51
|
Li J, Hu Y, Yu L, Li L, Ji D, Li L, Hu W, Fuchs H. Recent Advances of Nanospheres Lithography in Organic Electronics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2100724. [PMID: 34018680 DOI: 10.1002/smll.202100724] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/17/2021] [Indexed: 06/12/2023]
Abstract
Nanospheres lithography (NSL) is an economical technique, which makes use of highly monodispersed nanospheres such as deposition or etch masks for generating patterns with nanoscale features. Embedding nanostructures into organic electronic devices can endow them with unique capabilities and enhanced performance, which have greatly advanced the development of organic electronics. In this review, a brief summary of the methods for the preparation of monodispersed nanospheres is presented. Afterward, the authors highlight the recent advances of a wide variety of applications of nanospheres lithography in organic electronic devices. Finally, the challenges in this field are pointed out, and the future development of this field is discussed.
Collapse
Affiliation(s)
- Jie Li
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Institute of Molecular Aggregation Science, Tianjin University, Tianjin, 300072, China
| | - Yongxu Hu
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Institute of Molecular Aggregation Science, Tianjin University, Tianjin, 300072, China
| | - Li Yu
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Institute of Molecular Aggregation Science, Tianjin University, Tianjin, 300072, China
| | - Lin Li
- Institute of Molecular Plus, Tianjin University, Tianjin, 300072, China
| | - Deyang Ji
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Institute of Molecular Aggregation Science, Tianjin University, Tianjin, 300072, China
- Beijing National Laboratory for Molecular Sciences, Beijing, 100190, China
| | - Liqiang Li
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Institute of Molecular Aggregation Science, Tianjin University, Tianjin, 300072, China
| | - Wenping Hu
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300072, China
| | - Harald Fuchs
- Physikalisches Institut, Westfälische Wilhelms-Universität, Wilhelm-Klemm-Straße 10, 48149, Münster, Germany
- Center for Nanotechnology, Heisenbergstraße 11, 48149, Münster, Germany
- Institute of Flexible Electronics (IFE), Northwestern Polytechnical University (NWPU), 127 West Youyi Road, Xi'an, 710072, China
| |
Collapse
|
52
|
Chen X, Kretz B, Adoah F, Nickle C, Chi X, Yu X, Del Barco E, Thompson D, Egger DA, Nijhuis CA. A single atom change turns insulating saturated wires into molecular conductors. Nat Commun 2021; 12:3432. [PMID: 34103489 PMCID: PMC8187423 DOI: 10.1038/s41467-021-23528-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 04/30/2021] [Indexed: 11/09/2022] Open
Abstract
We present an efficient strategy to modulate tunnelling in molecular junctions by changing the tunnelling decay coefficient, β, by terminal-atom substitution which avoids altering the molecular backbone. By varying X = H, F, Cl, Br, I in junctions with S(CH2)(10-18)X, current densities (J) increase >4 orders of magnitude, creating molecular conductors via reduction of β from 0.75 to 0.25 Å−1. Impedance measurements show tripled dielectric constants (εr) with X = I, reduced HOMO-LUMO gaps and tunnelling-barrier heights, and 5-times reduced contact resistance. These effects alone cannot explain the large change in β. Density-functional theory shows highly localized, X-dependent potential drops at the S(CH2)nX//electrode interface that modifies the tunnelling barrier shape. Commonly-used tunnelling models neglect localized potential drops and changes in εr. Here, we demonstrate experimentally that \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\beta \propto 1/\sqrt{{\varepsilon }_{r}}$$\end{document}β∝1/εr, suggesting highly-polarizable terminal-atoms act as charge traps and highlighting the need for new charge transport models that account for dielectric effects in molecular tunnelling junctions. In molecular junctions, where a molecule is placed between two electrodes, the current passed decays exponentially as a function of length. Here, Chen et al. show that this exponentially attenuation can be controlled by changing a single atom at the end of the molecular wire.
Collapse
Affiliation(s)
- Xiaoping Chen
- Department of Chemistry, National University of Singapore, Singapore, Singapore.,Centre for Advanced 2D Materials and Graphene Research Centre, National University of Singapore, Singapore, Singapore
| | - Bernhard Kretz
- Department of Physics, Technical University of Munich, Garching, Germany
| | - Francis Adoah
- Department of Physics, University of Central Florida, Orlando, FL, USA
| | - Cameron Nickle
- Department of Physics, University of Central Florida, Orlando, FL, USA
| | - Xiao Chi
- Singapore Synchrotron Light Source, National University of Singapore, Singapore, Singapore
| | - Xiaojiang Yu
- Singapore Synchrotron Light Source, National University of Singapore, Singapore, Singapore
| | - Enrique Del Barco
- Department of Physics, University of Central Florida, Orlando, FL, USA
| | - Damien Thompson
- Department of Physics, Bernal Institute, University of Limerick, Limerick, Ireland
| | - David A Egger
- Department of Physics, Technical University of Munich, Garching, Germany.
| | - Christian A Nijhuis
- Department of Chemistry, National University of Singapore, Singapore, Singapore. .,Centre for Advanced 2D Materials and Graphene Research Centre, National University of Singapore, Singapore, Singapore. .,Hybrid Materials for Opto-Electronics Group, Department of Molecules and Materials, MESA+ Institute for Nanotechnology and Center for Brain-Inspired Nano Systems, Faculty of Science and Technology, University of Twente, P.O. Box 217, 7500, AE Enschede, The Netherlands.
| |
Collapse
|
53
|
Gu MW, Peng HH, Chen IWP, Chen CH. Tuning surface d bands with bimetallic electrodes to facilitate electron transport across molecular junctions. NATURE MATERIALS 2021; 20:658-664. [PMID: 33510446 DOI: 10.1038/s41563-020-00876-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 11/12/2020] [Indexed: 06/12/2023]
Abstract
Understanding chemical bonding and conductivity at the electrode-molecule interface is key for the operation of single-molecule junctions. Here we apply the d-band theory that describes interfacial interactions between adsorbates and transition metal surfaces to study electron transport across these devices. We realized bimetallic Au electrodes modified with a monoatomic Ag adlayer to connect α,ω-alkanoic acids (HO2C(CH2)nCO2H). The force required to break the molecule-electrode binding and the contact conductance Gn=0 are 1.1 nN and 0.29 G0 (the conductance quantum, 1 G0 = 2e2/h ≈ 77.5 μS), which makes these junctions, respectively, 1.3-1.8 times stronger and 40-60-fold more conductive than junctions with bare Au or Ag electrodes. A similar performance was found for Au electrodes modified by Cu monolayers. By integrating the Newns-Anderson model with the Hammer-Nørskov d-band model, we explain how the surface d bands strengthen the adsorption and promote interfacial electron transport, which provides an alternative avenue for the optimization of molecular electronic devices.
Collapse
Affiliation(s)
- Mong-Wen Gu
- Department of Chemistry and Centre for Emerging Materials and Advanced Devices, National Taiwan University, Taipei, Taiwan
| | - Hao Howard Peng
- Department of Chemistry and Centre for Emerging Materials and Advanced Devices, National Taiwan University, Taipei, Taiwan
| | - I-Wen Peter Chen
- Department of Applied Science, National Taitung University, Taitung, Taiwan.
| | - Chun-Hsien Chen
- Department of Chemistry and Centre for Emerging Materials and Advanced Devices, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
54
|
Naher M, Milan DC, Al-Owaedi OA, Planje IJ, Bock S, Hurtado-Gallego J, Bastante P, Abd Dawood ZM, Rincón-García L, Rubio-Bollinger G, Higgins SJ, Agraït N, Lambert CJ, Nichols RJ, Low PJ. Molecular Structure-(Thermo)electric Property Relationships in Single-Molecule Junctions and Comparisons with Single- and Multiple-Parameter Models. J Am Chem Soc 2021; 143:3817-3829. [PMID: 33606524 DOI: 10.1021/jacs.0c11605] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The most probable single-molecule conductance of each member of a series of 12 conjugated molecular wires, 6 of which contain either a ruthenium or platinum center centrally placed within the backbone, has been determined. The measurement of a small, positive Seebeck coefficient has established that transmission through these molecules takes place by tunneling through the tail of the HOMO resonance near the middle of the HOMO-LUMO gap in each case. Despite the general similarities in the molecular lengths and frontier-orbital compositions, experimental and computationally determined trends in molecular conductance values across this series cannot be satisfactorily explained in terms of commonly discussed "single-parameter" models of junction conductance. Rather, the trends in molecular conductance are better rationalized from consideration of the complete molecular junction, with conductance values well described by transport calculations carried out at the DFT level of theory, on the basis of the Landauer-Büttiker model.
Collapse
Affiliation(s)
- Masnun Naher
- School of Molecular Sciences, University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009, Australia
| | - David C Milan
- Department of Chemistry, University of Liverpool, Crown Street, Liverpool L69 7ZD, U.K
| | - Oday A Al-Owaedi
- Department of Laser Physics, College of Science for Girls, The University of Babylon, Hilla 51001, Iraq
| | - Inco J Planje
- Department of Chemistry, University of Liverpool, Crown Street, Liverpool L69 7ZD, U.K
| | - Sören Bock
- School of Molecular Sciences, University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009, Australia
| | - Juan Hurtado-Gallego
- Departamento de Física de la Materia Condensada, Universidad Autónoma de Madrid, Madrid E-28049, Spain
| | - Pablo Bastante
- Departamento de Física de la Materia Condensada, Universidad Autónoma de Madrid, Madrid E-28049, Spain
| | - Zahra Murtada Abd Dawood
- Department of Laser Physics, College of Science for Girls, The University of Babylon, Hilla 51001, Iraq
| | - Laura Rincón-García
- Departamento de Física de la Materia Condensada, Universidad Autónoma de Madrid, Madrid E-28049, Spain
| | - Gabino Rubio-Bollinger
- Departamento de Física de la Materia Condensada, Universidad Autónoma de Madrid, Madrid E-28049, Spain.,Condensed Matter Physics Center (IFIMAC) and Instituto Universitario de Ciencia de Materiales "Nicolás Cabrera" (INC), Universidad Autónoma de Madrid, E-28049 Madrid, Spain
| | - Simon J Higgins
- Department of Chemistry, University of Liverpool, Crown Street, Liverpool L69 7ZD, U.K
| | - Nicolás Agraït
- Departamento de Física de la Materia Condensada, Universidad Autónoma de Madrid, Madrid E-28049, Spain.,Condensed Matter Physics Center (IFIMAC) and Instituto Universitario de Ciencia de Materiales "Nicolás Cabrera" (INC), Universidad Autónoma de Madrid, E-28049 Madrid, Spain.,Instituto Madrileño de Estudios Avanzados en Nanociencia IMDEA-Nanociencia, E-28049 Madrid, Spain
| | - Colin J Lambert
- Department of Physics, University of Lancaster, Lancaster LA1 4YB, U.K
| | - Richard J Nichols
- Department of Chemistry, University of Liverpool, Crown Street, Liverpool L69 7ZD, U.K
| | - Paul J Low
- School of Molecular Sciences, University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009, Australia
| |
Collapse
|
55
|
Yuan S, Gao T, Cao W, Pan Z, Liu J, Shi J, Hong W. The Characterization of Electronic Noise in the Charge Transport through Single-Molecule Junctions. SMALL METHODS 2021; 5:e2001064. [PMID: 34927823 DOI: 10.1002/smtd.202001064] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 12/09/2020] [Indexed: 06/14/2023]
Abstract
With the goal of creating single-molecule devices and integrating them into circuits, the emergence of single-molecule electronics provides various techniques for the fabrication of single-molecule junctions and the investigation of charge transport through such junctions. Among the techniques for characterization of charge transport through molecular junctions, electronic noise characterization is an effective strategy with which issues from molecule-electrode interfaces, mechanisms of charge transport, and changes in junction configurations are studied. Electronic noise analysis in single-molecule junctions can be used to identify molecular conformations and even monitor reaction kinetics. This review summarizes the various types of electronic noise that have been characterized during single-molecule electrical detection, including the functions of random telegraph signal (RTS) noise, flicker noise, shot noise, and their corresponding applications, which provide some guidelines for the future application of these techniques to problems of charge transport through single-molecule junctions.
