfed as food by ancestral prokaryotes. Over time, engulfed bacteria evolved into mitochondria; this is known as the endosymbiotic theory of the origin of mitochondria. When they did so, the mitochondria retained the ability to synthesize melatonin. Thus, melatonin is not only taken up by mitochondria but these organelles, in addition to many other functions, also probably produce melatonin as well. Melatonin's high concentrations and multiple actions as an antioxidant provide potent antioxidant protection to these organelles which are exposed to abundant free radicals.
Collapse
Affiliation(s)
- Russel J Reiter
- Department of Cell Systems and Anatomy, UT Health San Antonio, San Antonio, TX, 78229, USA.
| | - Sergio Rosales-Corral
- Centro de Investigacion Biomedica de Occidente, Del Instituto Mexicana del Seguro Social, 44340, Guadalajara, Mexico
| | - Dun Xian Tan
- Department of Cell Systems and Anatomy, UT Health San Antonio, San Antonio, TX, 78229, USA
| | - Mei Jie Jou
- Department of Physiology and Pharmacology, College of Medicine, Chang Gung University, Taoyüan, Taiwan
- Department of Neurology, Kee-Lung Medical Center, Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Annia Galano
- Departemento de Quimica, Uninversidad Autonoma Metropolitana-Iztapalapa, 09340, Mexico City, Mexico
| | - Bing Xu
- Department of Cell Systems and Anatomy, UT Health San Antonio, San Antonio, TX, 78229, USA
| |
Collapse
|
75
|
Baschieri A, Ajvazi MD, Tonfack JLF, Valgimigli L, Amorati R. Explaining the antioxidant activity of some common non-phenolic components of essential oils. Food Chem 2017; 232:656-663. [DOI: 10.1016/j.foodchem.2017.04.036] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 04/03/2017] [Accepted: 04/04/2017] [Indexed: 02/06/2023]
|
76
|
Chen K, Mao J, Shen S, Fei L, Xie H, Jiang K. Mechanistic elucidation of the origins of the hydrogen-abstraction reactivity of hydroxyimide organocatalysts and its application in catalyst design. Chem Phys Lett 2017. [DOI: 10.1016/j.cplett.2017.06.054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
77
|
Pérez-González A, Galano A, Alvarez-Idaboy JR, Tan DX, Reiter RJ. Radical-trapping and preventive antioxidant effects of 2-hydroxymelatonin and 4-hydroxymelatonin: Contributions to the melatonin protection against oxidative stress. Biochim Biophys Acta Gen Subj 2017; 1861:2206-2217. [DOI: 10.1016/j.bbagen.2017.06.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 06/19/2017] [Accepted: 06/20/2017] [Indexed: 01/10/2023]
|
78
|
Azouzi S, Santuz H, Morandat S, Pereira C, Côté F, Hermine O, El Kirat K, Colin Y, Le Van Kim C, Etchebest C, Amireault P. Antioxidant and Membrane Binding Properties of Serotonin Protect Lipids from Oxidation. Biophys J 2017; 112:1863-1873. [PMID: 28494957 DOI: 10.1016/j.bpj.2017.03.037] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 03/29/2017] [Accepted: 03/30/2017] [Indexed: 02/07/2023] Open
Abstract
Serotonin (5-hydroxytryptamine, 5-HT) is a well-known neurotransmitter that is involved in a growing number of functions in peripheral tissues. Recent studies have shown nonpharmacological functions of 5-HT linked to its chemical properties. Indeed, it was reported that 5-HT may, on the one hand, bind lipid membranes and, on the other hand, protect red blood cells through a mechanism independent of its specific receptors. To better understand these underevaluated properties of 5-HT, we combined biochemical, biophysical, and molecular dynamics simulations approaches to characterize, at the molecular level, the antioxidant capacity of 5-HT and its interaction with lipid membranes. To do so, 5-HT was added to red blood cells and lipid membranes bearing different degrees of unsaturation. Our results demonstrate that 5-HT acts as a potent antioxidant and binds with a superior affinity to lipids with unsaturation on both alkyl chains. We show that 5-HT locates at the hydrophobic-hydrophilic interface, below the glycerol group. This interfacial location is stabilized by hydrogen bonds between the 5-HT hydroxyl group and lipid headgroups and allows 5-HT to intercept reactive oxygen species, preventing membrane oxidation. Experimental and molecular dynamics simulations using membrane enriched with oxidized lipids converge to further reveal that 5-HT contributes to the termination of lipid peroxidation by direct interaction with active groups of these lipids and could also contribute to limit the production of new radicals. Taken together, our results identify 5-HT as a potent inhibitor of lipid peroxidation and offer a different perspective on the role of this pleiotropic molecule.
