51
|
Fully Automated Lab-On-A-Disc Platform for Loop-Mediated Isothermal Amplification Using Micro-Carbon-Activated Cell Lysis. SENSORS 2020; 20:s20174746. [PMID: 32842600 PMCID: PMC7506564 DOI: 10.3390/s20174746] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/17/2020] [Accepted: 08/20/2020] [Indexed: 11/17/2022]
Abstract
Fast and fully automated deoxyribonucleic acid (DNA) amplification methods are of interest in the research on lab-on-a-disc (LOD) platforms because of their full compatibility with the spin-column mechanism using centrifugal force. However, the standard procedures followed in DNA amplification require accurate noncontact temperature control as well as cell lysis at a low temperature to prevent damage to the LOD platform. This requirement makes it challenging to achieve full automation of DNA amplification on an LOD. In this paper, a fully automated LOD capable of performing cell lysis and amplification on a single compact disc of DNA samples is proposed. The proposed system uses micro-carbon to heat DNA samples without damaging the LOD as well as a noncontact heating system and an infrared camera sensor to remotely measure the real temperature of the amplification chamber. Compared with conventional DNA amplification systems, the proposed system has the advantage of full automation of the LOD platform. Experimental results demonstrated that the proposed system offers a stable heating method for DNA amplification and cell lysis.
Collapse
|
52
|
Lin B, Guo Z, Geng Z, Jakaratanopas S, Han B, Liu P. A scalable microfluidic chamber array for sample-loss-free and bubble-proof sample compartmentalization by simple pipetting. LAB ON A CHIP 2020; 20:2981-2989. [PMID: 32696770 DOI: 10.1039/d0lc00348d] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Sample compartmentalization is a pivotal technique in many bioanalytical applications, such as multiplex polymerase chain reaction (PCR) and digital PCR (dPCR). In this study, we successfully developed a novel self-compartmentalization device containing an array of microchambers, each of which is connected to a main microchannel with three capillary burst valves (CBVs) for fluid switching and partitioning. As these CBVs can be automatically opened in a predefined sequence, an incoming solution can be spontaneously directed into the chamber and held in place without further mixing. After that, either air or oil can be loaded into the main channel to isolate each chamber completely. By optimizing the relative burst pressures of the CBVs, a 100% sample utilization rate can be achieved even using a manual pipette and air bubbles in the sample cannot interfere with the loading. In addition, the number of the microchambers in an array can be easily scaled from a few to tens of thousands. To verify the feasibility of this self-compartmentalization method, we successfully conducted mock multiplex loop-mediated isothermal amplifications (LAMP) in an array that contains 144 microchambers, proving that our design method will provide a robust and versatile platform for various sample discretization purposes in the future.
Collapse
Affiliation(s)
- Baobao Lin
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, 100084, China.
| | | | | | | | | | | |
Collapse
|
53
|
Zhu H, Fohlerová Z, Pekárek J, Basova E, Neužil P. Recent advances in lab-on-a-chip technologies for viral diagnosis. Biosens Bioelectron 2020; 153:112041. [PMID: 31999560 PMCID: PMC7126858 DOI: 10.1016/j.bios.2020.112041] [Citation(s) in RCA: 117] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 01/13/2020] [Accepted: 01/20/2020] [Indexed: 12/12/2022]
Abstract
The global risk of viral disease outbreaks emphasizes the need for rapid, accurate, and sensitive detection techniques to speed up diagnostics allowing early intervention. An emerging field of microfluidics also known as the lab-on-a-chip (LOC) or micro total analysis system includes a wide range of diagnostic devices. This review briefly covers both conventional and microfluidics-based techniques for rapid viral detection. We first describe conventional detection methods such as cell culturing, immunofluorescence or enzyme-linked immunosorbent assay (ELISA), or reverse transcription polymerase chain reaction (RT-PCR). These methods often have limited speed, sensitivity, or specificity and are performed with typically bulky equipment. Here, we discuss some of the LOC technologies that can overcome these demerits, highlighting the latest advances in LOC devices for viral disease diagnosis. We also discuss the fabrication of LOC systems to produce devices for performing either individual steps or virus detection in samples with the sample to answer method. The complete system consists of sample preparation, and ELISA and RT-PCR for viral-antibody and nucleic acid detection, respectively. Finally, we formulate our opinions on these areas for the future development of LOC systems for viral diagnostics.
Collapse
Affiliation(s)
- Hanliang Zhu
- Ministry of Education Key Laboratory of Micro/Nano Systems for Aerospace, Department of Microsystem Engineering, School of Mechanical Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, Shaanxi, 710072, PR China
| | - Zdenka Fohlerová
- Central European Institute of Technology, Brno University of Technology, 612 00, Brno, Czech Republic; Department of Microelectronics, Faculty of Electrical Engineering and Communication, Brno University of Technology, 616 00, Brno, Czech Republic
| | - Jan Pekárek
- Central European Institute of Technology, Brno University of Technology, 612 00, Brno, Czech Republic; Department of Microelectronics, Faculty of Electrical Engineering and Communication, Brno University of Technology, 616 00, Brno, Czech Republic
| | - Evgenia Basova
- Central European Institute of Technology, Brno University of Technology, 612 00, Brno, Czech Republic
| | - Pavel Neužil
- Ministry of Education Key Laboratory of Micro/Nano Systems for Aerospace, Department of Microsystem Engineering, School of Mechanical Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, Shaanxi, 710072, PR China; Central European Institute of Technology, Brno University of Technology, 612 00, Brno, Czech Republic; Department of Microelectronics, Faculty of Electrical Engineering and Communication, Brno University of Technology, 616 00, Brno, Czech Republic.
| |
Collapse
|
54
|
Rombach M, Hin S, Specht M, Johannsen B, Lüddecke J, Paust N, Zengerle R, Roux L, Sutcliffe T, Peham JR, Herz C, Panning M, Donoso Mantke O, Mitsakakis K. RespiDisk: a point-of-care platform for fully automated detection of respiratory tract infection pathogens in clinical samples. Analyst 2020; 145:7040-7047. [DOI: 10.1039/d0an01226b] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
The RespiDisk platform for automated detection of multiple viral and bacterial respiratory tract infection pathogens.
Collapse
Affiliation(s)
| | | | | | | | | | - Nils Paust
- Hahn-Schickard
- 79110 Freiburg
- Germany
- Laboratory for MEMS Applications
- IMTEK – Department of Microsystems Engineering
| | - Roland Zengerle
- Hahn-Schickard
- 79110 Freiburg
- Germany
- Laboratory for MEMS Applications
- IMTEK – Department of Microsystems Engineering
| | - Louis Roux
- LifeAssay Diagnostics (Pty) Ltd
- 7945 Cape Town
- South Africa
| | | | - Johannes R. Peham
- AIT Austrian Institute of Technology
- Molecular Diagnostics
- Center for Health and Bioresources
- 1210 Vienna
- Austria
| | - Christopher Herz
- AIT Austrian Institute of Technology
- Molecular Diagnostics
- Center for Health and Bioresources
- 1210 Vienna
- Austria
| | - Marcus Panning
- Institute of Virology
- Medical Center – University of Freiburg
- Faculty of Medicine
- University of Freiburg
- 79104 Freiburg
| | - Oliver Donoso Mantke
- Quality Control for Molecular Diagnostics (QCMD)
- Unit 5
- Technology Terrace
- Glasgow G20 0XA Scotland
- UK
| | - Konstantinos Mitsakakis
- Hahn-Schickard
- 79110 Freiburg
- Germany
- Laboratory for MEMS Applications
- IMTEK – Department of Microsystems Engineering
| |
Collapse
|
55
|
Li C, Wang X, Xu J, Ma B. One-step liquid molding based modular microfluidic circuits. Analyst 2020; 145:6813-6820. [DOI: 10.1039/d0an01134g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We present an easy-to-follow modular method that combines liquid molding with standard SU-8 lithography to create customized integrated microfluidic devices for the changing needs of users.
Collapse
Affiliation(s)
- Chunyu Li
- Single-Cell center
- CAS Key Laboratory of Biofuels and Shandong Key Laboratory of Energy Genetics
- Qingdao Institute of Bioenergy and Bioprocess Technology
- Chinese Academy of Sciences
- Qingdao
| | - Xixian Wang
- Single-Cell center
- CAS Key Laboratory of Biofuels and Shandong Key Laboratory of Energy Genetics
- Qingdao Institute of Bioenergy and Bioprocess Technology
- Chinese Academy of Sciences
- Qingdao
| | - Jian Xu
- Single-Cell center
- CAS Key Laboratory of Biofuels and Shandong Key Laboratory of Energy Genetics
- Qingdao Institute of Bioenergy and Bioprocess Technology
- Chinese Academy of Sciences
- Qingdao
| | - Bo Ma
- Single-Cell center
- CAS Key Laboratory of Biofuels and Shandong Key Laboratory of Energy Genetics
- Qingdao Institute of Bioenergy and Bioprocess Technology
- Chinese Academy of Sciences
- Qingdao
| |
Collapse
|
56
|
Geissler M, Brassard D, Clime L, Pilar AVC, Malic L, Daoud J, Barrère V, Luebbert C, Blais BW, Corneau N, Veres T. Centrifugal microfluidic lab-on-a-chip system with automated sample lysis, DNA amplification and microarray hybridization for identification of enterohemorrhagic Escherichia coli culture isolates. Analyst 2020; 145:6831-6845. [DOI: 10.1039/d0an01232g] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Automated workflow that starts with a colony isolate and ends with a fluorescence signal on a DNA microarray.
