51
|
Cassedy A, Mullins E, O'Kennedy R. Sowing seeds for the future: The need for on-site plant diagnostics. Biotechnol Adv 2020; 39:107358. [DOI: 10.1016/j.biotechadv.2019.02.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 01/28/2019] [Accepted: 02/21/2019] [Indexed: 01/09/2023]
|
52
|
Arumugam S, Colburn DAM, Sia SK. Biosensors for Personal Mobile Health: A System Architecture Perspective. ADVANCED MATERIALS TECHNOLOGIES 2020; 5:1900720. [PMID: 33043127 PMCID: PMC7546526 DOI: 10.1002/admt.201900720] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Indexed: 05/29/2023]
Abstract
Advances in mobile biosensors, integrating developments in materials science and instrumentation, are fueling an expansion in health data being collected and analyzed in decentralized settings. For example, semiconductor-based sensors are enabling measurement of vital signs, and microfluidic-based sensors are enabling measurement of biochemical markers. As biosensors for mobile health are becoming increasingly paired with smart devices, it will become critical for researchers to design biosensors - with appropriate functionalities and specifications - to work seamlessly with accompanying connected hardware and software. This article describes recent research in biosensors, as well as current mobile health devices in use, as classified into four distinct system architectures that take into account the biosensing and data processing functions required in personal mobile health devices. We also discuss the path forward for integrating biosensors into smartphone-based mobile health devices.
Collapse
Affiliation(s)
- Siddarth Arumugam
- Department of Biomedical Engineering, Columbia University, 10027 New York, United States
| | - David A M Colburn
- Department of Biomedical Engineering, Columbia University, 10027 New York, United States
| | - Samuel K Sia
- Department of Biomedical Engineering, Columbia University, 10027 New York, United States
| |
Collapse
|
53
|
Muñoz HE, Riche CT, Kong JE, van Zee M, Garner OB, Ozcan A, Di Carlo D. Fractal LAMP: Label-Free Analysis of Fractal Precipitate for Digital Loop-Mediated Isothermal Nucleic Acid Amplification. ACS Sens 2020; 5:385-394. [PMID: 31902202 DOI: 10.1021/acssensors.9b01974] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Nucleic acid amplification assays including loop-mediated isothermal amplification (LAMP) are routinely used in diagnosing diseases and monitoring water and food quality. The results of amplification in these assays are commonly measured with an analog fluorescence readout, which requires specialized optical equipment and can lack quantitative precision. Digital analysis of amplification in small fluid compartments based on exceeding a threshold fluorescence level can enhance the quantitative precision of nucleic acid assays (i.e., digital nucleic acid amplification assays), but still requires specialized optical systems for fluorescence readout and the inclusion of a fluorescent dye. Here, we report Fractal LAMP, an automated method to detect amplified DNA in subnanoliter scale droplets following LAMP in a label-free manner. Our computer vision algorithm achieves high accuracy detecting DNA amplification in droplets by identifying LAMP byproducts that form fractal structures observable in brightfield microscopy. The capabilities of Fractal LAMP are further realized by developing a Bayesian model to estimate DNA concentrations for unknown samples and a bootstrapping method to estimate the number of droplets required to achieve target limits of detection. This digital, label-free assay has the potential to lower reagent and reader cost for nucleic acid measurement while maintaining high quantitative accuracy over 3 orders of magnitude of concentration.
Collapse
Affiliation(s)
- Hector E. Muñoz
- Department of Bioengineering, University of California, Los Angeles, California 90095, United States
| | - Carson T. Riche
- Department of Bioengineering, University of California, Los Angeles, California 90095, United States
| | - Janay E. Kong
- Department of Bioengineering, University of California, Los Angeles, California 90095, United States
| | - Mark van Zee
- Department of Bioengineering, University of California, Los Angeles, California 90095, United States
| | - Omai B. Garner
- Department of Pathology & Laboratory Medicine, University of California, Los Angeles, California 90095, United States
| | - Aydogan Ozcan
- Department of Bioengineering, University of California, Los Angeles, California 90095, United States
- Department of Electrical and Computer Engineering, University of California, Los Angeles, California 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, California 90095, United States
| | - Dino Di Carlo
- Department of Bioengineering, University of California, Los Angeles, California 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, California 90095, United States
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, California 90095, United States
| |
Collapse
|
54
|
Hood RL, Rubinsky B. Special Issue: Medical Devices for Economically Disadvantaged People and Populations: Perspective Problems and Prospective Solutions. J Med Device 2020. [DOI: 10.1115/1.4046008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- R. Lyle Hood
- Department of Mechanical Engineering, University of Texas at San Antonio, San Antonio, TX 78249; Graduate Program in Biomedical Engineering, University of Texas at San Antonio and UT Health San Antonio, San Antonio, TX 78229
| | - Boris Rubinsky
- Department of Mechanical Engineering, University of California, Berkeley, CA 94720
| |
Collapse
|
55
|
Smartphone-integrated urinary CTX-II immunosensor based on wavelength filtering from chromogenic reaction. Biosens Bioelectron 2019; 150:111932. [PMID: 31791877 DOI: 10.1016/j.bios.2019.111932] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 11/25/2019] [Accepted: 11/26/2019] [Indexed: 11/22/2022]
Abstract
The integration of smart IT devices and biochemical assays with optical biosensing technology facilitates the development of efficacious optical biosensors for many practical diagnostic fields, owing to their minimized use of high-technical electronic components and simple operation. Herein, we introduced a simple optical biosensing system based on the specific wavelength filtering principle and count-based analysis method. The developed system uses a smartphone with a paper-based signal guide and a biosensing channel. The paper-based signal guide was prepared by printing red patterns of various brightness on a black background. Given that a blue product is generated as a result of horseradish peroxidase (HRP)-based enzymatic reaction in the biosensing channel, the channel could be used as a blue filter that absorbs red light. When red light reflected from the red pattern is absorbed by the channel, the pattern appears black. As such, the color of the patterns is assimilated with the black background, so it seems to disappear. Consequently, the amount of blue product relative to the concentration of the target analyte can be measured by counting the number of observed patterns on the paper-based signal guide. In this study, the concentration of urinary C-telopeptide fragment of type II collagen (uCTX-II, 0-10 ng/mL) was measured using the developed system without complicated equipment. In addition, the quantitative analysis of uCTX-II in the real urine sample was successfully performed. Therefore, we expect that the developed optical transducing system could be practically used for point-of-care testing (POCT) diagnosis under resource-limited environmental conditions.
Collapse
|
56
|
Lai W, Xiong Z, Huang Y, Su F, Zhang G, Huang Z, Peng J, Liu D. Gold nanoflowers labelled lateral flow assay integrated with smartphone for highly sensitive detection of clenbuterol in swine urine. FOOD AGR IMMUNOL 2019. [DOI: 10.1080/09540105.2019.1684451] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Affiliation(s)
- Weihua Lai
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, People’s Republic of China
| | - Zhijuan Xiong
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, People’s Republic of China
| | - Youju Huang
- Division of Polymer and Composite Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Science, Ningbo, People’s Republic of China
| | - Fengmei Su
- National Engineering Research Centre for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou, People’s Republic of China
| | - Ganggang Zhang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, People’s Republic of China
| | - Zhen Huang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, People’s Republic of China
| | - Juan Peng
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, People’s Republic of China
| | - Daofeng Liu
- Jiangxi Province Key Laboratory of Diagnosing and Tracing of Foodborne Disease, Jiangxi Province Centre for Disease Control and Prevention, Nanchang, People’s Republic of China
| |
Collapse
|
57
|
Suntornsuk W, Suntornsuk L. Recent applications of paper‐based point‐of‐care devices for biomarker detection. Electrophoresis 2019; 41:287-305. [DOI: 10.1002/elps.201900258] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 09/30/2019] [Accepted: 10/05/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Worapot Suntornsuk
- Department of Microbiology, Faculty of ScienceKing Mongkut's University of Technology Thonburi Bangkok Thailand
| | - Leena Suntornsuk
- Department of Pharmaceutical ChemistryFaculty of PharmacyMahidol University Bangkok Thailand
| |
Collapse
|
58
|
Fulgêncio ACC, Araújo VPT, Pereira HV, Botelho BG, Sena MM. Development of a Simple and Rapid Method for Color Determination in Beers Using Digital Images. FOOD ANAL METHOD 2019. [DOI: 10.1007/s12161-019-01634-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
59
|
Vennemann B, Obrist D, Rösgen T. Automated diagnosis of heart valve degradation using novelty detection algorithms and machine learning. PLoS One 2019; 14:e0222983. [PMID: 31557196 PMCID: PMC6762068 DOI: 10.1371/journal.pone.0222983] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 09/11/2019] [Indexed: 11/28/2022] Open
Abstract
The blood flow through the major vessels holds great diagnostic potential for the identification of cardiovascular complications and is therefore routinely assessed with current diagnostic modalities. Heart valves are subject to high hydrodynamic loads which render them prone to premature degradation. Failing native aortic valves are routinely replaced with bioprosthetic heart valves. This type of prosthesis is limited by a durability that is often less than the patient's life expectancy. Frequent assessment of valvular function can therefore help to ensure good long-term outcomes and to plan reinterventions. In this article, we describe how unsupervised novelty detection algorithms can be used to automate the interpretation of blood flow data to improve outcomes through early detection of adverse cardiovascular events without requiring repeated check-ups in a clinical environment. The proposed method was tested in an in-vitro flow loop which allowed simulating a failing aortic valve in a laboratory setting. Aortic regurgitation of increasing severity was deliberately introduced with tube-shaped inserts, preventing complete valve closure during diastole. Blood flow recordings from a flow meter at the location of the ascending aorta were analyzed with the algorithms introduced in this article and a diagnostic index was defined that reflects the severity of valvular degradation. The results indicate that the proposed methodology offers a high sensitivity towards pathological changes of valvular function and that it is capable of automatically identifying valvular degradation. Such methods may be a step towards computer-assisted diagnostics and telemedicine that provide the clinician with novel tools to improve patient care.
