51
|
Velletri T, Romeo F, Tucci P, Peschiaroli A, Annicchiarico-Petruzzelli M, Niklison-Chirou MV, Amelio I, Knight RA, Mak TW, Melino G, Agostini M. GLS2 is transcriptionally regulated by p73 and contributes to neuronal differentiation. Cell Cycle 2013; 12:3564-73. [PMID: 24121663 DOI: 10.4161/cc.26771] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The amino acid Glutamine is converted into Glutamate by a deamidation reaction catalyzed by the enzyme Glutaminase (GLS). Two isoforms of this enzyme have been described, and the GLS2 isoform is regulated by the tumor suppressor gene p53. Here, we show that the p53 family member TAp73 also drives the expression of GLS2. Specifically, we demonstrate that TAp73 regulates GLS2 during retinoic acid-induced terminal neuronal differentiation of neuroblastoma cells, and overexpression or inhibition of GLS2 modulates neuronal differentiation and intracellular levels of ATP. Moreover, inhibition of GLS activity, by removing Glutamine from the growth medium, impairs in vitro differentiation of cortical neurons. Finally, expression of GLS2 increases during mouse cerebellar development. Although, p73 is dispensable for the in vivo expression of GLS2, TAp73 loss affects GABA and Glutamate levels in cortical neurons. Together, these findings suggest a role for GLS2 acting, at least in part, downstream of p73 in neuronal differentiation and highlight a possible role of p73 in regulating neurotransmitter synthesis.
Collapse
Affiliation(s)
- Tania Velletri
- Medical Research Council; Toxicology Unit; Leicester University; Leicester, UK; Institute of Health Sciences; Shanghai Institutes for Biological Sciences; Chinese Academy of Sciences & Shanghai Jiao Tong University School of Medicine; Shanghai, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
52
|
Szeliga M, Bogacińska-Karaś M, Różycka A, Hilgier W, Marquez J, Albrecht J. Silencing of GLS and overexpression of GLS2 genes cooperate in decreasing the proliferation and viability of glioblastoma cells. Tumour Biol 2013; 35:1855-62. [PMID: 24096582 PMCID: PMC3967065 DOI: 10.1007/s13277-013-1247-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Accepted: 09/23/2013] [Indexed: 12/25/2022] Open
Abstract
Glutamine (Gln) metabolism, initiated by its degradation by glutaminases (GA), is elevated in neoplastic cells and tissues. In malignant glia-derived tumors, GA isoforms, KGA and GAC, coded by the GLS gene, are overexpressed, whereas the GLS2-coded GAB and LGA isoforms, are hardly detectable in there. Our previous study revealed that transfection of T98G glioblastoma cells with GAB reduced cell proliferation and migration, by a yet unknown mechanism not related to Gln degradation. The question arose how simultaneous overexpression of GAB and inhibition of KGA would affect glioblastoma cell growth. Here, we used siRNA to silence the expression of Gls in T98G cells which were or were not stably transfected with GAB (TGAB cells). In both T98G and TGAB cell lines, silencing of Gls with siRNAs targeted at different sequences decreased cell viability and proliferation in a different, sequence-dependent degree, and the observed decreases were in either cell line highly correlated with increase of intracellular Gln (r > 0.9), a parameter manifesting decreased Gln degradation. The results show that combination of negative modulation of GA isoforms arising from GLS gene with the introduction of the GLS2 gene product, GAB, may in the future provide a useful means to curb glioblastoma growth in situ. At the same time, the results underscore the critical role of Gln degradation mediated by KGA in the manifestations of aggressive glial tumor phenotype.
Collapse
Affiliation(s)
- Monika Szeliga
- Department of Neurotoxicology, Mossakowski Medical Research Centre Polish Academy of Sciences, 5 Pawińskiego Str., 02-106, Warsaw, Poland,
| | | | | | | | | | | |
Collapse
|
53
|
Giacobbe A, Bongiorno-Borbone L, Bernassola F, Terrinoni A, Markert EK, Levine AJ, Feng Z, Agostini M, Zolla L, Agrò AF, Notterman DA, Melino G, Peschiaroli A. p63 regulates glutaminase 2 expression. Cell Cycle 2013; 12:1395-405. [PMID: 23574722 DOI: 10.4161/cc.24478] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The transcription factor p63 is critical for many biological processes, including development and maintenance of epidermal tissues and tumorigenesis. Here, we report that the TAp63 isoforms regulate cell metabolism through the induction of the mitochondrial glutaminase 2 (GLS2) gene both in primary cells and tumor cell lines. By ChIP analysis and luciferase assay, we confirmed that TAp63 binds directly to the p53/p63 consensus DNA binding sequence within the GLS2 promoter region. Given the critical role of p63 in epidermal differentiation, we have investigated the regulation of GLS2 expression during this process. GLS2 and TAp63 expression increases during the in vitro differentiation of primary human keratinocytes, and depletion of GLS2 inhibits skin differentiation both at molecular and cellular levels. We found that GLS2 and TAp63 expression are concomitantly induced in cancer cells exposed to oxidative stresses. siRNA-mediated depletion of GLS2 sensitizes cells to ROS-induced apoptosis, suggesting that the TAp63/GLS2 axis can be functionally important as a cellular antioxidant pathway in the absence of p53. Accordingly, we found that GLS2 is upregulated in colon adenocarcinoma. Altogether, our findings demonstrate that GLS2 is a bona fide TAp63 target gene, and that the TAp63-dependent regulation of GLS2 is important for both physiological and pathological processes.
Collapse
Affiliation(s)
- Arianna Giacobbe
- Department of Experimental Medicine and Surgery, University of Rome Tor Vergata, Rome, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
54
|
Abstract
The target of rapamycin (TOR) is a highly conserved serine/threonine kinase that is part of two structurally and functionally distinct complexes, TORC1 and TORC2. In multicellular organisms, TOR regulates cell growth and metabolism in response to nutrients, growth factors and cellular energy. Deregulation of TOR signaling alters whole body metabolism and causes age-related disease. This review describes the most recent advances in TOR signaling with a particular focus on mammalian TOR (mTOR) in metabolic tissues vis-a-vis aging, obesity, type 2 diabetes, and cancer.
