51
|
Starr AE, Deeke SA, Ning Z, de Nanassy J, Singleton R, Benchimol EI, Mack DR, Stintzi A, Figeys D. Associations between Cellular Energy and Pediatric Inflammatory Bowel Disease Patient Response to Treatment. J Proteome Res 2021; 20:4393-4404. [PMID: 34424714 DOI: 10.1021/acs.jproteome.1c00341] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Inflammatory bowel diseases (IBDs), including Crohn's disease (CD) and ulcerative colitis, are chronic diseases of the gastrointestinal tract, with an unknown etiology, that affect over 6.8 million people worldwide. To characterize disease pathogenesis, proteomic and bioinformatic analyses were performed on colon biopsies collected during diagnostic endoscopy from 119 treatment-naïve pediatric patients, including from 78 IBD patients and 41 non-IBD patients who served as controls. Due to the presence of noninflamed and/or inflamed regions in IBD patients, up to two biopsies were obtained from IBD patients as compared to a single noninflamed biopsy from non-IBD pediatric control patients. Additional biopsies were obtained and analyzed from 33 of the IBD patients after IBD-directed therapeutic intervention for comparison of pre- and post-treatment proteomes. SuperSILAC was utilized to perform quantitative analysis of homogenized tissues, which were processed by filter-aided sample preparation. Hierarchical clustering and principal component analyses revealed proteomic patterns that distinguished inflamed from noninflamed tissues independent of therapy. Gene ontology revealed that proteins downregulated in inflammation are associated with metabolism, whereas upregulated proteins contribute to protein processing. A comparison of pre- and post-treatment proteomes from CD patients identified over 100 proteins that are significantly different between patients who responded and those who did not respond to therapy, including creatine kinase B and basigin.
Collapse
|
52
|
High Glucose and Advanced Glycation End Products Induce CD147-Mediated MMP Activity in Human Adipocytes. Cells 2021; 10:cells10082098. [PMID: 34440867 PMCID: PMC8392673 DOI: 10.3390/cells10082098] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 08/12/2021] [Accepted: 08/14/2021] [Indexed: 02/06/2023] Open
Abstract
Basigin (CD147) is a transmembrane glycoprotein that regulates several physiological processes, including the production and activity of matrix metalloproteinases (MMPs). The activity of CD147 depends mainly on its glycosylation, which varies among pathophysiological conditions. However, it is unknown whether CD147 activity or its function in MMP regulation are affected by the diabetic environment, which is characterized by high glucose (HG) levels and an excess of glycation end products (AGEs). In this study, we investigated the effect of HG and AGEs on CD147 expression in human adipocytes. We also examined the mediating role of nuclear factor kappa B (NFκB) and receptor of AGE (RAGE) to this effect. Our findings show that carboxymethyl lysine and HG increased CD147 expression and glycosylation, which was accompanied by increases in MMP2 and MMP9 expression and activity, as well as upregulations of the N-acetylglucosaminyltransferase, MGAT5. These effects were abolished by NFκB and RAGE inhibition, CD147 gene silencing, and by the glycosylation inhibitor, tunicamycin. In conclusion, the current findings indicate that AGEs and HG induce CD147 expression and glycosylation in adipocytes, with possible mediation by NFκB and RAGE. One of the critical outcomes of this pathway is augmented MMP activity known to contribute to cardiovascular complications in diabetes.
Collapse
|
53
|
CD147 mediates the CD44s-dependent differentiation of myofibroblasts driven by transforming growth factor-β 1. J Biol Chem 2021; 297:100987. [PMID: 34364871 PMCID: PMC8405944 DOI: 10.1016/j.jbc.2021.100987] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 06/16/2021] [Accepted: 07/15/2021] [Indexed: 11/22/2022] Open
Abstract
Progressive fibrosis leads to loss of organ function and affects many organs as a result of excessive extracellular matrix production. The ubiquitous matrix polysaccharide hyaluronan (HA) is central to this through association with its primary receptor, CD44, which exists as standard CD44 (CD44s) or multiple splice variants. Mediators such as profibrotic transforming growth factor (TGF)-β1 and proinflammatory interleukin (IL)-1β are widely associated with fibrotic progression. TGF-β1 induces myofibroblast differentiation, while IL-1β induces a proinflammatory fibroblast phenotype that promotes fibroblast binding to monocyte/macrophages. CD44 expression is essential for both responses. Potential CD44 splice variants involved, however, are unidentified. The TGF-β1-activated CD44/epidermal growth factor receptor complex induces differentiation of metastatic cells through interactions with the matrix metalloproteinase inducer, CD147. This study aimed to determine the CD44 variants involved in TGF-β1- and IL-1β-mediated responses and to investigate the potential profibrotic role of CD147. Using immunocytochemistry and quantitative PCR, standard CD44s were shown to be essential for both TGF-β1-induced fibroblast/myofibroblast differentiation and IL-1β-induced monocyte binding. Co-immunoprecipitation identified that CD147 associated with CD44s. Using CD147-siRNA and confocal microscopy, we also determined that incorporation of the myofibroblast marker, αSMA, into F-actin stress fibers was prevented in the absence of CD147 and myofibroblast-dependent collagen gel contraction was inhibited. CD147 did not associate with HA, but removal of HA prevented the association of CD44s with CD147 at points of cell–cell contact. Taken together, our data suggest that CD44s/CD147 colocalization is essential in regulating the mechanical tension required for the αSMA incorporation into F-actin stress fibers that regulates myofibroblast phenotype.
Collapse
|
54
|
Hijaze N, Ledersnaider M, Simanovich E, Kassem S, Rahat MA. Inducing regulated necrosis and shifting macrophage polarization with anti-EMMPRIN antibody (161-pAb) and complement factors. J Leukoc Biol 2021; 110:343-356. [PMID: 33205451 PMCID: PMC8359428 DOI: 10.1002/jlb.3a0520-333r] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 09/02/2020] [Accepted: 10/31/2020] [Indexed: 12/11/2022] Open
Abstract
Treatment of solid tumors is often hindered by an immunosuppressive tumor microenvironment (TME) that prevents effector immune cells from eradicating tumor cells and promotes tumor progression, angiogenesis, and metastasis. Therefore, targeting components of the TME to restore the ability of immune cells to drive anti-tumoral responses has become an important goal. One option is to induce an immunogenic cell death (ICD) of tumor cells that would trigger an adaptive anti-tumoral immune response. Here we show that incubating mouse renal cell carcinoma (RENCA) and colon carcinoma cell lines with an anti-extracellular matrix metalloproteinase inducer polyclonal antibody (161-pAb) together with complement factors can induce cell death that inhibits caspase-8 activity and enhances the phosphorylation of receptor-interacting protein kinase 3 (RIPK3) and mixed-lineage kinase-like domain (MLKL). This regulated necrotic death releases high levels of dsRNA molecules to the conditioned medium (CM) relative to the necrotic death of tumor cells induced by H2 O2 or the apoptotic death induced by etoposide. RAW 264.7 macrophages incubated with the CM derived from these dying cells markedly enhanced the secretion of IFNβ, and enhanced their cytotoxicity. Furthermore, degradation of the dsRNA in the CM abolished the ability of RAW 264.7 macrophages to secrete IFNβ, IFNγ-induced protein 10 (IP-10), and TRAIL. When mice bearing RENCA tumors were immunized with the 161-pAb, their lysates displayed elevated levels of phosphorylated RIPK3 and MLKL, as well as increased concentrations of dsRNA, IFNβ, IP-10, and TRAIL. This shows that an antigen-targeted therapy using an antibody and complement factors that triggers ICD can shift the mode of macrophage activation by triggering regulated necrotic death of tumor cells.
Collapse
Affiliation(s)
- Nizar Hijaze
- Department of Internal Medicine ACarmel Medical CenterHaifaIsrael
| | | | | | - Sameer Kassem
- Department of Internal Medicine ACarmel Medical CenterHaifaIsrael
- Ruth and Bruce Rappaport Faculty of MedicineTechnion‐Israel Institute of TechnologyHaifaIsrael
| | - Michal A. Rahat
- Immunotherapy LaboratoryCarmel Medical CenterHaifaIsrael
- Ruth and Bruce Rappaport Faculty of MedicineTechnion‐Israel Institute of TechnologyHaifaIsrael
| |
Collapse
|
55
|
CD147-Cyclophilin a Interactions Promote Proliferation and Survival of Cutaneous T-Cell Lymphoma. Int J Mol Sci 2021; 22:ijms22157889. [PMID: 34360654 PMCID: PMC8346093 DOI: 10.3390/ijms22157889] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/19/2021] [Accepted: 07/22/2021] [Indexed: 12/14/2022] Open
Abstract
CD147, a transmembrane glycoprotein that belongs to the immunoglobulin superfamily, and cyclophilin A (CypA), one of the binding partners of CD147, are overexpressed in tumor cells and associated with the progression of several malignancies, including both solid and hematological malignancies. However, CD147 and CypA involvement in cutaneous T-cell lymphoma (CTCL) has not been reported. In this study, we examined CD147 and CypA expression and function using clinical samples of mycosis fungoides (MF) and Sézary syndrome (SS) and CTCL cell lines. CD147 and CypA were overexpressed by tumor cells of MF/SS, and CypA was also expressed by epidermal keratinocytes in MF/SS lesional skin. Serum CypA levels were increased and correlated with disease severity markers in MF/SS patients. Anti-CD147 antibody and/or anti-CypA antibody suppressed the proliferation of CTCL cell lines, both in vitro and in vivo, via downregulation of phosphorylated extracellular-regulated kinase 1/2 and Akt. These results suggest that CD147-CypA interactions can contribute to the proliferation of MF/SS tumor cells in both a autocrine and paracrine manner, and that the disruption of CD147-CypA interactions could be a new therapeutic strategy for the treatment of MF/SS.
