51
|
Auria‐Luna F, Mohammadi S, Divar M, Gimeno MC, Herrera RP. Asymmetric Fluorination Reactions promoted by Chiral Hydrogen Bonding‐based Organocatalysts. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000848] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Fernando Auria‐Luna
- Laboratorio de Organocatálisis Asimétrica. Departamento de Química Orgánica. Instituto de Síntesis Química y Catálisis Homogénea (ISQCH) CSIC- Universidad de Zaragoza. C/ Pedro Cerbuna 12 50009 Zaragoza Spain)
| | - Somayeh Mohammadi
- Medicinal & Natural Products Chemistry Research Center Shiraz University of Medical Sciences. 7134853734 Shiraz (Iran)
| | - Masoumeh Divar
- Medicinal & Natural Products Chemistry Research Center Shiraz University of Medical Sciences. 7134853734 Shiraz (Iran)
| | - M. Concepción Gimeno
- Departamento de Química Inorgánica. Instituto de Síntesis Química y Catálisis Homogénea (ISQCH) CSIC- Universidad de Zaragoza. C/ Pedro Cerbuna 12 50009 Zaragoza Spain)
| | - Raquel P. Herrera
- Laboratorio de Organocatálisis Asimétrica. Departamento de Química Orgánica. Instituto de Síntesis Química y Catálisis Homogénea (ISQCH) CSIC- Universidad de Zaragoza. C/ Pedro Cerbuna 12 50009 Zaragoza Spain)
| |
Collapse
|
52
|
Affiliation(s)
- Shunichi Fukuzumi
- Department of Chemistry and Nano Science Ewha Womans University Seoul 03760 South Korea
- Faculty of Science and Engineering Meijo University Nagoya Aichi 468‐0073 Japan
| | - Yong‐Min Lee
- Department of Chemistry and Nano Science Ewha Womans University Seoul 03760 South Korea
- Research Institute for Basic Sciences Ewha Womans University Seoul 03760 South Korea
| | - Wonwoo Nam
- Department of Chemistry and Nano Science Ewha Womans University Seoul 03760 South Korea
| |
Collapse
|
53
|
Lapuh MI, Mazeh S, Besset T. Chiral Transient Directing Groups in Transition-Metal-Catalyzed Enantioselective C–H Bond Functionalization. ACS Catal 2020. [DOI: 10.1021/acscatal.0c03317] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Maria I. Lapuh
- Normandie Univ, INSA Rouen, UNIROUEN, CNRS, COBRA (UMR 6014), 76000 Rouen, France
| | - Sara Mazeh
- Normandie Univ, INSA Rouen, UNIROUEN, CNRS, COBRA (UMR 6014), 76000 Rouen, France
| | - Tatiana Besset
- Normandie Univ, INSA Rouen, UNIROUEN, CNRS, COBRA (UMR 6014), 76000 Rouen, France
| |
Collapse
|
54
|
Metternich JB, Reiterer M, Jacobsen EN. Asymmetric Nazarov Cyclizations of Unactivated Dienones by Hydrogen-Bond-Donor/Lewis Acid Co-Catalyzed, Enantioselective Proton-Transfer. Adv Synth Catal 2020; 362:4092-4097. [PMID: 33162875 PMCID: PMC7643875 DOI: 10.1002/adsc.202000831] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Indexed: 12/15/2022]
Abstract
We report an enantioselective Nazarov cyclization catalyzed by chiral hydrogen-bond-donors in concert with silyl Lewis acids. The developed transformation provides access to tri-substituted cyclopentenones in high levels of enantioselectivity (up to 95% e.e.) from a variety of simple unactivated dienones. Kinetic and mechanistic studies are consistent with a reversible 4π-electrocyclization C-C bond-forming step followed by rate- and enantio-determining proton-transfer as the mode of catalysis.
Collapse
Affiliation(s)
- Jan B Metternich
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Martin Reiterer
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Eric N Jacobsen
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| |
Collapse
|
55
|
Facile Synthesis of Highly Active Sulfated Titania Nanofibers for Viscous Acid-Catalytic Reactions. Catal Letters 2020. [DOI: 10.1007/s10562-020-03395-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
56
|
Zhu Z, Odagi M, Supantanapong N, Xu W, Saame J, Kirm HU, Abboud KA, Leito I, Seidel D. Modular Design of Chiral Conjugate-Base-Stabilized Carboxylic Acids: Catalytic Enantioselective [4 + 2] Cycloadditions of Acetals. J Am Chem Soc 2020; 142:15252-15258. [PMID: 32830974 DOI: 10.1021/jacs.0c07212] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Readily available 1,2-amino alcohols provide the framework for a new generation of chiral carboxylic acid catalysts that rival the acidity of the widely used chiral phosphoric acid catalyst (S)-TRIP. Covalently linked thiourea sites stabilize the carboxylate conjugate bases of these catalysts via anion-binding, an interaction that is largely responsible for the low pKa values. The utility of the new catalysts is illustrated in the context of challenging [4 + 2] cycloadditions of salicylaldehyde-derived acetals with homoallylic and bishomoallylic alcohols, providing polycyclic chromanes in a highly enantioselective fashion.
Collapse
Affiliation(s)
- Zhengbo Zhu
- Center for Heterocyclic Compounds, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Minami Odagi
- Center for Heterocyclic Compounds, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States.,Department of Biotechnology and Life Science, Graduate School of Technology, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei city, 184-8588, Tokyo, Japan
| | - Nantamon Supantanapong
- Center for Heterocyclic Compounds, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Weici Xu
- Center for Heterocyclic Compounds, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Jaan Saame
- Institute of Chemistry, University of Tartu, Tartu, Estonia
| | | | - Khalil A Abboud
- Center for X-ray Crystallography, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Ivo Leito
- Institute of Chemistry, University of Tartu, Tartu, Estonia
| | - Daniel Seidel
- Center for Heterocyclic Compounds, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| |
Collapse
|
57
|
Wang Q, Zhang WW, Song H, Wang J, Zheng C, Gu Q, You SL. Rhodium-Catalyzed Atroposelective Oxidative C-H/C-H Cross-Coupling Reaction of 1-Aryl Isoquinoline Derivatives with Electron-Rich Heteroarenes. J Am Chem Soc 2020; 142:15678-15685. [PMID: 32865413 DOI: 10.1021/jacs.0c08205] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Rhodium(III)-catalyzed enantioselective oxidative C-H/C-H cross-coupling reaction between two arenes is disclosed. With the combination of a chiral CpRh(III) complex and a chiral carboxylic acid additive, the direct coupling reactions between 1-aryl isoquinoline derivatives and electron-rich heteroarenes such as thiophenes, furans, benzothiophenes, and benzofurans are realized via a double C-H functionalization process. A series of axially chiral compounds are obtained in excellent yields and enantioselectivities (up to 99% yield and 99% ee). Mechanistic studies suggest that both C-H bond cleavages may not be the turnover-limiting step.
Collapse
Affiliation(s)
- Qiang Wang
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Wen-Wen Zhang
- Chang-Kung Chuang Institute, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
| | - Hao Song
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Jian Wang
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Chao Zheng
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Qing Gu
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Shu-Li You
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China.,Chang-Kung Chuang Institute, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
| |
Collapse
|
58
|
Dhawa U, Tian C, Wdowik T, Oliveira JCA, Hao J, Ackermann L. Enantioselective Pallada-Electrocatalyzed C-H Activation by Transient Directing Groups: Expedient Access to Helicenes. Angew Chem Int Ed Engl 2020; 59:13451-13457. [PMID: 32243685 PMCID: PMC7497116 DOI: 10.1002/anie.202003826] [Citation(s) in RCA: 136] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Indexed: 01/05/2023]
Abstract
Asymmetric pallada-electrocatalyzed C-H olefinations were achieved through the synergistic cooperation with transient directing groups. The electrochemical, atroposelective C-H activations were realized with high position-, diastereo-, and enantio-control under mild reaction conditions to obtain highly enantiomerically-enriched biaryls and fluorinated N-C axially chiral scaffolds. Our strategy provided expedient access to, among others, novel chiral BINOLs, dicarboxylic acids and helicenes of value to asymmetric catalysis. Mechanistic studies by experiments and computation provided key insights into the catalyst's mode of action.