Collapse
Affiliation(s)
- Matthias Geissler
- Life Sciences Division
- National Research Council of Canada
- Boucherville
- Canada
| | - Daniel Brassard
- Life Sciences Division
- National Research Council of Canada
- Boucherville
- Canada
| | - Liviu Clime
- Life Sciences Division
- National Research Council of Canada
- Boucherville
- Canada
| | | | - Lidija Malic
- Life Sciences Division
- National Research Council of Canada
- Boucherville
- Canada
| | - Jamal Daoud
- Life Sciences Division
- National Research Council of Canada
- Boucherville
- Canada
| | | | | | - Burton W. Blais
- Ontario Laboratory Network
- Canadian Food Inspection Agency
- Ottawa
- Canada
| | | | - Teodor Veres
- Life Sciences Division
- National Research Council of Canada
- Boucherville
- Canada
| |
Collapse
|
57
|
Hess JF, Zehnle S, Juelg P, Hutzenlaub T, Zengerle R, Paust N. Review on pneumatic operations in centrifugal microfluidics. LAB ON A CHIP 2019; 19:3745-3770. [PMID: 31596297 DOI: 10.1039/c9lc00441f] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Centrifugal microfluidics allows for miniaturization, automation and parallelization of laboratory workflows. The fact that centrifugal forces are always directed radially outwards has been considered a main drawback for the implementation of complex workflows leading to the requirement of additional actuation forces for pumping, valving and switching. In this work, we review and discuss the combination of centrifugal with pneumatic forces which enables transport of even complex liquids in any direction on centrifugal systems, provides actuation for valving and switching, offers alternatives for mixing and enables accurate and precise metering and aliquoting. In addition, pneumatics can be employed for timing to carry out any of the above listed unit operations in a sequential and cascaded manner. Firstly, different methods to generate pneumatic pressures are discussed. Then, unit operations and applications that employ pneumatics are reviewed. Finally, a tutorial section discusses two examples to provide insight into the design process. The first tutorial explains a comparatively simple implementation of a pneumatic siphon valve and provides a workflow to derive optimum design parameters. The second tutorial discusses cascaded pneumatic operations consisting of temperature change rate actuated valving and subsequent pneumatic pumping. In conclusion, combining pneumatic actuation with centrifugal microfluidics allows for the design of robust fluidic networks with simple fluidic structures that are implemented in a monolithic fashion. No coatings are required and the overall demands on manufacturing are comparatively low. We see the combination of centrifugal forces with pneumatic actuation as a key enabling technology to facilitate compact and robust automation of biochemical analysis.
Collapse
Affiliation(s)
- J F Hess
- Laboratory for MEMS Applications, Department of Microsystems Engineering - IMTEK, University of Freiburg, Georges-Koehler-Allee 103, 79110 Freiburg, Germany
| | - S Zehnle
- Hahn-Schickard, Georges-Koehler-Allee 103, 79110 Freiburg, Germany.
| | - P Juelg
- Hahn-Schickard, Georges-Koehler-Allee 103, 79110 Freiburg, Germany.
| | - T Hutzenlaub
- Laboratory for MEMS Applications, Department of Microsystems Engineering - IMTEK, University of Freiburg, Georges-Koehler-Allee 103, 79110 Freiburg, Germany and Hahn-Schickard, Georges-Koehler-Allee 103, 79110 Freiburg, Germany.
| | - R Zengerle
- Laboratory for MEMS Applications, Department of Microsystems Engineering - IMTEK, University of Freiburg, Georges-Koehler-Allee 103, 79110 Freiburg, Germany and Hahn-Schickard, Georges-Koehler-Allee 103, 79110 Freiburg, Germany.
| | - N Paust
- Laboratory for MEMS Applications, Department of Microsystems Engineering - IMTEK, University of Freiburg, Georges-Koehler-Allee 103, 79110 Freiburg, Germany and Hahn-Schickard, Georges-Koehler-Allee 103, 79110 Freiburg, Germany.
| |
Collapse
|
58
|
Li L, Miao B, Li Z, Sun Z, Peng N. Sample-to-Answer Hepatitis B Virus DNA Detection from Whole Blood on a Centrifugal Microfluidic Platform with Double Rotation Axes. ACS Sens 2019; 4:2738-2745. [PMID: 31502439 DOI: 10.1021/acssensors.9b01270] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A point-of-care apparatus for hepatitis virus detection requires simple and easy-to-use processing steps and should have the same diagnostic capability as that in the central laboratory. However, no automated and efficient methods for hepatitis B virus (HBV) sample-to-answer detection include serum separation, and complete prestorage of reagents has been developed. We developed an automated sample-to-answer disc for rapid HBV detection from whole blood based on a double rotation axes centrifugal microfluidic platform. The disc with complete prestorage of reagents features fully automated and integrated serum separation from whole blood, magnetic bead-based DNA extraction, aliquoting of the nucleic acid, and real-time polymerase chain reaction. A laser diode for sequential release of prestored liquid reagents was used. Processing merely requires manual loading of the sample into the disc. We demonstrate successful sample-to-answer detection of HBV in a 500 μL whole blood sample with sample concentrations down to 102 copies/mL. The total time of the whole detection from sample-to-result is about 48 min. The disc provides a user-friendly molecular diagnostic system for rapid analysis of HBV without demanding a complicated laboratory instrument and major manual operation time. Overall, the results indicated that the developed disc could be used for HBV molecular diagnosis.
Collapse
Affiliation(s)
- Lei Li
- State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, Xi’an 710054, Shaanxi, China
| | - Baogang Miao
- State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, Xi’an 710054, Shaanxi, China
| | - Zheng Li
- State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, Xi’an 710054, Shaanxi, China
| | - Zhengming Sun
- Shaanxi Provincial People’s Hospital, Xi’an 710068, Shaanxi, China
| | - Niancai Peng
- State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, Xi’an 710054, Shaanxi, China
| |
Collapse
|
59
|
Nguyen HV, Nguyen VD, Nguyen HQ, Chau THT, Lee EY, Seo TS. Nucleic acid diagnostics on the total integrated lab-on-a-disc for point-of-care testing. Biosens Bioelectron 2019; 141:111466. [DOI: 10.1016/j.bios.2019.111466] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 06/14/2019] [Accepted: 06/21/2019] [Indexed: 12/15/2022]
|
60
|
Peyvan K, Karouia F, Cooper JJ, Chamberlain J, Suciu D, Slota M, Pohorille A. Gene Expression Measurement Module (GEMM) for space application: Design and validation. LIFE SCIENCES IN SPACE RESEARCH 2019; 22:55-67. [PMID: 31421849 DOI: 10.1016/j.lssr.2019.07.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 07/05/2019] [Accepted: 07/07/2019] [Indexed: 06/10/2023]
Abstract
In order to facilitate studies on the impact of the space environment on biological systems, we have developed a prototype of GEMM (Gene Expression Measurement Module) - an automated, miniaturized, integrated fluidic system for in-situ measurements of gene expression in microbial samples. The GEMM instrument is capable of (1) lysing bacterial cell walls, (2) extracting and purifying RNA released from cells, (3) hybridizing the RNA to probes attached to a microarray and (4) providing electrochemical readout, all in a microfluidics cartridge. To function on small, uncrewed spacecraft, the conventional, laboratory protocols for both sample preparation and hybridization required significant modifications. Biological validation of the instrument was carried out on Synechococcus elongatus, a photosynthetic cyanobacterium known for its metabolic diversity and resilience to adverse conditions. It was demonstrated that GEMM yielded reliable, reproducible gene expression profiles. GEMM is the only high throughput instrument that can be deployed in near future on space platforms other than the ISS to advance biological research in space. It can also prove useful for numerous terrestrial applications in the field.
