51
|
Rivera AD, Pieropan F, Williams G, Calzolari F, Butt AM, Azim K. Drug connectivity mapping and functional analysis reveal therapeutic small molecules that differentially modulate myelination. Biomed Pharmacother 2022; 145:112436. [PMID: 34813998 PMCID: PMC8664715 DOI: 10.1016/j.biopha.2021.112436] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/29/2021] [Accepted: 11/12/2021] [Indexed: 12/30/2022] Open
Abstract
Disruption or loss of oligodendrocytes (OLs) and myelin has devastating effects on CNS function and integrity, which occur in diverse neurological disorders, including Multiple Sclerosis (MS), Alzheimer's disease and neuropsychiatric disorders. Hence, there is a need to develop new therapies that promote oligodendrocyte regeneration and myelin repair. A promising approach is drug repurposing, but most agents have potentially contrasting biological actions depending on the cellular context and their dose-dependent effects on intracellular pathways. Here, we have used a combined systems biology and neurobiological approach to identify compounds that exert positive and negative effects on oligodendroglia, depending on concentration. Notably, next generation pharmacogenomic analysis identified the PI3K/Akt modulator LY294002 as the most highly ranked small molecule with both pro- and anti-oligodendroglial concentration-dependent effects. We validated these in silico findings using multidisciplinary approaches to reveal a profoundly bipartite effect of LY294002 on the generation of OPCs and their differentiation into myelinating oligodendrocytes in both postnatal and adult contexts. Finally, we employed transcriptional profiling and signalling pathway activity assays to determine cell-specific mechanisms of action of LY294002 on oligodendrocytes and resolve optimal in vivo conditions required to promote myelin repair. These results demonstrate the power of multidisciplinary strategies in determining the therapeutic potential of small molecules in neurodegenerative disorders.
Collapse
Affiliation(s)
- A D Rivera
- Institute of Biomedical and Biomolecular Sciences, School of Pharmacy and Biomedical Sciences, University of Portsmouth, St Michael's Building, White Swan Road, PO1 2DT Portsmouth, UK; Section of Human Anatomy, Department of Neuroscience, University of Padua, Padua, Italy.
| | - F Pieropan
- Institute of Biomedical and Biomolecular Sciences, School of Pharmacy and Biomedical Sciences, University of Portsmouth, St Michael's Building, White Swan Road, PO1 2DT Portsmouth, UK
| | - G Williams
- Wolfson Centre for Age-Related Diseases, King's College London, Guy's Campus, London, UK
| | - F Calzolari
- Research Group Adult Neurogenesis & Cellular Reprogramming Institute of Physiological Chemistry, University Medical Center, Johannes Gutenberg University Mainz, Hanns-Dieter-Hüsch-Weg 19, 55128 Mainz, Germany
| | - A M Butt
- Institute of Biomedical and Biomolecular Sciences, School of Pharmacy and Biomedical Sciences, University of Portsmouth, St Michael's Building, White Swan Road, PO1 2DT Portsmouth, UK
| | - K Azim
- Department of Neurology, Neuroregeneration, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany.
| |
Collapse
|
52
|
Cevey ÁC, Mascolo PD, Penas FN, Pieralisi AV, Sequeyra AS, Mirkin GA, Goren NB. Benznidazole Anti-Inflammatory Effects in Murine Cardiomyocytes and Macrophages Are Mediated by Class I PI3Kδ. Front Immunol 2021; 12:782891. [PMID: 34925364 PMCID: PMC8675942 DOI: 10.3389/fimmu.2021.782891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 11/09/2021] [Indexed: 11/13/2022] Open
Abstract
Benznidazole (Bzl), the drug of choice in many countries for the treatment of Chagas disease, leads to parasite clearance in the early stages of infection and contributes to immunomodulation. In addition to its parasiticidal effect, Bzl inhibits the NF-κB pathway. In this regard, we have previously described that this occurs through IL-10/STAT3/SOCS3 pathway. PI3K pathway is involved in the regulation of the immune system by inhibiting NF-κB pathway through STAT3. In this work, the participation of PI3K in the immunomodulatory effects of Bzl in cardiac and immune cells, the main targets of Chagas disease, was further studied. For that, we use a murine primary cardiomyocyte culture and a monocyte/macrophage cell line (RAW 264.7), stimulated with LPS in presence of LY294002, an inhibitor of PI3K. Under these conditions, Bzl could neither increase SOCS3 expression nor inhibit the NOS2 mRNA expression and the release of NOx, both in cardiomyocytes and macrophages. Macrophages are crucial in the development of Chronic Chagas Cardiomyopathy. Thus, to deepen our understanding of how Bzl acts, the expression profile of M1-M2 macrophage markers was evaluated. Bzl inhibited the release of NOx (M1 marker) and increased the expression of Arginase I (M2 marker) and a negative correlation was found between them. Besides, LPS increased the expression of pro-inflammatory cytokines. Bzl treatment not only inhibited this effect but also increased the expression of typical M2-macrophage markers like Mannose Receptor, TGF-β, and VEGF-A. Moreover, Bzl increased the expression of PPAR-γ and PPAR-α, known as key regulators of macrophage polarization. PI3K directly regulates M1-to-M2 macrophage polarization. Since p110δ, catalytic subunit of PI3Kδ, is highly expressed in immune cells, experiments were carried out in presence of CAL-101, a specific inhibitor of this subunit. Under this condition, Bzl could neither increase SOCS3 expression nor inhibit NF-κB pathway. Moreover, Bzl not only failed to inhibit the expression of pro-inflammatory cytokines (M1 markers) but also could not increase M2 markers. Taken together these results demonstrate, for the first time, that the anti-inflammatory effect of Bzl depends on PI3K activity in a cell line of murine macrophages and in primary culture of neonatal cardiomyocytes. Furthermore, Bzl-mediated increase expression of M2-macrophage markers involves the participation of the p110δ catalytic subunit of PI3Kδ.
Collapse
Affiliation(s)
- Ágata C Cevey
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Microbiología, Parasitología e Inmunología, Buenos Aires, Argentina.,CONICET, Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Buenos Aires, Argentina
| | - Paula D Mascolo
- CONICET, Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Buenos Aires, Argentina
| | - Federico N Penas
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Microbiología, Parasitología e Inmunología, Buenos Aires, Argentina.,CONICET, Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Buenos Aires, Argentina
| | - Azul V Pieralisi
- CONICET, Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Buenos Aires, Argentina
| | - Aldana S Sequeyra
- CONICET, Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Buenos Aires, Argentina
| | - Gerardo A Mirkin
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Microbiología, Parasitología e Inmunología, Buenos Aires, Argentina.,CONICET, Universidad de Buenos Aires, Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPaM), Buenos Aires, Argentina
| | - Nora B Goren
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Microbiología, Parasitología e Inmunología, Buenos Aires, Argentina.,CONICET, Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Buenos Aires, Argentina
| |
Collapse
|
53
|
Yi YW, You KS, Park JS, Lee SG, Seong YS. Ribosomal Protein S6: A Potential Therapeutic Target against Cancer? Int J Mol Sci 2021; 23:ijms23010048. [PMID: 35008473 PMCID: PMC8744729 DOI: 10.3390/ijms23010048] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/19/2021] [Accepted: 12/20/2021] [Indexed: 12/12/2022] Open
Abstract
Ribosomal protein S6 (RPS6) is a component of the 40S small ribosomal subunit and participates in the control of mRNA translation. Additionally, phospho (p)-RPS6 has been recognized as a surrogate marker for the activated PI3K/AKT/mTORC1 pathway, which occurs in many cancer types. However, downstream mechanisms regulated by RPS6 or p-RPS remains elusive, and the therapeutic implication of RPS6 is underappreciated despite an approximately half a century history of research on this protein. In addition, substantial evidence from RPS6 knockdown experiments suggests the potential role of RPS6 in maintaining cancer cell proliferation. This motivates us to investigate the current knowledge of RPS6 functions in cancer. In this review article, we reviewed the current information about the transcriptional regulation, upstream regulators, and extra-ribosomal roles of RPS6, with a focus on its involvement in cancer. We also discussed the therapeutic potential of RPS6 in cancer.
Collapse
Affiliation(s)
- Yong Weon Yi
- Department of Biochemistry, College of Medicine, Dankook University, Cheonan 31116, Chungcheongnam-do, Korea; (Y.W.Y.); (K.S.Y.); (J.-S.P.)
- Department of Nanobiomedical Science, Dankook University, Cheonan 31116, Chungcheongnam-do, Korea
| | - Kyu Sic You
- Department of Biochemistry, College of Medicine, Dankook University, Cheonan 31116, Chungcheongnam-do, Korea; (Y.W.Y.); (K.S.Y.); (J.-S.P.)
- Graduate School of Convergence Medical Science, Dankook University, Cheonan 31116, Chungcheongnam-do, Korea
| | - Jeong-Soo Park
- Department of Biochemistry, College of Medicine, Dankook University, Cheonan 31116, Chungcheongnam-do, Korea; (Y.W.Y.); (K.S.Y.); (J.-S.P.)
| | - Seok-Geun Lee
- Graduate School, Kyung Hee University, Seoul 02447, Korea
- Correspondence: (S.-G.L.); (Y.-S.S.); Tel.: +82-2-961-2355 (S.-G.L.); +82-41-550-3875 (Y.-S.S.); Fax: +82-2-961-9623 (S.-G.L.)
| | - Yeon-Sun Seong
- Department of Biochemistry, College of Medicine, Dankook University, Cheonan 31116, Chungcheongnam-do, Korea; (Y.W.Y.); (K.S.Y.); (J.-S.P.)
- Graduate School of Convergence Medical Science, Dankook University, Cheonan 31116, Chungcheongnam-do, Korea
- Correspondence: (S.-G.L.); (Y.-S.S.); Tel.: +82-2-961-2355 (S.-G.L.); +82-41-550-3875 (Y.-S.S.); Fax: +82-2-961-9623 (S.-G.L.)
| |
Collapse
|
54
|
Microtopographical guidance of macropinocytic signaling patches. Proc Natl Acad Sci U S A 2021; 118:2110281118. [PMID: 34876521 PMCID: PMC8685668 DOI: 10.1073/pnas.2110281118] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/25/2021] [Indexed: 12/28/2022] Open
Abstract
Morphologies of amoebae and immune cells are highly deformable and dynamic, which facilitates migration in various terrains, as well as ingestion of extracellular solutes and particles. It remains largely unexplored whether and how the underlying membrane protrusions are triggered and guided by the geometry of the surface in contact. In this study, we show that in Dictyostelium, the precursor of a structure called macropinocytic cup, which has been thought to be a constitutive process for the uptake of extracellular fluid, is triggered by micrometer-scale surface features. Imaging analysis and computational simulations demonstrate how the topographical dependence of the self-organizing dynamics supports efficient guidance and capturing of the membrane protrusion and hence movement of an entire cell along such surface features. In fast-moving cells such as amoeba and immune cells, dendritic actin filaments are spatiotemporally regulated to shape large-scale plasma membrane protrusions. Despite their importance in migration, as well as in particle and liquid ingestion, how their dynamics are affected by micrometer-scale features of the contact surface is still poorly understood. Here, through quantitative image analysis of Dictyostelium on microfabricated surfaces, we show that there is a distinct mode of topographical guidance directed by the macropinocytic membrane cup. Unlike other topographical guidance known to date that depends on nanometer-scale curvature sensing protein or stress fibers, the macropinocytic membrane cup is driven by the Ras/PI3K/F-actin signaling patch and its dependency on the micrometer-scale topographical features, namely PI3K/F-actin–independent accumulation of Ras-GTP at the convex curved surface, PI3K-dependent patch propagation along the convex edge, and its actomyosin-dependent constriction at the concave edge. Mathematical model simulations demonstrate that the topographically dependent initiation, in combination with the mutually defining patch patterning and the membrane deformation, gives rise to the topographical guidance. Our results suggest that the macropinocytic cup is a self-enclosing structure that can support liquid ingestion by default; however, in the presence of structured surfaces, it is directed to faithfully trace bent and bifurcating ridges for particle ingestion and cell guidance.
Collapse
|
55
|
The Antagonistic Effect of Glutamine on Zearalenone-Induced Apoptosis via PI3K/Akt Signaling Pathway in IPEC-J2 Cells. Toxins (Basel) 2021; 13:toxins13120891. [PMID: 34941728 PMCID: PMC8704905 DOI: 10.3390/toxins13120891] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/07/2021] [Accepted: 12/10/2021] [Indexed: 11/29/2022] Open
Abstract
Zearalenone (ZEN) is a non-steroidal estrogen mycotoxin produced by Fusarium fungi, which inevitably exists in human and animal food or feed. Previous studies indicated that apoptosis seems to be a key determinant of ZEN-induced toxicity. This experiment aimed to investigate the protective effects of Glutamine (Gln) on ZEN-induced cytotoxicity in IPEC-J2 cells. The experimental results showed that Gln was able to alleviate the decline of cell viability and reduce the production of reactive oxygen species and calcium (Ca2+) induced by ZEN. Meanwhile, the mRNA expression of antioxidant enzymes such as glutathione reductase, glutathione peroxidase, and catalase was up-regulated after Gln addition. Subsequently, Gln supplementation resulted in the nuclear fission and Bad-fluorescence distribution of apoptotic cells were weakened, and the mRNA expression and protein expression of pro-apoptotic genes and apoptotic rates were significantly reduced. Moreover, ZEN reduced the phosphorylation Akt, decreased the expression of Bcl-2, and increased the expression of Bax. Gln alleviated the above changes induced by ZEN and the antagonistic effects of Gln were disturbed by PI3K inhibitor (LY294002). To conclude, this study revealed that Gln exhibited significant protective effects on ZEN-induced apoptosis, and this effect may be attributed to the PI3K/Akt signaling pathway.
Collapse
|
56
|
Quercetin Improves Mitochondrial Function and Inflammation in H 2O 2-Induced Oxidative Stress Damage in the Gastric Mucosal Epithelial Cell by Regulating the PI3K/AKT Signaling Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:1386078. [PMID: 34873406 PMCID: PMC8643250 DOI: 10.1155/2021/1386078] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 10/22/2021] [Accepted: 11/05/2021] [Indexed: 01/04/2023]
Abstract
Functional dyspepsia (FD) is one of the most common functional gastrointestinal disorders, the therapeutic strategy of which it is limited due to its complex pathogenesis. Oxidative stress-induced damage in gastric mucosal epithelial cells is related to the pathogenesis and development of FD. Quercetin (Que) is one of the active ingredients of Zhishi that showed antioxidant, antiapoptotic, and anti-inflammatory effects. The aim of this study is to investigate the effect of Que on oxidative stress-induced gastric mucosal epithelial cells damage and its underlying molecular mechanism. The gastric mucosal epithelial cell line GES-1 was treated with 200 μM of H2O2 to construct an oxidative stress-induced damage model. The H2O2 cells were then administrated with different concentrations of Que. The results indicated that high concentration of Que (100 μM) showed cytotoxicity in H2O2-induced GES-1 cells. However, appropriate concentration of Que (25 and 50 μM) alleviated the oxidative stress damage induced by H2O2, as demonstrated by the increase of proliferation, decrease of ROS generation, apoptosis, inflammation, and alleviation of mitochondrial function and cell barrier. In addition, Que increased the activation of phosphorylation of PI3K and AKT decreased by H2O2. To investigate whether Que alleviated the oxidative stress damage in GES-1 cells by the PI3K/AKT signaling pathway, the GES-1 cells were treated with Que (25 μM) combined with and without LY294002, the PI3K inhibitor. The results showed that LY294002 suppressed the alleviation effect on Que in H2O2-induced GES-1 cells. In conclusion, the current study demonstrates that Que alleviates oxidative stress damage in GES-1 cells by improving mitochondrial function and mucosal barrier and suppressing inflammation through regulating the PI3K/AKT signaling pathway, indicating the potential therapeutic effects of Que on FD.