Collapse
Affiliation(s)
- Bernhard Vennemann
- Institute of Fluid Dynamics, ETH Zürich, Zürich, Switzerland
- ARTORG Center for Biomedical Engineering Research, University of Bern, Bern, Switzerland
| | - Dominik Obrist
- ARTORG Center for Biomedical Engineering Research, University of Bern, Bern, Switzerland
| | - Thomas Rösgen
- Institute of Fluid Dynamics, ETH Zürich, Zürich, Switzerland
| |
Collapse
|
60
|
Rabha D, Sarmah A, Nath P. Design of a 3D printed smartphone microscopic system with enhanced imaging ability for biomedical applications. J Microsc 2019; 276:13-20. [PMID: 31498428 DOI: 10.1111/jmi.12829] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 08/31/2019] [Accepted: 09/04/2019] [Indexed: 01/01/2023]
Abstract
Portable, low-cost smartphone platform microscopic systems have emerged as a potential tool for imaging of various micron and submicron scale particles in recent years (Ozcan; Pirnstill and Coté; Breslauer et al.; Zhu et al.). In most of the reported works, it involves either the use of sophisticated optical set-ups along with a high-end computational tool for postprocessing of the captured images, or it requires a high-end configured smartphone to obtain enhanced imaging of the sample. Present work reports the working of a low-cost, field-portable 520× optical microscope using a smartphone. The proposed smartphone microscopic system has been designed by attaching a 3D printed compact optical set-up to the rear camera of a regular smartphone. By using cloud-based services, an image processing algorithm has been developed which can be accessed anytime through a mobile broadband network. Using this facility, the quality of the captured images can be further enhanced, thus obviating the need for dedicated computational tools for postprocessing of the images. With the designed microscopic system, an optical resolution ∼2 µm has been obtained. Upon postprocessing, the resolution of the captured images can be improved further. It is envisioned that with properly designed optical set-up in 3D printer and by developing an image processing application in the cloud, it is possible to obtain a low-cost, user-friendly, field-portable optical microscope on a regular smartphone that performs at par with that of a laboratory-grade microscope. LAY DESCRIPTION: With the ever-improving features both in hardware and software part, smartphone becomes ubiquitous in the modern civilised society with approximately 8.1 billion cell phone users across the world, and ∼40% of them can be considered as smartphones. This technology is undoubtedly the leading technology of the 21st century. Very recently, various researchers across the globe have utilised different sensing components embedded in the smartphone to convert it into a field-portable low-cost and user-friendly tool which can be used for different sensing and imaging purposes. By using simple optical components such as lens, pinhole, diffuser etc. and the camera of the smartphone, various groups have converted the phone into a microscopic imaging system. Again, by removing the camera lenses of the phone, holography images of microscopic particles by directly casting its shadows on the CMOS sensor on the phone has been demonstrated. The holographic images have subsequently been processed using the dedicated computational tool, and the original photos of the samples can be obtained. All the reported smartphone-based microscopic systems either suffer from relatively low field-of-view (FOV), resolution or it needs a high computational platform. Present work, demonstrate an alternative approach by which a reasonably good resolution (<2 µm) along with high optical magnification (520×) and a large FOV (150 µm) has been obtained on a regular smartphone. For postprocessing of the captured images an image processing algorithm has been developed in the cloud and the same can be accessed by the smartphone application, obviating the need of dedicated computational tool and a high-end configured smartphone for the proposed microscope. For the development of the proposed microscopic system, a simple optical set-up has been fabricated in a 3D printer. The set-up houses all the required optical components and the sample specimen with the 3D-printed XY stage, and it can be attached easily to the rear camera of the smartphone. Using the proposed microscopic system, enhanced imaging of USAF target and red blood cells have been successfully demonstrated. With the readily available optical components and a regular smartphone, the net cost involvement is significantly low (less than $250, including the smartphone). We envisioned that the designed system could be utilised for point-of-care diagnosis in resource-poor settings where access to the laboratory facilities is very limited.
Collapse
Affiliation(s)
- D Rabha
- Applied Photonics and Nanophotonics Laboratory, Department of Physics, Tezpur University, Sonitpur, Assam, India
| | - A Sarmah
- Department of Pathology, Tezpur Medical College and Hospital, Sonitpur, Assam, India
| | - P Nath
- Applied Photonics and Nanophotonics Laboratory, Department of Physics, Tezpur University, Sonitpur, Assam, India
| |
Collapse
|
61
|
Sahin CD, Mengüç MP. Image registration method for mobile-device-based multispectral optical diagnostics for buildings. APPLIED OPTICS 2019; 58:7165-7173. [PMID: 31503990 DOI: 10.1364/ao.58.007165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 08/14/2019] [Indexed: 06/10/2023]
Abstract
The recent advances in mobile device hardware and software introduced new opportunities to perform more advanced computation and measurements for buildings. Multispectral optical imaging is a widely recognized technique for building diagnostics, as it is non-destructive, quick, and provides rich spatial-spectral information about the different surfaces for decisions related to building energy performance. However, such implementations require an accurate image fusion. The purpose of this study is to introduce a practical and robust image registration method for mobile-device-based multispectral imaging analysis for building diagnostics. Considering the complicated building geometries including walls, floors, ceilings, roofs, windows, and doors, a new approach based on planar homography is chosen for determining the feature points that are required to perform image fusion between different images. The results obtained are compared against the other available methods, which show that the current method provides multispectral images enhanced with accurate qualitative information, as long as the constraints are satisfied. The results are compared with the state-of-the-art methods. The possible impact of the multispectral imaging to the future of building diagnostics is also discussed.
Collapse
|
62
|
Li Y, Zheng R, Wu Y, Chu K, Xu Q, Sun M, Smith ZJ. A low-cost, automated parasite diagnostic system via a portable, robotic microscope and deep learning. JOURNAL OF BIOPHOTONICS 2019; 12:e201800410. [PMID: 31081258 DOI: 10.1002/jbio.201800410] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 05/07/2019] [Accepted: 05/10/2019] [Indexed: 06/09/2023]
Abstract
Manual hand counting of parasites in fecal samples requires costly components and substantial expertise, limiting its use in resource-constrained settings and encouraging overuse of prophylactic medication. To address this issue, a cost-effective, automated parasite diagnostic system that does not require special sample preparation or a trained user was developed. It is composed of an inexpensive (~US$350), portable, robotic microscope that can scan over the size of an entire McMaster chamber (100 mm2 ) and capture high-resolution (~1 μm lateral resolution) bright field images without need for user intervention. Fecal samples prepared using the McMaster flotation method were imaged, with the imaging region comprising the entire McMaster chamber. These images are then automatically segmented and analyzed using a trained convolution neural network (CNN) to robustly separate eggs from background debris. Simple postprocessing of the CNN output yields both egg species and egg counts. The system was validated by comparing accuracy with hand-counts by a trained operator, with excellent performance. As a further demonstration of utility, the system was used to conveniently quantify drug response over time in a single animal, showing residual disease due to Anthelmintic resistance after 2 weeks.