Collapse
Affiliation(s)
- Saisai Yuan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering iChEM, Xiamen University, Xiamen, 361005, China
| | - Tengyang Gao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering iChEM, Xiamen University, Xiamen, 361005, China
| | - Wenqiang Cao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering iChEM, Xiamen University, Xiamen, 361005, China
| | - Zhichao Pan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering iChEM, Xiamen University, Xiamen, 361005, China
| | - Junyang Liu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering iChEM, Xiamen University, Xiamen, 361005, China
| | - Jia Shi
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering iChEM, Xiamen University, Xiamen, 361005, China
| | - Wenjing Hong
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering iChEM, Xiamen University, Xiamen, 361005, China
- Beijing National Laboratory for Molecular Sciences, Beijing, 100190, China
| |
Collapse
|
56
|
Aggarwal A, Sahoo AK, Bag S, Kaliginedi V, Jain M, Maiti PK. Fine-tuning the DNA conductance by intercalation of drug molecules. Phys Rev E 2021; 103:032411. [PMID: 33862831 DOI: 10.1103/physreve.103.032411] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 03/08/2021] [Indexed: 11/07/2022]
Abstract
In this work we study the structure-transport property relationships of small ligand intercalated DNA molecules using a multiscale modeling approach where extensive ab initio calculations are performed on numerous MD-simulated configurations of dsDNA and dsDNA intercalated with two different intercalators, ethidium and daunomycin. DNA conductance is found to increase by one order of magnitude upon drug intercalation due to the local unwinding of the DNA base pairs adjacent to the intercalated sites, which leads to modifications of the density of states in the near-Fermi-energy region of the ligand-DNA complex. Our study suggests that the intercalators can be used to enhance or tune the DNA conductance, which opens new possibilities for their potential applications in nanoelectronics.
Collapse
Affiliation(s)
- Abhishek Aggarwal
- Center for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore 560012, India
| | - Anil Kumar Sahoo
- Center for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore 560012, India
| | - Saientan Bag
- Center for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore 560012, India
| | - Veerabhadrarao Kaliginedi
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Manish Jain
- Center for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore 560012, India
| | - Prabal K Maiti
- Center for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
57
|
Chen Y, Wang HC, Tang Y, Zhou Y, Huang L, Cao J, Tang C, Zhang M, Shi J, Liu J, Ren X, Xu YX, Hong W. Modulation of charge transport through single-molecule bilactam junctions by tuning hydrogen bonds. Chem Commun (Camb) 2021; 57:1935-1938. [PMID: 33498077 DOI: 10.1039/d0cc07423c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Bilactam derivatives with different side groups were synthesized and the twisting angle tuning effect induced by the intramolecular hydrogen bond on the charge transport through their single-molecule junctions was investigated. Molecules with strong intramolecular hydrogen bonds exhibited twice higher conductance because of the reduced dihedral twisting, which was reversible with the addition of hydrogen bond destroying solvent. Our findings reveal that the presence of intramolecular hydrogen bonds promotes the planarization of the molecular structure without additional transmission channels, offering a new strategy for controlling molecular switches via tuning the molecular twisting.
Collapse
Affiliation(s)
- Yaorong Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Hua-Chun Wang
- College of Polymer Science & Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Yongxiang Tang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Yu Zhou
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Longfeng Huang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Jian Cao
- College of Polymer Science & Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Chun Tang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Manxi Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Jia Shi
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Junyang Liu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Xiancheng Ren
- College of Polymer Science & Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Yun-Xiang Xu
- College of Polymer Science & Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Wenjing Hong
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China. and Beijing National Laboratory for Molecular Sciences, Beijing 100190, China
| |
Collapse
|
58
|
Chen H, Brasiliense V, Mo J, Zhang L, Jiao Y, Chen Z, Jones LO, He G, Guo QH, Chen XY, Song B, Schatz GC, Stoddart JF. Single-Molecule Charge Transport through Positively Charged Electrostatic Anchors. J Am Chem Soc 2021; 143:2886-2895. [DOI: 10.1021/jacs.0c12664] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Hongliang Chen
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Vitor Brasiliense
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Université Paris-Saclay, ENS Paris-Saclay, CNRS, PPSM, 4 avenue des Sciences, 91190 Gif/Yvette, France
| | - Jingshan Mo
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou 510006, China
| | - Long Zhang
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Yang Jiao
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Zhu Chen
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Leighton O. Jones
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Gen He
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou 510006, China
| | - Qing-Hui Guo
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Xiao-Yang Chen
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Bo Song
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - George C. Schatz
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - J. Fraser Stoddart
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310021, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center Hangzhou 311215, China
| |
Collapse
|
59
|
Chen Y, Huang L, Chen H, Chen Z, Zhang H, Xiao Z, Hong W. Towards Responsive
Single‐Molecule
Device. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202000420] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Yaorong Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Collaborative Innovation Center of Chemistry for Energy Materials, Xiamen University Xiamen Fujian 361005 China
| | - Longfeng Huang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Collaborative Innovation Center of Chemistry for Energy Materials, Xiamen University Xiamen Fujian 361005 China
| | - Hang Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Collaborative Innovation Center of Chemistry for Energy Materials, Xiamen University Xiamen Fujian 361005 China
| | - Zhixin Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Collaborative Innovation Center of Chemistry for Energy Materials, Xiamen University Xiamen Fujian 361005 China
| | - Hewei Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Collaborative Innovation Center of Chemistry for Energy Materials, Xiamen University Xiamen Fujian 361005 China
| | - Zongyuan Xiao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Collaborative Innovation Center of Chemistry for Energy Materials, Xiamen University Xiamen Fujian 361005 China
| | - Wenjing Hong
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Collaborative Innovation Center of Chemistry for Energy Materials, Xiamen University Xiamen Fujian 361005 China
| |
Collapse
|
60
|
Ghasemi S, Moth-Poulsen K. Single molecule electronic devices with carbon-based materials: status and opportunity. NANOSCALE 2021; 13:659-671. [PMID: 33406181 DOI: 10.1039/d0nr07844a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The field of single molecule electronics has progressed remarkably in the past decades by allowing for more versatile molecular functions and improving device fabrication techniques. In particular, electrodes made from carbon-based materials such as graphene and carbon nanotubes (CNTs) may enable parallel fabrication of multiple single molecule devices. In this perspective, we review the recent progress in the field of single molecule electronics, with a focus on devices that utilizes carbon-based electrodes. The paper is structured in three main sections: (i) controlling the molecule/graphene electrode interface using covalent and non-covalent approaches, (ii) using CNTs as electrodes for fabricating single molecule devices, and (iii) a discussion of possible future directions employing new or emerging 2D materials.
Collapse
Affiliation(s)
- Shima Ghasemi
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, SE-412-96 Göteborg, Sweden.
| | - Kasper Moth-Poulsen
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, SE-412-96 Göteborg, Sweden.
| |
Collapse
|
61
|
Urino H, Kodaira A, Takahashi H, Pac C, Fujii S, Kanaizuka K, Moriyama H. Construction of Ultrathin Layer-by-Layer Films of Oligothiophene Derivatives on an Electrode. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:978-982. [PMID: 33412853 DOI: 10.1021/acs.langmuir.0c03549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Oligothiophene derivatives, which are known as p-type materials, have been synthesized, and their ultrathin layer-by-layer films have been constructed on an electrode using a simple and convenient dipping method. The stepwise deposition behavior of quaterthiophene and sexithiophene derivatives on the electrode via hydrogen bonding was monitored by electronic spectra measurement, and the constructed films were evaluated by X-ray photoelectron spectroscopy, grazing-incidence small-angle X-ray scattering, and cyclic voltammetry. It has been clarified that the constructed layer-by-layer films were electroactive and photoelectroactive.
Collapse
Affiliation(s)
- Hiroto Urino
- Department of Chemistry, Toho University, Miyama 2-2-1, Funabashi, 274-8510, Japan
| | - Akira Kodaira
- Department of Chemistry, Toho University, Miyama 2-2-1, Funabashi, 274-8510, Japan
| | - Hiromi Takahashi
- System Instruments Co., Ltd., 776-2, Komiya-cho, Hachioji-shi, Tokyo 192-0031, Japan
| | - Chongjin Pac
- Department of Materials Chemistry, Korea University, Sejong Jochiwon, Chung-Nam 339-700, Korea
| | - Sho Fujii
- Department of Chemistry, Faculty of Science, Hokkaido University, Kita-10, Nishi-8, Kita-ku, Sapporo 060-0810, Japan
| | - Katsuhiko Kanaizuka
- Faculty of Science, Yamagata University, Kojirakawa 1-4-12, Yamagata 990-8560, Japan
| | - Hiroshi Moriyama
- Department of Chemistry, Toho University, Miyama 2-2-1, Funabashi, 274-8510, Japan
- Faculty of Science, Yamagata University, Kojirakawa 1-4-12, Yamagata 990-8560, Japan
| |
Collapse
|
62
|
Gupta NK, Schultz T, Karuppannan SK, Vilan A, Koch N, Nijhuis CA. The energy level alignment of the ferrocene-EGaIn interface studied with photoelectron spectroscopy. Phys Chem Chem Phys 2021; 23:13458-13467. [PMID: 34095913 DOI: 10.1039/d1cp01690c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The energy level alignment after the formation of a molecular tunnel junction is often poorly understood because spectroscopy inside junctions is not possible, which hampers the rational design of functional molecular junctions and complicates the interpretation of the data generated by molecular junctions. In molecular junction platforms where the top electrode-molecule interaction is weak; one may argue that the energy level alignment can be deduced from measurements with the molecules supported by the bottom electrode (sometimes referred to as "half junctions"). This approach, however, still relies on a series of assumptions, which are challenging to address experimentally due to difficulties in studying the molecule-top electrode interaction. Herein, we describe top electrode-molecule junctions with a liquid metal alloy top electrode of EGaIn (which stands for eutectic alloy of Ga and In) interacting with well-characterised ferrocene (Fc) moieties. We deposited a ferrocene derivative on films of EGaIn, coated with its native GaOx layer, and studied the energy level alignment with photoelectron spectroscopy. Our results reveal that the electronic interaction between the Fc and GaOx/EGaIn is very weak, resembling physisorption. Therefore, investigations of "half junctions" for this system can provide valuable information regarding the energy level alignment of complete EGaIn junctions. Our results help to improve our understanding of the energy landscape in weakly coupled molecular junctions and aid to the rational design of molecular electronic devices.
Collapse
Affiliation(s)
- Nipun Kumar Gupta
- Departement of Chemistry, Faculty of Science, National University of Singapore, Singapore, Singapore and Centre for Advanced 2D Materials, National University of Singapore, 6 Science Drive 2, Singapore 117546, Singapore
| | - Thorsten Schultz
- Institut für Physik, Humboldt-Universität zu Berlin, Newtonstraße 15, 12489 Berlin, Germany. and Helmholtz Zentrum Berlin für Materialien und Energie GmbH, Albert-Einstein Straße 15, 12489 Berlin, Germany
| | - Senthil Kumar Karuppannan
- Departement of Chemistry, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Ayelet Vilan
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Norbert Koch
- Institut für Physik, Humboldt-Universität zu Berlin, Newtonstraße 15, 12489 Berlin, Germany. and Helmholtz Zentrum Berlin für Materialien und Energie GmbH, Albert-Einstein Straße 15, 12489 Berlin, Germany
| | - Christian A Nijhuis
- Departement of Chemistry, Faculty of Science, National University of Singapore, Singapore, Singapore and Centre for Advanced 2D Materials, National University of Singapore, 6 Science Drive 2, Singapore 117546, Singapore and Department of Molecules and Materials, MESA+ Institute for Nanotechnology and Center for Brain-Inspired Nano Systems, Faculty of Science and Technology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands.
| |
Collapse
|
63
|
Liu W, Yang S, Li J, Su G, Ren J. One molecule, two states: Single molecular switch on metallic electrodes. WIRES COMPUTATIONAL MOLECULAR SCIENCE 2020. [DOI: 10.1002/wcms.1511] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Wei Liu
- Nano and Heterogeneous Materials Center, School of Materials Science and Engineering Nanjing University of Science and Technology Nanjing China
| | - Sha Yang
- Nano and Heterogeneous Materials Center, School of Materials Science and Engineering Nanjing University of Science and Technology Nanjing China
| | - Jingtai Li
- Nano and Heterogeneous Materials Center, School of Materials Science and Engineering Nanjing University of Science and Technology Nanjing China
| | - Guirong Su
- Nano and Heterogeneous Materials Center, School of Materials Science and Engineering Nanjing University of Science and Technology Nanjing China
| | - Ji‐Chang Ren
- Nano and Heterogeneous Materials Center, School of Materials Science and Engineering Nanjing University of Science and Technology Nanjing China
| |
Collapse
|
64
|
Zeng BF, Wang G, Qian QZ, Chen ZX, Zhang XG, Lu ZX, Zhao SQ, Feng AN, Shi J, Yang Y, Hong W. Selective Fabrication of Single-Molecule Junctions by Interface Engineering. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2004720. [PMID: 33155382 DOI: 10.1002/smll.202004720] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/14/2020] [Indexed: 06/11/2023]
Abstract
Recent progress in addressing electrically driven single-molecule behaviors has opened up a path toward the controllable fabrication of molecular devices. Herein, the selective fabrication of single-molecule junctions is achieved by employing the external electric field. For molecular junctions with methylthio (-SMe), thioacetate (-SAc), amine (-NH2 ), and pyridyl (-PY), the evolution of their formation probabilities along with the electric field is extracted from the plateau analysis of individual single-molecule break junction traces. With the increase of the electric field, the SMe-anchored molecules show a different trend in the formation probability compared to the other molecular junctions, which is consistent with the density functional theory calculations. Furthermore, switching from an SMe-anchored junction to an SAc-anchored junction is realized by altering the electric field in a mixed solution. The results in this work provide a new approach to the controllable fabrication and modulation of single-molecule junctions and other bottom-up nanodevices at molecular scales.