Collapse
|
56
|
Wan B, Belghazi M, Lemauf S, Poirié M, Gatti JL. Proteomics of purified lamellocytes from Drosophila melanogaster HopT um-l identifies new membrane proteins and networks involved in their functions. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2021; 134:103584. [PMID: 34033897 DOI: 10.1016/j.ibmb.2021.103584] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/20/2021] [Accepted: 04/22/2021] [Indexed: 06/12/2023]
Abstract
In healthy Drosophila melanogaster larvae, plasmatocytes and crystal cells account for 95% and 5% of the hemocytes, respectively. A third type of hemocytes, lamellocytes, are rare, but their number increases after oviposition by parasitoid wasps. The lamellocytes form successive layers around the parasitoid egg, leading to its encapsulation and melanization, and finally the death of this intruder. However, the total number of lamellocytes per larva remains quite low even after parasitoid infestation, making direct biochemical studies difficult. Here, we used the HopTum-l mutant strain that constitutively produces large numbers of lamellocytes to set up a purification method and analyzed their major proteins by 2D gel electrophoresis and their plasma membrane surface proteins by 1D SDS-PAGE after affinity purification. Mass spectrometry identified 430 proteins from 2D spots and 344 affinity-purified proteins from 1D bands, for a total of 639 unique proteins. Known lamellocyte markers such as PPO3 and the myospheroid integrin were among the components identified with specific chaperone proteins. Affinity purification detected other integrins, as well as a wide range of integrin-associated proteins involved in the formation and function of cell-cell junctions. Overall, the newly identified proteins indicate that these cells are highly adapted to the encapsulation process (recognition, motility, adhesion, signaling), but may also have several other physiological functions (such as secretion and internalization of vesicles) under different signaling pathways. These results provide the basis for further in vivo and in vitro studies of lamellocytes, including the development of new markers to identify coexisting populations and their respective origins and functions in Drosophila immunity.
Collapse
Affiliation(s)
- Bin Wan
- Université Côte d'Azur, INRAE, CNRS, Institute Sophia-Agrobiotech, Sophia Antipolis, France
| | - Maya Belghazi
- Institute of NeuroPhysiopathology (INP), UMR7051, CNRS, Aix-Marseille Université, Marseille, 13015, France
| | - Séverine Lemauf
- Université Côte d'Azur, INRAE, CNRS, Institute Sophia-Agrobiotech, Sophia Antipolis, France
| | - Marylène Poirié
- Université Côte d'Azur, INRAE, CNRS, Institute Sophia-Agrobiotech, Sophia Antipolis, France
| | - Jean-Luc Gatti
- Université Côte d'Azur, INRAE, CNRS, Institute Sophia-Agrobiotech, Sophia Antipolis, France.
| |
Collapse
|
57
|
Moyano A, Serrano-Pertierra E, Duque JM, Ramos V, Teruel-Barandiarán E, Fernández-Sánchez MT, Salvador M, Martínez-García JC, Sánchez L, García-Flórez L, Rivas M, Blanco-López MDC. Magnetic Lateral Flow Immunoassay for Small Extracellular Vesicles Quantification: Application to Colorectal Cancer Biomarker Detection. SENSORS 2021; 21:s21113756. [PMID: 34071520 PMCID: PMC8199047 DOI: 10.3390/s21113756] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/25/2021] [Accepted: 05/26/2021] [Indexed: 01/29/2023]
Abstract
Colorectal cancer (CRC) is the third leading cause of cancer death and the fourth most common cancer in the world. Colonoscopy is the most sensitive test used for detection of CRC; however, their procedure is invasive and expensive for population mass screening. Currently, the fecal occult blood test has been widely used as a screening tool for CRC but displays low specificity. The lack of rapid and simple methods for mass screening makes the early diagnosis and therapy monitoring difficult. Extracellular vesicles (EVs) have emerged as a novel source of biomarkers due to their contents in proteins and miRNAs. Their detection would not require invasive techniques and could be considered as a liquid biopsy. Specifically, it has been demonstrated that the amount of CD147 expressed in circulating EVs is significant higher for CRC cell lines than for normal colon fibroblast cell lines. Moreover, CD147-containing EVs have been used as a biomarker to monitor response to therapy in patients with CRC. Therefore, this antigen could be used as a non-invasive biomarker for the detection and monitoring of CRC in combination with a Point-of-Care platform as, for example, Lateral Flow Immunoassays (LFIAs). Here, we propose the development of a quantitative lateral flow immunoassay test based on the use of magnetic nanoparticles as labels coupled to inductive sensor for the non-invasive detection of CRC by CD147-positive EVs. The results obtained for quantification of CD147 antigen embedded in EVs isolated from plasma sample have demonstrated that this device could be used as a Point-of-Care tool for CRC screening or therapy monitoring thanks to its rapid response and easy operation.
Collapse
Affiliation(s)
- Amanda Moyano
- Department of Physical and Analytical Chemistry & Institute of Biotechnology of Asturias, University of Oviedo, c/Julián Clavería 8, 33006 Oviedo, Spain; (A.M.); (E.S.-P.); (E.T.-B.)
| | - Esther Serrano-Pertierra
- Department of Physical and Analytical Chemistry & Institute of Biotechnology of Asturias, University of Oviedo, c/Julián Clavería 8, 33006 Oviedo, Spain; (A.M.); (E.S.-P.); (E.T.-B.)
| | - José María Duque
- Hospital Universitario San Agustín, 33401 Avilés, Spain; (J.M.D.); (V.R.); (L.S.)
- Department of Medicine, University of Oviedo, 33006 Oviedo, Spain
| | - Virginia Ramos
- Hospital Universitario San Agustín, 33401 Avilés, Spain; (J.M.D.); (V.R.); (L.S.)
| | - Estefanía Teruel-Barandiarán
- Department of Physical and Analytical Chemistry & Institute of Biotechnology of Asturias, University of Oviedo, c/Julián Clavería 8, 33006 Oviedo, Spain; (A.M.); (E.S.-P.); (E.T.-B.)
| | - María Teresa Fernández-Sánchez
- Department of Biochemistry and Molecular Biology & Institute of Biotechnology of Asturias, University of Oviedo, 33006 Oviedo, Spain;
| | - María Salvador
- Department of Physics & IUTA, University of Oviedo, Campus de Viesques, 33204 Gijón, Spain; (M.S.); (J.C.M.-G.); (M.R.)
| | - José Carlos Martínez-García
- Department of Physics & IUTA, University of Oviedo, Campus de Viesques, 33204 Gijón, Spain; (M.S.); (J.C.M.-G.); (M.R.)
| | - Luis Sánchez
- Hospital Universitario San Agustín, 33401 Avilés, Spain; (J.M.D.); (V.R.); (L.S.)
| | - Luis García-Flórez
- Hospital Universitario Central de Asturias (HUCA), 33011 Oviedo, Spain;
- Department of Surgery and medical-surgical specialties, University of Oviedo, 33006 Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - Montserrat Rivas
- Department of Physics & IUTA, University of Oviedo, Campus de Viesques, 33204 Gijón, Spain; (M.S.); (J.C.M.-G.); (M.R.)
| | - María del Carmen Blanco-López
- Department of Physical and Analytical Chemistry & Institute of Biotechnology of Asturias, University of Oviedo, c/Julián Clavería 8, 33006 Oviedo, Spain; (A.M.); (E.S.-P.); (E.T.-B.)
- Correspondence:
| |
Collapse
|
58
|
Fuehrer J, Pichler KM, Fischer A, Giurea A, Weinmann D, Altmann F, Windhager R, Gabius H, Toegel S. N-Glycan profiling of chondrocytes and fibroblast-like synoviocytes: Towards functional glycomics in osteoarthritis. Proteomics Clin Appl 2021; 15:e2000057. [PMID: 33580901 PMCID: PMC8548877 DOI: 10.1002/prca.202000057] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 12/15/2020] [Accepted: 12/18/2020] [Indexed: 12/30/2022]
Abstract
PURPOSE N-Glycan profiling provides an indicator of the cellular potential for functional pairing with tissue lectins. Following the discovery of galectin expression by chondrocytes as a factor in osteoarthritis pathobiology, mapping of N-glycans upon their phenotypic dedifferentiation in culture and in fibroblast-like synoviocytes is a step to better understand glycobiological contributions to disease progression. EXPERIMENTAL DESIGN The profiles of cellular N-glycans of human osteoarthritic chondrocytes and fibroblast-like synoviocytes were characterized by mass spectrometry. RT-qPCR experiments determined mRNA levels of 16 glycosyltransferases. Responsiveness of cells to galectins was quantified by measuring the mRNA level for interleukin-1β. RESULTS The shift of chondrocytes to a fibroblastic phenotype (dedifferentiation) is associated with changes in N-glycosylation. The N-glycan profile of chondrocytes at passage 4 reflects characteristics of synoviocytes. Galectins-1 and -3 enhance expression of interleukin-1β mRNA in both cell types, most pronounced in primary culture. Presence of interleukin-1β leads to changes in sialylation in synoviocytes that favor galectin binding. CONCLUSIONS AND CLINICAL RELEVANCE N-Glycosylation reflects phenotypic changes of osteoarthritic cells in vitro. Like chondrocytes, fibroblast-like synoviocytes express N-glycans that are suited to bind galectins, and these proteins serve as inducers of pro-inflammatory markers in these cells. Synoviocytes can thus contribute to disease progression in osteoarthritis in situ.