Collapse
Affiliation(s)
- Marion Cornu
- Biozentrum, University of Basel, CH-4056 Basel, Switzerland
| | | | | |
Collapse
|
55
|
Cornu M, Albert V, Hall MN. mTOR in aging, metabolism, and cancer. Curr Opin Genet Dev 2013; 23:53-62. [PMID: 23317514 DOI: 10.1016/j.gde.2012.12.005] [Citation(s) in RCA: 354] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Revised: 12/04/2012] [Accepted: 12/12/2012] [Indexed: 12/19/2022]
Abstract
The target of rapamycin (TOR) is a highly conserved serine/threonine kinase that is part of two structurally and functionally distinct complexes, TORC1 and TORC2. In multicellular organisms, TOR regulates cell growth and metabolism in response to nutrients, growth factors and cellular energy. Deregulation of TOR signaling alters whole body metabolism and causes age-related disease. This review describes the most recent advances in TOR signaling with a particular focus on mammalian TOR (mTOR) in metabolic tissues vis-a-vis aging, obesity, type 2 diabetes, and cancer.
Collapse
Affiliation(s)
- Marion Cornu
- Biozentrum, University of Basel, CH-4056 Basel, Switzerland
| | | | | |
Collapse
|
56
|
Bmcc1s interacts with the phosphate-activated glutaminase in the brain. Biochimie 2012; 95:799-807. [PMID: 23246912 DOI: 10.1016/j.biochi.2012.11.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Accepted: 11/26/2012] [Indexed: 11/24/2022]
Abstract
Bmcc1s, a brain-enriched short isoform of the BCH-domain containing molecule Bmcc1, has recently been shown to interact with the microtubule-associated protein MAP6 and to regulate cell morphology. Here we identified kidney-type glutaminase (KGA), the mitochondrial enzyme responsible for the conversion of glutamine to glutamate in neurons, as a novel partner of Bmcc1s. Co-immunoprecipitation experiments confirmed that Bmcc1s and KGA form a physiological complex in the brain, whereas binding and modeling studies showed that they interact with each other. Overexpression of Bmcc1s in mouse primary cortical neurons impaired proper mitochondrial targeting of KGA leading to its accumulation within the cytoplasm. Thus, Bmcc1s may control the trafficking of KGA to the mitochondria.
Collapse
|
57
|
Abstract
The activity of key metabolic enzymes is regulated by the ubiquitin ligases that control the function of the cyclins; therefore the activity of these ubiquitin ligases explains the coordination of cell-cycle progression with the supply of substrates necessary for cell duplication. APC/C (anaphase-promoting complex/cyclosome)-Cdh1, the ubiquitin ligase that controls G(1)- to S-phase transition by targeting specific degradation motifs in cell-cycle proteins, also regulates the glycolysis-promoting enzyme PFKFB3 (6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase isoform 3) and GLS1 (glutaminase 1), a critical enzyme in glutaminolysis. A decrease in the activity of APC/C-Cdh1 in mid-to-late G(1) releases both proteins, thus explaining the simultaneous increase in the utilization of glucose and glutamine during cell proliferation. This occurs at a time consistent with the point in G(1) that has been described as the nutrient-sensitive restriction point and is responsible for the transition from G(1) to S. PFKFB3 is also a substrate at the onset of S-phase for the ubiquitin ligase SCF (Skp1/cullin/F-box)-β-TrCP (β-transducin repeat-containing protein), so that the activity of PFKFB3 is short-lasting, coinciding with a peak in glycolysis in mid-to-late G(1), whereas the activity of GLS1 remains high throughout S-phase. The differential regulation of the activity of these proteins indicates that a finely-tuned set of mechanisms is activated to fulfil specific metabolic demands at different stages of the cell cycle. These findings have implications for the understanding of cell proliferation in general and, in particular, of cancer, its prevention and treatment.
Collapse
|
58
|
Durán RV, Oppliger W, Robitaille AM, Heiserich L, Skendaj R, Gottlieb E, Hall MN. Glutaminolysis activates Rag-mTORC1 signaling. Mol Cell 2012; 47:349-58. [PMID: 22749528 DOI: 10.1016/j.molcel.2012.05.043] [Citation(s) in RCA: 510] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Revised: 04/18/2012] [Accepted: 05/21/2012] [Indexed: 02/07/2023]
Abstract
Amino acids control cell growth via activation of the highly conserved kinase TORC1. Glutamine is a particularly important amino acid in cell growth control and metabolism. However, the role of glutamine in TORC1 activation remains poorly defined. Glutamine is metabolized through glutaminolysis to produce α-ketoglutarate. We demonstrate that glutamine in combination with leucine activates mammalian TORC1 (mTORC1) by enhancing glutaminolysis and α-ketoglutarate production. Inhibition of glutaminolysis prevented GTP loading of RagB and lysosomal translocation and subsequent activation of mTORC1. Constitutively active Rag heterodimer activated mTORC1 in the absence of glutaminolysis. Conversely, enhanced glutaminolysis or a cell-permeable α-ketoglutarate analog stimulated lysosomal translocation and activation of mTORC1. Finally, cell growth and autophagy, two processes controlled by mTORC1, were regulated by glutaminolysis. Thus, mTORC1 senses and is activated by glutamine and leucine via glutaminolysis and α-ketoglutarate production upstream of Rag. This may provide an explanation for glutamine addiction in cancer cells.
Collapse
Affiliation(s)
- Raúl V Durán
- Biozentrum, University of Basel, 4056 Basel, Switzerland
| | | | | | | | | | | | | |
Collapse
|
59
|
Martín-Rufián M, Tosina M, Campos-Sandoval JA, Manzanares E, Lobo C, Segura JA, Alonso FJ, Matés JM, Márquez J. Mammalian glutaminase Gls2 gene encodes two functional alternative transcripts by a surrogate promoter usage mechanism. PLoS One 2012; 7:e38380. [PMID: 22679499 PMCID: PMC3367983 DOI: 10.1371/journal.pone.0038380] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Accepted: 05/04/2012] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Glutaminase is expressed in most mammalian tissues and cancer cells, but the regulation of its expression is poorly understood. An essential step to accomplish this goal is the characterization of its species- and cell-specific isoenzyme pattern of expression. Our aim was to identify and characterize transcript variants of the mammalian glutaminase Gls2 gene. METHODOLOGY/PRINCIPAL FINDINGS We demonstrate for the first time simultaneous expression of two transcript variants from the Gls2 gene in human, rat and mouse. A combination of RT-PCR, primer-extension analysis, bioinformatics, real-time PCR, in vitro transcription and translation and immunoblot analysis was applied to investigate GLS2 transcripts in mammalian tissues. Short (LGA) and long (GAB) transcript forms were isolated in brain and liver tissue of human, rat and mouse. The short LGA transcript arises by a combination of two mechanisms of transcriptional modulation: alternative transcription initiation and alternative promoter. The LGA variant contains both the transcription start site (TSS) and the alternative promoter in the first intron of the Gls2 gene. The full human LGA transcript has two in-frame ATGs in the first exon, which are missing in orthologous rat and mouse transcripts. In vitro transcription and translation of human LGA yielded two polypeptides of the predicted size, but only the canonical full-length protein displayed catalytic activity. Relative abundance of GAB and LGA transcripts showed marked variations depending on species and tissues analyzed. CONCLUSIONS/SIGNIFICANCE This is the first report demonstrating expression of alternative transcripts of the mammalian Gls2 gene. Transcriptional mechanisms giving rise to GLS2 variants and isolation of novel GLS2 transcripts in human, rat and mouse are presented. Results were also confirmed at the protein level, where catalytic activity was demonstrated for the human LGA protein. Relative abundance of GAB and LGA transcripts was species- and tissue-specific providing evidence of a differential regulation of GLS2 transcripts in mammals.