Collapse
Affiliation(s)
- Uttam Dhawa
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität GöttingenTammannstraße 237077GöttingenGermany
| | - Cong Tian
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität GöttingenTammannstraße 237077GöttingenGermany
| | - Tomasz Wdowik
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität GöttingenTammannstraße 237077GöttingenGermany
| | - João C. A. Oliveira
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität GöttingenTammannstraße 237077GöttingenGermany
| | - Jiping Hao
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität GöttingenTammannstraße 237077GöttingenGermany
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität GöttingenTammannstraße 237077GöttingenGermany
- Wöhler Research Institute for Sustainable Chemistry (WISCh)Georg-August-Universität GöttingenTammannstraße 237077GöttingenGermany
| |
Collapse
|
59
|
Li C, Zhao P, Li R, Zhang B, Zhao W. Oxidation of Alkynyl Boronates to Carboxylic Acids, Esters, and Amides. Angew Chem Int Ed Engl 2020; 59:10913-10917. [PMID: 32219974 DOI: 10.1002/anie.202000988] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 03/16/2020] [Indexed: 12/13/2022]
Abstract
A general efficient protocol was developed for the synthesis of carboxylic acids, esters, and amides through oxidation of alkynyl boronates, generated directly from terminal alkynes. This protocol represents the first example of C(sp)-B bond oxidation. This approach displays a broad substrate scope, including aryl and alkyl alkynes, and exhibits excellent functional group tolerance. Water, primary and secondary alcohols, and amines are suitable nucleophiles for this transformation. Notably, amino acids and peptides can be used as nucleophiles, providing an efficient method for the synthesis and modification of peptides. The practicability of this methodology was further highlighted by the preparation of pharmaceutical molecules.
Collapse
Affiliation(s)
- Chenchen Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
| | - Pei Zhao
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
| | - Ruoling Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
| | - Bing Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
| | - Wanxiang Zhao
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
| |
Collapse
|
60
|
Dhawa U, Tian C, Wdowik T, Oliveira JCA, Hao J, Ackermann L. Enantioselektive Pallada‐elektrokatalysierte C‐H‐Aktivierung durch transiente dirigierende Gruppen: Ein nützlicher Zugang zu Helicenen. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202003826] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Uttam Dhawa
- Institut für Organische und Biomolekulare Chemie Georg-August-Universität Göttingen Tammannstraße 2 37077 Göttingen Deutschland
| | - Cong Tian
- Institut für Organische und Biomolekulare Chemie Georg-August-Universität Göttingen Tammannstraße 2 37077 Göttingen Deutschland
| | - Tomasz Wdowik
- Institut für Organische und Biomolekulare Chemie Georg-August-Universität Göttingen Tammannstraße 2 37077 Göttingen Deutschland
| | - João C. A. Oliveira
- Institut für Organische und Biomolekulare Chemie Georg-August-Universität Göttingen Tammannstraße 2 37077 Göttingen Deutschland
| | - Jiping Hao
- Institut für Organische und Biomolekulare Chemie Georg-August-Universität Göttingen Tammannstraße 2 37077 Göttingen Deutschland
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare Chemie Georg-August-Universität Göttingen Tammannstraße 2 37077 Göttingen Deutschland
- Wöhler Research Institute for Sustainable Chemistry (WISCh) Georg-August-Universität Göttingen Tammannstraße 2 37077 Göttingen Deutschland
| |
Collapse
|
61
|
Li QH, Jiang X, Wu K, Luo RQ, Liang M, Zhang ZH, Huang ZY. Research Progress on the Catalytic Enantioselective Synthesis of Axially Chiral Allenes by Chiral Organocatalysts. CURR ORG CHEM 2020. [DOI: 10.2174/1385272824666200306094427] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Chiral allenes are important structural scaffolds found in many natural products
and drugs, and in addition, they also serve as building blocks for many organic transformations.
The conventional methods for preparing chiral allenes rely on the resolution of
racemic allenes and the chirality transfer between non-racemic propargylic derivatives and
nucleophilic reagents. In recent years, the synthesis of chiral allenes by asymmetric catalysis
has been achieved fruitful results. Among them, enantioselective synthesis of chiral
allenes with chiral organic catalysts is particularly prominent. In this paper, the research
progress of enantioselective synthesis of chiral allenes catalyzed by chiral organic catalysts
in recent years is reviewed, including various reaction systems and synthesis applications.
Collapse
Affiliation(s)
- Qing Han Li
- College of Chemistry and Environmental Protection Engineering, Southwest Minzu University, Chengdu, China
| | - Xin Jiang
- College of Chemistry and Environmental Protection Engineering, Southwest Minzu University, Chengdu, China
| | - Kun Wu
- College of Chemistry and Environmental Protection Engineering, Southwest Minzu University, Chengdu, China
| | - Rui Qiang Luo
- College of Chemistry and Environmental Protection Engineering, Southwest Minzu University, Chengdu, China
| | - Meng Liang
- College of Chemistry and Environmental Protection Engineering, Southwest Minzu University, Chengdu, China
| | - Zhi Hao Zhang
- College of Chemistry and Environmental Protection Engineering, Southwest Minzu University, Chengdu, China
| | - Zhe Yao Huang
- College of Chemistry and Environmental Protection Engineering, Southwest Minzu University, Chengdu, China
| |
Collapse
|
62
|
Kauerhof D, Niemeyer J. Functionalized Macrocycles in Supramolecular Organocatalysis. Chempluschem 2020; 85:889-899. [PMID: 32391655 DOI: 10.1002/cplu.202000152] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 04/26/2020] [Indexed: 01/18/2023]
Abstract
Supramolecular organocatalysis has emerged as a novel research field in the context of homogeneous catalysis. In particular, the use of functionalized macrocycles as supramolecular catalysts is highly promising, as these systems are oftentimes easily accessible and offer distinct advantages in catalysis. Macrocyclic catalysts can provide defined binding pockets, such as hydrophobic cavities, and can thus create a reaction microenvironment for catalysis. In addition, macrocycles can offer a preorganized arrangement of functional groups, such as binding sites or catalytically active groups, thus enabling a defined and possibly multivalent binding and activation of substrates. The aim of this Minireview is to provide an overview of recent advances in the area of supramolecular organocatalysis based on functionalized macrocycles (including cyclodextrins, calixarenes, and resorcinarenes), with a focus on those examples where certain catalytically active groups (such as hydrogen bond donors/acceptors, Brønsted acid or base groups, or nucleophilic units) are present in or have been installed on the macrocycles.
Collapse
Affiliation(s)
- Dana Kauerhof
- Faculty of Chemistry (Organic Chemistry) and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitätsstr. 7, 45141, Essen, Germany
| | - Jochen Niemeyer
- Faculty of Chemistry (Organic Chemistry) and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitätsstr. 7, 45141, Essen, Germany
| |
Collapse
|
63
|
Li C, Zhao P, Li R, Zhang B, Zhao W. Oxidation of Alkynyl Boronates to Carboxylic Acids, Esters, and Amides. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202000988] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Chenchen Li
- State Key Laboratory of Chemo/Biosensing and ChemometricsCollege of Chemistry and Chemical EngineeringHunan University Changsha Hunan 410082 P. R. China
| | - Pei Zhao
- State Key Laboratory of Chemo/Biosensing and ChemometricsCollege of Chemistry and Chemical EngineeringHunan University Changsha Hunan 410082 P. R. China
| | - Ruoling Li
- State Key Laboratory of Chemo/Biosensing and ChemometricsCollege of Chemistry and Chemical EngineeringHunan University Changsha Hunan 410082 P. R. China
| | - Bing Zhang
- State Key Laboratory of Chemo/Biosensing and ChemometricsCollege of Chemistry and Chemical EngineeringHunan University Changsha Hunan 410082 P. R. China
| | - Wanxiang Zhao
- State Key Laboratory of Chemo/Biosensing and ChemometricsCollege of Chemistry and Chemical EngineeringHunan University Changsha Hunan 410082 P. R. China
| |
Collapse
|
64
|
Jansen D, Gramüller J, Niemeyer F, Schaller T, Letzel MC, Grimme S, Zhu H, Gschwind RM, Niemeyer J. What is the role of acid-acid interactions in asymmetric phosphoric acid organocatalysis? A detailed mechanistic study using interlocked and non-interlocked catalysts. Chem Sci 2020; 11:4381-4390. [PMID: 34122895 PMCID: PMC8159434 DOI: 10.1039/d0sc01026j] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 04/01/2020] [Indexed: 11/21/2022] Open
Abstract
Organocatalysis has revolutionized asymmetric synthesis. However, the supramolecular interactions of organocatalysts in solution are often neglected, although the formation of catalyst aggregates can have a strong impact on the catalytic reaction. For phosphoric acid based organocatalysts, we have now established that catalyst-catalyst interactions can be suppressed by using macrocyclic catalysts, which react predominantly in a monomeric fashion, while they can be favored by integration into a bifunctional catenane, which reacts mainly as phosphoric acid dimers. For acyclic phosphoric acids, we found a strongly concentration dependent behavior, involving both monomeric and dimeric catalytic pathways. Based on a detailed experimental analysis, DFT-calculations and direct NMR-based observation of the catalyst aggregates, we could demonstrate that intermolecular acid-acid interactions have a drastic influence on the reaction rate and stereoselectivity of asymmetric transfer-hydrogenation catalyzed by chiral phosphoric acids.