Collapse
Affiliation(s)
- Johannes Fuehrer
- Department of ChemistryUniversity of Natural Resources and Life SciencesViennaAustria
| | - Katharina M. Pichler
- Karl Chiari Lab for Orthopaedic BiologyDepartment of Orthopedics and Trauma SurgeryMedical University of ViennaViennaAustria
| | - Anita Fischer
- Karl Chiari Lab for Orthopaedic BiologyDepartment of Orthopedics and Trauma SurgeryMedical University of ViennaViennaAustria
- Ludwig Boltzmann Institute for Arthritis and RehabilitationViennaAustria
| | - Alexander Giurea
- Department of Orthopedics and Trauma SurgeryDivision of OrthopedicsMedical University of ViennaViennaAustria
| | - Daniela Weinmann
- Karl Chiari Lab for Orthopaedic BiologyDepartment of Orthopedics and Trauma SurgeryMedical University of ViennaViennaAustria
| | - Friedrich Altmann
- Department of ChemistryUniversity of Natural Resources and Life SciencesViennaAustria
| | - Reinhard Windhager
- Karl Chiari Lab for Orthopaedic BiologyDepartment of Orthopedics and Trauma SurgeryMedical University of ViennaViennaAustria
- Department of Orthopedics and Trauma SurgeryDivision of OrthopedicsMedical University of ViennaViennaAustria
| | - Hans‐Joachim Gabius
- Faculty of Veterinary MedicineInstitute of Physiological ChemistryLudwig‐Maximilians University MunichMunichGermany
| | - Stefan Toegel
- Karl Chiari Lab for Orthopaedic BiologyDepartment of Orthopedics and Trauma SurgeryMedical University of ViennaViennaAustria
- Ludwig Boltzmann Institute for Arthritis and RehabilitationViennaAustria
| |
Collapse
|
59
|
Khani E, Khiali S, Entezari‐Maleki T. Potential COVID-19 Therapeutic Agents and Vaccines: An Evidence-Based Review. J Clin Pharmacol 2021; 61:429-460. [PMID: 33511638 PMCID: PMC8014753 DOI: 10.1002/jcph.1822] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 01/26/2021] [Indexed: 02/06/2023]
Abstract
Since the early days of 2020, the severe acute respiratory syndrome coronavirus 2 pandemic has become a global health concern. Currently, some therapies and vaccines have received US Food and Drug Administration approval or emergency use authorization for the management of coronavirus disease 2019. According to the pathophysiology of the disease, several medications have been evaluated in different clinical conditions of the disease. Evidence-based reviewing and categorizing these medications can guide the clinicians to select the proper medications according to each patient's condition. Therefore, we performed this review to categorize the coronavirus disease 2019 potential therapeutics and vaccines.
Collapse
Affiliation(s)
- Elnaz Khani
- Department of Clinical PharmacyFaculty of PharmacyTabriz University of Medical SciencesTabrizIran
| | - Sajad Khiali
- Department of Clinical PharmacyFaculty of PharmacyTabriz University of Medical SciencesTabrizIran
| | - Taher Entezari‐Maleki
- Department of Clinical PharmacyFaculty of PharmacyTabriz University of Medical SciencesTabrizIran
- Cardiovascular Research CenterTabriz University of Medical SciencesTabrizIran
| |
Collapse
|
60
|
Dos Santos WG. Impact of virus genetic variability and host immunity for the success of COVID-19 vaccines. Biomed Pharmacother 2021; 136:111272. [PMID: 33486212 PMCID: PMC7802525 DOI: 10.1016/j.biopha.2021.111272] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/09/2020] [Accepted: 12/26/2020] [Indexed: 01/08/2023] Open
Abstract
Coronavirus disease 19 (COVID-19) continues to challenge most scientists in the search of an effective way to either prevent infection or to avoid spreading of the disease. As result of global efforts some advances have been reached and we are more prepared today than we were at the beginning of the pandemic, however not enough to stop the transmission, and many questions remain unanswered. The possibility of reinfection of recovered individuals, the duration of the immunity, the impact of SARS-CoV-2 mutations in the spreading of the disease as well as the degree of protection that a potential vaccine could have are some of the issues under debate. A number of vaccines are under development using different platforms and clinical trials are ongoing in different countries, but even if they are licensed it will need time until reach a definite conclusion about their real safety and efficacy. Herein we discuss the different strategies used in the development of COVID-19 vaccines, the questions underlying the type of immune response they may elicit, the consequences that new mutations may have in the generation of sub-strains of SARS-CoV-2 and their impact and challenges for the efficacy of potential vaccines in a scenario postpandemic.
Collapse
Affiliation(s)
- Wagner Gouvêa Dos Santos
- Laboratory of Genetics and Molecular Biology, Department of Biomedicine, Academic Unit of Health Sciences, Federal University of Jataí-UFJ, BR 364, km 195, nº 3800, CEP 75801-615, Jataí, GO, Brazil.
| |
Collapse
|
61
|
De Caluwé L, Coppens S, Vereecken K, Daled S, Dhaenens M, Van Ostade X, Deforce D, Ariën KK, Bartholomeeusen K. The CD147 Protein Complex Is Involved in Entry of Chikungunya Virus and Related Alphaviruses in Human Cells. Front Microbiol 2021; 12:615165. [PMID: 33717005 PMCID: PMC7946996 DOI: 10.3389/fmicb.2021.615165] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 02/05/2021] [Indexed: 01/22/2023] Open
Abstract
Chikungunya virus (CHIKV) is an arbovirus with a global spread and significant public health impact. It is a positive stranded RNA alphavirus belonging to the Togaviridae family. However, many questions about the replication cycle of CHIKV remain unanswered. The entry process of CHIKV is not completely understood nor are the associated virus-receptor interactions fully identified. Here, we designed an affinity purification mass spectrometry coupled approach that allowed the identification of factors that facilitate entry of CHIKV in human cells. The identified entry factors were further validated using CRISPR/Cas9. In HEK293T cells we identified the CD147 protein complex as an entry factor for CHIKV. We further showed the involvement of the CD147 protein complex in the replication cycle of related alphaviruses. Interestingly, CD147 contains similar protein domains as the previously identified alphavirus entry factor MXRA8.
Collapse
Affiliation(s)
- Lien De Caluwé
- Virology Unit, Biomedical Sciences, Institute of Tropical Medicine Antwerp, Antwerp, Belgium
| | - Sandra Coppens
- Virology Unit, Biomedical Sciences, Institute of Tropical Medicine Antwerp, Antwerp, Belgium
| | - Katleen Vereecken
- Virology Unit, Biomedical Sciences, Institute of Tropical Medicine Antwerp, Antwerp, Belgium
| | - Simon Daled
- Laboratory for Pharmaceutical Biotechnology, University of Ghent, Ghent, Belgium.,ProGenTomics, Ghent, Belgium
| | - Maarten Dhaenens
- Laboratory for Pharmaceutical Biotechnology, University of Ghent, Ghent, Belgium.,ProGenTomics, Ghent, Belgium
| | - Xaveer Van Ostade
- Laboratory of Proteinscience, Proteomics and Epigenetic Signaling, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| | - Dieter Deforce
- Laboratory for Pharmaceutical Biotechnology, University of Ghent, Ghent, Belgium.,ProGenTomics, Ghent, Belgium
| | - Kevin K Ariën
- Virology Unit, Biomedical Sciences, Institute of Tropical Medicine Antwerp, Antwerp, Belgium.,Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Koen Bartholomeeusen
- Virology Unit, Biomedical Sciences, Institute of Tropical Medicine Antwerp, Antwerp, Belgium
| |
Collapse
|
62
|
Downregulation of caveolin-1 promotes murine breast cancer cell line progression by highly glycosylated CD147. Anticancer Drugs 2021; 32:626-634. [PMID: 33587355 DOI: 10.1097/cad.0000000000001036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Caveolin-1 (CAV-1) can extensively regulate lipid transportation, cell growth and cell death. In the present study, we revealed a novel function of CAV-1 in inhibiting glycosylation of other molecules in murine breast cancer cell line. After the silencing of CAV-1, we found that the mRNA and protein expressions of cluster of differentiation 147 (CD147) and its related molecules (MCT4, matrix metalloproteinase MMP2 and MMP9) increased in the breast cancer cells. Meanwhile, the migration and invasion of the breast cancer cells were significantly enhanced assessed by cell wound healing experiment and transwell assays. Further, the gelatin zymography and lactate assay in the cells also showed the strengthened enzyme activity of MMP9 and the increased extracellular lactate concentration, respectively, after the silencing of CAV-1. Notably, the glycosylation level of CD147 overtly increased after the inhibition of CAV-1 detected by Western Blot analysis, whereas upregulation of CAV-1 did the opposite. Therefore, the findings suggest that the downregulation of CAV-1 can promote breast cancer cell progression probably by highly glycosylated CD147.