Collapse
Affiliation(s)
- Mercedes Martín-Rufián
- Laboratorio de Química de Proteínas, Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
| | - Marta Tosina
- Laboratorio de Química de Proteínas, Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
| | - José A. Campos-Sandoval
- Laboratorio de Química de Proteínas, Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
| | - Elisa Manzanares
- Laboratorio de Química de Proteínas, Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
| | - Carolina Lobo
- Laboratorio de Química de Proteínas, Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
| | - J. A. Segura
- Laboratorio de Química de Proteínas, Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
| | - Francisco J. Alonso
- Laboratorio de Química de Proteínas, Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
| | - José M. Matés
- Laboratorio de Química de Proteínas, Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
| | - Javier Márquez
- Laboratorio de Química de Proteínas, Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
- * E-mail:
| |
Collapse
|
60
|
Yuneva MO, Fan TWM, Allen TD, Higashi RM, Ferraris DV, Tsukamoto T, Matés JM, Alonso FJ, Wang C, Seo Y, Chen X, Bishop JM. The metabolic profile of tumors depends on both the responsible genetic lesion and tissue type. Cell Metab 2012; 15:157-70. [PMID: 22326218 PMCID: PMC3282107 DOI: 10.1016/j.cmet.2011.12.015] [Citation(s) in RCA: 502] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2011] [Revised: 08/01/2011] [Accepted: 12/16/2011] [Indexed: 02/06/2023]
Abstract
The altered metabolism of tumors has been considered a target for anticancer therapy. However, the relationship between distinct tumor-initiating lesions and anomalies of tumor metabolism in vivo has not been addressed. We report that MYC-induced mouse liver tumors significantly increase both glucose and glutamine catabolism, whereas MET-induced liver tumors use glucose to produce glutamine. Increased glutamine catabolism in MYC-induced liver tumors is associated with decreased levels of glutamine synthetase (Glul) and the switch from Gls2 to Gls1 glutaminase. In contrast to liver tumors, MYC-induced lung tumors display increased expression of both Glul and Gls1 and accumulate glutamine. We also show that inhibition of Gls1 kills cells that overexpress MYC and catabolize glutamine. Our results suggest that the metabolic profiles of tumors are likely to depend on both the genotype and tissue of origin and have implications regarding the design of therapies targeting tumor metabolism.
Collapse
Affiliation(s)
- Mariia O Yuneva
- G.W. Hooper Research Foundation, University of California, San Francisco, San Francisco, CA 94143, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
61
|
Zoetewey DL, Ovee M, Banerjee M, Bhaskaran R, Mohanty S. Promiscuous binding at the crossroads of numerous cancer pathways: insight from the binding of glutaminase interacting protein with glutaminase L. Biochemistry 2011; 50:3528-39. [PMID: 21417405 DOI: 10.1021/bi102055y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The glutaminase interacting protein (GIP) is composed of a single PDZ domain that interacts with a growing list of partner proteins, including glutaminase L, that are involved in a number of cell signaling and cancer pathways. Therefore, GIP makes a good target for structure-based drug design. Here, we report the solution structures of both free GIP and GIP bound to the C-terminal peptide analogue of glutaminase L. This is the first reported nuclear magnetic resonance structure of GIP in a complex with one of its binding partners. Our analysis of both free GIP and GIP in a complex with the glutaminase L peptide provides important insights into how a promiscuous binding domain can have affinity for multiple binding partners. Through a detailed chemical shift perturbation analysis and backbone dynamics studies, we demonstrate here that the binding of the glutaminase L peptide to GIP is an allosteric event. Taken together, the insights reported here lay the groundwork for the future development of a specific inhibitor for GIP.
Collapse
Affiliation(s)
- David L Zoetewey
- Department of Chemistry and Biochemistry, Auburn University, Alabama 36849, United States
| | | | | | | | | |
Collapse
|
62
|
The metabolic switch and its regulation in cancer cells. SCIENCE CHINA-LIFE SCIENCES 2010; 53:942-58. [PMID: 20821293 DOI: 10.1007/s11427-010-4041-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2010] [Accepted: 05/07/2010] [Indexed: 02/05/2023]
Abstract
The primary features of cancer are maintained via intrinsically modified metabolic activity, which is characterized by enhanced nutrient supply, energy production, and biosynthetic activity to synthesize a variety of macromolecular components during each passage through the cell cycle. This metabolic shift in transformed cells, as compared with non-proliferating cells, involves aberrant activation of aerobic glycolysis, de novo lipid biosynthesis and glutamine-dependent anaplerosis to fuel robust cell growth and proliferation. Here, we discuss the unique metabolic characteristics of cancer, the constitutive regulation of metabolism through a variety of signal transduction pathways and/or enzymes involved in metabolic reprogramming in cancer cells, and their implications in cancer diagnosis and therapy.
Collapse
|
63
|
Abstract
AbstractGlutaminase is considered as the main glutamate producer enzyme in brain. Consequently, the enzyme is essential for both glutamatergic and gabaergic transmissions. Glutamine-derived glutamate and ammonia, the products of glutaminase reaction, fulfill crucial roles in energy metabolism and in the biosynthesis of basic metabolites, such as GABA, proteins and glutathione. However, glutamate and ammonia are also hazardous compounds and danger lurks in their generation beyond normal physiological thresholds; hence, glutaminase activity must be carefully regulated in the mammalian brain. The differential distribution and regulation of glutaminase are key factors to modulate the metabolism of glutamate and glutamine in brain. The discovery of novel isoenzymes, protein interacting partners and subcellular localizations indicate new functions for brain glutaminase. In this short review, we summarize recent findings that point consistently towards glutaminase as a multifaceted protein able to perform different tasks. Finally, we will highlight the involvement of glutaminase in pathological states and its consideration as a potential therapeutic target.