Collapse
Affiliation(s)
- Dennis Jansen
- Faculty of Chemistry (Organic Chemistry) and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitätsstrasse 7 45141 Essen Germany
| | | | - Felix Niemeyer
- Faculty of Chemistry (Organic Chemistry) and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitätsstrasse 7 45141 Essen Germany
| | - Torsten Schaller
- Faculty of Chemistry (Organic Chemistry) and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitätsstrasse 7 45141 Essen Germany
| | - Matthias C Letzel
- Institute of Organic Chemistry, University of Münster Corrensstrasse 40 48149 Münster Germany
| | - Stefan Grimme
- Mulliken Center for Theoretical Chemistry, Rheinische Friedrich-Wilhelms Universität Bonn Beringstrasse 4 53115 Bonn Germany
| | - Hui Zhu
- Mulliken Center for Theoretical Chemistry, Rheinische Friedrich-Wilhelms Universität Bonn Beringstrasse 4 53115 Bonn Germany
| | - Ruth M Gschwind
- Organic Chemistry, University of Regensburg 93040 Regensburg Germany
| | - Jochen Niemeyer
- Faculty of Chemistry (Organic Chemistry) and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitätsstrasse 7 45141 Essen Germany
| |
Collapse
|
65
|
Helmbrecht SL, Schlüter J, Blazejak M, Hintermann L. Axially Chiral 1,1'‐Binaphthyl‐2‐Carboxylic Acid (BINA‐Cox) as Ligands for Titanium‐Catalyzed Asymmetric Hydroalkoxylation. European J Org Chem 2020. [DOI: 10.1002/ejoc.201901895] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Sebastian L. Helmbrecht
- Department Chemie Technische Universität München Lichtenbergstr. 4 85748 Garching bei München Germany
- TUM Catalysis Research Center Technische Universität München Ernst‐Otto‐Fischer‐Str. 1 85748 Garching bei München Germany
| | - Johannes Schlüter
- Department Chemie Technische Universität München Lichtenbergstr. 4 85748 Garching bei München Germany
- TUM Catalysis Research Center Technische Universität München Ernst‐Otto‐Fischer‐Str. 1 85748 Garching bei München Germany
| | - Max Blazejak
- Department Chemie Technische Universität München Lichtenbergstr. 4 85748 Garching bei München Germany
- TUM Catalysis Research Center Technische Universität München Ernst‐Otto‐Fischer‐Str. 1 85748 Garching bei München Germany
| | - Lukas Hintermann
- Department Chemie Technische Universität München Lichtenbergstr. 4 85748 Garching bei München Germany
- TUM Catalysis Research Center Technische Universität München Ernst‐Otto‐Fischer‐Str. 1 85748 Garching bei München Germany
| |
Collapse
|
66
|
Gao B, Feng X, Meng W, Du H. Asymmetric Hydrogenation of Ketones and Enones with Chiral Lewis Base Derived Frustrated Lewis Pairs. Angew Chem Int Ed Engl 2020; 59:4498-4504. [PMID: 31863715 DOI: 10.1002/anie.201914568] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Indexed: 01/13/2023]
Abstract
The concept of frustrated Lewis pairs (FLPs) has been widely applied in various research areas, and metal-free hydrogenation undoubtedly belongs to the most significant and successful ones. In the past decade, great efforts have been devoted to the synthesis of chiral boron Lewis acids. In a sharp contrast, chiral Lewis base derived FLPs have rarely been disclosed for the asymmetric hydrogenation. In this work, a novel type of chiral FLP was developed by simple combination of chiral oxazoline Lewis bases with achiral boron Lewis acids, thus providing a promising new direction for the development of chiral FLPs in the future. These chiral FLPs proved to be highly effective for the asymmetric hydrogenation of ketones, enones, and chromones, giving the corresponding products in high yields with up to 95 % ee. Mechanistic studies suggest that the hydrogen transfer to simple ketones likely proceeds in a concerted manner.
Collapse
Affiliation(s)
- Bochao Gao
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiangqing Feng
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wei Meng
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Haifeng Du
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
67
|
Gao B, Feng X, Meng W, Du H. Asymmetric Hydrogenation of Ketones and Enones with Chiral Lewis Base Derived Frustrated Lewis Pairs. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201914568] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Bochao Gao
- Beijing National Laboratory for Molecular SciencesCAS Key Laboratory of Molecular Recognition and FunctionCAS Research/Education Center for Excellence in Molecular SciencesInstitute of ChemistryChinese Academy of Sciences Beijing 100190 China
- School of Chemical SciencesUniversity of Chinese Academy of Sciences Beijing 100049 China
| | - Xiangqing Feng
- Beijing National Laboratory for Molecular SciencesCAS Key Laboratory of Molecular Recognition and FunctionCAS Research/Education Center for Excellence in Molecular SciencesInstitute of ChemistryChinese Academy of Sciences Beijing 100190 China
- School of Chemical SciencesUniversity of Chinese Academy of Sciences Beijing 100049 China
| | - Wei Meng
- Beijing National Laboratory for Molecular SciencesCAS Key Laboratory of Molecular Recognition and FunctionCAS Research/Education Center for Excellence in Molecular SciencesInstitute of ChemistryChinese Academy of Sciences Beijing 100190 China
- School of Chemical SciencesUniversity of Chinese Academy of Sciences Beijing 100049 China
| | - Haifeng Du
- Beijing National Laboratory for Molecular SciencesCAS Key Laboratory of Molecular Recognition and FunctionCAS Research/Education Center for Excellence in Molecular SciencesInstitute of ChemistryChinese Academy of Sciences Beijing 100190 China
- School of Chemical SciencesUniversity of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
68
|
Liu X, Wang Y, Zhou J, Yu Y, Cao H. Triflic Acid-Catalyzed Cycloisomerization of 1,6-Enynes: Facile Access to Carbo- and Azaheterocycles. J Org Chem 2020; 85:2406-2414. [PMID: 31870155 DOI: 10.1021/acs.joc.9b03112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A new and efficient strategy for enynes cyclization catalyzed by triflic acid has been described. Various valuable carbocycle-fused and heterocycle-fused ketones were easily accessed by the formation of new C-C and C-O bond under benign reaction conditions. This protocol also provides another opportunity to construct polycyclic single-nitrogen ketones via a cation-induced cascade cyclization of polyenynes. Furthermore, antiviral bioassays revealed that a few compounds exhibited good antiviral activity against tobacco mosaic virus at a concentration of 200 μg mL-1.
Collapse
Affiliation(s)
- Xiang Liu
- School of Chemistry and Chemical Engineering and Guangdong Cosmetics Engineering & Technology Research Center , Guangdong Pharmaceutical University , Zhongshan 528458 , P. R. of China
| | - Yuhan Wang
- School of Chemistry and Chemical Engineering and Guangdong Cosmetics Engineering & Technology Research Center , Guangdong Pharmaceutical University , Zhongshan 528458 , P. R. of China
| | - Jinlei Zhou
- School of Chemistry and Chemical Engineering and Guangdong Cosmetics Engineering & Technology Research Center , Guangdong Pharmaceutical University , Zhongshan 528458 , P. R. of China
| | - Yue Yu
- School of Chemistry and Chemical Engineering and Guangdong Cosmetics Engineering & Technology Research Center , Guangdong Pharmaceutical University , Zhongshan 528458 , P. R. of China
| | - Hua Cao
- School of Chemistry and Chemical Engineering and Guangdong Cosmetics Engineering & Technology Research Center , Guangdong Pharmaceutical University , Zhongshan 528458 , P. R. of China
| |
Collapse
|
69
|
Wang P, Wang S, Zhang W, Li X, Gu Z, Li W, Zhao S, Fu Y. Preparation of MOF catalysts and simultaneously modulated metal nodes and ligands via a one-pot method for optimizing cycloaddition reactions. NEW J CHEM 2020. [DOI: 10.1039/d0nj01086c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
MOFs were adjusted with metal nodes and ligands to endow them with Lewis acids and Brønsted acids for enhanced cycloaddition reactions.