Collapse
|
57
|
Endogenous regulation of the Akt pathway by the aryl hydrocarbon receptor (AhR) in lung fibroblasts. Sci Rep 2021; 11:23189. [PMID: 34848742 PMCID: PMC8632926 DOI: 10.1038/s41598-021-02339-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 11/08/2021] [Indexed: 11/23/2022] Open
Abstract
The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor known to mediate toxic responses to dioxin. However, the role of the AhR in the regulation of cellular physiology has only recently been appreciated, including its ability to control cell cycle progression and apoptosis by unknown mechanisms. We hypothesized that the AhR enhances the activation of the AKT serine/threonine kinase (Akt) pathway to promote cell survival. Utilizing AhR knock-out (Ahr−/−) and wild-type (Ahr+/+) mouse lung fibroblasts (MLFs), we found that Ahr−/− MLFs have significantly higher basal Akt phosphorylation but that AhR did not affect Akt phosphorylation in MLFs exposed to growth factors or AhR ligands. Basal Akt phosphorylation was dependent on PI3K but was unaffected by changes in intracellular glutathione (GSH) or p85α. There was no significant decrease in cell viability in Ahr−/− MLFs treated with LY294002—a PI3K inhibitor—although LY294002 did attenuate MTT reduction, indicating an affect on mitochondrial function. Using a mass spectrometry (MS)-based approach, we identified several proteins that were differentially phosphorylated in the Ahr−/− MLFs compared to control cells, including proteins involved in the regulation of extracellular matrix (ECM), focal adhesion, cytoskeleton remodeling and mitochondrial function. In conclusion, Ahr ablation increased basal Akt phosphorylation in MLFs. Our results indicate that AhR may modulate the phosphorylation of a variety of novel proteins not previously identified as AhR targets, findings that help advance our understanding of the endogenous functions of AhR.
Collapse
|
58
|
Seifert C, Balz E, Herzog S, Korolev A, Gaßmann S, Paland H, Fink MA, Grube M, Marx S, Jedlitschky G, Tzvetkov MV, Rauch BH, Schroeder HWS, Bien-Möller S. PIM1 Inhibition Affects Glioblastoma Stem Cell Behavior and Kills Glioblastoma Stem-like Cells. Int J Mol Sci 2021; 22:ijms222011126. [PMID: 34681783 PMCID: PMC8541331 DOI: 10.3390/ijms222011126] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/05/2021] [Accepted: 10/09/2021] [Indexed: 12/15/2022] Open
Abstract
Despite comprehensive therapy and extensive research, glioblastoma (GBM) still represents the most aggressive brain tumor in adults. Glioma stem cells (GSCs) are thought to play a major role in tumor progression and resistance of GBM cells to radiochemotherapy. The PIM1 kinase has become a focus in cancer research. We have previously demonstrated that PIM1 is involved in survival of GBM cells and in GBM growth in a mouse model. However, little is known about the importance of PIM1 in cancer stem cells. Here, we report on the role of PIM1 in GBM stem cell behavior and killing. PIM1 inhibition negatively regulates the protein expression of the stem cell markers CD133 and Nestin in GBM cells (LN-18, U-87 MG). In contrast, CD44 and the astrocytic differentiation marker GFAP were up-regulated. Furthermore, PIM1 expression was increased in neurospheres as a model of GBM stem-like cells. Treatment of neurospheres with PIM1 inhibitors (TCS PIM1-1, Quercetagetin, and LY294002) diminished the cell viability associated with reduced DNA synthesis rate, increased caspase 3 activity, decreased PCNA protein expression, and reduced neurosphere formation. Our results indicate that PIM1 affects the glioblastoma stem cell behavior, and its inhibition kills glioblastoma stem-like cells, pointing to PIM1 targeting as a potential anti-glioblastoma therapy.
Collapse
Affiliation(s)
- Carolin Seifert
- Department of Pharmacology, University Medicine Greifswald, 17489 Greifswald, Germany; (C.S.); (E.B.); (S.H.); (A.K.); (S.G.); (H.P.); (M.A.F.); (M.G.); (G.J.); (M.V.T.); (B.H.R.)
- Department of Neurosurgery, University Medicine Greifswald, 17489 Greifswald, Germany; (S.M.); (H.W.S.S.)
| | - Ellen Balz
- Department of Pharmacology, University Medicine Greifswald, 17489 Greifswald, Germany; (C.S.); (E.B.); (S.H.); (A.K.); (S.G.); (H.P.); (M.A.F.); (M.G.); (G.J.); (M.V.T.); (B.H.R.)
- Department of Neurosurgery, University Medicine Greifswald, 17489 Greifswald, Germany; (S.M.); (H.W.S.S.)
| | - Susann Herzog
- Department of Pharmacology, University Medicine Greifswald, 17489 Greifswald, Germany; (C.S.); (E.B.); (S.H.); (A.K.); (S.G.); (H.P.); (M.A.F.); (M.G.); (G.J.); (M.V.T.); (B.H.R.)
| | - Anna Korolev
- Department of Pharmacology, University Medicine Greifswald, 17489 Greifswald, Germany; (C.S.); (E.B.); (S.H.); (A.K.); (S.G.); (H.P.); (M.A.F.); (M.G.); (G.J.); (M.V.T.); (B.H.R.)
| | - Sebastian Gaßmann
- Department of Pharmacology, University Medicine Greifswald, 17489 Greifswald, Germany; (C.S.); (E.B.); (S.H.); (A.K.); (S.G.); (H.P.); (M.A.F.); (M.G.); (G.J.); (M.V.T.); (B.H.R.)
| | - Heiko Paland
- Department of Pharmacology, University Medicine Greifswald, 17489 Greifswald, Germany; (C.S.); (E.B.); (S.H.); (A.K.); (S.G.); (H.P.); (M.A.F.); (M.G.); (G.J.); (M.V.T.); (B.H.R.)
- Department of Neurosurgery, University Medicine Greifswald, 17489 Greifswald, Germany; (S.M.); (H.W.S.S.)
| | - Matthias A. Fink
- Department of Pharmacology, University Medicine Greifswald, 17489 Greifswald, Germany; (C.S.); (E.B.); (S.H.); (A.K.); (S.G.); (H.P.); (M.A.F.); (M.G.); (G.J.); (M.V.T.); (B.H.R.)
- Department of Neurosurgery, University Medicine Greifswald, 17489 Greifswald, Germany; (S.M.); (H.W.S.S.)
| | - Markus Grube
- Department of Pharmacology, University Medicine Greifswald, 17489 Greifswald, Germany; (C.S.); (E.B.); (S.H.); (A.K.); (S.G.); (H.P.); (M.A.F.); (M.G.); (G.J.); (M.V.T.); (B.H.R.)
| | - Sascha Marx
- Department of Neurosurgery, University Medicine Greifswald, 17489 Greifswald, Germany; (S.M.); (H.W.S.S.)
| | - Gabriele Jedlitschky
- Department of Pharmacology, University Medicine Greifswald, 17489 Greifswald, Germany; (C.S.); (E.B.); (S.H.); (A.K.); (S.G.); (H.P.); (M.A.F.); (M.G.); (G.J.); (M.V.T.); (B.H.R.)
| | - Mladen V. Tzvetkov
- Department of Pharmacology, University Medicine Greifswald, 17489 Greifswald, Germany; (C.S.); (E.B.); (S.H.); (A.K.); (S.G.); (H.P.); (M.A.F.); (M.G.); (G.J.); (M.V.T.); (B.H.R.)
| | - Bernhard H. Rauch
- Department of Pharmacology, University Medicine Greifswald, 17489 Greifswald, Germany; (C.S.); (E.B.); (S.H.); (A.K.); (S.G.); (H.P.); (M.A.F.); (M.G.); (G.J.); (M.V.T.); (B.H.R.)
- Department of Pharmacology and Toxicology, Carl von Ossietzky University Oldenburg, 26129 Oldenburg, Germany
| | - Henry W. S. Schroeder
- Department of Neurosurgery, University Medicine Greifswald, 17489 Greifswald, Germany; (S.M.); (H.W.S.S.)
| | - Sandra Bien-Möller
- Department of Pharmacology, University Medicine Greifswald, 17489 Greifswald, Germany; (C.S.); (E.B.); (S.H.); (A.K.); (S.G.); (H.P.); (M.A.F.); (M.G.); (G.J.); (M.V.T.); (B.H.R.)
- Department of Neurosurgery, University Medicine Greifswald, 17489 Greifswald, Germany; (S.M.); (H.W.S.S.)
- Correspondence: ; Tel.: +49-03834-865646
| |
Collapse
|
59
|
Wang LY, Xiao SJ, Kunimoto H, Tokunaga K, Kojima H, Kimura M, Yamamoto T, Yamamoto N, Zhao H, Nishio K, Tani T, Nakajima K, Sunami K, Inoue A. Sequestration of RBM10 in Nuclear Bodies: Targeting Sequences and Biological Significance. Int J Mol Sci 2021; 22:ijms221910526. [PMID: 34638866 PMCID: PMC8508765 DOI: 10.3390/ijms221910526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/20/2021] [Accepted: 09/24/2021] [Indexed: 11/26/2022] Open
Abstract
RBM10 is an RNA-binding protein that regulates alternative splicing (AS). It localizes to the extra-nucleolar nucleoplasm and S1-1 nuclear bodies (NBs) in the nucleus. We investigated the biological significance of this localization in relation to its molecular function. Our analyses, employing deletion mutants, revealed that RBM10 possesses two S1-1 NB-targeting sequences (NBTSs), one in the KEKE motif region and another in the C2H2 Zn finger (ZnF). These NBTSs act synergistically to localize RBM10 to S1-1 NBs. The C2H2 ZnF not only acts as an NBTS, but is also essential for AS regulation by RBM10. Moreover, RBM10 does not participate in S1-1 NB formation, and without alterations of RBM10 protein levels, its NB-localization changes, increasing as cellular transcriptional activity declines, and vice versa. These results indicate that RBM10 is a transient component of S1-1 NBs and is sequestered in NBs via its NBTSs when cellular transcription decreases. We propose that the C2H2 ZnF exerts its NB-targeting activity when RBM10 is unbound by pre-mRNAs, and that NB-localization of RBM10 is a mechanism to control its AS activity in the nucleus.
Collapse
Affiliation(s)
- Ling-Yu Wang
- Department of Immunology, Graduate School of Medicine, Osaka City University, Osaka 545-8585, Japan; (L.-Y.W.); (S.-J.X.); (H.K.); (H.K.); (H.Z.); (K.N.)
- Department of Human Genetics, Guilin Medical University, Guilin 541004, China
| | - Sheng-Jun Xiao
- Department of Immunology, Graduate School of Medicine, Osaka City University, Osaka 545-8585, Japan; (L.-Y.W.); (S.-J.X.); (H.K.); (H.K.); (H.Z.); (K.N.)
- Department of Pathology, Guilin Medical University, Guilin 541004, China
| | - Hiroyuki Kunimoto
- Department of Immunology, Graduate School of Medicine, Osaka City University, Osaka 545-8585, Japan; (L.-Y.W.); (S.-J.X.); (H.K.); (H.K.); (H.Z.); (K.N.)
| | - Kazuaki Tokunaga
- Department of Biological Sciences, Graduate School of Science and Technology, Kumamoto University, Kumamoto 860-8555, Japan; (K.T.); (T.T.)
| | - Hirotada Kojima
- Department of Immunology, Graduate School of Medicine, Osaka City University, Osaka 545-8585, Japan; (L.-Y.W.); (S.-J.X.); (H.K.); (H.K.); (H.Z.); (K.N.)
| | - Masatsugu Kimura
- Radioisotope Center, Graduate School of Medicine, Osaka City University, Osaka 545-8585, Japan;
| | - Takahiro Yamamoto
- Graduate School of Life Science, Hokkaido University, Sapporo 060-0808, Japan;
| | - Naoki Yamamoto
- Center for Basic Medical Research, and Graduate School of Pharmaceutical Sciences, International University of Health and Welfare, Ohtawara 324-8501, Japan;
- Laboratory of Neurobiology, Graduate School of Sciences, Tokyo Metropolitan University, Tokyo 192-0397, Japan
| | - Hong Zhao
- Department of Immunology, Graduate School of Medicine, Osaka City University, Osaka 545-8585, Japan; (L.-Y.W.); (S.-J.X.); (H.K.); (H.K.); (H.Z.); (K.N.)
| | - Koji Nishio
- Department of Anatomy and Neurosciences, Graduate School of Medicine, Nagoya University, Nagoya 466-8550, Japan;
| | - Tokio Tani
- Department of Biological Sciences, Graduate School of Science and Technology, Kumamoto University, Kumamoto 860-8555, Japan; (K.T.); (T.T.)
| | - Koichi Nakajima
- Department of Immunology, Graduate School of Medicine, Osaka City University, Osaka 545-8585, Japan; (L.-Y.W.); (S.-J.X.); (H.K.); (H.K.); (H.Z.); (K.N.)
| | - Kishiko Sunami
- Department of Otolaryngology, Graduate School of Medicine, Osaka City University, Osaka 545-8585, Japan;
| | - Akira Inoue
- Department of Immunology, Graduate School of Medicine, Osaka City University, Osaka 545-8585, Japan; (L.-Y.W.); (S.-J.X.); (H.K.); (H.K.); (H.Z.); (K.N.)
- Department of Otolaryngology, Graduate School of Medicine, Osaka City University, Osaka 545-8585, Japan;
- Correspondence:
| |
Collapse
|
60
|
Patil VM, Masand N, Verma S, Masand V. Chromones: Privileged scaffold in anticancer drug discovery. Chem Biol Drug Des 2021; 98:943-953. [PMID: 34519163 DOI: 10.1111/cbdd.13951] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/02/2021] [Accepted: 09/06/2021] [Indexed: 12/16/2022]
Abstract
In the design and discovery of anticancer drugs, various natural heterocyclic scaffolds have attracted considerable interest as privileged structures. For rational drug design, some of the natural scaffolds such as chromones have exhibited wide acceptability due to their drug-like properties. Among the approved anticancer drugs, the scaffolds with high selectivity for a small group of closely related targets are of importance. In the development of selective anticancer agents, the natural, as well as synthetic, can generate highly selective compounds toward cancer targets. The present manuscript includes more particularly the development of cancer inhibitors incorporating the chromone scaffold, with a strong emphasis on their molecular interactions in the anticancer mechanism. It also includes the structure-activity relationship studies and related examples of lead optimization.