Collapse
Affiliation(s)
- Yaning Li
- University of Science and Technology of China, Department of Precision Machinery and Precision Instrumentation, Hefei, China
| | - Rui Zheng
- University of Science and Technology of China, Department of Precision Machinery and Precision Instrumentation, Hefei, China
| | - Yizhen Wu
- Anhui Agricultural University, Department of Animal Science and Technology, Hefei, China
| | - Kaiqin Chu
- University of Science and Technology of China, Department of Precision Machinery and Precision Instrumentation, Hefei, China
| | - Qianming Xu
- Anhui Agricultural University, Department of Animal Science and Technology, Hefei, China
| | - Mingzhai Sun
- University of Science and Technology of China, Department of Precision Machinery and Precision Instrumentation, Hefei, China
| | - Zachary J Smith
- University of Science and Technology of China, Department of Precision Machinery and Precision Instrumentation, Hefei, China
| |
Collapse
|
63
|
Abstract
Digital data are anticipated to transform medicine. However, most of today’s medical data lack interoperability: hidden in isolated databases, incompatible systems and proprietary software, the data are difficult to exchange, analyze, and interpret. This slows down medical progress, as technologies that rely on these data – artificial intelligence, big data or mobile applications – cannot be used to their full potential. In this article, we argue that interoperability is a prerequisite for the digital innovations envisioned for future medicine. We focus on four areas where interoperable data and IT systems are particularly important: (1) artificial intelligence and big data; (2) medical communication; (3) research; and (4) international cooperation. We discuss how interoperability can facilitate digital transformation in these areas to improve the health and well-being of patients worldwide.
Collapse
|
64
|
Li Z, Paul R, Ba Tis T, Saville AC, Hansel JC, Yu T, Ristaino JB, Wei Q. Non-invasive plant disease diagnostics enabled by smartphone-based fingerprinting of leaf volatiles. NATURE PLANTS 2019; 5:856-866. [PMID: 31358961 DOI: 10.1038/s41477-019-0476-y] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 06/13/2019] [Indexed: 05/20/2023]
Abstract
Plant pathogen detection conventionally relies on molecular technology that is complicated, time-consuming and constrained to centralized laboratories. We developed a cost-effective smartphone-based volatile organic compound (VOC) fingerprinting platform that allows non-invasive diagnosis of late blight caused by Phytophthora infestans by monitoring characteristic leaf volatile emissions in the field. This handheld device integrates a disposable colourimetric sensor array consisting of plasmonic nanocolorants and chemo-responsive organic dyes to detect key plant volatiles at the ppm level within 1 min of reaction. We demonstrate the multiplexed detection and classification of ten individual plant volatiles with this field-portable VOC-sensing platform, which allows for early detection of tomato late blight 2 d after inoculation, and differentiation from other pathogens of tomato that lead to similar symptoms on tomato foliage. Furthermore, we demonstrate a detection accuracy of ≥95% in diagnosis of P. infestans in both laboratory-inoculated and field-collected tomato leaves in blind pilot tests. Finally, the sensor platform has been beta-tested for detection of P. infestans in symptomless tomato plants in the greenhouse setting.
Collapse
Affiliation(s)
- Zheng Li
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, USA
| | - Rajesh Paul
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, USA
| | - Taleb Ba Tis
- Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC, USA
| | - Amanda C Saville
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, USA
| | - Jeana C Hansel
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, USA
| | - Tao Yu
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, USA
| | - Jean B Ristaino
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, USA
- Emerging Plant Disease and Global Food Security Cluster, North Carolina State University, Raleigh, NC, USA
| | - Qingshan Wei
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, USA.
- Emerging Plant Disease and Global Food Security Cluster, North Carolina State University, Raleigh, NC, USA.
| |
Collapse
|
65
|
Abstract
Cellular analysis is a central concept for both biology and medicine. Over the past two decades, acoustofluidic technologies, which marry acoustic waves with microfluidics, have significantly contributed to the development of innovative approaches for cellular analysis. Acoustofluidic technologies enable precise manipulations of cells and the fluids that confine them, and these capabilities have been utilized in many cell analysis applications. In this review article, we examine various applications where acoustofluidic methods have been implemented, including cell imaging, cell mechanotyping, circulating tumor cell phenotyping, sample preparation in clinics, and investigation of cell-cell interactions and cell-environment responses. We also provide our perspectives on the technological advantages, limitations, and potential future directions for this innovative field of methods.
Collapse
Affiliation(s)
- Yuliang Xie
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA 16802, USA
| | - Hunter Bachman
- Department of Mechanical Engineering and Material Science, Duke University, Durham, NC 27707, USA
| | - Tony Jun Huang
- Department of Mechanical Engineering and Material Science, Duke University, Durham, NC 27707, USA
| |
Collapse
|
66
|
Stuart MB, McGonigle AJS, Willmott JR. Hyperspectral Imaging in Environmental Monitoring: A Review of Recent Developments and Technological Advances in Compact Field Deployable Systems. SENSORS 2019; 19:s19143071. [PMID: 31336796 PMCID: PMC6678368 DOI: 10.3390/s19143071] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 06/26/2019] [Accepted: 07/09/2019] [Indexed: 12/21/2022]
Abstract
The development and uptake of field deployable hyperspectral imaging systems within environmental monitoring represents an exciting and innovative development that could revolutionize a number of sensing applications in the coming decades. In this article we focus on the successful miniaturization and improved portability of hyperspectral sensors, covering their application both from aerial and ground-based platforms in a number of environmental application areas, highlighting in particular the recent implementation of low-cost consumer technology in this context. At present, these devices largely complement existing monitoring approaches, however, as technology continues to improve, these units are moving towards reaching a standard suitable for stand-alone monitoring in the not too distant future. As these low-cost and light-weight devices are already producing scientific grade results, they now have the potential to significantly improve accessibility to hyperspectral monitoring technology, as well as vastly proliferating acquisition of such datasets.
Collapse
Affiliation(s)
- Mary B Stuart
- Department of Electronic and Electrical Engineering, University of Sheffield, Sheffield S1 4DE, UK
| | - Andrew J S McGonigle
- Department of Geography, University of Sheffield, Sheffield S10 2TN, UK
- School of Geosciences, The University of Sydney, Sydney, NSW 2006, Australia
- Faculty of Health, Engineering and Sciences, University of Southern Queensland, Toowoomba, QLD 4350, Australia
| | - Jon R Willmott
- Department of Electronic and Electrical Engineering, University of Sheffield, Sheffield S1 4DE, UK.
| |
Collapse
|
67
|
Gong C, Kulkarni N, Zhu W, Nguyen CD, Curiel-Lewandrowski C, Kang D. Low-cost, high-speed near infrared reflectance confocal microscope. BIOMEDICAL OPTICS EXPRESS 2019; 10:3497-3505. [PMID: 31360602 PMCID: PMC6640835 DOI: 10.1364/boe.10.003497] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 06/16/2019] [Accepted: 06/18/2019] [Indexed: 05/13/2023]
Abstract
We have developed a low-cost, near-infrared (NIR) reflectance confocal microscope (RCM) to overcome challenges in the imaging depth and speed found in our previously-reported smartphone confocal microscope. In the new NIR RCM device, we have used 840 nm superluminescent LED (sLED) to increase the tissue imaging depth and speed. A new confocal detection optics has been developed to maintain high lateral resolution even when a relatively large slit width was used. The material cost of the NIR RCM device was still low, ~$5,200. The lateral resolution was 1.1 µm and 1.3 µm along the vertical and horizontal directions, respectively. Axial resolution was measured as 11.2 µm. In vivo confocal images of human forearm skin obtained at the imaging speed of 203 frames/sec clearly visualized characteristic epidermal and dermal cellular features of the human skin.