Collapse
|
63
|
Septyaningtrias DE, Susilowati R. Neurological involvement of COVID-19: from neuroinvasion and neuroimmune crosstalk to long-term consequences. Rev Neurosci 2021; 32:427-442. [PMID: 33550780 DOI: 10.1515/revneuro-2020-0092] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 11/07/2020] [Indexed: 12/12/2022]
Abstract
As the coronavirus disease 2019 (COVID-19) pandemic continues to be a multidimensional threat to humanity, more evidence of neurological involvement associated with it has emerged. Neuroimmune interaction may prove to be important not only in the pathogenesis of neurological manifestations but also to prevent systemic hyperinflammation. In this review, we summarize reports of COVID-19 cases with neurological involvement, followed by discussion of possible routes of entry, immune responses against coronavirus infection in the central nervous system and mechanisms of nerve degeneration due to viral infection and immune responses. Possible mechanisms for neuroprotection and virus-associated neurological consequences are also discussed.
Collapse
Affiliation(s)
- Dian Eurike Septyaningtrias
- Department of Histology and Cell Biology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Jalan Farmako Sekip Utara, Yogyakarta55281, Indonesia
| | - Rina Susilowati
- Department of Histology and Cell Biology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Jalan Farmako Sekip Utara, Yogyakarta55281, Indonesia
| |
Collapse
|
64
|
Oroojalian F, Haghbin A, Baradaran B, Hemmat N, Shahbazi MA, Baghi HB, Mokhtarzadeh A, Hamblin MR. Novel insights into the treatment of SARS-CoV-2 infection: An overview of current clinical trials. Int J Biol Macromol 2020; 165:18-43. [PMID: 32991900 PMCID: PMC7521454 DOI: 10.1016/j.ijbiomac.2020.09.204] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/15/2020] [Accepted: 09/22/2020] [Indexed: 12/13/2022]
Abstract
The emergence of the global pandemic caused by the novel SARS-CoV-2 virus has motivated scientists to find a definitive treatment or a vaccine against it in the shortest possible time. Current efforts towards this goal remain fruitless without a full understanding of the behavior of the virus and its adaptor proteins. This review provides an overview of the biological properties, functional mechanisms, and molecular components of SARS-CoV-2, along with investigational therapeutic and preventive approaches for this virus. Since the proteolytic cleavage of the S protein is critical for virus penetration into cells, a set of drugs, such as chloroquine, hydroxychloroquine, camostat mesylate have been tested in clinical trials to suppress this event. In addition to angiotensin-converting enzyme 2, the role of CD147 in the viral entrance has also been proposed. Mepolizumab has shown to be effective in blocking the virus's cellular entrance. Antiviral drugs, such as remdesivir, ritonavir, oseltamivir, darunavir, lopinavir, zanamivir, peramivir, and oseltamivir, have also been tested as treatments for COVID-19. Regarding preventive vaccines, the whole virus, vectors, nucleic acids, and structural subunits have been suggested for vaccine development. Mesenchymal stem cells and natural killer cells could also be used against SARS-CoV-2. All the above-mentioned strategies, as well as the role of nanomedicine for the diagnosis and treatment of SARS-CoV-2 infection, have been discussed in this review.
Collapse
Affiliation(s)
- Fatemeh Oroojalian
- Department of Advanced Sciences and Technologies in Medicine, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran; Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Ali Haghbin
- Department of Pediatrics, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran; Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nima Hemmat
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad-Ali Shahbazi
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki FI-00014, Finland; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Hossein Bannazadeh Baghi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Dermatology, Harvard Medical School, Boston, MA 02115, USA; Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa.
| |
Collapse
|
65
|
Gonzalez-Andrades M, Jalimarada SS, Rodriguez-Benavente M, Feeley MN, Woodward AM, AbuSamra DB, Argüeso P. Golgi α1,2-mannosidase I induces clustering and compartmentalization of CD147 during epithelial cell migration. Cell Adh Migr 2020; 14:96-105. [PMID: 32419574 PMCID: PMC7250185 DOI: 10.1080/19336918.2020.1764170] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 03/08/2020] [Accepted: 04/27/2020] [Indexed: 01/05/2023] Open
Abstract
CD147 is a widely expressed matrix metalloproteinase inducer involved in the regulation of cell migration. The high glycosylation and ability to undergo oligomerization have been linked to CD147 function, yet there is limited understanding on the molecular mechanisms behind these processes. The current study demonstrates that the expression of Golgi α1,2-mannosidase I is key to maintaining the cell surface organization of CD147 during cell migration. Using an in vitro model of stratified human corneal epithelial wound healing, we show that CD147 is clustered within lateral plasma membranes at the leading edge of adjacent migrating cells. This localization correlates with a surge in matrix metalloproteinase activity and an increase in the expression of α1,2-mannosidase subtype IC (MAN1C1). Global inhibition of α1,2-mannosidase I activity with deoxymannojirimycin markedly attenuates the glycosylation of CD147 and disrupts its surface distribution at the leading edge, concomitantly reducing the expression of matrix metalloproteinase-9. Likewise, treatment with deoxymannojirimycin or siRNA-mediated knockdown of MAN1C1 impairs the ability of the carbohydrate-binding protein galectin-3 to stimulate CD147 clustering in unwounded cells. We conclude that the mannose-trimming activity of α1,2-mannosidase I coordinates the clustering and compartmentalization of CD147 that follows an epithelial injury.
Collapse
Affiliation(s)
- Miguel Gonzalez-Andrades
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Supriya S. Jalimarada
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Maria Rodriguez-Benavente
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Marissa N. Feeley
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Ashley M. Woodward
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Dina B. AbuSamra
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Pablo Argüeso
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
66
|
Rodrigues‐Diez RR, Tejera‐Muñoz A, Marquez‐Exposito L, Rayego‐Mateos S, Santos Sanchez L, Marchant V, Tejedor Santamaria L, Ramos AM, Ortiz A, Egido J, Ruiz‐Ortega M. Statins: Could an old friend help in the fight against COVID-19? Br J Pharmacol 2020; 177:4873-4886. [PMID: 32562276 PMCID: PMC7323198 DOI: 10.1111/bph.15166] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/01/2020] [Accepted: 06/10/2020] [Indexed: 12/21/2022] Open
Abstract
The COVID-19 pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has overwhelmed healthcare systems requiring the rapid development of treatments, at least, to reduce COVID-19 severity. Drug repurposing offers a fast track. Here, we discuss the potential beneficial effects of statins in COVID-19 patients based on evidence that they may target virus receptors, replication, degradation, and downstream responses in infected cells, addressing both basic research and epidemiological information. Briefly, statins could modulate virus entry, acting on the SARS-CoV-2 receptors, ACE2 and CD147, and/or lipid rafts engagement. Statins, by inducing autophagy activation, could regulate virus replication or degradation, exerting protective effects. The well-known anti-inflammatory properties of statins, by blocking several molecular mechanisms, including NF-κB and NLRP3 inflammasomes, could limit the "cytokine storm" in severe COVID-19 patients which is linked to fatal outcome. Finally, statin moderation of coagulation response activation may also contribute to improving COVID-19 outcomes. LINKED ARTICLES: This article is part of a themed issue on The Pharmacology of COVID-19. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v177.21/issuetoc.
