51
|
Fabre B, Falaise C, Cadot E. Polyoxometalates-Functionalized Electrodes for (Photo)Electrocatalytic Applications: Recent Advances and Prospects. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Bruno Fabre
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes)-UMR 6226, F-35000 Rennes, France
| | - Clément Falaise
- Institut Lavoisier de Versailles (UMR-CNRS 8180), UVSQ, Université Paris-Saclay, 45 Avenue des Etats-Unis, 78000 Versailles, France
| | - Emmanuel Cadot
- Institut Lavoisier de Versailles (UMR-CNRS 8180), UVSQ, Université Paris-Saclay, 45 Avenue des Etats-Unis, 78000 Versailles, France
| |
Collapse
|
52
|
Towards the Sustainable Production of Ultra-Low-Sulfur Fuels through Photocatalytic Oxidation. Catalysts 2022. [DOI: 10.3390/catal12091036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Nowadays, the sulfur-containing compounds are removed from motor fuels through the traditional hydrodesulfurization technology, which takes place under harsh reaction conditions (temperature of 350–450 °C and pressure of 30–60 atm) in the presence of catalysts based on alumina with impregnated cobalt and molybdenum. According to the principles of green chemistry, energy requirements should be recognized for their environmental and economic impacts and should be minimized, i.e., the chemical processes should be carried out at ambient temperature and atmospheric pressure. This approach could be implemented using photocatalysts that are sensitive to visible light. The creation of highly active photocatalytic systems for the deep purification of fuels from sulfur compounds becomes an important task of modern catalysis science. The present critical review reports recent progress over the last 5 years in heterogeneous photocatalytic desulfurization under visible light irradiation. Specific attention is paid to the methods for boosting the photocatalytic activity of materials, with a focus on the creation of heterojunctions as the most promising approach. This review also discusses the influence of operating parameters (nature of oxidant, molar ratio of oxidant/sulfur-containing compounds, photocatalyst loading, etc.) on the reaction efficiency. Some perspectives and future research directions on photocatalytic desulfurization are also provided.
Collapse
|
53
|
Solé-Daura A, Benseghir Y, Ha-Thi MH, Fontecave M, Mialane P, Dolbecq A, Mellot-Draznieks C. Origin of the Boosting Effect of Polyoxometalates in Photocatalysis: The Case of CO 2 Reduction by a Rh-Containing Metal–Organic Framework. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Albert Solé-Daura
- Laboratoire de Chimie des Processus Biologiques, UMR CNRS 8229, Collège de France, Université Pierre et Marie Curie, PSL Research University, 11 Place Marcelin Berthelot, Paris 75231 Cedex 05, France
| | - Youven Benseghir
- Laboratoire de Chimie des Processus Biologiques, UMR CNRS 8229, Collège de France, Université Pierre et Marie Curie, PSL Research University, 11 Place Marcelin Berthelot, Paris 75231 Cedex 05, France
- CNRS, Institut Lavoisier de Versailles, Université Paris-Saclay, UVSQ, Versailles 78000, France
| | - Minh-Huong Ha-Thi
- CNRS, Institut des Sciences Moléculaires d’Orsay, Université Paris-Saclay, Orsay 91405, France
| | - Marc Fontecave
- Laboratoire de Chimie des Processus Biologiques, UMR CNRS 8229, Collège de France, Université Pierre et Marie Curie, PSL Research University, 11 Place Marcelin Berthelot, Paris 75231 Cedex 05, France
| | - Pierre Mialane
- CNRS, Institut Lavoisier de Versailles, Université Paris-Saclay, UVSQ, Versailles 78000, France
| | - Anne Dolbecq
- CNRS, Institut Lavoisier de Versailles, Université Paris-Saclay, UVSQ, Versailles 78000, France
| | - Caroline Mellot-Draznieks
- Laboratoire de Chimie des Processus Biologiques, UMR CNRS 8229, Collège de France, Université Pierre et Marie Curie, PSL Research University, 11 Place Marcelin Berthelot, Paris 75231 Cedex 05, France
| |
Collapse
|
54
|
Efremov AA, Poryvaev AS, Polyukhov DM, Gromilov SA, Fedin MV. Oxidation of benzyl alcohol in the copper-doped ZIF-8 metal-organic framework with encapsulated nitroxyl radical. Russ Chem Bull 2022. [DOI: 10.1007/s11172-022-3548-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
55
|
Li C, Jiang HY, Wang JL, Kang RK, Mei H, Xu Y. An isolated doughnut-like molybdenum(V) cobalto-phosphate cluster exhibiting excellent photocatalytic performance for carbon dioxide conversion. Dalton Trans 2022; 51:9616-9621. [PMID: 35695846 DOI: 10.1039/d2dt01276f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
An isolated doughnut-like molybdenum(V) cobalto-phosphate cluster with the formula (C11NH10)2{[Co(H2O)6]@[H29Co16Mo16(H2O)16(PO4)24O36]}(H2PO4)·25H2O has been successfully synthesized by a hydrothermal method. Single crystal X ray diffraction analysis shows that four {Co4O60} tetramers and eight {Mo2O10} dimers are linked by oxygen atoms and phosphate groups to construct a doughnut-type structure for [Co@{Co16Mo16}], in which one [CoII(H2O)6]2+ octahedron is enclosed. More importantly, [Co@{Co16Mo16}] exhibits promising photocatalytic performance for CO2 reduction with the CO formation rate of 6764.3 μmol g-1 h-1 and the selectivity of 96.89%. In addition, the cycling test indicated that [Co@{Co16Mo16}] can be reused for at least four cycles without significant loss of catalytic activity. The result of this work may provide new insight for the synthesis of highly efficient POM-based photocatalysts for CO2 reduction.