Collapse
Affiliation(s)
| | - Fathi Karouia
- University of California San Francisco, Department of Pharmaceutical Chemistry, San Francisco, CA 94158, USA; NASA Ames Research Center, Space Biosciences Research Branch, Moffett Field, CA 94035, USA; NASA Ames Research Center, Exobiology Branch, MS 239-4, Moffett Field, CA 94035, USA.
| | | | | | | | | | - Andrew Pohorille
- University of California San Francisco, Department of Pharmaceutical Chemistry, San Francisco, CA 94158, USA; NASA Ames Research Center, Exobiology Branch, MS 239-4, Moffett Field, CA 94035, USA.
| |
Collapse
|
61
|
Point-of-care genetic analysis for multiplex pathogenic bacteria on a fully integrated centrifugal microdevice with a large-volume sample. Biosens Bioelectron 2019; 136:132-139. [DOI: 10.1016/j.bios.2019.04.035] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 03/18/2019] [Accepted: 04/17/2019] [Indexed: 01/30/2023]
|
62
|
Brassard D, Geissler M, Descarreaux M, Tremblay D, Daoud J, Clime L, Mounier M, Charlebois D, Veres T. Extraction of nucleic acids from blood: unveiling the potential of active pneumatic pumping in centrifugal microfluidics for integration and automation of sample preparation processes. LAB ON A CHIP 2019; 19:1941-1952. [PMID: 30997461 DOI: 10.1039/c9lc00276f] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
This paper describes the development of an on-chip nucleic acid (NA) extraction assay from whole blood using a centrifugal microfluidic platform that allows for pneumatic actuation of liquids during rotation. The combination of pneumatic and centrifugal forces makes it possible to perform fluidic operations without the need for integrating active control elements on the microfluidic cartridge. The cartridge is fabricated from thermoplastic polymers (e.g., Zeonor 1060R) and features a simple design that is compatible with injection molding. In addition, the cartridge is interfaced with two external vials for off-chip storage of the blood sample and retrieval of the eluted NA solution, respectively. On-chip capture of NAs is performed using an embedded solid-phase extraction matrix composed of commercial glass microfiber filters (Whatman GF/D and GF/F). The yield of the automated, on-chip extraction protocol, determined by measuring absorbance at 260 nm, is comparable to some of the best manually operated kits (e.g., Qiagen QIAamp DNA Mini Kit) while providing low assay-to-assay variability due to the high level of control provided by the platform for each processing step. The A260/A280 and A260/A230 ratios of the absorbance spectra also reveal that protein contamination of the sample is negligible. The capability of the pneumatic platform to circulate air flux through the microfluidic conduit was used to dry leftover ethanol residues retained in the capture matrix during washing. This method, applied in combination with localized heating, proved effective for reducing ethanol contamination in eluted samples from ∼12% to 1% (v/v).
Collapse
Affiliation(s)
- Daniel Brassard
- National Research Council of Canada, Life Sciences Division, 75 de Mortagne Boulevard, Boucherville, QC J4B 6Y4, Canada.
| | - Matthias Geissler
- National Research Council of Canada, Life Sciences Division, 75 de Mortagne Boulevard, Boucherville, QC J4B 6Y4, Canada.
| | - Marianne Descarreaux
- National Research Council of Canada, Life Sciences Division, 75 de Mortagne Boulevard, Boucherville, QC J4B 6Y4, Canada. and Department of Biology, Université de Sherbrooke, 2500 de l'Université Boulevard, Sherbrooke, QC J1K 2R1, Canada and Canadian Space Agency, 6767 Route de l'Aéroport, Saint-Hubert, QC J3Y 8Y9, Canada
| | - Dominic Tremblay
- National Research Council of Canada, Life Sciences Division, 75 de Mortagne Boulevard, Boucherville, QC J4B 6Y4, Canada. and Canadian Space Agency, 6767 Route de l'Aéroport, Saint-Hubert, QC J3Y 8Y9, Canada and Centre hospitalier universitaire de Sherbrooke and Department of Medicine, Centre de recherche clinique, Université de Sherbrooke, 3001 12th Avenue North, Sherbrooke, QC J1H 5N4, Canada
| | - Jamal Daoud
- National Research Council of Canada, Life Sciences Division, 75 de Mortagne Boulevard, Boucherville, QC J4B 6Y4, Canada.
| | - Liviu Clime
- National Research Council of Canada, Life Sciences Division, 75 de Mortagne Boulevard, Boucherville, QC J4B 6Y4, Canada.
| | - Maxence Mounier
- National Research Council of Canada, Life Sciences Division, 75 de Mortagne Boulevard, Boucherville, QC J4B 6Y4, Canada.
| | - Denis Charlebois
- Canadian Space Agency, 6767 Route de l'Aéroport, Saint-Hubert, QC J3Y 8Y9, Canada
| | - Teodor Veres
- National Research Council of Canada, Life Sciences Division, 75 de Mortagne Boulevard, Boucherville, QC J4B 6Y4, Canada. and Department of Biomedical Engineering, McGill University, 3775 University Street, Montreal, QC H3A 2B4, Canada
| |
Collapse
|
63
|
Chen Y, Shen M, Zhu Y, Xu Y. A novel electromagnet-triggered pillar valve and its application in immunoassay on a centrifugal platform. LAB ON A CHIP 2019; 19:1728-1735. [PMID: 31020298 DOI: 10.1039/c9lc00043g] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The lab-on-a-disc is a powerful microfluidic platform that skillfully takes advantage of centrifugal force to controllably drive liquids with the assistance of passive or active valves. However, the passive valves are mainly triggered by the rotation speed and can be easily influenced by the surface chemistry of the channel, while the active valves usually require a complicated fabrication or actuation procedure. In this study, a novel active valve that can be easily triggered by an electromagnet was proposed and applied on the centrifugation platform. This valve, named the electromagnet-triggered pillar (ETP) valve, consisted of a metal pin and pressure sensitive adhesive (PSA) tape, and is closed until the pin is lifted up by an electromagnet to partially separate the PSA tape from the substrate. As a typical application, this valve is utilized to construct a centrifugal chip for mycotoxin detection. With four ETP valves in a unit, the sample and liquid reagents can be sequentially released into the reaction chamber that was spotted with mycotoxin conjugates to accomplish the whole immunoassay. Four mycotoxins (aflatoxin B1, ochratoxin A, T-2 toxin, and zearalenone) were simultaneously detected on this chip with limits of detection lower than the permissible limits set by the regulatory agencies of China, demonstrating the practicability of this easy-to-use active valve.
Collapse
Affiliation(s)
- Yiqi Chen
- Department of Biomedical Engineering, Tsinghua University School of Medicine, Beijing 100084, China.
| | | | | | | |
Collapse
|
64
|
Tong R, Zhang L, Song Q, Hu C, Chen X, Lou K, Gong X, Gao Y, Wen W. A fully portable microchip real-time polymerase chain reaction for rapid detection of pathogen. Electrophoresis 2019; 40:1699-1707. [PMID: 30977901 DOI: 10.1002/elps.201900090] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 03/23/2019] [Accepted: 04/06/2019] [Indexed: 11/10/2022]
Abstract
Point-of-care detection for pathogen is of critical need for wide epidemic warning and medical diagnosis. In this work, we have designed and developed a fully portable and integrated microchip based real-time polymerase chain reaction machine for rapid pathogen detection. The instrument consists of three functional components including heating, optical, and electrical modules, which are integrated into a portable compact box. The microchip is consumable material replaceable to meet various detection needs. Consequently, we demonstrated the outstanding performance of this portable machine for rapid detection of Salmonella and Escherichia coli O157:H7 with the advantage of time-saving (∼25 min), less samples consumption, portability, and user-friendly operation.
Collapse
Affiliation(s)
- Rui Tong
- The Nano Science and Technology (NSNT) Program, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, S. A. R. China
| | - Lijuan Zhang
- Shenzhen Shineway Hi-Tech, Shenzhen, P. R. China
| | - Qi Song
- Guangzhou HKUST Fok Ying Tung Research Institute, Nansha, Guangzhou, P. R. China
| | - Chuandeng Hu
- Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, S. A. R. China
| | - Xuee Chen
- The Nano Science and Technology (NSNT) Program, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, S. A. R. China
| | - Kai Lou
- Shenzhen Shineway Hi-Tech, Shenzhen, P. R. China
| | - Xiuqing Gong
- Shenzhen Shineway Hi-Tech, Shenzhen, P. R. China
| | - Yibo Gao
- Shenzhen Shineway Hi-Tech, Shenzhen, P. R. China
| | - Weijia Wen
- The Nano Science and Technology (NSNT) Program, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, S. A. R. China
| |
Collapse
|
65
|
Yang J, Wang K, Xu H, Yan W, Jin Q, Cui D. Detection platforms for point-of-care testing based on colorimetric, luminescent and magnetic assays: A review. Talanta 2019; 202:96-110. [PMID: 31171232 DOI: 10.1016/j.talanta.2019.04.054] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 04/03/2019] [Accepted: 04/20/2019] [Indexed: 12/14/2022]
Abstract
Along with the considerable potential and increasing demand of the point-of-care testing (POCT), corresponding detection platforms have attracted great interest in both academic and practical fields. The first few generations of conventional detection devices tend to be costly, complicated to operate and hard to move on account of early limitations in the level of technological development and relatively high requirement of performance. Owing to the requirements for rapidity, simplicity, accuracy and cost controlling in the POCT, reader systems are urgently needed to be developed, upgraded and modified constantly, realizing on-site testing and healthcare management without a specific place or cumbersome operation. Accordingly, numerous rapid detection platforms with diverse size and performance have emerged such as bench-top apparatuses, handheld devices and intelligent detection devices. This review discusses various devices developed mainly for the detection of lateral flow test strips (LFTSs) or microfluidic strips in the POCT and summarizes these devices by size and portability. Furthermore, on the basis of various detection methods and diverse probes usually containing specific nanoparticles composites, three most common aspects of detection rationale in the POCT are selected to elaborate each kind of detection platforms in this paper: colorimetric assay, luminescent detection and magnetic signal detection. Herein, we focus on their structures, detection mechanisms and assay results, accompany with discussions and comments on the performances, costs and potential application, as well as advantages and limitations of each technique. In addition, perspectives on the future advances of detection platforms and some conclusions are proposed.