Collapse
Affiliation(s)
- Peng Wang
- College of Science
- Northeastern University
- Shenyang 100819
- China
| | - Sha Wang
- College of Science
- Northeastern University
- Shenyang 100819
- China
| | - Wenlei Zhang
- College of Science
- Northeastern University
- Shenyang 100819
- China
| | - Xiaohan Li
- College of Science
- Northeastern University
- Shenyang 100819
- China
| | - Zhida Gu
- College of Science
- Northeastern University
- Shenyang 100819
- China
| | - Wenze Li
- Department of Applied Chemistry
- Shenyang University of Chemical Technology
- Shenyang 110142
- China
| | - Shuang Zhao
- College of Science
- Northeastern University
- Shenyang 100819
- China
| | - Yu Fu
- College of Science
- Northeastern University
- Shenyang 100819
- China
| |
Collapse
|
70
|
Zhu Z, Odagi M, Zhao C, Abboud KA, Kirm HU, Saame J, Lõkov M, Leito I, Seidel D. Highly Acidic Conjugate‐Base‐Stabilized Carboxylic Acids Catalyze Enantioselective oxa‐Pictet–Spengler Reactions with Ketals. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201912677] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Zhengbo Zhu
- Center for Heterocyclic Compounds Department of Chemistry University of Florida Gainesville FL 32611 USA
| | - Minami Odagi
- Center for Heterocyclic Compounds Department of Chemistry University of Florida Gainesville FL 32611 USA
- Department of Biotechnology and Life Science, Graduate School of Technology Tokyo University of Agriculture and Technology 2-24-16, Naka-cho, Koganei city 184-8588 Tokyo Japan
| | - Chenfei Zhao
- Department of Chemistry and Chemical Biology, Rutgers The State University of New Jersey Piscataway NJ 08854 USA
| | - Khalil A. Abboud
- Center for X-ray Crystallography Department of Chemistry University of Florida Gainesville FL 32611 USA
| | | | - Jaan Saame
- Institute of Chemistry University of Tartu Tartu Estonia
| | - Märt Lõkov
- Institute of Chemistry University of Tartu Tartu Estonia
| | - Ivo Leito
- Institute of Chemistry University of Tartu Tartu Estonia
| | - Daniel Seidel
- Center for Heterocyclic Compounds Department of Chemistry University of Florida Gainesville FL 32611 USA
| |
Collapse
|
71
|
Zhu Z, Odagi M, Zhao C, Abboud KA, Kirm HU, Saame J, Lõkov M, Leito I, Seidel D. Highly Acidic Conjugate‐Base‐Stabilized Carboxylic Acids Catalyze Enantioselective oxa‐Pictet–Spengler Reactions with Ketals. Angew Chem Int Ed Engl 2019; 59:2028-2032. [DOI: 10.1002/anie.201912677] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 11/07/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Zhengbo Zhu
- Center for Heterocyclic Compounds Department of Chemistry University of Florida Gainesville FL 32611 USA
| | - Minami Odagi
- Center for Heterocyclic Compounds Department of Chemistry University of Florida Gainesville FL 32611 USA
- Department of Biotechnology and Life Science, Graduate School of Technology Tokyo University of Agriculture and Technology 2-24-16, Naka-cho, Koganei city 184-8588 Tokyo Japan
| | - Chenfei Zhao
- Department of Chemistry and Chemical Biology, Rutgers The State University of New Jersey Piscataway NJ 08854 USA
| | - Khalil A. Abboud
- Center for X-ray Crystallography Department of Chemistry University of Florida Gainesville FL 32611 USA
| | | | - Jaan Saame
- Institute of Chemistry University of Tartu Tartu Estonia
| | - Märt Lõkov
- Institute of Chemistry University of Tartu Tartu Estonia
| | - Ivo Leito
- Institute of Chemistry University of Tartu Tartu Estonia
| | - Daniel Seidel
- Center for Heterocyclic Compounds Department of Chemistry University of Florida Gainesville FL 32611 USA
| |
Collapse
|
72
|
Cheng Y, Zhao Q, Zhang X, You S. Asymmetric Dearomatization of Indole Derivatives with N‐Hydroxycarbamates Enabled by Photoredox Catalysis. Angew Chem Int Ed Engl 2019; 58:18069-18074. [DOI: 10.1002/anie.201911144] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 09/26/2019] [Indexed: 12/15/2022]
Affiliation(s)
- Yuan‐Zheng Cheng
- State Key Laboratory of Organometallic ChemistryShanghai Institute of Organic ChemistryChinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
| | - Qing‐Ru Zhao
- State Key Laboratory of Organometallic ChemistryShanghai Institute of Organic ChemistryChinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
- School of Physical Science and TechnologyShanghaiTech University 100 Haike Road Shanghai 201210 China
| | - Xiao Zhang
- State Key Laboratory of Organometallic ChemistryShanghai Institute of Organic ChemistryChinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
| | - Shu‐Li You
- State Key Laboratory of Organometallic ChemistryShanghai Institute of Organic ChemistryChinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
- School of Physical Science and TechnologyShanghaiTech University 100 Haike Road Shanghai 201210 China
| |
Collapse
|
73
|
Gimeno MC, Herrera RP. Hydrogen Bonding and Internal or External Lewis or Brønsted Acid Assisted (Thio)urea Catalysts. European J Org Chem 2019. [DOI: 10.1002/ejoc.201901344] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- M. Concepción Gimeno
- Departamento de Química Inorgánica; Instituto de Síntesis Química y Catálisis Homogénea (ISQCH) CSIC-Universidad de Zaragoza; C/ Pedro Cerbuna 12 50009 Zaragoza Spain
| | - Raquel P. Herrera
- Departamento de Química Orgánica. Laboratorio de Organocatálisis Asimétrica; Instituto de Síntesis Química y Catálisis Homogénea (ISQCH) CSIC-Universidad de Zaragoza; C/ Pedro Cerbuna 12 50009 Zaragoza Spain
| |
Collapse
|
74
|
Cheng Y, Zhao Q, Zhang X, You S. Asymmetric Dearomatization of Indole Derivatives with N‐Hydroxycarbamates Enabled by Photoredox Catalysis. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201911144] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Yuan‐Zheng Cheng
- State Key Laboratory of Organometallic ChemistryShanghai Institute of Organic ChemistryChinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
| | - Qing‐Ru Zhao
- State Key Laboratory of Organometallic ChemistryShanghai Institute of Organic ChemistryChinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
- School of Physical Science and TechnologyShanghaiTech University 100 Haike Road Shanghai 201210 China
| | - Xiao Zhang
- State Key Laboratory of Organometallic ChemistryShanghai Institute of Organic ChemistryChinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
| | - Shu‐Li You
- State Key Laboratory of Organometallic ChemistryShanghai Institute of Organic ChemistryChinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
- School of Physical Science and TechnologyShanghaiTech University 100 Haike Road Shanghai 201210 China
| |
Collapse
|
75
|
Rothermel K, Melikian M, Hioe J, Greindl J, Gramüller J, Žabka M, Sorgenfrei N, Hausler T, Morana F, Gschwind RM. Internal acidity scale and reactivity evaluation of chiral phosphoric acids with different 3,3'-substituents in Brønsted acid catalysis. Chem Sci 2019; 10:10025-10034. [PMID: 32015815 PMCID: PMC6977555 DOI: 10.1039/c9sc02342a] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 09/02/2019] [Indexed: 12/16/2022] Open
Abstract
NMR H-bond analysis reveals an offset of internal and external acidities of catalysts and allows for a detailed reactivity analysis.
The concept of hydrogen bonding for enhancing substrate binding and controlling selectivity and reactivity is central in catalysis. However, the properties of these key hydrogen bonds and their catalyst-dependent variations are extremely difficult to determine directly by experiments. Here, for the first time the hydrogen bond properties of a whole series of BINOL-derived chiral phosphoric acid (CPA) catalysts in their substrate complexes with various imines were investigated to derive the influence of different 3,3′-substituents on the acidity and reactivity. NMR 1H and 15N chemical shifts and 1JNH coupling constants of these hydrogen bonds were used to establish an internal acidity scale corroborated by calculations. Deviations from calculated external acidities reveal the importance of intermolecular interactions for this key feature of CPAs. For CPAs with similarly sized binding pockets, a correlation of reactivity and hydrogen bond strengths of the catalyst was found. A catalyst with a very small binding pocket showed significantly reduced reactivities. Therefore, NMR isomerization kinetics, population and chemical shift analyses of binary and ternary complexes as well as reaction kinetics were performed to address the steps of the transfer hydrogenation influencing the overall reaction rate. The results of CPAs with different 3,3′-substituents show a delicate balance between the isomerization and the ternary complex formation to be rate-determining. For CPAs with an identical acidic motif and similar sterics, reactivity and internal acidity correlated inversely. In cases where higher sterical demand within the binary complex hinders the binding of the second substrate, the correlation between acidity and reactivity breaks down.
Collapse
Affiliation(s)
- Kerstin Rothermel
- Institut für Organische Chemie , Universität Regensburg , Universitätsstraße 31 , D-93053 Regensburg , Germany .
| | - Maxime Melikian
- Institut für Organische Chemie , Universität Regensburg , Universitätsstraße 31 , D-93053 Regensburg , Germany .
| | - Johnny Hioe
- Institut für Organische Chemie , Universität Regensburg , Universitätsstraße 31 , D-93053 Regensburg , Germany .
| | - Julian Greindl
- Institut für Organische Chemie , Universität Regensburg , Universitätsstraße 31 , D-93053 Regensburg , Germany .
| | - Johannes Gramüller
- Institut für Organische Chemie , Universität Regensburg , Universitätsstraße 31 , D-93053 Regensburg , Germany .
| | - Matej Žabka
- Institut für Organische Chemie , Universität Regensburg , Universitätsstraße 31 , D-93053 Regensburg , Germany .
| | - Nils Sorgenfrei
- Institut für Organische Chemie , Universität Regensburg , Universitätsstraße 31 , D-93053 Regensburg , Germany .
| | - Thomas Hausler
- Institut für Organische Chemie , Universität Regensburg , Universitätsstraße 31 , D-93053 Regensburg , Germany .
| | - Fabio Morana
- Institut für Organische Chemie , Universität Regensburg , Universitätsstraße 31 , D-93053 Regensburg , Germany .
| | - Ruth M Gschwind
- Institut für Organische Chemie , Universität Regensburg , Universitätsstraße 31 , D-93053 Regensburg , Germany .
| |
Collapse
|
76
|
Ma J, Kass SR. Electrostatically Enhanced Phosphoric Acids and Their Applications in Asymmetric Friedel-Crafts Alkylations. J Org Chem 2019; 84:11125-11134. [PMID: 31386810 DOI: 10.1021/acs.joc.9b01741] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A series of electrostatically enhanced phosphoric acid catalysts were synthesized and studied. These compounds possess two positively charged N-octylpyridinium or triarylphosphonium ion centers at the 3,3'-positions of the (R)-BINOL backbone to enhance reactivity and provide needed steric bulk for enantioselective transformations. Catalytic activities for Friedel-Crafts alkylations of indoles with trans-β-nitrostyrenes were studied. Both types of catalysts accelerate reaction conversions relative to noncharged analogues, and good enantioselectivities up to 90% ee are observed with the phosphonium-ion-tagged phosphoric acids. This transformation also can be scaled up to synthetically useful amounts, affording >250 mg of product without losing any reactivity or selectivity.