Collapse
Affiliation(s)
- Vaishali M Patil
- Department of Pharmaceutical Chemistry, KIET School of Pharmacy, KIET Group of Institutions, Delhi-NCR, Ghaziabad, India
| | - Neeraj Masand
- Department of Pharmacy, Lala Lajpat Rai Memorial Medical College, Meerut, Uttar Pradesh, India
| | - Saroj Verma
- Department of Pharmaceutical Chemistry, SGT University, Gurugram, Haryana, India
| | - Vijay Masand
- Department of Chemistry, Vidya Bharati College, Amravati, Maharashtra, India
| |
Collapse
|
61
|
Dangelmaier C, Kunapuli SP. Protease-activated receptor 4 causes Akt phosphorylation independently of PI3 kinase pathways. Platelets 2021; 32:832-837. [PMID: 32811251 PMCID: PMC7889752 DOI: 10.1080/09537104.2020.1802415] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 07/13/2020] [Accepted: 07/14/2020] [Indexed: 10/23/2022]
Abstract
PI-3 Kinase plays an important role in platelet activation mainly through regulation of RASA3. Akt phosphorylation is an indicator for the activity of PI3 kinase. The aim of this study is to characterize the pathways leading to Akt phosphorylation in platelets. We performed concentration response curves of LY294002, a pan-PI3 kinase inhibitor, on platelet aggregation and Akt phosphorylation, in washed human and mouse platelets. At concentrations as low as 3.12 µM, LY294002 abolished Akt phosphorylation induced by 2MeSADP and SFLLRN, but not by AYPGKF. It required much higher concentrations of LY294002 (12.5-25 µM) to abolish AYPGKF-induced Akt phosphorylation, both in wild type and P2Y12 null mouse platelets. We propose that 3.12 µM LY294002 is sufficient to inhibit PI3 kinase isoforms in platelets and higher concentrations might inhibit other pathways regulating Akt phosphorylation by AYPGKF. We conclude that Protease-activated receptor 4 (PAR4) might cause Akt phosphorylation through pathways distinctly different from those of Protease-activated receptor 1 (PAR1).
Collapse
Affiliation(s)
- Carol Dangelmaier
- Sol Sherry Thrombosis Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Satya P Kunapuli
- Sol Sherry Thrombosis Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| |
Collapse
|
62
|
Kiser LM, Sokoloski KJ, Hardy RW. Interactions between capsid and viral RNA regulate Chikungunya virus translation in a host-specific manner. Virology 2021; 560:34-42. [PMID: 34023723 PMCID: PMC8206026 DOI: 10.1016/j.virol.2021.04.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 04/19/2021] [Accepted: 04/28/2021] [Indexed: 12/24/2022]
Abstract
Alphaviruses are positive sense, RNA viruses commonly transmitted by an arthropod vector to a mammalian or avian host. In recent years, a number of the Alphavirus members have reemerged as public health concerns. Transmission from mosquito vector to vertebrate hosts requires an understanding of the interaction between the virus and both vertebrate and insect hosts to develop rational intervention strategies. The current study uncovers a novel role for capsid protein during Chikungunya virus replication whereby the interaction with viral RNA in the E1 coding region regulates protein synthesis processes early in infection. Studies done in both the mammalian and mosquito cells indicate that interactions between viral RNA and capsid protein have functional consequences that are host species specific. Our data support a vertebrate-specific role for capsid:vRNA interaction in temporally regulating viral translation in a manner dependent on the PI3K-AKT-mTOR pathway.
Collapse
Affiliation(s)
- Lauren M Kiser
- Department of Biology, College of Arts and Sciences, Indiana University, Bloomington, IN, USA
| | - Kevin J Sokoloski
- Department of Microbiology and Immunology and Center for Predictive Medicine for Biodefense and Emerging Infectious Diseases, University of Louisville School of Medicine, Louisville, KY, USA
| | - Richard W Hardy
- Department of Biology, College of Arts and Sciences, Indiana University, Bloomington, IN, USA.
| |
Collapse
|
63
|
Transcriptomics-Based Phenotypic Screening Supports Drug Discovery in Human Glioblastoma Cells. Cancers (Basel) 2021; 13:cancers13153780. [PMID: 34359681 PMCID: PMC8345128 DOI: 10.3390/cancers13153780] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/16/2021] [Accepted: 07/20/2021] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Glioblastoma (GBM) remains a particularly challenging cancer, with an aggressive phenotype and few promising treatment options. Future therapy will rely heavily on diagnosing and targeting aggressive GBM cellular phenotypes, both before and after drug treatment, as part of personalized therapy programs. Here, we use a genome-wide drug-induced gene expression (DIGEX) approach to define the cellular drug response phenotypes associated with two clinical drug candidates, the phosphodiesterase 10A inhibitor Mardepodect and the multi-kinase inhibitor Regorafenib. We identify genes encoding specific drug targets, some of which we validate as effective antiproliferative agents and combination therapies in human GBM cell models, including HMGCoA reductase (HMGCR), salt-inducible kinase 1 (SIK1), bradykinin receptor subtype B2 (BDKRB2), and Janus kinase isoform 2 (JAK2). Individual, personalized treatments will be essential if we are to address and overcome the pharmacological plasticity that GBM exhibits, and DIGEX will play a central role in validating future drugs, diagnostics, and possibly vaccine candidates for this challenging cancer. Abstract We have used three established human glioblastoma (GBM) cell lines—U87MG, A172, and T98G—as cellular systems to examine the plasticity of the drug-induced GBM cell phenotype, focusing on two clinical drugs, the phosphodiesterase PDE10A inhibitor Mardepodect and the multi-kinase inhibitor Regorafenib, using genome-wide drug-induced gene expression (DIGEX) to examine the drug response. Both drugs upregulate genes encoding specific growth factors, transcription factors, cellular signaling molecules, and cell surface proteins, while downregulating a broad range of targetable cell cycle and apoptosis-associated genes. A few upregulated genes encode therapeutic targets already addressed by FDA approved drugs, but the majority encode targets for which there are no approved drugs. Amongst the latter, we identify many novel druggable targets that could qualify for chemistry-led drug discovery campaigns. We also observe several highly upregulated transmembrane proteins suitable for combined drug, immunotherapy, and RNA vaccine approaches. DIGEX is a powerful way of visualizing the complex drug response networks emerging during GBM drug treatment, defining a phenotypic landscape which offers many new diagnostic and therapeutic opportunities. Nevertheless, the extreme heterogeneity we observe within drug-treated cells using this technique suggests that effective pan-GBM drug treatment will remain a significant challenge for many years to come.
Collapse
|
64
|
Kocak M, Ezazi Erdi S, Jorba G, Maestro I, Farrés J, Kirkin V, Martinez A, Pless O. Targeting autophagy in disease: established and new strategies. Autophagy 2021; 18:473-495. [PMID: 34241570 PMCID: PMC9037468 DOI: 10.1080/15548627.2021.1936359] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Macroautophagy/autophagy is an evolutionarily conserved pathway responsible for clearing cytosolic aggregated proteins, damaged organelles or invading microorganisms. Dysfunctional autophagy leads to pathological accumulation of the cargo, which has been linked to a range of human diseases, including neurodegenerative diseases, infectious and autoimmune diseases and various forms of cancer. Cumulative work in animal models, application of genetic tools and pharmacologically active compounds, has suggested the potential therapeutic value of autophagy modulation in disease, as diverse as Huntington, Salmonella infection, or pancreatic cancer. Autophagy activation versus inhibition strategies are being explored, while the role of autophagy in pathophysiology is being studied in parallel. However, the progress of preclinical and clinical development of autophagy modulators has been greatly hampered by the paucity of selective pharmacological agents and biomarkers to dissect their precise impact on various forms of autophagy and cellular responses. Here, we summarize established and new strategies in autophagy-related drug discovery and indicate a path toward establishing a more efficient discovery of autophagy-selective pharmacological agents. With this knowledge at hand, modern concepts for therapeutic exploitation of autophagy might become more plausible. Abbreviations: ALS: amyotrophic lateral sclerosis; AMPK: AMP-activated protein kinase; ATG: autophagy-related gene; AUTAC: autophagy-targeting chimera; CNS: central nervous system; CQ: chloroquine; GABARAP: gamma-aminobutyric acid type A receptor-associated protein; HCQ: hydroxychloroquine; LYTAC: lysosome targeting chimera; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MTOR: mechanistic target of rapamycin kinase; NDD: neurodegenerative disease; PDAC: pancreatic ductal adenocarcinoma; PE: phosphatidylethanolamine; PIK3C3/VPS34: phosphatidylinositol 3-kinase catalytic subunit type 3; PtdIns3K: class III phosphatidylinositol 3-kinase; PtdIns3P: phosphatidylinositol 3-phosphate; PROTAC: proteolysis-targeting chimera; SARS-CoV-2: severe acute respiratory syndrome coronavirus 2; SQSTM1/p62: sequestosome 1; ULK1: unc-51 like autophagy activating kinase 1.
Collapse
Affiliation(s)
- Muhammed Kocak
- Cancer Research UK, Cancer Therapeutics Unit, the Institute of Cancer Research London, Sutton, UK
| | | | | | - Inés Maestro
- Centro De Investigaciones Biologicas "Margarita Salas"-CSIC, Madrid, Spain
| | | | - Vladimir Kirkin
- Cancer Research UK, Cancer Therapeutics Unit, the Institute of Cancer Research London, Sutton, UK
| | - Ana Martinez
- Centro De Investigaciones Biologicas "Margarita Salas"-CSIC, Madrid, Spain.,Centro De Investigación Biomédica En Red En Enfermedades Neurodegenerativas (CIBERNED), Instituto De Salud Carlos III, Madrid, Spain
| | - Ole Pless
- Fraunhofer ITMP ScreeningPort, Hamburg, Germany
| |
Collapse
|
65
|
Abstract
Drug repositioning is a well-known method used to reduce the time, cost, and development risks involved in bringing a new drug to the market. The rapid expansion of high-throughput datasets has enabled computational research that can suggest new potential uses for existing drugs. Some computational methods allow the prediction of potential drug targets of a given disease from a systematic network. Despite numerous efforts, the path of many drugs’ efficacy in the human body remains unclear. Therefore, the present study attempted to understand drug efficacy by systematically focusing on functional gene sets. The purpose of this study was to carry out modeling to identify systemic gene networks (called drug paths) in drug-specific pathways. In our results, we found five different paths for five different drugs.
Collapse
|
66
|
Jiang P, Guo J, Gong M, Zhou X, Cao W, Fu Z, Huang W. N-Heterocyclic carbene-catalyzed [3 + 3] annulation of bromoenals with 2-aminochromones to access chromeno[2,3- b]pyridinones. Org Biomol Chem 2021; 19:4882-4886. [PMID: 34013952 DOI: 10.1039/d1ob00720c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
N-Heterocyclic carbene-catalyzed [3 + 3] annulation of bromoenals with 2-aminochromones has been successfully developed. A structurally diverse set of chromeno[2,3-b]pyridinones was efficiently constructed in acceptable to excellent yields. The reaction features mild reaction conditions, a broad substrate scope, and easy scale-up.
Collapse
Affiliation(s)
- Pengrui Jiang
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China.
| | - Jingcheng Guo
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China.
| | - Minghua Gong
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China.
| | - Xiangui Zhou
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China.
| | - Wei Cao
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China.
| | - Zhenqian Fu
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China.
| | - Wei Huang
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China.
| |
Collapse
|
67
|
Borges JP, Mekhail K, Fairn GD, Antonescu CN, Steinberg BE. Modulation of Pathological Pain by Epidermal Growth Factor Receptor. Front Pharmacol 2021; 12:642820. [PMID: 34054523 PMCID: PMC8149758 DOI: 10.3389/fphar.2021.642820] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 04/26/2021] [Indexed: 12/18/2022] Open
Abstract
Chronic pain has been widely recognized as a major public health problem that impacts multiple aspects of patient quality of life. Unfortunately, chronic pain is often resistant to conventional analgesics, which are further limited by their various side effects. New therapeutic strategies and targets are needed to better serve the millions of people suffering from this devastating disease. To this end, recent clinical and preclinical studies have implicated the epidermal growth factor receptor signaling pathway in chronic pain states. EGFR is one of four members of the ErbB family of receptor tyrosine kinases that have key roles in development and the progression of many cancers. EGFR functions by activating many intracellular signaling pathways following binding of various ligands to the receptor. Several of these signaling pathways, such as phosphatidylinositol 3-kinase, are known mediators of pain. EGFR inhibitors are known for their use as cancer therapeutics but given recent evidence in pilot clinical and preclinical investigations, may have clinical use for treating chronic pain. Here, we review the clinical and preclinical evidence implicating EGFR in pathological pain states and provide an overview of EGFR signaling highlighting how EGFR and its ligands drive pain hypersensitivity and interact with important pain pathways such as the opioid system.
Collapse
Affiliation(s)
- Jazlyn P Borges
- Neurosciences and Mental Health Program, The Hospital for Sick Children, Toronto, ON, Canada.,Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Katrina Mekhail
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, ON, Canada.,Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Gregory D Fairn
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, ON, Canada.,Department of Biochemistry, University of Toronto, Toronto, ON, Canada.,Department of Surgery, University of Toronto, Toronto, ON, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.,Department of Chemistry and Biology, Ryerson University, Toronto, ON, Canada
| | - Costin N Antonescu
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, ON, Canada.,Department of Chemistry and Biology, Ryerson University, Toronto, ON, Canada
| | - Benjamin E Steinberg
- Neurosciences and Mental Health Program, The Hospital for Sick Children, Toronto, ON, Canada.,Department of Physiology, University of Toronto, Toronto, ON, Canada.,Department of Anesthesia and Pain Medicine, The Hospital for Sick Children, Toronto, ON, Canada
| |
Collapse
|
68
|
Vieira ÉLM, Martins FMA, Bellozi PMQ, Gonçalves AP, Siqueira JM, Gianetti A, Teixeira AL, de Oliveira ACP. PI3K, mTOR and GSK3 modulate cytokines' production in peripheral leukocyte in temporal lobe epilepsy. Neurosci Lett 2021; 756:135948. [PMID: 33979699 DOI: 10.1016/j.neulet.2021.135948] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 04/14/2021] [Accepted: 05/06/2021] [Indexed: 10/21/2022]
Abstract
INTRODUCTION Epilepsy is a common pathological condition that predisposes individuals to seizures, as well as cognitive and emotional dysfunctions. Different studies have demonstrated that inflammation contributes to the pathophysiology of epilepsy. Indeed, seizures change the peripheral inflammatory pattern, which, in turn, could contribute to seizures. However, the cause of the altered production of peripheral inflammatory mediators is not known. The PI3K/mTOR/GSK3β pathway is important for different physiological and pharmacological phenomena. Therefore, in the present study, we tested the hypothesis that the PI3K/mTOR/GSK3β pathway is deregulated in immune cells from patients with epilepsy and contributes to the abnormal production of inflammatory mediators. METHODS Patients with temporal lobe epilepsy presenting hippocampal sclerosis and controls aged between 18 and 65 years-old were selected for this study. Peripheral blood was collected for the isolation of peripheral mononuclear blood cells (PBMC). Cells were pre-incubated with different PI3K, mTOR and GSK-3 inhibitors for 30 min and further stimulated with phytohaemaglutinin (PHA) or vehicle for 24 h. The supernatant was used to evaluate the production of IL-1β, IL-6, IL-10, TNF e IL-12p70. RESULTS Non-selective inhibition of PI3K, as well as inhibition of PI3Kγ and GSK-3, reduced the levels of TNF and IL-10 in PHA-stimulated cells from TLE individuals. This stimulus increased the production of IL-12p70 only in cells from TLE individuals, while the inhibition of PI3K and mTOR enhanced the production of this cytokine. On the other hand, inhibition of GSK3 reduced the PHA-induced production of IL-12p70. CONCLUSIONS Herein we demonstrated that the production of cytokines by immune cells from patients with TLE differs from non-epileptic patients. This differential regulation may be associated with the altered activity and responsiveness of intracellular molecules, such as PI3K, mTOR and GSK-3, which, in turn, might contribute to the inflammatory state that exists in epilepsy and its pathogenesis.