Collapse
Affiliation(s)
- Jinchuan Yang
- Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai Engineering Research Center for Intelligent diagnosis and treatment instrument, Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Shanghai, 200240, PR China.
| | - Kan Wang
- Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai Engineering Research Center for Intelligent diagnosis and treatment instrument, Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Shanghai, 200240, PR China.
| | - Hao Xu
- School of Naval Architecture, Ocean & Civil Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China.
| | - Wenqiang Yan
- Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai Engineering Research Center for Intelligent diagnosis and treatment instrument, Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Shanghai, 200240, PR China.
| | - Qinghui Jin
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, PR China; Faculty of Electrical Engineering and Computer Science, Ningbo University, Ningbo, 315211, PR China.
| | - Daxiang Cui
- Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai Engineering Research Center for Intelligent diagnosis and treatment instrument, Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Shanghai, 200240, PR China.
| |
Collapse
|
66
|
|
67
|
Soares RR, Neumann F, Caneira CR, Madaboosi N, Ciftci S, Hernández-Neuta I, Pinto IF, Santos DR, Chu V, Russom A, Conde JP, Nilsson M. Silica bead-based microfluidic device with integrated photodiodes for the rapid capture and detection of rolling circle amplification products in the femtomolar range. Biosens Bioelectron 2019; 128:68-75. [DOI: 10.1016/j.bios.2018.12.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 11/26/2018] [Accepted: 12/03/2018] [Indexed: 12/20/2022]
|
68
|
Hu F, Li J, Peng N, Li Z, Zhang Z, Zhao S, Duan M, Tian H, Li L, Zhang P. Rapid isolation of cfDNA from large-volume whole blood on a centrifugal microfluidic chip based on immiscible phase filtration. Analyst 2019; 144:4162-4174. [DOI: 10.1039/c9an00493a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The C-IFAST device enabled the rapid isolation of cfDNA, from 4 ml whole blood to 50 μl elution, within 15 min.
Collapse
Affiliation(s)
- Fei Hu
- State Key Laboratory for Manufacturing Systems Engineering
- Xi'an Jiaotong University
- Xi'an
- P. R. China
| | - Juan Li
- State Key Laboratory for Manufacturing Systems Engineering
- Xi'an Jiaotong University
- Xi'an
- P. R. China
| | - Niancai Peng
- State Key Laboratory for Manufacturing Systems Engineering
- Xi'an Jiaotong University
- Xi'an
- P. R. China
| | - Zheng Li
- State Key Laboratory for Manufacturing Systems Engineering
- Xi'an Jiaotong University
- Xi'an
- P. R. China
| | - Zengming Zhang
- State Key Laboratory for Manufacturing Systems Engineering
- Xi'an Jiaotong University
- Xi'an
- P. R. China
| | - Shuhao Zhao
- State Key Laboratory for Manufacturing Systems Engineering
- Xi'an Jiaotong University
- Xi'an
- P. R. China
| | - Mingyue Duan
- State Key Laboratory for Manufacturing Systems Engineering
- Xi'an Jiaotong University
- Xi'an
- P. R. China
| | - Hui Tian
- State Key Laboratory for Manufacturing Systems Engineering
- Xi'an Jiaotong University
- Xi'an
- P. R. China
| | - Lei Li
- State Key Laboratory for Manufacturing Systems Engineering
- Xi'an Jiaotong University
- Xi'an
- P. R. China
| | - Peng Zhang
- State Key Laboratory for Manufacturing Systems Engineering
- Xi'an Jiaotong University
- Xi'an
- P. R. China
| |
Collapse
|
69
|
Wang R, Zhao R, Li Y, Kong W, Guo X, Yang Y, Wu F, Liu W, Song H, Hao R. Rapid detection of multiple respiratory viruses based on microfluidic isothermal amplification and a real-time colorimetric method. LAB ON A CHIP 2018; 18:3507-3515. [PMID: 30351335 DOI: 10.1039/c8lc00841h] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Respiratory viruses are major threats causing development of acute respiratory tract infections, which are common causes of illness and death throughout the world. Here, an integrated microsystem based on real-time colorimetry was developed for diagnosing multiple respiratory viruses. The microsystem employed magnetic beads for nucleic acid extraction and an eight-channel microfluidic array chip integrated with a loop-mediated isothermal amplification system for point-of-care screening of respiratory viruses. The overall detection process (including sample collection, nucleic acid extraction, sample loading, real-time detection, and signal output) could be completed within 1 h. Our results show that the developed method could specifically recognize influenza A virus subtypes (H1N1, H3N2, H5N1, and H7N9), influenza B virus, and human adenoviruses. The results obtained with 109 clinical samples indicate that the developed method has high specificity (100%, confidence interval 94.9-100.0) and sensitivity (96%, confidence interval 78.1-99.9). The integration of magnetic bead-based pre-treatment techniques and microfluidic isothermal amplification provides an effective solution for rapidly detecting etiological agents of respiratory diseases. The strategy of using a closed chip system and real-time colorimetry reduced aerosol contamination and ensured the accuracy of the results. The developed method provides an effective alternative for rapid point-of-care screening for viruses that cause respiratory disease syndromes and further aids in accurate and timely detection to control and prevent the spread of respiratory diseases caused by such pathogens.
Collapse
Affiliation(s)
- Ruili Wang
- Institute of Disease Control and Prevention, PLA, Beijing 100071, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
70
|
Primiceri E, Chiriacò MS, Notarangelo FM, Crocamo A, Ardissino D, Cereda M, Bramanti AP, Bianchessi MA, Giannelli G, Maruccio G. Key Enabling Technologies for Point-of-Care Diagnostics. SENSORS (BASEL, SWITZERLAND) 2018; 18:E3607. [PMID: 30355989 PMCID: PMC6263899 DOI: 10.3390/s18113607] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 10/01/2018] [Accepted: 10/16/2018] [Indexed: 12/13/2022]
Abstract
A major trend in biomedical engineering is the development of reliable, self-contained point-of-care (POC) devices for diagnostics and in-field assays. The new generation of such platforms increasingly addresses the clinical and environmental needs. Moreover, they are becoming more and more integrated with everyday objects, such as smartphones, and their spread among unskilled common people, has the power to improve the quality of life, both in the developed world and in low-resource settings. The future success of these tools will depend on the integration of the relevant key enabling technologies on an industrial scale (microfluidics with microelectronics, highly sensitive detection methods and low-cost materials for easy-to-use tools). Here, recent advances and perspectives will be reviewed across the large spectrum of their applications.
Collapse
Affiliation(s)
| | | | | | - Antonio Crocamo
- Azienda Ospedaliero-Universitaria di Parma, via Gramsci 14, 43126 Parma, Italy.
| | - Diego Ardissino
- Azienda Ospedaliero-Universitaria di Parma, via Gramsci 14, 43126 Parma, Italy.
| | - Marco Cereda
- STMicroelectronics S.r.l., via Olivetti 2, 20864 Agrate Brianza, Italy.
| | | | | | - Gianluigi Giannelli
- National Institute of Gastroenterology, "S. De Bellis" Research Hospital, via Turi 27, 70013 Castellana Grotte, Italy.
| | - Giuseppe Maruccio
- Department of Mathematics and Physics, University of Salento, via Monteroni, 73100 Lecce, Italy.
| |
Collapse
|
71
|
Detection and Monitoring of Insecticide Resistance Mutations in Anopheles gambiae: Individual vs Pooled Specimens. Genes (Basel) 2018; 9:genes9100479. [PMID: 30282959 PMCID: PMC6209882 DOI: 10.3390/genes9100479] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 09/24/2018] [Accepted: 09/28/2018] [Indexed: 01/10/2023] Open
Abstract
Bioassays and molecular diagnostics are routinely used for the monitoring of malaria vector populations to support insecticide resistance management (IRM), guiding operational decisions on which insecticides ought to be used for effective vector control. Previously developed TaqMan assays were optimised to distinguish the wild-type L1014 from the knockdown resistance (kdr) point mutations 1014F and 1014S (triplex reaction), and the N1575 wild-type from the point mutation 1575Y (duplex reaction). Subsequently, artificial pools of Anopheles gambiae (An. gambiae) specimens with known genotypes of L1014F, L1014S, and N1575Y were created, nucleic acids were extracted, and kdr mutations were detected. These data were then used to define a linear regression model that predicts the allelic frequency within a pool of mosquitoes as a function of the measured ΔCt values (Ct mutant − Ct wild type probe). Polynomial regression models showed r2 values of >0.99 (p < 0.05). The method was validated with populations of variable allelic frequencies, and found to be precise (1.66–2.99%), accurate (3.3–5.9%), and able to detect a single heterozygous mosquito mixed with 9 wild type individuals in a pool of 10. Its pilot application in field-caught samples showed minimal differences from individual genotyping (0.36–4.0%). It allowed the first detection of the super-kdr mutation N1575Y in An. gambiae from Mali. Using pools instead of individuals allows for more efficient resistance allele screening, facilitating IRM.