Collapse
Affiliation(s)
- Cheng Li
- College of Chemical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 210009, P. R. China.
| | - Heng-Yu Jiang
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Ji-Lei Wang
- College of Chemical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 210009, P. R. China.
| | - Run-Kun Kang
- College of Chemical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 210009, P. R. China.
| | - Hua Mei
- College of Chemical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 210009, P. R. China.
| | - Yan Xu
- College of Chemical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 210009, P. R. China.
| |
Collapse
|
56
|
Tian XK, Zhang JR, Wen MY, Liu ZH, Guo JH, Ma CY, Zhang HY, Yang XG, Ma LF. Red room temperature phosphorescence of lead halide based coordination polymer showing efficient angle-dependent polarized emission and photoelectric performance. Dalton Trans 2022; 51:10055-10060. [PMID: 35726759 DOI: 10.1039/d2dt01196d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The development of organic-inorganic hybrid materials with long-lived room temperature phosphorescence (RTP) has attracted tremendous attention owing to their promising applications in the optoelectronic and anti-counterfeiting fields. In this work, by the selection of lead halide and electron-poor heteroaromatic molecule 1,10-phenanthroline (phen), a coordination polymer [Pb(phen)Cl2] has been synthesized under hydrothermal conditions. This complex shows an alternating arrangement of a long-range order of phen π-conjugated systems and lead halide inorganic chains as revealed by X-ray single-crystal structural analysis. This structural character and special chemical components endow this hybrid material with a rare example of red room temperature phosphorescence. Its electronic structure and electronic transition behavior were further examined by theoretical calculations. Meanwhile, the film of the complex features remarkable angle-dependent polarized emission and photoelectric performance.
Collapse
Affiliation(s)
- Xu-Ke Tian
- College of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, P. R. China.,College of Chemistry and Chemical Engineering, Luoyang Normal University, Henan Province Function-Oriented Porous Materials Key Laboratory, Luoyang 471934, P. R. China.
| | - Ji-Rui Zhang
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Henan Province Function-Oriented Porous Materials Key Laboratory, Luoyang 471934, P. R. China.
| | - Meng-Yao Wen
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Henan Province Function-Oriented Porous Materials Key Laboratory, Luoyang 471934, P. R. China.
| | - Zi-Han Liu
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Henan Province Function-Oriented Porous Materials Key Laboratory, Luoyang 471934, P. R. China.
| | - Jia-Hui Guo
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Henan Province Function-Oriented Porous Materials Key Laboratory, Luoyang 471934, P. R. China.
| | - Cheng-Yu Ma
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Henan Province Function-Oriented Porous Materials Key Laboratory, Luoyang 471934, P. R. China.
| | - Hao-Yi Zhang
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Henan Province Function-Oriented Porous Materials Key Laboratory, Luoyang 471934, P. R. China.
| | - Xiao-Gang Yang
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Henan Province Function-Oriented Porous Materials Key Laboratory, Luoyang 471934, P. R. China.
| | - Lu-Fang Ma
- College of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, P. R. China.,College of Chemistry and Chemical Engineering, Luoyang Normal University, Henan Province Function-Oriented Porous Materials Key Laboratory, Luoyang 471934, P. R. China.
| |
Collapse
|
57
|
Zhao B, Liu H, Gu Y, Sun Q. Highly selective detection of Fe 3+ and nitro explosives by a bifunctional sensor based on Cd(II) complex. INORG NANO-MET CHEM 2022. [DOI: 10.1080/24701556.2022.2081199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Bo Zhao
- Key Laboratory of Non-ferrous Metals of the Ministry of Education, School of Materials Science and Engineering, Central South University, Changsha, China
| | - Hao Liu
- Key Laboratory of Non-ferrous Metals of the Ministry of Education, School of Materials Science and Engineering, Central South University, Changsha, China
| | - Yanan Gu
- Key Laboratory of Non-ferrous Metals of the Ministry of Education, School of Materials Science and Engineering, Central South University, Changsha, China
| | - Qiaozhen Sun
- Key Laboratory of Non-ferrous Metals of the Ministry of Education, School of Materials Science and Engineering, Central South University, Changsha, China
| |
Collapse
|
58
|
Sheng R, Sun R, Chen L, Lv R, Li Y, Du T, Zhang Y, Qi Y. Recent Advances in Polyoxometalates with Enzyme-like Characteristics for Analytical Applications. Crit Rev Anal Chem 2022; 54:315-332. [PMID: 35549959 DOI: 10.1080/10408347.2022.2073432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Artificial enzymes based on inorganic solids with both enzyme-mimetic activities and the special material features has been a promising candidate to overcome many deleterious effects of native enzymes in analytical applications. Polyoxometalates (POMs) are an importance class of molecular metal-oxygen anionic clusters. Their outstanding physicochemical properties, versatility and potential applications in energy conversion, magnetism, catalysis, molecular electronics and biomedicine have long been studied. However, the analytical applications of them is limited. Recently, the intrinsic enzymatic activities of POMs have also been found and become an area of growing interest. In this review, along with other reports, we aimed to classify the enzymatic activity of POMs, summarize the construction of POMs-based enzymes, and survey their recent advances in analytical fields. Finally, the current challenges and trends of the polyoxometalates with enzymatic activity in future chemo-/bio-sensing applications are briefly discussed.
Collapse
Affiliation(s)
- Rongtian Sheng
- School of Public Health, Jilin University, Changchun, Jilin, P. R. China
| | - Ruimeng Sun
- School of Public Health, Jilin University, Changchun, Jilin, P. R. China
| | - Lixia Chen
- School of Public Health, Jilin University, Changchun, Jilin, P. R. China
| | - Ruijuan Lv
- School of Public Health, Jilin University, Changchun, Jilin, P. R. China
| | - Yuhan Li
- School of Public Health, Jilin University, Changchun, Jilin, P. R. China
| | - Ting Du
- School of Public Health, Jilin University, Changchun, Jilin, P. R. China
| | - Yang Zhang
- School of Public Health, Jilin University, Changchun, Jilin, P. R. China
| | - Yanfei Qi
- School of Public Health, Jilin University, Changchun, Jilin, P. R. China
| |
Collapse
|
59
|
Yoon S, Choi IH, Kim Y, Huh S. Catalytic oxygen evolution from hydrogen peroxide by trans-[Co(en) 2Cl 2]@InBTB metal-organic framework catalytic system. RSC Adv 2022; 12:14450-14455. [PMID: 35702218 PMCID: PMC9096809 DOI: 10.1039/d2ra02208g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 05/06/2022] [Indexed: 11/24/2022] Open
Abstract
The diethylammonium counter-cations of the [Et2NH2]3[In3(BTB)4] metal-organic framework (InBTB MOF, BTB = 1,3,5-benzenetribenzoate) with an anionic framework can be effectively exchanged with cationic trans-[Co(en)2Cl2]+ complex ions through a simple cation-exchange process. The heterogenized trans-[Co(en)2Cl2]+-encapsulated InBTB MOF (trans-[Co(en)2Cl2]@InBTB) catalytic system maintained the activity of the captured trans-[Co(en)2Cl2]+ complex ion for hydrogen peroxide decomposition in aqueous solution under mild reaction conditions. The captured trans-[Co(en)2Cl2]+ complex also exhibited trans-cis isomerization to produce either cis-[Co(en)2Cl2]@InBTB or cis-[Co(en)2(H2O)Cl]@InBTB based on IR spectroscopic investigation. The trans-[Co(en)2Cl2]@InBTB catalytic system showed high recyclability for oxygen evolution from hydrogen peroxide. The catalytic ability of trans-[Co(en)2Cl2]@InBTB was maintained up to seven times of recycling.