Collapse
Affiliation(s)
- Slim Azouzi
- Université Sorbonne Paris Cité, Université Paris Diderot, INSERM, Unité Biologie Intégrée du Globule Rouge UMR-S1134, Institut National de la Transfusion Sanguine, Laboratoire d'Excellence GR-Ex, Paris, France
| | - Hubert Santuz
- Université Sorbonne Paris Cité, Université Paris Diderot, INSERM, Unité Biologie Intégrée du Globule Rouge UMR-S1134, Institut National de la Transfusion Sanguine, Laboratoire d'Excellence GR-Ex, Paris, France
| | - Sandrine Morandat
- Sorbonne Universités, Université de Technologie de Compiègne, CNRS, Laboratoire de Génie Enzymatique et Cellulaire FRE 3580, Centre de Recherche Royallieu, Compiègne, France
| | - Catia Pereira
- Université Sorbonne Paris Cité, Université Paris Diderot, INSERM, Unité Biologie Intégrée du Globule Rouge UMR-S1134, Institut National de la Transfusion Sanguine, Laboratoire d'Excellence GR-Ex, Paris, France
| | - Francine Côté
- Université Sorbonne Paris Cité, Université Paris Descartes, INSERM, CNRS, Laboratory of Cellular and Molecular Mechanisms of Hematological Disorders and Therapeutic Implications U1163, Institut Imagine, Laboratoire d'Excellence GR-Ex, Paris, France
| | - Olivier Hermine
- Université Sorbonne Paris Cité, Université Paris Descartes, INSERM, CNRS, Laboratory of Cellular and Molecular Mechanisms of Hematological Disorders and Therapeutic Implications U1163, Institut Imagine, Laboratoire d'Excellence GR-Ex, Paris, France
| | - Karim El Kirat
- Sorbonne Universités, Université de Technologie de Compiègne, CNRS, Laboratoire de BioMécanique et BioIngénierie UMR 7338, Centre de Recherche Royallieu, Compiègne cedex, France
| | - Yves Colin
- Université Sorbonne Paris Cité, Université Paris Diderot, INSERM, Unité Biologie Intégrée du Globule Rouge UMR-S1134, Institut National de la Transfusion Sanguine, Laboratoire d'Excellence GR-Ex, Paris, France
| | - Caroline Le Van Kim
- Université Sorbonne Paris Cité, Université Paris Diderot, INSERM, Unité Biologie Intégrée du Globule Rouge UMR-S1134, Institut National de la Transfusion Sanguine, Laboratoire d'Excellence GR-Ex, Paris, France
| | - Catherine Etchebest
- Université Sorbonne Paris Cité, Université Paris Diderot, INSERM, Unité Biologie Intégrée du Globule Rouge UMR-S1134, Institut National de la Transfusion Sanguine, Laboratoire d'Excellence GR-Ex, Paris, France.
| | - Pascal Amireault
- Université Sorbonne Paris Cité, Université Paris Diderot, INSERM, Unité Biologie Intégrée du Globule Rouge UMR-S1134, Institut National de la Transfusion Sanguine, Laboratoire d'Excellence GR-Ex, Paris, France; Université Sorbonne Paris Cité, Université Paris Descartes, INSERM, CNRS, Laboratory of Cellular and Molecular Mechanisms of Hematological Disorders and Therapeutic Implications U1163, Institut Imagine, Laboratoire d'Excellence GR-Ex, Paris, France.
| |
Collapse
|
79
|
Toscano M, Ritacca AG, Mazzone G, Russo N. Theoretical investigation of the action mechanisms of N,N-di-alkylated diarylamine antioxidants. Theor Chem Acc 2017. [DOI: 10.1007/s00214-017-2122-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
80
|
Melatonin Modulates Neuronal Cell Death Induced by Endoplasmic Reticulum Stress under Insulin Resistance Condition. Nutrients 2017; 9:nu9060593. [PMID: 28604593 PMCID: PMC5490572 DOI: 10.3390/nu9060593] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 06/06/2017] [Accepted: 06/08/2017] [Indexed: 12/25/2022] Open
Abstract
Insulin resistance (IR) is an important stress factor in the central nervous system, thereby aggravating neuropathogenesis and triggering cognitive decline. Melatonin, which is an antioxidant phytochemical and synthesized by the pineal gland, has multiple functions in cellular responses such as apoptosis and survival against stress. This study investigated whether melatonin modulates the signaling of neuronal cell death induced by endoplasmic reticulum (ER) stress under IR condition using SH-SY5Y neuroblastoma cells. Apoptosis cell death signaling markers (cleaved Poly [ADP-ribose] polymerase 1 (PARP), p53, and Bax) and ER stress markers (phosphorylated eIF2α (p-eIF2α), ATF4, CHOP, p-IRE1, and spliced XBP1 (sXBP1)) were measured using reverse transcription-PCR, quantitative PCR, and western blottings. Immunofluorescence staining was also performed for p-ASK1 and p-IRE1. The mRNA or protein expressions of cell death signaling markers and ER stress markers were increased under IR condition, but significantly attenuated by melatonin treatment. Insulin-induced activation of ASK1 (p-ASK1) was also dose dependently attenuated by melatonin treatment. The regulatory effect of melatonin on neuronal cells under IR condition was associated with ASK1 signaling. In conclusion, the result suggested that melatonin may alleviate ER stress under IR condition, thereby regulating neuronal cell death signaling.
Collapse
|
81
|
Onaolapo AY, Aina OA, Onaolapo OJ. Melatonin attenuates behavioural deficits and reduces brain oxidative stress in a rodent model of schizophrenia. Biomed Pharmacother 2017; 92:373-383. [PMID: 28554133 DOI: 10.1016/j.biopha.2017.05.094] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 05/12/2017] [Accepted: 05/22/2017] [Indexed: 01/03/2023] Open
Abstract
Melatonin is a neurohormone that is linked to the aetiopathogenesis of schizophrenia. The aim of this study was to assess the potentials of oral melatonin supplement in the management of induced schizophrenia-like behavioural and brain oxidative status changes, using an animal model. The relative degrees of modulation of ketamine-induced behaviours by haloperidol, olanzapine or melatonin were assessed in the open-field, Y-maze, elevated plus maze and the social interaction tests. 12-week old, male mice were assigned to six groups of ten each (n=10). They were pretreated with daily intraperitoneal ketamine at 15mg/kg (except vehicle) for 10days, before commencement of 14day treatment with standard drug (haloperidol or olanzapine) or melatonin. Ketamine injection also continued alongside melatonin or standard drugs administration for the duration of treatment. Melatonin, haloperidol and olanzapine were administered by gavage. Treatments were given daily, and behaviours assessed on days 11 and 24. On day 24, animals were sacrificed and whole brain homogenates used for the estimation of glutathione, nitric oxide and malondialdehyde levels. Ketamine injection increased open-field behaviours; while it decreased working-memory, social-interaction and glutathione activity. Nitric oxide and malondialdehyde levels also increased after ketamine injection. Administration of melatonin was associated with variable degrees of reversal of these effects. In conclusion, melatonin may have the potential of a possible therapeutic agent and/or adjunct in the management of schizophrenia.