Collapse
|
72
|
Liu W, Das J, Mepham AH, Nemr CR, Sargent EH, Kelley SO. A fully-integrated and automated testing device for PCR-free viral nucleic acid detection in whole blood. LAB ON A CHIP 2018; 18:1928-1935. [PMID: 29881833 DOI: 10.1039/c8lc00371h] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Integrated devices for automated nucleic acid testing (NAT) are critical for infectious disease diagnosis to be performed outside of centralized laboratories. The gold standard methods for NAT are enzymatic amplification methods like the polymerase chain reaction that typically require expensive equipment and highly-trained personnel, limiting use in low-resource settings. A low-cost, integrated, rapid, portable and user-friendly point-of-care (POC) nucleic acid diagnostic device will improve the accessibility of NAT. Here, we present a fully integrated and simple-to-use POC device operated by a passive fluidic method that is able to perform a sequential multi-step assay to detect viral nucleic acids in blood. This simple device enabled the rapid detection of hepatitis C virus in blood in approximately 30 minutes with minimal sample handling by the user.
Collapse
Affiliation(s)
- Wenhan Liu
- Institute for Biomaterials and Biomedical Engineering, University of Toronto, Toronto, M5S 3G9 Canada.
| | | | | | | | | | | |
Collapse
|
73
|
Tang M, Huang X, Chu Q, Ning X, Wang Y, Kong SK, Zhang X, Wang G, Ho HP. A linear concentration gradient generator based on multi-layered centrifugal microfluidics and its application in antimicrobial susceptibility testing. LAB ON A CHIP 2018; 18:1452-1460. [PMID: 29664087 DOI: 10.1039/c8lc00042e] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In almost any branch of chemistry or life sciences, it is often necessary to study the interaction between different components in a system by varying their respective concentrations in a systematic manner. Currently, many procedures for generating a series of samples of different solute concentration levels are still done manually by dilution. To address this issue, we present herein a highly automated linear concentration gradient generator based on centrifugal microfluidics. The operation of this device is based on the use of multi-layered microfluidics in which individual fluidic samples to be mixed together are stored and metered in their respective layers before finally being transferred to a mixing chamber. To demonstrate the operation of this scheme, we have used the device to conduct antimicrobial susceptibility testing (AST). Firstly, DI water, ampicillin solution and E. coli suspension were loaded into the chambers in different layers. As the device went through several rounds of spinning at different speeds, a series of metered dosages of ampicillin along a linear concentration gradient were introduced to the mixing chamber and mixed with E. coli automatically. By monitoring the spectral absorbance of the suspensions, we were able to establish the minimum inhibitory concentration (MIC) value of ampicillin against E. coli. The process took about 3 hours to complete, and the experimental results showed a strong correlation with those obtained with the standard CLSI broth dilution method. Clearly, the platform is useful for a wide range of applications such as drug discovery and personalised medicine, where concentration gradients are of concern.
Collapse
Affiliation(s)
- Minghui Tang
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
74
|
Lee NY. A review on microscale polymerase chain reaction based methods in molecular diagnosis, and future prospects for the fabrication of fully integrated portable biomedical devices. Mikrochim Acta 2018; 185:285. [PMID: 29736588 DOI: 10.1007/s00604-018-2791-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Accepted: 04/05/2018] [Indexed: 02/06/2023]
Abstract
Since the advent of microfabrication technology and soft lithography, the lab-on-a-chip concept has emerged as a state-of-the-art miniaturized tool for conducting the multiple functions associated with micro total analyses of nucleic acids, in series, in a seamless manner with a miniscule volume of sample. The enhanced surface-to-volume ratio inside a microchannel enables fast reactions owing to increased heat dissipation, allowing rapid amplification. For this reason, PCR has been one of the first applications to be miniaturized in a portable format. However, the nature of the basic working principle for microscale PCR, such as the complicated temperature controls and use of a thermal cycler, has hindered its total integration with other components into a micro total analyses systems (μTAS). This review (with 179 references) surveys the diverse forms of PCR microdevices constructed on the basis of different working principles and evaluates their performances. The first two main sections cover the state-of-the-art in chamber-type PCR microdevices and in continuous-flow PCR microdevices. Methods are then discussed that lead to microdevices with upstream sample purification and downstream detection schemes, with a particular focus on rapid on-site detection of foodborne pathogens. Next, the potential for miniaturizing and automating heaters and pumps is examined. The review concludes with sections on aspects of complete functional integration in conjunction with nanomaterial based sensing, a discussion on future prospects, and with conclusions. Graphical abstract In recent years, thermocycler-based PCR systems have been miniaturized to palm-sized, disposable polymer platforms. In addition, operational accessories such as heaters and mechanical pumps have been simplified to realize semi-automatted stand-alone portable biomedical diagnostic microdevices that are directly applicable in the field. This review summarizes the progress made and the current state of this field.
Collapse
Affiliation(s)
- Nae Yoon Lee
- Department of BioNano Technology, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si, Gyeonggi-do, 13120, South Korea.
| |
Collapse
|
75
|
Owens CE, Hart AJ. High-precision modular microfluidics by micromilling of interlocking injection-molded blocks. LAB ON A CHIP 2018; 18:890-901. [PMID: 29372201 DOI: 10.1039/c7lc00951h] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Wider use and adaptation of microfluidics is hindered by the infrastructure, knowledge, and time required to build prototype systems, especially when multiple fluid operations and measurements are required. As a result, 3D printing of microfluidics is attracting interest, yet cannot readily achieve the feature size, smoothness, and optical transparency needed for many standard microfluidic systems. Herein we present a new approach to the design and construction of high-precision modular microfluidics, using standard injection-molded blocks that are modified using micromilling and assembled via elastically averaged contacts. Desktop micromilling achieves channel dimensions as small as 50 μm depth and 150 μm width and adhesive films seal channels to allow internal fluid pressure of >400 kPa. Elastically averaged connections between bricks result in a mechanical locating repeatability of ∼1 μm, enabling fluid to pass between bricks via an O-ring seal with >99.9% reliability. We demonstrated and tested block-based systems for generating droplets at rates above 9000 min-1 and COV <3%, and integrated optical sensors. We also show how blocks can be used to build easily reconfigurable interfaces with glass microfluidic devices and imaging hardware. Microfluidic bricks fabricated by FDM and SLA 3D printing cannot achieve the dimensional quality of molded bricks, yet 3D printing allows customized bricks to be integrated with standard LEGOs. Our approach enables a wide variety of modular microfluidic units to be built using a widely available, cost-effective platform, encouraging use in both research and education.
Collapse
Affiliation(s)
- Crystal E Owens
- Department of Mechanical Engineering and Laboratory for Manufacturing and Productivity, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA.
| | | |
Collapse
|
76
|
Günther S, Felten S, Wess G, Hartmann K, Weber K. Detection of feline Coronavirus in effusions of cats with and without feline infectious peritonitis using loop-mediated isothermal amplification. J Virol Methods 2018. [PMID: 29540320 PMCID: PMC7113784 DOI: 10.1016/j.jviromet.2018.03.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Diagnosis of feline infectious peritonitis is critical in terms of time. Rapid detection methods for coronavirus are needed in cats. Isothermal amplification assays are suitable as point-of-care tests. The sensitivity of isothermal amplification assays for coronavirus detection is low.
Feline infectious peritonitis (FIP) is a fatal disease in cats worldwide. The aim of this study was to test two commercially available reaction mixtures in a reverse transcription loop-mediated isothermal amplification (RT-LAMP) assay to detect feline Coronavirus (FCoV) in body cavity effusions of cats with and without FIP, in order to minimize the time from sampling to obtaining results. RNA was extracted from body cavity effusion samples of 71 cats, including 34 samples from cats with a definitive diagnosis of FIP, and 37 samples of control cats with similar clinical signs but other confirmed diseases. Two reaction mixtures (Isothermal Mastermix, OptiGene Ltd.and PCRun™ Molecular Detection Mix, Biogal) were tested using the same primers, which were designed to bind to a conserved region of the FCoV membrane protein gene. Both assays were conducted under isothermal conditions (61 °C–62 °C). Using the Isothermal Mastermix of OptiGene Ltd., amplification times ranged from 4 and 39 min with a sensitivity of 35.3% and a specificity of 94.6% for the reported sample group. Using the PCRun™ Molecular Detection Mix of Biogal, amplification times ranged from 18 to 77 min with a sensitivity of 58.8% and a specificity of 97.3%. Although the RT-LAMP assay is less sensitive than real time reverse transcription PCR (RT-PCR), it can be performed without the need of expensive equipment and with less hands-on time. Further modifications of primers might lead to a suitable in-house test and accelerate the diagnosis of FIP.