Collapse
Affiliation(s)
- Sukbin Yoon
- Department of Chemistry and Protein Research Center for Bio-Industry, Hankuk University of Foreign Studies Yongin 17035 Republic of Korea +82 31 330 4566 +82 31 330 4522
| | - In-Hwan Choi
- Department of Chemistry and Protein Research Center for Bio-Industry, Hankuk University of Foreign Studies Yongin 17035 Republic of Korea +82 31 330 4566 +82 31 330 4522
| | - Youngmee Kim
- Department of Chemistry and Nano Science, Ewha Womans University Seoul 120-750 Republic of Korea
| | - Seong Huh
- Department of Chemistry and Protein Research Center for Bio-Industry, Hankuk University of Foreign Studies Yongin 17035 Republic of Korea +82 31 330 4566 +82 31 330 4522
| |
Collapse
|
60
|
Li K, Liu YF, Lin XL, Yang GP. Copper-Containing Polyoxometalate-Based Metal-Organic Frameworks as Heterogeneous Catalysts for the Synthesis of N-Heterocycles. Inorg Chem 2022; 61:6934-6942. [PMID: 35483004 DOI: 10.1021/acs.inorgchem.2c00287] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Three new polyoxometalate-based metal-organic frameworks (POMOFs) [Cu4(μ3-OH)2(tba)3(H2O)5(SiW12O40)0.5](H2SiW12O40)0.5·2.5H2O (CuSiW), [Cu3(μ3-OH)(tba)3(Htba)(H2O)2(HPMo12O40)]·7H2O (CuPMo), and [Cu4(μ3-OH)2(tba)3(H2O)3(PW12O40)0.5]2(PW12O40)·0.5H2O (CuPW) were constructed using multinuclear copper clusters, 3-(4H-1,2,4-triazol-4-yl)benzoic acid (Htba), and Keggin polyoxometalates (POMs). Different POMs regulate the formation of different multinuclear copper clusters ("boat" tetranuclear clusters in CuSiW, trinuclear clusters in CuPMo, and "chair" tetranuclear clusters in CuPW) and different topological structures of CuSiW, CuPMo, and CuPW (3-connected two-dimensional (2D) network for CuSiW, 4-connected 2D network for CuPMo, and (4,6)-connected three-dimensional network for CuPW). CuSiW, CuPMo, and CuPW as heterogeneous catalysts combine the high stability of MOFs in polar solvents and excellent catalytic activity of POMs and could be used for the synthesis of nitrogen-heterocycle compounds. The condensation cyclization reactions of 2-aminophenols/benzenesulfonyl hydrazines with 1,3-diketones produce benzoazoles and pyrazoles in good to excellent yields under the catalysis of CuPMo. Moreover, the catalyst could be reused at least for 7 runs, and this protocol was suitable for gram-scale reactions.
Collapse
Affiliation(s)
- Ke Li
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, Jiangxi Province Key Laboratory of Synthetic Chemistry, East China University of Technology, Nanchang, Jiangxi 330013, P. R. China
| | - Yu-Feng Liu
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, Jiangxi Province Key Laboratory of Synthetic Chemistry, East China University of Technology, Nanchang, Jiangxi 330013, P. R. China
| | - Xiao-Ling Lin
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, Jiangxi Province Key Laboratory of Synthetic Chemistry, East China University of Technology, Nanchang, Jiangxi 330013, P. R. China
| | - Guo-Ping Yang
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, Jiangxi Province Key Laboratory of Synthetic Chemistry, East China University of Technology, Nanchang, Jiangxi 330013, P. R. China
| |
Collapse
|
61
|
Yan B, Li YF, Zhao H. Interaction of Ru(II) polypyridyl complex cations and Keggin anions [α-SiW12O40]4− in self-assembled organic-inorganic networks. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.120840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
62
|
Self-assembly of three Ag-polyoxovanadates frameworks for their efficient construction of C N bond and detoxification of simulant sulfur mustard. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.09.042] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
63
|
Zhao H, Yi B, Si X, Bao W, Cao L, Su L, Wang Y, Chou LY, Xie J. Insights into the Solid-State Synthesis of Defect-Rich Zr-UiO-66. Inorg Chem 2022; 61:6829-6836. [PMID: 35473298 DOI: 10.1021/acs.inorgchem.2c00139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Metal-organic frameworks (MOFs), a new type of porous material, have shown many possible applications in gas storage and separation, biomedicine, catalysis, and so on. While most MOFs are synthesized through solvothermal synthesis where a large quantity of organic solvent is used, the green synthetic approach using a minimized amount of solvent is important to prevent irreversible environmental compacts. In this study, we successfully synthesized Zr-MOFs with SBUs (e.g., UiO-66 and MIL-140A) using a simple metal source and investigated the role of organic modulators in modulating the MOF structures during solid-state synthesis. Meanwhile, UiO-66 rich in defects synthesized via a solid-state conversion strategy shows good catalytic performance for the ring-opening of epoxides with alcohols. This work contributes to the understanding of the role of organic modulators in the solid-state synthesis of MOFs.