Collapse
Affiliation(s)
- Cheng Gong
- College of Optical Sciences, University of Arizona, 1630 E. University Blvd., Tucson, AZ 85721, USA
| | - Nachiket Kulkarni
- College of Optical Sciences, University of Arizona, 1630 E. University Blvd., Tucson, AZ 85721, USA
| | - Wenbin Zhu
- College of Optical Sciences, University of Arizona, 1630 E. University Blvd., Tucson, AZ 85721, USA
| | - Christopher David Nguyen
- College of Optical Sciences, University of Arizona, 1630 E. University Blvd., Tucson, AZ 85721, USA
| | | | - Dongkyun Kang
- College of Optical Sciences, University of Arizona, 1630 E. University Blvd., Tucson, AZ 85721, USA
- University of Arizona Cancer Center, 3838 N. Campbell Ave., Tucson, AZ 85719, USA
- Department of Biomedical Engineering, University of Arizona, 1127 E. James E. Rogers Way, Tucson, AZ 85721, USA
- Bio5 Institute, University of Arizona, 1657 E Helen St, Tucson, AZ 85719, USA
| |
Collapse
|
68
|
Liu J, Geng Z, Fan Z, Liu J, Chen H. Point-of-care testing based on smartphone: The current state-of-the-art (2017–2018). Biosens Bioelectron 2019; 132:17-37. [DOI: 10.1016/j.bios.2019.01.068] [Citation(s) in RCA: 175] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 01/18/2019] [Accepted: 01/27/2019] [Indexed: 12/20/2022]
|
69
|
Quesada-González D, Sena-Torralba A, Wicaksono WP, de la Escosura-Muñiz A, Ivandini TA, Merkoçi A. Iridium oxide (IV) nanoparticle-based lateral flow immunoassay. Biosens Bioelectron 2019; 132:132-135. [DOI: 10.1016/j.bios.2019.02.049] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 02/26/2019] [Indexed: 12/19/2022]
|
70
|
Yousefi H, Su HM, Imani SM, Alkhaldi K, M. Filipe CD, Didar TF. Intelligent Food Packaging: A Review of Smart Sensing Technologies for Monitoring Food Quality. ACS Sens 2019; 4:808-821. [PMID: 30864438 DOI: 10.1021/acssensors.9b00440] [Citation(s) in RCA: 195] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Food safety is a major factor affecting public health and the well-being of society. A possible solution to control food-borne illnesses is through real-time monitoring of the food quality throughout the food supply chain. The development of emerging technologies, such as active and intelligent packaging, has been greatly accelerated in recent years, with a focus on informing consumers about food quality. Advances in the fields of sensors and biosensors has enabled the development of new materials, devices, and multifunctional sensing systems to monitor the quality of food. In this Review, we place the focus on an in-depth summary of the recent technological advances that hold the potential for being incorporated into food packaging to ensure food quality, safety, or monitoring of spoilage. These advanced sensing systems usually target monitoring gas production, humidity, temperature, and microorganisms' growth within packaged food. The implementation of portable and simple-to-use hand-held devices is also discussed in this Review. We highlight the mechanical and optical properties of current materials and systems, along with various limitations associated with each device. The technologies discussed here hold great potential for applications in food packaging and bring us one step closer to enable real-time monitoring of food throughout the supply chain.
Collapse
Affiliation(s)
- Hanie Yousefi
- Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| | | | | | | | | | | |
Collapse
|
71
|
Wu Q, Kumar N, Velagala V, Zartman JJ. Tools to reverse-engineer multicellular systems: case studies using the fruit fly. J Biol Eng 2019; 13:33. [PMID: 31049075 PMCID: PMC6480878 DOI: 10.1186/s13036-019-0161-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 04/07/2019] [Indexed: 01/08/2023] Open
Abstract
Reverse-engineering how complex multicellular systems develop and function is a grand challenge for systems bioengineers. This challenge has motivated the creation of a suite of bioengineering tools to develop increasingly quantitative descriptions of multicellular systems. Here, we survey a selection of these tools including microfluidic devices, imaging and computer vision techniques. We provide a selected overview of the emerging cross-talk between engineering methods and quantitative investigations within developmental biology. In particular, the review highlights selected recent examples from the Drosophila system, an excellent platform for understanding the interplay between genetics and biophysics. In sum, the integrative approaches that combine multiple advances in these fields are increasingly necessary to enable a deeper understanding of how to analyze both natural and synthetic multicellular systems.
Collapse
Affiliation(s)
- Qinfeng Wu
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556 USA
| | - Nilay Kumar
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556 USA
| | - Vijay Velagala
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556 USA
| | - Jeremiah J. Zartman
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556 USA
| |
Collapse
|
72
|
Feasibility study of smartphone-based Near Infrared Spectroscopy (NIRS) for salted minced meat composition diagnostics at different temperatures. Food Chem 2019; 278:314-321. [DOI: 10.1016/j.foodchem.2018.11.054] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 10/30/2018] [Accepted: 11/09/2018] [Indexed: 11/21/2022]
|
73
|
Joung HA, Ballard ZS, Ma A, Tseng DK, Teshome H, Burakowski S, Garner OB, Di Carlo D, Ozcan A. Paper-based multiplexed vertical flow assay for point-of-care testing. LAB ON A CHIP 2019; 19:1027-1034. [PMID: 30729974 DOI: 10.1039/c9lc00011a] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
We developed a multiplexed point-of-care immunodiagnostic assay for antibody detection in human sera made through the vertical stacking of functional paper layers. In this multiplexed vertical flow immunodiagnostic assay (xVFA), a colorimetric signal is generated by gold nanoparticles captured on a spatially-multiplexed sensing membrane containing specific antigens. The assay is completed in 20 minutes, following which the sensing membrane is imaged by a cost-effective mobile-phone reader. The images are sent to a server, where the results are rapidly analyzed and relayed back to the user. The performance of the assay was evaluated by measuring Lyme-specific antibodies in human sera as model target antibodies. The presented platform is rapid, simple, inexpensive, and allows for simultaneous and quantitative measurement of multiple antibodies and/or antigens making it a suitable point-of-care platform for disease diagnostics.
Collapse
Affiliation(s)
- Hyou-Arm Joung
- Electrical & Computer Engineering Department, University of California, Los Angeles, California 90095, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
74
|
Tortajada-Genaro LA, Yamanaka ES, Maquieira Á. Consumer electronics devices for DNA genotyping based on loop-mediated isothermal amplification and array hybridisation. Talanta 2019; 198:424-431. [PMID: 30876582 DOI: 10.1016/j.talanta.2019.01.124] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 01/18/2019] [Accepted: 01/21/2019] [Indexed: 12/17/2022]
Abstract
Consumer electronic technologies offer practical performances to develop compact biosensing systems intended for the point-of-care testing of DNA biomarkers. Herein a discrimination method for detecting single nucleotide polymorphisms, based on isothermal amplification and on-chip hybridisation, was developed and integrated into user-friendly optical devices: e.g., USB digital microscope, flatbed scanner, smartphone and DVD drive. In order to adequately identify a single base change, loop-mediated isothermal amplification (LAMP) was employed, with high yields (8 orders) within 45 min. Subsequently, products were directly hybridised to the allele-specific probes attached to plastic chips in an array format. After colorimetric staining, four consumer electronic techniques were compared. Sensitive precise measurements were taken (high signal-to-noise ratios, 10-μm image resolution, 99% scan-to-scan reproducibility). These features confirmed their potential as analytical tools, are a competitive alternative to fluorescence scanners, and incorporate additional advantages, such as user-friendly interface and connectivity for telemedicine needs. The analytical performances of the integrated platform (assay and reader) in the human samples were also excellent, with a low detection limit (100 genomic DNA copies), and reproducible (<15%) and cheap assays (< 10 €/test). The correct genotyping of a genetic biomarker (single-nucleotide polymorphism located in the GRIK4 gene) was achieved as the assigned genotypes agreed with those determined by using sequencing. The portability, favourable discriminating and read-out capabilities reveal that the implementation of mass-produced low-cost devices into minimal-specialised clinical laboratories is closer to becoming a reality.
Collapse
Affiliation(s)
- Luis A Tortajada-Genaro
- Departamento de Química, Universitat Politècnica de València, Camino de Vera s/n, E46022 Valencia, Spain; Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València-Universitat de València, Valencia, Spain; Unidad Mixta UPV-La Fe, Nanomedicine and Sensors, IIS La Fe, Valencia, Spain.
| | - Eric Seiti Yamanaka
- Departamento de Química, Universitat Politècnica de València, Camino de Vera s/n, E46022 Valencia, Spain
| | - Ángel Maquieira
- Departamento de Química, Universitat Politècnica de València, Camino de Vera s/n, E46022 Valencia, Spain; Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València-Universitat de València, Valencia, Spain; Unidad Mixta UPV-La Fe, Nanomedicine and Sensors, IIS La Fe, Valencia, Spain
| |
Collapse
|
75
|
Recent advances in microfluidic paper-based electrochemiluminescence analytical devices for point-of-care testing applications. Biosens Bioelectron 2019; 126:68-81. [DOI: 10.1016/j.bios.2018.10.038] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 10/06/2018] [Accepted: 10/18/2018] [Indexed: 12/20/2022]
|
76
|
Vietz C, Schütte ML, Wei Q, Richter L, Lalkens B, Ozcan A, Tinnefeld P, Acuna GP. Benchmarking Smartphone Fluorescence-Based Microscopy with DNA Origami Nanobeads: Reducing the Gap toward Single-Molecule Sensitivity. ACS OMEGA 2019; 4:637-642. [PMID: 30775643 PMCID: PMC6372172 DOI: 10.1021/acsomega.8b03136] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 12/24/2018] [Indexed: 05/18/2023]
Abstract
Smartphone-based fluorescence microscopy has been rapidly developing over the last few years, enabling point-of-need detection of cells, bacteria, viruses, and biomarkers. These mobile microscopy devices are cost-effective, field-portable, and easy to use, and benefit from economies of scale. Recent developments in smartphone camera technology have improved their performance, getting closer to that of lab microscopes. Here, we report the use of DNA origami nanobeads with predefined numbers of fluorophores to quantify the sensitivity of a smartphone-based fluorescence microscope in terms of the minimum number of detectable molecules per diffraction-limited spot. With the brightness of a single dye molecule as a reference, we compare the performance of color and monochrome sensors embedded in state-of-the-art smartphones. Our results show that the monochrome sensor of a smartphone can achieve better sensitivity, with a detection limit of ∼10 fluorophores per spot. The use of DNA origami nanobeads to quantify the minimum number of detectable molecules of a sensor is broadly applicable to evaluate the sensitivity of various optical instruments.