Collapse
Affiliation(s)
- Biao-Feng Zeng
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, College of Chemistry and Chemical Engineering and State Key Laboratory of Physical Chemistry of Solid Surfaces, IKKEM, iChEM, Xiamen University, Xiamen, 361005, China
| | - Gan Wang
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, College of Chemistry and Chemical Engineering and State Key Laboratory of Physical Chemistry of Solid Surfaces, IKKEM, iChEM, Xiamen University, Xiamen, 361005, China
| | - Qiao-Zan Qian
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, College of Chemistry and Chemical Engineering and State Key Laboratory of Physical Chemistry of Solid Surfaces, IKKEM, iChEM, Xiamen University, Xiamen, 361005, China
| | - Zhi-Xin Chen
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, College of Chemistry and Chemical Engineering and State Key Laboratory of Physical Chemistry of Solid Surfaces, IKKEM, iChEM, Xiamen University, Xiamen, 361005, China
| | - Xia-Guang Zhang
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, China
| | - Zhi-Xing Lu
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, College of Chemistry and Chemical Engineering and State Key Laboratory of Physical Chemistry of Solid Surfaces, IKKEM, iChEM, Xiamen University, Xiamen, 361005, China
| | - Shi-Qiang Zhao
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, College of Chemistry and Chemical Engineering and State Key Laboratory of Physical Chemistry of Solid Surfaces, IKKEM, iChEM, Xiamen University, Xiamen, 361005, China
| | - An-Ni Feng
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, College of Chemistry and Chemical Engineering and State Key Laboratory of Physical Chemistry of Solid Surfaces, IKKEM, iChEM, Xiamen University, Xiamen, 361005, China
| | - Jia Shi
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, College of Chemistry and Chemical Engineering and State Key Laboratory of Physical Chemistry of Solid Surfaces, IKKEM, iChEM, Xiamen University, Xiamen, 361005, China
| | - Yang Yang
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, College of Chemistry and Chemical Engineering and State Key Laboratory of Physical Chemistry of Solid Surfaces, IKKEM, iChEM, Xiamen University, Xiamen, 361005, China
| | - Wenjing Hong
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, College of Chemistry and Chemical Engineering and State Key Laboratory of Physical Chemistry of Solid Surfaces, IKKEM, iChEM, Xiamen University, Xiamen, 361005, China
| |
Collapse
|
65
|
Han Y, Nijhuis CA. Functional Redox-Active Molecular Tunnel Junctions. Chem Asian J 2020; 15:3752-3770. [PMID: 33015998 PMCID: PMC7756406 DOI: 10.1002/asia.202000932] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/29/2020] [Indexed: 01/10/2023]
Abstract
Redox-active molecular junctions have attracted considerable attention because redox-active molecules provide accessible energy levels enabling electronic function at the molecular length scales, such as, rectification, conductance switching, or molecular transistors. Unlike charge transfer in wet electrochemical environments, it is still challenging to understand how redox-processes proceed in solid-state molecular junctions which lack counterions and solvent molecules to stabilize the charge on the molecules. In this minireview, we first introduce molecular junctions based on redox-active molecules and discuss their properties from both a chemistry and nanoelectronics point of view, and then discuss briefly the mechanisms of charge transport in solid-state redox-junctions followed by examples where redox-molecules generate new electronic function. We conclude with challenges that need to be addressed and interesting future directions from a chemical engineering and molecular design perspectives.
Collapse
Affiliation(s)
- Yingmei Han
- Department of ChemistryNational University of Singapore3 Science Drive 3Singapore117543Singapore
| | - Christian A. Nijhuis
- Department of ChemistryNational University of Singapore3 Science Drive 3Singapore117543Singapore
- Centre for Advanced 2D Materials and Graphene Research CentreNational University of Singapore6 Science Drive 2Singapore117546Singapore
| |
Collapse
|
66
|
Wu C, Bates D, Sangtarash S, Ferri N, Thomas A, Higgins SJ, Robertson CM, Nichols RJ, Sadeghi H, Vezzoli A. Folding a Single-Molecule Junction. NANO LETTERS 2020; 20:7980-7986. [PMID: 33047599 PMCID: PMC7662913 DOI: 10.1021/acs.nanolett.0c02815] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 10/07/2020] [Indexed: 06/11/2023]
Abstract
Stimuli-responsive molecular junctions, where the conductance can be altered by an external perturbation, are an important class of nanoelectronic devices. These have recently attracted interest as large effects can be introduced through exploitation of quantum phenomena. We show here that significant changes in conductance can be attained as a molecule is repeatedly compressed and relaxed, resulting in molecular folding along a flexible fragment and cycling between an anti and a syn conformation. Power spectral density analysis and DFT transport calculations show that through-space tunneling between two phenyl fragments is responsible for the conductance increase as the molecule is mechanically folded to the syn conformation. This phenomenon represents a novel class of mechanoresistive molecular devices, where the functional moiety is embedded in the conductive backbone and exploits intramolecular nonbonding interactions, in contrast to most studies where mechanoresistivity arises from changes in the molecule-electrode interface.
Collapse
Affiliation(s)
- Chuanli Wu
- Department
of Chemistry, University of Liverpool, Crown Street, Liverpool L69 7ZD, United
Kingdom
- School
of Chemistry and Materials Science, Nanjing
Normal University, Nanjing 210023, People’s Republic
of China
| | - Demetris Bates
- Department
of Chemistry, University of Liverpool, Crown Street, Liverpool L69 7ZD, United
Kingdom
| | - Sara Sangtarash
- School
of Engineering, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Nicoló Ferri
- Department
of Chemistry, University of Liverpool, Crown Street, Liverpool L69 7ZD, United
Kingdom
| | - Aidan Thomas
- Department
of Chemistry, University of Liverpool, Crown Street, Liverpool L69 7ZD, United
Kingdom
| | - Simon J. Higgins
- Department
of Chemistry, University of Liverpool, Crown Street, Liverpool L69 7ZD, United
Kingdom
| | - Craig M. Robertson
- Department
of Chemistry, University of Liverpool, Crown Street, Liverpool L69 7ZD, United
Kingdom
| | - Richard J. Nichols
- Department
of Chemistry, University of Liverpool, Crown Street, Liverpool L69 7ZD, United
Kingdom
| | - Hatef Sadeghi
- School
of Engineering, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Andrea Vezzoli
- Department
of Chemistry, University of Liverpool, Crown Street, Liverpool L69 7ZD, United
Kingdom
- Stephenson
Institute for Renewable Energy, University
of Liverpool, Peach Street, Liverpool L69 7ZF, United Kingdom
| |
Collapse
|
67
|
Nanofabrication Techniques in Large-Area Molecular Electronic Devices. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10176064] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The societal impact of the electronics industry is enormous—not to mention how this industry impinges on the global economy. The foreseen limits of the current technology—technical, economic, and sustainability issues—open the door to the search for successor technologies. In this context, molecular electronics has emerged as a promising candidate that, at least in the short-term, will not likely replace our silicon-based electronics, but improve its performance through a nascent hybrid technology. Such technology will take advantage of both the small dimensions of the molecules and new functionalities resulting from the quantum effects that govern the properties at the molecular scale. An optimization of interface engineering and integration of molecules to form densely integrated individually addressable arrays of molecules are two crucial aspects in the molecular electronics field. These challenges should be met to establish the bridge between organic functional materials and hard electronics required for the incorporation of such hybrid technology in the market. In this review, the most advanced methods for fabricating large-area molecular electronic devices are presented, highlighting their advantages and limitations. Special emphasis is focused on bottom-up methodologies for the fabrication of well-ordered and tightly-packed monolayers onto the bottom electrode, followed by a description of the top-contact deposition methods so far used.
Collapse
|
68
|
Wang B, Gao M, Uosaki K, Taketsugu T. A quantum chemical study of substituent effects on CN bonds in aryl isocyanide molecules adsorbed on the Pt surface. Phys Chem Chem Phys 2020; 22:12200-12208. [PMID: 32427247 DOI: 10.1039/d0cp00760a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A periodicity implemented scheme of natural bond orbital (NBO) theory and normal mode analysis has been employed to investigate the tendency of the chemical bond strength of aryl isocyanide molecules with different para-substituted groups adsorbed on the Pt(111) surface. The NC bond order shows a clear correspondence with the NC stretching frequency; both of them exhibit a "volcano-like" profile as a function of the Hammett constant of the para-substituted groups for isolated molecules. When a molecule is adsorbed on the Pt(111) surface, the NC stretching frequency variations are determined by the resultant effect of σ donation and π back-donation between the molecule and the surface. The present comprehensive and systematic computations clarify the electron donating and withdrawing effects of the substituted groups on the interaction between the aryl isocyanide molecule and the transition metal substrate.
Collapse
Affiliation(s)
- Ben Wang
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-0810, Japan
| | | | | | | |
Collapse
|
69
|
Liu B, Yokota K, Komoto Y, Tsutsui M, Taniguchi M. Thermally activated charge transport in carbon atom chains. NANOSCALE 2020; 12:11001-11007. [PMID: 32270842 DOI: 10.1039/d0nr01827a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Charge transport through single molecules is at the heart of molecular electronics for realizing the practical use of the rich quantum characteristics of electrode-molecule-electrode systems. Despite the extensive studies reported in the past, little experimental efforts have been focused on the electron transport mechanism at a temperature higher than the ambient temperature. In this work, we have reported the observation of the subtle interplay between electron tunneling and charge hopping in carbon chains connected to two Au electrodes at elevated temperatures. We measured the single-molecule conductance of Au-alkanedithiol-Au molecular junctions at various temperatures from 300 K to 420 K in vacuum. The temperature dependence of conductance suggested substantial roles of superexchange with inter-chain charge hopping under elevated temperatures for alkane chains longer than heptane. This finding provides a guide to design functional molecular junctions under practical conditions.
Collapse
Affiliation(s)
- Bo Liu
- The Institute of Scientific and Industrial Research, Osaka University, Ibaraki, Osaka 567-0047, Japan.
| | - Kazumichi Yokota
- National Institute of Advanced Industrial Science and Technology, Takamatsu, Kagawa 761-0395, Japan
| | - Yuki Komoto
- The Institute of Scientific and Industrial Research, Osaka University, Ibaraki, Osaka 567-0047, Japan.
| | - Makusu Tsutsui
- The Institute of Scientific and Industrial Research, Osaka University, Ibaraki, Osaka 567-0047, Japan.
| | - Masateru Taniguchi
- The Institute of Scientific and Industrial Research, Osaka University, Ibaraki, Osaka 567-0047, Japan.
| |
Collapse
|
70
|
Han B, Li Y, Ji X, Song X, Ding S, Li B, Khalid H, Zhang Y, Xu X, Tian L, Dong H, Yu X, Hu W. Systematic Modulation of Charge Transport in Molecular Devices through Facile Control of Molecule-Electrode Coupling Using a Double Self-Assembled Monolayer Nanowire Junction. J Am Chem Soc 2020; 142:9708-9717. [PMID: 32362123 DOI: 10.1021/jacs.0c02215] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
We report a novel solid-state molecular device structure based on double self-assembled monolayers (D-SAM) incorporated into the suspended nanowire architecture to form a "Au|SAM-1||SAM-2|Au" junction. Using commercially available thiol molecules that are devoid of synthetic difficulty, we constructed a "Au|S-(CH2)6-ferrocene||SAM-2|Au" junction with various lengths and chemical structures of SAM-2 to tune the coupling between the ferrocene conductive molecular orbital and electrode of the junction. Combining low noise and a wide temperature range measurement, we demonstrated systematically modulated conduction depending on the length and chemical nature of SAM-2. Meanwhile, the transport mechanism transition from tunneling to hopping and the intermediate state accompanied by the current fluctuation due to the coexistence of the hopping and tunneling transport channels were observed. Considering the versatility of this solid-state D-SAM in modulating the electrode-molecule interface and electroactive groups, this strategy thus provides a novel facile strategy for tailorable nanoscale charge transport studies and functional molecular devices.