Collapse
Affiliation(s)
- Adejoke Y Onaolapo
- Department of Anatomy, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria.
| | - Olufemi A Aina
- Department of Pharmacology, Ladoke Akintola University of Technology, Osogbo, Osun State, Nigeria
| | - Olakunle James Onaolapo
- Department of Pharmacology, Ladoke Akintola University of Technology, Osogbo, Osun State, Nigeria.
| |
Collapse
|
82
|
de Moura Alvorcem L, da Rosa MS, Glänzel NM, Parmeggiani B, Grings M, Schmitz F, Wyse ATS, Wajner M, Leipnitz G. Disruption of Energy Transfer and Redox Status by Sulfite in Hippocampus, Striatum, and Cerebellum of Developing Rats. Neurotox Res 2017; 32:264-275. [PMID: 28417315 DOI: 10.1007/s12640-017-9732-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 02/19/2017] [Accepted: 04/04/2017] [Indexed: 01/11/2023]
Abstract
Patients with sulfite oxidase (SO) deficiency present severe brain abnormalities, whose pathophysiology is not yet elucidated. We evaluated the effects of sulfite and thiosulfate, metabolites accumulated in SO deficiency, on creatine kinase (CK) activity, mitochondrial respiration and redox status in hippocampus, striatum and cerebellum of developing rats. Our in vitro results showed that sulfite and thiosulfate decreased CK activity, whereas sulfite also increased malondialdehyde (MDA) levels in all brain structures evaluated. Sulfite further diminished mitochondrial respiration and increased DCFH oxidation and hydrogen peroxide production in hippocampus. Sulfite-induced CK activity decrease was prevented by melatonin (MEL), resveratrol (RSV), and dithiothreitol while increase of MDA levels was prevented by MEL and RSV. Regarding the antioxidant system, sulfite increased glutathione concentrations in hippocampus and striatum. In addition, sulfite decreased the activities of glutathione peroxidase in all brain structures, of glutathione S-transferase in hippocampus and cerebellum, and of glutathione reductase in cerebellum. In vivo experiments performed with intrahippocampal administration of sulfite demonstrated that this metabolite increased superoxide dismutase activity without altering other biochemical parameters in rat hippocampus. Our data suggest that impairment of energy metabolism and redox status may be important pathomechanisms involved in brain damage observed in individuals with SO deficiency.
Collapse
Affiliation(s)
- Leonardo de Moura Alvorcem
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos N° 2600 - Attached, Porto Alegre, RS, CEP: 90035-003, Brazil
| | - Mateus Struecker da Rosa
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos N° 2600 - Attached, Porto Alegre, RS, CEP: 90035-003, Brazil
| | - Nícolas Manzke Glänzel
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos N° 2600 - Attached, Porto Alegre, RS, CEP: 90035-003, Brazil
| | - Belisa Parmeggiani
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos N° 2600 - Attached, Porto Alegre, RS, CEP: 90035-003, Brazil
| | - Mateus Grings
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos N° 2600 - Attached, Porto Alegre, RS, CEP: 90035-003, Brazil
| | - Felipe Schmitz
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos N° 2600 - Attached, Porto Alegre, RS, CEP: 90035-003, Brazil
| | - Angela T S Wyse
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos N° 2600 - Attached, Porto Alegre, RS, CEP: 90035-003, Brazil
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal de Rio Grande do Sul, Rua Ramiro Barcelos N° 2600 - Attached, Porto Alegre, RS, CEP 90035-003, Brazil
| | - Moacir Wajner
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos N° 2600 - Attached, Porto Alegre, RS, CEP: 90035-003, Brazil
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal de Rio Grande do Sul, Rua Ramiro Barcelos N° 2600 - Attached, Porto Alegre, RS, CEP 90035-003, Brazil
- Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Rua Ramiro Barcelos, 2350, Porto Alegre, RS, CEP 90035-903, Brazil
| | - Guilhian Leipnitz
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos N° 2600 - Attached, Porto Alegre, RS, CEP: 90035-003, Brazil.
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal de Rio Grande do Sul, Rua Ramiro Barcelos N° 2600 - Attached, Porto Alegre, RS, CEP 90035-003, Brazil.
| |
Collapse
|
83
|
Pshenichnyuk SA, Modelli A, Jones D, Lazneva EF, Komolov AS. Low-Energy Electron Interaction with Melatonin and Related Compounds. J Phys Chem B 2017; 121:3965-3974. [PMID: 28394598 DOI: 10.1021/acs.jpcb.7b01408] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The electron attaching properties and fragmentation of temporary negative ions of melatonin and its biosynthetic precursor tryptophan are studied in vacuo using dissociative electron attachment (DEA) spectroscopy. The experimental findings are interpreted in silico with the support of Hartree-Fock and density functional theory calculations of empty orbital energies and symmetries, and evaluation of the electron affinities of the indolic molecules under investigation. The only fragment anions formed by DEA to melatonin at incident electron energies below 2 eV are associated with the elimination of a hydrogen atom (energetically favored from the NH site of the pyrrole ring, leaving the ring intact) or a CH3· radical from the temporary molecular negative ion. Opening of the pyrrole ring of melatonin is not detected over the whole electron energy range of 0-14 eV. The DEA spectra of l- and d-tryptophan are almost identical under the present experimental conditions. The adiabatic electron affinity of melatonin is predicted to be -0.49 eV at the B3LYP/6-31+G(d) level, indicating that the DEA mechanism in melatonin is likely to be present in most life forms given the availability of low energy electrons in living systems in both plant and animal kingdoms. In particular, H atom donation usually associated with free-radical scavenging activity can be stimulated by electron attachment and N-H bond cleavage at electron energies around 1 eV.