Collapse
Affiliation(s)
- Carolin Vietz
- Institute
for Physical & Theoretical Chemistry, Braunschweig Integrated
Centre of Systems Biology (BRICS), and Laboratory for Emerging Nanometrology
(LENA), Braunschweig University of Technology, Rebenring 56, 38106 Braunschweig, Germany
| | - Max L. Schütte
- Institute
for Physical & Theoretical Chemistry, Braunschweig Integrated
Centre of Systems Biology (BRICS), and Laboratory for Emerging Nanometrology
(LENA), Braunschweig University of Technology, Rebenring 56, 38106 Braunschweig, Germany
| | - Qingshan Wei
- Department
of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Lars Richter
- Institute
for Physical & Theoretical Chemistry, Braunschweig Integrated
Centre of Systems Biology (BRICS), and Laboratory for Emerging Nanometrology
(LENA), Braunschweig University of Technology, Rebenring 56, 38106 Braunschweig, Germany
| | - Birka Lalkens
- Department
Chemie and Center for NanoScience, Ludwig-Maximilians-Universitaet
Muenchen, Butenandtstr.
5-13 Haus E, 81377 Muenchen, Germany
| | - Aydogan Ozcan
- Electrical
& Computer Engineering Department, Bioengineering Department,
California NanoSystems Institute (CNSI), and Department of Surgery, University of California, Los Angeles, Los Angeles, California 90095, United States
- E-mail: . Tel: +1 310 825 0915 (A.O.)
| | - Philip Tinnefeld
- Department
Chemie and Center for NanoScience, Ludwig-Maximilians-Universitaet
Muenchen, Butenandtstr.
5-13 Haus E, 81377 Muenchen, Germany
- E-mail: . Tel: +49 89 2180 77549. Fax: +49 89 2180 77548 (P.T.)
| | - Guillermo P. Acuna
- Institute
for Physical & Theoretical Chemistry, Braunschweig Integrated
Centre of Systems Biology (BRICS), and Laboratory for Emerging Nanometrology
(LENA), Braunschweig University of Technology, Rebenring 56, 38106 Braunschweig, Germany
- Department
of Physics, University of Fribourg, Chemin du Musée 3, Fribourg CH-1700, Switzerland
- E-mail: . Tel: +41 26 300 9631. Fax: +41 26 300 9030 (G.P.A.)
| |
Collapse
|
77
|
Keçili R, Büyüktiryaki S, Hussain CM. Advancement in bioanalytical science through nanotechnology: Past, present and future. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2018.11.012] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
78
|
Hernández-Neuta I, Neumann F, Brightmeyer J, Ba Tis T, Madaboosi N, Wei Q, Ozcan A, Nilsson M. Smartphone-based clinical diagnostics: towards democratization of evidence-based health care. J Intern Med 2019; 285:19-39. [PMID: 30079527 PMCID: PMC6334517 DOI: 10.1111/joim.12820] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Recent advancements in bioanalytical techniques have led to the development of novel and robust diagnostic approaches that hold promise for providing optimal patient treatment, guiding prevention programs and widening the scope of personalized medicine. However, these advanced diagnostic techniques are still complex, expensive and limited to centralized healthcare facilities or research laboratories. This significantly hinders the use of evidence-based diagnostics for resource-limited settings and the primary care, thus creating a gap between healthcare providers and patients, leaving these populations without access to precision and quality medicine. Smartphone-based imaging and sensing platforms are emerging as promising alternatives for bridging this gap and decentralizing diagnostic tests offering practical features such as portability, cost-effectiveness and connectivity. Moreover, towards simplifying and automating bioanalytical techniques, biosensors and lab-on-a-chip technologies have become essential to interface and integrate these assays, bringing together the high precision and sensitivity of diagnostic techniques with the connectivity and computational power of smartphones. Here, we provide an overview of the emerging field of clinical smartphone diagnostics and its contributing technologies, as well as their wide range of areas of application, which span from haematology to digital pathology and rapid infectious disease diagnostics.
Collapse
Affiliation(s)
- I Hernández-Neuta
- Department of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University, Solna, SE, Sweden
| | - F Neumann
- Department of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University, Solna, SE, Sweden
| | - J Brightmeyer
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, USA
| | - T Ba Tis
- Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC, USA
| | - N Madaboosi
- Department of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University, Solna, SE, Sweden
| | - Q Wei
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, USA
| | - A Ozcan
- Electrical and Computer Engineering Department, University of California Los Angeles, Los Angeles, CA, USA
| | - M Nilsson
- Department of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University, Solna, SE, Sweden
| |
Collapse
|
79
|
R SK, Kumar SKA, Vijayakrishna K, Sivaramakrishna A, Brahmmananda Rao CVS, Sivaraman N, Sahoo SK. Development of the Smartphone-Assisted Colorimetric Detection of Thorium by Using New Schiff’s Base and Its Applications to Real Time Samples. Inorg Chem 2018; 57:15270-15279. [DOI: 10.1021/acs.inorgchem.8b02564] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Selva Kumar R
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
| | - S. K. Ashok Kumar
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
| | - Kari Vijayakrishna
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
| | - Akella Sivaramakrishna
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
| | - C. V. S. Brahmmananda Rao
- Indira Gandhi Centre for Atomic Research, Homi Bhabha National Institute, Kalpakkam 603102, Tamil Nadu, India
| | - N. Sivaraman
- Indira Gandhi Centre for Atomic Research, Homi Bhabha National Institute, Kalpakkam 603102, Tamil Nadu, India
| | - Suban K. Sahoo
- Department of Applied Chemistry, S. V. National Institute Technology, Surat 395007, Gujarat, India
| |
Collapse
|
80
|
Abstract
Until very recently, handheld spectrometers were the domain of major analytical and security instrument companies, with turnkey analyzers using spectroscopic techniques from X-ray fluorescence (XRF) for elemental analysis (metals), to Raman, mid-infrared, and near-infrared (NIR) for molecular analysis (mostly organics). However, the past few years have seen rapid changes in this landscape with the introduction of handheld laser-induced breakdown spectroscopy (LIBS), smartphone spectroscopy focusing on medical diagnostics for low-resource areas, commercial engines that a variety of companies can build up into products, hyphenated or dual technology instruments, low-cost visible-shortwave NIR instruments selling directly to the public, and, most recently, portable hyperspectral imaging instruments. Successful handheld instruments are designed to give answers to non-scientist operators; therefore, their developers have put extensive resources into reliable identification algorithms, spectroscopic libraries or databases, and qualitative and quantitative calibrations. As spectroscopic instruments become smaller and lower cost, "engines" have emerged, leading to the possibility of being incorporated in consumer devices and smart appliances, part of the Internet of Things (IOT). This review outlines the technologies used in portable spectroscopy, discusses their applications, both qualitative and quantitative, and how instrument developers and vendors have approached giving actionable answers to non-scientists. It outlines concerns on crowdsourced data, especially for heterogeneous samples, and finally looks towards the future in areas like IOT, emerging technologies for instruments, and portable hyphenated and hyperspectral instruments.
Collapse
|
81
|
Agaoglu S, Diep P, Martini M, Kt S, Baday M, Araci IE. Ultra-sensitive microfluidic wearable strain sensor for intraocular pressure monitoring. LAB ON A CHIP 2018; 18:3471-3483. [PMID: 30276409 DOI: 10.1039/c8lc00758f] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Wearable technologies have potential to transform healthcare by providing continuous measurements of physiological parameters. Sensors that passively monitor physiological pressure without using electronic components are ideal for wearable contact lenses because they are easy to interface with the cornea and the external environment. Here, we report a passive integrated microfluidic sensor with a novel transduction mechanism that converts small strain changes into a large fluidic volume expansion, detectable by a smart-phone camera. The optimization of the sensor architecture and material properties results in a linear and stable sensor response. We have shown that the sensor has a detection limit of <0.06% for uniaxial and <0.004% for biaxial strain. We embedded our sensor in silicone contact lenses and measured the intraocular pressure induced strain in porcine eyes in the physiological range. The sensor's continuous operation capability for >19 hours and a lifetime reaching >7 months demonstrate its potential for long-term ophthalmic monitoring applications.