Collapse
Affiliation(s)
- Haojie Zhao
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Beili Yi
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Xiaomeng Si
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Wenda Bao
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Lei Cao
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Longxing Su
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yanli Wang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Lien-Yang Chou
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Jin Xie
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
64
|
Su S, Li X, Zhang X, Zhu J, Liu G, Tan M, Wang Y, Luo M. Keggin-type SiW 12 encapsulated in MIL-101(Cr) as efficient heterogeneous photocatalysts for nitrogen fixation reaction. J Colloid Interface Sci 2022; 621:406-415. [PMID: 35472667 DOI: 10.1016/j.jcis.2022.04.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/31/2022] [Accepted: 04/01/2022] [Indexed: 10/18/2022]
Abstract
The incorporation of polyoxometalates (POMs) in metal-organic frameworks (MOFs) with host-guest structure have proven to be effective strategy to rational design of heterogeneous catalysis. In this study, the Keggin-type POM@MIL-101(Cr) composite catalysts (PMo12, PW12 and SiW12) are synthesized for nitrogen fixation reaction without sacrificial agents at room temperature in the first time. The SiW12 molecules are encapsulated in smaller cavities of MIL-101(Cr) by solvothermal method and in larger cavities by impregnation method, respectively. Solvothermal synthesized catalyst has a performance of 75.56 μmol·h-1·g-1cat and TOF value of 1.95 h-1, which are about 10 and 88 times than that of Na4SiW12O40. The excellent performance is ascribed to the synergistic effect of SiW12 and MIL-101(Cr). The MIL-101(Cr) adsorbs a large amount of N2 and generates sufficiently photogenerated electrons under sunlight irradiation, and electrons quickly transfer to the SiW12 through hydrogen bonds. Moreover, the agglomeration effect of the homogeneous catalyst SiW12 is weakened due to encapsulation with more exposed active sites. This work provides a feasible route to design and synthesize nanocomposite materials with exceptional performance for photocatalytic nitrogen fixation.
Collapse
Affiliation(s)
- Senda Su
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, Ningxia 750021, PR China
| | - Xiaoman Li
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, Ningxia 750021, PR China.
| | - Xu Zhang
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, Ningxia 750021, PR China
| | - Jingting Zhu
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, PR China
| | - Guodong Liu
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, Ningxia 750021, PR China
| | - Mengyao Tan
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, Ningxia 750021, PR China
| | - Yingying Wang
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, Ningxia 750021, PR China
| | - Min Luo
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, Ningxia 750021, PR China.
| |
Collapse
|
65
|
Haroon M, Janjua MRSA. Computationally Assisted Design and Prediction of Remarkably Boosted NLO Response of Organoimido‐Substituted Hexamolybdates. J PHYS ORG CHEM 2022. [DOI: 10.1002/poc.4353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Muhammad Haroon
- Chemistry Department King Fahd University of Petroleum and Minerals Dhahran Kingdom of Saudi Arabia
| | | |
Collapse
|
66
|
Lv J, Zhou X, Yang J, Wang L, Lu J, He G, Dong Y. In-situ synthesis of KAUST-7 membranes from fluorinated molecular building block for H2/CO2 separation. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
67
|
Ravanbakhsh H, Dianat S, Hosseinian A. Fabrication of a polyoxotungstate/metal-organic framework/phosphorus-doped reduced graphene oxide nanohybrid modified glassy carbon electrode by electrochemical reduction and its electrochemical properties. RSC Adv 2022; 12:9210-9222. [PMID: 35424841 PMCID: PMC8985131 DOI: 10.1039/d2ra00746k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 03/18/2022] [Indexed: 11/26/2022] Open
Abstract
Hybrid nanocomposites based on polyoxometalates (POMs), metal-organic frameworks (MOFs), and graphene oxide (GO) have a unique set of properties. They have specific properties such as high acidity, oxygen-rich surface, and good redox capability from POMs. In contrast, they do not have weaknesses of POMs such as a low surface area, and high solubility in aqueous media. Herein, a novel organic-inorganic nanohybrid compound based on H3PW12O40 (PW12), a Co-based MOF, and GO was prepared. The prepared hybrid nanocomposite (PW12/MOF/GO) was characterized using different techniques. Then, a PW12/MOF/GO nanocomposite modified glassy carbon electrode (GCE) was fabricated by the drop-casting method and next was dried at room temperature. Then, the PW12/MOF/GO/GCE was subjected to electrochemical reduction at a constant potential of -1.5 V, in 0.1 M H3PO4 solution containing 0.10% w/v PW12/MOF/GO additive. The morphology, electrochemical activity, and stability of the modified electrode (PW12/MOF/P@ERGO/GCE) were studied with FE-SEM coupled with EDS, CV, and amperometry. The obtained results confirmed that the PW12/MOF/P@ERGO/GCE could be effective in hydrogen evolution reaction (HER). The electrochemical activity of the PW12/MOF/P@ERGO/GCE due to the desirable microstructure of the electrocatalyst (e.g. high active surface area and homogeneous distribution of the PW12/MOF/P@ERGO), and also the synergistic effect of the blocks, is more than those of PW12/GCE, MOF/GCE, PW12/MOF/GCE, and P@ERGO/GCE. Moreover, the PW12/MOF/P@ERGO/GCE showed an excellent long-term stability under the air atmosphere.