Collapse
Affiliation(s)
- Stanislav A Pshenichnyuk
- Institute of Molecule and Crystal Physics, Ufa Research Centre, Russian Academy of Sciences , Prospeκt Oktyabrya 151, 450075 Ufa, Russia.,St. Petersburg State University , Universitetskaya nab. 7/9, 199034 St. Petersburg, Russia
| | - Alberto Modelli
- Dipartimento di Chimica "G. Ciamician″, Università di Bologna , via Selmi 2, 40126 Bologna, Italy.,Centro Interdipartimentale di Ricerca in Scienze Ambientali , via S. Alberto 163, 48123 Ravenna, Italy
| | - Derek Jones
- ISOF, Istituto per la Sintesi Organica e la Fotoreattività , C.N.R., via Gobetti 101, 40129 Bologna, Italy
| | - Eleonora F Lazneva
- St. Petersburg State University , Universitetskaya nab. 7/9, 199034 St. Petersburg, Russia
| | - Alexei S Komolov
- St. Petersburg State University , Universitetskaya nab. 7/9, 199034 St. Petersburg, Russia
| |
Collapse
|
84
|
|
85
|
Sharafati-Chaleshtori R, Shirzad H, Rafieian-Kopaei M, Soltani A. Melatonin and human mitochondrial diseases. JOURNAL OF RESEARCH IN MEDICAL SCIENCES 2017; 22:2. [PMID: 28400824 PMCID: PMC5361446 DOI: 10.4103/1735-1995.199092] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 09/07/2016] [Accepted: 10/22/2016] [Indexed: 12/22/2022]
Abstract
Mitochondrial dysfunction is one of the main causative factors in a wide variety of complications such as neurodegenerative disorders, ischemia/reperfusion, aging process, and septic shock. Decrease in respiratory complex activity, increase in free radical production, increase in mitochondrial synthase activity, increase in nitric oxide production, and impair in electron transport system and/or mitochondrial permeability are considered as the main factors responsible for mitochondrial dysfunction. Melatonin, the pineal gland hormone, is selectively taken up by mitochondria and acts as a powerful antioxidant, regulating the mitochondrial bioenergetic function. Melatonin increases the permeability of membranes and is the stimulator of antioxidant enzymes including superoxide dismutase, glutathione peroxidase, glutathione reductase, and catalase. It also acts as an inhibitor of lipoxygenase. Melatonin can cause resistance to oxidation damage by fixing the microsomal membranes. Melatonin has been shown to retard aging and inhibit neurodegenerative disorders, ischemia/reperfusion, septic shock, diabetes, cancer, and other complications related to oxidative stress. The purpose of the current study, other than introducing melatonin, was to present the recent findings on clinical effects in diseases related to mitochondrial dysfunction including diabetes, cancer, gastrointestinal diseases, and diseases related to brain function.
Collapse
Affiliation(s)
- Reza Sharafati-Chaleshtori
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Hedayatollah Shirzad
- Medical Plants Research Center, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | | | - Amin Soltani
- Medical Plants Research Center, Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
86
|
Pérez-González A, Alvarez-Idaboy JR, Galano A. Dual antioxidant/pro-oxidant behavior of the tryptophan metabolite 3-hydroxyanthranilic acid: a theoretical investigation of reaction mechanisms and kinetics. NEW J CHEM 2017. [DOI: 10.1039/c6nj03980d] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Potent antioxidant in the absence of metal ions, responsible for the activity usually attributed to tryptophan. Pro-oxidant in the presence of metal ions; this effect increases with the pH.
Collapse
Affiliation(s)
| | - Juan Raúl Alvarez-Idaboy
- Facultad de Química
- Departamento de Física y Química Teórica
- Universidad Nacional Autónoma de México
- México DF 04510
- Mexico
| | - Annia Galano
- Departamento de Química
- Universidad Autónoma Metropolitana-Iztapalapa
- México D. F
- Mexico
| |
Collapse
|
87
|
Aguilera Y, Rebollo-Hernanz M, Herrera T, Cayuelas LT, Rodríguez-Rodríguez P, de Pablo ÁLL, Arribas SM, Martin-Cabrejas MA. Intake of bean sprouts influences melatonin and antioxidant capacity biomarker levels in rats. Food Funct 2016; 7:1438-45. [PMID: 26841704 DOI: 10.1039/c5fo01538c] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Melatonin is an endogenous antioxidant hormone, which reduces with ageing and the low levels are associated with some chronic diseases. Germination of legumes increases the plant levels of melatonin, making sprouts a suitable food source of this hormone. However, information on its bioavailability after consumption is lacking. We aimed to evaluate in rats the effect of kidney bean sprout intake on the plasma levels of melatonin and metabolically related compounds (serotonin, 6-sulfatoxymelatonin), total phenolic compounds and total antioxidant capacity. In addition, we compared the plasma bioavailability derived from kidney bean sprouts versus synthetic melatonin intake. Kidney beans were germinated for 6 days and an extract was prepared in water. Male young Sprague Dawley rats were used; blood and urine samples were obtained before and after 90 min of administration of kidney bean sprout extract via a gavage. The plasmatic melatonin levels increased after sprout ingestion (16%, p < 0.05). This increment correlated with the urinary 6-sulfatoxymelatonin content, the principal biomarker of plasmatic melatonin levels (p < 0.01). Nevertheless, the phenolic compounds and antioxidant capacity levels did not exhibit any significant variation. The comparison of the bioavailability between the melatonin contained in the kidney bean sprouts and in a synthetic solution evidenced slightly higher levels of plasmatic melatonin (17%) in rats fed with the solution of synthetic melatonin. We conclude that kidney bean sprouts could be a good source of dietary melatonin and other bioactive compounds known to have health benefits.