Collapse
|
64
|
Podar K, Anderson KC. A therapeutic role for targeting c-Myc/Hif-1-dependent signaling pathways. Cell Cycle 2010; 9:1722-8. [PMID: 20404562 DOI: 10.4161/cc.9.9.11358] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Deregulated c-Myc occurs in approximately 30% of human cancers. Similarly, hypoxia-inducible factor (HIF) is commonly overexpressed in a variety of human malignancies. Under physiologic conditions, HIF inhibits c-Myc activity; however, when deregulated oncogenic c-Myc collaborates with HIF in inducing the expression of VEGF, PDK1 and hexokinase 2. Most of the knowledge of HIF derives from studies investigating a role of HIF under hypoxic conditions, however, HIF-1alpha stabilization is also found in normoxic conditions. Specifically, under hypoxic conditions HIF-1-mediated regulation of oncogenic c-Myc plays a pivotal role in conferring metabolic advantages to tumor cells as well as adaptation to the tumorigenic micromilieu. In addition, our own results show that under normoxic conditions oncogenic c-Myc is required for constitutive high HIF-1 protein levels and activity in Multiple Myeloma (MM) cells, thereby influencing VEGF secretion and angiogenic activity within the bone marrow microenvironment. Further studies are needed to delineate the functional relevance of HIF, MYC, and the HIF-MYC collaboration in MM and other malignancies, also integrating the tumor microenvironment and the cellular context. Importantly, early studies already demonstrate promising preclinical of novel agents, predominantly small molecules, which target c-Myc, HIF or both.
Collapse
Affiliation(s)
- Klaus Podar
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.
| | | |
Collapse
|
65
|
Phosphate-activated glutaminase (GLS2), a p53-inducible regulator of glutamine metabolism and reactive oxygen species. Proc Natl Acad Sci U S A 2010; 107:7461-6. [PMID: 20351271 DOI: 10.1073/pnas.1002459107] [Citation(s) in RCA: 492] [Impact Index Per Article: 35.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
We identified a p53 target gene, phosphate-activated mitochondrial glutaminase (GLS2), a key enzyme in conversion of glutamine to glutamate, and thereby a regulator of glutathione (GSH) synthesis and energy production. GLS2 expression is induced in response to DNA damage or oxidative stress in a p53-dependent manner, and p53 associates with the GLS2 promoter. Elevated GLS2 facilitates glutamine metabolism and lowers intracellular reactive oxygen species (ROS) levels, resulting in an overall decrease in DNA oxidation as determined by measurement of 8-OH-dG content in both normal and stressed cells. Further, siRNA down-regulation of either GLS2 or p53 compromises the GSH-dependent antioxidant system and increases intracellular ROS levels. High ROS levels following GLS2 knockdown also coincide with stimulation of p53-induced cell death. We propose that GLS2 control of intracellular ROS levels and the apoptotic response facilitates the ability of p53 to protect cells from accumulation of genomic damage and allows cells to survive after mild and repairable genotoxic stress. Indeed, overexpression of GLS2 reduces the growth of tumor cells and colony formation. Further, compared with normal tissue, GLS2 expression is reduced in liver tumors. Thus, our results provide evidence for a unique metabolic role for p53, linking glutamine metabolism, energy, and ROS homeostasis, which may contribute to p53 tumor suppressor function.
Collapse
|
66
|
Bioenergetic pathways in tumor mitochondria as targets for cancer therapy and the importance of the ROS-induced apoptotic trigger. Mol Aspects Med 2010; 31:29-59. [DOI: 10.1016/j.mam.2009.12.006] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2009] [Accepted: 12/11/2009] [Indexed: 12/22/2022]
|
67
|
Szeliga M, Obara-Michlewska M, Matyja E, Łazarczyk M, Lobo C, Hilgier W, Alonso FJ, Márquez J, Albrecht J. Transfection with liver-type glutaminase cDNA alters gene expression and reduces survival, migration and proliferation of T98G glioma cells. Glia 2009; 57:1014-23. [PMID: 19062176 DOI: 10.1002/glia.20825] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Liver-type glutaminase (LGA) is a glutaminase isoform that has been implicated in transcription modulation. LGA mRNA is absent from postoperative samples of primary gliomas and is low in cultured astrocytes. In this study, stable transfection of T98G cells with a vector carrying human LGA sequence increased the expression of LGA mRNA and protein, and the ability of the cells to degrade glutamine (Gln), as manifested by a three-fold reduction of their steady-state Gln content and a 2.5-fold increase of their glutamate (Glu) content. The transfected cells (TLGA cells) showed a 40% decrease of cell survival as assessed by colony formation, well correlated with significant reduction of mitochondrial activity as demonstrated with MTT test. Also, a 45% reduction of cell migration and a 47% decrease of proliferation index (Ki67 immunostaining) were found as compared with sham-transfected cells. Microarray analysis, which included over 47,000 transcripts, revealed a significantly altered expression of 85 genes in TLGA, but not in sham-transfected or control cells (P < 0.005). Microarray data were confirmed with real-time PCR analysis for eight genes potentially relevant to malignancy: S100A16, CAPN2, FNDC3B, DYNC1LI1, TIMP4, MGMT, ADM, and TIMP1. Of these changes, decreased expression of S100A16 and MGMT can be best reconciled with the current views on the role of their protein products in glioma malignancy. Malignancy-reducing effect of newly inserted LGA mRNA in glioblastoma cells can be reconciled with a hypothesis that absence of such a modulatory mechanism in glia-derived tumors deprived of LGA mRNA may facilitate some aspects of their progression.