Collapse
Affiliation(s)
- Hamid Ravanbakhsh
- Department of Chemistry, Faculty of Sciences, University of Hormozgan Bandar Abbas 79161-93145 Iran +98 76 33670121
| | - Somayeh Dianat
- Department of Chemistry, Faculty of Sciences, University of Hormozgan Bandar Abbas 79161-93145 Iran +98 76 33670121
| | - Amin Hosseinian
- Department of Chemistry, Faculty of Sciences, University of Hormozgan Bandar Abbas 79161-93145 Iran +98 76 33670121
| |
Collapse
|
68
|
|
69
|
Wang QQ, Mao LH, Wang DX, Ma YM, Shi XL, Tian XH. Construction of two new polyoxometalate complexes and their recyclability in photodegradation of cephalexin and ceftiofur. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.120902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
70
|
Bai Y, Xin Y, Liu J, Ma L, Li G. Construction of H
6
PW
9
V
3
O
40
@
rht
‐MOF‐1 for deep oxidative desulfurization of fuel oil. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yiyang Bai
- Key Laboratory of Functional Inorganic Material Chemistry (MOE); School of Chemistry and Materials Science Heilongjiang University Harbin Heilongjiang China
| | - Yuxiang Xin
- Key Laboratory of Functional Inorganic Material Chemistry (MOE); School of Chemistry and Materials Science Heilongjiang University Harbin Heilongjiang China
| | - Jiabin Liu
- Key Laboratory of Functional Inorganic Material Chemistry (MOE); School of Chemistry and Materials Science Heilongjiang University Harbin Heilongjiang China
| | - Liqiang Ma
- Key Laboratory of Functional Inorganic Material Chemistry (MOE); School of Chemistry and Materials Science Heilongjiang University Harbin Heilongjiang China
| | - Guangming Li
- Key Laboratory of Functional Inorganic Material Chemistry (MOE); School of Chemistry and Materials Science Heilongjiang University Harbin Heilongjiang China
| |
Collapse
|
71
|
Wang QQ, Wang DX, Wu YL, Li LX, Sun XY. Synthesis of polyoxometalate-based complexes and photocatalytic degradation of metronidazole. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.122966] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
72
|
Li Y, Yi Z, Kang Y, Fang WH. Stepwise assembly of heterometallic aluminum oxo clusters. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2021.122763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
73
|
Cheng M, Wang H, Liu Y, Shi J, Zhou M, Du W, Zhang D, Yang G. Bouquet-like uranium-containing selenotungstate consisting of two different Keggin-/Anderson-type units with excellent photoluminescence quantum yield. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.02.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
74
|
Liu J, Goetjen TA, Wang Q, Knapp JG, Wasson MC, Yang Y, Syed ZH, Delferro M, Notestein JM, Farha OK, Hupp JT. MOF-enabled confinement and related effects for chemical catalyst presentation and utilization. Chem Soc Rev 2022; 51:1045-1097. [PMID: 35005751 DOI: 10.1039/d1cs00968k] [Citation(s) in RCA: 95] [Impact Index Per Article: 47.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A defining characteristic of nearly all catalytically functional MOFs is uniform, molecular-scale porosity. MOF pores, linkers and nodes that define them, help regulate reactant and product transport, catalyst siting, catalyst accessibility, catalyst stability, catalyst activity, co-catalyst proximity, composition of the chemical environment at and beyond the catalytic active site, chemical intermediate and transition-state conformations, thermodynamic affinity of molecular guests for MOF interior sites, framework charge and density of charge-compensating ions, pore hydrophobicity/hydrophilicity, pore and channel rigidity vs. flexibility, and other features and properties. Collectively and individually, these properties help define overall catalyst functional behaviour. This review focuses on how porous, catalyst-containing MOFs capitalize on molecular-scale confinement, containment, isolation, environment modulation, energy delivery, and mobility to accomplish desired chemical transformations with potentially superior selectivity or other efficacy, especially in comparison to catalysts in homogeneous solution environments.
Collapse
Affiliation(s)
- Jian Liu
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60208, USA.
| | - Timothy A Goetjen
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60208, USA. .,Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, USA
| | - Qining Wang
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60208, USA.
| | - Julia G Knapp
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60208, USA.
| | - Megan C Wasson
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60208, USA.
| | - Ying Yang
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60208, USA.
| | - Zoha H Syed
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60208, USA. .,Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, USA
| | - Massimiliano Delferro
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, USA
| | - Justin M Notestein
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, USA
| | - Omar K Farha
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60208, USA. .,Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, USA
| | - Joseph T Hupp
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60208, USA.
| |
Collapse
|
75
|
Zhao Q. Structures, Fluorescence and Magnetism of a Series of Coordination Polymers Driven by Tricarboxypyridine Ligand. CrystEngComm 2022. [DOI: 10.1039/d2ce00726f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this study, a tricarboxypyridine ligand 3-((5-carboxypyridin-3-yl)oxy)phthalic acid (H3cppa), that combines three distinct types of functional groups (COOH, O-ether and N-pyridyl) was used to construct metal complexes by hydrothermal reaction,...
Collapse
|
76
|
Liu L, Lu XY, Zhang ML, Ren YX, Wang J, Yang XG. 2D MOF nanosheets as an artificial light-harvesting system with enhanced photoelectric switching performance. Inorg Chem Front 2022. [DOI: 10.1039/d2qi00404f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, we report the synthesis, structure and photophysical properties of a novel well-defined layered metal-organic framework (MOF) [Cd(ppda)(mbib)] by the selection of two flexible ligands 1,4-phenylenediacetic acid (ppda) and 1,3-bis(imidazol-1-ylmethyl)benzene...
Collapse
|
77
|
Chen Y, Li F, Li S, Zhang L, Sun M. A review of application and prospect for polyoxometalate-based composites in electrochemical sensor. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2021.109084] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
78
|
Parshamoni S, Viravaux C, Robert M, Mellot-Draznieks C, Chen G, Mialane P, Dolbecq A, Bonin J. Heterogenization of molecular cobalt catalysts in robust metal–organic frameworks for efficient photocatalytic CO 2 reduction. Catal Sci Technol 2022. [DOI: 10.1039/d2cy01147f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Efficient, selective and recyclable heterogeneous catalysts for photocatalytic CO2 reduction to CO under visible light irradiation are readily prepared by immobilization of cobalt molecular catalysts into Zr(iv)-based MOFs.
Collapse
Affiliation(s)
- Srinivasulu Parshamoni
- Université Paris Cité, CNRS, Laboratoire d'Electrochimie Moléculaire (LEM), F-75013 Paris, France
| | - Cédric Viravaux
- Université Paris-Saclay, UVSQ, CNRS UMR 8180, Institut Lavoisier de Versailles, 78000 Versailles, France
| | - Marc Robert
- Université Paris Cité, CNRS, Laboratoire d'Electrochimie Moléculaire (LEM), F-75013 Paris, France
- Institut Universitaire de France (IUF), F-75005 Paris, France
| | - Caroline Mellot-Draznieks
- Laboratoire de Chimie des Processus Biologiques, UMR CNRS 8229, Collège de France, Sorbonne Université, PSL Research University, 11 Place Marcelin Berthelot, 75231 Paris Cedex 05, France
| | - Gui Chen
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan, Guangdong 523808, P. R. China
| | - Pierre Mialane
- Université Paris-Saclay, UVSQ, CNRS UMR 8180, Institut Lavoisier de Versailles, 78000 Versailles, France
| | - Anne Dolbecq
- Université Paris-Saclay, UVSQ, CNRS UMR 8180, Institut Lavoisier de Versailles, 78000 Versailles, France
| | - Julien Bonin
- Université Paris Cité, CNRS, Laboratoire d'Electrochimie Moléculaire (LEM), F-75013 Paris, France
| |
Collapse
|
79
|
Zheng J, Fan S, Liu S, Shen G, Si WD, Dong X, Huang X, Zhang Y, Yao Q, Li Z, Sun D. In situ ball-milling gram-scale preparation of polyoxoniobate-intercalated MgAl-layered double hydroxides for selective aldol and Michael addition cascade reactions. Inorg Chem Front 2022. [DOI: 10.1039/d2qi01167k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A facile one-step ball-milling strategy to prepare gram-scale Mg3Al-LDH-Nb6 has been demonstrated and the thus-obtained catalyst exhibited efficient selective catalytic activities in the synthesis of biologically active organic molecules in water.