Collapse
Affiliation(s)
- Bin Han
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University & Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| | - Yao Li
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University & Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| | - Xuan Ji
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University & Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| | - Xianneng Song
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University & Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| | - Shuaishuai Ding
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Baili Li
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University & Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| | - Hira Khalid
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University & Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| | - Yaogang Zhang
- School of Science, Yanshan University, Qinhuangdao 066004, China
| | - Xiaona Xu
- School of Science, Yanshan University, Qinhuangdao 066004, China
| | - Lixian Tian
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University & Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| | - Huanli Dong
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Xi Yu
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University & Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| | - Wenping Hu
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University & Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
| |
Collapse
|
71
|
Wang X, Bennett TLR, Ismael A, Wilkinson LA, Hamill J, White AJP, Grace IM, Kolosov OV, Albrecht T, Robinson BJ, Long NJ, Cohen LF, Lambert CJ. Scale-Up of Room-Temperature Constructive Quantum Interference from Single Molecules to Self-Assembled Molecular-Electronic Films. J Am Chem Soc 2020; 142:8555-8560. [PMID: 32343894 PMCID: PMC7588028 DOI: 10.1021/jacs.9b13578] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Indexed: 01/25/2023]
Abstract
The realization of self-assembled molecular-electronic films, whose room-temperature transport properties are controlled by quantum interference (QI), is an essential step in the scale-up of QI effects from single molecules to parallel arrays of molecules. Recently, the effect of destructive QI (DQI) on the electrical conductance of self-assembled monolayers (SAMs) has been investigated. Here, through a combined experimental and theoretical investigation, we demonstrate chemical control of different forms of constructive QI (CQI) in cross-plane transport through SAMs and assess its influence on cross-plane thermoelectricity in SAMs. It is known that the electrical conductance of single molecules can be controlled in a deterministic manner, by chemically varying their connectivity to external electrodes. Here, by employing synthetic methodologies to vary the connectivity of terminal anchor groups around aromatic anthracene cores, and by forming SAMs of the resulting molecules, we clearly demonstrate that this signature of CQI can be translated into SAM-on-gold molecular films. We show that the conductance of vertical molecular junctions formed from anthracene-based molecules with two different connectivities differ by a factor of approximately 16, in agreement with theoretical predictions for their conductance ratio based on CQI effects within the core. We also demonstrate that for molecules with thioether anchor groups, the Seebeck coefficient of such films is connectivity dependent and with an appropriate choice of connectivity can be boosted by ∼50%. This demonstration of QI and its influence on thermoelectricity in SAMs represents a critical step toward functional ultra-thin-film devices for future thermoelectric and molecular-scale electronics applications.
Collapse
Affiliation(s)
- Xintai Wang
- Physics
Department, Lancaster University, Lancaster LA1 4YB, U.K.
- The
Blackett Laboratory, Imperial College London, South Kensington Campus, London SW7 2AZ, U.K.
| | - Troy L. R. Bennett
- Department
of Chemistry, Imperial College London, MSRH, White City, London W12 0BZ, U.K.
| | - Ali Ismael
- Physics
Department, Lancaster University, Lancaster LA1 4YB, U.K.
- Department
of Physics, College of Education for Pure Science, Tikrit University, Tikrit, Iraq
| | - Luke A. Wilkinson
- Department
of Chemistry, Imperial College London, MSRH, White City, London W12 0BZ, U.K.
| | - Joseph Hamill
- Department
of Chemistry, Birmingham University, Edgbaston, Birmingham B15 2TT, U.K.
| | - Andrew J. P. White
- Department
of Chemistry, Imperial College London, MSRH, White City, London W12 0BZ, U.K.
| | - Iain M. Grace
- Physics
Department, Lancaster University, Lancaster LA1 4YB, U.K.
| | - Oleg V. Kolosov
- Physics
Department, Lancaster University, Lancaster LA1 4YB, U.K.
| | - Tim Albrecht
- Department
of Chemistry, Birmingham University, Edgbaston, Birmingham B15 2TT, U.K.
| | | | - Nicholas J. Long
- Department
of Chemistry, Imperial College London, MSRH, White City, London W12 0BZ, U.K.
| | - Lesley F. Cohen
- The
Blackett Laboratory, Imperial College London, South Kensington Campus, London SW7 2AZ, U.K.
| | - Colin J. Lambert
- Physics
Department, Lancaster University, Lancaster LA1 4YB, U.K.
| |
Collapse
|
72
|
Yang C, Qin A, Tang BZ, Guo X. Fabrication and functions of graphene-molecule-graphene single-molecule junctions. J Chem Phys 2020; 152:120902. [PMID: 32241145 DOI: 10.1063/1.5144275] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The past two decades have witnessed increasingly rapid advances in the field of single-molecule electronics, which are expected to overcome the limitation of the miniaturization of silicon-based microdevices, thus promoting the development of device manufacturing technologies and characterization means. In addition to this, they can enable us to investigate the intrinsic properties of materials at the atomic- or molecular-length scale and probe new phenomena that are inaccessible in ensemble experiments. In this perspective, we start from a brief introduction on the manufacturing method of graphene-molecule-graphene single-molecule junctions (GMG-SMJs). Then, we make a description on the remarkable functions of GMG-SMJs, especially on the investigation of single-molecule charge transport and dynamics. Finally, we conclude by discussing the main challenges and future research directions of molecular electronics.
Collapse
Affiliation(s)
- Caiyao Yang
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, Center for Aggregation-Induced Emission, South China University of Technology, Guangzhou 510640, China
| | - Anjun Qin
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, Center for Aggregation-Induced Emission, South China University of Technology, Guangzhou 510640, China
| | - Ben Zhong Tang
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, Center for Aggregation-Induced Emission, South China University of Technology, Guangzhou 510640, China
| | - Xuefeng Guo
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
73
|
First principle approach to elucidate transport properties through L-glutamic acid-based molecular devices using symmetrical electrodes. J Mol Model 2020; 26:74. [PMID: 32146585 DOI: 10.1007/s00894-020-4323-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 02/23/2020] [Indexed: 10/24/2022]
Abstract
Protein-based electronics is one of the emerging technology in which inventive electronic devices are being adduced and developed based on the selective actions of specific proteins. The explicit actions can be predicted if the building blocks of proteins (i.e., amino acids) are studied decorously. We emphasize our work on electronic transport properties of L-glutamic acid (i.e., L-amino acid) stringed to gold, silver, and copper electrodes, respectively, to form three distinct devices. For our calculations, we employ NEGF-DFT approach using self-consistent function. Electronic coupling and tunneling barriers between the molecule and the electrodes have been emphasized with an inception of delocalization of molecular orbitals within the device. We observe strong correlation between tunneling barrier and Mulliken charge transfer between molecule and electrodes. The asymmetrical carbon chain (-CH2) within the molecule exhibits negative differential resistance (NDR) and rectification ratio. The device using molecule with copper electrodes exhibits the highest peak to valley current ratio of 1.84. The rectification ratio of the device with gold, silver, and copper electrodes is 2.35, 2.25, and 15.62, respectively, at finite bias. These results yield fresh insight on the potential of L-glutamic acid like bio-molecule in the emerging field of proteotronics.
Collapse
|
74
|
Chen H, Zhang W, Li M, He G, Guo X. Interface Engineering in Organic Field-Effect Transistors: Principles, Applications, and Perspectives. Chem Rev 2020; 120:2879-2949. [PMID: 32078296 DOI: 10.1021/acs.chemrev.9b00532] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Heterogeneous interfaces that are ubiquitous in optoelectronic devices play a key role in the device performance and have led to the prosperity of today's microelectronics. Interface engineering provides an effective and promising approach to enhancing the device performance of organic field-effect transistors (OFETs) and even developing new functions. In fact, researchers from different disciplines have devoted considerable attention to this concept, which has started to evolve from simple improvement of the device performance to sophisticated construction of novel functionalities, indicating great potential for further applications in broad areas ranging from integrated circuits and energy conversion to catalysis and chemical/biological sensors. In this review article, we provide a timely and comprehensive overview of current efficient approaches developed for building various delicate functional interfaces in OFETs, including interfaces within the semiconductor layers, semiconductor/electrode interfaces, semiconductor/dielectric interfaces, and semiconductor/environment interfaces. We also highlight the major contributions and new concepts of integrating molecular functionalities into electrical circuits, which have been neglected in most previous reviews. This review will provide a fundamental understanding of the interplay between the molecular structure, assembly, and emergent functions at the molecular level and consequently offer novel insights into designing a new generation of multifunctional integrated circuits and sensors toward practical applications.
Collapse
Affiliation(s)
- Hongliang Chen
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Weining Zhang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Mingliang Li
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, P. R. China
| | - Gen He
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Xuefeng Guo
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China.,Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, P. R. China.,Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing 100871, P. R. China
| |
Collapse
|
75
|
Jebastin Andrews SG, Benita Jeba Silviya S, Jeyanthi D, Sathya Devi E, Winfred Jebaraj J, Balakrishnan C. Biocompatible alkyne arms containing Schiff base fluorescence indicator for dual detection of CdII and PbII at physiological pH and its application to live cell imaging. Analyst 2020; 145:4576-4586. [DOI: 10.1039/d0an00862a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
An alkyne arms containing salen-type Schiff base ligand L acts as a dual sensor for CdII and PbII with well-separated excitation and emission wavelengths. The ligand L has been utilized in cell imaging studies for both metal ions.
Collapse
Affiliation(s)
| | | | - Dharmaraj Jeyanthi
- Department of Chemistry
- Nazareth Margoschis College at Pillaiyanmanai
- India
| | - E. Sathya Devi
- Department of Chemistry
- Nazareth Margoschis College at Pillaiyanmanai
- India
| | | | | |
Collapse
|
76
|
López-Tocón I, Imbarack E, Soto J, Sanchez-Cortes S, Leyton P, Otero JC. Intramolecular and Metal-to-Molecule Charge Transfer Electronic Resonances in the Surface-Enhanced Raman Scattering of 1,4-Bis(( E)-2-(pyridin-4-yl)vinyl)naphthalene. Molecules 2019; 24:E4622. [PMID: 31861152 PMCID: PMC6943491 DOI: 10.3390/molecules24244622] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 12/10/2019] [Accepted: 12/13/2019] [Indexed: 11/17/2022] Open
Abstract
Electrochemical surface-enhanced Raman scattering (SERS) of the cruciform system 1,4-bis((E)-2-(pyridin-4-yl)vinyl)naphthalene (bpyvn) was recorded on nanostructured silver surfaces at different electrode potentials by using excitation laser lines of 785 and 514.5 nm. SERS relative intensities were analyzed on the basis of the resonance Raman vibronic theory with the help of DFT calculations. The comparison between the experimental and the computed resonance Raman spectra calculated for the first five electronic states of the Ag2-bpyvn surface complex model points out that the selective enhancement of the SERS band recorded at about 1600 cm-1, under 785 nm excitation, is due to a resonant Raman process involving a photoexcited metal-to-molecule charge transfer state of the complex, while the enhancement of the 1570 cm-1 band using 514.5 nm excitation is due to an intramolecular π→π* electronic transition localized in the naphthalenyl framework, resulting in a case of surface-enhanced resonance Raman spectrum (SERRS). Thus, the enhancement of the SERS bands of bpyvn is controlled by a general chemical enhancement mechanism in which different resonance processes of the overall electronic structure of the metal-molecule system are involved.