Collapse
Affiliation(s)
- Sevda Agaoglu
- Department of Bioengineering, Santa Clara University, Santa Clara, CA, USA.
| | | | | | | | | | | |
Collapse
|
82
|
Quesada-González D, Jairo GA, Blake RC, Blake DA, Merkoçi A. Uranium (VI) detection in groundwater using a gold nanoparticle/paper-based lateral flow device. Sci Rep 2018; 8:16157. [PMID: 30385866 PMCID: PMC6212437 DOI: 10.1038/s41598-018-34610-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 10/16/2018] [Indexed: 12/12/2022] Open
Abstract
The contamination in groundwater due to the presence of uranium is nowadays a subject of concern due to the severe health problems associated with renal failure, genotoxicity and cancer. The standard methods to detect uranium require time-consuming processes and expensive non-portable equipment, so these measurements are rarely performed in-field, which increases the time until water samples are analysed. Furthermore, the few portable methods available do not allow quantitative analysis and the detection limit is often not low enough to reach the recommendations for drinking water (30 ppb or 126 nM of uranium). For the first time, we propose a portable, fast, inexpensive and sensitive paper-based biosensor able to detect in situ U(VI) in water samples: U(VI) selective gold nanoparticle-based lateral flow strips. Antibody-coated gold nanoparticles are used as labels in the proposed lateral flow system because of their biocompatibility; in addition, these nanoparticles provide high sensitivity due to their intense plasmonic effect. The antibody used in the assay recognizes soluble U(VI) complexed to the chelator, 2,9-dicarboxyl-1,10-phenanthroline (DCP). Because of the small size of the U(VI)-DCP complex, this assay employs a competitive format that reaches a limit of detection of 36.38 nM, lower than the action level (126 nM) established by the World Health Organization and the U.S. Environmental Protection Agency for drinking waters.
Collapse
Affiliation(s)
- Daniel Quesada-González
- Nanobioelectronics & Biosensors Group, Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193, Barcelona, Spain
| | - Grace A Jairo
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, Louisiana, 70112, United States
| | - Robert C Blake
- Division of Basic Pharmaceutical Sciences, Xavier University of Louisiana, 1 Drexel Drive, New Orleans, Louisiana, 70125, United States
| | - Diane A Blake
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, Louisiana, 70112, United States
| | - Arben Merkoçi
- Nanobioelectronics & Biosensors Group, Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193, Barcelona, Spain. .,ICREA, Institució Catalana de Recerca i Estudis Avançats, Pg. Lluís Companys 23, 08010, Barcelona, Spain.
| |
Collapse
|
83
|
Priye A, Ball CS, Meagher RJ. Colorimetric-Luminance Readout for Quantitative Analysis of Fluorescence Signals with a Smartphone CMOS Sensor. Anal Chem 2018; 90:12385-12389. [PMID: 30272954 DOI: 10.1021/acs.analchem.8b03521] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Smartphones have shown promise as an enabling technology for portable and distributed point-of-care diagnostic tests. The CMOS camera sensor can be used for detecting optical signals, including fluorescence for applications such as isothermal nucleic acid amplification tests. However, such analysis is typically limited mostly to end point detection of single targets. Here we present a smartphone-based image analysis pipeline that utilizes the CIE xyY (chromaticity-luminance) color space to measure the luminance (in lieu of RGB intensities) of fluorescent signals arising from nucleic acid amplification targets, with a discrimination sensitivity (ratio between the positive to negative signals), which is an order of magnitude more than traditional RGB intensity based analysis. Furthermore, the chromaticity part of the analysis enables reliable multiplexed detection of different targets labeled with spectrally separated fluorophores. We apply this chromaticity-luminance formulation to simultaneously detect Zika and chikungunya viral RNA via end point RT-LAMP (Reverse transcription Loop-Mediated isothermal amplification). We also show real time LAMP detection of Neisseria gonorrhoeae samples down to a copy number of 3.5 copies per 10 μL of reaction volume in our smartphone-operated portable LAMP box. Our chromaticity-luminance analysis is readily adaptable to other types of multiplexed fluorescence measurements using a smartphone camera.
Collapse
Affiliation(s)
- Aashish Priye
- Department of Chemical and Environmental Engineering , University of Cincinnati , Cincinnati , Ohio 45221 , United States
| | - Cameron S Ball
- Biotechnology and Bioengineering Department , Sandia National Laboratories , Livermore , California 94550 , United States
| | - Robert J Meagher
- Biotechnology and Bioengineering Department , Sandia National Laboratories , Livermore , California 94550 , United States
| |
Collapse
|
84
|
Interactive and scalable biology cloud experimentation for scientific inquiry and education. Nat Biotechnol 2018; 34:1293-1298. [PMID: 27926727 DOI: 10.1038/nbt.3747] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
85
|
Abstract
Point-of-care and in-field technologies for rapid, sensitive and selective detection of molecular biomarkers have attracted much interest. Rugged bioassay technology capable of fast detection of markers for pathogens and genetic diseases would in particular impact the quality of health care in the developing world, but would also make possible more extensive screening in developed countries to tackle problems such as those associated with water and food quality, and tracking of infectious organisms in hospitals and clinics. Literature trends indicate an increasing interest in the use of nanomaterials, and in particular luminescent nanoparticles, for assay development. These materials may offer attributes for development of assays and sensors that could achieve improvements in analytical figures of merit, and provide practical advantages in sensitivity and stability. There is opportunity for cost-efficiency and technical simplicity by implementation of luminescent nanomaterials as the basis for transduction technology, when combined with the use of paper substrates, and the ubiquitous availability of cell phone cameras and associated infrastructure for optical detection and transmission of results. Luminescent nanoparticles have been described for a broad range of bioanalytical targets including small molecules, oligonucleotides, peptides, proteins, saccharides and whole cells (e.g., cancer diagnostics). The luminescent nanomaterials that are described herein for paper-based bioassays include metal nanoparticles, quantum dots and lanthanide-doped nanocrystals. These nanomaterials often have broad and strong absorption and narrow emission bands that improve opportunity for multiplexed analysis, and can be designed to provide emission at wavelengths that are efficiently processed by conventional digital cameras. Luminescent nanoparticles can be embedded in paper substrates that are designed to direct fluid flow, and the resulting combination of technologies can offer competitive analytical performance at relatively low cost.
Collapse
Affiliation(s)
- Qiang Ju
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, P.R. China. and Chemical Sensors Group, Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road, ON, Canada L5L 1C6.
| | - M Omair Noor
- Chemical Sensors Group, Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road, ON, Canada L5L 1C6.
| | - Ulrich J Krull
- Chemical Sensors Group, Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road, ON, Canada L5L 1C6.
| |
Collapse
|
86
|
Furniturewalla A, Chan M, Sui J, Ahuja K, Javanmard M. Fully integrated wearable impedance cytometry platform on flexible circuit board with online smartphone readout. MICROSYSTEMS & NANOENGINEERING 2018; 4:20. [PMID: 31057908 PMCID: PMC6220260 DOI: 10.1038/s41378-018-0019-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 04/27/2018] [Accepted: 05/09/2018] [Indexed: 05/07/2023]
Abstract
We present a wearable microfluidic impedance cytometer implemented on a flexible circuit wristband with on-line smartphone readout for portable biomarker counting and analysis. The platform contains a standard polydimethylsiloxane (PDMS) microfluidic channel integrated on a wristband, and the circuitry on the wristband is composed of a custom analog lock-in amplification system, a microcontroller with an 8-bit analog-to-digital converter (ADC), and a Bluetooth module wirelessly paired with a smartphone. The lock-in amplification (LIA) system is implemented with a novel architecture which consists of the lock-in amplifier followed by a high-pass filter stage with DC offset subtraction, and a post-subtraction high gain stage enabling detection of particles as small as 2.8 μm using the 8-bit ADC. The Android smartphone application was used to initiate the system and for offline data-plotting and peak counting, and supports online data readout, analysis, and file management. The data is exportable to researchers and medical professionals for in-depth analysis and remote health monitoring. The system, including the microfluidic sensor, microcontroller, and Bluetooth module all fit on the wristband with a footprint of less than 80 cm2. We demonstrate the ability of the system to obtain generalized blood cell counts; however the system can be applied to a wide variety of biomarkers by interchanging the standard microfluidic channel with microfluidic channels designed for biomarker isolation.