Collapse
Affiliation(s)
- Jun Zheng
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry & Chemical Engineering, Liaocheng University, Liaocheng, 252059, P. R. China
| | - Shuhua Fan
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry & Chemical Engineering, Liaocheng University, Liaocheng, 252059, P. R. China
| | - Sen Liu
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry & Chemical Engineering, Liaocheng University, Liaocheng, 252059, P. R. China
| | - Guodong Shen
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry & Chemical Engineering, Liaocheng University, Liaocheng, 252059, P. R. China
| | - Wei-Dan Si
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Ji'nan, 250100, People's Republic of China
| | - Xinyi Dong
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry & Chemical Engineering, Liaocheng University, Liaocheng, 252059, P. R. China
| | - Xianqiang Huang
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry & Chemical Engineering, Liaocheng University, Liaocheng, 252059, P. R. China
| | - Yalin Zhang
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry & Chemical Engineering, Liaocheng University, Liaocheng, 252059, P. R. China
| | - Qingxia Yao
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry & Chemical Engineering, Liaocheng University, Liaocheng, 252059, P. R. China
| | - Zhen Li
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry & Chemical Engineering, Liaocheng University, Liaocheng, 252059, P. R. China
| | - Di Sun
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Ji'nan, 250100, People's Republic of China
| |
Collapse
|
80
|
Napal J, Artetxe B, Beobide G, Castillo O, Luque A, Pascual-Colino J, Perez-Yañez S, Perfecto-Irigaray M. Merging the chemistry of metal-organic and polyoxometalate clusters into an enhanced photocatalytic material. Inorg Chem Front 2022. [DOI: 10.1039/d1qi01411k] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The combination of a zirconium metal-organic cluster and a Keggin type polyoxotungstate into a compound of formula [Zr6(µ3-O)4(µ3-OH)4(µ-OOCC6H5)8(H2O)8][SiW12O40] led to a chemically and photochemically stable porous material in which a...
Collapse
|
81
|
Xu L, Zhao X, Yu K, Wang C, Lv J, Wang C, Zhou B. Simple preparation of Ag-BTC-modified Co 3Mo 7O 24 mesoporous material for capacitance and H 2O 2-sensing performances. CrystEngComm 2022. [DOI: 10.1039/d2ce00639a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
{Co3Mo7O24}@Ag-BTC-2 was synthesized by a grinding method, and it showed excellent performance in a supercapacitor and H2O2 sensing.
Collapse
Affiliation(s)
- Lijie Xu
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, Harbin Normal University, Harbin 150025, P.R. China
| | - Xinyu Zhao
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, Harbin Normal University, Harbin 150025, P.R. China
| | - Kai Yu
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, Harbin Normal University, Harbin 150025, P.R. China
- Key Laboratory of Synthesis of Functional Materials and Green Catalysis, Colleges of Heilongjiang Province, Harbin Normal University, Harbin 150025, P.R. China
| | - Chunmei Wang
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, Harbin Normal University, Harbin 150025, P.R. China
| | - Jinghua Lv
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, Harbin Normal University, Harbin 150025, P.R. China
| | - Chunxiao Wang
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, Harbin Normal University, Harbin 150025, P.R. China
| | - Baibin Zhou
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, Harbin Normal University, Harbin 150025, P.R. China
- Key Laboratory of Synthesis of Functional Materials and Green Catalysis, Colleges of Heilongjiang Province, Harbin Normal University, Harbin 150025, P.R. China
| |
Collapse
|
82
|
Dey G, Saifi S, Sk M, Sinha ASK, Banerjee D, Aijaz A. Immobilizing a homogeneous manganese catalyst into MOF pores for α-alkylation of methylene ketones with alcohols. Dalton Trans 2022; 51:17973-17977. [DOI: 10.1039/d2dt02629e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An encapsulation strategy via nano-confinement of a homogeneous manganese–phenanthroline complex into MOF pores selectively produced functionalized branched ketones.
Collapse
Affiliation(s)
- Gargi Dey
- Department of Sciences & Humanities, Rajiv Gandhi Institute of Petroleum Technology (RGIPT) – Jais, Amethi, Uttar Pradesh – 229304, India
| | - Shadab Saifi
- Department of Sciences & Humanities, Rajiv Gandhi Institute of Petroleum Technology (RGIPT) – Jais, Amethi, Uttar Pradesh – 229304, India
| | - Motahar Sk
- Department of Chemistry, Laboratory of Catalysis and Organic Synthesis, Indian Institute of Technology Roorkee, Roorkee-247663, Uttarakhand, India
| | - A. S. K. Sinha
- Department of Chemical Engineering & Biochemical Engineering, Rajiv Gandhi Institute of Petroleum Technology (RGIPT), Jais, Amethi, Uttar Pradesh – 229304, India
| | - Debasis Banerjee
- Department of Chemistry, Laboratory of Catalysis and Organic Synthesis, Indian Institute of Technology Roorkee, Roorkee-247663, Uttarakhand, India
| | - Arshad Aijaz
- Department of Sciences & Humanities, Rajiv Gandhi Institute of Petroleum Technology (RGIPT) – Jais, Amethi, Uttar Pradesh – 229304, India
| |
Collapse
|
83
|
Chen Y, An H, Chang S, Li Y, Zhu Q, Luo H, Huang Y. POM-based porous supramolecular framework for the efficient sulfide-sulfoxide transformation with low molar O/S ratio. Inorg Chem Front 2022. [DOI: 10.1039/d2qi00525e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The selective oxidation of organic sulfides is a pivotal avenue to prepare sulfoxides that can act as synthetic intermediates of fine chemicals, bioactive molecules, and asymmetric catalysis ligands. To construct...