Collapse
Affiliation(s)
- Isabel López-Tocón
- Andalucía Tech, Unidad Asociada IEM-CSIC, Departamento de Química Física, Facultad de Ciencias, Universidad de Málaga, E-29071 Málaga, Spain;
| | - Elizabeth Imbarack
- Instituto de Química, Pontificia Universidad Católica de Valparaiso, 2373223 Valparaiso, Chile; (E.I.); (P.L.)
| | - Juan Soto
- Andalucía Tech, Unidad Asociada IEM-CSIC, Departamento de Química Física, Facultad de Ciencias, Universidad de Málaga, E-29071 Málaga, Spain;
| | - Santiago Sanchez-Cortes
- Instituto de Estructura de la Materia, Consejo Superior de Investigaciones Científicas, E-28006 Madrid, Spain;
| | - Patricio Leyton
- Instituto de Química, Pontificia Universidad Católica de Valparaiso, 2373223 Valparaiso, Chile; (E.I.); (P.L.)
| | - Juan Carlos Otero
- Andalucía Tech, Unidad Asociada IEM-CSIC, Departamento de Química Física, Facultad de Ciencias, Universidad de Málaga, E-29071 Málaga, Spain;
| |
Collapse
|
77
|
de Sousa JA, Bejarano F, Gutiérrez D, Leroux YR, Nowik-Boltyk EM, Junghoefer T, Giangrisostomi E, Ovsyannikov R, Casu MB, Veciana J, Mas-Torrent M, Fabre B, Rovira C, Crivillers N. Exploiting the versatile alkyne-based chemistry for expanding the applications of a stable triphenylmethyl organic radical on surfaces. Chem Sci 2019; 11:516-524. [PMID: 32190271 PMCID: PMC7067255 DOI: 10.1039/c9sc04499j] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 11/19/2019] [Indexed: 12/11/2022] Open
Abstract
The incorporation of terminal alkynes into the chemical structure of persistent organic perchlorotriphenylmethyl (PTM) radicals provides new chemical tools to expand their potential applications. In this work, this is demonstrated by the chemical functionalization of two types of substrates, hydrogenated SiO2-free silicon (Si-H) and gold, and, by exploiting the click chemistry, scarcely used with organic radicals, to synthesise multifunctional systems. On one hand, the one-step functionalization of Si-H allows a light-triggered capacitance switch to be successfully achieved under electrochemical conditions. On the other hand, the click reaction between the alkyne-terminated PTM radical and a ferrocene azide derivative, used here as a model azide system, leads to a multistate electrochemical switch. The successful post-surface modification makes the self-assembled monolayers reported here an appealing platform to synthesise multifunctional systems grafted on surfaces.
Collapse
Affiliation(s)
- J Alejandro de Sousa
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC) , Networking Research Center on Bioengineering Biomaterials and Nanomedicine (CIBER-BBN) , Campus de la UAB , 08193 Bellaterra , Spain . .,Laboratorio de Electroquímica , Departamento de Química , Facultad de Ciencias , Universidad de los Andes , 5101 Mérida , Venezuela
| | - Francesc Bejarano
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC) , Networking Research Center on Bioengineering Biomaterials and Nanomedicine (CIBER-BBN) , Campus de la UAB , 08193 Bellaterra , Spain .
| | - Diego Gutiérrez
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC) , Networking Research Center on Bioengineering Biomaterials and Nanomedicine (CIBER-BBN) , Campus de la UAB , 08193 Bellaterra , Spain .
| | - Yann R Leroux
- Univ Rennes , CNRS , ISCR (Institut des Sciences Chimiques de Rennes)-UMR 6226 , F-35000 Rennes , France
| | | | - Tobias Junghoefer
- Institute of Physical and Theoretical Chemistry , University of Tübingen , 72076 Tübingen , Germany
| | - Erika Giangrisostomi
- Helmholtz-Zentrum Berlin für Materialien und Energie (HZB) , Albert-Einstein-Str 15 , 12489 Berlin , Germany
| | - Ruslan Ovsyannikov
- Helmholtz-Zentrum Berlin für Materialien und Energie (HZB) , Albert-Einstein-Str 15 , 12489 Berlin , Germany
| | - Maria Benedetta Casu
- Institute of Physical and Theoretical Chemistry , University of Tübingen , 72076 Tübingen , Germany
| | - Jaume Veciana
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC) , Networking Research Center on Bioengineering Biomaterials and Nanomedicine (CIBER-BBN) , Campus de la UAB , 08193 Bellaterra , Spain .
| | - Marta Mas-Torrent
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC) , Networking Research Center on Bioengineering Biomaterials and Nanomedicine (CIBER-BBN) , Campus de la UAB , 08193 Bellaterra , Spain .
| | - Bruno Fabre
- Univ Rennes , CNRS , ISCR (Institut des Sciences Chimiques de Rennes)-UMR 6226 , F-35000 Rennes , France
| | - Concepció Rovira
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC) , Networking Research Center on Bioengineering Biomaterials and Nanomedicine (CIBER-BBN) , Campus de la UAB , 08193 Bellaterra , Spain .
| | - Núria Crivillers
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC) , Networking Research Center on Bioengineering Biomaterials and Nanomedicine (CIBER-BBN) , Campus de la UAB , 08193 Bellaterra , Spain .
| |
Collapse
|
78
|
Peiris CR, Vogel YB, Le Brun AP, Aragonès AC, Coote ML, Díez-Pérez I, Ciampi S, Darwish N. Metal-Single-Molecule-Semiconductor Junctions Formed by a Radical Reaction Bridging Gold and Silicon Electrodes. J Am Chem Soc 2019; 141:14788-14797. [PMID: 31455076 DOI: 10.1021/jacs.9b07125] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Here we report molecular films terminated with diazonium salts moieties at both ends which enables single-molecule contacts between gold and silicon electrodes at open circuit via a radical reaction. We show that the kinetics of film grafting is crystal-facet dependent, being more favorable on ⟨111⟩ than on ⟨100⟩, a finding that adds control over surface chemistry during the device fabrication. The impact of this spontaneous chemistry in single-molecule electronics is demonstrated using STM-break junction approaches by forming metal-single-molecule-semiconductor junctions between silicon and gold source and drain, electrodes. Au-C and Si-C molecule-electrode contacts result in single-molecule wires that are mechanically stable, with an average lifetime at room temperature of 1.1 s, which is 30-400% higher than that reported for conventional molecular junctions formed between gold electrodes using thiol and amine contact groups. The high stability enabled measuring current-voltage properties during the lifetime of the molecular junction. We show that current rectification, which is intrinsic to metal-semiconductor junctions, can be controlled when a single-molecule bridges the gap in the junction. The system changes from being a current rectifier in the absence of a molecular bridge to an ohmic contact when a single molecule is covalently bonded to both silicon and gold electrodes. This study paves the way for the merging of the fields of single-molecule and silicon electronics.
Collapse
Affiliation(s)
- Chandramalika R Peiris
- School of Molecular and Life Sciences, Curtin Institute of Functional molecules and Interfaces , Curtin University , Bentley , Western Australia 6102 , Australia
| | - Yan B Vogel
- School of Molecular and Life Sciences, Curtin Institute of Functional molecules and Interfaces , Curtin University , Bentley , Western Australia 6102 , Australia
| | - Anton P Le Brun
- Australian Centre for Neutron Scattering , Australian Nuclear Science and Technology Organization (ANSTO) , Lucas Heights , New South Wales 2234 , Australia
| | - Albert C Aragonès
- Department of Chemistry, Faculty of Natural & Mathematical Sciences , King's College London , Britannia House, 7 Trinity Street , London SE1 1DB , United Kingdom
| | - Michelle L Coote
- ARC Centre of Excellence for Electromaterials Science, Research School of Chemistry , Australian National University , Canberra , Australian Capital Territory 2601 , Australia
| | - Ismael Díez-Pérez
- Department of Chemistry, Faculty of Natural & Mathematical Sciences , King's College London , Britannia House, 7 Trinity Street , London SE1 1DB , United Kingdom
| | - Simone Ciampi
- School of Molecular and Life Sciences, Curtin Institute of Functional molecules and Interfaces , Curtin University , Bentley , Western Australia 6102 , Australia
| | - Nadim Darwish
- School of Molecular and Life Sciences, Curtin Institute of Functional molecules and Interfaces , Curtin University , Bentley , Western Australia 6102 , Australia
| |
Collapse
|
79
|
Herrer L, Ismael A, Martín S, Milan DC, Serrano JL, Nichols RJ, Lambert C, Cea P. Single molecule vs. large area design of molecular electronic devices incorporating an efficient 2-aminepyridine double anchoring group. NANOSCALE 2019; 11:15871-15880. [PMID: 31414113 DOI: 10.1039/c9nr05662a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
When a molecule is bound to external electrodes by terminal anchor groups, the latter are of paramount importance in determining the electrical conductance of the resulting molecular junction. Here we explore the electrical properties of a molecule with bidentate anchor groups, namely 4,4'-(1,4-phenylenebis(ethyne-2,1-diyl))bis(pyridin-2-amine), in both large area devices and at the single molecule level. We find an electrical conductance of 0.6 × 10-4G0 and 1.2 × 10-4G0 for the monolayer and for the single molecule, respectively. These values are approximately one order of magnitude higher than those reported for monodentate materials having the same molecular skeleton. A combination of theory and experiments is employed to understand the conductance of monolayer and single molecule electrical junctions featuring this new multidentate anchor group. Our results demonstrate that the molecule has a tilt angle of 30° with respect to the normal to the surface in the monolayer, while the break-off length in the single molecule junction occurs for molecules having a tilt angle estimated as 40°, which would account for the difference in their conductance values per molecule. The bidentate 2-aminepyridine anchor is of general interest as a contact group, since this terminal functionalized aromatic ring favours binding of the adsorbate to the metal contact resulting in enhanced conductance values.
Collapse
Affiliation(s)
- L Herrer
- Departamento de Química Física, Facultad de Ciencias, Universidad de Zaragoza, 50009, Zaragoza, Spain. and Instituto de Nanociencia de Aragón (INA) and Laboratorio de Microscopias Avanzadas (LMA), Edificio I+D Campus Río Ebro, Universidad de Zaragoza, C/Mariano Esquillor, s/n, 50018 Zaragoza, Spain.
| | - A Ismael
- Department of Physics, University of Lancaster, Lancaster, LA1 4YB, UK. and Department of Physics, College of Education for Pure Science, Tikrit University, Tikrit, Iraq
| | - S Martín
- Departamento de Química Física, Facultad de Ciencias, Universidad de Zaragoza, 50009, Zaragoza, Spain. and Department of Chemistry, University of Liverpool, Crown Street, Liverpool, L69 7ZD, UK.
| | - D C Milan
- Instituto de Ciencia de Materiales de Aragón (ICMA), Universidad de Zaragoza-CSIC, 50009 Zaragoza, Spain
| | - J L Serrano
- Instituto de Nanociencia de Aragón (INA) and Laboratorio de Microscopias Avanzadas (LMA), Edificio I+D Campus Río Ebro, Universidad de Zaragoza, C/Mariano Esquillor, s/n, 50018 Zaragoza, Spain. and Department of Chemistry, University of Liverpool, Crown Street, Liverpool, L69 7ZD, UK. and Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Zaragoza, 50009, Zaragoza, Spain
| | - R J Nichols
- Department of Chemistry, University of Liverpool, Crown Street, Liverpool, L69 7ZD, UK.
| | - C Lambert
- Department of Physics, University of Lancaster, Lancaster, LA1 4YB, UK.
| | - P Cea
- Departamento de Química Física, Facultad de Ciencias, Universidad de Zaragoza, 50009, Zaragoza, Spain. and Instituto de Nanociencia de Aragón (INA) and Laboratorio de Microscopias Avanzadas (LMA), Edificio I+D Campus Río Ebro, Universidad de Zaragoza, C/Mariano Esquillor, s/n, 50018 Zaragoza, Spain. and Instituto de Ciencia de Materiales de Aragón (ICMA), Universidad de Zaragoza-CSIC, 50009 Zaragoza, Spain
| |
Collapse
|
80
|
Chen Z, Chen L, Liu J, Li R, Tang C, Hua Y, Chen L, Shi J, Yang Y, Liu J, Zheng J, Chen L, Cao J, Chen H, Xia H, Hong W. Modularized Tuning of Charge Transport through Highly Twisted and Localized Single-Molecule Junctions. J Phys Chem Lett 2019; 10:3453-3458. [PMID: 31180223 DOI: 10.1021/acs.jpclett.9b00796] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Although most molecular electronic devices and materials consist of a backbone with a planar structure, twisted molecular wires with reduced inter-ring π-orbital overlap offer a unique opportunity for the modularized fabrication of molecular electronic devices. Herein we investigate the modularized tuning of the charge transport through the localized molecules by designing highly twisted molecules and investigating their single-molecule charge transport using the scanning tunneling microscopy break junction technique. We find that the anthracenediyl-core molecule with a 90° inter-ring twist angle shows an unexpectedly high conductance value, which is five times higher than that of the phenylene-core molecule with a similar configuration, whereas the conductance of the delocalized planar molecule with an anthracenediyl core or a phenylene core is almost the same. Theoretical calculations revealed that highly twisted angles result in weak interactions between molecular building blocks, for which molecule orbitals are separated into localized blocks, which offers the chance for the modularized tuning of every single block. Our findings offer a new strategy for the design of future molecular devices with a localized electronic structure.