Collapse
Affiliation(s)
- Sonja Günther
- Clinic of Small Animal Medicine, Centre for Clinical Veterinary Medicine, Ludwig-Maximilians-Universitaet Munich, Veterinaerstr. 13, 80539, Munich, Germany.
| | - Sandra Felten
- Clinic of Small Animal Medicine, Centre for Clinical Veterinary Medicine, Ludwig-Maximilians-Universitaet Munich, Veterinaerstr. 13, 80539, Munich, Germany.
| | - Gerhard Wess
- Clinic of Small Animal Medicine, Centre for Clinical Veterinary Medicine, Ludwig-Maximilians-Universitaet Munich, Veterinaerstr. 13, 80539, Munich, Germany.
| | - Katrin Hartmann
- Clinic of Small Animal Medicine, Centre for Clinical Veterinary Medicine, Ludwig-Maximilians-Universitaet Munich, Veterinaerstr. 13, 80539, Munich, Germany.
| | - Karin Weber
- Clinic of Small Animal Medicine, Centre for Clinical Veterinary Medicine, Ludwig-Maximilians-Universitaet Munich, Veterinaerstr. 13, 80539, Munich, Germany.
| |
Collapse
|
77
|
Seo MJ, Yoo JC. Lab-on-a-Disc Platform for Automated Chemical Cell Lysis. SENSORS 2018; 18:s18030687. [PMID: 29495361 PMCID: PMC5876551 DOI: 10.3390/s18030687] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 02/20/2018] [Accepted: 02/23/2018] [Indexed: 11/16/2022]
Abstract
Chemical cell lysis is an interesting topic in the research to Lab-on-a-Disc (LOD) platforms on account of its perfect compatibility with the centrifugal spin column format. However, standard procedures followed in chemical cell lysis require sophisticated non-contact temperature control as well as the use of pressure resistant valves. These requirements pose a significant challenge thereby making the automation of chemical cell lysis on an LOD extremely difficult to achieve. In this study, an LOD capable of performing fully automated chemical cell lysis is proposed, where a combination of chemical and thermal methods has been used. It comprises a sample inlet, phase change material sheet (PCMS)-based temperature sensor, heating chamber, and pressure resistant valves. The PCMS melts and solidifies at a certain temperature and thus is capable of indicating whether the heating chamber has reached a specific temperature. Compared to conventional cell lysis systems, the proposed system offers advantages of reduced manual labor and a compact structure that can be readily integrated onto an LOD. Experiments using Salmonella typhimurium strains were conducted to confirm the performance of the proposed cell lysis system. The experimental results demonstrate that the proposed system has great potential in realizing chemical cell lysis on an LOD whilst achieving higher throughput in terms of purity and yield of DNA thereby providing a good alternative to conventional cell lysis systems.
Collapse
Affiliation(s)
- Moo-Jung Seo
- College of Information and Communication Engineering, Sungkyunkwan University, Suwon 440-746, Korea.
| | - Jae-Chern Yoo
- College of Information and Communication Engineering, Sungkyunkwan University, Suwon 440-746, Korea.
| |
Collapse
|
78
|
Mitsakakis K, Hin S, Müller P, Wipf N, Thomsen E, Coleman M, Zengerle R, Vontas J, Mavridis K. Converging Human and Malaria Vector Diagnostics with Data Management towards an Integrated Holistic One Health Approach. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:E259. [PMID: 29401670 PMCID: PMC5858328 DOI: 10.3390/ijerph15020259] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 01/27/2018] [Accepted: 01/31/2018] [Indexed: 01/22/2023]
Abstract
Monitoring malaria prevalence in humans, as well as vector populations, for the presence of Plasmodium, is an integral component of effective malaria control, and eventually, elimination. In the field of human diagnostics, a major challenge is the ability to define, precisely, the causative agent of fever, thereby differentiating among several candidate (also non-malaria) febrile diseases. This requires genetic-based pathogen identification and multiplexed analysis, which, in combination, are hardly provided by the current gold standard diagnostic tools. In the field of vectors, an essential component of control programs is the detection of Plasmodium species within its mosquito vectors, particularly in the salivary glands, where the infective sporozoites reside. In addition, the identification of species composition and insecticide resistance alleles within vector populations is a primary task in routine monitoring activities, aiming to support control efforts. In this context, the use of converging diagnostics is highly desirable for providing comprehensive information, including differential fever diagnosis in humans, and mosquito species composition, infection status, and resistance to insecticides of vectors. Nevertheless, the two fields of human diagnostics and vector control are rarely combined, both at the diagnostic and at the data management end, resulting in fragmented data and mis- or non-communication between various stakeholders. To this direction, molecular technologies, their integration in automated platforms, and the co-assessment of data from multiple diagnostic sources through information and communication technologies are possible pathways towards a unified human vector approach.
Collapse
Affiliation(s)
- Konstantinos Mitsakakis
- Hahn-Schickard, Georges-Koehler-Allee 103, 79110 Freiburg, Germany.
- Laboratory for MEMS Applications, IMTEK-Department of Microsystems Engineering, University of Freiburg, Georges-Koehler-Allee 103, 79110 Freiburg, Germany.
| | - Sebastian Hin
- Hahn-Schickard, Georges-Koehler-Allee 103, 79110 Freiburg, Germany.
| | - Pie Müller
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Socinstrasse 57, PO Box, 4002 Basel, Switzerland.
- University of Basel, Petersplatz 1, 4003 Basel, Switzerland.
| | - Nadja Wipf
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Socinstrasse 57, PO Box, 4002 Basel, Switzerland.
- University of Basel, Petersplatz 1, 4003 Basel, Switzerland.
| | - Edward Thomsen
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK.
| | - Michael Coleman
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK.
| | - Roland Zengerle
- Hahn-Schickard, Georges-Koehler-Allee 103, 79110 Freiburg, Germany.
- Laboratory for MEMS Applications, IMTEK-Department of Microsystems Engineering, University of Freiburg, Georges-Koehler-Allee 103, 79110 Freiburg, Germany.
| | - John Vontas
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, 70013 Heraklion, Greece.
- Pesticide Science Laboratory, Department of Crop Science, Agricultural University of Athens, 11855 Athens, Greece.
| | - Konstantinos Mavridis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, 70013 Heraklion, Greece.
| |
Collapse
|
79
|
Song J, Liu C, Mauk MG, Peng J, Schoenfeld T, Bau HH. A Multifunctional Reactor with Dry-Stored Reagents for Enzymatic Amplification of Nucleic Acids. Anal Chem 2018; 90:1209-1216. [PMID: 29226671 PMCID: PMC6310013 DOI: 10.1021/acs.analchem.7b03834] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
To enable inexpensive molecular detection at the point-of-care and at home with minimal or no instrumentation, it is necessary to streamline unit operations and store reagents refrigeration-free. To address this need, a multifunctional enzymatic amplification reactor that combines solid-phase nucleic acid extraction, concentration, and purification; refrigeration-free storage of reagents with just-in-time release; and enzymatic amplification is designed, prototyped, and tested. A nucleic acid isolation membrane is placed at the reactor's inlet, and paraffin-encapsulated reagents are prestored within the reactor. When a sample mixed with chaotropic agents is filtered through the nucleic acid isolation membrane, the membrane binds nucleic acids from the sample. Importantly, the sample volume is decoupled from the reaction volume, enabling the use of relatively large sample volumes for high sensitivity. When the amplification reactor's temperature increases to its operating level, the paraffin encapsulating the reagents melts and moves out of the way. The reagents are hydrated, just-in-time, and the polymerase reaction proceeds. The amplification process can be monitored, in real-time. We demonstrate our reactors' ability to amplify both DNA and RNA targets using polymerase with both reverse-transcriptase and strand displacement activities to obtain sensitivities on-par with benchtop equipment and a shelf life exceeding 6 months.
Collapse
Affiliation(s)
- Jinzhao Song
- Department of Mechanical Engineering and Applied Mechanics, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Changchun Liu
- Department of Mechanical Engineering and Applied Mechanics, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Michael G. Mauk
- Department of Mechanical Engineering and Applied Mechanics, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Jing Peng
- Department of Mechanical Engineering and Applied Mechanics, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | | | - Haim H. Bau
- Department of Mechanical Engineering and Applied Mechanics, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
80
|
Kim Y, Lee WN, Yoo HJ, Baek C, Min J. Direct buffer composition of blood pre-process for nucleic acid based diagnostics. BIOCHIP JOURNAL 2017; 11:255-261. [PMID: 32226588 PMCID: PMC7097592 DOI: 10.1007/s13206-017-1401-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 09/25/2017] [Indexed: 12/02/2022]
Abstract
Recently, a variety of methods, so called “direct buffer”, have been developed to utilize nucleic acid in the blood for the measurement of infectious bacteria and virus without any equipment in the field. In here, we first investigated the individual and combinatory effects of candidate chemicals which might be composed of the direct buffer on the PCR inhibition reduction of main compositions in whole blood. The long and short PEGs, Na2SO4 and GuSCN were selected as representative kosmotropic and chaotropic salts, respectively. MgCl2 were chosen as divalent cation source and NaOH was used to control blood pH. The effect of common non-ionic biological detergent was tested with Triton X-100 and SDS (Sodium Dodecyl sulfate) was chosen as anionic detergent. These results could provide a foundation for the development of sample preparation solution in nucleic acid based diagnostic field. As a result, the direct buffer developed in this study was able to detect viruses with a concentration of 102 pfu/100 μL of whole blood by a very simple method.
