51
|
Sivaprakasam S, Bhutia YD, Yang S, Ganapathy V. Short-Chain Fatty Acid Transporters: Role in Colonic Homeostasis. Compr Physiol 2017; 8:299-314. [PMID: 29357130 PMCID: PMC6019286 DOI: 10.1002/cphy.c170014] [Citation(s) in RCA: 165] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Short-chain fatty acids (SCFA; acetate, propionate, and butyrate) are generated in colon by bacterial fermentation of dietary fiber. Though diffusion in protonated form is a significant route, carrier-mediated mechanisms constitute the major route for the entry of SCFA in their anionic form into colonic epithelium. Several transport systems operate in cellular uptake of SCFA. MCT1 (SLC16A1) and MCT4 (SLC16A3) are H+-coupled and mediate electroneutral transport of SCFA (H+: SCFA stoichiometry; 1:1). MCT1 is expressed both in the apical membrane and basolateral membrane of colonic epithelium whereas MCT4 specifically in the basolateral membrane. SMCT1 (SLC5A8) and SMCT2 (SLC5A12) are Na+-coupled; SMCT1-mediated transport is electrogenic (Na+: SCFA stoichiometry; 2:1) whereas SMCT2-mediated transport is electroneutral (Na+: SCFA stoichiometry; 1:1). SMCT1 and SMCT2 are expressed exclusively in the apical membrane. An anion-exchange mechanism also operates in the apical membrane in which SCFA entry in anionic form is coupled to bicarbonate efflux; the molecular identity of this exchanger however remains unknown. All these transporters are subject to regulation, notably by their substrates themselves; this process involves cell-surface receptors with SCFA as signaling molecules. There are significant alterations in the expression of these transporters in ulcerative colitis and colon cancer. The tumor-associated changes occur via transcriptional regulation by p53 and HIF1α and by promoter methylation. As SCFA are obligatory for optimal colonic health, the transporters responsible for the entry and transcellular transfer of these bacterial products in colonic epithelium are critical determinants of colonic function under physiological conditions and in disease states. © 2018 American Physiological Society. Compr Physiol 8:299-314, 2018.
Collapse
Affiliation(s)
- Sathish Sivaprakasam
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, Texas, USA
| | - Yangzom D. Bhutia
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, Texas, USA
| | - Shengping Yang
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, Texas, USA
| | - Vadivel Ganapathy
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, Texas, USA
| |
Collapse
|
52
|
Mandal AK, Mercado A, Foster A, Zandi-Nejad K, Mount DB. Uricosuric targets of tranilast. Pharmacol Res Perspect 2017; 5:e00291. [PMID: 28357121 PMCID: PMC5368959 DOI: 10.1002/prp2.291] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 10/24/2016] [Accepted: 11/10/2016] [Indexed: 11/08/2022] Open
Abstract
Uric acid, generated from the metabolism of purines, has both proven and emerging roles in human disease. Serum uric acid in humans is determined by production and by the net balance of reabsorption and secretion in kidney and intestine. In the human kidney, epithelial reabsorption dominates over secretion, such that in normal subjects there is at least 90% net reabsorption of filtered urate resulting in a fractional excretion of <10%. Tranilast, an anti-inflammatory drug with pleiotropic effects, has a marked hypouricemic, uricosuric effect in humans. We report here that tranilast is a potent inhibitor of [14C]-urate transport mediated by the major reabsorptive urate transporters (URAT1, GLUT9, OAT4, and OAT10) in Xenopus oocytes; this provides an unequivocal molecular mechanism for the drug's uricosuric effect. Tranilast was found to inhibit urate transport mediated by URAT1 and GLUT9 in a fully reversible and noncompetitive (mixed) manner. In addition, tranilast inhibits the secretory urate transporters NPT1, OAT1, and OAT3 without affecting the secretory efflux pump ABCG2. Notably, while benzbromarone and probenecid inhibited urate as well as nicotinate transport, tranilast inhibited the urate transport function of URAT1, GLUT9, OAT4, OAT10, and NPT1, without significantly affecting nicotinate transport mediated by SMCT1 (IC 50 ~1.1 mmol/L), SMCT2 (IC 50 ~1.0 mmol/L), and URAT1 (IC 50 ~178 μmol/L). In summary, tranilast causes uricosuria by inhibiting all the major reabsorptive urate transporters, selectively affecting urate over nicotinate transport. These data have implications for the treatment of hyperuricemia and gout, the pharmacology of tranilast, and the structure-function analysis of urate transport.
Collapse
Affiliation(s)
- Asim K Mandal
- Renal Divisions VA Boston Healthcare System and Brigham and Women's Hospital Boston Massachusetts
| | - Adriana Mercado
- Renal Divisions Departamento de Nefrología Instituto Nacional de Cardiología Ignacio Chávez Mexico City Mexico
| | - Andria Foster
- Renal Divisions VA Boston Healthcare System and Brigham and Women's Hospital Boston Massachusetts
| | - Kambiz Zandi-Nejad
- Renal Division Beth Israel Deaconess Medical Center Boston Massachusetts
| | - David B Mount
- Renal Divisions VA Boston Healthcare System and Brigham and Women's Hospital Boston Massachusetts
| |
Collapse
|
53
|
Fuchs O, Gorlanova O, Latzin P, Schmidt A, Schieck M, Toncheva AA, Michel S, Gaertner VD, Kabesch M, Frey U. 6q12 and 11p14 variants are associated with postnatal exhaled nitric oxide levels and respiratory symptoms. J Allergy Clin Immunol 2017; 140:1015-1023. [PMID: 28109725 DOI: 10.1016/j.jaci.2016.11.048] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Revised: 11/04/2016] [Accepted: 11/14/2016] [Indexed: 11/19/2022]
Abstract
BACKGROUND Exhaled nitric oxide (eNO) is a biomarker of airway inflammation and seems to precede respiratory symptoms, such as asthma, in childhood. Identifying genetic determinants of postnatal eNO levels might aid in unraveling the role of eNO in epithelial function or airway inflammation and disease. OBJECTIVE We sought to identify genetic determinants of early postnatal eNO levels and subsequent respiratory symptoms during the first year of life. METHODS Within a population-based birth cohort, eNO levels were measured in healthy term infants aged 5 weeks during quiet tidal breathing in unsedated sleep. We assessed associations of single nucleotide polymorphisms with eNO levels in a genome-wide association study and subsequent symptoms of lower respiratory tract infections during the first year of life and asked whether this was modified by prenatal and early-life environmental factors. RESULTS We identified thus far unknown determinants of infant eNO levels: rs208515 (P = 3.3 × 10-8), which is located at 6q12, probably acting in "trans" and explaining 10.3% of eNO level variance, and rs1441519 (P = 1.6 × 10-6), which is located at 11p14, potentially affecting nitric oxide synthase 3 (NOS3) expression, as shown by means of in vitro functional analyses. Moreover, the 6q12 locus was inversely associated with subsequent respiratory symptoms (P < .05) and time to recovery after first respiratory symptoms during the first year of life (P < .05). CONCLUSION The identification of novel genetic determinants of infant eNO levels might implicate that postnatal eNO metabolism in healthy infants before first viral infections and sensitization is related to mechanisms other than those associated with asthma, atopy, or increased risk thereof later in life.
Collapse
Affiliation(s)
- Oliver Fuchs
- University Children's Hospital (UKBB), University of Basel, Basel, Switzerland; Dr von Hauner Children's Hospital, Ludwig-Maximilians-Universität, Munch, and the Comprehensive Pneumology Center Munich (CPC-M; Member of the German Center for Lung Research [DZL]), Munich, Germany; Division of Respiratory Medicine, Department of Pediatrics, Inselspital, University of Bern, Bern, Switzerland
| | - Olga Gorlanova
- University Children's Hospital (UKBB), University of Basel, Basel, Switzerland
| | - Philipp Latzin
- University Children's Hospital (UKBB), University of Basel, Basel, Switzerland; Division of Respiratory Medicine, Department of Pediatrics, Inselspital, University of Bern, Bern, Switzerland
| | - Anne Schmidt
- University Children's Hospital (UKBB), University of Basel, Basel, Switzerland
| | - Maximilian Schieck
- Department of Pediatric Pneumology and Allergy, University Children's Hospital Regensburg (KUNO), Regensburg, Germany; Institute of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Antoaneta A Toncheva
- Department of Pediatric Pneumology and Allergy, University Children's Hospital Regensburg (KUNO), Regensburg, Germany
| | - Sven Michel
- Department of Pediatric Pneumology and Allergy, University Children's Hospital Regensburg (KUNO), Regensburg, Germany
| | - Vincent D Gaertner
- Department of Pediatric Pneumology and Allergy, University Children's Hospital Regensburg (KUNO), Regensburg, Germany
| | - Michael Kabesch
- Department of Pediatric Pneumology and Allergy, University Children's Hospital Regensburg (KUNO), Regensburg, Germany; Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany, and Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Germany (member of the German Center for Lung Research [DZL]), Hannover, Germany
| | - Urs Frey
- University Children's Hospital (UKBB), University of Basel, Basel, Switzerland.
| |
Collapse
|
54
|
Pucino V, Bombardieri M, Pitzalis C, Mauro C. Lactate at the crossroads of metabolism, inflammation, and autoimmunity. Eur J Immunol 2017; 47:14-21. [PMID: 27883186 DOI: 10.1002/eji.201646477] [Citation(s) in RCA: 129] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 11/02/2016] [Accepted: 11/23/2016] [Indexed: 12/19/2022]
Abstract
For a long time after its discovery at the beginning of the 20th century, lactate was considered a waste product of cellular metabolism. Starting in the early '90s, however, lactate has begun to be recognized as an active molecule capable of modulating the immune response. Inflammatory sites, including in rheumatoid arthritis (RA) synovitis, are characterized by the accumulation of lactate, which is partly responsible for the establishment of an acidic environment. We have recently reported that T cells sense lactate via the expression of specific transporters, leading to inhibition of their motility. Importantly, this "stop migration signal" is dependent upon lactate's interference with intracellular metabolic pathways, specifically glycolysis. Furthermore, lactate promotes the switch of CD4+ T cells to an IL-17+ subset, and reduces the cytolytic capacity of CD8+ T cells. These phenomena might be responsible for the formation of ectopic lymphoid structures and autoantibody production in inflammatory sites such as in RA synovitis, Sjogren syndrome salivary glands, and multiple sclerosis plaques. Here, we review the roles of lactate in the modulation of the inflammatory immune response.