Collapse
|
84
|
Wang X, Lin J, Li H, Wang C, Wang X. Carbazole-based bis-imidazole ligand-involved synthesis of inorganic–organic hybrid polyoxometalates as electrochemical sensors for detecting bromate and efficient catalysts for selective oxidation of thioether. RSC Adv 2022; 12:4437-4445. [PMID: 35425509 PMCID: PMC8981165 DOI: 10.1039/d1ra08861k] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 01/27/2022] [Indexed: 01/12/2023] Open
Abstract
Considering the potential application on preparing electrode and catalyst materials of inorganic–organic hybrid polyoxometalates, a bis-imidazole ligand with carbazole as a connector, 3,6-di(1H-imidazol-1-yl)-9H-carbazole (L), was used for preparing inorganic–organic hybrid polyoxometalates. As a result, three complexes formulated by [NiL2(Mo2O7)] (1), [Cu(H2O)2(HL)2 (β-Mo8O26)]·H2O (2) and [Ni2(H2O)4L2 (CrMo6(OH)5O19)]·6H2O (3) were obtained successfully. Structural analysis indicated that the different polyoxoanions and metal ions showed important influences on the formation of structures. In the presence of Ni2+ ions and heptamolybdate, a 2D network constructed from Ni2+ ions and L ligands was formed in complex 1, in which the [Mo4O14]4− polyoxoanions were encapsulated. But the use of Cu2+ ions led to a 1D chain of complex 2, which was composed of [β-Mo8O26]4− polyoxoanions and mononuclear {CuL2} units. By utilizing [CrMo6(OH)5O19]4− as the inorganic building block, complex 3 showed a 2D (4, 4)-connected layer. Complexes 1–3 could be employed as electrode materials for sensing bromate with the limits of detection of 0.315 μM for 1, 0.098 μM for 2 and 0.551 μM for 3. Moreover, these complexes showed efficient catalytic activity for the selective oxidation of thioethers. Three inorganic–organic hybrid polyoxometalates were prepared using a bis-imidazole ligand featuring carbazole as a connector, exhibiting not only diverse structures, but also good electrochemical sensing activities for bromate, as well as efficient catalytic performances for oxidation of thioether.![]()
Collapse
Affiliation(s)
- Xiang Wang
- Liaoning Professional Technology Innovation Center of Liaoning Province for Conversion Materials of Solar Cell, College of Chemistry and Materials Engineering, Bohai University, Jinzhou, 121000, P. R. China
| | - Jiafeng Lin
- Liaoning Professional Technology Innovation Center of Liaoning Province for Conversion Materials of Solar Cell, College of Chemistry and Materials Engineering, Bohai University, Jinzhou, 121000, P. R. China
| | - Huan Li
- Liaoning Professional Technology Innovation Center of Liaoning Province for Conversion Materials of Solar Cell, College of Chemistry and Materials Engineering, Bohai University, Jinzhou, 121000, P. R. China
| | - Chenying Wang
- Liaoning Professional Technology Innovation Center of Liaoning Province for Conversion Materials of Solar Cell, College of Chemistry and Materials Engineering, Bohai University, Jinzhou, 121000, P. R. China
| | - Xiuli Wang
- Liaoning Professional Technology Innovation Center of Liaoning Province for Conversion Materials of Solar Cell, College of Chemistry and Materials Engineering, Bohai University, Jinzhou, 121000, P. R. China
| |
Collapse
|
85
|
Hongxiao L, Fan L, Chen H, Zhang X, Gao Y. Nanochannel-Based {BaZn}-Organic Framework for Catalytic Activity on Cycloaddition Reaction of Epoxides with CO2 and Deacetalization-Knoevenagel Condensation. Dalton Trans 2022; 51:3546-3556. [DOI: 10.1039/d1dt04231a] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Because of the integrated properties from chemically dissimilar metals, microporous heterometallic MOFs have wider potential applicability, which prompts us to explore the tendency collocation of different metal cations in the...
Collapse
|
86
|
Benseghir Y, Solé-Daura A, Mialane P, Marrot J, Dalecky L, Béchu S, Frégnaux M, Gomez-Mingot M, Fontecave M, Mellot-Draznieks C, Dolbecq A. Understanding the Photocatalytic Reduction of CO2 with Heterometallic Molybdenum(V) Phosphate Polyoxometalates in Aqueous Media. ACS Catal 2021. [DOI: 10.1021/acscatal.1c04530] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Youven Benseghir
- Université Paris-Saclay, UVSQ, CNRS, Institut Lavoisier de Versailles, 78000 Versailles, France
- Laboratoire de Chimie des Processus Biologiques, UMR CNRS 8229, Collège de France, Sorbonne Université, PSL Research University, 75231 Paris Cedex 05, France
| | - Albert Solé-Daura
- Laboratoire de Chimie des Processus Biologiques, UMR CNRS 8229, Collège de France, Sorbonne Université, PSL Research University, 75231 Paris Cedex 05, France
| | - Pierre Mialane
- Université Paris-Saclay, UVSQ, CNRS, Institut Lavoisier de Versailles, 78000 Versailles, France
| | - Jérôme Marrot
- Université Paris-Saclay, UVSQ, CNRS, Institut Lavoisier de Versailles, 78000 Versailles, France
| | - Lauren Dalecky
- Université Paris-Saclay, UVSQ, CNRS, Institut Lavoisier de Versailles, 78000 Versailles, France
| | - Solène Béchu
- Université Paris-Saclay, UVSQ, CNRS, Institut Lavoisier de Versailles, 78000 Versailles, France
| | - Mathieu Frégnaux
- Université Paris-Saclay, UVSQ, CNRS, Institut Lavoisier de Versailles, 78000 Versailles, France
| | - Maria Gomez-Mingot
- Laboratoire de Chimie des Processus Biologiques, UMR CNRS 8229, Collège de France, Sorbonne Université, PSL Research University, 75231 Paris Cedex 05, France
| | - Marc Fontecave
- Laboratoire de Chimie des Processus Biologiques, UMR CNRS 8229, Collège de France, Sorbonne Université, PSL Research University, 75231 Paris Cedex 05, France
| | - Caroline Mellot-Draznieks
- Laboratoire de Chimie des Processus Biologiques, UMR CNRS 8229, Collège de France, Sorbonne Université, PSL Research University, 75231 Paris Cedex 05, France
| | - Anne Dolbecq
- Université Paris-Saclay, UVSQ, CNRS, Institut Lavoisier de Versailles, 78000 Versailles, France
| |
Collapse
|
87
|
Metal organic frameworks as hybrid porous materials for energy storage and conversion devices: A review. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214115] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
88
|
Liu Y, Tang C, Cheng M, Chen M, Chen S, Lei L, Chen Y, Yi H, Fu Y, Li L. Polyoxometalate@Metal–Organic Framework Composites as Effective Photocatalysts. ACS Catal 2021. [DOI: 10.1021/acscatal.1c03866] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Yang Liu
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Chensi Tang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Min Cheng
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Ming Chen
- Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
| | - Sha Chen
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Lei Lei
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Yashi Chen
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Huan Yi
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Yukui Fu
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Ling Li
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| |
Collapse
|
89
|
Zhang X, Wei X, Huang SL, Yang GY. Selective Photocatalytic Oxidation of Sulfides in Lanthanide Metal -Organic Frameworks Incorporating Ru(2,2'-bpy) 3 photosensitizer. Chem Asian J 2021; 16:2031-2034. [PMID: 34180132 DOI: 10.1002/asia.202100482] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/07/2021] [Indexed: 11/08/2022]
Abstract
Three isostructural lanthanide metal-organic frameworks (Ln-MOFs) were synthesized with uncoordinated N^N site, and the Ru(N^N)3 photosensitizer was introduced via coordination link. These functionalized frameworks showed excellent performance in the photocatalytic oxidation of sulfides with good conversion and high sulfoxide selectivity.