Collapse
Affiliation(s)
- Raul R. Rodrigues‐Diez
- Cellular and Molecular Biology in Renal and Vascular Pathology LaboratoryFundación Instituto de Investigación Sanitaria‐Fundación Jiménez Díaz‐Universidad Autónoma MadridMadridSpain
- Red de Investigación Renal (REDINREN)Instituto de Salud Carlos IIIMadridSpain
| | - Antonio Tejera‐Muñoz
- Cellular and Molecular Biology in Renal and Vascular Pathology LaboratoryFundación Instituto de Investigación Sanitaria‐Fundación Jiménez Díaz‐Universidad Autónoma MadridMadridSpain
- Red de Investigación Renal (REDINREN)Instituto de Salud Carlos IIIMadridSpain
| | - Laura Marquez‐Exposito
- Cellular and Molecular Biology in Renal and Vascular Pathology LaboratoryFundación Instituto de Investigación Sanitaria‐Fundación Jiménez Díaz‐Universidad Autónoma MadridMadridSpain
- Red de Investigación Renal (REDINREN)Instituto de Salud Carlos IIIMadridSpain
| | - Sandra Rayego‐Mateos
- Red de Investigación Renal (REDINREN)Instituto de Salud Carlos IIIMadridSpain
- GE‐06 Pathophysiology of Renal and Vascular Damage Laboratory, Maimonides Biomedical Research Institute of Cordoba (IMIBIC)University of CórdobaCórdobaSpain
| | - Laura Santos Sanchez
- Cellular and Molecular Biology in Renal and Vascular Pathology LaboratoryFundación Instituto de Investigación Sanitaria‐Fundación Jiménez Díaz‐Universidad Autónoma MadridMadridSpain
- Red de Investigación Renal (REDINREN)Instituto de Salud Carlos IIIMadridSpain
| | - Vanessa Marchant
- Cellular and Molecular Biology in Renal and Vascular Pathology LaboratoryFundación Instituto de Investigación Sanitaria‐Fundación Jiménez Díaz‐Universidad Autónoma MadridMadridSpain
- Red de Investigación Renal (REDINREN)Instituto de Salud Carlos IIIMadridSpain
| | - Lucía Tejedor Santamaria
- Cellular and Molecular Biology in Renal and Vascular Pathology LaboratoryFundación Instituto de Investigación Sanitaria‐Fundación Jiménez Díaz‐Universidad Autónoma MadridMadridSpain
- Red de Investigación Renal (REDINREN)Instituto de Salud Carlos IIIMadridSpain
| | - Adrian M. Ramos
- Red de Investigación Renal (REDINREN)Instituto de Salud Carlos IIIMadridSpain
- Laboratory of Nephrology and HypertensionFundación Instituto de Investigación Sanitaria‐Fundación Jiménez Díaz‐Universidad Autónoma MadridMadridSpain
| | - Alberto Ortiz
- Red de Investigación Renal (REDINREN)Instituto de Salud Carlos IIIMadridSpain
- Laboratory of Nephrology and HypertensionFundación Instituto de Investigación Sanitaria‐Fundación Jiménez Díaz‐Universidad Autónoma MadridMadridSpain
| | - Jesus Egido
- Renal, Vascular and Diabetes Research LaboratoryFundación Instituto de Investigación Sanitaria‐Fundación Jiménez Díaz Universidad AutónomaMadridSpain
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM)MadridSpain
| | - Marta Ruiz‐Ortega
- Cellular and Molecular Biology in Renal and Vascular Pathology LaboratoryFundación Instituto de Investigación Sanitaria‐Fundación Jiménez Díaz‐Universidad Autónoma MadridMadridSpain
- Red de Investigación Renal (REDINREN)Instituto de Salud Carlos IIIMadridSpain
| |
Collapse
|
67
|
Eyob W, George AK, Homme RP, Stanisic D, Sandhu H, Tyagi SC, Singh M. Regulation of the parental gene GRM4 by circGrm4 RNA transcript and glutamate-mediated neurovascular toxicity in eyes. Mol Cell Biochem 2020; 476:663-673. [PMID: 33074445 DOI: 10.1007/s11010-020-03934-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 10/07/2020] [Indexed: 01/30/2023]
Abstract
Epigenetic memory plays crucial roles in gene regulation. It not only modulates the expression of specific genes but also has ripple effects on transcription as well as translation of other genes. Very often an alteration in expression occurs either via methylation or demethylation. In this context, "1-carbon metabolism" assumes a special significance since its dysregulation by higher levels of homocysteine; Hcy (known as hyperhomocysteinemia; HHcy), a byproduct of "1-Carbon Metabolism" during methionine biosynthesis leads to serious implications in cardiovascular, renal, cerebrovascular systems, and a host of other conditions. Currently, the circular RNAs (circRNAs) generated via non-canonical back-splicing events from the pre-mRNA molecules are at the center stage for their essential roles in diseases via their epigenetic manifestations. We recently identified a circular RNA transcript (circGRM4) that is significantly upregulated in the eye of cystathionine β-synthase-deficient mice. We also discovered a concurrent over-expression of the mGLUR4 receptor in the eyes of these mice. In brief, circGRM4 is selectively transcribed from its parental mGLUR4 receptor gene (GRM4) functions as a "molecular-sponge" for the miRNAs and results into excessive turnover of the mGLUR4 receptor in the eye in response to extremely high circulating glutamate concentration. We opine that this epigenetic manifestation potentially predisposes HHcy people to retinovascular malfunctioning.
Collapse
Affiliation(s)
- Wintana Eyob
- College of Arts and Sciences, Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH, 44106, USA
| | - Akash K George
- Eye and Vision Science Laboratory, Department of Physiology, University of Louisville School of Medicine, Louisville, KY, 40202, USA
| | - Rubens P Homme
- Eye and Vision Science Laboratory, Department of Physiology, University of Louisville School of Medicine, Louisville, KY, 40202, USA
| | - Dragana Stanisic
- Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Harpal Sandhu
- Department of Ophthalmology and Visual Sciences and Kentucky Lions Eye Center, University of Louisville School of Medicine, Louisville, KY, 40202, USA
| | - Suresh C Tyagi
- Department of Physiology, University of Louisville School of Medicine, Louisville, KY, 40202, USA
| | - Mahavir Singh
- Eye and Vision Science Laboratory, Department of Physiology, University of Louisville School of Medicine, Louisville, KY, 40202, USA.
| |
Collapse
|
68
|
Rahat MA, Safieh M, Simanovich E, Pasand E, Gazitt T, Haddad A, Elias M, Zisman D. The role of EMMPRIN/CD147 in regulating angiogenesis in patients with psoriatic arthritis. Arthritis Res Ther 2020; 22:240. [PMID: 33054815 PMCID: PMC7557017 DOI: 10.1186/s13075-020-02333-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 09/30/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Angiogenesis plays a central role in the pathophysiology of rheumatic diseases. Patients with psoriatic arthritis (PsA) demonstrate increased vascularity over patients with rheumatoid arthritis (RA), with unknown mechanisms. METHODS We evaluated the serum levels of several pro- and anti-angiogenic factors in 62 PsA patients with active disease, 39 PsA patients in remission, 33 active RA patients, and 33 healthy controls (HC). Additionally, we used an in vitro co-culture system of fibroblast (HT1080) and monocytic-like (MM6) cell lines, to evaluate how their interactions affect the secretion of angiogenic factors and angiogenesis promoting abilities using scratch and tube formation assays. RESULTS PsA patients, regardless of disease activity, exhibited higher levels of EMMPRIN/CD147, IL-17, and TNF-α relative to RA patients or HC. Factors, such as IL-6, and the ratio between CD147 and thrombospondin-1, exhibited elevated levels in active PsA patients relative to PsA patients in remission. Secretion of CD147, VEGF, and MMP-9 was increased in vitro. CD147 neutralization with an antibody reduced these levels and the ability of endothelial cells to form tube-like structures or participate in wound healing. CONCLUSIONS CD147 plays a role in mediating angiogenesis in PsA, and the therapeutic possibilities of neutralizing it merit further investigation.
Collapse
Affiliation(s)
- Michal A Rahat
- Immunotherapy Laboratory, Carmel Medical Center, 3436212, Haifa, Israel.
- Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, 3109601, Haifa, Israel.
| | - Mirna Safieh
- Immunotherapy Laboratory, Carmel Medical Center, 3436212, Haifa, Israel
- Rheumatology Unit Carmel Medical Center Haifa Israel, 3436212, Haifa, Israel
| | - Elina Simanovich
- Immunotherapy Laboratory, Carmel Medical Center, 3436212, Haifa, Israel
| | - Eliran Pasand
- Immunotherapy Laboratory, Carmel Medical Center, 3436212, Haifa, Israel
- Rheumatology Unit Carmel Medical Center Haifa Israel, 3436212, Haifa, Israel
| | - Tal Gazitt
- Rheumatology Unit Carmel Medical Center Haifa Israel, 3436212, Haifa, Israel
| | - Amir Haddad
- Rheumatology Unit Carmel Medical Center Haifa Israel, 3436212, Haifa, Israel
| | - Muna Elias
- Rheumatology Unit Carmel Medical Center Haifa Israel, 3436212, Haifa, Israel
| | - Devy Zisman
- Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, 3109601, Haifa, Israel.
- Rheumatology Unit Carmel Medical Center Haifa Israel, 3436212, Haifa, Israel.
| |
Collapse
|
69
|
Gromisch C, Qadan M, Machado MA, Liu K, Colson Y, Grinstaff MW. Pancreatic Adenocarcinoma: Unconventional Approaches for an Unconventional Disease. Cancer Res 2020; 80:3179-3192. [PMID: 32220831 PMCID: PMC7755309 DOI: 10.1158/0008-5472.can-19-2731] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 02/08/2020] [Accepted: 03/24/2020] [Indexed: 12/16/2022]
Abstract
This review highlights current treatments, limitations, and pitfalls in the management of pancreatic cancer and discusses current research in novel targets and drug development to overcome these clinical challenges. We begin with a review of the clinical landscape of pancreatic cancer, including genetic and environmental risk factors, as well as limitations in disease diagnosis and prevention. We next discuss current treatment paradigms for pancreatic cancer and the shortcomings of targeted therapy in this disease. Targeting major driver mutations in pancreatic cancer, such as dysregulation in the KRAS and TGFβ signaling pathways, have failed to improve survival outcomes compared with nontargeted chemotherapy; thus, we describe new advances in therapy such as Ras-binding pocket inhibitors. We then review next-generation approaches in nanomedicine and drug delivery, focusing on preclinical advancements in novel optical probes, antibodies, small-molecule agents, and nucleic acids to improve surgical outcomes in resectable disease, augment current therapies, expand druggable targets, and minimize morbidity. We conclude by summarizing progress in current research, identifying areas for future exploration in drug development and nanotechnology, and discussing future prospects for management of this disease.