Collapse
Affiliation(s)
- Valentina Pucino
- William Harvey Research Institute, Barts and The London School of Medicine & Dentistry, Queen Mary University of London, London, UK
| | - Michele Bombardieri
- William Harvey Research Institute, Barts and The London School of Medicine & Dentistry, Queen Mary University of London, London, UK
| | - Costantino Pitzalis
- William Harvey Research Institute, Barts and The London School of Medicine & Dentistry, Queen Mary University of London, London, UK
| | - Claudio Mauro
- William Harvey Research Institute, Barts and The London School of Medicine & Dentistry, Queen Mary University of London, London, UK
| |
Collapse
|
55
|
López-Barradas A, González-Cid T, Vázquez N, Gavi-Maza M, Reyes-Camacho A, Velázquez-Villegas LA, Ramírez V, Zandi-Nejad K, Mount DB, Torres N, Tovar AR, Romero MF, Gamba G, Plata C. Insulin and SGK1 reduce the function of Na+/monocarboxylate transporter 1 (SMCT1/SLC5A8). Am J Physiol Cell Physiol 2016; 311:C720-C734. [PMID: 27488665 DOI: 10.1152/ajpcell.00104.2015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 07/27/2016] [Indexed: 11/22/2022]
Abstract
SMCTs move several important fuel molecules that are involved in lipid, carbohydrate, and amino acid metabolism, but their regulation has been poorly studied. Insulin controls the translocation of several solutes that are involved in energetic cellular metabolism, including glucose. We studied the effect of insulin on the function of human SMCT1 expressed in Xenopus oocytes. The addition of insulin reduced α-keto-isocaproate (KIC)-dependent 22Na+ uptake by 29%. Consistent with this result, the coinjection of SMCT1 with SGK1 cRNA decreased the KIC-dependent 22Na+ uptake by 34%. The reduction of SMCT1 activity by SGK1 depends on its kinase activity, and it was observed that the coinjection of SMCT1 with S442D-SGK1 (a constitutively active mutant) decreased the KIC-dependent 22Na+ uptake by 50%. In contrast, an SMCT1 coinjection with K127M-SGK1 (an inactive mutant) had no effect on the KIC-dependent Na+ uptake. The decreasing SMCT1 function by insulin or SGK1 was corroborated by measuring [1-14C]acetate uptake and the electric currents of SMCT1-injected oocytes. Previously, we found that SMCT2/Slc5a12-mRNA, but not SMCT1/Slc5a8-mRNA, is present in zebrafish pancreas (by in situ hybridization); however, SLC5a8 gene silencing was associated with the development of human pancreatic cancer. We confirmed that the mRNA and protein of both transporters were present in rat pancreas using RT-PCR with specific primers, Western blot analysis, and immunohistochemistry. Additionally, significant propionate-dependent 22Na+ uptake occurred in pancreatic islets and was reduced by insulin treatment. Our data indicate that human SMCT1 is regulated by insulin and SGK1 and that both SMCTs are present in the mammalian pancreas.
Collapse
Affiliation(s)
- Adriana López-Barradas
- Department of Physiology of Nutrition, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Tlalpan, Mexico City, Mexico
| | - Tania González-Cid
- Department of Nephrology & Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Tlalpan, Mexico City, Mexico
| | - Norma Vázquez
- Department of Nephrology & Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Tlalpan, Mexico City, Mexico.,Molecular Physiology Unit, Instituto de Investigaciones Biomédicas, UNAM, Tlalpan, Mexico City, Mexico
| | - Marisol Gavi-Maza
- Department of Nephrology & Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Tlalpan, Mexico City, Mexico
| | - Adriana Reyes-Camacho
- Department of Nephrology & Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Tlalpan, Mexico City, Mexico
| | - Laura A Velázquez-Villegas
- Department of Physiology of Nutrition, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Tlalpan, Mexico City, Mexico
| | - Victoria Ramírez
- Department of Nephrology & Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Tlalpan, Mexico City, Mexico
| | | | - David B Mount
- Renal Division, Brigham and Women's Hospital, Boston, Massachusetts.,Veterans Affairs Boston Healthcare System, Boston, Massachusetts; and
| | - Nimbe Torres
- Department of Physiology of Nutrition, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Tlalpan, Mexico City, Mexico
| | - Armando R Tovar
- Department of Physiology of Nutrition, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Tlalpan, Mexico City, Mexico
| | - Michael F Romero
- Physiology & Biomedical Engineering, Nephrology & Hypertension, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Gerardo Gamba
- Department of Nephrology & Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Tlalpan, Mexico City, Mexico.,Molecular Physiology Unit, Instituto de Investigaciones Biomédicas, UNAM, Tlalpan, Mexico City, Mexico
| | - Consuelo Plata
- Department of Nephrology & Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Tlalpan, Mexico City, Mexico;
| |
Collapse
|
56
|
Roshanbin S, Lindberg FA, Lekholm E, Eriksson MM, Perland E, Åhlund J, Raine A, Fredriksson R. Histological characterization of orphan transporter MCT14 (SLC16A14) shows abundant expression in mouse CNS and kidney. BMC Neurosci 2016; 17:43. [PMID: 27364523 PMCID: PMC4929735 DOI: 10.1186/s12868-016-0274-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 06/15/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND MCT14 (SLC16A14) is an orphan member of the monocarboxylate transporter (MCT) family, also known as the SLC16 family of secondary active transmembrane transporters. Available expression data for this transporter is limited, and in this paper we aim to characterize MCT14 with respect to tissue distribution and cellular localization in mouse brain. RESULTS Using qPCR, we found that Slc16a14 mRNA was highly abundant in mouse kidney and moderately in central nervous system, testis, uterus and liver. Using immunohistochemistry and in situ hybridization, we determined that MCT14 was highly expressed in excitatory and inhibitory neurons as well as epithelial cells in the mouse brain. The expression was exclusively localized to the soma of neurons. Furthermore, we showed with our phylogenetic analysis that MCT14 most closely relate to the aromatic amino acid- and thyroid-hormone transporters MCT8 (SLC16A2) and MCT10 (SLC16A10), in addition to the carnitine transporter MCT9 (SLC16A9). CONCLUSIONS We provide here the first histological mapping of MCT14 in the brain and our data are consistent with the hypothesis that MCT14 is a neuronal aromatic-amino-acid transporter.
Collapse
Affiliation(s)
- Sahar Roshanbin
- Department of Neuroscience, Functional Pharmacology, Uppsala University, 75124, Uppsala, Sweden
| | - Frida A Lindberg
- Department of Pharmaceutical Biosciences, Molecular Neuropharmacology, Uppsala University, 75124, Uppsala, Sweden
| | - Emilia Lekholm
- Department of Neuroscience, Functional Pharmacology, Uppsala University, 75124, Uppsala, Sweden
| | - Mikaela M Eriksson
- Department of Pharmaceutical Biosciences, Molecular Neuropharmacology, Uppsala University, 75124, Uppsala, Sweden
| | - Emelie Perland
- Department of Neuroscience, Functional Pharmacology, Uppsala University, 75124, Uppsala, Sweden
| | - Johan Åhlund
- Department of Neuroscience, Functional Pharmacology, Uppsala University, 75124, Uppsala, Sweden
| | - Amanda Raine
- Department of Neuroscience, Functional Pharmacology, Uppsala University, 75124, Uppsala, Sweden
| | - Robert Fredriksson
- Department of Pharmaceutical Biosciences, Molecular Neuropharmacology, Uppsala University, 75124, Uppsala, Sweden.
| |
Collapse
|
57
|
Meng XL, Guo YL, Ying Huang H. The transport mechanism of monocarboxylate transporter on spinosin in Caco-2 cells. Saudi Pharm J 2016; 24:286-91. [PMID: 27275116 PMCID: PMC4881191 DOI: 10.1016/j.jsps.2016.04.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
OBJECTIVES The aim of this study was to determine the uptake mechanism of spinosin (SPI) by the monocarboxylic acid transporters (MCTs) in Caco-2 cells. METHODS The Caco-2 cells were pretreated with various monocarboxylic acids, and the uptake of spinosin from Caco-2 cells was measured by High Performance Liquid Chromatography (HPLC). KEY FINDINGS Preloading of various monocarboxylic acids enhanced the uptake of SPI, especially salicylic acid (a substrate of MCTs) had a 23.4 times increase in SPI uptake, indicating that the monocarboxylic acid transporters had an efflux effect on SPI uptake and salicylic acid had a strong inhibition on SPI efflux in Caco-2 cells. At the same time, the uptake of SPI through Caco-2 cells was Na(+)- and temperature-dependent, pretreatment without Na(+) significantly increased the uptake of SPI by 1.85 times and incubated at low temperature (4 °C) SPI uptake increased 20% than that of 37 °C. Furthermore, SPI was transported mainly via a carrier-mediated transport: [Vmax = 5.364 μg/mg protein, Km = 657.0 μg/mL]. CONCLUSION The uptake of spinosin (SPI) in Caco-2 cells was mainly regulated by the monocarboxylic acid transporters along with Salicylic acid.
Collapse
Affiliation(s)
- Xiang Le Meng
- The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, China
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, China
| | - Yan Li Guo
- Discipline of Pharmacy, Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - Hai Ying Huang
- Discipline of Pharmacy, Henan University of Traditional Chinese Medicine, Zhengzhou, China
- Corresponding author. Tel.: +86 15890189670.
| |
Collapse
|
58
|
Richards L, Li M, van Esch B, Garssen J, Folkerts G. The effects of short-chain fatty acids on the cardiovascular system. PHARMANUTRITION 2016. [DOI: 10.1016/j.phanu.2016.02.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
59
|
|
60
|
Haas R, Cucchi D, Smith J, Pucino V, Macdougall CE, Mauro C. Intermediates of Metabolism: From Bystanders to Signalling Molecules. Trends Biochem Sci 2016; 41:460-471. [PMID: 26935843 DOI: 10.1016/j.tibs.2016.02.003] [Citation(s) in RCA: 123] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 01/27/2016] [Accepted: 02/04/2016] [Indexed: 11/18/2022]
Abstract
The integration of biochemistry into immune cell biology has contributed immensely to our understanding of immune cell function and the associated pathologies. So far, most studies have focused on the regulation of metabolic pathways during an immune response and their contribution to its success. More recently, novel signalling functions of metabolic intermediates are being discovered that might play important roles in the regulation of immunity. Here we describe the three long-known small metabolites lactate, acetyl-CoA, and succinate in the context of immunometabolic signalling. Functions of these ubiquitous molecules are largely dependent on their intra- and extracellular concentrations as well as their subcompartmental localisation. Importantly, the signalling functions of these metabolic intermediates extend beyond self-regulatory roles and include cell-to-cell communication and sensing of microenvironmental conditions to elicit stress responses and cellular adaptation.
Collapse
Affiliation(s)
- Robert Haas
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, London, UK
| | - Danilo Cucchi
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, London, UK; Istituto Pasteur, Fondazione Cenci Bolognetti, Rome, Italy
| | - Joanne Smith
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, London, UK
| | - Valentina Pucino
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, London, UK; Department of Translational Medical Sciences, University of Naples 'Federico II', Naples, Italy
| | | | - Claudio Mauro
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, London, UK.
| |
Collapse
|
61
|
Li Z, Mulholland M, Zhang W. Ghrelin O-acyltransferase (GOAT) and energy metabolism. SCIENCE CHINA-LIFE SCIENCES 2016; 59:281-91. [PMID: 26732975 DOI: 10.1007/s11427-015-4973-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 10/09/2015] [Indexed: 12/16/2022]
Abstract
Ghrelin O-acyltransferase (GOAT), a member of MBOATs family, is essential for octanoylation of ghrelin, which is required for active ghrelin to bind with and activate its receptor. GOAT is expressed mainly in the stomach, pancreas and hypothalamus. Levels of GOAT are altered by energy status. GOAT contains 11 transmembrane helices and one reentrant loop. Its invariant residue His-338 and conserved Asn-307 are located in the endoplasmic reticulum lumen and cytosol respectively. GOAT contributes to the regulation of food intake and energy expenditure, as well as glucose and lipids homeostasis. Deletion of GOAT blocks the acylation of ghrelin leading to subsequent impairment in energy homeostasis and survival when mice are challenged with high energy diet or severe caloric restriction. GO-CoA-Tat, a peptide GOAT inhibitor, attenuates acyl-ghrelin production and prevents weight gain induced by a medium-chain triglycerides-rich high fat diet. Further, GO-CoA-Tat increases glucose- induced insulin secretion. Overall, inhibition of GOAT is a novel strategy for treatment of obesity and related metabolic disorders.