Collapse
Affiliation(s)
- Zhixin Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM) , Xiamen University , Xiamen 361005 , China
| | - Lijue Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM) , Xiamen University , Xiamen 361005 , China
| | - Jiangpeng Liu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM) , Xiamen University , Xiamen 361005 , China
| | - Ruihao Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM) , Xiamen University , Xiamen 361005 , China
| | - Chun Tang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM) , Xiamen University , Xiamen 361005 , China
| | - Yuhui Hua
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM) , Xiamen University , Xiamen 361005 , China
| | - Lichuan Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM) , Xiamen University , Xiamen 361005 , China
| | - Jia Shi
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM) , Xiamen University , Xiamen 361005 , China
| | - Yang Yang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM) , Xiamen University , Xiamen 361005 , China
| | - Junyang Liu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM) , Xiamen University , Xiamen 361005 , China
| | - Jueting Zheng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM) , Xiamen University , Xiamen 361005 , China
| | - Lina Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM) , Xiamen University , Xiamen 361005 , China
| | - Jiankang Cao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM) , Xiamen University , Xiamen 361005 , China
| | - Hang Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM) , Xiamen University , Xiamen 361005 , China
| | - Haiping Xia
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM) , Xiamen University , Xiamen 361005 , China
| | - Wenjing Hong
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM) , Xiamen University , Xiamen 361005 , China
| |
Collapse
|
81
|
Herrer L, González-Orive A, Marqués-González S, Martín S, Nichols RJ, Serrano JL, Low PJ, Cea P. Electrically transmissive alkyne-anchored monolayers on gold. NANOSCALE 2019; 11:7976-7985. [PMID: 30968913 DOI: 10.1039/c8nr10464f] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Well-ordered, tightly-packed (surface coverage 0.97 × 10-9 mol cm-2) monolayer films of 1,4-bis((4-ethynylphenyl)ethynyl)benzene (1) on gold are prepared via a simple self-assembly process, taking advantage of the ready formation of alkynyl C-Au σ-bonds. Electrochemical measurements using [Ru(NH3)6]3+, [Fe(CN)6]3-, and ferrocenylmethanol [Fe(η5-C5H4CH2OH)(η5-C5H5)] redox probes indicate that the alkynyl C-Au contacted monolayer of 1 presents a relatively low barrier for electron transfer. This contrasts with monolayer films on gold of other oligo(phenylene ethynylene) derivatives of comparable length and surface coverage, but with different contacting groups. Additionally, a low voltage transition (Vtrans = 0.51 V) from direct tunneling (rectangular barrier) to field emission (triangular barrier) is observed. This low transition voltage points to a low tunneling barrier, which is consistent with the facile electron transport observed through the C-Au contacted self-assembled monolayer of 1.
Collapse
Affiliation(s)
- Lucía Herrer
- Departamento de Química Física, Facultad de Ciencias, Universidad de Zaragoza, 50009, Zaragoza, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
82
|
|
83
|
Yang J, Han X, Bian B. Electronic transport induced by edge modification of graphene electrodes in single molecular device. Theor Chem Acc 2018. [DOI: 10.1007/s00214-018-2382-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
84
|
Baghbanzadeh M, Pieters PF, Yuan L, Collison D, Whitesides GM. The Rate of Charge Tunneling in EGaIn Junctions Is Not Sensitive to Halogen Substituents at the Self-Assembled Monolayer//Ga 2O 3 Interface. ACS NANO 2018; 12:10221-10230. [PMID: 30226988 DOI: 10.1021/acsnano.8b05217] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
This paper describes experiments that are designed to test the influence of terminal groups incorporating carbon-halogen bonds on the current density (by hole tunneling) across self-assembled monolayer (SAM)-based junctions of the form MTS/S(CH2)9NHCOCH nX3- n//Ga2O3/EGaIn (where M = Ag and Au and X = CH3, F, Cl, Br, I). Within the limits of statistical significance, these rates of tunneling are insensitive to the nature of the terminal group at the interface between the SAM and the Ga2O3. The results are relevant to the origin of an apparent inconsistency in the literature concerning the influence of halogen atoms at the SAM//electrode interface on the tunneling current density.
Collapse
Affiliation(s)
- Mostafa Baghbanzadeh
- Department of Chemistry and Chemical Biology , Harvard University , 12 Oxford Street , Cambridge , Massachusetts 02138 , United States
| | - Priscilla F Pieters
- Department of Chemistry and Chemical Biology , Harvard University , 12 Oxford Street , Cambridge , Massachusetts 02138 , United States
- Stratingh Institute for Chemistry , University of Groningen , Nijenborgh 4 , 9747 AG Groningen , The Netherlands
| | - Li Yuan
- Department of Chemistry and Chemical Biology , Harvard University , 12 Oxford Street , Cambridge , Massachusetts 02138 , United States
| | - Darrell Collison
- Department of Chemistry and Chemical Biology , Harvard University , 12 Oxford Street , Cambridge , Massachusetts 02138 , United States
| | - George M Whitesides
- Department of Chemistry and Chemical Biology , Harvard University , 12 Oxford Street , Cambridge , Massachusetts 02138 , United States
- Kavli Institute for Bionano Science and Technology , Harvard University 29 Oxford Street , Cambridge , Massachusetts 02138 , United States
- Wyss Institute of Biologically Inspired Engineering , 60 Oxford Street , Cambridge , Massachusetts 02138 , United States
| |
Collapse
|
85
|
Xin N, Li X, Jia C, Gong Y, Li M, Wang S, Zhang G, Yang J, Guo X. Tuning Charge Transport in Aromatic-Ring Single-Molecule Junctions via Ionic-Liquid Gating. Angew Chem Int Ed Engl 2018; 57:14026-14031. [PMID: 30215882 DOI: 10.1002/anie.201807465] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Indexed: 11/06/2022]
Abstract
Achieving gate control with atomic precision, which is crucial to the transistor performance on the smallest scale, remains a challenge. Herein we report a new class of aromatic-ring molecular nanotransistors based on graphene-molecule-graphene single-molecule junctions by using an ionic-liquid gate. Experimental phenomena and theoretical calculations confirm that this ionic-liquid gate can effectively modulate the alignment between molecular frontier orbitals and the Fermi energy level of graphene electrodes, thus tuning the charge-transport properties of the junctions. In addition, with a small gate voltage (|VG |≤1.5 V) ambipolar charge transport in electrochemically inactive molecular systems (EG >3.5 eV) is realized. These results offer a useful way to build high-performance single-molecule transistors, thus promoting the prospects for molecularly engineered electronic devices.
Collapse
Affiliation(s)
- Na Xin
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| | - Xingxing Li
- Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Chuancheng Jia
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| | - Yao Gong
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| | - Mingliang Li
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| | - Shuopei Wang
- Institute of Physics, Chinese Academy of Science, Beijing, 100190, P. R. China
| | - Guangyu Zhang
- Institute of Physics, Chinese Academy of Science, Beijing, 100190, P. R. China
| | - Jinlong Yang
- Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Xuefeng Guo
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| |
Collapse
|
86
|
Tuning Charge Transport in Aromatic-Ring Single-Molecule Junctions via Ionic-Liquid Gating. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201807465] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
87
|
Freeley M, Attanzio A, Cecconello A, Amoroso G, Clement P, Fernandez G, Gesuele F, Palma M. Tuning the Coupling in Single-Molecule Heterostructures: DNA-Programmed and Reconfigurable Carbon Nanotube-Based Nanohybrids. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2018; 5:1800596. [PMID: 30356926 PMCID: PMC6193148 DOI: 10.1002/advs.201800596] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 06/27/2018] [Indexed: 06/08/2023]
Abstract
Herein a strategy is presented for the assembly of both static and stimuli-responsive single-molecule heterostructures, where the distance and electronic coupling between an individual functional nanomoiety and a carbon nanostructure are tuned via the use of DNA linkers. As proof of concept, the formation of 1:1 nanohybrids is controlled, where single quantum dots (QDs) are tethered to the ends of individual carbon nanotubes (CNTs) in solution with DNA interconnects of different lengths. Photoluminescence investigations-both in solution and at the single-hybrid level-demonstrate the electronic coupling between the two nanostructures; notably this is observed to progressively scale, with charge transfer becoming the dominant process as the linkers length is reduced. Additionally, stimuli-responsive CNT-QD nanohybrids are assembled, where the distance and hence the electronic coupling between an individual CNT and a single QD are dynamically modulated via the addition and removal of potassium (K+) cations; the system is further found to be sensitive to K+ concentrations from 1 pM to 25 × 10-3 m. The level of control demonstrated here in modulating the electronic coupling of reconfigurable single-molecule heterostructures, comprising an individual functional nanomoiety and a carbon nanoelectrode, is of importance for the development of tunable molecular optoelectronic systems and devices.
Collapse
Affiliation(s)
- Mark Freeley
- School of Biological and Chemical SciencesMaterials Research Instituteand Institute of BioengineeringQueen Mary University of LondonMile End RoadLondonE1 4NSUK
| | - Antonio Attanzio
- School of Biological and Chemical SciencesMaterials Research Instituteand Institute of BioengineeringQueen Mary University of LondonMile End RoadLondonE1 4NSUK
| | - Alessandro Cecconello
- School of Biological and Chemical SciencesMaterials Research Instituteand Institute of BioengineeringQueen Mary University of LondonMile End RoadLondonE1 4NSUK
| | - Giuseppe Amoroso
- School of Biological and Chemical SciencesMaterials Research Instituteand Institute of BioengineeringQueen Mary University of LondonMile End RoadLondonE1 4NSUK
- Organisch‐Chemisches InstitutWestfälische Wilhelms‐Universität MünsterCorrensstrasse 4048149MünsterGermany
| | - Pierrick Clement
- School of Biological and Chemical SciencesMaterials Research Instituteand Institute of BioengineeringQueen Mary University of LondonMile End RoadLondonE1 4NSUK
| | - Gustavo Fernandez
- Organisch‐Chemisches InstitutWestfälische Wilhelms‐Universität MünsterCorrensstrasse 4048149MünsterGermany
| | - Felice Gesuele
- Department of PhysicsUniversity of Naples “Federico II”Via Cintia, 26 Ed. 680126NapoliItaly
| | - Matteo Palma
- School of Biological and Chemical SciencesMaterials Research Instituteand Institute of BioengineeringQueen Mary University of LondonMile End RoadLondonE1 4NSUK
| |
Collapse
|
88
|
|
89
|
Laurans M, Dalla Francesca K, Volatron F, Izzet G, Guerin D, Vuillaume D, Lenfant S, Proust A. Molecular signature of polyoxometalates in electron transport of silicon-based molecular junctions. NANOSCALE 2018; 10:17156-17165. [PMID: 30187072 DOI: 10.1039/c8nr04946g] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Polyoxometalates (POMs) are unconventional electro-active molecules with a great potential for applications in molecular memories, providing efficient processing steps onto electrodes are available. The synthesis of the organic-inorganic polyoxometalate hybrids [PM11O39{Sn(C6H4)C[triple bond, length as m-dash]C(C6H4)N2}]3- (M = Mo, W) endowed with a remote diazonium function is reported together with their covalent immobilization onto hydrogenated n-Si(100) substrates. Electron transport measurements through the resulting densely-packed monolayers contacted with a mercury drop as a top electrode confirms their homogeneity. Adjustment of the current-voltage curves with the Simmon's equation gives a mean tunnel energy barrier ΦPOM of 1.8 eV and 1.6 eV, for the Silicon-Molecules-Metal (SMM) junctions based on the polyoxotungstates (M = W) and polyoxomolybdates (M = Mo), respectively. This follows the trend observed in the electrochemical properties of POMs in solution, the polyoxomolybdates being easier to reduce than the polyoxotungstates, in agreement with lowest unoccupied molecular orbitals (LUMOs) of lower energy. The molecular signature of the POMs is thus clearly identifiable in the solid-state electrical properties and the unmatched diversity of POM molecular and electronic structures should offer a great modularity.
Collapse
Affiliation(s)
- Maxime Laurans
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, IPCM, 4 Place Jussieu, F-75005 Paris, France.
| | | | | | | | | | | | | | | |
Collapse
|
90
|
Herrer IL, Ismael AK, Milán DC, Vezzoli A, Martín S, González-Orive A, Grace I, Lambert C, Serrano JL, Nichols RJ, Cea P. Unconventional Single-Molecule Conductance Behavior for a New Heterocyclic Anchoring Group: Pyrazolyl. J Phys Chem Lett 2018; 9:5364-5372. [PMID: 30160491 DOI: 10.1021/acs.jpclett.8b02051] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Electrical conductance across a molecular junction is strongly determined by the anchoring group of the molecule. Here we highlight the unusual behavior of 1,4-bis(1H-pyrazol-4-ylethynyl)benzene that exhibits unconventional junction current versus junction-stretching distance curves, which are peak-shaped and feature two conducting states of 2.3 × 10-4 G0 and 3.4 × 10-4 G0. A combination of theory and experiments is used to understand the conductance of single-molecule junctions featuring this new anchoring group, i.e., pyrazolyl. These results demonstrate that the pyrazolyl moiety changes its protonation state and contact binding during junction evolution and that it also binds in either end-on or facial geometries with gold contacts. The pyrazolyl moiety holds general interest as a contacting group, because this linkage leads to a strong double anchoring of the molecule to the gold electrode, resulting in enhanced conductance values.