Collapse
Affiliation(s)
- YeJi Kim
- School of Integrative Engineering, Chung-Ang University, Heuksukdong, Dongjak-gu, Seoul, 06974 Republic of Korea
| | - Won-Nyoung Lee
- School of Integrative Engineering, Chung-Ang University, Heuksukdong, Dongjak-gu, Seoul, 06974 Republic of Korea
| | - Hyun Jin Yoo
- School of Integrative Engineering, Chung-Ang University, Heuksukdong, Dongjak-gu, Seoul, 06974 Republic of Korea
| | - Changyoon Baek
- School of Integrative Engineering, Chung-Ang University, Heuksukdong, Dongjak-gu, Seoul, 06974 Republic of Korea
| | - Junhong Min
- School of Integrative Engineering, Chung-Ang University, Heuksukdong, Dongjak-gu, Seoul, 06974 Republic of Korea
| |
Collapse
|
81
|
Zhang L, Ding B, Chen Q, Feng Q, Lin L, Sun J. Point-of-care-testing of nucleic acids by microfluidics. Trends Analyt Chem 2017. [DOI: 10.1016/j.trac.2017.07.013] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
82
|
Basha IHK, Ho ETW, Yousuff CM, Hamid NHB. Towards Multiplex Molecular Diagnosis-A Review of Microfluidic Genomics Technologies. MICROMACHINES 2017; 8:E266. [PMID: 30400456 PMCID: PMC6190060 DOI: 10.3390/mi8090266] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 06/30/2017] [Accepted: 07/16/2017] [Indexed: 12/21/2022]
Abstract
Highly sensitive and specific pathogen diagnosis is essential for correct and timely treatment of infectious diseases, especially virulent strains, in people. Point-of-care pathogen diagnosis can be a tremendous help in managing disease outbreaks as well as in routine healthcare settings. Infectious pathogens can be identified with high specificity using molecular methods. A plethora of microfluidic innovations in recent years have now made it increasingly feasible to develop portable, robust, accurate, and sensitive genomic diagnostic devices for deployment at the point of care. However, improving processing time, multiplexed detection, sensitivity and limit of detection, specificity, and ease of deployment in resource-limited settings are ongoing challenges. This review outlines recent techniques in microfluidic genomic diagnosis and devices with a focus on integrating them into a lab on a chip that will lead towards the development of multiplexed point-of-care devices of high sensitivity and specificity.
Collapse
Affiliation(s)
- Ismail Hussain Kamal Basha
- Department of Electrical and Electronic Engineering, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia.
| | - Eric Tatt Wei Ho
- Department of Electrical and Electronic Engineering, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia.
| | - Caffiyar Mohamed Yousuff
- Department of Electrical and Electronic Engineering, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia.
| | - Nor Hisham Bin Hamid
- Department of Electrical and Electronic Engineering, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia.
| |
Collapse
|
83
|
A sample-to-answer, real-time convective polymerase chain reaction system for point-of-care diagnostics. Biosens Bioelectron 2017. [PMID: 28624618 DOI: 10.1016/j.bios.2017.06.014] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Timely and accurate molecular diagnostics at the point-of-care (POC) level is critical to global health. To this end, we propose a handheld convective-flow real-time polymerase chain reaction (PCR) system capable of direct sample-to-answer genetic analysis for the first time. Such a system mainly consists of a magnetic bead-assisted photothermolysis sample preparation, a closed-loop convective PCR reactor, and a wireless video camera-based real-time fluorescence detection. The sample preparation exploits the dual functionality of vancomycin-modified magnetic beads (VMBs) for bacteria enrichment and photothermal conversion, enabling cell pre-concentration and lysis to be finished in less than 3min. On the presented system, convective thermocycling is driven by a single-heater thermal gradient, and its amplification is monitored in real-time, with an analysis speed of less than 25min, a dynamic linear range from 106 to 101 copies/µL and a detection sensitivity of as little as 1 copies/µL. Additionally, the proposed PCR system is self-contained with a control electronics, pocket-size and battery-powered, providing a low-cost genetic analysis in a portable format. Therefore, we believe that this integrated system may become a potential candidate for fast, accurate and affordable POC molecular diagnostics.
Collapse
|
84
|
Nanayakkara IA, Cao W, White IM. Simplifying Nucleic Acid Amplification from Whole Blood with Direct Polymerase Chain Reaction on Chitosan Microparticles. Anal Chem 2017; 89:3773-3779. [DOI: 10.1021/acs.analchem.7b00274] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Imaly A. Nanayakkara
- Fischell
Department of Bioengineering, University of Maryland, College Park, Maryland 20742, United States
| | - Weidong Cao
- Canon U.S. Life Sciences, Inc., Rockville, Maryland 20850, United States
| | - Ian M. White
- Fischell
Department of Bioengineering, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
85
|
Lutz S, Lopez-Calle E, Espindola P, Boehm C, Brueckner T, Spinke J, Marcinowski M, Keller T, Tgetgel A, Herbert N, Fischer T, Beiersdorf E. A fully integrated microfluidic platform for highly sensitive analysis of immunochemical parameters. Analyst 2017; 142:4206-4214. [DOI: 10.1039/c7an00547d] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A fully integrated cartridge for highly sensitive immunochemical analysis of cardiac markers with new microfluidic functionalities is presented.
Collapse
|
86
|
Balter ML, Chen AI, Colinco CA, Gorshkov A, Bixon B, Martin V, Fromholtz A, Maguire TJ, Yarmush ML. Differential Leukocyte Counting via Fluorescent Detection and Image Processing on a Centrifugal Microfluidic Platform. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2016; 8:8272-8279. [PMID: 28446924 PMCID: PMC5403153 DOI: 10.1039/c6ay02614a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Centrifugal microfluidics has received much attention in the last decade for the automation of blood testing at the point-of-care, specifically for the detection of chemistries, proteins, and nucleic acids. However, the detection of common blood cells on-disc, particularly leukocytes, remains a challenge. In this paper, we present two analytical methods for enumerating leukocytes on a centrifugal platform using a custom-built fluorescent microscope, acridine orange nuclear staining, and image processing techniques. In the first method, cell analysis is performed in glass capillary tubes; in the second, acrylic chips are used. A bulk-cell analysis approach is implemented in both cases where the pixel areas of fractionated lymphocyte/monocyte and granulocyte layers are correlated with cell counts. Generating standard curves using porcine blood sample controls, we observed strong linear fits to measured cell counts using both methods. Analyzing the pixel intensities of the fluorescing white cell region, we are able to differentiate lymphocytes from monocytes via pixel clustering, demonstrating the capacity to perform a 3-part differential. Finally, a discussion of pros and cons of the bulk-cell analysis approach concludes the paper.
Collapse
Affiliation(s)
- Max L. Balter
- Rutgers University, Department of Biomedical Engineering, Piscataway, NJ, 08854, USA
| | - Alvin I. Chen
- Rutgers University, Department of Biomedical Engineering, Piscataway, NJ, 08854, USA
| | - C. Amara Colinco
- Rutgers University, Department of Biomedical Engineering, Piscataway, NJ, 08854, USA
| | - Alexander Gorshkov
- Rutgers University, Department of Biomedical Engineering, Piscataway, NJ, 08854, USA
| | - Brian Bixon
- Rutgers University, Department of Biomedical Engineering, Piscataway, NJ, 08854, USA
| | - Vincent Martin
- Rutgers University, Department of Biomedical Engineering, Piscataway, NJ, 08854, USA
| | - Alexander Fromholtz
- Rutgers University, Department of Biomedical Engineering, Piscataway, NJ, 08854, USA
| | | | - Martin L. Yarmush
- Rutgers University, Department of Biomedical Engineering, Piscataway, NJ, 08854, USA
- Massachusetts General Hospital, Boston, MA, 02108, USA
| |
Collapse
|
87
|
Park BH, Oh SJ, Jung JH, Choi G, Seo JH, Kim DH, Lee EY, Seo TS. An integrated rotary microfluidic system with DNA extraction, loop-mediated isothermal amplification, and lateral flow strip based detection for point-of-care pathogen diagnostics. Biosens Bioelectron 2016; 91:334-340. [PMID: 28043075 DOI: 10.1016/j.bios.2016.11.063] [Citation(s) in RCA: 157] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 11/16/2016] [Accepted: 11/28/2016] [Indexed: 01/05/2023]
Abstract
Point-of-care (POC) molecular diagnostics plays a pivotal role for the prevention and treatment of infectious diseases. In spite of recent advancement in microfluidic based POC devices, there are still rooms for development to realize rapid, automatic and cost-effective sample-to-result genetic analysis. In this study, we propose an integrated rotary microfluidic system that is capable of performing glass microbead based DNA extraction, loop mediated isothermal amplification (LAMP), and colorimetric lateral flow strip based detection in a sequential manner with an optimized microfluidic design and a rotational speed control. Rotation direction-dependent coriolis force and siphon valving structures enable us to perform the fluidic control and metering, and the use of the lateral flow strip as a detection method renders all the analytical processes for nucleic acid test simplified and integrated without the need of expensive instruments or human intervention. As a proof of concept for point-of-care DNA diagnostics, we identified the food-borne bacterial pathogen which was contaminated in water or milk. Not only monoplex Salmonella Typhimurium but also multiplex Salmonella Typhimurium and Vibrio parahaemolyticus were analysed on the integrated rotary genetic analysis microsystem with a limit of detection of 50 CFU in 80min. In addition, three multiple samples were simultaneously analysed on a single device. The sample-to-result capability of the proposed microdevice provides great usefulness in the fields of clinical diagnostics, food safety and environment monitoring.