Collapse
Affiliation(s)
- Ziru Li
- Department of Surgery, University of Michigan Medical Center, Ann Arbor, MI, 48109-0346, USA
| | - Michael Mulholland
- Department of Surgery, University of Michigan Medical Center, Ann Arbor, MI, 48109-0346, USA.
| | - Weizhen Zhang
- Department of Surgery, University of Michigan Medical Center, Ann Arbor, MI, 48109-0346, USA. .,Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, 100191, China.
| |
Collapse
|
62
|
Haas R, Smith J, Rocher-Ros V, Nadkarni S, Montero-Melendez T, D’Acquisto F, Bland EJ, Bombardieri M, Pitzalis C, Perretti M, Marelli-Berg FM, Mauro C. Lactate Regulates Metabolic and Pro-inflammatory Circuits in Control of T Cell Migration and Effector Functions. PLoS Biol 2015; 13:e1002202. [PMID: 26181372 PMCID: PMC4504715 DOI: 10.1371/journal.pbio.1002202] [Citation(s) in RCA: 476] [Impact Index Per Article: 52.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 06/16/2015] [Indexed: 12/24/2022] Open
Abstract
Lactate has long been considered a “waste” by-product of cell metabolism, and it accumulates at sites of inflammation. Recent findings have identified lactate as an active metabolite in cell signalling, although its effects on immune cells during inflammation are largely unexplored. Here we ask whether lactate is responsible for T cells remaining entrapped in inflammatory sites, where they perpetuate the chronic inflammatory process. We show that lactate accumulates in the synovia of rheumatoid arthritis patients. Extracellular sodium lactate and lactic acid inhibit the motility of CD4+ and CD8+ T cells, respectively. This selective control of T cell motility is mediated via subtype-specific transporters (Slc5a12 and Slc16a1) that we find selectively expressed by CD4+ and CD8+ subsets, respectively. We further show both in vitro and in vivo that the sodium lactate-mediated inhibition of CD4+ T cell motility is due to an interference with glycolysis activated upon engagement of the chemokine receptor CXCR3 with the chemokine CXCL10. In contrast, we find the lactic acid effect on CD8+ T cell motility to be independent of glycolysis control. In CD4+ T helper cells, sodium lactate also induces a switch towards the Th17 subset that produces large amounts of the proinflammatory cytokine IL-17, whereas in CD8+ T cells, lactic acid causes the loss of their cytolytic function. We further show that the expression of lactate transporters correlates with the clinical T cell score in the synovia of rheumatoid arthritis patients. Finally, pharmacological or antibody-mediated blockade of subtype-specific lactate transporters on T cells results in their release from the inflammatory site in an in vivo model of peritonitis. By establishing a novel role of lactate in control of proinflammatory T cell motility and effector functions, our findings provide a potential molecular mechanism for T cell entrapment and functional changes in inflammatory sites that drive chronic inflammation and offer targeted therapeutic interventions for the treatment of chronic inflammatory disorders. High levels of lactate that accumulate in chronic inflammatory sites can trigger unfavorable responses in infiltrating T cells; reducing T cells' sensitivity to lactate might offer therapeutic solutions to chronic inflammatory disorders. Acidity is a feature of inflammatory sites such as arthritic synovia, atherosclerotic plaques, and tumor microenvironments and results in part from the accumulation of lactate as a product of glycolysis under hypoxic conditions. Recently it has emerged that lactate may be more than just a bystander and might act to modulate the immune-inflammatory response. Here we report just such activity: lactate inhibits T cell motility by interfering with glycolysis that is required for T cells to migrate, it causes T cells to produce higher amounts of the proinflammatory cytokine IL-17, and it triggers loss of cytolytic activity. These phenomena are hallmark features of T cells in chronic inflammatory infiltrates. The functional changes depend on the expression of specific lactate transporters by different subsets of T cells, namely the sodium lactate transporter Slc5a12 in CD4+ T cells and the lactic acid transporter Slc16a1 in CD8+ T cells. We propose that T cells entering inflammatory sites sense high concentrations of lactate via their specific transporters. Loss of motility leads to their entrapment at the site, where through their increased production of inflammatory cytokines yet decreased cytolytic capacity, they add detrimentally to chronic inflammation. Targeting lactate transporters and/or metabolic pathways on T cells could deliver novel, invaluable therapeutics for the treatment of widespread chronic inflammatory disorders.
Collapse
Affiliation(s)
- Robert Haas
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, London, United Kingdom
| | - Joanne Smith
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, London, United Kingdom
| | - Vidalba Rocher-Ros
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, London, United Kingdom
| | - Suchita Nadkarni
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, London, United Kingdom
| | - Trinidad Montero-Melendez
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, London, United Kingdom
| | - Fulvio D’Acquisto
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, London, United Kingdom
| | - Elliot J. Bland
- Queen Mary Innovation Ltd, Queen Mary University of London, London, United Kingdom
| | - Michele Bombardieri
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, London, United Kingdom
| | - Costantino Pitzalis
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, London, United Kingdom
| | - Mauro Perretti
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, London, United Kingdom
| | - Federica M. Marelli-Berg
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, London, United Kingdom
| | - Claudio Mauro
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, London, United Kingdom
- * E-mail:
| |
Collapse
|
63
|
Affiliation(s)
- Asim K. Mandal
- Renal Divisions, Brigham and Women's Hospital and VA Boston Healthcare System, Harvard Medical School, Boston, Massachusetts 02115;
| | - David B. Mount
- Renal Divisions, Brigham and Women's Hospital and VA Boston Healthcare System, Harvard Medical School, Boston, Massachusetts 02115;
| |
Collapse
|
64
|
IWANAGA T, KISHIMOTO A. Cellular distributions of monocarboxylate transporters: a review . Biomed Res 2015; 36:279-301. [DOI: 10.2220/biomedres.36.279] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Toshihiko IWANAGA
- Laboratory of Histology and Cytology, Graduate School of Medicine, Hokkaido University
| | - Ayuko KISHIMOTO
- Laboratory of Histology and Cytology, Graduate School of Medicine, Hokkaido University
| |
Collapse
|
65
|
|
66
|
Abstract
Hyperuricemia is associated with an increased risk of developing gout. This increases with the degree and duration of hyperuricemia. Gout can be managed by dietary modification and pharmacologic urate-lowering therapies. The recent identification of the renal apical urate/anion exchanger URAT1 (SLC22A12) and several membrane proteins relevant to the transport of urate play an important role in gaining a better understanding of the mode of action of many drugs used to treat gout. As described in this review, therapeutics designed to modify URAT1 transport activities might be useful in treating pathologies associated with hyperuricemia such as gout and urolithiasis. Continuing studies into the urate transportsome hold promise for the development of new, more effective therapeutics for hyperuricemia.
Collapse
Affiliation(s)
- Naohiko Anzai
- Kyorin University School of Medicine, Department of Pharmacology and Toxicology, 6-20-2, Shinkawa, Mitaka-shi, Tokyo 181-8611, Japan +81 422 47 5511 (ext 3692) ; +81 422 79 1321 ;
| | | |
Collapse
|
67
|
Vijay N, Morris ME. Role of monocarboxylate transporters in drug delivery to the brain. Curr Pharm Des 2013; 20:1487-98. [PMID: 23789956 DOI: 10.2174/13816128113199990462] [Citation(s) in RCA: 264] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 06/18/2013] [Indexed: 02/08/2023]
Abstract
Monocarboxylate transporters (MCTs) are known to mediate the transport of short chain monocarboxylates such as lactate, pyruvate and butyrate. Currently, fourteen members of this transporter family have been identified by sequence homology, of which only the first four members (MCT1- MCT4) have been shown to mediate the proton-linked transport of monocarboxylates. Another transporter family involved in the transport of endogenous monocarboxylates is the sodium coupled MCTs (SMCTs). These act as a symporter and are dependent on a sodium gradient for their functional activity. MCT1 is the predominant transporter among the MCT isoforms and is present in almost all tissues including kidney, intestine, liver, heart, skeletal muscle and brain. The various isoforms differ in terms of their substrate specificity and tissue localization. Due to the expression of these transporters in the kidney, intestine, and brain, they may play an important role in influencing drug disposition. Apart from endogenous short chain monocarboxylates, they also mediate the transport of exogenous drugs such as salicylic acid, valproic acid, and simvastatin acid. The influence of MCTs on drug pharmacokinetics has been extensively studied for γ-hydroxybutyrate (GHB) including distribution of this drug of abuse into the brain and the results will be summarized in this review. The physiological role of these transporters in the brain and their specific cellular localization within the brain will also be discussed. This review will also focus on utilization of MCTs as potential targets for drug delivery into the brain including their role in the treatment of malignant brain tumors.
Collapse
|
68
|
Park JY, Kim D, Yang M, Park HY, Lee SH, Rincon M, Kreahling J, Plass C, Smiraglia DJ, Tockman MS, Kim SJ. Gene silencing of SLC5A8 identified by genome-wide methylation profiling in lung cancer. Lung Cancer 2012; 79:198-204. [PMID: 23273563 DOI: 10.1016/j.lungcan.2012.11.019] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2012] [Revised: 11/21/2012] [Accepted: 11/22/2012] [Indexed: 01/29/2023]
Abstract
BACKGROUND Aberrant DNA hypermethylation has been implicated as a component of an epigenetic mechanism that silences genes in cancers. METHODS We performed a genome-wide search to identify differentially methylated loci between 26 tumor and adjacent non-tumor paired tissues from same lung cancer patients using restriction landmark genomic scanning (RLGS) analysis. Among 229 loci which were hypermethylated in lung tumors as compared to adjacent non-tumor tissues, solute carrier family 5, member 8 (SLC5A8) was one of the hypermethylated genes, and known as a tumor suppressor gene which is silenced by epigenetic changes in various tumors. We investigated the significance of DNA methylation in SLC5A8 expression in lung cancer cell lines, and 23 paired tumor and adjacent non-tumor lung tissues by reverse transcription-PCR (RT-PCR), quantitative methylation specific PCR (QMSP) and bisulfite modified DNA sequencing analyses. RESULTS Reduced or lost expression of SLC5A8 was observed in 39.1% (9/23) of the tumor tissues as compared with paired adjacent non-tumor tissues. Bisulfite sequencing results of lung cancer cell lines and tissues which did not express SLC5A8 showed a densely methylated promoter region of SLC5A8. SLC5A8 was reactivated by treatment with DNA methyltransferase inhibitor, 5-Aza and/or HDAC inhibitor, trichostatin A (TSA) in lung cancer cell lines, which did not express SLC5A8. Hypermethylation was detected at the promoter region of SLC5A8 in primary lung tumor tissues as compared with adjacent non-tumor tissues (14/23, 60.9%). CONCLUSION These results suggest that DNA methylation in the SLC5A8 promoter region may suppress the expression of SLC5A8 in lung tumor.