Collapse
Affiliation(s)
- Monika Szeliga
- Department of Neurotoxicology, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland.
| | | | | | | | | | | | | | | | | |
Collapse
|
68
|
Gao P, Tchernyshyov I, Chang TC, Lee YS, Kita K, Ochi T, Zeller KI, De Marzo AM, Van Eyk JE, Mendell JT, Dang CV. c-Myc suppression of miR-23a/b enhances mitochondrial glutaminase expression and glutamine metabolism. Nature 2009; 458:762-5. [PMID: 19219026 PMCID: PMC2729443 DOI: 10.1038/nature07823] [Citation(s) in RCA: 1637] [Impact Index Per Article: 109.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2008] [Accepted: 01/27/2009] [Indexed: 12/19/2022]
Abstract
Altered glucose metabolism in cancer cells is termed the Warburg effect, which describes the propensity of most cancer cells to take up glucose avidly and convert it primarily to lactate, despite available oxygen. Notwithstanding the renewed interest in the Warburg effect, cancer cells also depend on continued mitochondrial function for metabolism, specifically glutaminolysis that catabolizes glutamine to generate ATP and lactate. Glutamine, which is highly transported into proliferating cells, is a major source of energy and nitrogen for biosynthesis, and a carbon substrate for anabolic processes in cancer cells, but the regulation of glutamine metabolism is not well understood. Here we report that the c-Myc (hereafter referred to as Myc) oncogenic transcription factor, which is known to regulate microRNAs and stimulate cell proliferation, transcriptionally represses miR-23a and miR-23b, resulting in greater expression of their target protein, mitochondrial glutaminase, in human P-493 B lymphoma cells and PC3 prostate cancer cells. This leads to upregulation of glutamine catabolism. Glutaminase converts glutamine to glutamate, which is further catabolized through the tricarboxylic acid cycle for the production of ATP or serves as substrate for glutathione synthesis. The unique means by which Myc regulates glutaminase uncovers a previously unsuspected link between Myc regulation of miRNAs, glutamine metabolism, and energy and reactive oxygen species homeostasis.
Collapse
Affiliation(s)
- Ping Gao
- Division of Hematology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
69
|
Tennant DA, Durán RV, Boulahbel H, Gottlieb E. Metabolic transformation in cancer. Carcinogenesis 2009; 30:1269-80. [PMID: 19321800 DOI: 10.1093/carcin/bgp070] [Citation(s) in RCA: 162] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
In 2000, Douglas Hanahan and Robert Weinberg published a review detailing the six hallmarks of cancer. These are six phenotypes that a tumour requires in order to become a fully fledged malignancy: persistent growth signals, evasion of apoptosis, insensitivity to anti-growth signals, unlimited replicative potential, angiogenesis and invasion and metastasis. However, it is becoming increasingly clear that these phenotypes do not portray the whole story and that other hallmarks are necessary: one of which is a shift in cellular metabolism. The tumour environment creates a unique collection of stresses to which cells must adapt in order to survive. This environment is formed by the uncontrolled proliferation of cells, which ignore the cues that would create normal tissue architecture. As a result, the cells forming the tumour are exposed to low oxygen and nutrient levels, as well as high levels of toxic cellular waste products, which is thought to propel cells towards a more transformed phenotype, resistant to cell death and pro-metastatic.
Collapse
Affiliation(s)
- Daniel A Tennant
- Cancer Research UK, Beatson Institute for Cancer Research, Glasgow, G61 1BD, UK
| | | | | | | |
Collapse
|
70
|
Glutamine homeostasis and mitochondrial dynamics. Int J Biochem Cell Biol 2009; 41:2051-61. [PMID: 19703661 DOI: 10.1016/j.biocel.2009.03.003] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2008] [Revised: 03/09/2009] [Accepted: 03/10/2009] [Indexed: 11/21/2022]
Abstract
Glutamine is a multifaceted amino acid that plays key roles in many metabolic pathways and also fulfils essential signaling functions. Although classified as non-essential, recent evidence suggests that glutamine is a conditionally essential amino acid in several physiological situations. Glutamine homeostasis must therefore be exquisitely regulated and mitochondria represent a major site of glutamine metabolism in numerous cell types. Glutaminolysis is mostly a mitochondrial process with repercussions in organelle structure and dynamics suggesting a tight and mutual control between mitochondrial form and cell bioenergetics. In this review we describe an updated account focused on the critical involvement of glutamine in oxidative stress, mitochondrial dysfunction and tumour cell proliferation, with special emphasis in the initial steps of mitochondrial glutamine pathways: transport into the organelle and hydrolytic deamidation through glutaminase enzymes. Some controversial issues about glutamine catabolism within mitochondria are also reviewed.
Collapse
|
71
|
New insights into brain glutaminases: beyond their role on glutamatergic transmission. Neurochem Int 2009; 55:64-70. [PMID: 19428808 DOI: 10.1016/j.neuint.2009.02.022] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2008] [Revised: 02/18/2009] [Accepted: 02/27/2009] [Indexed: 01/29/2023]
Abstract
The synthesis of glutamate in brain must be exquisitely regulated because of its harmful potential giving rise to excitotoxic damage. In this sense, a stringent control based on multiple regulatory mechanisms should be expected to be exhibited by the biosynthetic enzymes responsible of glutamate generation, to assure that glutamate is only synthesized at the right place and at the right time. Glutaminase is considered as the main glutamate-producer enzyme in brain. Recently, novel glutaminase isoforms and extramitochondrial locations for these proteins have been discovered in the brain of mammals: identifying the function of each isozyme is essential for understanding the role of glutaminases in cerebral function. In addition, the interactome of glutaminases is starting to be uncovered adding a new level of regulatory complexity with important functional consequences, including selective and regulated targeting to concrete cellular locations. Finally, recent progress has identified glutaminase to be also present in astrocytes which precludes its classical consideration as a neuron-specific enzyme.
Collapse
|
72
|
de la Rosa V, Campos-Sandoval JA, Martín-Rufián M, Cardona C, Matés JM, Segura JA, Alonso FJ, Márquez J. A novel glutaminase isoform in mammalian tissues. Neurochem Int 2009; 55:76-84. [PMID: 19428810 DOI: 10.1016/j.neuint.2009.02.021] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2008] [Revised: 02/24/2009] [Accepted: 02/27/2009] [Indexed: 12/18/2022]
Abstract
The synthesis of neurotransmitter glutamate in brain is mainly carried out by glutaminase enzymes. This synthesis must be exquisitely regulated because of its harmful potential giving rise to excitotoxic damage. It is noteworthy that two glutaminase isozymes coded by different genes are expressed in the brain of mammals. The need for two genes and two isozymes to support the single process of glutamate synthesis is unexplained, and identifying the role of each glutaminase is an important factor in understanding glutamate-mediated neurotransmission. Multiple transcripts for glutaminase genes and simultaneous expression of glutaminase isoforms have been reported in mammalian tissues and cells. The recent discovery of protein interacting partners widens the possibilities of regulatory mechanisms controlling these biosynthetic enzymes. The expression of distinct isozymes and binding partners may represent the biochemical and molecular basis to achieve fine-tuning control of glutamate synthesis in different cell types or developmental states. In this review, we will briefly summarize recent works on glutaminase proteins in mammals, with particular emphasis on brain studies. We present convergent evidence supporting the existence of a novel glutaminase isozyme in mammalian tissues.