Collapse
Affiliation(s)
- Érica Leandro Marciano Vieira
- Centre for Addiction and Mental Health - CAMH, Toronto, Canada; Neuroscience Program, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Flávia Mendes Amaral Martins
- Neuroscience Program, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil; Department of Pharmacology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Paula Maria Quaglio Bellozi
- Department of Pharmacology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Molecular Biology Program, Universidade de Brasília, Brasília, DF, Brazil
| | - Ana Paula Gonçalves
- Neuroscience Program, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil; Neuropsychiatry Unit, Neurology Division, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil; Epilepsy Treatment Advanced Centre (NATE), Felício Rocho Hospital, Belo Horizonte, MG, Brazil
| | - José Maurício Siqueira
- Epilepsy Treatment Advanced Centre (NATE), Felício Rocho Hospital, Belo Horizonte, MG, Brazil
| | - Alexandre Gianetti
- Neuropsychiatry Unit, Neurology Division, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Antônio Lúcio Teixeira
- Neuroscience Program, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil; Neuropsychiatry Program, Department of Psychiatry and Behavioral Sciences, School of Medicine, University of Texas Health Science Center at Houston, TX, United States; Instituto de Ensino e Pesquisa, Santa Casa BH, Belo Horizonte, Brazil
| | - Antônio Carlos Pinheiro de Oliveira
- Neuroscience Program, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil; Department of Pharmacology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.
| |
Collapse
|
69
|
Chen T, Ni N, Yuan L, Xu L, Bahri N, Sun B, Wu Y, Ou WB. Proteasome Inhibition Suppresses KIT-Independent Gastrointestinal Stromal Tumors Via Targeting Hippo/YAP/Cyclin D1 Signaling. Front Pharmacol 2021; 12:686874. [PMID: 34025442 PMCID: PMC8134732 DOI: 10.3389/fphar.2021.686874] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 04/23/2021] [Indexed: 12/01/2022] Open
Abstract
Purpose: Gastrointestinal stromal tumors (GISTs) are the most common malignant tumor of mesenchymal origin of the digestive tract. A yet more challenging resistance mechanism involves transition from oncogenic KIT to a new imatinib-insensitive oncogenic driver, heralded by loss of KIT expression. Our recent studies have shown that inhibition of cyclin D1 and Hippo signaling, which are overexpressed in KIT-independent GIST, is accompanied by anti-proliferative and apoptosis-promoting effects. PRKCQ, JUN, and the Hippo/YAP pathway coordinately regulate GIST cyclin D1 expression. Thus, targeting of these pathways could be effective therapeutically for these now untreatable tumors. Methods: Targeting cyclin D1 expression of small molecular drugs was screened by a cell monolayer growth and western blotting. The biologic mechanisms of bortezomib to KIT-independent GISTs were assessed by immunoblotting, qRT-PCR, cell viability, colony growth, cell cycle analysis, apoptosis, migration and invasiveness. Results: In the initial small molecular inhibitor screening in KIT-independent GIST62, we found that bortezomib-mediated inhibition of the ubiquitin-proteasome machinery showed anti-proliferative effects of KIT-independent GIST cells via downregulation of cyclin D1 and induction of p53 and p21. Treatment with proteasome inhibitor, bortezomib, led to downregulation of cyclin D1 and YAP/TAZ and an increase in the cleaved PARP expression in three KIT-independent GIST cell lines (GIST48B, GIST54, and GIST226). Additionally, it induced p53 and p21 expression in GIST48B and GIST54, increased apoptosis, and led to cell cycle G1/G2-phase arrest, decreased cell viability, colony formation, as well as migration and invasiveness in all GIST cell lines. Conclusion: Although our findings are early proof-of-principle, there are signs of a potential effective treatment for KIT-independent GISTs, the data highlight that targeting of cyclin D1 and Hippo/YAP by bortezomib warrants evaluation as a novel therapeutic strategy in KIT-independent GISTs.
Collapse
Affiliation(s)
- Ting Chen
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Nan Ni
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Li Yuan
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Liangliang Xu
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Nacef Bahri
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| | - Boshu Sun
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Yuehong Wu
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Wen-Bin Ou
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China.,Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| |
Collapse
|
70
|
Leptin decreases apoptosis and promotes the activation of primordial follicles through the phosphatidylinositol-3-kinase/protein kinase B pathway in cultured ovine ovarian tissue. ZYGOTE 2021; 29:445-451. [PMID: 33906701 DOI: 10.1017/s0967199421000034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
This study evaluated the effects of leptin on primordial follicle survival and activation after in vitro culture of ovine ovarian tissue and if leptin acts through the phosphatidylinositol-3-kinase/protein kinase B (PI3K/Akt) pathway. Ovarian fragments were fixed for histology (fresh control) or cultured for 7 days in control medium (α-MEM+) alone or supplemented with leptin (1, 5, 10, 25 or 50 ng/ml). Follicle morphology, activation and apoptosis were analyzed. Next, the fragments were cultured in the medium that showed the best results in the absence or the presence of the PI3K inhibitor (LY294002), and immunohistostaining of p-Akt protein was assessed. After culture, the percentage of normal follicles decreased (P < 0.05) in all treatments compared with the fresh control. Moreover, control medium and 1 ng/ml leptin had similar (P > 0.05) percentages of normal follicles, which were significantly higher than those in other treatments. However, culture with 1 ng/ml leptin maintained apoptosis similarly (P > 0.05) to that of the fresh control and lower (P < 0.05) than that in α-MEM+. Leptin did not influence follicle activation (P > 0.05) compared with the control medium (α-MEM+). Culture in 1 ng/ml leptin with LY294002 decreased the normal follicles and increased apoptosis, inhibited follicle activation (P < 0.05), and reduced p-Akt immunostaining, compared with the medium containing 1 ng/ml leptin without PI3K inhibitor. In conclusion, leptin at 1 ng/ml reduces apoptosis and promotes the activation of primordial follicles compared with the fresh control after in vitro culture of ovine ovarian tissue possibly through the PI3K/Akt pathway.
Collapse
|
71
|
Nemoto S, Morita K, Mizuno T, Kusuhara H. Decomposition Profile Data Analysis for Deep Understanding of Multiple Effects of Natural Products. JOURNAL OF NATURAL PRODUCTS 2021; 84:1283-1293. [PMID: 33836128 DOI: 10.1021/acs.jnatprod.0c01381] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
It is difficult to understand the entire effect of a natural product because such products generally have multiple effects. We propose a strategy to understand these effects effectively by decomposing them with a profile data analysis method we developed. A transcriptome profile data set was obtained from a public database and analyzed. Considering their high similarity in structure and transcriptome profile, we focused on rescinnamine and syrosingopine. Decomposed effects predicted clear differences between the compounds. Two of the decomposed effects, SREBF1 activation and HDAC inhibition, were investigated experimentally because the relationship between these effects and the compounds had not yet been reported. Analyses in vitro validated these effects, and their strength was consistent with predicted scores. Moreover, the number of outliers in decomposed effects per compound was higher in natural products than in drugs in the data set, which is consistent with the nature of the effects of natural products.
Collapse
Affiliation(s)
- Shumpei Nemoto
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo, Tokyo 113-8654, Japan
| | - Katsuhisa Morita
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo, Tokyo 113-8654, Japan
| | - Tadahaya Mizuno
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo, Tokyo 113-8654, Japan
| | - Hiroyuki Kusuhara
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo, Tokyo 113-8654, Japan
| |
Collapse
|
72
|
Jia JJ, Lahr RM, Solgaard MT, Moraes BJ, Pointet R, Yang AD, Celucci G, Graber TE, Hoang HD, Niklaus M, Pena IA, Hollensen AK, Smith EM, Chaker-Margot M, Anton L, Dajadian C, Livingstone M, Hearnden J, Wang XD, Yu Y, Maier T, Damgaard CK, Berman AJ, Alain T, Fonseca BD. mTORC1 promotes TOP mRNA translation through site-specific phosphorylation of LARP1. Nucleic Acids Res 2021; 49:3461-3489. [PMID: 33398329 PMCID: PMC8034618 DOI: 10.1093/nar/gkaa1239] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 11/29/2020] [Accepted: 12/15/2020] [Indexed: 02/06/2023] Open
Abstract
LARP1 is a key repressor of TOP mRNA translation. It binds the m7Gppp cap moiety and the adjacent 5'TOP motif of TOP mRNAs, thus impeding the assembly of the eIF4F complex on these transcripts. mTORC1 controls TOP mRNA translation via LARP1, but the details of the mechanism are unclear. Herein we elucidate the mechanism by which mTORC1 controls LARP1's translation repression activity. We demonstrate that mTORC1 phosphorylates LARP1 in vitro and in vivo, activities that are efficiently inhibited by rapamycin and torin1. We uncover 26 rapamycin-sensitive phospho-serine and -threonine residues on LARP1 that are distributed in 7 clusters. Our data show that phosphorylation of a cluster of residues located proximally to the m7Gppp cap-binding DM15 region is particularly sensitive to rapamycin and regulates both the RNA-binding and the translation inhibitory activities of LARP1. Our results unravel a new model of translation control in which the La module (LaMod) and DM15 region of LARP1, both of which can directly interact with TOP mRNA, are differentially regulated: the LaMod remains constitutively bound to PABP (irrespective of the activation status of mTORC1), while the C-terminal DM15 'pendular hook' engages the TOP mRNA 5'-end to repress translation, but only in conditions of mTORC1 inhibition.
Collapse
Affiliation(s)
- Jian-Jun Jia
- Children's Hospital of Eastern Ontario (CHEO) Research Institute, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Canada
| | - Roni M Lahr
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Michael T Solgaard
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Bruno J Moraes
- GABBA PhD Program, Abel Salazar Biomedical Sciences Institute, University of Porto, Porto, Portugal
- PrimerGen Ltd, Viseu, Portugal
| | - Roberta Pointet
- Children's Hospital of Eastern Ontario (CHEO) Research Institute, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Canada
| | - An-Dao Yang
- Children's Hospital of Eastern Ontario (CHEO) Research Institute, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Canada
| | - Giovanna Celucci
- Children's Hospital of Eastern Ontario (CHEO) Research Institute, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Canada
| | - Tyson E Graber
- Children's Hospital of Eastern Ontario (CHEO) Research Institute, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Canada
| | - Huy-Dung Hoang
- Children's Hospital of Eastern Ontario (CHEO) Research Institute, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Canada
| | - Marius R Niklaus
- Children's Hospital of Eastern Ontario (CHEO) Research Institute, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Canada
| | - Izabella A Pena
- Children's Hospital of Eastern Ontario (CHEO) Research Institute, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Canada
| | - Anne K Hollensen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Ewan M Smith
- Cancer Research UK Beatson Institute, Glasgow, UK
| | | | - Leonie Anton
- Biozentrum, University of Basel, Basel, Switzerland
| | - Christopher Dajadian
- Department of Biochemistry, Rosalind and Morris Goodman Cancer Centre, McGill University, Montréal, Canada
| | - Mark Livingstone
- Department of Biochemistry, Rosalind and Morris Goodman Cancer Centre, McGill University, Montréal, Canada
| | - Jaclyn Hearnden
- Department of Biochemistry, Rosalind and Morris Goodman Cancer Centre, McGill University, Montréal, Canada
| | - Xu-Dong Wang
- Department of Biochemistry, UT Southwestern Medical Center, Dallas, TX, USA
| | - Yonghao Yu
- Department of Biochemistry, UT Southwestern Medical Center, Dallas, TX, USA
| | - Timm Maier
- Biozentrum, University of Basel, Basel, Switzerland
| | - Christian K Damgaard
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Andrea J Berman
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Tommy Alain
- Children's Hospital of Eastern Ontario (CHEO) Research Institute, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Canada
| | - Bruno D Fonseca
- Children's Hospital of Eastern Ontario (CHEO) Research Institute, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Canada
- PrimerGen Ltd, Viseu, Portugal
| |
Collapse
|
73
|
Mishra R, Patel H, Alanazi S, Kilroy MK, Garrett JT. PI3K Inhibitors in Cancer: Clinical Implications and Adverse Effects. Int J Mol Sci 2021; 22:3464. [PMID: 33801659 PMCID: PMC8037248 DOI: 10.3390/ijms22073464] [Citation(s) in RCA: 154] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/19/2021] [Accepted: 03/23/2021] [Indexed: 02/07/2023] Open
Abstract
The phospatidylinositol-3 kinase (PI3K) pathway is a crucial intracellular signaling pathway which is mutated or amplified in a wide variety of cancers including breast, gastric, ovarian, colorectal, prostate, glioblastoma and endometrial cancers. PI3K signaling plays an important role in cancer cell survival, angiogenesis and metastasis, making it a promising therapeutic target. There are several ongoing and completed clinical trials involving PI3K inhibitors (pan, isoform-specific and dual PI3K/mTOR) with the goal to find efficient PI3K inhibitors that could overcome resistance to current therapies. This review focuses on the current landscape of various PI3K inhibitors either as monotherapy or in combination therapies and the treatment outcomes involved in various phases of clinical trials in different cancer types. There is a discussion of the drug-related toxicities, challenges associated with these PI3K inhibitors and the adverse events leading to treatment failure. In addition, novel PI3K drugs that have potential to be translated in the clinic are highlighted.