Collapse
Affiliation(s)
- Abbas Furniturewalla
- Department of Electrical and Computer Engineering, Rutgers, The State University of New Jersey, New Brunswick, USA
| | - Matthew Chan
- Department of Electrical and Computer Engineering, Rutgers, The State University of New Jersey, New Brunswick, USA
| | - Jianye Sui
- Department of Electrical and Computer Engineering, Rutgers, The State University of New Jersey, New Brunswick, USA
| | - Karan Ahuja
- Department of Electrical and Computer Engineering, Rutgers, The State University of New Jersey, New Brunswick, USA
| | - Mehdi Javanmard
- Department of Electrical and Computer Engineering, Rutgers, The State University of New Jersey, New Brunswick, USA
| |
Collapse
|
87
|
Kahkeshani S, Kong JE, Wei Q, Tseng D, Garner OB, Ozcan A, Di Carlo D. Ferrodrop Dose-Optimized Digital Quantification of Biomolecules in Low-Volume Samples. Anal Chem 2018; 90:8881-8888. [DOI: 10.1021/acs.analchem.8b00958] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
88
|
Pham NM, Karlen W, Beck HP, Delamarche E. Malaria and the 'last' parasite: how can technology help? Malar J 2018; 17:260. [PMID: 29996831 PMCID: PMC6042346 DOI: 10.1186/s12936-018-2408-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 07/03/2018] [Indexed: 01/09/2023] Open
Abstract
Malaria, together with HIV/AIDS, tuberculosis and hepatitis are the four most deadly infectious diseases globally. Progress in eliminating malaria has saved millions of lives, but also creates new challenges in detecting the 'last parasite'. Effective and accurate detection of malaria infections, both in symptomatic and asymptomatic individuals are needed. In this review, the current progress in developing new diagnostic tools to fight malaria is presented. An ideal rapid test for malaria elimination is envisioned with examples to demonstrate how innovative technologies can assist the global defeat against this disease. Diagnostic gaps where technology can bring an impact to the elimination campaign for malaria are identified. Finally, how a combination of microfluidic-based technologies and smartphone-based read-outs could potentially represent the next generation of rapid diagnostic tests is discussed.
Collapse
Affiliation(s)
- Ngoc Minh Pham
- Department of Health Sciences and Technology, ETH Zürich, Lengghalde 5, 8092, Zurich, Switzerland
| | - Walter Karlen
- Department of Health Sciences and Technology, ETH Zürich, Lengghalde 5, 8092, Zurich, Switzerland
| | - Hans-Peter Beck
- Swiss Tropical and Public Health Institute, Socinstrasse 57, 4051, Basel, Switzerland.
- University of Basel, Petersgraben 1, 4001, Basel, Switzerland.
| | | |
Collapse
|
89
|
Koydemir HC, Ozcan A. Wearable and Implantable Sensors for Biomedical Applications. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2018; 11:127-146. [PMID: 29490190 DOI: 10.1146/annurev-anchem-061417-125956] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Mobile health technologies offer great promise for reducing healthcare costs and improving patient care. Wearable and implantable technologies are contributing to a transformation in the mobile health era in terms of improving healthcare and health outcomes and providing real-time guidance on improved health management and tracking. In this article, we review the biomedical applications of wearable and implantable medical devices and sensors, ranging from monitoring to prevention of diseases, as well as the materials used in the fabrication of these devices and the standards for wireless medical devices and mobile applications. We conclude by discussing some of the technical challenges in wearable and implantable technology and possible solutions for overcoming these difficulties.
Collapse
Affiliation(s)
- Hatice Ceylan Koydemir
- Electrical and Computer Engineering Department, University of California, Los Angeles, California 90095, USA;
| | - Aydogan Ozcan
- Electrical and Computer Engineering Department, University of California, Los Angeles, California 90095, USA;
- Bioengineering Department and California NanoSystems Institute (CNSI), University of California, Los Angeles, California 90095, USA
| |
Collapse
|
90
|
Yu T, Wei Q. Plasmonic molecular assays: Recent advances and applications for mobile health. NANO RESEARCH 2018; 11:5439-5473. [PMID: 32218913 PMCID: PMC7091255 DOI: 10.1007/s12274-018-2094-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 05/08/2018] [Accepted: 05/09/2018] [Indexed: 05/15/2023]
Abstract
Plasmonics-based biosensing assays have been extensively employed for biomedical applications. Significant advancements in use of plasmonic assays for the construction of point-of-care (POC) diagnostic methods have been made to provide effective and urgent health care of patients, especially in resourcelimited settings. This rapidly progressive research area, centered on the unique surface plasmon resonance (SPR) properties of metallic nanostructures with exceptional absorption and scattering abilities, has greatly facilitated the development of cost-effective, sensitive, and rapid strategies for disease diagnostics and improving patient healthcare in both developed and developing worlds. This review highlights the recent advances and applications of plasmonic technologies for highly sensitive protein and nucleic acid biomarker detection. In particular, we focus on the implementation and penetration of various plasmonic technologies in conventional molecular diagnostic assays, and discuss how such modification has resulted in simpler, faster, and more sensitive alternatives that are suited for point-of-use. Finally, integration of plasmonic molecular assays with various portable POC platforms for mobile health applications are highlighted.
Collapse
Affiliation(s)
- Tao Yu
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way, Campus Box 7905, Raleigh, NC 27695 USA
| | - Qingshan Wei
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way, Campus Box 7905, Raleigh, NC 27695 USA
| |
Collapse
|
91
|
Yamanaka ES, Tortajada-Genaro LA, Pastor N, Maquieira Á. Polymorphism genotyping based on loop-mediated isothermal amplification and smartphone detection. Biosens Bioelectron 2018; 109:177-183. [DOI: 10.1016/j.bios.2018.03.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 03/02/2018] [Accepted: 03/04/2018] [Indexed: 02/07/2023]
|
92
|
Ballard ZS, Brown C, Ozcan A. Mobile Technologies for the Discovery, Analysis, and Engineering of the Global Microbiome. ACS NANO 2018; 12:3065-3082. [PMID: 29553706 DOI: 10.1021/acsnano.7b08660] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The microbiome has been heralded as a gauge of and contributor to both human health and environmental conditions. Current challenges in probing, engineering, and harnessing the microbiome stem from its microscopic and nanoscopic nature, diversity and complexity of interactions among its members and hosts, as well as the spatiotemporal sampling and in situ measurement limitations induced by the restricted capabilities and norm of existing technologies, leaving some of the constituents of the microbiome unknown. To facilitate significant progress in the microbiome field, deeper understanding of the constituents' individual behavior, interactions with others, and biodiversity are needed. Also crucial is the generation of multimodal data from a variety of subjects and environments over time. Mobile imaging and sensing technologies, particularly through smartphone-based platforms, can potentially meet some of these needs in field-portable, cost-effective, and massively scalable manners by circumventing the need for bulky, expensive instrumentation. In this Perspective, we outline how mobile sensing and imaging technologies could lead the way to unprecedented insight into the microbiome, potentially shedding light on various microbiome-related mysteries of today, including the composition and function of human, animal, plant, and environmental microbiomes. Finally, we conclude with a look at the future, propose a computational microbiome engineering and optimization framework, and discuss its potential impact and applications.
Collapse
|
93
|
Song J, Pandian V, Mauk MG, Bau HH, Cherry S, Tisi LC, Liu C. Smartphone-Based Mobile Detection Platform for Molecular Diagnostics and Spatiotemporal Disease Mapping. Anal Chem 2018; 90:4823-4831. [PMID: 29542319 PMCID: PMC5928517 DOI: 10.1021/acs.analchem.8b00283] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Rapid and quantitative molecular diagnostics in the field, at home, and at remote clinics is essential for evidence-based disease management, control, and prevention. Conventional molecular diagnostics requires extensive sample preparation, relatively sophisticated instruments, and trained personnel, restricting its use to centralized laboratories. To overcome these limitations, we designed a simple, inexpensive, hand-held, smartphone-based mobile detection platform, dubbed "smart-connected cup" (SCC), for rapid, connected, and quantitative molecular diagnostics. Our platform combines bioluminescent assay in real-time and loop-mediated isothermal amplification (BART-LAMP) technology with smartphone-based detection, eliminating the need for an excitation source and optical filters that are essential in fluorescent-based detection. The incubation heating for the isothermal amplification is provided, electricity-free, with an exothermic chemical reaction, and incubation temperature is regulated with a phase change material. A custom Android App was developed for bioluminescent signal monitoring and analysis, target quantification, data sharing, and spatiotemporal mapping of disease. SCC's utility is demonstrated by quantitative detection of Zika virus (ZIKV) in urine and saliva and HIV in blood within 45 min. We demonstrate SCC's connectivity for disease spatiotemporal mapping with a custom-designed website. Such a smart- and connected-diagnostic system does not require any lab facilities and is suitable for use at home, in the field, in the clinic, and particularly in resource-limited settings in the context of Internet of Medical Things (IoMT).