Collapse
Affiliation(s)
- Christopher Gromisch
- Departments of Pharmacology and Experimental Therapeutics, Biomedical Engineering, and Chemistry, Boston University, Boston, Massachusetts
| | - Motaz Qadan
- Division of Surgical Oncology, Massachusetts General Hospital, Boston, Massachusetts
| | - Mariana Albuquerque Machado
- Departments of Pharmacology and Experimental Therapeutics, Biomedical Engineering, and Chemistry, Boston University, Boston, Massachusetts
| | - Kebin Liu
- Department of Biochemistry and Molecular Biology and Georgia Cancer Center, Medical College of Georgia, Augusta, Georgia
| | - Yolonda Colson
- Division of Thoracic Surgery, Massachusetts General Hospital, Boston, Massachusetts
| | - Mark W Grinstaff
- Departments of Pharmacology and Experimental Therapeutics, Biomedical Engineering, and Chemistry, Boston University, Boston, Massachusetts.
| |
Collapse
|
70
|
Miyazaki M, Aoki M, Okado Y, Koga K, Hamasaki M, Nakagawa T, Sakata T, Nabeshima K. Highly expressed tumoral emmprin and stromal CD73 predict a poor prognosis for external auditory canal carcinoma. Cancer Sci 2020; 111:3045-3056. [PMID: 32473077 PMCID: PMC7419056 DOI: 10.1111/cas.14508] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 05/15/2020] [Accepted: 05/19/2020] [Indexed: 12/20/2022] Open
Abstract
Squamous cell carcinoma of the external auditory canal (SCC-EAC) is rare and has a poor prognosis. The SCC-EAC cases with high-grade tumor budding (TB) or poorly differentiated clusters (PDCs) are associated with shorter survival than those with low-grade TB or PDCs. Extracellular matrix metalloproteinase inducer (emmprin) is a protein expressed in tumor cells that stimulates the production of MMP-2 by stromal fibroblasts to facilitate tumor invasion. Recently, we reported that emmprin forms a complex with CD73 to regulate MMP-2 production from fibroblasts in vitro. Here, we examined the association of emmprin and CD73 expression with TB or PDCs as well as with survival in 34 biopsy specimens of SCC-EAC patients. High tumoral emmprin expression was associated with high-grade TB, whereas high stromal CD73 expression was associated with high-grade PDCs. Furthermore, concurrent elevated expression of tumoral emmprin and stromal CD73 was determined to be an independent poor prognostic factor. In immunoprecipitation analyses, complex formation between emmprin and CD73 was demonstrated in vitro. Production of MMP-2 from fibroblasts was more abundant when cocultured with tumor cells than from fibroblasts cultured alone. Furthermore, MMP-2 production was reduced by the transfection of CD73 siRNA in fibroblasts cocultured with tumor cells. The colocalization of emmprin and CD73 was enhanced in not only the peripheral cells of the tumor cell clusters that interact with fibroblasts but also in the cells of intratumor clusters. Overall, this study provides novel insights into the roles of emmprin, CD73, and MMP-2 in tumor invasiveness.
Collapse
Affiliation(s)
- Masaru Miyazaki
- Department of Pathology, Fukuoka University Hospital and School of Medicine, Fukuoka, Japan.,Department of Otorhinolaryngology, Fukuoka University Hospital and School of Medicine, Fukuoka, Japan
| | - Mikiko Aoki
- Department of Pathology, Fukuoka University Hospital and School of Medicine, Fukuoka, Japan
| | - Yasuko Okado
- Department of Pathology, Fukuoka University Hospital and School of Medicine, Fukuoka, Japan.,Department of Otorhinolaryngology, Fukuoka University Hospital and School of Medicine, Fukuoka, Japan
| | - Kaori Koga
- Department of Pathology, Fukuoka University Hospital and School of Medicine, Fukuoka, Japan
| | - Makoto Hamasaki
- Department of Pathology, Fukuoka University Hospital and School of Medicine, Fukuoka, Japan
| | - Takashi Nakagawa
- Department of Otorhinolaryngology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Toshifumi Sakata
- Department of Otorhinolaryngology, Fukuoka University Hospital and School of Medicine, Fukuoka, Japan
| | - Kazuki Nabeshima
- Department of Pathology, Fukuoka University Hospital and School of Medicine, Fukuoka, Japan
| |
Collapse
|
71
|
Bravo-Miana RDC, Della Vedova AB, De Paul AL, Remedi MM, Guantay ML, Gilardoni MB, Pellizas CG, Donadio AC. Thyroid tumor cells-fibroblasts crosstalk: role of extracellular vesicles. Endocr Connect 2020; 9:506-518. [PMID: 32485677 PMCID: PMC7354735 DOI: 10.1530/ec-20-0113] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 05/12/2020] [Indexed: 01/06/2023]
Abstract
Tumor-stroma crosstalk leads to a tumor-promoting microenvironment. In this milieu, extracellular vesicles (EVs) are protagonists in cell-cell communication. Despite thyroid cancer being the most common endocrine malignancy, the contribution of the tumor microenvironment to thyroid cancer progression is still largely underexplored. We focused on the role of thyroid tumor cell-fibroblast interaction and EVs as mediators of tumor-stroma interplay, in the promotion of thyroid tumor aggressiveness. Thyroid tumor (TPC-1, 8505c) or non-tumor thyroid cells (NThyOri) were co-cultured with human fibroblasts (Fb). Thyroid cell migration was investigated by the wound-healing assay and actin-network staining. Cell-CD147 expression was characterized by flow cytometry. EVs, obtained by ultracentrifugation of conditioned media (CMs), were characterized by transmission electron-microscopy and CD81 and CD147 expression. Metalloproteinases (MMPs) were evaluated by zymography in CMs. A migratory phenotype was triggered in thyroid tumor cells treated with CMs from Fb or from Fb-thyroid tumor cell co-cultures. Fb-thyroid cell co-cultures induced the secretion of proMMP9 and proMMP2 and led to a significant MMP2 activation in CMs. Fb, thyroid cells and Fb-thyroid cell co-cultures released EVs, and remarkably, EVs released by Fb-thyroid tumor cell co-cultures induced the secretion of proMMP2 and the expression of MMP2 from normal Fb. A significant CD147 expression was demonstrated in Fb-thyroid tumor cell-derived EVs. These findings reveal the role of Fb and thyroid tumor cell-Fb interaction in the promotion of a microenvironment suitable for thyroid tumor progression. Moreover, they highlight, for the first time, the role of thyroid tumor cell-Fb interaction in the production of specialized EVs.
Collapse
Affiliation(s)
- Rocío del Carmen Bravo-Miana
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Bioquímica Clínica, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Haya de la Torre y Medina Allende, Ciudad Universitaria, Córdoba (X5000HUA), Argentina
| | - Ana Belén Della Vedova
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Bioquímica Clínica, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Haya de la Torre y Medina Allende, Ciudad Universitaria, Córdoba (X5000HUA), Argentina
| | - Ana Lucía De Paul
- Universidad Nacional de Córdoba, Facultad de Ciencias Médicas, Centro de Microscopía Electrónica, Córdoba, Argentina
- Instituto de Investigaciones en Ciencias de la Salud (INICSA-CONICET), Av. Enrique Barros y Enfermera Gordillo, Ciudad Universitaria, Córdoba, Argentina
| | - María Mónica Remedi
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Bioquímica Clínica, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Haya de la Torre y Medina Allende, Ciudad Universitaria, Córdoba (X5000HUA), Argentina
| | - María Laura Guantay
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Bioquímica Clínica, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Haya de la Torre y Medina Allende, Ciudad Universitaria, Córdoba (X5000HUA), Argentina
| | - Mónica Beatriz Gilardoni
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Bioquímica Clínica, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Haya de la Torre y Medina Allende, Ciudad Universitaria, Córdoba (X5000HUA), Argentina
| | - Claudia Gabriela Pellizas
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Bioquímica Clínica, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Haya de la Torre y Medina Allende, Ciudad Universitaria, Córdoba (X5000HUA), Argentina
- Correspondence should be addressed to C G Pellizas or A C Donadio: or
| | - Ana Carolina Donadio
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Bioquímica Clínica, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Haya de la Torre y Medina Allende, Ciudad Universitaria, Córdoba (X5000HUA), Argentina
- Correspondence should be addressed to C G Pellizas or A C Donadio: or
| |
Collapse
|
72
|
Gubernatorova EO, Gorshkova EA, Polinova AI, Drutskaya MS. IL-6: Relevance for immunopathology of SARS-CoV-2. Cytokine Growth Factor Rev 2020; 53:13-24. [PMID: 32475759 PMCID: PMC7237916 DOI: 10.1016/j.cytogfr.2020.05.009] [Citation(s) in RCA: 190] [Impact Index Per Article: 47.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 05/17/2020] [Indexed: 01/08/2023]
Abstract
COVID-19 mortality is strongly associated with the development of severe pneumonia and acute respiratory distress syndrome with the worst outcome resulting in cytokine release syndrome and multiorgan failure. It is becoming critically important to identify at the early stage of the infection those patients who are prone to develop the most adverse effects. Elevated systemic interleukin-6 levels in patients with COVID-19 are considered as a relevant parameter in predicting most severe course of disease and the need for intensive care. This review discusses the mechanisms by which IL-6 may possibly contribute to disease exacerbation and the potential of therapeutic approaches based on anti-IL-6 biologics.