Collapse
Affiliation(s)
| | | | | | | | - Joan T. Garrett
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Cincinnati, Cincinnati, OH 45267-0514, USA; (R.M.); (H.P.); (S.A.); (M.K.K.)
| |
Collapse
|
74
|
Wright SCE, Vasilevski N, Serra V, Rodon J, Eichhorn PJA. Mechanisms of Resistance to PI3K Inhibitors in Cancer: Adaptive Responses, Drug Tolerance and Cellular Plasticity. Cancers (Basel) 2021; 13:cancers13071538. [PMID: 33810522 PMCID: PMC8037590 DOI: 10.3390/cancers13071538] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/11/2021] [Accepted: 03/15/2021] [Indexed: 12/24/2022] Open
Abstract
The phosphatidylinositol-3-kinase (PI3K) pathway plays a central role in the regulation of several signalling cascades which regulate biological processes such as cellular growth, survival, proliferation, motility and angiogenesis. The hyperactivation of this pathway is linked to tumour progression and is one of the most common events in human cancers. Additionally, aberrant activation of the PI3K pathway has been demonstrated to limit the effectiveness of a number of anti-tumour agents paving the way for the development and implementation of PI3K inhibitors in the clinic. However, the overall effectiveness of these compounds has been greatly limited by inadequate target engagement due to reactivation of the pathway by compensatory mechanisms. Herein, we review the common adaptive responses that lead to reactivation of the PI3K pathway, therapy resistance and potential strategies to overcome these mechanisms of resistance. Furthermore, we highlight the potential role in changes in cellular plasticity and PI3K inhibitor resistance.
Collapse
Affiliation(s)
- Sarah Christine Elisabeth Wright
- Faculty of Health Sciences, Curtin Medical School, Curtin University, Bentley 6102, Australia;
- Curtin Health Innovation Research Institute and Faculty of Health Sciences, Curtin University, Bentley 6102, Australia
- Correspondence: (S.C.E.W.); (N.V.)
| | - Natali Vasilevski
- Faculty of Health Sciences, Curtin Medical School, Curtin University, Bentley 6102, Australia;
- Curtin Health Innovation Research Institute and Faculty of Health Sciences, Curtin University, Bentley 6102, Australia
- Correspondence: (S.C.E.W.); (N.V.)
| | - Violeta Serra
- Vall d’Hebron Institute of Oncology (VHIO), Vall d’Hebron University Hospital, 08035 Barcelona, Spain;
| | - Jordi Rodon
- MD Anderson Cancer Center, Investigational Cancer Therapeutics Department, Houston, TX 77030, USA;
| | - Pieter Johan Adam Eichhorn
- Faculty of Health Sciences, Curtin Medical School, Curtin University, Bentley 6102, Australia;
- Curtin Health Innovation Research Institute and Faculty of Health Sciences, Curtin University, Bentley 6102, Australia
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| |
Collapse
|
75
|
Leyria J, Orchard I, Lange AB. The involvement of insulin/ToR signaling pathway in reproductive performance of Rhodnius prolixus. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2021; 130:103526. [PMID: 33453353 DOI: 10.1016/j.ibmb.2021.103526] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 01/07/2021] [Accepted: 01/08/2021] [Indexed: 06/12/2023]
Abstract
Insulins are peptide hormones widely studied for their important regulatory roles in metabolism, growth and development. In insects, insulin signaling along with the target of rapamycin (ToR) are involved in detecting and interpreting nutrient levels. Recently, by transcriptome analysis we reported an up-regulation of transcripts involved in insulin/ToR signaling in unfed Rhodnius prolixus; however, this signaling pathway is only activated in fed insects. Here, continuing with the blood-gorging triatomine R. prolixus as a model, we report the direct effect of insulin/ToR signaling on reproductive performance. By immunofluorescence we identified cells in the brain with positive signal to the R. prolixus ILP (Rhopr-ILP1) and show that the insulin receptor and protein effectors downstream of insulin/ToR signaling activation, are differentially expressed in ovarian follicles dependent on their developmental stage. Using qPCR we find that the expression of transcripts involved in insulin signaling in the central nervous system (CNS), fat body and ovaries increase as the state of starvation progresses, promoting a more highly sensitized state to respond rapidly to ILP/IGF levels. In addition, using dsRNA injection and in vivo and ex vivo assays to promote signaling activation we demonstrate a direct participation of insulin/ToR signaling in coordinating the synthesis of the main yolk protein precursor, vitellogenin, thereby influencing the numbers of eggs laid per female. We thereby show a mechanism by which nutritional signaling regulates reproductive performance in a vector of Chagas disease. As reproduction is responsible for propagation of insect populations, this work is important for the development of innovative biocontrol methods.
Collapse
Affiliation(s)
- Jimena Leyria
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, Canada.
| | - Ian Orchard
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, Canada.
| | - Angela B Lange
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, Canada.
| |
Collapse
|
76
|
Baghery Saghchy Khorasani A, Pourbagheri-Sigaroodi A, Pirsalehi A, Safaroghli-Azar A, Zali MR, Bashash D. The PI3K/Akt/mTOR signaling pathway in gastric cancer; from oncogenic variations to the possibilities for pharmacologic interventions. Eur J Pharmacol 2021; 898:173983. [PMID: 33647255 DOI: 10.1016/j.ejphar.2021.173983] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 02/13/2021] [Accepted: 02/23/2021] [Indexed: 12/24/2022]
Abstract
Genetic and epigenetic alterations have been under concentrated investigations for many years in order to unearth the molecules regulating human cancer pathogenesis. However, the identification of a wide range of dysregulated genes and their protein products has raised a question regarding how the results of this large collection of alterations could converge into a formation of one malignancy. The answer may be found in the signaling cascades that regulate the survival and metabolism of the cells. Aberrancies of each participant molecule of such cascades may well result in augmented viability and unlimited proliferation of cancer cells. Among various signaling pathways, the phosphatidylinositol-3-kinase (PI3K) axis has been shown to be activated in about one-third of human cancers. One of the malignancies that is mostly affected by this axis is gastric cancer (GC), one of the most fatal cancers worldwide. In the present review, we aimed to illustrate the significance of the PI3K/Akt/mTOR axis in the pathogenesis of GC and also provided a wide perspective about the application of the inhibitors of this axis in the therapeutic strategies of this malignancy.
Collapse
Affiliation(s)
| | - Atieh Pourbagheri-Sigaroodi
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Pirsalehi
- Department of Internal Medicine, School of Medicine, Ayatollah Taleghani Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ava Safaroghli-Azar
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Zali
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Davood Bashash
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
77
|
Phosphatidylinositol 3-Phosphate Mediates the Establishment of Infectious Bursal Disease Virus Replication Complexes in Association with Early Endosomes. J Virol 2021; 95:JVI.02313-20. [PMID: 33361427 DOI: 10.1128/jvi.02313-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 12/15/2020] [Indexed: 12/13/2022] Open
Abstract
Infectious bursal disease virus (IBDV) is the archetypal member of the family Birnaviridae and the etiological agent of Gumboro disease, a highly contagious immunosuppressive infection of concern to the global poultry sector for its adverse health effects in chicks. Unlike most double-stranded RNA (dsRNA) viruses, which enclose their genomes within specialized cores throughout their viral replication cycle, birnaviruses organize their bisegmented dsRNA genome in ribonucleoprotein (RNP) structures. Recently, we demonstrated that IBDV exploits endosomal membranes for replication. The establishment of IBDV replication machinery on the cytosolic leaflet of endosomal compartments is mediated by the viral protein VP3 and its intrinsic ability to target endosomes. In this study, we identified the early endosomal phosphatidylinositol 3-phosphate [PtdIns(3)P] as a key host factor of VP3 association with endosomal membranes and consequent establishment of IBDV replication complexes in early endosomes. Indeed, our data reveal a crucial role for PtdIns(3)P in IBDV replication. Overall, our findings provide new insights into the replicative strategy of birnaviruses and strongly suggest that it resembles those of positive-strand RNA (+ssRNA) viruses, which replicate in association with host membranes. Furthermore, our findings support the role of birnaviruses as evolutionary intermediaries between +ssRNA and dsRNA viruses and, importantly, demonstrate a novel role for PtdIns(3)P in the replication of a dsRNA virus.IMPORTANCE Infectious bursal disease virus (IBDV) infects chicks and is the causative agent of Gumboro disease. During IBDV outbreaks in recent decades, the emergence of very virulent variants and the lack of effective prevention/treatment strategies to fight this disease have had devastating consequences for the poultry industry. IBDV belongs to the peculiar family Birnaviridae Unlike most dsRNA viruses, birnaviruses organize their genomes in ribonucleoprotein complexes and replicate in a core-independent manner. We recently demonstrated that IBDV exploits host cell endosomes as platforms for viral replication, a process that depends on the VP3 viral protein. In this study, we delved deeper into the molecular characterization of IBDV-endosome association and investigated the role of host cell phosphatidylinositide lipids in VP3 protein localization and IBDV infection. Together, our findings demonstrate that PtdIns(3)P serves as a scaffold for the association of VP3 to endosomes and reveal its essential role for IBDV replication.
Collapse
|
78
|
Monte APO, Bezerra MÉS, Menezes VG, Gouveia BB, Barberino RS, Lins TLBG, Barros VRP, Santos JMS, Donfack NJ, Matos MHT. Involvement of Phosphorylated Akt and FOXO3a in the Effects of Growth and Differentiation Factor-9 (GDF-9) on Inhibition of Follicular Apoptosis and Induction of Granulosa Cell Proliferation After In Vitro Culture of Sheep Ovarian Tissue. Reprod Sci 2021; 28:2174-2185. [DOI: 10.1007/s43032-020-00409-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 11/18/2020] [Indexed: 12/18/2022]
|
79
|
Yu J, Xia X, Dong Y, Gong Z, Li G, Chen GG, Lai PBS. CYP1A2 suppresses hepatocellular carcinoma through antagonizing HGF/MET signaling. Am J Cancer Res 2021; 11:2123-2136. [PMID: 33500715 PMCID: PMC7797680 DOI: 10.7150/thno.49368] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 11/27/2020] [Indexed: 02/06/2023] Open
Abstract
Rationale: Hyperactivation of HGF/MET signaling pathway is a critical driver in liver tumorigenesis. Cytochrome P450 1A2 (CYP1A2) was significantly down-regulated in hepatocellular carcinoma (HCC). However, little is explored about its tumor suppressive role in HCC. In this study, we examined the functional mechanisms and clinical implication of CYP1A2 in HCC. Methods: The clinical impact of CYP1A2 was evaluated in HCC patients in Hong Kong cohort. The biological functions of CYP1A2 were investigated in vitro and in vivo. A series of biochemical experiments including Western blot assay, immunohistochemistry, quantitative reverse transcription-polymerase chain reaction, and Co-immunoprecipitation assay were conducted. Results: CYP1A2 expression was prominently silenced in HCC tumor tissues and the high expression of CYP1A2 was significantly correlated with lower AFP level, less vascular invasion, and better tumor-free survival in local cohort of HCC patients. The overexpression of CYP1A2 inhibited HCC cell viability and clonogenicity, reduced cell migration and invasion abilities in vitro, and suppressed tumorigenicity in vivo, whereas CYP1A2 knockdown exhibited the opposite effects. CYP1A2 significantly hindered HGF/MET signaling and Matrix metalloproteinases (MMPs) expression in HCC cells. Mechanically, CYP1A2 decreased HGF level and diminished HIF-1α expression, both of which are recognized as key regulators of MET activation. As the transcriptional activator of MET, HIF-1α was identified as a binding partner of CYP1A2. Direct binding of CYP1A2 with HIF-1α induced ubiquitin-mediated degradation of HIF-1α, inhibiting HIF-1α-mediated transcriptions. Conclusions: In conclusion, our results have identified CYP1A2 as a novel antagonist of HGF/MET signaling, and CYP1A2 may serve as an independent new biomarker for the prognosis of HCC patients.
Collapse
|
80
|
Kučka M, Gonzalez-Iglesias AE, Tomić M, Prévide RM, Smiljanic K, Sokanovic SJ, Fletcher PA, Sherman A, Balla T, Stojilkovic SS. Calcium-Prolactin Secretion Coupling in Rat Pituitary Lactotrophs Is Controlled by PI4-Kinase Alpha. Front Endocrinol (Lausanne) 2021; 12:790441. [PMID: 35058881 PMCID: PMC8764672 DOI: 10.3389/fendo.2021.790441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 12/02/2021] [Indexed: 11/13/2022] Open
Abstract
The role of calcium, but not of other intracellular signaling molecules, in the release of pituitary hormones by exocytosis is well established. Here, we analyzed the contribution of phosphatidylinositol kinases (PIKs) to calcium-driven prolactin (PRL) release in pituitary lactotrophs: PI4Ks - which control PI4P production, PIP5Ks - which synthesize PI(4, 5)P2 by phosphorylating the D-5 position of the inositol ring of PI4P, and PI3KCs - which phosphorylate PI(4, 5)P2 to generate PI(3, 4, 5)P3. We used common and PIK-specific inhibitors to evaluate the strength of calcium-secretion coupling in rat lactotrophs. Gene expression was analyzed by single-cell RNA sequencing and qRT-PCR analysis; intracellular and released hormones were assessed by radioimmunoassay and ELISA; and single-cell calcium signaling was recorded by Fura 2 imaging. Single-cell RNA sequencing revealed the expression of Pi4ka, Pi4kb, Pi4k2a, Pi4k2b, Pip5k1a, Pip5k1c, and Pik3ca, as well as Pikfyve and Pip4k2c, in lactotrophs. Wortmannin, a PI3K and PI4K inhibitor, but not LY294002, a PI3K inhibitor, blocked spontaneous action potential driven PRL release with a half-time of ~20 min when applied in 10 µM concentration, leading to accumulation of intracellular PRL content. Wortmannin also inhibited increase in PRL release by high potassium, the calcium channel agonist Bay K8644, and calcium mobilizing thyrotropin-releasing hormone without affecting accompanying calcium signaling. GSK-A1, a specific inhibitor of PI4KA, also inhibited calcium-driven PRL secretion without affecting calcium signaling and Prl expression. In contrast, PIK93, a specific inhibitor of PI4KB, and ISA2011B and UNC3230, specific inhibitors of PIP5K1A and PIP5K1C, respectively, did not affect PRL release. These experiments revealed a key role of PI4KA in calcium-secretion coupling in pituitary lactotrophs downstream of voltage-gated and PI(4, 5)P2-dependent calcium signaling.