Collapse
Affiliation(s)
- Yolanda Aguilera
- Instituto de Investigación de Ciencias de la Alimentación (CIAL), Facultad de Ciencias, Universidad Autónoma de Madrid, Spain.
| | - Miguel Rebollo-Hernanz
- Instituto de Investigación de Ciencias de la Alimentación (CIAL), Facultad de Ciencias, Universidad Autónoma de Madrid, Spain.
| | - Teresa Herrera
- Instituto de Investigación de Ciencias de la Alimentación (CIAL), Facultad de Ciencias, Universidad Autónoma de Madrid, Spain.
| | - L Tábata Cayuelas
- Instituto de Investigación de Ciencias de la Alimentación (CIAL), Facultad de Ciencias, Universidad Autónoma de Madrid, Spain.
| | | | | | - Silvia M Arribas
- Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid, Spain
| | - María A Martin-Cabrejas
- Instituto de Investigación de Ciencias de la Alimentación (CIAL), Facultad de Ciencias, Universidad Autónoma de Madrid, Spain.
| |
Collapse
|
88
|
Tan DX, Manchester LC, Qin L, Reiter RJ. Melatonin: A Mitochondrial Targeting Molecule Involving Mitochondrial Protection and Dynamics. Int J Mol Sci 2016; 17:ijms17122124. [PMID: 27999288 PMCID: PMC5187924 DOI: 10.3390/ijms17122124] [Citation(s) in RCA: 272] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 11/28/2016] [Accepted: 12/07/2016] [Indexed: 01/19/2023] Open
Abstract
Melatonin has been speculated to be mainly synthesized by mitochondria. This speculation is supported by the recent discovery that aralkylamine N-acetyltransferase/serotonin N-acetyltransferase (AANAT/SNAT) is localized in mitochondria of oocytes and the isolated mitochondria generate melatonin. We have also speculated that melatonin is a mitochondria-targeted antioxidant. It accumulates in mitochondria with high concentration against a concentration gradient. This is probably achieved by an active transportation via mitochondrial melatonin transporter(s). Melatonin protects mitochondria by scavenging reactive oxygen species (ROS), inhibiting the mitochondrial permeability transition pore (MPTP), and activating uncoupling proteins (UCPs). Thus, melatonin maintains the optimal mitochondrial membrane potential and preserves mitochondrial functions. In addition, mitochondrial biogenesis and dynamics is also regulated by melatonin. In most cases, melatonin reduces mitochondrial fission and elevates their fusion. Mitochondrial dynamics exhibit an oscillatory pattern which matches the melatonin circadian secretory rhythm in pinealeocytes and probably in other cells. Recently, melatonin has been found to promote mitophagy and improve homeostasis of mitochondria.
Collapse
Affiliation(s)
- Dun-Xian Tan
- Department of Cell System and Anatomy, The University of Texas Health Science Center, San Antonio, TX 78229, USA.
| | - Lucien C Manchester
- Department of Cell System and Anatomy, The University of Texas Health Science Center, San Antonio, TX 78229, USA.
| | - Lilan Qin
- Department of Cell System and Anatomy, The University of Texas Health Science Center, San Antonio, TX 78229, USA.
| | - Russel J Reiter
- Department of Cell System and Anatomy, The University of Texas Health Science Center, San Antonio, TX 78229, USA.
| |
Collapse
|
89
|
Phenolic Melatonin-Related Compounds: Their Role as Chemical Protectors against Oxidative Stress. Molecules 2016; 21:molecules21111442. [PMID: 27801875 PMCID: PMC6274579 DOI: 10.3390/molecules21111442] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 10/17/2016] [Accepted: 10/24/2016] [Indexed: 12/22/2022] Open
Abstract
There is currently no doubt about the serious threat that oxidative stress (OS) poses to human health. Therefore, a crucial strategy to maintain a good health status is to identify molecules capable of offering protection against OS through chemical routes. Based on the known efficiency of the phenolic and melatonin (MLT) families of compounds as antioxidants, it is logical to assume that phenolic MLT-related compounds should be (at least) equally efficient. Unfortunately, they have been less investigated than phenols, MLT and its non-phenolic metabolites in this context. The evidence reviewed here strongly suggests that MLT phenolic derivatives can act as both primary and secondary antioxidants, exerting their protection through diverse chemical routes. They all seem to be better free radical scavengers than MLT and Trolox, while some of them also surpass ascorbic acid and resveratrol. However, there are still many aspects that deserve further investigations for this kind of compounds.
Collapse
|
90
|
Reiter RJ, Mayo JC, Tan DX, Sainz RM, Alatorre-Jimenez M, Qin L. Melatonin as an antioxidant: under promises but over delivers. J Pineal Res 2016; 61:253-78. [PMID: 27500468 DOI: 10.1111/jpi.12360] [Citation(s) in RCA: 1052] [Impact Index Per Article: 131.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 08/05/2016] [Indexed: 12/12/2022]
Abstract
Melatonin is uncommonly effective in reducing oxidative stress under a remarkably large number of circumstances. It achieves this action via a variety of means: direct detoxification of reactive oxygen and reactive nitrogen species and indirectly by stimulating antioxidant enzymes while suppressing the activity of pro-oxidant enzymes. In addition to these well-described actions, melatonin also reportedly chelates transition metals, which are involved in the Fenton/Haber-Weiss reactions; in doing so, melatonin reduces the formation of the devastatingly toxic hydroxyl radical resulting in the reduction of oxidative stress. Melatonin's ubiquitous but unequal intracellular distribution, including its high concentrations in mitochondria, likely aid in its capacity to resist oxidative stress and cellular apoptosis. There is credible evidence to suggest that melatonin should be classified as a mitochondria-targeted antioxidant. Melatonin's capacity to prevent oxidative damage and the associated physiological debilitation is well documented in numerous experimental ischemia/reperfusion (hypoxia/reoxygenation) studies especially in the brain (stroke) and in the heart (heart attack). Melatonin, via its antiradical mechanisms, also reduces the toxicity of noxious prescription drugs and of methamphetamine, a drug of abuse. Experimental findings also indicate that melatonin renders treatment-resistant cancers sensitive to various therapeutic agents and may be useful, due to its multiple antioxidant actions, in especially delaying and perhaps treating a variety of age-related diseases and dehumanizing conditions. Melatonin has been effectively used to combat oxidative stress, inflammation and cellular apoptosis and to restore tissue function in a number of human trials; its efficacy supports its more extensive use in a wider variety of human studies. The uncommonly high-safety profile of melatonin also bolsters this conclusion. It is the current feeling of the authors that, in view of the widely diverse beneficial functions that have been reported for melatonin, these may be merely epiphenomena of the more fundamental, yet-to-be identified basic action(s) of this ancient molecule.