Collapse
Affiliation(s)
- Jong Y Park
- Department of Cancer Epidemiology, Moffitt Cancer Center, Tampa, FL, United States
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
69
|
Yang M, Park JY. DNA methylation in promoter region as biomarkers in prostate cancer. Methods Mol Biol 2012; 863:67-109. [PMID: 22359288 DOI: 10.1007/978-1-61779-612-8_5] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The prostate gland is the most common site of cancer and the second leading cause of cancer death in American men. Recent emerging molecular biological technologies help us to know that epigenetic alterations such as DNA methylation within the regulatory (promoter) regions of genes are associated with transcriptional silencing in cancer. Promoter hypermethylation of critical pathway genes could be potential biomarkers and therapeutic targets for prostate cancer. In this chapter, we updated current information on methylated genes associated with the development and progression of prostate cancer. Over 40 genes have been investigated for methylation in promoter region in prostate cancer. These methylated genes are involved in critical pathways, such as DNA repair, metabolism, and invasion/metastasis. The role of hypermethylated genes in regulation of critical pathways in prostate cancer is discussed. These findings may provide new information of the pathogenesis, the exciting potential to be predictive and to provide personalized treatment of prostate cancer. Indeed, some epigenetic alterations in prostate tumors are being translated into clinical practice for therapeutic use.
Collapse
Affiliation(s)
- Mihi Yang
- Division of Cancer Prevention and Controls, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | | |
Collapse
|
70
|
Ohkubo M, Ohta K, Inoue K, Yuasa H. Nicotinate uptake by two kinetically distinct Na÷-dependent carrier-mediated transport systems in the rat small intestine. Drug Metab Pharmacokinet 2011; 27:255-62. [PMID: 22123132 DOI: 10.2133/dmpk.dmpk-11-rg-115] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Recent studies have identified monocarboxylate transporter 1 (MCT1), sodium-coupled monocarboxylate transporter 1 (SMCT1) and SMCT2 as those that may be involved in the carrier-mediated intestinal absorption of nicotinate, but their roles have not been fully clarified yet. To address the issue, we examined the uptake of nicotinate in the rat small intestine by using everted tissue sacs. The uptake of nicotinate was Na⁺-dependent and saturable at pH 7.4 in both the jejunum and ileum. The saturable transport consisted of a single component with the Michaelis constant (K(m)) of 1.18 mM in the jejunum, while in the ileum it consisted of the high and the low affinity components with the K(m) values of 8.62 µM and 2.36 mM, respectively, and the latter was prevailing in transport capacity and similar to the jejunal transport component. Nicotinate uptake activity attributable to a H⁺-dependent transporter like MCT1 was, however, only minimal in the two intestinal sites. These results suggest that a low affinity type of SMCT2-like transporter would be in operation with high capacity throughout the small intestine, playing the role as the major intestinal nicotinate uptake transporter, and a high affinity type of SMCT1-like transporter would be additionally in operation in the ileum.
Collapse
Affiliation(s)
- Masahiko Ohkubo
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya
| | | | | | | |
Collapse
|
71
|
Kang K, Schmahl J, Lee JM, Garcia K, Patil K, Chen A, Keene M, Murphy A, Sleeman MW. Mouse ghrelin-O-acyltransferase (GOAT) plays a critical role in bile acid reabsorption. FASEB J 2011; 26:259-71. [PMID: 21965605 DOI: 10.1096/fj.11-191460] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Ghrelin is a unique peptide gut hormone that requires post-translational modification to stimulate both feeding and growth hormone release. Ghrelin O-acyltransferase (GOAT) was identified as a specific acyl-transferase for ghrelin, and recent genetic deletion studies of the Goat gene (Goat(-/-)) uncovered the role of ghrelin in the regulation of glucose homeostasis. To further understand the physiological functions of the GOAT/ghrelin system, we have conducted a metabolomic and microarray profile of Goat-null mice, as well as determined Goat expression in different tissues using the lacZ reporter gene. Serum metabolite profile analysis revealed that Goat(-/-) mice exhibited increased secondary bile acids >2.5-fold. This was attributed to increased mRNA and protein expression of the ileal sodium-dependent bile acid transporter (ISBT) in the intestinal and biliary tract. Increased expression of additional solute carrier proteins, including Slc5a12 (>10-fold) were also detected in the small intestine and bile duct. Goat staining was consistently observed in the pituitary glands, stomach, and intestines, and to a lesser extent in the gallbladder and pancreatic duct. This is the first report that the GOAT/ghrelin system regulates bile acid metabolism, and these findings suggest a novel function of GOAT in the regulation of intestinal bile acid reabsorption..
Collapse
Affiliation(s)
- Kihwa Kang
- Regeneron Pharmaceuticals, Tarrytown, NY, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
72
|
Becker HM, Mohebbi N, Perna A, Ganapathy V, Capasso G, Wagner CA. Localization of members of MCT monocarboxylate transporter family Slc16 in the kidney and regulation during metabolic acidosis. Am J Physiol Renal Physiol 2010; 299:F141-54. [DOI: 10.1152/ajprenal.00488.2009] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The monocarboxylate transporter family (MCT) comprises 14 members with distinct transport properties and tissue distribution. The kidney expresses several members of the MCT family, but only little is known about their exact distribution and function. Here, we investigated selected members of the MCT family in the mouse kidney. MCT1, MCT2, MCT7, and MCT8 localized to basolateral membranes of the epithelial cells lining the nephron. MCT1 and MCT8 were detected in proximal tubule cells whereas MCT7 and MCT2 were located in the thick ascending limb and the distal tubule. CD147, a β-subunit of MCT1 and MCT4, showed partially overlapping expression with MCT1 and MCT2. However, CD147 was also found in intercalated cells. We also detected SMCT1 and SMCT2, two Na+-dependent monocarboxylate cotransporters, on the luminal membrane of type A intercalated cells. Moreover, mice were given an acid load for 2 and 7 days. Acidotic animals showed a marked but transient increase in urinary lactate excretion. During acidosis, a downregulation of MCT1, MCT8, and SMCT2 was observed at the mRNA level, whereas MCT7 and SMCT1 showed increased mRNA abundance. Only MCT7 showed lower protein abundance whereas all other transporters remained unchanged. In summary, we describe for the first time the localization of various MCT transporters in mammalian kidney and demonstrate that metabolic acidosis induces a transient increase in urinary lactate excretion paralleled by lower MCT7 protein expression.
Collapse
Affiliation(s)
- Helen M. Becker
- Institute of Physiology and Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland
| | - Nilufar Mohebbi
- Institute of Physiology and Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland
| | - Angelica Perna
- Institute of Physiology and Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland
- Department of Nephrology, Second University, Naples, Italy
| | - Vadivel Ganapathy
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, Georgia; and
| | | | - Carsten A. Wagner
- Institute of Physiology and Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland
| |
Collapse
|
73
|
Kennedy KM, Dewhirst MW. Tumor metabolism of lactate: the influence and therapeutic potential for MCT and CD147 regulation. Future Oncol 2010; 6:127-48. [PMID: 20021214 DOI: 10.2217/fon.09.145] [Citation(s) in RCA: 210] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Tumor metabolism consists of complex interactions between oxygenation states, metabolites, ions, the vascular network and signaling cascades. Accumulation of lactate within tumors has been correlated with poor clinical outcomes. While its production has negative implications, potentially contributing to tumor progression, the implications of the ability of tumors to utilize lactate can offer new therapeutic targets for the future. Monocarboxylate transporters (MCTs) of the SLC16A gene family influence substrate availability, the metabolic path of lactate and pH balance within the tumor. CD147, a chaperone to some MCT subtypes, contributes to tumor progression and metastasis. The implications and consequences of lactate utilization by tumors are currently unknown; therefore future research is needed on the intricacies of tumor metabolism. The possibility of metabolic modification of the tumor microenvironment via regulation or manipulation of MCT1 and CD147 may prove to be promising avenues of therapeutic options.
Collapse
Affiliation(s)
- Kelly M Kennedy
- Pathology department, Research Drive, Duke University Medical Center, NC 27710, USA
| | | |
Collapse
|
74
|
Coady MJ, Wallendorff B, Bourgeois F, Lapointe JY. Anionic leak currents through the Na+/monocarboxylate cotransporter SMCT1. Am J Physiol Cell Physiol 2010; 298:C124-31. [DOI: 10.1152/ajpcell.00220.2009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
SMCT1 is a Na-coupled cotransporter of short chain monocarboxylates, which is expressed in the apical membrane of diverse epithelia such as colon, renal cortex, and thyroid. We previously reported that SMCT1 cotransport was reduced by extracellular Cl− replacement with cyclamate− and that the protein exhibited an ostensible anionic leak current. In this paper, we have revisited the interaction between small monovalent anions and SMCT cotransport and leak currents. We found that the apparent Cl− dependence of cotransport was due to inhibition of this protein by the replacement anion cyclamate, whereas several other replacement anions function as substrates for SMCT1; a suitable replacement anion (MES−) was identified. The observed outward leak currents represented anionic influx and favored larger anions (NO3−>I−>Br−>Cl−); currents in excess of 1 μA (at +50 mV) could be observed and exhibited a quasilinear relationship with anion concentrations up to 100 mM. Application of 25 mM bicarbonate did not produce measurable leak currents. The leak current displayed outward rectification, which disappeared when external Na+ was replaced by N-methyl-d-glucamine+. More precisely, external Na+ blocked the leak current in both directions, but its Ki value rose rapidly when membrane potential became positive. Thus SMCT1 possesses a anionic leak current that becomes significant whenever external Na+ concentration is reduced. The presence of this leak current may represent a second function for SMCT1 in addition to cotransporting short chain fatty acids, and future experiments will determine whether this function serves a physiological role in tissues where SMCT1 is expressed.