Collapse
Affiliation(s)
- Vanessa de la Rosa
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Laboratorio de Química de Proteínas, Universidad de Málaga, Málaga, Spain
| | | | | | | | | | | | | | | |
Collapse
|
73
|
Glutamine in neoplastic cells: focus on the expression and roles of glutaminases. Neurochem Int 2009; 55:71-5. [PMID: 19428809 DOI: 10.1016/j.neuint.2009.01.008] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2008] [Revised: 01/09/2009] [Accepted: 01/14/2009] [Indexed: 01/21/2023]
Abstract
Glutamine is an important source of energy for neoplastic tissues, and products of its metabolism include, among others, glutamate (Glu) and glutathione (GSH), the two molecules that play a key role in tumor proliferation, invasiveness and resistance to therapy. Glutamine hydrolysis in normal and transforming mammalian tissues alike, is carried out by different isoforms of glutaminases, of which the two major are liver-type glutaminase (LGA) and kidney-type glutaminase (KGA). This brief review summarizes available data on the expression profiles and activities of these isoenzymes in different neoplastic tissues as compared to the tissues of origin, and dwells on recent work demonstrating effects of manipulation of glutaminase expression on tumor growth. A comment is devoted to the emerging evidence that LGA, apart from degrading Gln for metabolic purposes, is involved in gene transcription; its enforced overexpression in glioma cells was found to reduce their proliferation and migration.
Collapse
|
74
|
Lane AN, Fan TWM, Higashi RM, Tan J, Bousamra M, Miller DM. Prospects for clinical cancer metabolomics using stable isotope tracers. Exp Mol Pathol 2009; 86:165-73. [PMID: 19454273 DOI: 10.1016/j.yexmp.2009.01.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2008] [Indexed: 01/15/2023]
Abstract
Metabolomics provides a readout of the state of metabolism in cells or tissue and their responses to external perturbations. For this reason, the approach has great potential in clinical diagnostics. For more than two decades, we have been using stable isotope tracer approaches to probe cellular metabolism in greater detail. The ability to enrich common compounds with rare isotopes such as carbon ((13)C) and nitrogen ((15)N) is the only practical means by which metabolic pathways can be traced, which entails following the fate of individual atoms from the source molecule to products via metabolic transformation. Changes in regulation of pathways are therefore captured by this approach, which leads to deeper understanding of the fundamental biochemistry of cells. Using lessons learned from pathways tracing in cells and organs, we have been applying this methodology to human cancer patients in a clinical setting. Here we review the methodologies and approaches to stable isotope tracing in cells, animal models and in humans subjects.
Collapse
|
75
|
Donadio AC, Lobo C, Tosina M, de la Rosa V, Martín-Rufián M, Campos-Sandoval JA, Matés JM, Márquez J, Alonso FJ, Segura JA. Antisense glutaminase inhibition modifies the O-GlcNAc pattern and flux through the hexosamine pathway in breast cancer cells. J Cell Biochem 2008; 103:800-11. [PMID: 17614351 DOI: 10.1002/jcb.21449] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Glutamine behaves as a key nutrient for tumors and rapidly dividing cells. Glutaminase is the main glutamine-utilizing enzyme in these cells, and its activity correlates with glutamine consumption and growth rate. We have carried out the antisense L-type glutaminase inhibition in human MCF7 breast cancer cells, in order to study its effect on the hexosamine pathway and the pattern of protein O-glycosylation. The antisense mRNA glutaminase expressing cells, named ORF19, presented a 50% lower proliferation rate than parental cells, showing a more differentiated phenotype. ORF19 cells had an 80% reduction in glutamine:fructose-6-P amidotransferase activity, which is the rate-limiting step of the hexosamine pathway. Although the overall cellular protein O-glycosylation did not change, the O-glycosylation status of several key proteins was altered. O-glycosylation of O-GlcNAc transferase (OGT), the enzyme that links N-acetylglucosamine to proteins, was fivefold lower in ORF19 than in wild type cells. Inhibition of glutaminase also provoked a 10-fold increase in Sp1 expression, and a significant decrease in the ratio of O-glycosylated to total protein for both Sp1 and the Rpt2 proteasome component. These changes were accompanied by a higher Sp1 transcriptional activity. Proteome analysis of O-glycosylated proteins permitted the detection of two new OGT target proteins: the chaperonin TCP-1 theta and the oncogene Ets-related protein isoform 7. Taken together, our results support the hexosamine pathway and the O-glycosylation of proteins being a sensor mechanism of the nutritional and energetic states of the cell.
Collapse
Affiliation(s)
- Ana C Donadio
- Departamento de Bioquímica Clínica, Centro de Investigaciones en Bioquímica Clínica e Inmunología, CIBICI-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de Torre y Medina Allende, Ciudad Universitaria, Córdoba, Argentina
| | | | | | | | | | | | | | | | | | | |
Collapse
|
76
|
Brown G, Singer A, Proudfoot M, Skarina T, Kim Y, Chang C, Dementieva I, Kuznetsova E, Gonzalez CF, Joachimiak A, Savchenko A, Yakunin AF. Functional and structural characterization of four glutaminases from Escherichia coli and Bacillus subtilis. Biochemistry 2008; 47:5724-35. [PMID: 18459799 DOI: 10.1021/bi800097h] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Glutaminases belong to the large superfamily of serine-dependent beta-lactamases and penicillin-binding proteins, and they catalyze the hydrolytic deamidation of L-glutamine to L-glutamate. In this work, we purified and biochemically characterized four predicted glutaminases from Escherichia coli (YbaS and YneH) and Bacillus subtilis (YlaM and YbgJ). The proteins demonstrated strict specificity to L-glutamine and did not hydrolyze D-glutamine or L-asparagine. In each organism, one glutaminase showed higher affinity to glutamine ( E. coli YbaS and B. subtilis YlaM; K m 7.3 and 7.6 mM, respectively) than the second glutaminase ( E. coli YneH and B. subtilis YbgJ; K m 27.6 and 30.6 mM, respectively). The crystal structures of the E. coli YbaS and the B. subtilis YbgJ revealed the presence of a classical beta-lactamase-like fold and conservation of several key catalytic residues of beta-lactamases (Ser74, Lys77, Asn126, Lys268, and Ser269 in YbgJ). Alanine replacement mutagenesis demonstrated that most of the conserved residues located in the putative glutaminase catalytic site are essential for activity. The crystal structure of the YbgJ complex with the glutaminase inhibitor 6-diazo-5-oxo- l-norleucine revealed the presence of a covalent bond between the inhibitor and the hydroxyl oxygen of Ser74, providing evidence that Ser74 is the primary catalytic nucleophile and that the glutaminase reaction proceeds through formation of an enzyme-glutamyl intermediate. Growth experiments with the E. coli glutaminase deletion strains revealed that YneH is involved in the assimilation of l-glutamine as a sole source of carbon and nitrogen and suggested that both glutaminases (YbaS and YneH) also contribute to acid resistance in E. coli.