Collapse
Affiliation(s)
- Jie Ma
- Department of Chemistry , University of Minnesota , 207 Pleasant Street, SE , Minneapolis , Minnesota 55455 , United States
| | - Steven R Kass
- Department of Chemistry , University of Minnesota , 207 Pleasant Street, SE , Minneapolis , Minnesota 55455 , United States
| |
Collapse
|
77
|
Liao G, Chen H, Xia Y, Li B, Yao Q, Shi B. Synthesis of Chiral Aldehyde Catalysts by Pd‐Catalyzed Atroposelective C−H Naphthylation. Angew Chem Int Ed Engl 2019; 58:11464-11468. [DOI: 10.1002/anie.201906700] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Indexed: 11/08/2022]
Affiliation(s)
- Gang Liao
- Department of ChemistryZhejiang University Hangzhou 310027 China
| | - Hao‐Ming Chen
- School of Chemical & Environmental EngineeringWuyi University Jiangmen 529020 China
| | - Yu‐Nong Xia
- Department of ChemistryZhejiang University Hangzhou 310027 China
| | - Bing Li
- Department of ChemistryZhejiang University Hangzhou 310027 China
| | - Qi‐Jun Yao
- Department of ChemistryZhejiang University Hangzhou 310027 China
| | - Bing‐Feng Shi
- Department of ChemistryZhejiang University Hangzhou 310027 China
| |
Collapse
|
78
|
Liao G, Chen H, Xia Y, Li B, Yao Q, Shi B. Synthesis of Chiral Aldehyde Catalysts by Pd‐Catalyzed Atroposelective C−H Naphthylation. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201906700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Gang Liao
- Department of ChemistryZhejiang University Hangzhou 310027 China
| | - Hao‐Ming Chen
- School of Chemical & Environmental EngineeringWuyi University Jiangmen 529020 China
| | - Yu‐Nong Xia
- Department of ChemistryZhejiang University Hangzhou 310027 China
| | - Bing Li
- Department of ChemistryZhejiang University Hangzhou 310027 China
| | - Qi‐Jun Yao
- Department of ChemistryZhejiang University Hangzhou 310027 China
| | - Bing‐Feng Shi
- Department of ChemistryZhejiang University Hangzhou 310027 China
| |
Collapse
|
79
|
Han ZS, Wu H, Qu B, Wang Y, Wu L, Zhang L, Xu Y, Wu L, Zhang Y, Lee H, Roschangar F, Song JJ, Senanayake CH. New class of P-stereogenic chiral Brønsted acid catalysts derived from chiral phosphinamides. Tetrahedron Lett 2019. [DOI: 10.1016/j.tetlet.2019.06.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
80
|
Chai GL, Sun AQ, Zhai D, Wang J, Deng WQ, Wong HNC, Chang J. Chiral Hydroxytetraphenylene-Catalyzed Asymmetric Conjugate Addition of Boronic Acids to Enones. Org Lett 2019; 21:5040-5045. [DOI: 10.1021/acs.orglett.9b01637] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Guo-Li Chai
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - A-Qiang Sun
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Dong Zhai
- Institute of Molecular Sciences and Engineering, Shandong University, Qingdao 266237, China
| | - Juan Wang
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Wei-Qiao Deng
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
- Institute of Molecular Sciences and Engineering, Shandong University, Qingdao 266237, China
| | - Henry N. C. Wong
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
- Shanghai−Hong Kong Joint Laboratory in Chemical Synthesis, Shanghai Institute of Organic Chemistry, The Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Junbiao Chang
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
81
|
Burg F, Bach T. Lactam Hydrogen Bonds as Control Elements in Enantioselective Transition-Metal-Catalyzed and Photochemical Reactions. J Org Chem 2019; 84:8815-8836. [DOI: 10.1021/acs.joc.9b01299] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Finn Burg
- Department of Chemistry and Catalysis Research Center (CRC), Technical University of Munich, Lichtenbergstrasse 4, 85747 Garching, Germany
| | - Thorsten Bach
- Department of Chemistry and Catalysis Research Center (CRC), Technical University of Munich, Lichtenbergstrasse 4, 85747 Garching, Germany
| |
Collapse
|
82
|
Huang C, Qian H, Zhang W, Ma S. Hydroxy group-enabled highly regio- and stereo-selective hydrocarboxylation of alkynes. Chem Sci 2019; 10:5505-5512. [PMID: 31293734 PMCID: PMC6544123 DOI: 10.1039/c8sc05743e] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Accepted: 04/16/2019] [Indexed: 12/12/2022] Open
Abstract
Hydrogen bonding-enabled highly regio- and stereo-selective hydrocarboxylation of alkynes has been successfully developed to afford 3-hydroxy-2(E)-alkenoates with up to 97% yield.
Here we present an example of utilizing hydroxy groups for regioselectivity control in the addition reaction of alkynes—a highly efficient Pd-catalyzed syn-hydrocarboxylation of readily available 2-alkynylic alcohols with CO in the presence of alcohols with an unprecedented regioselectivity affording 3-hydroxy-2(E)-alkenoates. The role of the hydroxy group has been carefully studied. The synthetic potential of the products has also been demonstrated.
Collapse
Affiliation(s)
- Chaofan Huang
- Research Center for Molecular Recognition and Synthesis , Department of Chemistry , Fudan University , 220 Handan Lu , Shanghai 200433 , P. R. China .
| | - Hui Qian
- Research Center for Molecular Recognition and Synthesis , Department of Chemistry , Fudan University , 220 Handan Lu , Shanghai 200433 , P. R. China .
| | - Wanli Zhang
- Research Center for Molecular Recognition and Synthesis , Department of Chemistry , Fudan University , 220 Handan Lu , Shanghai 200433 , P. R. China .
| | - Shengming Ma
- Research Center for Molecular Recognition and Synthesis , Department of Chemistry , Fudan University , 220 Handan Lu , Shanghai 200433 , P. R. China . .,State Key Laboratory of Organometallic Chemistry , Shanghai Institute of Organic Chemistry , Chinese Academy of Sciences , 345 Lingling Lu , Shanghai 200032 , P. R. China .
| |
Collapse
|
83
|
Wang Q, Cai ZJ, Liu CX, Gu Q, You SL. Rhodium-Catalyzed Atroposelective C-H Arylation: Efficient Synthesis of Axially Chiral Heterobiaryls. J Am Chem Soc 2019; 141:9504-9510. [PMID: 31184139 DOI: 10.1021/jacs.9b03862] [Citation(s) in RCA: 136] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Rhodium(I)-catalyzed atroposelective C-H arylation of heterobiaryls was presented. In the presence of a Rh catalyst derived from [Rh(C2H4)2Cl]2 and a TADDOL-derived monodentate phosphonite, with 2-pyridine, 2-isoquinoline and their analogs as directing groups, a series of axially chiral heterobiaryls were obtained in excellent yields and enantioselectivities (up to 99% yield, 97% ee) via C-H direct functionalization reaction. The products obtained from this method provide a platform for the synthesis of axially chiral biaryl ligands and catalysts. As a demonstration, a chiral N-oxide synthesized from the product in one step could act as an efficient catalyst for asymmetric allylation of benzaldehyde with allyltrichlorosilane, leading to homoallyl alcohol with excellent enantiocontrol.