Collapse
Affiliation(s)
- I Lucia Herrer
- Departamento de Química Física, Facultad de Ciencias , Universidad de Zaragoza , 50009 Zaragoza , Spain
- Instituto de Nanociencia de Aragón (INA) and Laboratorio de Microscopias Avanzadas (LMA), edificio i+d Campus Río Ebro , Universidad de Zaragoza , C/Mariano Esquillor, s/n , 50018 Zaragoza , Spain
| | - Ali K Ismael
- Department of Physics , University of Lancaster , Lancaster LA1 4YB , United Kingdom
- Department of Physics, College of Education for Pure Science , Tikrit University , Tikrit , Iraq
| | - David C Milán
- Department of Chemistry , University of Liverpool , Crown Street , Liverpool L69 7ZD , United Kingdom
| | - Andrea Vezzoli
- Department of Chemistry , University of Liverpool , Crown Street , Liverpool L69 7ZD , United Kingdom
| | - Santiago Martín
- Departamento de Química Física, Facultad de Ciencias , Universidad de Zaragoza , 50009 Zaragoza , Spain
- Instituto de Ciencias de Materiales de Aragón (ICMA) , Universidad de Zaragoza-CSIC , 50009 Zaragoza , Spain
| | - Alejandro González-Orive
- Technical and Macromolecular Chemistry , University of Paderborn , Warburger Straße 100 , 33098 Paderborn , Germany
| | - Iain Grace
- Department of Physics , University of Lancaster , Lancaster LA1 4YB , United Kingdom
| | - Colin Lambert
- Department of Physics , University of Lancaster , Lancaster LA1 4YB , United Kingdom
| | - José L Serrano
- Departamento de Química Física, Facultad de Ciencias , Universidad de Zaragoza , 50009 Zaragoza , Spain
- Instituto de Nanociencia de Aragón (INA) and Laboratorio de Microscopias Avanzadas (LMA), edificio i+d Campus Río Ebro , Universidad de Zaragoza , C/Mariano Esquillor, s/n , 50018 Zaragoza , Spain
| | - Richard J Nichols
- Department of Chemistry , University of Liverpool , Crown Street , Liverpool L69 7ZD , United Kingdom
| | - Pilar Cea
- Departamento de Química Física, Facultad de Ciencias , Universidad de Zaragoza , 50009 Zaragoza , Spain
- Instituto de Nanociencia de Aragón (INA) and Laboratorio de Microscopias Avanzadas (LMA), edificio i+d Campus Río Ebro , Universidad de Zaragoza , C/Mariano Esquillor, s/n , 50018 Zaragoza , Spain
| |
Collapse
|
91
|
Derr JB, Tamayo J, Espinoza EM, Clark JA, Vullev VI. Dipole-induced effects on charge transfer and charge transport. Why do molecular electrets matter? CAN J CHEM 2018. [DOI: 10.1139/cjc-2017-0389] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Charge transfer (CT) and charge transport (CTr) are at the core of life-sustaining biological processes and of processes that govern the performance of electronic and energy-conversion devices. Electric fields are invaluable for guiding charge movement. Therefore, as electrostatic analogues of magnets, electrets have unexplored potential for generating local electric fields for accelerating desired CT processes and suppressing undesired ones. The notion about dipole-generated local fields affecting CT has evolved since the middle of the 20th century. In the 1990s, the first reports demonstrating the dipole effects on the kinetics of long-range electron transfer appeared. Concurrently, the development of molecular-level designs of electric junctions has led the exploration of dipole effects on CTr. Biomimetic molecular electrets such as polypeptide helices are often the dipole sources in CT systems. Conversely, surface-charge electrets and self-assembled monolayers of small polar conjugates are the preferred sources for modifying interfacial electric fields for controlling CTr. The multifaceted complexity of such effects on CT and CTr testifies for the challenges and the wealth of this field that still remains largely unexplored. This review outlines the basic concepts about dipole effects on CT and CTr, discusses their evolution, and provides accounts for their future developments and impacts.
Collapse
Affiliation(s)
- James B. Derr
- Department of Biochemistry, University of California, Riverside, CA 92521, USA
| | - Jesse Tamayo
- Department of Chemistry, University of California, Riverside, CA 92521, USA
| | - Eli M. Espinoza
- Department of Chemistry, University of California, Riverside, CA 92521, USA
| | - John A. Clark
- Department of Bioengineering, University of California, Riverside, CA 92521, USA
| | - Valentine I. Vullev
- Department of Biochemistry, University of California, Riverside, CA 92521, USA
- Department of Chemistry, University of California, Riverside, CA 92521, USA
- Department of Bioengineering, University of California, Riverside, CA 92521, USA
- Materials Science and Engineering Program, University of California, Riverside, CA 92521, USA
| |
Collapse
|
92
|
Zheng J, Liu J, Zhuo Y, Li R, Jin X, Yang Y, Chen ZB, Shi J, Xiao Z, Hong W, Tian ZQ. Electrical and SERS detection of disulfide-mediated dimerization in single-molecule benzene-1,4-dithiol junctions. Chem Sci 2018; 9:5033-5038. [PMID: 29938032 PMCID: PMC5994741 DOI: 10.1039/c8sc00727f] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 04/30/2018] [Indexed: 01/21/2023] Open
Abstract
Electrical and in situ SERS characterization of the benzene-1,4-dithiol (BDT) junction suggested that dimerization of BDT contributed to the low conductance.
We applied a combination of mechanically controllable break junction (MCBJ) and in situ surface enhanced Raman spectroscopy (SERS) methods to investigate the long-standing single-molecule conductance discrepancy of prototypical benzene-1,4-dithiol (BDT) junctions. Single-molecule conductance characterization, together with configuration analysis of the molecular junction, suggested that disulfide-mediated dimerization of BDT contributed to the low conductance feature, which was further verified by the detection of S–S bond formation through in situ SERS characterization. Control experiments demonstrated that the disulfide-mediated dimerization could be tuned via the chemical inhibitor. Our findings suggest that a combined electrical and SERS method is capable of probing chemical reactions at the single-molecule level.
Collapse
Affiliation(s)
- Jueting Zheng
- State Key Laboratory of Physical Chemistry of Solid Surfaces , College of Chemistry and Chemical Engineering , Pen-Tung Sah Institute of Micro-Nano Science and Technology , Graphene Industry and Engineering Research Institute , iChEM , Xiamen University , Xiamen 361005 , China . ;
| | - Junyang Liu
- State Key Laboratory of Physical Chemistry of Solid Surfaces , College of Chemistry and Chemical Engineering , Pen-Tung Sah Institute of Micro-Nano Science and Technology , Graphene Industry and Engineering Research Institute , iChEM , Xiamen University , Xiamen 361005 , China . ;
| | - Yijing Zhuo
- State Key Laboratory of Physical Chemistry of Solid Surfaces , College of Chemistry and Chemical Engineering , Pen-Tung Sah Institute of Micro-Nano Science and Technology , Graphene Industry and Engineering Research Institute , iChEM , Xiamen University , Xiamen 361005 , China . ;
| | - Ruihao Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces , College of Chemistry and Chemical Engineering , Pen-Tung Sah Institute of Micro-Nano Science and Technology , Graphene Industry and Engineering Research Institute , iChEM , Xiamen University , Xiamen 361005 , China . ;
| | - Xi Jin
- State Key Laboratory of Physical Chemistry of Solid Surfaces , College of Chemistry and Chemical Engineering , Pen-Tung Sah Institute of Micro-Nano Science and Technology , Graphene Industry and Engineering Research Institute , iChEM , Xiamen University , Xiamen 361005 , China . ;
| | - Yang Yang
- State Key Laboratory of Physical Chemistry of Solid Surfaces , College of Chemistry and Chemical Engineering , Pen-Tung Sah Institute of Micro-Nano Science and Technology , Graphene Industry and Engineering Research Institute , iChEM , Xiamen University , Xiamen 361005 , China . ;
| | - Zhao-Bin Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces , College of Chemistry and Chemical Engineering , Pen-Tung Sah Institute of Micro-Nano Science and Technology , Graphene Industry and Engineering Research Institute , iChEM , Xiamen University , Xiamen 361005 , China . ;
| | - Jia Shi
- State Key Laboratory of Physical Chemistry of Solid Surfaces , College of Chemistry and Chemical Engineering , Pen-Tung Sah Institute of Micro-Nano Science and Technology , Graphene Industry and Engineering Research Institute , iChEM , Xiamen University , Xiamen 361005 , China . ;
| | - Zongyuan Xiao
- State Key Laboratory of Physical Chemistry of Solid Surfaces , College of Chemistry and Chemical Engineering , Pen-Tung Sah Institute of Micro-Nano Science and Technology , Graphene Industry and Engineering Research Institute , iChEM , Xiamen University , Xiamen 361005 , China . ;
| | - Wenjing Hong
- State Key Laboratory of Physical Chemistry of Solid Surfaces , College of Chemistry and Chemical Engineering , Pen-Tung Sah Institute of Micro-Nano Science and Technology , Graphene Industry and Engineering Research Institute , iChEM , Xiamen University , Xiamen 361005 , China . ;
| | - Zhong-Qun Tian
- State Key Laboratory of Physical Chemistry of Solid Surfaces , College of Chemistry and Chemical Engineering , Pen-Tung Sah Institute of Micro-Nano Science and Technology , Graphene Industry and Engineering Research Institute , iChEM , Xiamen University , Xiamen 361005 , China . ;
| |
Collapse
|
93
|
Bu D, Xiong Y, Tan YN, Meng M, Low PJ, Kuang DB, Liu CY. Understanding the charge transport properties of redox active metal-organic conjugated wires. Chem Sci 2018; 9:3438-3450. [PMID: 29780473 PMCID: PMC5934749 DOI: 10.1039/c7sc04727d] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 02/16/2018] [Indexed: 11/28/2022] Open
Abstract
For Rh2-organic molecular wires, we found that weaker coupling systems built using longer bridging ligands exhibit better electrical conductance.
Layer-by-layer assembly of the dirhodium complex [Rh2(O2CCH3)4] (Rh2) with linear N,N′-bidentate ligands pyrazine (LS) or 1,2-bis(4-pyridyl)ethene (LL) on a gold substrate has developed two series of redox active molecular wires, (Rh2LS)n@Au and (Rh2LL)n@Au (n = 1–6). By controlling the number of assembling cycles, the molecular wires in the two series vary systematically in length, as characterized by UV-vis spectroscopy, cyclic voltammetry and atomic force microscopy. The current–voltage characteristics recorded by conductive probe atomic force microscopy indicate a mechanistic transition for charge transport from voltage-driven to electrical field-driven in wires with n = 4, irrespective of the nature and length of the wires. Whilst weak length dependence of electrical resistance is observed for both series, (Rh2LL)n@Au wires exhibit smaller distance attenuation factors (β) in both the tunneling (β = 0.044 Å–1) and hopping (β = 0.003 Å–1) regimes, although in (Rh2LS)n@Au the electronic coupling between the adjacent Rh2 centers is stronger. DFT calculations reveal that these wires have a π-conjugated molecular backbone established through π(Rh2)–π(L) orbital interactions, and (Rh2LL)n@Au has a smaller energy gap between the filled π*(Rh2) and the empty π*(L) orbitals. Thus, for (Rh2LL)n@Au, electron hopping across the bridge is facilitated by the decreased metal to ligand charge transfer gap, while in (Rh2LS)n@Au the hopping pathway is disfavored likely due to the increased Coulomb repulsion. On this basis, we propose that the super-exchange tunneling and the underlying incoherent hopping are the dominant charge transport mechanisms for shorter (n ≤ 4) and longer (n > 4) wires, respectively, and the Rh2L subunits in mixed-valence states alternately arranged along the wire serve as the hopping sites.