Collapse
Affiliation(s)
- Russel J Reiter
- Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, TX, USA.
| | - Juan C Mayo
- Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, TX, USA
| | - Dun-Xian Tan
- Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, TX, USA
| | - Rosa M Sainz
- Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, TX, USA
| | - Moises Alatorre-Jimenez
- Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, TX, USA
| | - Lilian Qin
- Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, TX, USA
| |
Collapse
|
91
|
Galano A, Mazzone G, Alvarez-Diduk R, Marino T, Alvarez-Idaboy JR, Russo N. Food Antioxidants: Chemical Insights at the Molecular Level. Annu Rev Food Sci Technol 2016; 7:335-52. [DOI: 10.1146/annurev-food-041715-033206] [Citation(s) in RCA: 227] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Annia Galano
- Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, C. P. 09340, Ciudad de México, D. F., México
| | - Gloria Mazzone
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, I-87036 Arcavacata di Rende, Italy;
| | - Ruslán Alvarez-Diduk
- Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, C. P. 09340, Ciudad de México, D. F., México
| | - Tiziana Marino
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, I-87036 Arcavacata di Rende, Italy;
| | - J. Raúl Alvarez-Idaboy
- Departamento de Física y Química Teórica, Facultad de Química, Universidad Nacional Autónoma de México, 04510 Ciudad de México, D. F., Mexico
| | - Nino Russo
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, I-87036 Arcavacata di Rende, Italy;
| |
Collapse
|
92
|
Amić A, Marković Z, Dimitrić Marković JM, Lučić B, Stepanić V, Amić D. The 2H+/2e− free radical scavenging mechanisms of uric acid: thermodynamics of NH bond cleavage. COMPUT THEOR CHEM 2016. [DOI: 10.1016/j.comptc.2015.09.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
93
|
Mendoza-Sarmiento G, Rojas-Hernández A, Galano A, Gutiérrez A. A combined experimental–theoretical study of the acid–base behavior of mangiferin: implications for its antioxidant activity. RSC Adv 2016. [DOI: 10.1039/c6ra06328d] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The pKavalues of mangiferin have been thoroughly reviewed to calculate theoretically the mechanism and antioxidant features of mangiferin.
Collapse
Affiliation(s)
- Gabriela Mendoza-Sarmiento
- Universidad Autónoma Metropolitana-Iztapalapa
- Departamento de Química
- Área de Química Analítica
- 09340 México
- Mexico
| | - Alberto Rojas-Hernández
- Universidad Autónoma Metropolitana-Iztapalapa
- Departamento de Química
- Área de Química Analítica
- 09340 México
- Mexico
| | - Annia Galano
- Universidad Autónoma Metropolitana-Iztapalapa
- Departamento de Química
- Área de Química Analítica
- 09340 México
- Mexico
| | - Atilano Gutiérrez
- Universidad Autónoma Metropolitana-Iztapalapa
- Departamento de Química
- Área de Química Analítica
- 09340 México
- Mexico
| |
Collapse
|
94
|
Villuendas-Rey Y, Alvarez-Idaboy JR, Galano A. Assessing the Protective Activity of a Recently Discovered Phenolic Compound against Oxidative Stress Using Computational Chemistry. J Chem Inf Model 2015; 55:2552-61. [PMID: 26624520 DOI: 10.1021/acs.jcim.5b00513] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The protection exerted by 3,5-dihydroxy-4-methoxybenzyl alcohol (DHMBA), a phenolic compound recently isolated from the Pacific oyster, against oxidative stress (OS) is investigated using the density functional theory. Our results indicate that DHMBA is an outstanding peroxyl radical scavenger, being about 15 times and 4 orders of magnitude better than Trolox for that purpose in lipid and aqueous media, respectively. It was also found to react faster with HOO(•) than other known antioxidants such as resveratrol and ascorbic acid. DHMBA is also predicted to be able to sequester Cu(II) ions, consequently inhibiting the OS induced by Cu(II)-ascorbate mixtures and downgrading the (•)OH production via the Haber-Weiss reaction. However, it is proposed that DHMBA is more efficient as a primary antioxidant (free radical scavenger), than as a secondary antioxidant (metal ion chelator). In addition, it was found that DHMBA can be efficiently regenerated in aqueous solution, at physiological pH. Such regeneration is expected to contribute to increase the antioxidant protection exerted by DHMBA. These results suggest that probably synthetic routes for this compound should be pursued, because albeit its abundance in nature is rather low, its antioxidant activity is exceptional.
Collapse
Affiliation(s)
- Yenny Villuendas-Rey
- Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa , San Rafael Atlixco 186, Col. Vicentina, Iztapalapa, C. P., 09340 México D. F., México
| | - Juan Raul Alvarez-Idaboy
- Departamento de Física y Química Teórica, Facultad de Química, Universidad Nacional Autónoma de México , México D. F. 04510, México
| | - Annia Galano
- Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa , San Rafael Atlixco 186, Col. Vicentina, Iztapalapa, C. P., 09340 México D. F., México
| |
Collapse
|
95
|
Manchester LC, Coto-Montes A, Boga JA, Andersen LPH, Zhou Z, Galano A, Vriend J, Tan DX, Reiter RJ. Melatonin: an ancient molecule that makes oxygen metabolically tolerable. J Pineal Res 2015; 59:403-19. [PMID: 26272235 DOI: 10.1111/jpi.12267] [Citation(s) in RCA: 641] [Impact Index Per Article: 71.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 08/10/2015] [Indexed: 12/11/2022]
Abstract
Melatonin is remarkably functionally diverse with actions as a free radical scavenger and antioxidant, circadian rhythm regulator, anti-inflammatory and immunoregulating molecule, and as an oncostatic agent. We hypothesize that the initial and primary function of melatonin in photosynthetic cyanobacteria, which appeared on Earth 3.5-3.2 billion years ago, was as an antioxidant. The evolution of melatonin as an antioxidant by this organism was necessary as photosynthesis is associated with the generation of toxic-free radicals. The other secondary functions of melatonin came about much later in evolution. We also surmise that mitochondria and chloroplasts may be primary sites of melatonin synthesis in all eukaryotic cells that possess these organelles. This prediction is made on the basis that mitochondria and chloroplasts of eukaryotes developed from purple nonsulfur bacteria (which also produce melatonin) and cyanobacteria when they were engulfed by early eukaryotes. Thus, we speculate that the melatonin-synthesizing actions of the engulfed bacteria were retained when these organelles became mitochondria and chloroplasts, respectively. That mitochondria are likely sites of melatonin formation is supported by the observation that this organelle contains high levels of melatonin that are not impacted by blood melatonin concentrations. Melatonin has a remarkable array of means by which it thwarts oxidative damage. It, as well as its metabolites, is differentially effective in scavenging a variety of reactive oxygen and reactive nitrogen species. Moreover, melatonin and its metabolites modulate a large number of antioxidative and pro-oxidative enzymes, leading to a reduction in oxidative damage. The actions of melatonin on radical metabolizing/producing enzymes may be mediated by the Keap1-Nrf2-ARE pathway. Beyond its direct free radical scavenging and indirect antioxidant effects, melatonin has a variety of physiological and metabolic advantages that may enhance its ability to limit oxidative stress.