Collapse
Affiliation(s)
- Greg Brown
- Banting and Best Department of Medical Research, Ontario Centre for Structural Proteomics, University of Toronto, Toronto, Ontario M5G 1L6, Canada
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
77
|
Deberardinis RJ, Sayed N, Ditsworth D, Thompson CB. Brick by brick: metabolism and tumor cell growth. Curr Opin Genet Dev 2008; 18:54-61. [PMID: 18387799 DOI: 10.1016/j.gde.2008.02.003] [Citation(s) in RCA: 770] [Impact Index Per Article: 48.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2008] [Revised: 02/08/2008] [Accepted: 02/15/2008] [Indexed: 01/11/2023]
Abstract
Tumor cells display increased metabolic autonomy in comparison to non-transformed cells, taking up nutrients and metabolizing them in pathways that support growth and proliferation. Classical work in tumor cell metabolism focused on bioenergetics, particularly enhanced glycolysis and suppressed oxidative phosphorylation (the 'Warburg effect'). But the biosynthetic activities required to create daughter cells are equally important for tumor growth, and recent studies are now bringing these pathways into focus. In this review, we discuss how tumor cells achieve high rates of nucleotide and fatty acid synthesis, how oncogenes and tumor suppressors influence these activities, and how glutamine metabolism enables macromolecular synthesis in proliferating cells.
Collapse
Affiliation(s)
- Ralph J Deberardinis
- Department of Cancer Biology, Abramson Cancer Center and Abramson Family Cancer Research Institute, University of Pennsylvania, 1600 Penn Tower, 3400 Spruce Street, Philadelphia, PA 19104, United States
| | | | | | | |
Collapse
|
78
|
Premature senescence of human endothelial cells induced by inhibition of glutaminase. Biogerontology 2008; 9:247-59. [PMID: 18317946 DOI: 10.1007/s10522-008-9134-x] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2007] [Accepted: 02/21/2008] [Indexed: 10/22/2022]
Abstract
Cellular senescence is now recognized as an important mechanism of tumor suppression, and the accumulation of senescent cells may contribute to the aging of various human tissues. Alterations of the cellular energy metabolism are considered key events in tumorigenesis and are also known to play an important role for aging processes in lower eukaryotic model systems. In this study, we addressed senescence-associated changes in the energy metabolism of human endothelial cells, using the HUVEC model of in vitro senescence. We observed a drastic reduction in cellular ATP levels in senescent endothelial cells. Although consumption of glucose and production of lactate significantly increased in senescent cells, no correlation was found between both metabolite conversion rates, neither in young endothelial cells nor in the senescent cells, which indicates that glycolysis is not the main energy source in HUVEC. On the other hand, glutamine consumption was increased in senescent HUVEC and inhibition of glutaminolysis by DON, a specific inhibitor of glutaminase, led to a significant reduction in the proliferative capacity of both early passage and late passage cells. Moreover, inhibition of glutaminase activity induced a senescent-like phenotype in young HUVEC within two passages. Together, the data indicate that glutaminolysis is an important energy source in endothelial cells and that alterations in this pathway play a role in endothelial cell senescence.
Collapse
|
79
|
Novel form of phosphate activated glutaminase in cultured astrocytes and human neuroblastoma cells, PAG in brain pathology and localization in the mitochondria. Neurochem Res 2008; 33:1341-5. [PMID: 18274897 DOI: 10.1007/s11064-008-9589-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2007] [Accepted: 01/02/2008] [Indexed: 10/22/2022]
Abstract
A novel form of phosphate activated glutaminase (PAG), catalyzing the synthesis of glutamate from glutamine, has been detected in cultured astrocytes and SH-SY5Y neuroblastoma cells. This enzyme form is different from that of the kidney and liver isozymes. In these cells we found high enzyme activity, but no or very weak immunoreactivity against the kidney type of PAG, and no immunoreactivity against the liver type. PAG was also investigated in brain under pathological conditions. In patients with Down's syndrome the immunoreactivity in the frontoparietal cortex was significantly reduced. The findings leading to our conclusion of a functionally active PAG on the outer face of the inner mitochondrial membrane are discussed, and a model is presented.
Collapse
|
80
|
Relative expression of mRNAS coding for glutaminase isoforms in CNS tissues and CNS tumors. Neurochem Res 2007; 33:808-13. [PMID: 17940881 DOI: 10.1007/s11064-007-9507-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2007] [Accepted: 09/07/2007] [Indexed: 10/22/2022]
Abstract
Glutaminase (GA) in mammalian tissues occurs in three isoforms: LGA (liver-type), KGA (kidney-type) and GAC (a KGA variant). Our previous study showed that human malignant gliomas (WHO grades III and IV) lack expression of LGA mRNA but are enriched in GAC mRNA relative to KGA mRNA. Here we analyzed the expression of mRNAs coding for the three isoforms in the biopsy material derived from other central nervous system tumors of WHO grades I-III. Non-neoplastic resective epileptic surgery samples served as control, as did cultured rat astrocytes and neurons. The GAC mRNA/KGA mRNA expression ratio was as a rule higher in the neoplastic than in control tissues, irrespective of the cell type dominating in the tumor or tumor malignancy. LGA mRNA expression was relatively very low in cultured astrocytes, and very low to absent in astrocytoma pilocyticum, ependymoma and subependymal giant cell astrocytoma (SEGA), tumors of astrocytic origin. LGA mRNA expression was almost as high as that of KGA and GAC mRNA in cultured neurons and epileptic surgery samples which were enriched in neurons. LGA mRNA was also relatively high in ganglioglioma which contains a discernable proportion of neuronal cells, and in oligodendroglioma. The results show that low expression of LGA mRNA is a feature common to normal astrocytes and astroglia-derived tumor cells or ependymomas and can be considered as a cell-type, rather than a malignancy marker.