Collapse
Affiliation(s)
- Marek Kučka
- Section on Cellular Signaling, The Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| | - Arturo E. Gonzalez-Iglesias
- Section on Cellular Signaling, The Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| | - Melanija Tomić
- Section on Cellular Signaling, The Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| | - Rafael M. Prévide
- Section on Cellular Signaling, The Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| | - Kosara Smiljanic
- Section on Cellular Signaling, The Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| | - Srdjan J. Sokanovic
- Section on Cellular Signaling, The Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| | - Patrick A. Fletcher
- Laboratory of Biological Modeling, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Arthur Sherman
- Laboratory of Biological Modeling, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Tamas Balla
- Section on Molecular Signal Transduction, The Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| | - Stanko S. Stojilkovic
- Section on Cellular Signaling, The Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
- *Correspondence: Stanko S. Stojilkovic,
| |
Collapse
|
81
|
Lodhi N, Tun M, Nagpal P, Inamdar AA, Ayoub NM, Siyam N, Oton-Gonzalez L, Gerona A, Morris D, Sandhu R, Suh KS. Biomarkers and novel therapeutic approaches for diffuse large B-cell lymphoma in the era of precision medicine. Oncotarget 2020; 11:4045-4073. [PMID: 33216822 PMCID: PMC7646825 DOI: 10.18632/oncotarget.27785] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 09/29/2020] [Indexed: 12/18/2022] Open
Abstract
Despite the great efforts for better treatment options for diffuse large B-cell lymphoma (DLBCL) (most common form of non-Hodgkin lymphoma, NHL) to treat and prevent relapse, it continues to be a challenge. Here, we present an overview of DLBCL and address the diagnostic assays and molecular techniques used in its diagnosis, role of biomarkers in detection, treatment of early and advanced stage DLBCL, and novel drug regimens. We discuss the significant biomarkers that have emerged as essential tools for stratifying patients according to risk factors and for providing insights into the use of more targeted and individualized therapeutics. We discuss techniques such as gene expression studies, including next-generation sequencing, which have enabled a more understanding of the complex pathogenesis of DLBCL and have helped determine molecular targets for novel therapeutic agents. We examine current treatment approaches, outline the findings of completed clinical trials, and provide updates for ongoing clinical trials. We highlight clinical trials relevant to the significant fraction of DLBCL patients who present with complex cases marked by high relapse rates. Supported by an increased understanding of targetable pathways in DLBCL, clinical trials involving specialized combination therapies are bringing us within reach the promise of an effective cure to DLBCL using precision medicine. Optimization of therapy remains a crucial objective, with the end goal being a balance between high survival rates through targeted and personalized treatment while reducing adverse effects in DLBCL patients of all subsets.
Collapse
Affiliation(s)
- Niraj Lodhi
- Department of Immunotherapeutic and Biotechnology, Texas Tech Health Science Center, Abilene, TX, USA
- Formerly: The Genomics and Biomarkers Program, John Theurer Cancer Center at Hackensack University Medical Center, David Jurist Research Building, Hackensack, NJ, USA
- These authors contributed equally to this work
| | - Moe Tun
- Formerly: The Genomics and Biomarkers Program, John Theurer Cancer Center at Hackensack University Medical Center, David Jurist Research Building, Hackensack, NJ, USA
- These authors contributed equally to this work
| | - Poonam Nagpal
- Formerly: The Genomics and Biomarkers Program, John Theurer Cancer Center at Hackensack University Medical Center, David Jurist Research Building, Hackensack, NJ, USA
- College of Natural, Applied, and Health Sciences, Kean University, Union, NJ, USA
| | - Arati A. Inamdar
- Formerly: The Genomics and Biomarkers Program, John Theurer Cancer Center at Hackensack University Medical Center, David Jurist Research Building, Hackensack, NJ, USA
| | - Nehad M. Ayoub
- Department of Clinical Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Noor Siyam
- Formerly: The Genomics and Biomarkers Program, John Theurer Cancer Center at Hackensack University Medical Center, David Jurist Research Building, Hackensack, NJ, USA
| | | | - Angela Gerona
- Formerly: The Genomics and Biomarkers Program, John Theurer Cancer Center at Hackensack University Medical Center, David Jurist Research Building, Hackensack, NJ, USA
| | - Dainelle Morris
- Formerly: The Genomics and Biomarkers Program, John Theurer Cancer Center at Hackensack University Medical Center, David Jurist Research Building, Hackensack, NJ, USA
| | - Rana Sandhu
- Formerly: The Genomics and Biomarkers Program, John Theurer Cancer Center at Hackensack University Medical Center, David Jurist Research Building, Hackensack, NJ, USA
| | - Kwangsun Stephen Suh
- Formerly: The Genomics and Biomarkers Program, John Theurer Cancer Center at Hackensack University Medical Center, David Jurist Research Building, Hackensack, NJ, USA
- DiagnoCine, Hackensack, NJ, USA
| |
Collapse
|
82
|
STAT3 Differentially Regulates TLR4-Mediated Inflammatory Responses in Early or Late Phases. Int J Mol Sci 2020; 21:ijms21207675. [PMID: 33081347 PMCID: PMC7589049 DOI: 10.3390/ijms21207675] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/02/2020] [Accepted: 10/14/2020] [Indexed: 12/17/2022] Open
Abstract
Toll-like receptor 4 (TLR4) signaling is an important therapeutic target to manage lipopolysaccharide (LPS)-induced inflammation. The transcription factor signal transducer and activator of transcription 3 (STAT3) has been identified as an important regulator of various immune-related diseases and has generated interest as a therapeutic target. Here, we investigated the time-dependent roles of STAT3 in LPS-stimulated RAW264.7 macrophages. STAT3 inhibition induced expression of the pro-inflammatory genes iNOS and COX-2 at early time points. STAT3 depletion resulted in regulation of nuclear translocation of nuclear factor (NF)-κB subunits p50 and p65 and IκBα/Akt/PI3K signaling. Moreover, we found that one Src family kinase, Lyn kinase, was phosphorylated in STAT3 knockout macrophages. In addition to using pharmacological inhibition of NF-κB, we found out that STAT3KO activation of NF-κB subunit p50 and p65 and expression of iNOS was significantly inhibited; furthermore, Akt tyrosine kinase inhibitors also inhibited iNOS and COX-2 gene expression during early time points of LPS stimulation, demonstrating an NF-κB- Akt-dependent mechanism. On the other hand, iNOS expression was downregulated after prolonged treatment with LPS. Activation of NF-κB signaling was also suppressed, and consequently, nitric oxide (NO) production and cell invasion were repressed. Overall, our data indicate that STAT3 differentially regulates early- and late-phase TLR4-mediated inflammatory responses.
Collapse
|
83
|
Akhiani AA, Hallner A, Kiffin R, Aydin E, Werlenius O, Aurelius J, Martner A, Thorén FB, Hellstrand K. Idelalisib Rescues Natural Killer Cells from Monocyte-Induced Immunosuppression by Inhibiting NOX2-Derived Reactive Oxygen Species. Cancer Immunol Res 2020; 8:1532-1541. [PMID: 32967913 DOI: 10.1158/2326-6066.cir-20-0055] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 06/24/2020] [Accepted: 09/16/2020] [Indexed: 11/16/2022]
Abstract
The phosphatidylinositol-4,5-bisphosphate-3 kinase-δ (PI3Kδ) inhibitor idelalisib, used alone or in combination with anti-CD20, is clinically efficacious in B-cell lymphoma and chronic lymphocytic leukemia (CLL) by promoting apoptosis of malignant B cells. PI3K regulates the formation of reactive oxygen species (ROS) by the myeloid NADPH oxidase NOX2, but the role of PI3Kδ in myeloid cell-induced immunosuppression is unexplored. We assessed the effects of idelalisib on the spontaneous and IgG antibody-induced ROS production by human monocytes, on ROS-induced cell death of human natural killer (NK) cells, and on tumor cell clearance in an NK cell-dependent mouse model of metastasis. Idelalisib potently and efficiently inhibited the formation of NOX2-derived ROS from monocytes and rescued NK cells from ROS-induced cell death. Idelalisib also promoted NK cell cytotoxicity against anti-CD20-coated primary human CLL cells and cultured malignant B cells. Experiments using multiple PI3K inhibitors implicated the PI3Kδ isoform in regulating NOX2-induced ROS formation and immunosuppression. In B6 mice, systemic treatment with idelalisib significantly reduced the formation of lung metastases from intravenously injected melanoma cells but did not affect metastasis in B6.129S6-Cybbtm1Din (Nox2 -/-) mice or in NK cell-deficient mice. Our results imply that idelalisib rescues NK cells from NOX2/ROS-dependent immunosuppression and thus exerts antineoplastic efficacy beyond B-cell inhibition.
Collapse
Affiliation(s)
- Ali A Akhiani
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Alexander Hallner
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,TIMM Laboratory, Sahlgrenska Center for Cancer Research, University of Gothenburg, Gothenburg, Sweden
| | - Roberta Kiffin
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,TIMM Laboratory, Sahlgrenska Center for Cancer Research, University of Gothenburg, Gothenburg, Sweden
| | - Ebru Aydin
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,TIMM Laboratory, Sahlgrenska Center for Cancer Research, University of Gothenburg, Gothenburg, Sweden
| | - Olle Werlenius
- TIMM Laboratory, Sahlgrenska Center for Cancer Research, University of Gothenburg, Gothenburg, Sweden.,Department of Hematology, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Johan Aurelius
- TIMM Laboratory, Sahlgrenska Center for Cancer Research, University of Gothenburg, Gothenburg, Sweden.,Department of Hematology, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Anna Martner
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,TIMM Laboratory, Sahlgrenska Center for Cancer Research, University of Gothenburg, Gothenburg, Sweden
| | - Fredrik B Thorén
- TIMM Laboratory, Sahlgrenska Center for Cancer Research, University of Gothenburg, Gothenburg, Sweden.,Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Kristoffer Hellstrand
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden. .,TIMM Laboratory, Sahlgrenska Center for Cancer Research, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
84
|
Endogenous IGF Signaling Directs Heterogeneous Mesoderm Differentiation in Human Embryonic Stem Cells. Cell Rep 2020; 29:3374-3384.e5. [PMID: 31825822 DOI: 10.1016/j.celrep.2019.11.047] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 09/23/2019] [Accepted: 11/12/2019] [Indexed: 12/28/2022] Open
Abstract
During embryogenesis, various cell types emerge simultaneously from their common progenitors under the influence of intrinsic signals. Human embryonic stem cells can differentiate to diverse cell types of three embryonic lineages, making them an excellent system for understanding the regulatory mechanism that maintains the balance of different cell types in embryogenesis. In this report, we demonstrate that insulin-like growth factor (IGF) proteins are endogenously expressed during differentiation, and their temporal expression contributes to the cell fate diversity in mesoderm differentiation. Small molecule LY294002 inhibits the IGF pathway to promote cardiomyocyte differentiation while suppressing epicardial and noncardiac cell fates. LY294002-induced cardiomyocytes demonstrate characteristic cardiomyocyte features and provide insights into the molecular mechanisms underlying cardiac differentiation. We further show that LY294002 induces cardiomyocytes through CK2 pathway inhibition. This study elucidates the crucial roles of endogenous IGF in mesoderm differentiation and shows that the inhibition of the IGF pathway is an effective approach for generating cardiomyocytes.
Collapse
|
85
|
Pruteanu LL, Kopanitsa L, Módos D, Kletnieks E, Samarova E, Bender A, Gomez LD, Bailey DS. Transcriptomics predicts compound synergy in drug and natural product treated glioblastoma cells. PLoS One 2020; 15:e0239551. [PMID: 32946518 PMCID: PMC7500592 DOI: 10.1371/journal.pone.0239551] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 09/08/2020] [Indexed: 12/20/2022] Open
Abstract
Pathway analysis is an informative method for comparing and contrasting drug-induced gene expression in cellular systems. Here, we define the effects of the marine natural product fucoxanthin, separately and in combination with the prototypic phosphatidylinositol 3-kinase (PI3K) inhibitor LY-294002, on gene expression in a well-established human glioblastoma cell system, U87MG. Under conditions which inhibit cell proliferation, LY-294002 and fucoxanthin modulate many pathways in common, including the retinoblastoma, DNA damage, DNA replication and cell cycle pathways. In sharp contrast, we see profound differences in the expression of genes characteristic of pathways such as apoptosis and lipid metabolism, contributing to the development of a differentiated and distinctive drug-induced gene expression signature for each compound. Furthermore, in combination, fucoxanthin synergizes with LY-294002 in inhibiting the growth of U87MG cells, suggesting complementarity in their molecular modes of action and pointing to further treatment combinations. The synergy we observe between the dietary nutraceutical fucoxanthin and the synthetic chemical LY-294002 in producing growth arrest in glioblastoma, illustrates the potential of nutri-pharmaceutical combinations in targeting this challenging disease.
Collapse
Affiliation(s)
- Lavinia-Lorena Pruteanu
- IOTA Pharmaceuticals Ltd, St Johns Innovation Centre, Cambridge, United Kingdom
- * E-mail: (LLP); (DSB)
| | - Liliya Kopanitsa
- IOTA Pharmaceuticals Ltd, St Johns Innovation Centre, Cambridge, United Kingdom
| | - Dezső Módos
- Department of Chemistry, Centre for Molecular Informatics, University of Cambridge, Cambridge, United Kingdom
| | - Edgars Kletnieks
- Department of Chemistry, Centre for Molecular Informatics, University of Cambridge, Cambridge, United Kingdom
| | - Elena Samarova
- IOTA Pharmaceuticals Ltd, St Johns Innovation Centre, Cambridge, United Kingdom
| | - Andreas Bender
- Department of Chemistry, Centre for Molecular Informatics, University of Cambridge, Cambridge, United Kingdom
| | - Leonardo Dario Gomez
- Department of Biology, Centre for Novel Agricultural Products, University of York, York, United Kingdom
| | - David Stanley Bailey
- IOTA Pharmaceuticals Ltd, St Johns Innovation Centre, Cambridge, United Kingdom
- * E-mail: (LLP); (DSB)
| |
Collapse
|
86
|
Haydinger CD, Kittipassorn T, Peet DJ. Power to see-Drivers of aerobic glycolysis in the mammalian retina: A review. Clin Exp Ophthalmol 2020; 48:1057-1071. [PMID: 32710505 DOI: 10.1111/ceo.13833] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 07/03/2020] [Accepted: 07/20/2020] [Indexed: 12/17/2022]
Abstract
The mammalian retina converts most glucose to lactate rather than catabolizing it completely to carbon dioxide via oxidative phosphorylation, despite the availability of oxygen. This unusual metabolism is known as aerobic glycolysis or the Warburg effect. Molecules and pathways that drive aerobic glycolysis have been identified and thoroughly studied in the context of cancer but remain relatively poorly understood in the retina. Here, we review recent research on the molecular mechanisms that underly aerobic glycolysis in the retina, focusing on key glycolytic enzymes including hexokinase 2 (HK2), pyruvate kinase M2 (PKM2) and lactate dehydrogenase A (LDHA). We also discuss the potential involvement of cell signalling and transcriptional pathways including phosphoinositide 3-kinase (PI3K) signalling, fibroblast growth factor receptor (FGFR) signalling, and hypoxia-inducible factor 1 (HIF-1), which have been implicated in driving aerobic glycolysis in the context of cancer.