Collapse
Affiliation(s)
- Lucien C Manchester
- Department of Cellular and Structural Biology, UT Health Science Center, San Antonio, TX, USA
| | - Ana Coto-Montes
- Department of Cellular and Structural Biology, UT Health Science Center, San Antonio, TX, USA
| | - Jose Antonio Boga
- Department of Cellular and Structural Biology, UT Health Science Center, San Antonio, TX, USA
| | - Lars Peter H Andersen
- Department of Cellular and Structural Biology, UT Health Science Center, San Antonio, TX, USA
| | - Zhou Zhou
- Department of Cellular and Structural Biology, UT Health Science Center, San Antonio, TX, USA
| | - Annia Galano
- Departamento de Quimica, Universidad Autonoma Metropolitana-Iztapalapa, Mexico DF, Mexico
| | - Jerry Vriend
- Department of Human Anatomy and Cell Biology, University of Manitoba, Winnipeg, MA, Canada
| | - Dun-Xian Tan
- Department of Cellular and Structural Biology, UT Health Science Center, San Antonio, TX, USA
| | - Russel J Reiter
- Department of Cellular and Structural Biology, UT Health Science Center, San Antonio, TX, USA
| |
Collapse
|
96
|
Álvarez-Diduk R, Galano A, Tan DX, Reiter RJ. N-Acetylserotonin and 6-Hydroxymelatonin against Oxidative Stress: Implications for the Overall Protection Exerted by Melatonin. J Phys Chem B 2015; 119:8535-43. [DOI: 10.1021/acs.jpcb.5b04920] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Ruslán Álvarez-Diduk
- Departamento
de Química, Universidad Autónoma Metropolitana-Iztapalapa, San Rafael Atlixco 186, Col. Vicentina, Iztapalapa. C. P. 09340, México D. F. México
| | - Annia Galano
- Departamento
de Química, Universidad Autónoma Metropolitana-Iztapalapa, San Rafael Atlixco 186, Col. Vicentina, Iztapalapa. C. P. 09340, México D. F. México
| | - Dun Xian Tan
- Department
of Cellular and Structural Biology, UT Health Science Center, San Antonio, Texas 78229, United States
| | - Russel J. Reiter
- Department
of Cellular and Structural Biology, UT Health Science Center, San Antonio, Texas 78229, United States
| |
Collapse
|
97
|
Abstract
Melatonin is a small, highly conserved indole with numerous receptor-mediated and receptor-independent actions. Receptor-dependent functions include circadian rhythm regulation, sleep, and cancer inhibition. The receptor-independent actions relate to melatonin's ability to function in the detoxification of free radicals, thereby protecting critical molecules from the destructive effects of oxidative stress under conditions of ischemia/reperfusion injury (stroke, heart attack), ionizing radiation, and drug toxicity, among others. Melatonin has numerous applications in physiology and medicine.
Collapse
Affiliation(s)
- Russel J Reiter
- Department of Cellular and Structural Biology, UT Health Science Center, San Antonio, Texas; and
| | - Dun Xian Tan
- Department of Cellular and Structural Biology, UT Health Science Center, San Antonio, Texas; and
| | - Annia Galano
- Departamento de Quimica, Universidad Autonoma Metropolitana-Iztapalapa, Mexico D.F., Mexico
| |
Collapse
|
98
|
Zhao Y, Guan Y, Pan Y, Nitin N, Tikekar RV. Improved oxidative barrier properties of emulsions stabilized by silica-polymer microparticles for enhanced stability of encapsulants. Food Res Int 2015; 74:269-274. [PMID: 28411992 DOI: 10.1016/j.foodres.2015.05.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2015] [Revised: 04/21/2015] [Accepted: 05/02/2015] [Indexed: 11/15/2022]
Abstract
The materials encapsulated within oil-in-water emulsions are prone to oxidation due to the permeation of oxidative species across the oil-water interface and into the lipid phase. Thus, the oxidative barrier properties of the interfacial layer are pivotal in reducing oxidation within emulsified oils. To enhance these barrier properties, we explored an approach of stabilizing emulsions using 'silica-polymer microparticles'. We hypothesize that these microparticles will enhance the barrier properties of emulsion interfaces by mechanisms such as higher interfacial thickness and quenching of oxidative species before they permeate into the emulsions. Silica-ε-polylysine (Si-EPL) microparticles were synthesized by electrostatic aggregation of anionic silica nanoparticles and cationic ε-polylysine in the aqueous phase. Formation of Si-EPL microparticles was validated using particle size, ζ-potential and scanning electron microscopy measurements. These microparticles were subsequently used for emulsion stabilization. Emulsions stabilized by silica nanoparticles alone were used as control. Oxidative barrier properties were determined by measuring the rate of permeation of peroxyl radicals from the aqueous to the oil phase of the emulsion using fluorescence based methods. The rate of permeation of peroxyl radicals was significantly lower in emulsions stabilized by Si-EPL microparticles compared to that stabilized by silica nanoparticles. One of the mechanisms responsible for the observed effect was enhanced quenching of peroxyl radical by Si-EPL microparticles before they can permeate inside the oil phase. To further validate the results, stability of a model bioactive compound, retinol, encapsulated in these emulsions was compared. Consistent with peroxyl radical permeation measurements, emulsion stabilized by Si-EPL microparticles significantly improved the oxidative stability of retinol compared to that stabilized by silica nanoparticles alone. Thus, by engineering the physical properties of the interfacial layers, the oxidation of the encapsulants in emulsions can be controlled.