Collapse
Affiliation(s)
- Qiang Wang
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences , 345 Lingling Lu , Shanghai 200032 , China
| | - Zhong-Jian Cai
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences , 345 Lingling Lu , Shanghai 200032 , China
| | - Chen-Xu Liu
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences , 345 Lingling Lu , Shanghai 200032 , China
| | - Qing Gu
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences , 345 Lingling Lu , Shanghai 200032 , China
| | - Shu-Li You
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences , 345 Lingling Lu , Shanghai 200032 , China
| |
Collapse
|
84
|
Kerru N, Bhaskaruni SVHS, Gummidi L, Maddila SN, Singh P, Jonnalagadda SB. Efficient synthesis of novel pyrazole-linked 1,2,4-triazolidine-3-thiones using bismuth on zirconium oxide as a recyclable catalyst in aqueous medium. Mol Divers 2019; 24:345-354. [PMID: 31098860 DOI: 10.1007/s11030-019-09957-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 05/08/2019] [Indexed: 11/24/2022]
Abstract
The Bi2O3 loading on ZrO2 as heterogeneous catalyst was established as an extremely efficient catalyst for the synthesis of a series of novel 5-(1-(2,4-dinitrophenyl)-3-substituted-phenyl-1H-pyrazol-4-yl)-1,2,4-triazolidine-3-thione derivatives (3a-o) with high yields (90-96%) by reaction of 1-(2,4-dinitrophenyl)-3-substituted-phenyl-1H-pyrazole-4-carbaldehydes and thiosemicarbazide using water as a greener solvent at 80 °C within 30-45 min. Materials with different percentages of Bi2O3 on ZrO2 were prepared by simple wet impregnation method. The synthesized material has been characterized by various techniques (XRD, TEM, SEM, BET). 2.5% Bi2O3/ZrO2 proved superior catalyst. The Bi2O3/ZrO2 catalyst is easily recoverable and reused up to sixth run with no loss of activity. Excellent yields, short reaction time, avoidance of hazardous solvents, and no need for chromatographic purifications are the proven advantages.
Collapse
Affiliation(s)
- Nagaraju Kerru
- School of Chemistry and Physics, University of KwaZulu-Natal, Westville Campus, Chiltern Hills, Durban, 4000, South Africa
| | - Sandeep V H S Bhaskaruni
- School of Chemistry and Physics, University of KwaZulu-Natal, Westville Campus, Chiltern Hills, Durban, 4000, South Africa
| | - Lalitha Gummidi
- School of Chemistry and Physics, University of KwaZulu-Natal, Westville Campus, Chiltern Hills, Durban, 4000, South Africa
| | - Surya Narayana Maddila
- School of Chemistry and Physics, University of KwaZulu-Natal, Westville Campus, Chiltern Hills, Durban, 4000, South Africa
| | - Parvesh Singh
- School of Chemistry and Physics, University of KwaZulu-Natal, Westville Campus, Chiltern Hills, Durban, 4000, South Africa
| | - Sreekantha B Jonnalagadda
- School of Chemistry and Physics, University of KwaZulu-Natal, Westville Campus, Chiltern Hills, Durban, 4000, South Africa.
| |
Collapse
|
85
|
Melikian M, Gramüller J, Hioe J, Greindl J, Gschwind RM. Brønsted acid catalysis - the effect of 3,3'-substituents on the structural space and the stabilization of imine/phosphoric acid complexes. Chem Sci 2019; 10:5226-5234. [PMID: 31191877 PMCID: PMC6540909 DOI: 10.1039/c9sc01044k] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 04/08/2019] [Indexed: 11/21/2022] Open
Abstract
BINOL derived chiral phosphoric acids (CPAs) are widely known for their high selectivity. Numerous 3,3'-substituents are used for a variety of stereoselective reactions and theoretical models of their effects are provided. However, experimental data about the structural space of CPA complexes in solution is extremely rare and so far restricted to NMR investigations of binary TRIP/imine complexes featuring two E- and two Z-imine conformations. Therefore, in this paper the structural space of 16 CPA/imine binary complexes is screened and 8 of them are investigated in detail by NMR. For the first time dimers of CPA/imine complexes in solution were experimentally identified, which show an imine position similar to the transition state in transfer hydrogenations. Furthermore, our experimental and computational data revealed an astonishing invariance of the four core structures regardless of the different steric and electronic properties of the 3,3'-substituent. However, a significant variation of E/Z-ratios is observed, demonstrating a strong influence of the 3,3'-substituents on the stabilization of the imine in the complexes. These experimental E/Z-ratios cannot be reproduced by calculations commonly applied for mechanistic studies, despite extensive conformational scans and treatment of the electronic structure at a high level of theory with various implicit solvent corrections. Thus, these first detailed experimental data about the structural space and influence of the 3,3'-substituent on the energetics of CPA/imine complexes can serve as basis to validate and improve theoretical predictive models.
Collapse
Affiliation(s)
- Maxime Melikian
- Institut für Organische Chemie , Universität Regensburg , D-93053 Regensburg , Germany .
| | - Johannes Gramüller
- Institut für Organische Chemie , Universität Regensburg , D-93053 Regensburg , Germany .
| | - Johnny Hioe
- Institut für Organische Chemie , Universität Regensburg , D-93053 Regensburg , Germany .
| | - Julian Greindl
- Institut für Organische Chemie , Universität Regensburg , D-93053 Regensburg , Germany .
| | - Ruth M Gschwind
- Institut für Organische Chemie , Universität Regensburg , D-93053 Regensburg , Germany .
| |
Collapse
|
86
|
Rahman M, Mukherjee A, Kovalev IS, Kopchuk DS, Zyryanov GV, Tsurkan MV, Majee A, Ranu BC, Charushin VN, Chupakhin ON, Santra S. Recent Advances on Diverse Decarboxylative Reactions of Amino Acids. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201801331] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Matiur Rahman
- Department of Organic & Biomolecular Chemistry, Chemical Engineering InstituteUral Federal University 19 Mira Str. 620002 Yekaterinburg Russian Federation
| | - Anindita Mukherjee
- Department of Organic & Biomolecular Chemistry, Chemical Engineering InstituteUral Federal University 19 Mira Str. 620002 Yekaterinburg Russian Federation
| | - Igor S. Kovalev
- Department of Organic & Biomolecular Chemistry, Chemical Engineering InstituteUral Federal University 19 Mira Str. 620002 Yekaterinburg Russian Federation
| | - Dmitry S. Kopchuk
- Department of Organic & Biomolecular Chemistry, Chemical Engineering InstituteUral Federal University 19 Mira Str. 620002 Yekaterinburg Russian Federation
- I. Ya. Postovskiy Institute of Organic SynthesisUral Division of the Russian Academy of Sciences 22 S. Kovalevskoy Str. Yekaterinburg 620219 Russian Federation
| | - Grigory V. Zyryanov
- Department of Organic & Biomolecular Chemistry, Chemical Engineering InstituteUral Federal University 19 Mira Str. 620002 Yekaterinburg Russian Federation
- I. Ya. Postovskiy Institute of Organic SynthesisUral Division of the Russian Academy of Sciences 22 S. Kovalevskoy Str. Yekaterinburg 620219 Russian Federation
| | - Mikhail V. Tsurkan
- Max Bergmann Center of BiomaterialsLeibniz Institute of Polymer Research Hohe Strasse 6 01069 Dresden Germany
| | - Adinath Majee
- Department of ChemistryVisva-Bharati (A Central University) Santiniketan 731235 India
| | - Brindaban C. Ranu
- Department of Organic ChemistryIndian Association for the Cultivation of Science, Jadavpur Kolkata 700032 India
| | - Valery N. Charushin
- Department of Organic & Biomolecular Chemistry, Chemical Engineering InstituteUral Federal University 19 Mira Str. 620002 Yekaterinburg Russian Federation
- I. Ya. Postovskiy Institute of Organic SynthesisUral Division of the Russian Academy of Sciences 22 S. Kovalevskoy Str. Yekaterinburg 620219 Russian Federation
| | - Oleg N. Chupakhin
- Department of Organic & Biomolecular Chemistry, Chemical Engineering InstituteUral Federal University 19 Mira Str. 620002 Yekaterinburg Russian Federation
- I. Ya. Postovskiy Institute of Organic SynthesisUral Division of the Russian Academy of Sciences 22 S. Kovalevskoy Str. Yekaterinburg 620219 Russian Federation
| | - Sougata Santra
- Department of Organic & Biomolecular Chemistry, Chemical Engineering InstituteUral Federal University 19 Mira Str. 620002 Yekaterinburg Russian Federation
| |
Collapse
|
87
|
Zhang H, Gao XW, Wang L, Zhao X, Li QY, Wang XJ. Microwave-assisted synthesis of urea-containing zirconium metal–organic frameworks for heterogeneous catalysis of Henry reactions. CrystEngComm 2019. [DOI: 10.1039/c8ce02153h] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A urea-containing UiO-68 isoreticular zirconium metal–organic framework with mixed dicarboxylate struts can work as an efficient hydrogen-bond-donating heterogeneous catalyst for Henry reactions of benzaldehydes and nitroalkanes.