Collapse
|
81
|
Yuneva M, Zamboni N, Oefner P, Sachidanandam R, Lazebnik Y. Deficiency in glutamine but not glucose induces MYC-dependent apoptosis in human cells. ACTA ACUST UNITED AC 2007; 178:93-105. [PMID: 17606868 PMCID: PMC2064426 DOI: 10.1083/jcb.200703099] [Citation(s) in RCA: 528] [Impact Index Per Article: 31.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The idea that conversion of glucose to ATP is an attractive target for cancer therapy has been supported in part by the observation that glucose deprivation induces apoptosis in rodent cells transduced with the proto-oncogene MYC, but not in the parental line. Here, we found that depletion of glucose killed normal human cells irrespective of induced MYC activity and by a mechanism different from apoptosis. However, depletion of glutamine, another major nutrient consumed by cancer cells, induced apoptosis depending on MYC activity. This apoptosis was preceded by depletion of the Krebs cycle intermediates, was prevented by two Krebs cycle substrates, but was unrelated to ATP synthesis or several other reported consequences of glutamine starvation. Our results suggest that the fate of normal human cells should be considered in evaluating nutrient deprivation as a strategy for cancer therapy, and that understanding how glutamine metabolism is linked to cell viability might provide new approaches for treatment of cancer.
Collapse
Affiliation(s)
- Mariia Yuneva
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | | | | | | | | |
Collapse
|
82
|
Campos-Sandoval JA, López de la Oliva AR, Lobo C, Segura JA, Matés JM, Alonso FJ, Márquez J. Expression of functional human glutaminase in baculovirus system: Affinity purification, kinetic and molecular characterization. Int J Biochem Cell Biol 2007; 39:765-73. [PMID: 17267261 DOI: 10.1016/j.biocel.2006.12.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2006] [Revised: 12/05/2006] [Accepted: 12/06/2006] [Indexed: 11/29/2022]
Abstract
Glutaminase catalyzes the hydrolysis of glutamine yielding stoichiometric amounts of glutamate plus ammonium ions. In mammals, there are two different genes encoding for glutaminase, known as liver (L) and kidney (K) types. The human L-type isoform expressed in baculovirus yielded functional recombinant enzyme in Sf9 insect cells. A novel affinity chromatography method, based on its specific interaction with a PDZ protein, was developed for purification. Kinetic constants were determined for the purified human isozyme, which showed an allosteric behaviour for glutamine, with a Hill index of 2.7 and S(0.5) values of 32 and 64 mM for high and low P(i) concentrations, respectively. Whereas the protein showed a low P(i) dependence typical for L-type glutaminases, the enzyme was unexpectedly inhibited by glutamate, a kinetic characteristic exclusive of K-type isozymes, and was slightly activated by ammonia, unlike the classical liver enzymes which show an absolute dependence on ammonia. Subcellular fractionation demonstrates that recombinant human glutaminase was targeted to both mitochondria and nucleus, and in both locations the protein was catalytically active. This is the first report of the expression of a functional L-type mammalian glutaminase enzyme. The study also provides a simple and efficient method for affinity purification of the recombinant enzyme. Moreover, the data imply that this human enzyme may represent a new isoform different from classical kidney and liver isozymes.
Collapse
Affiliation(s)
- José A Campos-Sandoval
- Departamento de Biología Molecular y Bioquímica, Laboratorio de Química de Proteínas, Facultad de Ciencias, Universidad de Málaga, 29071 Málaga, Spain
| | | | | | | | | | | | | |
Collapse
|
83
|
Carraro S, Doherty J, Zaman K, Gainov I, Turner R, Vaughan J, Hunt JF, Márquez J, Gaston B. S-nitrosothiols regulate cell-surface pH buffering by airway epithelial cells during the human immune response to rhinovirus. Am J Physiol Lung Cell Mol Physiol 2006; 290:L827-32. [PMID: 16603595 DOI: 10.1152/ajplung.00406.2005] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Human rhinovirus infection is a common trigger for asthma exacerbations. Asthma exacerbations and rhinovirus infections are both associated with markedly decreased pH and ammonium levels in exhaled breath condensates. This observation is thought to be related, in part, to decreased activity of airway epithelial glutaminase. We studied whether direct rhinovirus infection and/or the host immune response to the infection decreased airway epithelial cell surface pH in vitro. Interferon-gamma and tumor necrosis factor-alpha, but not direct rhinovirus infection, decreased pH, an effect partly associated with decreased ammonium concentrations. This effect was 1) prevented by nitric oxide synthase inhibition; 2) independent of cyclic GMP; 3) associated with an increase in endogenous airway epithelial cell S-nitrosothiol concentration; 4) mimicked by the exogenous S-nitrosothiol, S-nitroso-N-acetyl cysteine; and 5) independent of glutaminase expression and activity. We then confirmed that decreased epithelial pH inhibits human rhinovirus replication in airway epithelial cells. These data suggest that a nitric oxide synthase-dependent host response to viral infection mediated by S-nitrosothiols, rather than direct infection itself, plays a role in decreased airway surface pH during human rhinovirus infection. This host immune response may serve to protect the lower airways from direct infection in the normal host. In patients with asthma, however, this fall in pH could be associated with the increased mucus production, augmented inflammatory cell degranulation, bronchoconstriction, and cough characteristic of an asthma exacerbation.
Collapse
Affiliation(s)
- Silvia Carraro
- Pediatric Respiratory Medicine, University of Virginia Health System, Box 800386, Charlottesville, VA 22908, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
84
|
Márquez J, de la Oliva ARL, Matés JM, Segura JA, Alonso FJ. Glutaminase: A multifaceted protein not only involved in generating glutamate. Neurochem Int 2006; 48:465-71. [PMID: 16516349 DOI: 10.1016/j.neuint.2005.10.015] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2005] [Revised: 10/27/2005] [Accepted: 10/27/2005] [Indexed: 11/30/2022]
Abstract
The protein glutaminase has been traditionally considered as a mitochondrial enzyme, playing a key role in the energy and nitrogen metabolism of mammalian cells. However, new experimental evidence in the last few years has challenged this simplified view. The recent discovery of novel extramitochondrial localizations, the identification of potential protein interacting partners, the existence of multiple transcripts for mammalian glutaminase genes, and the presence of signature sequences and protein motifs on its sequence support the notion of glutaminase being a multifaceted protein, which may be involved in other functions besides glutamate generation from glutamine. In this short review, we will briefly summarize recent works on glutaminase proteins in mammals, with particular emphasis in brain studies. This experimental evidence will then be used to highlight new potential roles for this classical metabolic enzyme.
Collapse
Affiliation(s)
- Javier Márquez
- Laboratorio de Química de Proteínas, Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, 29071 Málaga, Spain.
| | | | | | | | | |
Collapse
|