Collapse
Affiliation(s)
- E O Gubernatorova
- Laboratory of Molecular Mechanisms of Immunity, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia; Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia.
| | - E A Gorshkova
- Laboratory of Molecular Mechanisms of Immunity, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia; Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia; Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - A I Polinova
- Laboratory of Molecular Mechanisms of Immunity, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia; Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - M S Drutskaya
- Laboratory of Molecular Mechanisms of Immunity, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia; Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia.
| |
Collapse
|
73
|
Liu S, Jin R, Wang M, Li G. Nanoparticle Delivery of CD147 Antagonistic Peptide-9 Protects against Acute Ischemic Brain Injury and tPA-Induced Intracerebral Hemorrhage in Mice. ACS APPLIED BIO MATERIALS 2020; 3:1976-1985. [PMID: 34124605 PMCID: PMC8195622 DOI: 10.1021/acsabm.9b01141] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
CD147 has emerged as a potential therapeutic target in many human diseases. We have demonstrated that inhibition of CD147 using its function-blocking antibody ameliorates acute ischemic brain injury and promotes long-term functional recovery in mice. Recently, peptide-nanoparticle conjugates have emerged as powerful tools for biomedical applications. The present study aimed to investigate the therapeutic potential of CD147 antagonist peptide-9 (AP9) in acute ischemic stroke in mice using nanomaterial as the drug delivery vehicles. AP9-conjugated nanoparticles (APN), with an average size of about 40 nm, were fabricated by maleimide linkage and characterized using dynamic light scattering and transmission electron microscopy. We found that APN specifically bound to CD147 in cultured mouse brain endothelial cells (bEnd.3) and to ischemia-induced CD147 in mouse cerebral microvessels. Using a mouse model of transient middle cerebral artery occlusion (tMCAO), we demonstrated, for the first time, that systemic delivery of APN (2.5 mg/kg, I.V.) initiated at 1 h after tMCAO significantly reduced brain infarct size, improved functional outcome, and attenuated delayed (5 h after tMCAO) tPA-induced intracerebral hemorrhage in acute ischemic stroke. These protective effects were associated with profound inhibition of MMP-9 and MMP-3 in both ischemic brain and plasma. In conclusion, the CD147 antagonist peptide-9 represents a potentially promising therapeutic candidate for the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Shan Liu
- Department of Neurosurgery, The Pennsylvania State, University College of Medicine, Hershey, Pennsylvania 17033, United States
| | - Rong Jin
- Department of Neurosurgery, The Pennsylvania State, University College of Medicine, Hershey, Pennsylvania 17033, United States
| | - Min Wang
- Department of Neurosurgery, The Pennsylvania State, University College of Medicine, Hershey, Pennsylvania 17033, United States
| | - Guohong Li
- Department of Neurosurgery, The Pennsylvania State, University College of Medicine, Hershey, Pennsylvania 17033, United States
| |
Collapse
|
74
|
Pereira-Vieira J, Azevedo-Silva J, Preto A, Casal M, Queirós O. MCT1, MCT4 and CD147 expression and 3-bromopyruvate toxicity in colorectal cancer cells are modulated by the extracellular conditions. Biol Chem 2020; 400:787-799. [PMID: 30699066 DOI: 10.1515/hsz-2018-0411] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 01/16/2019] [Indexed: 12/21/2022]
Abstract
Monocarboxylate transporters (MCTs) inhibition leads to disruption in glycolysis, induces cell death and decreases cell invasion, revealing the importance of MCT activity in intracellular pH homeostasis and tumor aggressiveness. 3-Bromopyruvate (3BP) is an anti-tumor agent, whose uptake occurs via MCTs. It was the aim of this work to unravel the importance of extracellular conditions on the regulation of MCTs and in 3BP activity. HCT-15 was found to be the most sensitive cell line, and also the one that presented the highest basal expression of both MCT1 and of its chaperone CD147. Glucose starvation and hypoxia induced an increased resistance to 3BP in HCT-15 cells, in contrast to what happens with an extracellular acidic pH, where no alterations in 3BP cytotoxicity was observed. However, no association with MCT1, MCT4 and CD147 expression was observed, except for glucose starvation, where a decrease in CD147 (but not of MCT1 and MCT4) was detected. These results show that 3BP cytotoxicity might include other factors beyond MCTs. Nevertheless, treatment with short-chain fatty acids (SCFAs) increased the expression of MCT4 and CD147 as well as the sensitivity of HCT-15 cells to 3BP. The overall results suggest that MCTs influence the 3BP effect, although they are not the only players in its mechanism of action.
Collapse
Affiliation(s)
- Joana Pereira-Vieira
- Center of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus de Gualtar, Braga 4710-057, Portugal.,CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, Rua Central de Gandra, 1317, 4585-116, Gandra, PRD, Portugal
| | - João Azevedo-Silva
- Center of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus de Gualtar, Braga 4710-057, Portugal
| | - Ana Preto
- Center of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus de Gualtar, Braga 4710-057, Portugal
| | - Margarida Casal
- Center of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus de Gualtar, Braga 4710-057, Portugal
| | - Odília Queirós
- CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, Rua Central de Gandra, 1317, 4585-116, Gandra, PRD, Portugal
| |
Collapse
|
75
|
CD147 Promotes Cell Small Extracellular Vesicles Release during Colon Cancer Stem Cells Differentiation and Triggers Cellular Changes in Recipient Cells. Cancers (Basel) 2020; 12:cancers12020260. [PMID: 31973205 PMCID: PMC7072373 DOI: 10.3390/cancers12020260] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 12/04/2019] [Accepted: 01/15/2020] [Indexed: 12/19/2022] Open
Abstract
Cancer cells secrete small extracellular vesicles (sEVs) that are involved in the remodeling of tumor microenvironment (TME) and can promote tumor progression. The role of sEVs and their molecular key players in colon cancer stem cells differentiation are poorly understood. This study aimed to analyze the role and content of sEVs released during the differentiation of colorectal cancer stem cells. Here we show that sEVs secretion during colon cancer stem cells differentiation is partially controlled by CD147, a well-known player involved in colon cancer tumorigenesis. CD147 + sEVs activate a signaling cascade in recipient cells inducing molecular invasive features in colon cancer cells. CD147 knockdown as well as anti-CD147 antibodies impaired sEVs release and downstream effects on recipient cells and blocking multivesicular body maturation prevented sEVs release during the differentiation. Our findings reveal a functional role of CD147 in promoting sEVs release during the differentiation of colon cancer stem cells and in triggering cellular changes in recipient cells.
Collapse
|
76
|
Weng Y, Chen T, Ren J, Lu D, Liu X, Lin S, Xu C, Lou J, Chen X, Tang L. The Association Between Extracellular Matrix Metalloproteinase Inducer Polymorphisms and Coronary Heart Disease: A Potential Way to Predict Disease. DNA Cell Biol 2020; 39:244-254. [PMID: 31928425 DOI: 10.1089/dna.2019.5015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Extracellular matrix metalloproteinase inducer (EMMPRIN) had been reported to be involved in the occurrence and development of coronary heart disease (CHD) in previous studies. This study aimed to investigate whether single nucleotide polymorphisms of EMMPRIN and matrix metalloproteinase-9 (MMP-9) contributed to the onset and severity of CHD. One thousand seventy patients suspected to have CHD were enrolled into the study. Each patient had undergone coronary angiogram, and the severity of coronary artery stenosis was assessed by Gensini score. Eight hundred twelve patients were confirmed to have CHD, while 258 patients were selected as non-CHD control. All patients were genotyped for five EMMPRIN polymorphisms (rs8259, rs28915400, rs4919859, rs6758, and rs8637) and one MMP-9 polymorphism (rs3918242) by polymerase chain reaction-restriction fragment length polymorphism and confirmed by direct sequencing. EMMPRIN polymorphism rs8259 and MMP-9 polymorphism rs3918242 were found to be associated with CHD (rs8259: AT vs. AA, adjusted odds ratio [OR] = 2.038, adjusted 95% confidence interval [CI] = 1.080-3.847, p = 0.028; rs3918242: CT vs. CC, adjusted OR = 0.607, adjusted 95% CI = 0.403-0.916, p = 0.017, TT vs. CC, adjusted OR = 2.559, adjusted 95% CI = 1.326-4.975, p = 0.006). No crossover effects were observed although a single environmental or genetic factor had an impact on the occurrence of CHD. The value of the Gensini score revealed that severity of CHD decreased in the rs3918242 CT carriers in both the male and female population. Our study suggested that EMMPRIN rs8259 and MMP-9 rs3918242 polymorphisms may contribute to pathological process of CHD. It could play a critical role in the prediction of CHD.