Collapse
Affiliation(s)
- Yuan Zhao
- Program in Culinary and Food Science, Drexel University, Philadelphia, PA 19104, USA
| | - Yue Guan
- Department of Food Science and Technology, University of California-Davis, Davis, CA 95616, USA
| | - Yuanjie Pan
- Department of Food Science and Technology, University of California-Davis, Davis, CA 95616, USA
| | - Nitin Nitin
- Department of Food Science and Technology, University of California-Davis, Davis, CA 95616, USA
| | - Rohan V Tikekar
- Department of Nutrition and Food Science, University of Maryland-College Park, College Park, MD 20742, USA.
| |
Collapse
|
99
|
Ozban M, Aydin C, Cevahir N, Yenisey C, Birsen O, Gumrukcu G, Aydin B, Berber I. The effect of melatonin on bacterial translocation following ischemia/reperfusion injury in a rat model of superior mesenteric artery occlusion. BMC Surg 2015; 15:18. [PMID: 25884520 PMCID: PMC4355544 DOI: 10.1186/s12893-015-0003-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Accepted: 02/06/2015] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Acute mesenteric ischemia is a life-threatening vascular emergency resulting in tissue destruction due to ischemia-reperfusion injury. Melatonin, the primary hormone of the pineal gland, is a powerful scavenger of reactive oxygen species (ROS), including the hydroxyl and peroxyl radicals, as well as singlet oxygen, and nitric oxide. In this study, we aimed to investigate whether melatonin prevents harmful effects of superior mesenteric ischemia-reperfusion on intestinal tissues in rats. METHODS Rats were randomly divided into three groups, each having 10 animals. In group I, the superior mesenteric artery (SMA) was isolated but not occluded. In group II and group III, the SMA was occluded immediately distal to the aorta for 60 minutes. After that, the clamp was removed and the reperfusion period began. In group III, 30 minutes before the start of reperfusion, 10 mg/kg melatonin was administered intraperitonally. All animals were sacrified 24 hours after reperfusion. Tissue samples were collected to evaluate the I/R-induced intestinal injury and bacterial translocation (BT). RESULTS There was a statistically significant increase in myeloperoxidase activity, malondialdehyde levels and in the incidence of bacterial translocation in group II, along with a decrease in glutathione levels. These investigated parameters were found to be normalized in melatonin treated animals (group III). CONCLUSION We conclude that melatonin prevents bacterial translocation while precluding the harmful effects of ischemia/reperfusion injury on intestinal tissues in a rat model of superior mesenteric artery occlusion.
Collapse
Affiliation(s)
- Murat Ozban
- />Department of General Surgery, School of Medicine, Pamukkale University, Denizli, Turkey
| | - Cagatay Aydin
- />Department of General Surgery, School of Medicine, Pamukkale University, Denizli, Turkey
| | - Nural Cevahir
- />Department of Microbiology, School of Medicine, Pamukkale University, Denizli, Turkey
| | - Cigdem Yenisey
- />Department of Biochemistry, School of Medicine, Adnan Menderes University, Aydin, Turkey
| | - Onur Birsen
- />Department of General Surgery, School of Medicine, Pamukkale University, Denizli, Turkey
| | - Gulistan Gumrukcu
- />Department of Pathology, Haydarpasa Numune Training and Research Hospital, Istanbul, Turkey
| | - Berrin Aydin
- />Department of Emergency Medicine, Denizli State Hospital, Denizli, Turkey
| | - Ibrahim Berber
- />Department of Transplantation, International Hospital, Istanbul, Turkey
| |
Collapse
|
100
|
Álvarez-Diduk R, Galano A. Adrenaline and noradrenaline: protectors against oxidative stress or molecular targets? J Phys Chem B 2015; 119:3479-91. [PMID: 25646569 DOI: 10.1021/acs.jpcb.5b00052] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Density functional theory was used to investigate the potential role of neurotransmitters adrenaline and noradrenaline regarding oxidative stress. It is predicted that they can be efficient as free radical scavengers both in lipid and aqueous media, with the main reaction mechanism being the hydrogen transfer and the sequential proton loss electron transfer, respectively. Despite the polarity of the environment, adrenaline and noradrenaline react with (•)OOH faster than Trolox, which suggests that they are better peroxyl radical scavengers than the reference compound. Both catecholamines are also proposed to be capable of efficiently inhibiting the oxidative stress induced by copper(II)-ascorbate mixtures, and the (•)OH production via Haber-Weiss reaction, albeit the effects on the later are only partial. They exert such beneficial effects by sequestering Cu(II) ions. In summary, these catecholamines can be capable of reducing oxidative stress, by scavenging free radicals and by sequestering metal ions. However, at the same time they might lose their functions in the process due to the associated structural modifications. Consequently, adrenaline and noradrenaline can be considered as both protectors and molecular targets of oxidative stress. Fortunately, under the proper conditions, both catecholamines can be regenerated to their original form so their functions are restored.
Collapse
Affiliation(s)
- Ruslán Álvarez-Diduk
- Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa , San Rafael Atlixco 186, Col. Vicentina, Iztapalapa, C. P. 09340. México D.F., México
| | | |
Collapse
|