Collapse
Affiliation(s)
- Cameron D Haydinger
- School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Thaksaon Kittipassorn
- School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia.,Department of Physiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Mahidol, Thailand
| | - Daniel J Peet
- School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
87
|
PI3K inhibitor reduces in vitro maturation and developmental competence of porcine oocytes. Theriogenology 2020; 157:432-439. [PMID: 32877843 DOI: 10.1016/j.theriogenology.2020.08.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/28/2020] [Accepted: 08/13/2020] [Indexed: 01/10/2023]
Abstract
The phosphatidylinositol -3- kinase (PI3K) signaling pathway is critical for the cell proliferation, apoptosis, metabolism, DNA repair and protein synthesis. Significant effort has focused on elucidating the relationship between PI3K signaling pathway and other nuclear signal transducers; However, little is known about the connection between PI3K signaling pathway and porcine oocyte meiotic maturation. In this study, we investigated the function of PI3K signaling pathway in porcine oocytes. PI3K signaling pathway was important during oocyte maturation. Furthermore, the PI3K signaling pathway inhibitor LY-294002 blocked porcine oocyte maturation, reducing the percentage of oocytes that first polar body (PBI) extrusion. LY-294002 also decreased the expression of oocyte proliferation-related gene PCNA and reduced the mRNA and protein levels of PI3K. What's more, LY-294002 also decreased other maturation-related genes that are predominantly expressed duringporcine oocyte maturation, including bone morphogenetic protein 15 (BPM15), growth differentiation factor 9 (GDF9), cell division cycle protein 2 (CDC2), phosphatase and tensin homolog (PTEN), CyclinB1, MOS and Akt. LY-294002 treatment decreased the developmental potential of blastocysts following parthenogenetic activation, increased the level of cell apoptosis and reduced the level of cell-cycle. This study revealed that inhibiting the PI3K signaling pathway could reduce in vitro maturation and developmental competence of porcine oocytes, probably by reducing cell cycle arrest and proliferation, promoting the oocyte apoptosis, and altering the expression of other maternal genes.
Collapse
|
88
|
Kramer EL, Madala SK, Hudock KM, Davidson C, Clancy JP. Subacute TGFβ Exposure Drives Airway Hyperresponsiveness in Cystic Fibrosis Mice through the PI3K Pathway. Am J Respir Cell Mol Biol 2020; 62:657-667. [PMID: 31922900 DOI: 10.1165/rcmb.2019-0158oc] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Cystic fibrosis (CF) is a lethal genetic disease characterized by progressive lung damage and airway obstruction. The majority of patients demonstrate airway hyperresponsiveness (AHR), which is associated with more rapid lung function decline. Recent studies in the neonatal CF pig demonstrated airway smooth muscle (ASM) dysfunction. These findings, combined with observed CF transmembrane conductance regulator (CFTR) expression in ASM, suggest that a fundamental defect in ASM function contributes to lung function decline in CF. One established driver of AHR and ASM dysfunction is transforming growth factor (TGF) β1, a genetic modifier of CF lung disease. Prior studies demonstrated that TGFβ exposure in CF mice drives features of CF lung disease, including goblet cell hyperplasia and abnormal lung mechanics. CF mice displayed aberrant responses to pulmonary TGFβ, with elevated PI3K signaling and greater increases in lung resistance compared with controls. Here, we show that TGFβ drives abnormalities in CF ASM structure and function through PI3K signaling that is enhanced in CFTR-deficient lungs. CF and non-CF mice were exposed intratracheally to an adenoviral vector containing the TGFβ1 cDNA, empty vector, or PBS only. We assessed methacholine-induced AHR, bronchodilator response, and ASM area in control and CF mice. Notably, CF mice demonstrated enhanced AHR and bronchodilator response with greater ASM area increases compared with non-CF mice. Furthermore, therapeutic inhibition of PI3K signaling mitigated the TGFβ-induced AHR and goblet cell hyperplasia in CF mice. These results highlight a latent AHR phenotype in CFTR deficiency that is enhanced through TGFβ-induced PI3K signaling.
Collapse
Affiliation(s)
- Elizabeth L Kramer
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio.,Division of Pulmonary Medicine and
| | - Satish K Madala
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio.,Division of Pulmonary Medicine and
| | - Kristin M Hudock
- Division of Pulmonary Biology, Cincinnati Children's Hospital, Cincinnati, Ohio; and.,Division of Adult Pulmonary and Critical Care Medicine, University of Cincinnati, Cincinnati, Ohio
| | | | - John P Clancy
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio.,Division of Pulmonary Medicine and
| |
Collapse
|
89
|
Soler Palacios B, Nieto C, Fajardo P, González de la Aleja A, Andrés N, Dominguez-Soto Á, Lucas P, Cuenda A, Rodríguez-Frade JM, Martínez-A C, Villares R, Corbí ÁL, Mellado M. Growth Hormone Reprograms Macrophages toward an Anti-Inflammatory and Reparative Profile in an MAFB-Dependent Manner. THE JOURNAL OF IMMUNOLOGY 2020; 205:776-788. [PMID: 32591394 DOI: 10.4049/jimmunol.1901330] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 05/24/2020] [Indexed: 12/12/2022]
Abstract
Growth hormone (GH), a pleiotropic hormone secreted by the pituitary gland, regulates immune and inflammatory responses. In this study, we show that GH regulates the phenotypic and functional plasticity of macrophages both in vitro and in vivo. Specifically, GH treatment of GM-CSF-primed monocyte-derived macrophages promotes a significant enrichment of anti-inflammatory genes and dampens the proinflammatory cytokine profile through PI3K-mediated downregulation of activin A and upregulation of MAFB, a critical transcription factor for anti-inflammatory polarization of human macrophages. These in vitro data correlate with improved remission of inflammation and mucosal repair during recovery in the acute dextran sodium sulfate-induced colitis model in GH-overexpressing mice. In this model, in addition to the GH-mediated effects on other immune cells, we observed that macrophages from inflamed gut acquire an anti-inflammatory/reparative profile. Overall, these data indicate that GH reprograms inflammatory macrophages to an anti-inflammatory phenotype and improves resolution during pathologic inflammatory responses.
Collapse
Affiliation(s)
- Blanca Soler Palacios
- Departamento de Inmunología y Oncología, Centro Nacional de Biotecnología/Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain; and
| | - Concha Nieto
- Departamento de Biología Molecular y Celular, Centro de Investigaciones Biológicas/Consejo Superior de Investigaciones Científicas, 28040 Madrid, Spain
| | - Pilar Fajardo
- Departamento de Inmunología y Oncología, Centro Nacional de Biotecnología/Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain; and
| | - Arturo González de la Aleja
- Departamento de Biología Molecular y Celular, Centro de Investigaciones Biológicas/Consejo Superior de Investigaciones Científicas, 28040 Madrid, Spain
| | - Nuria Andrés
- Departamento de Inmunología y Oncología, Centro Nacional de Biotecnología/Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain; and
| | - Ángeles Dominguez-Soto
- Departamento de Biología Molecular y Celular, Centro de Investigaciones Biológicas/Consejo Superior de Investigaciones Científicas, 28040 Madrid, Spain
| | - Pilar Lucas
- Departamento de Inmunología y Oncología, Centro Nacional de Biotecnología/Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain; and
| | - Ana Cuenda
- Departamento de Inmunología y Oncología, Centro Nacional de Biotecnología/Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain; and
| | - José Miguel Rodríguez-Frade
- Departamento de Inmunología y Oncología, Centro Nacional de Biotecnología/Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain; and
| | - Carlos Martínez-A
- Departamento de Inmunología y Oncología, Centro Nacional de Biotecnología/Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain; and
| | - Ricardo Villares
- Departamento de Inmunología y Oncología, Centro Nacional de Biotecnología/Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain; and
| | - Ángel L Corbí
- Departamento de Biología Molecular y Celular, Centro de Investigaciones Biológicas/Consejo Superior de Investigaciones Científicas, 28040 Madrid, Spain
| | - Mario Mellado
- Departamento de Inmunología y Oncología, Centro Nacional de Biotecnología/Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain; and
| |
Collapse
|
90
|
Hervieu A, Heuss SF, Zhang C, Barrow-McGee R, Joffre C, Ménard L, Clarke PA, Kermorgant S. A PI3K- and GTPase-independent Rac1-mTOR mechanism mediates MET-driven anchorage-independent cell growth but not migration. Sci Signal 2020; 13:eaba8627. [PMID: 32576681 PMCID: PMC7329383 DOI: 10.1126/scisignal.aba8627] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Receptor tyrosine kinases (RTKs) are often overexpressed or mutated in cancers and drive tumor growth and metastasis. In the current model of RTK signaling, including that of MET, downstream phosphatidylinositol 3-kinase (PI3K) mediates both cell proliferation and cell migration, whereas the small guanosine triphosphatase (GTPase) Rac1 mediates cell migration. However, in cultured NIH3T3 and glioblastoma cells, we found that class I PI3K mediated oncogenic MET-induced cell migration but not anchorage-independent growth. In contrast, Rac1 regulated both processes in distinct ways. Downstream of PI3K, Rac1 mediated cell migration through its GTPase activity, whereas independently of PI3K, Rac1 mediated anchorage-independent growth in a GTPase-independent manner through an adaptor function. Through its RKR motif, Rac1 formed a complex with the kinase mTOR to promote its translocation to the plasma membrane, where its activity promoted anchorage-independent growth of the cell cultures. Inhibiting mTOR with rapamycin suppressed the growth of subcutaneous MET-mutant cell grafts in mice, including that of MET inhibitor-resistant cells. These findings reveal a GTPase-independent role for Rac1 in mediating a PI3K-independent MET-to-mTOR pathway and suggest alternative or combined strategies that might overcome resistance to RTK inhibitors in patients with cancer.
Collapse
Affiliation(s)
- Alexia Hervieu
- Spatial Signalling Team, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK
- Signal Transduction and Molecular Pharmacology Team, CRUK Cancer Therapeutics Unit, Division of Cancer Therapeutics, Institute of Cancer Research, 15 Cotswold Road, Sutton, London SM2 5NG, UK
| | - Sara Farrah Heuss
- Spatial Signalling Team, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK
| | - Chi Zhang
- Signal Transduction and Molecular Pharmacology Team, CRUK Cancer Therapeutics Unit, Division of Cancer Therapeutics, Institute of Cancer Research, 15 Cotswold Road, Sutton, London SM2 5NG, UK
| | - Rachel Barrow-McGee
- Spatial Signalling Team, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK
| | - Carine Joffre
- Spatial Signalling Team, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK
| | - Ludovic Ménard
- Spatial Signalling Team, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK
| | - Paul Andrew Clarke
- Signal Transduction and Molecular Pharmacology Team, CRUK Cancer Therapeutics Unit, Division of Cancer Therapeutics, Institute of Cancer Research, 15 Cotswold Road, Sutton, London SM2 5NG, UK
| | - Stéphanie Kermorgant
- Spatial Signalling Team, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK.
| |
Collapse
|
91
|
Calcium signaling mediated by aminergic GPCRs is impaired by the PI3K inhibitor LY294002 and its analog LY303511 in a PI3K-independent manner. Eur J Pharmacol 2020; 880:173182. [PMID: 32416185 DOI: 10.1016/j.ejphar.2020.173182] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 04/17/2020] [Accepted: 05/08/2020] [Indexed: 12/23/2022]
Abstract
The phosphoinositide 3-kinase (PI3K) inhibitor LY294002 (LY294) and its much less active analog LY303511 (LY303) constitute the paired probe that is commonly used to demonstrate the involvement of PI3K in intracellular signaling. We studied effects of LY294 and LY303 on Ca2+ signaling initiated by certain GPCR agonists in cells of several lines, including CHO cells expressing the recombinant serotonin receptor 5-HT2C and mesenchymal stromal cells derived from the human adipose tissue (AD-MSCs) and umbilical cord (UD-MSCs). The LY294/LY303 pair exerted apparently specific effects on responsiveness of AD-MSCs to ATP, suggesting the involvement of PI3K in ATP transduction. Surprisingly, LY303 inhibited Ca2+ transients elicited by histamine in the same cells, while LY294 was ineffective. This observation and other findings implicated a PI3K-unrelated mechanism in mediating effects of the LY compound on AD-MSC responsiveness to histamine. With LY303 in the bath, the dose dependence of histamine responses was shifted positively at the invariable number of responsive cells, as would be the case with a competitive antagonist of histamine receptors. Moreover, LY303 and LY294 inhibited Ca2+ transients elicited by acetylcholine and serotonin in UD-MSCs and CHO/5-HT2C cells, respectively. Our overall results argued for the possibility that LY294 and LY303 could directly affect activity of aminergic GPCRs. Thus, LY303511 and LY294002 should be used cautiously in studies of PI3K as a factor of GPCR signaling.
Collapse
|
92
|
Bi A, An W, Wang C, Hua Y, Fang F, Dong X, Chen R, Zhang Z, Luo L. SCR-1693 inhibits tau phosphorylation and improves insulin resistance associated cognitive deficits. Neuropharmacology 2020; 168:108027. [DOI: 10.1016/j.neuropharm.2020.108027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 02/27/2020] [Accepted: 03/01/2020] [Indexed: 12/29/2022]
|
93
|
Activation of the PI3K-AKT Pathway by Old World Alphaviruses. Cells 2020; 9:cells9040970. [PMID: 32326388 PMCID: PMC7226951 DOI: 10.3390/cells9040970] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/08/2020] [Accepted: 04/09/2020] [Indexed: 12/11/2022] Open
Abstract
Alphaviruses can infect a broad range of vertebrate hosts, including birds, horses, primates, and humans, in which infection can lead to rash, fever, encephalitis, and arthralgia or arthritis. They are most often transmitted by mosquitoes in which they establish persistent, asymptomatic infections. Currently, there are no vaccines or antiviral therapies for any alphavirus. Several Old World alphaviruses, including Semliki Forest virus, Ross River virus and chikungunya virus, activate or hyperactivate the phosphatidylinositol-3-kinase (PI3K)-AKT pathway in vertebrate cells, potentially influencing many cellular processes, including survival, proliferation, metabolism and autophagy. Inhibition of PI3K or AKT inhibits replication of several alphaviruses either in vitro or in vivo, indicating the importance for viral replication. In this review, we discuss what is known about the mechanism(s) of activation of the pathway during infection and describe those effects of PI3K-AKT activation which could be of advantage to the alphaviruses. Such knowledge may be useful for the identification and development of therapies.