Collapse
Affiliation(s)
- He Zhang
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials
- School of Chemistry and Materials Science, and School of Physics and Electronic Engineering
- Jiangsu Normal University
- Xuzhou 221116
- P. R. China
| | - Xue-Wang Gao
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials
- Technical Institute of Physics and Chemistry
- Chinese Academy of Sciences
- Beijing 100190
- P. R. China
| | - Li Wang
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials
- School of Chemistry and Materials Science, and School of Physics and Electronic Engineering
- Jiangsu Normal University
- Xuzhou 221116
- P. R. China
| | - Xinsheng Zhao
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials
- School of Chemistry and Materials Science, and School of Physics and Electronic Engineering
- Jiangsu Normal University
- Xuzhou 221116
- P. R. China
| | - Qiu-Yan Li
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials
- School of Chemistry and Materials Science, and School of Physics and Electronic Engineering
- Jiangsu Normal University
- Xuzhou 221116
- P. R. China
| | - Xiao-Jun Wang
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials
- School of Chemistry and Materials Science, and School of Physics and Electronic Engineering
- Jiangsu Normal University
- Xuzhou 221116
- P. R. China
| |
Collapse
|
88
|
Murai T, Xing Y, Kuribayashi T, Lu W, Guo JD, Yella R, Hamada S, Sasamori T, Tokitoh N, Kawabata T, Furuta T. Synthesis and Structural Properties of Axially Chiral Binaphthothiophene Dicarboxylic Acid. Chem Pharm Bull (Tokyo) 2018; 66:1203-1206. [PMID: 30504635 DOI: 10.1248/cpb.c18-00668] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Axially chiral binaphthothiophene dicarboxylic acid was prepared as a novel functionalized chiral dicarboxylic acid. The crystal structures of both the racemic form and its salt with chiral diamine revealed the intramolecular S···O interactions (chalcogen bonds) between the sulfur in the naphthothiophene rings and the oxygen of the carboxy groups. The negative-positive and the positive-negative Cotton effects from longer to shorter wavelengths were observed for (R)- and (S)-enantiomers, respectively, in the circular dichroism (CD) spectra.
Collapse
Affiliation(s)
- Takuya Murai
- Institute for Chemical Research, Kyoto University
| | | | | | - Wenjie Lu
- Institute for Chemical Research, Kyoto University
| | | | - Ramesh Yella
- Institute for Chemical Research, Kyoto University
| | - Shohei Hamada
- Department of Pharmaceutical Chemistry, Kyoto Pharmaceutical University
| | | | | | | | - Takumi Furuta
- Department of Pharmaceutical Chemistry, Kyoto Pharmaceutical University
| |
Collapse
|
89
|
Vallejo Narváez WE, Jiménez EI, Hernández-Rodríguez M, Rocha-Rinza T. Simple method to estimate relative hydrogen bond basicities of amides and imides in chloroform. J Mol Struct 2018. [DOI: 10.1016/j.molstruc.2018.06.113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
90
|
Liao G, Li B, Chen H, Yao Q, Xia Y, Luo J, Shi B. Pd‐Catalyzed Atroposelective C−H Allylation through β‐O Elimination: Diverse Synthesis of Axially Chiral Biaryls. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201811256] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Gang Liao
- Department of Chemistry Zhejiang University Hangzhou 310027 China
| | - Bing Li
- Department of Chemistry Zhejiang University Hangzhou 310027 China
| | - Hao‐Ming Chen
- School of Chemical & Environmental Engineering Wuyi University Jiangmen 529020 China
| | - Qi‐Jun Yao
- Department of Chemistry Zhejiang University Hangzhou 310027 China
| | - Yu‐Nong Xia
- Department of Chemistry Zhejiang University Hangzhou 310027 China
| | - Jun Luo
- Department of Chemistry Zhejiang University Hangzhou 310027 China
| | - Bing‐Feng Shi
- Department of Chemistry Zhejiang University Hangzhou 310027 China
- State Key Laboratory of Elemento-organic Chemistry Nankai University Tianjin 300071 China
| |
Collapse
|
91
|
Liao G, Li B, Chen H, Yao Q, Xia Y, Luo J, Shi B. Pd‐Catalyzed Atroposelective C−H Allylation through β‐O Elimination: Diverse Synthesis of Axially Chiral Biaryls. Angew Chem Int Ed Engl 2018; 57:17151-17155. [DOI: 10.1002/anie.201811256] [Citation(s) in RCA: 133] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Indexed: 01/10/2023]
Affiliation(s)
- Gang Liao
- Department of Chemistry Zhejiang University Hangzhou 310027 China
| | - Bing Li
- Department of Chemistry Zhejiang University Hangzhou 310027 China
| | - Hao‐Ming Chen
- School of Chemical & Environmental Engineering Wuyi University Jiangmen 529020 China
| | - Qi‐Jun Yao
- Department of Chemistry Zhejiang University Hangzhou 310027 China
| | - Yu‐Nong Xia
- Department of Chemistry Zhejiang University Hangzhou 310027 China
| | - Jun Luo
- Department of Chemistry Zhejiang University Hangzhou 310027 China
| | - Bing‐Feng Shi
- Department of Chemistry Zhejiang University Hangzhou 310027 China
- State Key Laboratory of Elemento-organic Chemistry Nankai University Tianjin 300071 China
| |
Collapse
|
92
|
Odagi M, Araki H, Min C, Yamamoto E, Emge TJ, Yamanaka M, Seidel D. Insights into the Structure and Function of a Chiral Conjugate‐Base‐Stabilized Brønsted Acid Catalyst. European J Org Chem 2018. [DOI: 10.1002/ejoc.201801024] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Minami Odagi
- Center for Heterocyclic Compounds Department of Chemistry University of Florida 32611 Gainesville Florida USA
| | - Hiroshi Araki
- Department of Chemistry and Chemical Biology of Rutgers The State University of New Jersey 08854 Piscataway NJ USA
| | - Chang Min
- Department of Chemistry and Chemical Biology of Rutgers The State University of New Jersey 08854 Piscataway NJ USA
| | - Eri Yamamoto
- Department of Chemistry Faculty of Science Rikkyo University 3‐34‐1 Nishi‐Ikebukuro 171‐8501 Toshima‐ku Tokyo Japan
| | - Thomas J. Emge
- Department of Chemistry and Chemical Biology of Rutgers The State University of New Jersey 08854 Piscataway NJ USA
| | - Masahiro Yamanaka
- Department of Chemistry Faculty of Science Rikkyo University 3‐34‐1 Nishi‐Ikebukuro 171‐8501 Toshima‐ku Tokyo Japan
| | - Daniel Seidel
- Center for Heterocyclic Compounds Department of Chemistry University of Florida 32611 Gainesville Florida USA
- Department of Chemistry and Chemical Biology of Rutgers The State University of New Jersey 08854 Piscataway NJ USA
| |
Collapse
|
93
|
Zhang X, Qiu W, Ma X, Evans J, Kaur M, Jasinski JP, Zhang W. One-Pot Double [3 + 2] Cycloadditions for Diastereoselective Synthesis of Pyrrolidine-Based Polycyclic Systems. J Org Chem 2018; 83:13536-13542. [DOI: 10.1021/acs.joc.8b02046] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Xiaofeng Zhang
- Department of Chemistry, University of Massachusetts Boston, 100 Morrissey Boulevard, Boston, Massachusetts 02125, United States
| | - Weiqi Qiu
- Department of Chemistry, University of Massachusetts Boston, 100 Morrissey Boulevard, Boston, Massachusetts 02125, United States
| | - Xiaoming Ma
- Department of Chemistry, University of Massachusetts Boston, 100 Morrissey Boulevard, Boston, Massachusetts 02125, United States
- School of Pharmaceutical Engineering and Life Science, Changzhou University, Changzhou, Jiangsu Province 213164, P. R. China
| | - Jason Evans
- Department of Chemistry, University of Massachusetts Boston, 100 Morrissey Boulevard, Boston, Massachusetts 02125, United States
| | - Manpreet Kaur
- Department of Chemistry, Keene State College, 229 Main Street, Keene, New Hampshire 03435, United States
| | - Jerry P. Jasinski
- Department of Chemistry, Keene State College, 229 Main Street, Keene, New Hampshire 03435, United States
| | - Wei Zhang
- Department of Chemistry, University of Massachusetts Boston, 100 Morrissey Boulevard, Boston, Massachusetts 02125, United States
| |
Collapse
|
94
|
Wei W, Tang Y, Zhou Y, Deng G, Liu Z, Wu J, Li Y, Zhang J, Xu S. Recycling Catalyst as Reactant: A Sustainable Strategy To Improve Atom Efficiency of Organocatalytic Tandem Reactions. Org Lett 2018; 20:6559-6563. [DOI: 10.1021/acs.orglett.8b02898] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Wen Wei
- Department of Chemistry, School of Science, and Xi’an Key Laboratory of Sustainable Energy Materials Chemistry, Xi’an Jiaotong University, Xi’an 710049, P. R. China
| | - Yuhai Tang
- Department of Chemistry, School of Science, and Xi’an Key Laboratory of Sustainable Energy Materials Chemistry, Xi’an Jiaotong University, Xi’an 710049, P. R. China
| | - Yan Zhou
- Department of Chemistry, School of Science, and Xi’an Key Laboratory of Sustainable Energy Materials Chemistry, Xi’an Jiaotong University, Xi’an 710049, P. R. China
| | - Ge Deng
- Department of Chemistry, School of Science, and Xi’an Key Laboratory of Sustainable Energy Materials Chemistry, Xi’an Jiaotong University, Xi’an 710049, P. R. China
| | - Ziyu Liu
- Department of Chemistry, School of Science, and Xi’an Key Laboratory of Sustainable Energy Materials Chemistry, Xi’an Jiaotong University, Xi’an 710049, P. R. China
| | - Jun Wu
- Department of Chemistry, School of Science, and Xi’an Key Laboratory of Sustainable Energy Materials Chemistry, Xi’an Jiaotong University, Xi’an 710049, P. R. China
| | - Yang Li
- Department of Chemistry, School of Science, and Xi’an Key Laboratory of Sustainable Energy Materials Chemistry, Xi’an Jiaotong University, Xi’an 710049, P. R. China
| | - Junjie Zhang
- Department of Chemistry, School of Science, and Xi’an Key Laboratory of Sustainable Energy Materials Chemistry, Xi’an Jiaotong University, Xi’an 710049, P. R. China
| | - Silong Xu
- Department of Chemistry, School of Science, and Xi’an Key Laboratory of Sustainable Energy Materials Chemistry, Xi’an Jiaotong University, Xi’an 710049, P. R. China
| |
Collapse
|
95
|
Chiral Diol-Based Organocatalysts in Enantioselective Reactions. Molecules 2018; 23:molecules23092317. [PMID: 30208621 PMCID: PMC6225256 DOI: 10.3390/molecules23092317] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 09/03/2018] [Accepted: 09/06/2018] [Indexed: 12/22/2022] Open
Abstract
Organocatalysis has emerged as a powerful synthetic tool in organic chemistry in the last few decades. Among various classes of organocatalysis, chiral diol-based scaffolds, such as BINOLs, VANOLs, and tartaric acid derivatives, have been widely used to induce enantioselectivity due to the ability of the hydroxyls to coordinate with the Lewis acidic sites of reagents or substrates and create a chiral environment for the transformation. In this review, we will discuss the applications of these diol-based catalysts in different types of reactions, including the scopes of reactions and the modes of catalyst activation. In general, the axially chiral aryl diol BINOL and VANOL derivatives serve as the most competent catalyst for most examples, but examples of exclusive success using other scaffolds, herein, suggests that they should not be overlooked. Lastly, the examples, to date, are mainly from tartrate and biaryl diol catalysts, suggesting that innovation may be available from new diol scaffolds.