Collapse
Affiliation(s)
- Michael J. Coady
- Groupe d'étude des Protéines membranaires (GÉPROM) and Département de Physique, Université de Montréal, Canada
| | - Bernadette Wallendorff
- Groupe d'étude des Protéines membranaires (GÉPROM) and Département de Physique, Université de Montréal, Canada
| | - Francis Bourgeois
- Groupe d'étude des Protéines membranaires (GÉPROM) and Département de Physique, Université de Montréal, Canada
| | - Jean-Yves Lapointe
- Groupe d'étude des Protéines membranaires (GÉPROM) and Département de Physique, Université de Montréal, Canada
| |
Collapse
|
75
|
Teramae H, Yoshikawa T, Inoue R, Ushida K, Takebe K, Nio-Kobayashi J, Iwanaga T. The cellular expression of SMCT2 and its comparison with other transporters for monocarboxylates in the mouse digestive tract. Biomed Res 2010; 31:239-49. [DOI: 10.2220/biomedres.31.239] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
76
|
Dietl K, Renner K, Dettmer K, Timischl B, Eberhart K, Dorn C, Hellerbrand C, Kastenberger M, Kunz-Schughart LA, Oefner PJ, Andreesen R, Gottfried E, Kreutz MP. Lactic acid and acidification inhibit TNF secretion and glycolysis of human monocytes. THE JOURNAL OF IMMUNOLOGY 2009; 184:1200-9. [PMID: 20026743 DOI: 10.4049/jimmunol.0902584] [Citation(s) in RCA: 284] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
High concentrations of lactic acid (LA) are found under various pathophysiological conditions and are accompanied by an acidification of the environment. To study the impact of LA on TNF secretion, human LPS-stimulated monocytes were cultured with or without LA or the corresponding pH control. TNF secretion was significantly suppressed by low concentrations of LA (< or = 10 mM), whereas only strong acidification had a similar effect. This result was confirmed in a coculture model of human monocytes with multicellular tumor spheroids. Blocking synthesis of tumor-derived lactate by oxamic acid, an inhibitor of lactate dehydrogenase, reversed the suppression of TNF secretion in this coculture model. We then investigated possible mechanisms underlying the suppression. Uptake of [3-(13)C]lactate by monocytes was shown by hyphenated mass spectrometry. As lactate might interfere with glycolysis, the glycolytic flux of monocytes was determined. We added [1,2-(13)C(2)]glucose to the culture medium and measured glucose uptake and conversion into [2,3-(13)C(2)]lactate. Activation of monocytes increased the glycolytic flux and the secretion of lactate, whereas oxygen consumption was decreased. Addition of unlabeled LA resulted in a highly significant decrease in [2,3-(13)C(2)]lactate secretion, whereas a mere corresponding decrease in pH exerted a less pronounced effect. Both treatments increased intracellular [2,3-(13)C(2)]lactate levels. Blocking of glycolysis by 2-deoxyglucose strongly inhibited TNF secretion, whereas suppression of oxidative phosphorylation by rotenone had little effect. These results support the hypothesis that TNF secretion by human monocytes depends on glycolysis and suggest that LA and acidification may be involved in the suppression of TNF secretion in the tumor environment.
Collapse
Affiliation(s)
- Katrin Dietl
- Department of Hematology and Oncology, University of Regensburg, Regensburg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
77
|
Riches PL, Wright AF, Ralston SH. Recent insights into the pathogenesis of hyperuricaemia and gout. Hum Mol Genet 2009; 18:R177-84. [DOI: 10.1093/hmg/ddp369] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
78
|
Cui D, Morris ME. The drug of abuse gamma-hydroxybutyrate is a substrate for sodium-coupled monocarboxylate transporter (SMCT) 1 (SLC5A8): characterization of SMCT-mediated uptake and inhibition. Drug Metab Dispos 2009; 37:1404-10. [PMID: 19389857 DOI: 10.1124/dmd.109.027169] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Gamma-hydroxybutyric acid (GHB), a drug of abuse, is a substrate of monocarboxylate transporters (MCTs). Sodium-coupled monocarboxylate transporter 1 (SMCT1; SLC5A8) is expressed in kidney, thyroid gland, neurons, and intestinal tract and exhibits substrate specificity similar to that of the proton-dependent MCT (SLC16A) family. The role of SMCT1 in GHB disposition has not been determined. In this study we characterized the driving force, transport kinetics, and inhibitors of GHB uptake, as well as expression of SMCT and MCT isoforms, in rat thyroid follicular (FRTL-5) cells. GHB, as well as the monocarboxylates butyrate and d-lactate, exhibited sodium-dependent uptake at pH 7.4, which could be described with a simple Michaelis-Menten equation plus a diffusional component [K(m) 0.68 +/- 0.30 mM, V(max) 3.50 +/- 1.58 nmol . mg(-1) . min(-1), and diffusional clearance (P) 0.25 +/- 0.08 microl . mg(-1) . min(-1)]. In the absence of sodium, GHB uptake was significantly increased at lower pH, suggesting proton-gradient dependent transport. Reverse transcriptase-polymerase chain reaction and Western analyses demonstrated the expression of SMCT1, MCT1, and MCT2 in FRTL-5 cells, supporting the activity results. Sodium-dependent GHB uptake in FRTL-5 cells was inhibited by MCT substrates (d-lactate, l-lactate, pyruvate, and butyrate), nonsteroidal anti-inflammatory drugs (ibuprofen, ketoprofen, and naproxen), and probenecid. IC(50) values for l-lactate, ibuprofen, ketoprofen, and probenecid were 101, 31.6, 64.4, and 380 muM, respectively. All four inhibitors also significantly inhibited GHB uptake in rat MCT1 gene-transfected MDA/MB231 cells, suggesting they are not specific for SMCT1. Luteolin and alpha-cyano-4-hydroxycinnimate represent specific proton-dependent MCT inhibitors. Our findings indicate that GHB is a substrate for both sodium- and proton-dependent MCTs and identified specific inhibitors of MCTs.
Collapse
Affiliation(s)
- Dapeng Cui
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, State University of New York, Amherst, NY 14260, USA
| | | |
Collapse
|
79
|
Cellular expression of a monocarboxylate transporter (MCT1) in the mammary gland and sebaceous gland of mice. Histochem Cell Biol 2008; 131:401-9. [DOI: 10.1007/s00418-008-0543-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/07/2008] [Indexed: 01/12/2023]
|
80
|
Fredriksson R, Nordström KJV, Stephansson O, Hägglund MGA, Schiöth HB. The solute carrier (SLC) complement of the human genome: phylogenetic classification reveals four major families. FEBS Lett 2008; 582:3811-6. [PMID: 18948099 DOI: 10.1016/j.febslet.2008.10.016] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2008] [Revised: 10/03/2008] [Accepted: 10/10/2008] [Indexed: 10/21/2022]
Abstract
Solute carriers (SLCs) is the largest group of transporters, embracing transporters for inorganic ions, amino acids, neurotransmitters, sugars, purines and fatty acids among other substrates. We mined the finished assembly of the human genome using Hidden Markov Models (HMMs) obtaining a total of 384 unique SLC sequences. Detailed clustering and phylogenetic analysis of the entire SLC family showed that 15 of the families place into four large phylogenetic clusters with the largest containing eight SLC families, suggesting that many of the distinct families of SLCs have a common evolutionary origin. This study represents the first overall genomic roadmap of the SLCs providing large sequence sets and clarifies the phylogenetic relationships among the families of the second largest group of membrane proteins.
Collapse
Affiliation(s)
- Robert Fredriksson
- Department of Neuroscience, Unit of Functional Pharmacology, Uppsala University, BMC, Uppsala SE 75124, Sweden.
| | | | | | | | | |
Collapse
|
81
|
Yanase H, Takebe K, Nio-Kobayashi J, Takahashi-Iwanaga H, Iwanaga T. Cellular expression of a sodium-dependent monocarboxylate transporter (Slc5a8) and the MCT family in the mouse kidney. Histochem Cell Biol 2008; 130:957-66. [PMID: 18751721 DOI: 10.1007/s00418-008-0490-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/07/2008] [Indexed: 12/25/2022]
Abstract
Expression analysis of transporters selective for monocarboxylates such as lactate and ketone bodies in the kidney contributes to understanding the renal energy metabolism. Distribution and expression intensity of a sodium-dependent monocarboxylate transporter (SMCT) and proton-coupled monocarboxylate transporters (MCT) were examined in the mouse kidney. In situ hybridization survey detected significant mRNA expressions of SMCT and MCT-1, 2, 5, 8, 9, 10, and 12. Among these, signals for SMCT, MCT2 and MCT8 were predominant; transcripts of SMCT were restricted to the cortex and the outer stripe of outer medulla, while those of MCT2 and MCT8 gathered in the inner stripe of outer medulla and the cortex, respectively. Immunohistochemically, SMCT was present at the brush border in S2 and S3 of proximal tubules, suggesting the active uptake of luminal monocarboxylates here. MCT1 and MCT2 immunoreactivities were respectively found baso-laterally in S1 and thick ascending limbs of Henle's loop. The cellular localization of transporters suggests the involvement of SMCT in the uptake of filtrated lactate and ketone bodies and that of MCTs in the transport of monocarboxylate metabolites between tubular cells and circulation, but the different distribution patterns do not support the notion of a functional linkage between SMCT and MCT1/MCT2.
Collapse
Affiliation(s)
- Haruko Yanase
- Laboratory of Histology and Cytology, Graduate School of Medicine, Hokkaido University, Kita 15-Nishi 7, Sapporo, 060-8638, Japan
| | | | | | | | | |
Collapse
|
82
|
Frank H, Gröger N, Diener M, Becker C, Braun T, Boettger T. Lactaturia and loss of sodium-dependent lactate uptake in the colon of SLC5A8-deficient mice. J Biol Chem 2008; 283:24729-37. [PMID: 18562324 DOI: 10.1074/jbc.m802681200] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
SLC5A8 is a member of the sodium/glucose cotransporter family. It has been proposed that SLC5A8 might act as an apical iodide transporter in the thyroid follicular cells or as a transporter of short chain monocarboxylates. We have directly addressed the functional role of SLC5A8 in vivo by generation of SLC5A8 mutant mice. We found that SLC5A8 is responsible for the re-absorption of lactate at the apical membrane of the kidney proximal tubules and of serous salivary gland ducts. In addition, SLC5A8 mediated the uptake of lactate into colonocytes under physiological conditions. We did not find any evidence of SLC5A8 being essential for the apical iodide transport in the thyroid gland, even if the ion-cotransporter SLC26A4, causing the human Pendred syndrome, is missing. Because SLC5A8 is transcriptionally silenced in many tumors, it has been proposed that SLC5A8-mediated transport of butyrate suppresses tumor formation. Treatment of Slc5a8(-/-) mice with carcinogens and breeding to the Apc(min) mouse line did not reveal a higher incidence of tumor formation. We conclude that SLC5A8 is instrumental in preventing lactaturia and loss of sodium-dependent uptake of lactate in the colon but does not have any apparent role in the prevention of tumor formation and growth.