Collapse
|
94
|
Bass-Stringer S, Ooi JYY, McMullen JR. Clusterin is regulated by IGF1–PI3K signaling in the heart: implications for biomarker and drug target discovery, and cardiotoxicity. Arch Toxicol 2020; 94:1763-1768. [DOI: 10.1007/s00204-020-02709-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 03/09/2020] [Indexed: 12/11/2022]
|
95
|
Madsen RR. PI3K in stemness regulation: from development to cancer. Biochem Soc Trans 2020; 48:301-315. [PMID: 32010943 PMCID: PMC7054754 DOI: 10.1042/bst20190778] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 01/04/2020] [Accepted: 01/07/2020] [Indexed: 02/08/2023]
Abstract
The PI3K/AKT pathway is a key target in oncology where most efforts are focussed on phenotypes such as cell proliferation and survival. Comparatively, little attention has been paid to PI3K in stemness regulation, despite the emerging link between acquisition of stem cell-like features and therapeutic failure in cancer. The aim of this review is to summarise current known and unknowns of PI3K-dependent stemness regulation, by integrating knowledge from the fields of developmental, signalling and cancer biology. Particular attention is given to the role of the PI3K pathway in pluripotent stem cells (PSCs) and the emerging parallels to dedifferentiated cancer cells with stem cell-like features. Compelling evidence suggests that PI3K/AKT signalling forms part of a 'core molecular stemness programme' in both mouse and human PSCs. In cancer, the oncogenic PIK3CAH1047R variant causes constitutive activation of the PI3K pathway and has recently been linked to increased stemness in a dose-dependent manner, similar to observations in mouse PSCs with heterozygous versus homozygous Pten loss. There is also evidence that the stemness phenotype may become 'locked' and thus independent of the original PI3K activation, posing limitations for the success of PI3K monotherapy in cancer. Ongoing therapeutic developments for PI3K-associated cancers may therefore benefit from a better understanding of the pathway's two-layered and highly context-dependent regulation of cell growth versus stemness.
Collapse
Affiliation(s)
- Ralitsa R. Madsen
- UCL Cancer Institute, Paul O'Gorman Building, University College London, 72 Huntley Street, London WC1E 6DD, U.K
| |
Collapse
|
96
|
Yang L, Lv Q, Liu J, Qi S, Fu D. miR-431 regulates granulosa cell function through the IRS2/PI3K/AKT signaling pathway. J Reprod Dev 2020; 66:231-239. [PMID: 32051352 PMCID: PMC7297634 DOI: 10.1262/jrd.2019-155] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
MicroRNAs (miRNAs) regulate the functions of granulosa cells by interacting with their target mRNAs. Insulin receptor substrate 2 (IRS2) is one of the
targets of miR-431 and can be regulated by ovarian hormones. However, the role of miR-431 and the associated signal transduction pathway in ovarian development has not
been studied previously. In this study, we first analyzed the expression of miR-431 and IRS2 following stimulation with pregnant mare serum gonadotropin (PMSG) during the
estrous cycle or different stages of ovarian development in mice. Subsequently, we investigated the role, function, and signaling pathway of miR-431 in the human
granulosa cell line, COV434. The results showed that follicle stimulating hormone (FSH) gradually decreased miR-431 levels, induced IRS2, and promoted pAKT expression.
Moreover, miR-431 overexpression and IRS2 knockdown attenuated AKT activation, inhibited cell proliferation, and decreased estradiol (E2) and progesterone
(P4) synthesis. Further, luciferase reporter assay demonstrated that IRS2 was a direct target of miR-431. In conclusion, this study
demonstrated that miR-431 regulates granulosa cell function through the IRS2/PI3K/AKT signaling pathway.
Collapse
Affiliation(s)
- Lei Yang
- Key Laboratory of System Bio-medicine of Jiangxi Province, Jiujiang University, Jiangxi 332000, PR China.,College of Basic Medical Science, Jiujiang University, Jiangxi 332000, PR China
| | - Qizhuang Lv
- College of Biology & Pharmacy, Yulin Normal University, Guangxi 537000, PR China.,Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, Yulin 537000, PR China
| | - Jianyun Liu
- Key Laboratory of System Bio-medicine of Jiangxi Province, Jiujiang University, Jiangxi 332000, PR China.,College of Basic Medical Science, Jiujiang University, Jiangxi 332000, PR China
| | - Shikai Qi
- College of Electric Engineering, Jiujiang University, Jiujiang 332000, PR China
| | - Denggang Fu
- Key Laboratory of System Bio-medicine of Jiangxi Province, Jiujiang University, Jiangxi 332000, PR China.,College of Basic Medical Science, Jiujiang University, Jiangxi 332000, PR China
| |
Collapse
|
97
|
Airborne Particulate Matter (PM 10) Inhibits Apoptosis through PI3K/AKT/FoxO3a Pathway in Lung Epithelial Cells: The Role of a Second Oxidant Stimulus. Int J Mol Sci 2020; 21:ijms21020473. [PMID: 31940823 PMCID: PMC7014458 DOI: 10.3390/ijms21020473] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 01/08/2020] [Accepted: 01/09/2020] [Indexed: 12/22/2022] Open
Abstract
Outdoor particulate matter (PM10) exposure is carcinogenic to humans. The cellular mechanism by which PM10 is associated specifically with lung cancer includes oxidative stress and damage to proteins, lipids, and DNA in the absence of apoptosis, suggesting that PM10 induces cellular survival. We aimed to evaluate the PI3K/AKT/FoxO3a pathway as a mechanism of cell survival in lung epithelial A549 cells exposed to PM10 that were subsequently challenged with hydrogen peroxide (H2O2). Our results showed that pre-exposure to PM10 followed by H2O2, as a second oxidant stimulus increased the phosphorylation rate of pAKTSer473, pAKTThr308, and pFoxO3aSer253 2.5-fold, 1.8-fold, and 1.2-fold, respectively. Levels of catalase and p27kip1, which are targets of the PIK3/AKT/FoxO3a pathway, decreased 38.1% and 62.7%, respectively. None of these changes had an influence on apoptosis; however, the inhibition of PI3K using the LY294002 compound revealed that the PI3K/AKT/FoxO3a pathway was involved in apoptosis evasion. We conclude that nontoxic PM10 exposure predisposes lung epithelial cell cultures to evade apoptosis through the PI3K/AKT/FoxO3a pathway when cells are treated with a second oxidant stimulus.
Collapse
|
98
|
Sun X, Wu A, Kwan Law BY, Liu C, Zeng W, Ling Qiu AC, Han Y, He Y, Wai Wong VK. The active components derived from Penthorum chinensePursh protect against oxidative-stress-induced vascular injury via autophagy induction. Free Radic Biol Med 2020; 146:160-180. [PMID: 31689485 DOI: 10.1016/j.freeradbiomed.2019.10.417] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 10/22/2019] [Accepted: 10/31/2019] [Indexed: 12/20/2022]
Abstract
Oxidative stress-induced damage has been proposed as a major risk factor for cardiovascular disease and is a pathogenic feature of atherosclerosis. Although autophagy was reported to have a protective effect against atherosclerosis, its mechanism for reducing oxidative stress remains un-elucidated. In this study, we have identified 4 novel autophagic compounds from traditional Chinese medicines (TCMs), which activated the AMPK mediated autophagy pathway for the recovery of mitochondrial membrane potential (MMP) to reduce the production of reactive oxygen species (ROS) in Human umbilical vein endothelial cells (HUVECs). In this study, 4 compounds (TA, PG, TB and PG1) identified from Penthorum chinense Pursh (PCP) were demonstrated for the first time to possess binding affinity to HUVECs cell membranes via cell membrane chromatography (CMC) accompanied by UHPLC-TOF-MS analysis, and the 4 identified compounds induce autophagy in HUVECs. Among the 4 autophagic activators identified from PCP, TA (Thonningianin A, Pinocembrin dihydrochalcone-7-O-[3″-O-galloyl-4″,6″-hexahydroxydiphenoyl]-glucoside) is the major chemcial component in PCP, which possesses the most potent autophagy effect via a Ca2+/AMPK-dependent and mTOR-independent pathways. Moreover, TA efficiently reduced the level of ROS in HUVECs induced by H2O2. Additionally, the expression of pro- and cleaved-IL-1β in the aortic artery of ApoE-KO mice were also alleviated at the transcription and post-transcription levels after the administration of TA, which might be correlated to the reduction of oxidative-stress induced inflammasome-related Nod-like receptor protein3 (NLRP3) in the aortic arteries of ApoE-KO mice. This study has pinpointed the novel autophagic role of TA in alleviating the oxidative stress of HUVECs and aortic artery of ApoE-KO mice, and provided insight into the therapeutic application of TA in treatment of atherosclerosis or other cardiovascular diseases.
Collapse
Affiliation(s)
- Xiaolei Sun
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China; Vascular Surgery Department, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China; Key Laboratory of Medical Electrophysiology of Ministry of Education, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, 646000, China.
| | - Anguo Wu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China; Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China.
| | - Betty Yuen Kwan Law
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China.
| | - Chaolin Liu
- Vascular Surgery Department, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China.
| | - Wu Zeng
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China.
| | - Alena Cong Ling Qiu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China.
| | - Yu Han
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China.
| | - Yanzheng He
- Vascular Surgery Department, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China; Key Laboratory of Medical Electrophysiology of Ministry of Education, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, 646000, China.
| | - Vincent Kam Wai Wong
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China.
| |
Collapse
|
99
|
Wang Z, Han Y, Tian S, Bao J, Wang Y, Jiao J. Lupeol Alleviates Cerebral Ischemia-Reperfusion Injury in Correlation with Modulation of PI3K/Akt Pathway. Neuropsychiatr Dis Treat 2020; 16:1381-1390. [PMID: 32581541 PMCID: PMC7276199 DOI: 10.2147/ndt.s237406] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 04/08/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND/AIM This study aimed to investigate the effect and mechanism of lupeol on cerebral ischemia-reperfusion injury in rats. METHODS The effects of lupeol on cerebral infarction, cerebral water content, neurological symptoms and cerebral blood flow in rats were evaluated. Nissl staining was carried out to assess the neuronal damage of ischemic brain after I/R in rats. Apoptosis of ischemic brain neurons after I/R was detected by TUNEL staining. Western blotting was carried out to detect the effects of lupeol on the expression of p-PDK1, p-Akt, pc-Raf, p-BAD, cleaved caspase-3 and p-PTEN. RESULTS Lupeol significantly increased cerebral blood flow after I/R in rats, reduced brain water content and infarct volume, and decreased neurological function scores. It significantly reduced neuronal damage after I/R in rats, and significantly reduced neuronal cell loss. PI3K inhibitor (LY294002) can eliminate the effect of lupeol on I/R in rats. In addition, lupeol significantly increased the protein expression of p-PDK1, p-Akt, pc-Raf, p-BAD, and down-regulated the expression of cleaved caspase-3. LY294002 reversed the effects of lupeol on the expression of PI3K/Akt signaling pathway-related proteins and cleaved caspase-3 after I/R in rats. CONCLUSION Lupeol had significant neuroprotective effects on brain I/R injury and neuronal apoptosis, and its mechanism may be related to the activation of PI3K/Akt signaling pathway.
Collapse
Affiliation(s)
- Zhiwei Wang
- Department of Internal Medicine-Neurology, The First Hospital of Hebei Medical University, Shijiazhuang City, Hebei Province 050031, People's Republic of China
| | - Yanfen Han
- Department of Internal Medicine-Neurology, The Affiliated Hospital of Sergeant School of Army Medical University, Shijiazhuang City, Hebei Province 050000, People's Republic of China
| | - Shujuan Tian
- Department of Internal Medicine-Neurology, The First Hospital of Hebei Medical University, Shijiazhuang City, Hebei Province 050031, People's Republic of China
| | - Junqiang Bao
- Department of Internal Medicine-Neurology, The First Hospital of Hebei Medical University, Shijiazhuang City, Hebei Province 050031, People's Republic of China
| | - Yahui Wang
- Department of Rehabilitation, The First Hospital of Hebei Medical University, Shijiazhuang City, Hebei Province 050031, People's Republic of China
| | - Junping Jiao
- Department of Internal Medicine-Neurology, The First Hospital of Hebei Medical University, Shijiazhuang City, Hebei Province 050031, People's Republic of China
| |
Collapse
|
100
|
Zhou T, Sun Y, Wang Y, Chen X, Zhuo L, Bu L, Xu S, Han J, Li X, Shi J. Umbilical Cord Blood Mesenchymal Stem Cells Enhance Lipopolysaccharide-Induced IL-10 and IL-37 Production in THP-1 Cells. Inflammation 2019; 42:987-993. [PMID: 30707387 DOI: 10.1007/s10753-019-00960-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Umbilical cord blood mesenchymal stem cells (UCB-MSCs) have been shown to be a source of stem cells for use in cellular therapies and have immunomodulatory effects on several immune cells in an inflammatory environment. However, whether UCB-MSCs have immunomodulatory effects against lipopolysaccharide (LPS)-induced inflammatory cytokine secretion in macrophages and whether it is involved in phosphoinositide 3-kinase/protein kinase B (PI3K/Akt) signaling pathway remain unclear. After co-culture of UCB-MSCs and phorbol 12-myristate 13-acetate (PMA)-activated human THP-1 cells using a transwell system, it showed that LPS significantly induced increases in the expression levels of interleukin 10 (IL-10), interleukin 37 (IL-37), phospho-PI3K (p-PI3K), and phospho-Akt (p-Akt) in macrophages. UCB-MSCs upregulated the expression of IL-10, IL-37, p-PI3K, and p-Akt, while it had no obvious effect on PI3K and Akt levels. Inhibitors of PI3K (LY294002) significantly suppressed the expression of IL-10, IL-37, p-PI3K, and p-Akt; however, it had no effect on the expression levels of PI3K and Akt. The present study demonstrated that UCB-MSCs increased the LPS-stimulated expression of IL-10 and IL-37 in macrophages through the PI3K/Akt signaling pathway.
Collapse
Affiliation(s)
- Ting Zhou
- Department of Emergency Medicine, Xuzhou Medical University Affiliated Hospital of Lianyungang, No.182 North Tongguan Road, Lianyungang, 222002, China
| | - Yan Sun
- Department of Emergency Medicine, Xuzhou Medical University Affiliated Hospital of Lianyungang, No.182 North Tongguan Road, Lianyungang, 222002, China
| | - Yanli Wang
- Department of Emergency Medicine, Xuzhou Medical University Affiliated Hospital of Lianyungang, No.182 North Tongguan Road, Lianyungang, 222002, China
| | - Xiaobing Chen
- Department of Emergency Medicine, Xuzhou Medical University Affiliated Hospital of Lianyungang, No.182 North Tongguan Road, Lianyungang, 222002, China
| | - Luo Zhuo
- Department of Emergency Medicine, Xuzhou Medical University Affiliated Hospital of Lianyungang, No.182 North Tongguan Road, Lianyungang, 222002, China
| | - Lin Bu
- Department of Critical Care Medicine, Xuzhou Medical University Affiliated Hospital, No.99 West Huaihai Road, Xuzhou, 221000, China
| | - Suo Xu
- Department of Emergency Medicine, Xuzhou Medical University Affiliated Hospital of Lianyungang, No.182 North Tongguan Road, Lianyungang, 222002, China
| | - Jiayan Han
- Department of Emergency Medicine, Xuzhou Medical University Affiliated Hospital of Lianyungang, No.182 North Tongguan Road, Lianyungang, 222002, China
| | - Xiaomin Li
- Department of Emergency Medicine, Xuzhou Medical University Affiliated Hospital of Lianyungang, No.182 North Tongguan Road, Lianyungang, 222002, China.
| | - Jiaxin Shi
- Department of Respiratory Medicine, Xuzhou Medical University Affiliated Hospital of Lianyungang, No.182 North Tongguan Road, Lianyungang, 222002, China.
| |
Collapse
|