Collapse
|
96
|
Theoretical insight into phosphoric acid-catalyzed asymmetric conjugate addition of indolizines to α,β-unsaturated ketones. CHINESE CHEM LETT 2018. [DOI: 10.1016/j.cclet.2018.03.018] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
97
|
Wagner JP, McDonald DC, Duncan MA. Spectroscopy of Proton Coordination with Ethylenediamine. J Phys Chem A 2018; 122:5168-5176. [PMID: 29771517 DOI: 10.1021/acs.jpca.8b03592] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Protonated ethylenediamine monomer, dimer, and trimer were produced in the gas phase by an electrical discharge/supersonic expansion of argon seeded with ethylenediamine (C2H8N2, en) vapor. Infrared spectra of these ions were measured in the region from 1000 to 4000 cm-1 using laser photodissociation and argon tagging. Computations at the CBS-QB3 level were performed to explore possible isomers and understand the infrared spectra. The protonated monomer exhibits a gauche conformation and an intramolecular hydrogen bond. Its parallel shared proton vibration occurs as a broad band around 2785 cm-1, despite the formally equivalent proton affinities of the two amino groups involved, which usually leads to low frequency bands. The barrier to intramolecular proton transfer is 2.2 kcal mol-1 and does not vanish upon addition of the zero-point energy, unlike the related protonated ammonia dimer. The structure of the dimer is formed by chelation of the monomer's NH3+ group, thereby localizing the excess proton and increasing the frequency of the intramolecular shared proton vibration to 3157 cm-1. Other highly fluxional dimer structures with facile intermolecular proton transfer and concomitant structural reorganization were computed to lie within 2 kcal mol-1 of the experimentally observed structure. The spectrum of the trimer is rather diffuse, and a clear assignment is not possible. However, an isomer with an intramolecular proton transfer like that of the monomer is most consistent with the experimental spectrum.
Collapse
Affiliation(s)
- J Philipp Wagner
- Department of Chemistry , University of Georgia , 140 Cedar Street , Athens , Georgia 30602 , United States
| | - David C McDonald
- Department of Chemistry , University of Georgia , 140 Cedar Street , Athens , Georgia 30602 , United States
| | - Michael A Duncan
- Department of Chemistry , University of Georgia , 140 Cedar Street , Athens , Georgia 30602 , United States
| |
Collapse
|
98
|
Kurihara T, Satake S, Hatano M, Ishihara K, Yoshino T, Matsunaga S. Synthesis of 1,1′-Spirobiindane-7,7′-Disulfonic Acid and Disulfonimide: Application for Catalytic Asymmetric Aminalization. Chem Asian J 2018; 13:2378-2381. [DOI: 10.1002/asia.201800341] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 04/05/2018] [Indexed: 01/26/2023]
Affiliation(s)
- Takumaru Kurihara
- Faculty of Pharmaceutical Sciences; Hokkaido University, Kita-12 Nishi-6; Kita-ku Sapporo 060-0812 Japan
| | - Shun Satake
- Faculty of Pharmaceutical Sciences; Hokkaido University, Kita-12 Nishi-6; Kita-ku Sapporo 060-0812 Japan
| | - Manabu Hatano
- Graduate School of Engineering; Nagoya University; Furo-cho Chikusa Nagoya 464-8603 Japan
| | - Kazuaki Ishihara
- Graduate School of Engineering; Nagoya University; Furo-cho Chikusa Nagoya 464-8603 Japan
| | - Tatsuhiko Yoshino
- Faculty of Pharmaceutical Sciences; Hokkaido University, Kita-12 Nishi-6; Kita-ku Sapporo 060-0812 Japan
| | - Shigeki Matsunaga
- Faculty of Pharmaceutical Sciences; Hokkaido University, Kita-12 Nishi-6; Kita-ku Sapporo 060-0812 Japan
| |
Collapse
|
99
|
Gheewala CD, Hirschi JS, Lee WH, Paley DW, Vetticatt MJ, Lambert TH. Asymmetric Induction via a Helically Chiral Anion: Enantioselective Pentacarboxycyclopentadiene Brønsted Acid-Catalyzed Inverse-Electron-Demand Diels-Alder Cycloaddition of Oxocarbenium Ions. J Am Chem Soc 2018; 140:3523-3527. [PMID: 29485273 PMCID: PMC5859540 DOI: 10.1021/jacs.8b00260] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
An enantioselective catalytic inverse-electron-demand Diels-Alder reaction of salicylaldehyde acetal-derived oxocarbenium ions and vinyl ethers to generate 2,4-dioxychromanes is described. Chiral pentacarboxycyclopentadiene (PCCP) acids are found to be effective for a variety of substrates. Computational and X-ray crystallographic analyses support the unique hypothesis that an anion with point-chirality-induced helical chirality dictates the absolute sense of stereochemistry in this reaction.
Collapse
Affiliation(s)
- Chirag D Gheewala
- Department of Chemistry , Columbia University , New York , New York 10027 , United States
| | - Jennifer S Hirschi
- Department of Chemistry , Binghamton University , Binghamton , New York 13902 , United States
| | - Wai-Hang Lee
- Department of Chemistry , Columbia University , New York , New York 10027 , United States
| | - Daniel W Paley
- Department of Chemistry , Columbia University , New York , New York 10027 , United States
| | - Mathew J Vetticatt
- Department of Chemistry , Binghamton University , Binghamton , New York 13902 , United States
| | - Tristan H Lambert
- Department of Chemistry , Columbia University , New York , New York 10027 , United States
- Department of Chemistry and Chemical Biology , Cornell University , Ithaca , New York 14853 , United States
| |
Collapse
|
100
|
Okamoto S, Tsujioka H, Sudo A. Organic Photoredox Catalyst with Substrate-capture Ability: A Perylene Derivative Bearing Urethane Moiety for Reductive Coupling of Ketones and Aldehydes under Visible Light. CHEM LETT 2018. [DOI: 10.1246/cl.171160] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Shusuke Okamoto
- Department of Applied Chemistry, Faculty of Science and Engineering, Kindai University, 3-4-1 Kowakae, Higashi Osaka, Osaka 577-8502, Japan
| | - Hiroki Tsujioka
- Department of Applied Chemistry, Faculty of Science and Engineering, Kindai University, 3-4-1 Kowakae, Higashi Osaka, Osaka 577-8502, Japan
| | - Atsushi Sudo
- Department of Applied Chemistry, Faculty of Science and Engineering, Kindai University, 3-4-1 Kowakae, Higashi Osaka, Osaka 577-8502, Japan
| |
Collapse
|