Collapse
Affiliation(s)
- Byung Hyun Park
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 305-701, Republic of Korea
| | - Seung Jun Oh
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 305-701, Republic of Korea
| | - Jae Hwan Jung
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 305-701, Republic of Korea
| | - Goro Choi
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 305-701, Republic of Korea
| | - Ji Hyun Seo
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 305-701, Republic of Korea
| | - Do Hyun Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 305-701, Republic of Korea
| | - Eun Yeol Lee
- Department of Chemical Engineering, College of Engineering, Kyung Hee University, 1 Seochon-dong, Giheung-gu, Yongin-si, Gyeonggi-do 17140, Republic of Korea
| | - Tae Seok Seo
- Department of Chemical Engineering, College of Engineering, Kyung Hee University, 1 Seochon-dong, Giheung-gu, Yongin-si, Gyeonggi-do 17140, Republic of Korea.
| |
Collapse
|
88
|
Fidan Z, Wende A, Resch-Genger U. Visible and red emissive molecular beacons for optical temperature measurements and quality control in diagnostic assays utilizing temperature-dependent amplification reactions. Anal Bioanal Chem 2016; 409:1519-1529. [DOI: 10.1007/s00216-016-0088-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 10/31/2016] [Accepted: 11/07/2016] [Indexed: 12/11/2022]
|
89
|
Boyd-Moss M, Baratchi S, Di Venere M, Khoshmanesh K. Self-contained microfluidic systems: a review. LAB ON A CHIP 2016; 16:3177-92. [PMID: 27425637 DOI: 10.1039/c6lc00712k] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Microfluidic systems enable rapid diagnosis, screening and monitoring of diseases and health conditions using small amounts of biological samples and reagents. Despite these remarkable features, conventional microfluidic systems rely on bulky expensive external equipment, which hinders their utility as powerful analysis tools outside of research laboratories. 'Self-contained' microfluidic systems, which contain all necessary components to facilitate a complete assay, have been developed to address this limitation. In this review, we provide an in-depth overview of self-contained microfluidic systems. We categorise these systems based on their operating mechanisms into three major groups: passive, hand-powered and active. Several examples are provided to discuss the structure, capabilities and shortcomings of each group. In particular, we discuss the self-contained microfluidic systems enabled by active mechanisms, due to their unique capability for running multi-step and highly controllable diagnostic assays. Integration of self-contained microfluidic systems with the image acquisition and processing capabilities of smartphones, especially those equipped with accessory optical components, enables highly sensitive and quantitative assays, which are discussed. Finally, the future trends and possible solutions to expand the versatility of self-contained, stand-alone microfluidic platforms are outlined.
Collapse
Affiliation(s)
| | - Sara Baratchi
- School of Health & Biomedical Sciences, RMIT University, Melbourne, Victoria, Australia.
| | - Martina Di Venere
- School of Civil & Industrial Engineering, Sapienza University, Rome, Italy
| | | |
Collapse
|
90
|
Bissonnette L, Bergeron MG. The GenePOC Platform, a Rational Solution for Extreme Point-of-Care Testing. MICROMACHINES 2016; 7:E94. [PMID: 30404270 PMCID: PMC6189873 DOI: 10.3390/mi7060094] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 05/06/2016] [Accepted: 05/17/2016] [Indexed: 01/02/2023]
Abstract
Extreme point-of-care (POC) testing for infections, as performed (endured) in low-resource settings, developing countries, tropical areas, or in conditions following emergency crises or natural disasters, must be undertaken under environmental, logistic, and societal conditions which impose a significant deal of stress on local human populations and healthcare providers. For disease diagnostics or management, simple and robust biomedical equipment and reagents are required and needed. This chapter aims to overview some of these stresses (requirements) and intends to describe some of the solutions already engineered at the heart of centripetal (centrifugal) microfluidic platforms such as that of GenePOC Inc. to enable rapid, robust, and reproducible nucleic acid-based diagnostics of infectious diseases, to better control the morbidity and mortality of infections and the expanding threat posed by antimicrobial resistance.
Collapse
Affiliation(s)
- Luc Bissonnette
- Centre de recherche en infectiologie de l'Université Laval, Axe maladies infectieuses et immunitaires, Centre de recherche du CHU de Québec-Université Laval, Québec City, QC G1V 4G2, Canada.
- Département de microbiologie-infectiologie et d'immunologie, Faculté de médecine, Université Laval, Québec City, QC G1V 0A6, Canada.
| | - Michel G Bergeron
- Centre de recherche en infectiologie de l'Université Laval, Axe maladies infectieuses et immunitaires, Centre de recherche du CHU de Québec-Université Laval, Québec City, QC G1V 4G2, Canada.
- Département de microbiologie-infectiologie et d'immunologie, Faculté de médecine, Université Laval, Québec City, QC G1V 0A6, Canada.
| |
Collapse
|
91
|
Oh SJ, Park BH, Choi G, Seo JH, Jung JH, Choi JS, Kim DH, Seo TS. Fully automated and colorimetric foodborne pathogen detection on an integrated centrifugal microfluidic device. LAB ON A CHIP 2016; 16:1917-26. [PMID: 27112702 DOI: 10.1039/c6lc00326e] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
This work describes fully automated and colorimetric foodborne pathogen detection on an integrated centrifugal microfluidic device, which is called a lab-on-a-disc. All the processes for molecular diagnostics including DNA extraction and purification, DNA amplification and amplicon detection were integrated on a single disc. Silica microbeads incorporated in the disc enabled extraction and purification of bacterial genomic DNA from bacteria-contaminated milk samples. We targeted four kinds of foodborne pathogens (Escherichia coli O157:H7, Salmonella typhimurium, Vibrio parahaemolyticus and Listeria monocytogenes) and performed loop-mediated isothermal amplification (LAMP) to amplify the specific genes of the targets. Colorimetric detection mediated by a metal indicator confirmed the results of the LAMP reactions with the colour change of the LAMP mixtures from purple to sky blue. The whole process was conducted in an automated manner using the lab-on-a-disc and a miniaturized rotary instrument equipped with three heating blocks. We demonstrated that a milk sample contaminated with foodborne pathogens can be automatically analysed on the centrifugal disc even at the 10 bacterial cell level in 65 min. The simplicity and portability of the proposed microdevice would provide an advanced platform for point-of-care diagnostics of foodborne pathogens, where prompt confirmation of food quality is needed.
Collapse
Affiliation(s)
- Seung Jun Oh
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 305-701, Republic of Korea.
| | | | | | | | | | | | | | | |
Collapse
|
92
|
Tang M, Wang G, Kong SK, Ho HP. A Review of Biomedical Centrifugal Microfluidic Platforms. MICROMACHINES 2016; 7:E26. [PMID: 30407398 PMCID: PMC6190084 DOI: 10.3390/mi7020026] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 02/03/2016] [Indexed: 12/14/2022]
Abstract
Centrifugal microfluidic or lab-on-a-disc platforms have many advantages over other microfluidic systems. These advantages include a minimal amount of instrumentation, the efficient removal of any disturbing bubbles or residual volumes, and inherently available density-based sample transportation and separation. Centrifugal microfluidic devices applied to biomedical analysis and point-of-care diagnostics have been extensively promoted recently. This paper presents an up-to-date overview of these devices. The development of biomedical centrifugal microfluidic platforms essentially covers two categories: (i) unit operations that perform specific functionalities, and (ii) systems that aim to address certain biomedical applications. With the aim to provide a comprehensive representation of current development in this field, this review summarizes progress in both categories. The advanced unit operations implemented for biological processing include mixing, valving, switching, metering and sequential loading. Depending on the type of sample to be used in the system, biomedical applications are classified into four groups: nucleic acid analysis, blood analysis, immunoassays, and other biomedical applications. Our overview of advanced unit operations also includes the basic concepts and mechanisms involved in centrifugal microfluidics, while on the other hand an outline on reported applications clarifies how an assembly of unit operations enables efficient implementation of various types of complex assays. Lastly, challenges and potential for future development of biomedical centrifugal microfluidic devices are discussed.
Collapse
Affiliation(s)
- Minghui Tang
- Department of Electronic Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong, China.
| | - Guanghui Wang
- Institute of Optical Communication Engineering, Nanjing University, Jiangsu 210009, China.
| | - Siu-Kai Kong
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China.
| | - Ho-Pui Ho
- Department of Electronic Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong, China.
| |
Collapse
|