Collapse
Affiliation(s)
- Xiaobang Zhang
- MOE Key Laboratory of Cluster Science, Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Xiaomei Wei
- MOE Key Laboratory of Cluster Science, Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Sheng-Li Huang
- MOE Key Laboratory of Cluster Science, Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Guo-Yu Yang
- MOE Key Laboratory of Cluster Science, Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| |
Collapse
|
90
|
Li Y, Wang HT, Zhao YL, Lv J, Zhang X, Chen Q, Li JR. Regulation of hydrophobicity and water adsorption of MIL-101(Cr) through post-synthetic modification. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2021.108741] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
91
|
Ma B, Blanco M, Calvillo L, Chen L, Chen G, Lau TC, Dražić G, Bonin J, Robert M, Granozzi G. Hybridization of Molecular and Graphene Materials for CO 2 Photocatalytic Reduction with Selectivity Control. J Am Chem Soc 2021; 143:8414-8425. [PMID: 34033471 DOI: 10.1021/jacs.1c02250] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In the quest for designing efficient and stable photocatalytic materials for CO2 reduction, hybridizing a selective noble-metal-free molecular catalyst and carbon-based light-absorbing materials has recently emerged as a fruitful approach. In this work, we report about Co quaterpyridine complexes covalently linked to graphene surfaces functionalized by carboxylic acid groups. The nanostructured materials were characterized by X-ray photoemission spectroscopy, X-ray absorption spectroscopy, IR and Raman spectroscopies, high-resolution transmission electron microscopy and proved to be highly active in the visible-light-driven CO2 catalytic conversion in acetonitrile solutions. Exceptional stabilities (over 200 h of irradiation) were obtained without compromising the selective conversion of CO2 to products (>97%). Most importantly, complete selectivity control could be obtained upon adjusting the experimental conditions: production of CO as the only product was achieved when using a weak acid (phenol or trifluoroethanol) as a co-substrate, while formate was exclusively obtained in solutions of mixed acetonitrile and triethanolamine.
Collapse
Affiliation(s)
- Bing Ma
- Université de Paris, CNRS, Laboratoire d'Electrochimie Moléculaire (LEM), F-75006 Paris, France
| | - Matías Blanco
- Department of Chemical Sciences, INSTM Unit, University of Padova, Via F. Marzolo, 1, 35131 Padova, Italy
| | - Laura Calvillo
- Department of Chemical Sciences, INSTM Unit, University of Padova, Via F. Marzolo, 1, 35131 Padova, Italy
| | - Lingjing Chen
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, Guangdong, P.R. China
| | - Gui Chen
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, Guangdong, P.R. China
| | - Tai-Chu Lau
- Department of Chemistry, City University of Hong Kong, Kowloon 999077, Hong Kong, P.R. China
| | - Goran Dražić
- Department of Materials Chemistry, National Institute of Chemistry, Hajdrihova 19, SI-1000 Ljubljana, Slovenia
| | - Julien Bonin
- Université de Paris, CNRS, Laboratoire d'Electrochimie Moléculaire (LEM), F-75006 Paris, France
| | - Marc Robert
- Université de Paris, CNRS, Laboratoire d'Electrochimie Moléculaire (LEM), F-75006 Paris, France.,Institut Universitaire de France (IUF), F-75005 Paris, France
| | - Gaetano Granozzi
- Department of Chemical Sciences, INSTM Unit, University of Padova, Via F. Marzolo, 1, 35131 Padova, Italy
| |
Collapse
|
92
|
Wei D, Huang L, Liang H, Zou J, Chen W, Yang C, Hou Y, Zheng D, Zhang J. Photocatalytic hydroxylation of benzene to phenol over organosilane-functionalized FeVO4 nanorods. Catal Sci Technol 2021. [DOI: 10.1039/d1cy00890k] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Surface silylation of FeVO4 with organosilane functional groups is a promising strategy to realize kinetic control of photocatalytic benzene hydroxylation reactions.
Collapse
Affiliation(s)
- Danlei Wei
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, 2 Xueyuan Road, University Town, Fuzhou 350108, China
| | - Lianqi Huang
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, 2 Xueyuan Road, University Town, Fuzhou 350108, China
| | - Hanying Liang
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, 2 Xueyuan Road, University Town, Fuzhou 350108, China
| | - Junhua Zou
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, 2 Xueyuan Road, University Town, Fuzhou 350108, China
| | - Wenwen Chen
- College of Environment & Resources, Fuzhou University, 2 Xueyuan Road, University Town, Fuzhou 350108, China
| | - Can Yang
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, 2 Xueyuan Road, University Town, Fuzhou 350108, China
| | - Yidong Hou
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, 2 Xueyuan Road, University Town, Fuzhou 350108, China
| | - Dandan Zheng
- College of Environment & Resources, Fuzhou University, 2 Xueyuan Road, University Town, Fuzhou 350108, China
| | - Jinshui Zhang
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, 2 Xueyuan Road, University Town, Fuzhou 350108, China
| |
Collapse
|