Collapse
Affiliation(s)
- Donglei Bu
- Department of Chemistry , Jinan University , 601 Huang-Pu Avenue West , Guangzhou 510632 , China .
| | - Yingqi Xiong
- Department of Chemistry , Jinan University , 601 Huang-Pu Avenue West , Guangzhou 510632 , China .
| | - Ying Ning Tan
- Department of Chemistry , Jinan University , 601 Huang-Pu Avenue West , Guangzhou 510632 , China .
| | - Miao Meng
- Department of Chemistry , Jinan University , 601 Huang-Pu Avenue West , Guangzhou 510632 , China .
| | - Paul J Low
- School of Molecular Sciences , University of Western Australia , 35 Stirling Highway , Crawley , 6009 , WA , Australia
| | - Dai-Bin Kuang
- School of Chemistry , SunYat-sen University , Guangzhou 510275 , P. R. China
| | - Chun Y Liu
- Department of Chemistry , Jinan University , 601 Huang-Pu Avenue West , Guangzhou 510632 , China .
| |
Collapse
|
94
|
Sangtarash S, Vezzoli A, Sadeghi H, Ferri N, O'Brien HM, Grace I, Bouffier L, Higgins SJ, Nichols RJ, Lambert CJ. Gateway state-mediated, long-range tunnelling in molecular wires. NANOSCALE 2018; 10:3060-3067. [PMID: 29376529 DOI: 10.1039/c7nr07243k] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
If the factors controlling the decay in single-molecule electrical conductance G with molecular length L could be understood and controlled, then this would be a significant step forward in the design of high-conductance molecular wires. For a wide variety of molecules conducting by phase coherent tunnelling, conductance G decays with length following the relationship G = Ae-βL. It is widely accepted that the attenuation coefficient β is determined by the position of the Fermi energy of the electrodes relative to the energy of frontier orbitals of the molecular bridge, whereas the terminal anchor groups which bind to the molecule to the electrodes contribute to the pre-exponential factor A. We examine this premise for several series of molecules which contain a central conjugated moiety (phenyl, viologen or α-terthiophene) connected on either side to alkane chains of varying length, with each end terminated by thiol or thiomethyl anchor groups. In contrast with this expectation, we demonstrate both experimentally and theoretically that additional electronic states located on thiol anchor groups can significantly decrease the value of β, by giving rise to resonances close to EF through coupling to the bridge moiety. This interplay between the gateway states and their coupling to a central conjugated moiety in the molecular bridges creates a new design strategy for realising higher-transmission molecular wires by taking advantage of the electrode-molecule interface properties.
Collapse
Affiliation(s)
- Sara Sangtarash
- Quantum Technology Centre, Physics Department, Lancaster University, Lancaster LA1 4YB, UK.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
95
|
Wang K. DNA-Based Single-Molecule Electronics: From Concept to Function. J Funct Biomater 2018; 9:jfb9010008. [PMID: 29342091 PMCID: PMC5872094 DOI: 10.3390/jfb9010008] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 01/11/2018] [Accepted: 01/15/2018] [Indexed: 12/15/2022] Open
Abstract
Beyond being the repository of genetic information, DNA is playing an increasingly important role as a building block for molecular electronics. Its inherent structural and molecular recognition properties render it a leading candidate for molecular electronics applications. The structural stability, diversity and programmability of DNA provide overwhelming freedom for the design and fabrication of molecular-scale devices. In the past two decades DNA has therefore attracted inordinate amounts of attention in molecular electronics. This review gives a brief survey of recent experimental progress in DNA-based single-molecule electronics with special focus on single-molecule conductance and I–V characteristics of individual DNA molecules. Existing challenges and exciting future opportunities are also discussed.
Collapse
Affiliation(s)
- Kun Wang
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
96
|
Chen J, Giroux TJ, Nguyen Y, Kadoma AA, Chang BS, VanVeller B, Thuo MM. Understanding interface (odd–even) effects in charge tunneling using a polished EGaIn electrode. Phys Chem Chem Phys 2018; 20:4864-4878. [DOI: 10.1039/c7cp07531f] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Charge transport across large area molecular tunneling junctions is widely studied due to its potential in the development of quantum electronic devices.
Collapse
Affiliation(s)
- Jiahao Chen
- Department of Materials Science and Engineering
- Iowa State University
- Ames
- USA
| | - Thomas J. Giroux
- Department of Mechanical Engineering
- Iowa State University
- Ames
- USA
| | - Yen Nguyen
- Department of Chemistry
- Iowa State University
- Ames
- USA
| | - Atte A. Kadoma
- Department of Materials Science and Engineering
- Iowa State University
- Ames
- USA
| | - Boyce S. Chang
- Department of Materials Science and Engineering
- Iowa State University
- Ames
- USA
| | | | - Martin M. Thuo
- Department of Materials Science and Engineering
- Iowa State University
- Ames
- USA
| |
Collapse
|
97
|
Jang Y, Kwon SJ, Shin J, Jeong H, Hwang WT, Kim J, Koo J, Ko TY, Ryu S, Wang G, Lee TW, Lee T. Interface-Engineered Charge-Transport Properties in Benzenedithiol Molecular Electronic Junctions via Chemically p-Doped Graphene Electrodes. ACS APPLIED MATERIALS & INTERFACES 2017; 9:42043-42049. [PMID: 29130304 DOI: 10.1021/acsami.7b13156] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In this study, we fabricated and characterized vertical molecular junctions consisting of self-assembled monolayers of benzenedithiol (BDT) with a p-doped multilayer graphene electrode. The p-type doping of a graphene film was performed by treating pristine graphene (work function of ∼4.40 eV) with trifluoromethanesulfonic (TFMS) acid, producing a significantly increased work function (∼5.23 eV). The p-doped graphene-electrode molecular junctions statistically showed an order of magnitude higher current density and a lower charge injection barrier height than those of the pristine graphene-electrode molecular junctions, as a result of interface engineering. This enhancement is due to the increased work function of the TFMS-treated p-doped graphene electrode in the highest occupied molecular orbital-mediated tunneling molecular junctions. The validity of these results was proven by a theoretical analysis based on a coherent transport model that considers asymmetric couplings at the electrode-molecule interfaces.
Collapse
Affiliation(s)
| | - Sung-Joo Kwon
- Department of Materials Science and Engineering, Pohang University of Science and Technology , Pohang, Gyeongbuk 37673, Korea
| | - Jaeho Shin
- KU-KIST Graduate School of Converging Science and Technology, Korea University , Seoul 02841, Korea
| | | | | | | | | | - Taeg Yeoung Ko
- Department of Chemistry, Pohang University of Science and Technology , Pohang, Gyeongbuk 37673, Korea
| | - Sunmin Ryu
- Department of Chemistry, Pohang University of Science and Technology , Pohang, Gyeongbuk 37673, Korea
| | - Gunuk Wang
- KU-KIST Graduate School of Converging Science and Technology, Korea University , Seoul 02841, Korea
| | | | | |
Collapse
|
98
|
Towards Rectifying Performance at the Molecular Scale. Top Curr Chem (Cham) 2017; 375:85. [DOI: 10.1007/s41061-017-0170-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 09/22/2017] [Indexed: 01/09/2023]
|
99
|
Chen S, Zhou W, Zhang Q, Kwok Y, Chen G, Ratner MA. Can Molecular Quantum Interference Effect Transistors Survive Vibration? J Phys Chem Lett 2017; 8:5166-5170. [PMID: 28974091 DOI: 10.1021/acs.jpclett.7b02214] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Quantum interference in cross-conjugated molecules can be utilized to construct molecular quantum interference effect transistors. However, whether its application can be achieved depends on the survivability of the quantum interference under real conditions such as nuclear vibration. We use two simulation methods to investigate the effects of nuclear vibration on quantum interference in a meta-linked benzene system. The simulation results suggest that the quantum interference is robust against nuclear vibration not only in the steady state but also in its transient dynamics, and thus the molecular quantum interference effect transistors can be realized.
Collapse
Affiliation(s)
- Shuguang Chen
- Department of Chemistry, The University of Hong Kong , Pokfulam Road, Hong Kong
| | - WeiJun Zhou
- Department of Chemistry, The University of Hong Kong , Pokfulam Road, Hong Kong
| | - Qing Zhang
- Department of Chemistry, The University of Hong Kong , Pokfulam Road, Hong Kong
| | - YanHo Kwok
- Department of Chemistry, The University of Hong Kong , Pokfulam Road, Hong Kong
| | - GuanHua Chen
- Department of Chemistry, The University of Hong Kong , Pokfulam Road, Hong Kong
| | - Mark A Ratner
- Department of Chemistry, Northwestern University , Evanston Illinois 60208, United States
| |
Collapse
|
100
|
Herrer L, Sebastian V, Martín S, González-Orive A, Pérez-Murano F, Low PJ, Serrano JL, Santamaría J, Cea P. High surface coverage of a self-assembled monolayer by in situ synthesis of palladium nanodeposits. NANOSCALE 2017; 9:13281-13290. [PMID: 28858363 DOI: 10.1039/c7nr03365f] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Nascent metal|monolayer|metal devices have been fabricated by depositing palladium, produced through a CO-confined growth method, onto a self-assembled monolayer of an amine-terminated oligo(phenylene ethynylene) derivative on a gold bottom electrode. The high surface area coverage (85%) of the organic monolayer by densely packed palladium particles was confirmed by X-ray photoemission spectroscopy (XPS) and atomic force microscopy (AFM). The electrical properties of these nascent Au|monolayer|Pd assemblies were determined from the I-V curves recorded with a conductive-AFM using the Peak Force Tunneling AFM (PF-TUNA™) mode. The I-V curves together with the electrochemical experiments performed rule out the formation of short-circuits due to palladium penetration through the monolayer, suggesting that the palladium deposition strategy is an effective method for the fabrication of molecular junctions without damaging the organic layer.
Collapse
Affiliation(s)
- Lucía Herrer
- Instituto de Nanociencia de Aragón (INA), Campus Río Ebro, Universidad de Zaragoza, C/Mariano Esquillor, s/n, 50018 Zaragoza, Spain. and Laboratorio de Microscopias Avanzadas (LMA), Campus Río Ebro, Universidad de Zaragoza, C/Mariano Esquilor, s/n, 50018 Zaragoza, Spain and Departamento de Química Física, Facultad de Ciencias, Universidad de Zaragoza, 50009, Zaragoza, Spain
| | - Victor Sebastian
- Instituto de Nanociencia de Aragón (INA), Campus Río Ebro, Universidad de Zaragoza, C/Mariano Esquillor, s/n, 50018 Zaragoza, Spain. and Networking Biomedical Research Center of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), C/ Monforte de Lemos 3-5, Pabellón 11, 28029 Madrid, Spain and Departamento de Ingeniería Química y Tecnología del Medio Ambiente, Universidad de Zaragoza, C/Mariano Esquilor, s/n, 50018 Zaragoza, Spain
| | - Santiago Martín
- Departamento de Química Física, Facultad de Ciencias, Universidad de Zaragoza, 50009, Zaragoza, Spain and Instituto de Ciencia de Materiales de Aragón (ICMA), Universidad de Zaragoza-CSIC, 50009 Zaragoza, Spain
| | - Alejandro González-Orive
- Instituto de Nanociencia de Aragón (INA), Campus Río Ebro, Universidad de Zaragoza, C/Mariano Esquillor, s/n, 50018 Zaragoza, Spain. and Laboratorio de Microscopias Avanzadas (LMA), Campus Río Ebro, Universidad de Zaragoza, C/Mariano Esquilor, s/n, 50018 Zaragoza, Spain and Departamento de Química Física, Facultad de Ciencias, Universidad de Zaragoza, 50009, Zaragoza, Spain
| | - Francesc Pérez-Murano
- Instituto de Microelectrónica de Barcelona (IMB-CNM, CSIC), Campus UAB, 08193 Bellaterra, Spain
| | - Paul J Low
- School of Molecular Sciences, University of Western Australia, 35 Stirling Highway, Crawley, Perth 6009, Australia
| | - José Luis Serrano
- Instituto de Nanociencia de Aragón (INA), Campus Río Ebro, Universidad de Zaragoza, C/Mariano Esquillor, s/n, 50018 Zaragoza, Spain. and Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Zaragoza, 50009, Zaragoza, Spain
| | - Jesús Santamaría
- Instituto de Nanociencia de Aragón (INA), Campus Río Ebro, Universidad de Zaragoza, C/Mariano Esquillor, s/n, 50018 Zaragoza, Spain. and Networking Biomedical Research Center of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), C/ Monforte de Lemos 3-5, Pabellón 11, 28029 Madrid, Spain and Departamento de Ingeniería Química y Tecnología del Medio Ambiente, Universidad de Zaragoza, C/Mariano Esquilor, s/n, 50018 Zaragoza, Spain
| | - Pilar Cea
- Instituto de Nanociencia de Aragón (INA), Campus Río Ebro, Universidad de Zaragoza, C/Mariano Esquillor, s/n, 50018 Zaragoza, Spain. and Laboratorio de Microscopias Avanzadas (LMA), Campus Río Ebro, Universidad de Zaragoza, C/Mariano Esquilor, s/n, 50018 Zaragoza, Spain and Departamento de Química Física, Facultad de Ciencias, Universidad de Zaragoza, 50009, Zaragoza, Spain
| |
Collapse
|