Collapse
Affiliation(s)
- Henning Frank
- Department of Cardiac Development and Remodelling, Max-Planck-Institut fuer Herzund Lungenforschung, Parkstrasse 1, D-61231 Bad Nauheim, Germany
| | | | | | | | | | | |
Collapse
|
83
|
Morris ME, Felmlee MA. Overview of the proton-coupled MCT (SLC16A) family of transporters: characterization, function and role in the transport of the drug of abuse gamma-hydroxybutyric acid. AAPS JOURNAL 2008; 10:311-21. [PMID: 18523892 DOI: 10.1208/s12248-008-9035-6] [Citation(s) in RCA: 149] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 03/04/2008] [Accepted: 04/01/2008] [Indexed: 11/30/2022]
Abstract
The transport of monocarboxylates, such as lactate and pyruvate, is mediated by the SLC16A family of proton-linked membrane transport proteins known as monocarboxylate transporters (MCTs). Fourteen MCT-related genes have been identified in mammals and of these seven MCTs have been functionally characterized. Despite their sequence homology, only MCT1-4 have been demonstrated to be proton-dependent transporters of monocarboxylic acids. MCT6, MCT8 and MCT10 have been demonstrated to transport diuretics, thyroid hormones and aromatic amino acids, respectively. MCT1-4 vary in their regulation, tissue distribution and substrate/inhibitor specificity with MCT1 being the most extensively characterized isoform. Emerging evidence suggests that in addition to endogenous substrates, MCTs are involved in the transport of pharmaceutical agents, including gamma-hydroxybuytrate (GHB), 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase inhibitors (statins), salicylic acid, and bumetanide. MCTs are expressed in a wide range of tissues including the liver, intestine, kidney and brain, and as such they have the potential to impact a number of processes contributing to the disposition of xenobiotic substrates. GHB has been extensively studied as a pharmaceutical substrate of MCTs; the renal clearance of GHB is dose-dependent with saturation of MCT-mediated reabsorption at high doses. Concomitant administration of GHB and L: -lactate to rats results in an approximately two-fold increase in GHB renal clearance suggesting that inhibition of MCT1-mediated reabsorption of GHB may be an effective strategy for increasing renal and total GHB elimination in overdose situations. Further studies are required to more clearly define the role of MCTs on drug disposition and the potential for MCT-mediated detoxification strategies in GHB overdose.
Collapse
Affiliation(s)
- Marilyn E Morris
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, State University of New York, Amherst, New York 14260, USA.
| | | |
Collapse
|
84
|
Silencing of the candidate tumor suppressor gene solute carrier family 5 member 8 (SLC5A8) in human pancreatic cancer. Pancreas 2008; 36:e32-9. [PMID: 18437076 DOI: 10.1097/mpa.0b013e3181630ffe] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVES Few genetic mutations have been identified in pancreatic adenocarcinoma, whereas epigenetic changes that lead to gene silencing are known in several genes. Because SLC5A8 is regarded as a potential tumor suppressor gene that is down-regulated by epigenetic changes in several other cancers, we sought to characterize promoter methylation status and its relationship to SLC5A8 expression in pancreatic cancer. METHODS Promoter methylation and expression of SLC5A8 were evaluated in pancreatic cancer cell lines, tumor, and adjacent nontumor tissues from pancreatic cancer patients using methylation-specific polymerase chain reaction analysis, quantitative real-time and semiquantitative reverse transcriptase-polymerase chain reaction, and bisulfate-modified sequencing. RESULTS Complete or partial loss of SLC5A8 expression was observed in all tumor tissues. Bisulfite sequencing analysis on pancreatic cancer cell lines that did not express SLC5A8 detected dense methylation of the promoter region. SLC5A8 expression was reactivated by treatment with aza-deoxycytidine or trichostatin A. Methylation-specific polymerase chain reaction detected methylation in 7 of 10 pancreatic tumor tissues, whereas in only 3 of 28 adjacent nontumor tissues (P < 0.001). CONCLUSIONS Our findings indicate loss of SLC5A8 expression as a result of aberrant promoter methylation in pancreatic adenocarcinoma. We suggest that SLC5A8 may function as a tumor suppressor gene whose silencing by epigenetic changes may contribute to carcinogenesis and progression of pancreatic cancer.
Collapse
|
85
|
Abstract
PURPOSE OF REVIEW Impaired renal uric acid excretion is the major mechanism of hyperuricemia in patients with primary gout. This review highlights recent advances in the knowledge of normal mechanisms of renal uric acid handling and derangement of these mechanisms in uric acid underexcretion. RECENT FINDINGS The discovery of URAT1 has facilitated identification of other molecules potentially involved in uric acid transport in the renal tubules. Some of these molecules show gender differential expression in animal experiments. Sodium-dependent monocarboxylate cotransporters have been shown to transport lactate and butyrate, and may have roles in hyperuricemia associated with diabetic ketoacidosis and alcohol ingestion. Certain polymorphisms in SLC22A12 may be associated with the development of hyperuricemia or gout, although confirmation is needed. Mechanisms of hyperuricemia associated with uric acid underexcretion in patients with familial juvenile hyperuricemic nephropathy also remain to be clarified. Distal tubular salt wasting and compensatory upregulation of the resorption of sodium and uric acid in the proximal tubule may explain the hyperuricemia associated with this disorder. SUMMARY Much progress has been made in understanding the mechanisms of renal uric acid handling. Elucidation of the mechanisms of hyperuricemia in patients with familial juvenile hyperuricemic nephropathy will shed light on the function of uromodulin, functional impairment of which eventually results in diminished uric acid excretion.
Collapse
|
86
|
Ganapathy V, Thangaraju M, Gopal E, Martin PM, Itagaki S, Miyauchi S, Prasad PD. Sodium-coupled monocarboxylate transporters in normal tissues and in cancer. AAPS JOURNAL 2008; 10:193-9. [PMID: 18446519 DOI: 10.1208/s12248-008-9022-y] [Citation(s) in RCA: 158] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 01/23/2008] [Accepted: 02/18/2008] [Indexed: 12/21/2022]
Abstract
SLC5A8 and SLC5A12 are sodium-coupled monocarboxylate transporters (SMCTs), the former being a high-affinity type and the latter a low-affinity type. Both transport a variety of monocarboxylates in a Na(+)-coupled manner. They are expressed in the gastrointestinal tract, kidney, thyroid, brain, and retina. SLC5A8 is localized to the apical membrane of epithelial cells lining the intestinal tract and proximal tubule. In the brain and retina, its expression is restricted to neurons and the retinal pigment epithelium. The physiologic functions of SLC5A8 include absorption of short-chain fatty acids in the colon and small intestine, reabsorption of lactate and pyruvate in the kidney, and cellular uptake of lactate and ketone bodies in neurons. It also transports the B-complex vitamin nicotinate. SLC5A12 is also localized to the apical membrane of epithelial cells lining the intestinal tract and proximal tubule. In the brain and retina, its expression is restricted to astrocytes and Müller cells. SLC5A8 also functions as a tumor suppressor; its expression is silenced in tumors of colon, thyroid, stomach, kidney, and brain. The tumor-suppressive function is related to its ability to mediate concentrative uptake of butyrate, propionate, and pyruvate, all of which are inhibitors of histone deacetylases. SLC5A8 can also transport a variety of pharmacologically relevant monocarboxylates, including salicylates, benzoate, and gamma-hydroxybutyrate. Non-steroidal anti-inflammatory drugs such as ibuprofen, ketoprofen, and fenoprofen, also interact with SLC5A8. These drugs are not transportable substrates for SLC5A8, but instead function as blockers of the transporter. Relatively less is known on the role of SLC5A12 in drug transport.
Collapse
Affiliation(s)
- Vadivel Ganapathy
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, Georgia 30912, USA.
| | | | | | | | | | | | | |
Collapse
|
87
|
Bergeron MJ, Simonin A, Bürzle M, Hediger MA. Inherited epithelial transporter disorders--an overview. J Inherit Metab Dis 2008; 31:178-87. [PMID: 18415698 DOI: 10.1007/s10545-008-0861-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2007] [Revised: 02/12/2008] [Accepted: 02/13/2008] [Indexed: 01/11/2023]
Abstract
In the late 1990s, the identification of transporters and transporter-associated genes progressed substantially due to the development of new cloning approaches such as expression cloning and, subsequently, to the implementation of the human genome project. Since then, the role of many transporter genes in human diseases has been elucidated. In this overview, we focus on inherited disorders of epithelial transporters. In particular, we review genetic defects of the genes encoding glucose transporters (SLC2 and SLC5 families) and amino acid transporters (SLC1, SLC3, SLC6 and SLC7 families).
Collapse
Affiliation(s)
- M J Bergeron
- Institute of Biochemistry and Molecular Medicine, University of Berne, Berne, Switzerland
| | | | | | | |
Collapse
|
88
|
Tosco M, Faelli A, Gastaldi G, Paulmichl M, Orsenigo MN. Endogenous lactate transport in Xenopus laevis oocyte: dependence on cytoskeleton and regulation by protein kinases. J Comp Physiol B 2008; 178:457-63. [PMID: 18180930 DOI: 10.1007/s00360-007-0238-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2007] [Revised: 12/04/2007] [Accepted: 12/06/2007] [Indexed: 11/28/2022]
Abstract
Carbon flux in Xenopus laevis oocyte is glycogenic and an endogenous monocarboxylate transporter is responsible for intracellular lactate uptake. The aim of the present study was to determine if direct activation of protein kinases C and A modulates the activity of lactate transporter, as well as to investigate the possible role of cytoskeleton in these regulatory phenomena. The modulation was studied in isolated Xenopus oocytes of stage V-VI by measuring (14)C-lactate uptake, both in the absence and in the presence of cytoskeletal-perturbing toxins. We found that the basal lactate transporter activity depends on the integrity of the cytoskeleton since it is partially inhibited by cytoskeleton disorganisation. Both PKA and PKC activation caused a significant decrease in transport activity and this decrease could be blocked by specific protein kinase inhibitors. The evidenced effects were not additive. Transport inhibition was annulled by agents that destabilize actin filaments or microtubules. We conclude that both protein kinases A and C, whose effects are mediated by cytoskeleton, negatively regulate the endogenous lactate transporter of Xenopus oocyte, suggesting that these kinases may have a role in the control of cytosolic pyruvate/lactate pool in the oocyte.
Collapse
Affiliation(s)
- Marisa Tosco
- Dipartimento di Scienze Biomolecolari e Biotecnologie, Università di Milano, Milano, Italy.
| | | | | | | | | |
Collapse
|
89
|
Lecona E, Olmo N, Turnay J, Santiago-Gómez A, López De Silanes I, Gorospe M, Lizarbe MA. Kinetic analysis of butyrate transport in human colon adenocarcinoma cells reveals two different carrier-mediated mechanisms. Biochem J 2008; 409:311-20. [PMID: 17760565 PMCID: PMC8486429 DOI: 10.1042/bj20070374] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Butyrate has antitumorigenic effects on colon cancer cells, inhibits cell growth and promotes differentiation and apoptosis. These effects depend on its intracellular concentration, which is regulated by its transport. We have analysed butyrate uptake kinetics in human colon adenocarcinoma cells sensitive to the apoptotic effects of butyrate (BCS-TC2, Caco-2 and HT-29), in butyrate-resistant cells (BCS-TC2.BR2) and in normal colonic cells (FHC). The properties of transport were analysed with structural analogues, specific inhibitors and different bicarbonate and sodium concentrations. Two carrier-mediated mechanisms were detected: a low-affinity/high-capacity (K(m)=109+/-16 mM in BCS-TC2 cells) anion exchanger and a high-affinity/low-capacity (K(m)=17.9+/-4.0 microM in BCS-TC2 cells) proton-monocarboxylate co-transporter that was energy-dependent and activated via PKCdelta (protein kinase Cdelta). All adenocarcinoma cells analysed express MCT (monocarboxylate transporter) 1, MCT4, ancillary protein CD147 and AE2 (anion exchanger 2). Silencing experiments show that MCT1, whose expression increases with butyrate treatment in butyrate-sensitive cells, plays a key role in high-affinity transport. Low-affinity uptake was mediated by a butyrate/bicarbonate antiporter along with a possible contribution of AE2 and MCT4. Butyrate treatment increased uptake in a time- and dose-dependent manner in butyrate-sensitive but not in butyrate-resistant cells. The two butyrate-uptake activities in human colon adenocarcinoma cells enable butyrate transport at different physiological conditions to maintain cell functionality. The high-affinity/low-capacity transport functions under low butyrate concentrations and may be relevant for the survival of carcinoma cells in tumour regions with low glucose and butyrate availability as well as for the normal physiology of colonocytes.