Collapse
Affiliation(s)
- Jinzhao Song
- Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Vikram Pandian
- Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Michael G. Mauk
- Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Haim H. Bau
- Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Sara Cherry
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | | | - Changchun Liu
- Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
94
|
Neethirajan S, Weng X, Tah A, Cordero J, Ragavan K. Nano-biosensor platforms for detecting food allergens – New trends. SENSING AND BIO-SENSING RESEARCH 2018. [DOI: 10.1016/j.sbsr.2018.02.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
95
|
Khan SM, Gumus A, Nassar JM, Hussain MM. CMOS Enabled Microfluidic Systems for Healthcare Based Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1705759. [PMID: 29484725 DOI: 10.1002/adma.201705759] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 11/19/2017] [Indexed: 05/12/2023]
Abstract
With the increased global population, it is more important than ever to expand accessibility to affordable personalized healthcare. In this context, a seamless integration of microfluidic technology for bioanalysis and drug delivery and complementary metal oxide semiconductor (CMOS) technology enabled data-management circuitry is critical. Therefore, here, the fundamentals, integration aspects, and applications of CMOS-enabled microfluidic systems for affordable personalized healthcare systems are presented. Critical components, like sensors, actuators, and their fabrication and packaging, are discussed and reviewed in detail. With the emergence of the Internet-of-Things and the upcoming Internet-of-Everything for a people-process-data-device connected world, now is the time to take CMOS-enabled microfluidics technology to as many people as possible. There is enormous potential for microfluidic technologies in affordable healthcare for everyone, and CMOS technology will play a major role in making that happen.
Collapse
Affiliation(s)
- Sherjeel M Khan
- Integrated Nanotechnology Lab and Integrated Disruptive Electronic Applications (IDEA) Lab, Computer Electrical Mathematical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Abdurrahman Gumus
- Integrated Nanotechnology Lab and Integrated Disruptive Electronic Applications (IDEA) Lab, Computer Electrical Mathematical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
- Department of Electrical and Electronics Engineering, Izmir Institute of Technology, Urla, 35430, Izmir, Turkey
| | - Joanna M Nassar
- Integrated Nanotechnology Lab and Integrated Disruptive Electronic Applications (IDEA) Lab, Computer Electrical Mathematical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Muhammad M Hussain
- Integrated Nanotechnology Lab and Integrated Disruptive Electronic Applications (IDEA) Lab, Computer Electrical Mathematical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| |
Collapse
|
96
|
Freeman EE, Semeere A, Osman H, Peterson G, Rajadhyaksha M, González S, Martin JN, Anderson RR, Tearney GJ, Kang D. Smartphone confocal microscopy for imaging cellular structures in human skin in vivo. BIOMEDICAL OPTICS EXPRESS 2018; 9:1906-1915. [PMID: 29675328 PMCID: PMC5905933 DOI: 10.1364/boe.9.001906] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 03/21/2018] [Accepted: 03/21/2018] [Indexed: 05/04/2023]
Abstract
We report development of a low-cost smartphone confocal microscope and its first demonstration of in vivo human skin imaging. The smartphone confocal microscope uses a slit aperture and diffraction grating to conduct two-dimensional confocal imaging without using any beam scanning devices. Lateral and axial resolutions of the smartphone confocal microscope were measured as 2 and 5 µm, respectively. In vivo confocal images of human skin revealed characteristic cellular structures, including spinous and basal keratinocytes and papillary dermis. Results suggest that the smartphone confocal microscope has a potential to examine cellular details in vivo and may help disease diagnosis in resource-poor settings, where conducting standard histopathologic analysis is challenging.
Collapse
Affiliation(s)
- Esther E. Freeman
- Department of Dermatology, Harvard Medical School and Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114, USA
| | - Aggrey Semeere
- Infectious Diseases Institute, Makerere University College of Health Sciences, Mulago Hospital Complex, P.O. Box 22418, Kampala, Uganda
| | - Hany Osman
- Wellman Center for Photomedicine, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114, USA
| | - Gary Peterson
- Memorial Sloan-Kettering Cancer Center, 16 East 60th Street, New York, NY 10022, USA
| | - Milind Rajadhyaksha
- Memorial Sloan-Kettering Cancer Center, 16 East 60th Street, New York, NY 10022, USA
| | - Salvador González
- Memorial Sloan-Kettering Cancer Center, 16 East 60th Street, New York, NY 10022, USA
- Department of Medicine and Medical Specialties, Alcalá University and Ramon y Cajal Hospital, Ctra. De Colmenar Viejo, Km. 9,100, 28034 Madrid, Spain
| | - Jeffery N. Martin
- Department of Epidemiology and Biostatistics, 550 16th Street, San Francisco, CA 94143, USA
| | - R. Rox Anderson
- Wellman Center for Photomedicine, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114, USA
| | - Guillermo J. Tearney
- Wellman Center for Photomedicine, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114, USA
- Department of Pathology, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114, USA
- Harvard-MIT Division of Health Science and Technology, 77 Massachusetts Ave, Cambridge, MA 02139, USA
| | - Dongkyun Kang
- Wellman Center for Photomedicine, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114, USA
- College of Optical Sciences, University of Arizona, 1630 E University Blvd, Tucson, AZ 85721, USA
- Department of Biomedical Engineering, University of Arizona, 1127 E James E. Rogers Way, Tucson, AZ 85721, USA
| |
Collapse
|
97
|
Wu M, Lai Q, Ju Q, Li L, Yu HD, Huang W. Paper-based fluorogenic devices for in vitro diagnostics. Biosens Bioelectron 2018; 102:256-266. [DOI: 10.1016/j.bios.2017.11.006] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 10/10/2017] [Accepted: 11/01/2017] [Indexed: 12/30/2022]
|
98
|
Bachman H, Huang PH, Zhao S, Yang S, Zhang P, Fu H, Huang TJ. Acoustofluidic devices controlled by cell phones. LAB ON A CHIP 2018; 18:433-441. [PMID: 29302660 PMCID: PMC5989538 DOI: 10.1039/c7lc01222e] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Acoustofluidic devices have continuously demonstrated their potential to impact medical diagnostics and lab-on-a-chip applications. To bring these technologies to real-world applications, they must be made more accessible to end users. Herein, we report on the effort to provide an easy-to-use and portable system for controlling sharp-edge-based acoustofluidic devices. With the use of a cell phone and a modified Bluetooth® speaker, on-demand and hands-free pumping and mixing are achieved. Additionally, a novel design for a sharp-edge-based acoustofluidic device is proposed that combines both pumping and mixing functions into a single device, thus removing the need for external equipment typically needed to accomplish these two tasks. These applications serve to demonstrate the potential function that acoustofluidic devices can provide in point-of-care platforms. To further this point-of-care goal, we also design a portable microscope that combines with the cell phone and Bluetooth® power supply, providing a completely transportable acoustofluidic testing station. This work serves to bolster the promising position that acoustofluidic devices have within the rapidly changing research and diagnostics fields.
Collapse
Affiliation(s)
- Hunter Bachman
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA.
| | | | | | | | | | | | | |
Collapse
|
99
|
Merli D, La Cognata S, Balduzzi F, Miljkovic A, Toma L, Amendola V. A smart supramolecular device for the detection of t,t-muconic acid in urine. NEW J CHEM 2018. [DOI: 10.1039/c8nj02156b] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
An indicator displacement assay is applied in the fluorescence detection of urinary t,t-muconic acid at the occupational level.
Collapse
Affiliation(s)
- Daniele Merli
- Department of Chemistry
- University of Pavia
- Pavia
- Italy
| | | | | | - Ana Miljkovic
- Department of Chemistry
- University of Pavia
- Pavia
- Italy
| | - Lucio Toma
- Department of Chemistry
- University of Pavia
- Pavia
- Italy
| | | |
Collapse
|
100
|
Souza WS, de Oliveira MAS, de Oliveira GMF, de Santana DP, de Araujo RE. Self-Referencing Method for Relative Color Intensity Analysis Using Mobile-Phone. ACTA ACUST UNITED AC 2018. [DOI: 10.4236/opj.2018.87022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|