Collapse
Affiliation(s)
- Emilio Lecona
- Department of Biochemistry and Molecular Biology I, Faculty of Chemistry, Complutense University, 28040 Madrid, Spain
| | - Nieves Olmo
- Department of Biochemistry and Molecular Biology I, Faculty of Chemistry, Complutense University, 28040 Madrid, Spain
| | - Javier Turnay
- Department of Biochemistry and Molecular Biology I, Faculty of Chemistry, Complutense University, 28040 Madrid, Spain
| | - Angélica Santiago-Gómez
- Department of Biochemistry and Molecular Biology I, Faculty of Chemistry, Complutense University, 28040 Madrid, Spain
| | - Isabel López De Silanes
- Laboratory of Cellular and Molecular Biology, National Institute on Aging – Intramural Research Program, NIH (National Institutes of Health), Baltimore, MD 21224, U.S.A
| | - Myriam Gorospe
- Laboratory of Cellular and Molecular Biology, National Institute on Aging – Intramural Research Program, NIH (National Institutes of Health), Baltimore, MD 21224, U.S.A
| | - M. Antonia Lizarbe
- Department of Biochemistry and Molecular Biology I, Faculty of Chemistry, Complutense University, 28040 Madrid, Spain
- To whom correspondence should be addressed ()
| |
Collapse
|
90
|
Gopal E, Umapathy NS, Martin PM, Ananth S, Gnana-Prakasam JP, Becker H, Wagner CA, Ganapathy V, Prasad PD. Cloning and functional characterization of human SMCT2 (SLC5A12) and expression pattern of the transporter in kidney. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2007; 1768:2690-7. [PMID: 17692818 PMCID: PMC2703486 DOI: 10.1016/j.bbamem.2007.06.031] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2007] [Revised: 06/07/2007] [Accepted: 06/21/2007] [Indexed: 11/21/2022]
Abstract
Recently, we cloned two Na(+)-coupled lactate transporters from mouse kidney, a high-affinity transporter (SMCT1 or slc5a8) and a low-affinity transporter (SMCT2 or slc5a12). Here we report on the cloning and functional characterization of human SMCT2 (SLC5A12) and compare the immunolocalization patterns of slc5a12 and slc5a8 in mouse kidney. The human SMCT2 cDNA codes for a protein consisting of 618 amino acids. When expressed in mammalian cells or Xenopus oocytes, human SMCT2 mediates Na(+) -coupled transport of lactate, pyruvate and nicotinate. The affinities of the transporter for these substrates are lower than those reported for human SMCT1. Several non-steroidal anti-inflammatory drugs inhibit human SMCT2-mediated nicotinate transport, suggesting that NSAIDs interact with the transporter as they do with human SMCT1. Immunofluorescence microscopy of mouse kidney sections with an antibody specific for SMCT2 shows that the transporter is expressed predominantly in the cortex. Similar studies with an anti-SMCT1 antibody demonstrate that SMCT1 is also expressed mostly in the cortex. Dual-labeling of SMCT1 and SMCT2 with 4F2hc (CD98), a marker for basolateral membrane of proximal tubular cells in the S1 and S2 segments of the nephron, shows that both SMCT1 and SMCT2 are expressed in the apical membrane of the tubular cells. These studies also show that while SMCT2 is broadly expressed along the entire length of the proximal tubule (S1/S2/S3 segments), the expression of SMCT1 is mostly limited to the S3 segment. These studies suggest that the low-affinity transporter SMCT2 initiates lactate absorption in the early parts of the proximal tubule followed by the participation of the high-affinity transporter SMCT1 in the latter parts of the proximal tubule.
Collapse
Affiliation(s)
- E. Gopal
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, Georgia, 30912, U.S.A
| | - N. S. Umapathy
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, Georgia, 30912, U.S.A
| | - P. M. Martin
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, Georgia, 30912, U.S.A
| | - S. Ananth
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, Georgia, 30912, U.S.A
| | - J. P. Gnana-Prakasam
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, Georgia, 30912, U.S.A
| | - H. Becker
- Institute of Physiology and Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - C. A. Wagner
- Institute of Physiology and Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - V. Ganapathy
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, Georgia, 30912, U.S.A
| | - P. D. Prasad
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, Georgia, 30912, U.S.A
- Corresponding author: Dr. Puttur D. Prasad, Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, GA 30912-2100, U.S.A. Phone: 706-721-1761, Fax: 706-721-3891, E-mail:
| |
Collapse
|
91
|
Thwaites DT, Anderson CMH. H+-coupled nutrient, micronutrient and drug transporters in the mammalian small intestine. Exp Physiol 2007; 92:603-19. [PMID: 17468205 PMCID: PMC2803310 DOI: 10.1113/expphysiol.2005.029959] [Citation(s) in RCA: 151] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The H(+)-electrochemical gradient was originally considered as a driving force for solute transport only across cellular membranes of bacteria, plants and yeast. However, in the mammalian small intestine, a H(+)-electrochemical gradient is present at the epithelial brush-border membrane in the form of an acid microclimate. Over recent years, a large number of H(+)-coupled cotransport mechanisms have been identified at the luminal membrane of the mammalian small intestine. These transporters are responsible for the initial stage in absorption of a remarkable variety of essential and non-essential nutrients and micronutrients, including protein digestion products (di/tripeptides and amino acids), vitamins, short-chain fatty acids and divalent metal ions. Proton-coupled cotransporters expressed at the mammalian small intestinal brush-border membrane include: the di/tripeptide transporter PepT1 (SLC15A1); the proton-coupled amino-acid transporter PAT1 (SLC36A1); the divalent metal transporter DMT1 (SLC11A2); the organic anion transporting polypeptide OATP2B1 (SLC02B1); the monocarboxylate transporter MCT1 (SLC16A1); the proton-coupled folate transporter PCFT (SLC46A1); the sodium-glucose linked cotransporter SGLT1 (SLC5A1); and the excitatory amino acid carrier EAAC1 (SLC1A1). Emerging research demonstrates that the optimal intestinal absorptive capacity of certain H(+)-coupled cotransporters (PepT1 and PAT1) is dependent upon function of the brush-border Na(+)-H(+) exchanger NHE3 (SLC9A3). The high oral bioavailability of a large number of pharmaceutical compounds results, in part, from absorptive transport via the same H(+)-coupled cotransporters. Drugs undergoing H(+)-coupled cotransport across the intestinal brush-border membrane include those used to treat bacterial infections, hypercholesterolaemia, hypertension, hyperglycaemia, viral infections, allergies, epilepsy, schizophrenia, rheumatoid arthritis and cancer.
Collapse
Affiliation(s)
- David T Thwaites
- Epithelial Research Group, Institute for Cell & Molecular Biosciences, Faculty of Medical Sciences, Framlington Place, University of Newcastle upon Tyne, Newcastle upon Tyne NE2 4HH, UK.
| | | |
Collapse
|
92
|
Takaishi N, Yoshida K, Satsu H, Shimizu M. Transepithelial transport of alpha-lipoic acid across human intestinal Caco-2 cell monolayers. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2007; 55:5253-9. [PMID: 17536819 DOI: 10.1021/jf063624i] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Alpha-lipoic acid (LA) is used in dietary supplements or food with antioxidative functions. The mechanism for the intestinal absorption of alpha-lipoic acid was investigated in this study by using human intestinal Caco-2 cell monolayers. LA was rapidly transported across the Caco-2 cell monolayers, this transport being energy-dependent, suggesting transporter-mediated transport to be the mechanism involved. The LA transport was strongly dependent on the pH value, being accelerated in the acidic pH range. Furthermore, such monocarboxylic acids as benzoic acid and medium-chain fatty acids significantly inhibited LA transport, suggesting that a proton-linked monocarboxylic acid transporter (MCT) was involved in the intestinal transport of LA. The conversion of LA to the more antioxidative dihydrolipoic acid was also apparent during the transport process.
Collapse
Affiliation(s)
- Naoki Takaishi
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | | | | | | |
Collapse
|
93
|
Baisden B, Sonne S, Joshi RM, Ganapathy V, Shekhawat PS. Antenatal dexamethasone treatment leads to changes in gene expression in a murine late placenta. Placenta 2007; 28:1082-90. [PMID: 17559929 PMCID: PMC2040329 DOI: 10.1016/j.placenta.2007.04.002] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2007] [Revised: 03/30/2007] [Accepted: 04/06/2007] [Indexed: 11/29/2022]
Abstract
Antenatal steroids like dexamethasone (DEX) are used to augment fetal lung maturity and there is a major concern that they impair fetal growth. If delivery is delayed after using antenatal DEX, placental function and hence fetal growth may be compromised even further. To investigate the effects of DEX on placental function, we treated 9 pregnant C57/BL6 mice with DEX and 9 pregnant mice were injected with saline to serve as controls. Placental gene expression was studied using microarrays in 3 pairs and other 6 pairs were used to confirm microarray results by semi-quantitative RT-PCR, real-time PCR, in situ hybridization, western blot analysis and Oligo ApopTaq assay. DEX-treated placentas were hydropic, friable, pale, and weighed less (80.0+/-15.1mg compared to 85.6.8+/-7.6mg, p=0.05) (n=62 placentas). Fetal weight was significantly reduced after DEX use (940+/-32mg compared to 1162+/-79mg, p=0.001) (n=62 fetuses). There was >99% similarity within and between the three gene chip data sets. DEX led to down-regulation of 1212 genes and up-regulation of 1382 genes. RT-PCR studies showed that DEX caused a decrease in expression of genes involved in cell division such as cyclins A2, B1, D2, cdk 2, cdk 4 and M-phase protein kinase along with growth-promoting genes such as EGF-R, BMP4 and IGFBP3. Oligo ApopTaq assay and western blot studies showed that DEX-treatment increased apoptosis of trophoblast cells. DEX-treatment led to up-regulation of aquaporin 5 and tryptophan hydroxylase genes as confirmed by real-time PCR, and in situ hybridization studies. Thus antenatal DEX treatment led to a reduction in placental and fetal weight, and this effect was associated with a decreased expression of several growth-promoting genes and increased apoptosis of trophoblast cells.
Collapse
Affiliation(s)
- B Baisden
- Department of Pediatrics, Medical College of Georgia, Augusta, GA 30912, USA
| | | | | | | | | |
Collapse
|
94
|
Plata C, Sussman CR, Sindic A, Liang JO, Mount DB, Josephs ZM, Chang MH, Romero MF. Zebrafish Slc5a12 Encodes an Electroneutral Sodium Monocarboxylate Transporter (SMCTn). J Biol Chem 2007; 282:11996-2009. [PMID: 17255103 DOI: 10.1074/jbc.m609313200] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have identified and characterized two different sodium-coupled monocarboxylate cotransporters (SMCT) from zebrafish (Danio rerio), electrogenic (zSMCTe) and electroneutral (zSMCTn). zSMCTn is the 12th member of the zebrafish Slc5 gene family (zSlc5a12). Both zSMCT sequences have approximately 50% homology to human SLC5A8 (hSMCT). Transport function and kinetics were measured in Xenopus oocytes injected with zSMCT cRNAs by measurement of intracellular Na(+) concentration ([Na(+)](i)) and membrane potential. Both zSMCTs oocytes increased [Na(+)](i) with addition of monocarboxylates (MC) such as lactate, pyruvate, nicotinate, and butyrate. By using two electrode voltage clamp experiments, we measured currents elicited from zSMCTe after MC addition. MC-elicited currents from zSMCTe were similar to hSMCT currents. In contrast, we found no significant MC-elicited current in either zSMCTn or control oocytes. Kinetic data show that zSMCTe has a higher affinity for lactate, nicotinate, and pyruvate (K(m)(L-lactate) = 0.17 +/- 0.02 mM, K(m)(nicotinate) = 0.54 +/- 0.12 mM at -150 mV) than zSMCTn (K(m)(L-lactate) = 1.81 +/- 0.19 mM, K(m)(nicotinate) = 23.68 +/- 4.88 mM). In situ hybridization showed that 1-, 3-, and 5-day-old zebrafish embryos abundantly express both zSMCTs in the brain, eyes, intestine, and kidney. Within the kidney, zSMCTn mRNA is expressed in pronephric tubules, whereas zSMCTe mRNA is more distal in pronephric ducts. zSMCTn is expressed in exocrine pancreas, but zSMCTe is not. Roles for Na(+)-coupled monocarboxylate cotransporters have not been described for the brain or eye. In summary, zSMCTe is the zebrafish SLC5A8 ortholog, and zSMCTn is a novel, electroneutral SMCT (zSlc5a12). Slc5a12 in higher vertebrates is likely responsible for the electroneutral Na(+)/lactate cotransport reported in mammalian and amphibian kidneys.
Collapse
Affiliation(s)
- Consuelo Plata
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | | | | | | | | | | | | | | |
Collapse
|
95
|
Abstract
PURPOSE OF REVIEW This review focuses on recent progress in the understanding of various aspects of renal transport of urate. RECENT FINDINGS Since the molecular cloning of the renal apical urate/anion exchanger URAT1 (SLC22A12), several membrane proteins relevant to the transport of urate have been identified. The molecular identification of two sodium-coupled monocarboxylate transporters, SMCT1(SLC5A8) and SMCT2(SLC5A12), and the emerging role of PDZ (PSD-95, DglA, and ZO-1) scaffold for renal apical transporters have led to a new concept of renal urate transport: urate-transporting multimolecular complex, or 'urate transportsome', that may form an ultimate functional unit including the sodium-coupled urate transport system by linking URAT1 and sodium-coupled monocarboxylate transporters or the coordinated apical urate uptake system by balancing reabsorptive (URAT1) and efflux (NPT1/OATv1 and MRP4) transporters. In addition, genetic variations of the URAT1 gene are associated not only with idiopathic renal hypouricemia but also with reduced renal urate excretion. SUMMARY Although our knowledge of renal urate handling has been increased by the molecular identification of urate transport proteins and by results of genetic studies on patients with serum urate disorders, current evidence is insufficient to fully understand the precise mechanism governing the bi-directional transport of urate. Further studies are still necessary.
Collapse
Affiliation(s)
- Naohiko Anzai
- Department of Pharmacology and Toxicology, Kyorin University School of Medicine, Shinkawa, Mitaka-shi, Tokyo, Japan
| | | | | |
Collapse
|
96
|
Park JY, Zheng W, Kim D, Cheng JQ, Kumar N, Ahmad N, Pow-Sang J. Candidate tumor suppressor gene SLC5A8 is frequently down-regulated by promoter hypermethylation in prostate tumor. ACTA ACUST UNITED AC 2007; 31:359-65. [DOI: 10.1016/j.cdp.2007.09.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/28/2007] [Indexed: 01/22/2023]
|
97
|
Thangaraju M, Ananth S, Martin PM, Roon P, Smith SB, Sterneck E, Prasad PD, Ganapathy V. c/ebpδ Null Mouse as a Model for the Double Knock-out of slc5a8 and slc5a12 in Kidney. J Biol Chem 2006; 281:26769-73. [PMID: 16873376 DOI: 10.1074/jbc.c600189200] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
slc5a8 and slc5a12 represent the high affinity and low affinity Na+/lactate co-transporters, respectively, in the kidney. Here we show that these transporters are expressed in the apical membrane of the proximal tubular cells in mouse kidney, indicating that these transporters are likely to mediate the first step in the renal reabsorption of lactate. Interestingly, the renal expression of both transporters is almost completely ablated in mice homozygous for the deletion of the transcription factor c/ebpdelta. This effect is tissue-specific since the expression of the transporters is not affected in non-renal tissues. The functional role of C/EBPdelta in the expression of SLC5A8 and SLC5A12 is demonstrable in HEK293 cells in reporter assays using gene-specific promoters. The ablation of the transporters in the kidney is accompanied by a marked increase in urinary excretion of lactate as well as a decrease in blood levels of lactate in c/ebpdelta-/- mice. These data provide evidence for an obligatory role for slc5a8 and slc5a12 in the renal absorption of lactate. In addition, we show that urinary excretion of urate is significantly elevated in c/ebpdelta-/- mice even though the expression of URAT1, the transporter responsible for the apical membrane uptake of urate in renal proximal tubule, is not altered. These data provide in vivo evidence for the functional coupling between lactate reabsorption and urate reabsorption in the kidney. Thus, the fortuitous double knock-out of slc5a8 and slc5a12 in kidney in c/ebpdelta-/- mice reveals the physiologic role of these transporters in the renal handling of lactate and urate.
Collapse
Affiliation(s)
- Muthusamy Thangaraju
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, Georgia 30912-2100, USA
| | | | | | | | | | | | | | | |
Collapse
|
98
|
Martin PM, Gopal E, Ananth S, Zhuang L, Itagaki S, Prasad BM, Smith SB, Prasad PD, Ganapathy V. Identity of SMCT1 (SLC5A8) as a neuron-specific Na+-coupled transporter for active uptake of l-lactate and ketone bodies in the brain. J Neurochem 2006; 98:279-88. [PMID: 16805814 DOI: 10.1111/j.1471-4159.2006.03878.x] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
SMCT1 is a sodium-coupled (Na(+)-coupled) transporter for l-lactate and short-chain fatty acids. Here, we show that the ketone bodies, beta-d-hydroxybutyrate and acetoacetate, and the branched-chain ketoacid, alpha-ketoisocaproate, are also substrates for the transporter. The transport of these compounds via human SMCT1 is Na(+)-coupled and electrogenic. The Michaelis constant is 1.4 +/- 0.1 mm for beta-d-hydroxybutyrate, 0.21 +/- 0.04 mm for acetoacetate and 0.21 +/- 0.03 mm for alpha-ketoisocaproate. The Na(+) : substrate stoichiometry is 2 : 1. As l-lactate and ketone bodies constitute primary energy substrates for neurons, we investigated the expression pattern of this transporter in the brain. In situ hybridization studies demonstrate widespread expression of SMCT1 mRNA in mouse brain. Immunofluorescence analysis shows that SMCT1 protein is expressed exclusively in neurons. SMCT1 protein co-localizes with MCT2, a neuron-specific Na(+)-independent monocarboxylate transporter. In contrast, there was no overlap of signals for SMCT1 and MCT1, the latter being expressed only in non-neuronal cells. We also demonstrate the neuron-specific expression of SMCT1 in mixed cultures of rat cortical neurons and astrocytes. This represents the first report of an Na(+)-coupled transport system for a major group of energy substrates in neurons. These findings suggest that SMCT1 may play a critical role in the entry of l-lactate and ketone bodies into neurons by a process driven by an electrochemical Na(+) gradient and hence, contribute to the maintenance of the energy status and function of neurons.
Collapse
Affiliation(s)
- Pamela M Martin
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, Georgia, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
99
|
Wang Q, Darling IM, Morris ME. Transport of γ-Hydroxybutyrate in Rat Kidney Membrane Vesicles: Role of Monocarboxylate Transporters. J Pharmacol Exp Ther 2006; 318:751-61. [PMID: 16707723 DOI: 10.1124/jpet.106.105965] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Intoxication with gamma-hydroxybutyrate (GHB) is associated with coma, seizure, and death; treatment of overdoses is symptomatic. Previous studies in our laboratory have demonstrated that L-lactate and pyruvate treatment can increase the renal clearance of GHB and increase its elimination in rats, suggesting that GHB may undergo renal reabsorption mediated by monocarboxylic acid transporters (MCTs). The goals of this study were to characterize the renal transport of GHB in rats and to determine the role of MCT in its renal transport. Brush-border membrane (BBM) and basolateral membrane (BLM) vesicles were isolated from rat kidney cortex, and the uptake of L-lactate and GHB was characterized. L-Lactate and GHB undergo both pH- and sodium-dependent transport in BBM vesicles and pH-dependent transport in BLM vesicles. A simple Michaelis-Menten equation best described the pH-dependent uptake of GHB in BBM (Km, 8.0 +/- 1.8 mM; Vmax, 838 +/- 45 pmol/mg/s) and in BLM vesicles (Km, 10.5 +/- 2.6 mM; Vmax, 806 +/- 253 pmol/mg/s). mRNA of MCT1 and MCT2 was determined in rat kidney cortex using reverse transcriptase-polymerase chain reaction; using Western blot, the protein expression of MCT1 was present mainly in BLM vesicles, with weak expression in BBM vesicles, whereas that of MCT2 was exclusively in BLM vesicles. Studies with rat MCT1 gene-transfected MDA-MB231 cells demonstrated that GHB was a substrate of MCT1. The data suggest that rat MCT1 may represent an important transporter for GHB in renal tubule cells. This investigation provides evidence for the importance of MCTs in the reabsorption of the monocarboxylic acids l-lactate and GHB in the kidney.
Collapse
Affiliation(s)
- Qi Wang
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, State University of New York, Amherst, NY 14260, USA
| | | | | |
Collapse
|
100
|
Abstract
Serum uric acid is determined by a balance between production and renal excretion. Luminal reabsorption of urate by the proximal tubule from the glomerular ultrafiltrate involves coupling between sodium-anion cotransport and urate-anion exchange. Apical sodium-coupled cotransport of lactate, ketoacids, nicotinate, and pyrazinoate increases intracellular levels of these anions in proximal tubular cells, stimulating the apical absorption of luminal urate via anion exchange. Hyperuricemia occurs when plasma levels of these anions increase; for example, hyperuricemia is a well-recognized concomitant of lactic acidosis and ketoacidosis. Relevant developments in the molecular and renal physiology of urate homeostasis are reviewed.
Collapse
|