Collapse
Affiliation(s)
- Yingzheng Weng
- Department of Cardiology, Zhejiang Hospital, Hangzhou, China
| | - Tingting Chen
- Department of Cardiology, Taizhou Hospital, Taizhou, China.,Department of Medicine, The First Clinical Medical College, Wenzhou Medical University, Wenzhou, China
| | - Jianfei Ren
- Department of Internal Medicine, Lihuili Hospital Affiliated Ningbo University, Ningbo, China
| | - Difan Lu
- Department of Medicine, The Second College of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiaowei Liu
- Department of Cardiology, Zhejiang Hospital, Hangzhou, China
| | - Senna Lin
- Department of Cardiology, Zhejiang Hospital, Hangzhou, China
| | - Chenkai Xu
- Department of Cardiology, Zhejiang Hospital, Hangzhou, China
| | - Jiangjie Lou
- Department of Cardiology, Zhejiang Hospital, Hangzhou, China
| | - Xiaofeng Chen
- Department of Cardiology, Taizhou Hospital, Taizhou, China.,Department of Medicine, The First Clinical Medical College, Wenzhou Medical University, Wenzhou, China.,Department of Medicine, The Second College of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Lijiang Tang
- Department of Cardiology, Zhejiang Hospital, Hangzhou, China.,Department of Cardiology, Taizhou Hospital, Taizhou, China.,Department of Medicine, The First Clinical Medical College, Wenzhou Medical University, Wenzhou, China.,Department of Medicine, The Second College of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
77
|
Pahk K, Joung C, Song HY, Kim S, Kim WK. SP-8356, a Novel Inhibitor of CD147-Cyclophilin A Interactions, Reduces Plaque Progression and Stabilizes Vulnerable Plaques in apoE-Deficient Mice. Int J Mol Sci 2019; 21:ijms21010095. [PMID: 31877775 PMCID: PMC6981359 DOI: 10.3390/ijms21010095] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 12/11/2019] [Accepted: 12/18/2019] [Indexed: 12/15/2022] Open
Abstract
Interactions between CD147 and cyclophilin A (CypA) promote plaque rupture that causes atherosclerosis-related cardiovascular events, such as myocardial infarction and stroke. Here, we investigated whether SP-8356 ((1S,5R)-4-(3,4-dihydroxy-5-methoxystyryl)-6,6-dimethylbicyclo[3.1.1]hept-3-en-2-one), a novel drug, can exert therapeutic effects against plaque progression and instability through disruption of CD147-CypA interactions in apolipoprotein E-deficient (ApoE KO) mice. Immunocytochemistry and immunoprecipitation analyses were performed to assess the effects of SP-8356 on CD147-CypA interactions. Advanced plaques were induced in ApoE KO mice via partial ligation of the right carotid artery coupled with an atherogenic diet, and SP-8356 (50 mg/kg) orally administrated daily one day after carotid artery ligation for three weeks. The anti-atherosclerotic effect of SP-8356 was assessed using histological and molecular approaches. SP-8356 interfered with CD147-CypA interactions and attenuated matrix metalloproteinase-9 activation. Moreover, SP-8356 induced a decreased in atherosclerotic plaque size in ApoE KO mice and stabilized plaque vulnerability by reducing the necrotic lipid core, suppressing macrophage infiltration, and enhancing fibrous cap thickness through increasing the content of vascular smooth muscle cells. SP-8356 exerts remarkable anti-atherosclerotic effects by suppressing plaque development and improving plaque stability through inhibiting CD147-CypA interactions. Our novel findings support the potential utility of SP-8356 as a therapeutic agent for atherosclerotic plaque.
Collapse
Affiliation(s)
- Kisoo Pahk
- Institute for Inflammation Control, Korea University, Seoul 02841, Korea; (K.P.); (C.J.); (H.Y.S.)
- Department of Neuroscience, Korea University College of Medicine, Seoul 02841, Korea
- Department of Nuclear Medicine, Korea University Anam Hospital, Seoul 02841, Korea;
| | - Chanmin Joung
- Institute for Inflammation Control, Korea University, Seoul 02841, Korea; (K.P.); (C.J.); (H.Y.S.)
- Department of Neuroscience, Korea University College of Medicine, Seoul 02841, Korea
| | - Hwa Young Song
- Institute for Inflammation Control, Korea University, Seoul 02841, Korea; (K.P.); (C.J.); (H.Y.S.)
- Department of Neuroscience, Korea University College of Medicine, Seoul 02841, Korea
| | - Sungeun Kim
- Department of Nuclear Medicine, Korea University Anam Hospital, Seoul 02841, Korea;
| | - Won-Ki Kim
- Institute for Inflammation Control, Korea University, Seoul 02841, Korea; (K.P.); (C.J.); (H.Y.S.)
- Department of Neuroscience, Korea University College of Medicine, Seoul 02841, Korea
- Correspondence: ; Tel.: +82-2-2286-1095; Fax: +82-2-953-6095
| |
Collapse
|
78
|
Timoshenko OS, Gureeva TA, Kugaevskaya EV, Zavalishina LE, Andreeva YY, Solovyeva NI. [The expression of EMMPRIN and the matrix metalloproteinase MMP-1 in the cervix uteri and corpus uteri in cervical squamous cell carcinoma]. Arkh Patol 2019; 81:34-40. [PMID: 31851190 DOI: 10.17116/patol20198106134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
OBJECTIVE To investigate the features of expression of extracellular matrix metalloproteinase inducer (EMMPRIN) and the matrix metalloproteinase MMP-1 in the cervix uteri and corpus uteri in cervical squamous cell carcinoma (CSCC). MATERIAL AND METHODS The investigation was conducted using the surgical material obtained after hysterectomy in patients diagnosed as having CSCC. RT-PCR, immunohistochemistry (IHC), and enzymatic assays were used. RESULTS The high expression of EMMPRIN and MMP-1 in CSCC was found not only in cervical carcinoma, but also in the stroma and epithelium of the cervix uteri and corpus uteri outside the tumor, whereas the level of MMP-1 expression in the morphologically intact tissue was significantly lower than in the tumor, while that of EMMPRIN gene expression did not differ substantially. CONCLUSION The expression of EMMPRIN and MMP-1 in CSCC occurs in both the tumor and the morphologically intact tissue, which may suggest that the invasive potential of tumor may increase and therefore have prognostic value.
Collapse
Affiliation(s)
- O S Timoshenko
- V.N. Orekhovich Research Institute of Biomedical Chemistry, Moscow, Russia
| | - T A Gureeva
- V.N. Orekhovich Research Institute of Biomedical Chemistry, Moscow, Russia
| | - E V Kugaevskaya
- V.N. Orekhovich Research Institute of Biomedical Chemistry, Moscow, Russia
| | - L E Zavalishina
- Russian Medical Academy of Continuing Professional Education, Ministry of Health of Russia, Moscow, Russia
| | - Yu Yu Andreeva
- Russian Medical Academy of Continuing Professional Education, Ministry of Health of Russia, Moscow, Russia
| | - N I Solovyeva
- V.N. Orekhovich Research Institute of Biomedical Chemistry, Moscow, Russia; Russian Medical Academy of Continuing Professional Education, Ministry of Health of Russia, Moscow, Russia
| |
Collapse
|
79
|
Landras A, Reger de Moura C, Jouenne F, Lebbe C, Menashi S, Mourah S. CD147 Is a Promising Target of Tumor Progression and a Prognostic Biomarker. Cancers (Basel) 2019; 11:cancers11111803. [PMID: 31744072 PMCID: PMC6896083 DOI: 10.3390/cancers11111803] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 11/13/2019] [Accepted: 11/13/2019] [Indexed: 12/18/2022] Open
Abstract
Microenvironment plays a crucial role in tumor development and progression. Cancer cells modulate the tumor microenvironment, which also contribute to resistance to therapy. Identifying biomarkers involved in tumorigenesis and cancer progression represents a great challenge for cancer diagnosis and therapeutic strategy development. CD147 is a glycoprotein involved in the regulation of the tumor microenvironment and cancer progression by several mechanisms—in particular, by the control of glycolysis and also by its well-known ability to induce proteinases leading to matrix degradation, tumor cell invasion, metastasis and angiogenesis. Accumulating evidence has demonstrated the role of CD147 expression in tumor progression and prognosis, suggesting it as a relevant tumor biomarker for cancer diagnosis and prognosis, as well as validating its potential as a promising therapeutic target in cancers.
Collapse
Affiliation(s)
- Alexandra Landras
- INSERM UMRS 976, Team 1, Human Immunology Pathophysiology & Immunotherapy (HIPI), University of Paris, 75010 Paris, France; (A.L.); (C.R.d.M.); (F.J.); (C.L.); (S.M.)
| | - Coralie Reger de Moura
- INSERM UMRS 976, Team 1, Human Immunology Pathophysiology & Immunotherapy (HIPI), University of Paris, 75010 Paris, France; (A.L.); (C.R.d.M.); (F.J.); (C.L.); (S.M.)
- Pharmacogenomics Department, Assistance Publique-Hôpitaux de Paris (AP-HP), Saint Louis Hospital, 75010 Paris, France
| | - Fanelie Jouenne
- INSERM UMRS 976, Team 1, Human Immunology Pathophysiology & Immunotherapy (HIPI), University of Paris, 75010 Paris, France; (A.L.); (C.R.d.M.); (F.J.); (C.L.); (S.M.)
- Pharmacogenomics Department, Assistance Publique-Hôpitaux de Paris (AP-HP), Saint Louis Hospital, 75010 Paris, France
| | - Celeste Lebbe
- INSERM UMRS 976, Team 1, Human Immunology Pathophysiology & Immunotherapy (HIPI), University of Paris, 75010 Paris, France; (A.L.); (C.R.d.M.); (F.J.); (C.L.); (S.M.)
- Dermatology Department and Centre d’Investigation Clinique (CIC), Assistance Publique-Hôpitaux de Paris (AP-HP), Saint Louis Hospital, 75010 Paris, France
| | - Suzanne Menashi
- INSERM UMRS 976, Team 1, Human Immunology Pathophysiology & Immunotherapy (HIPI), University of Paris, 75010 Paris, France; (A.L.); (C.R.d.M.); (F.J.); (C.L.); (S.M.)
- Pharmacogenomics Department, Assistance Publique-Hôpitaux de Paris (AP-HP), Saint Louis Hospital, 75010 Paris, France
| | - Samia Mourah
- INSERM UMRS 976, Team 1, Human Immunology Pathophysiology & Immunotherapy (HIPI), University of Paris, 75010 Paris, France; (A.L.); (C.R.d.M.); (F.J.); (C.L.); (S.M.)
- Pharmacogenomics Department, Assistance Publique-Hôpitaux de Paris (AP-HP), Saint Louis Hospital, 75010 Paris, France
- Correspondence: ; Tel.: +33-1-42-49-48-85
| |
Collapse
|
80
|
Lai TM, Kuo PJ, Lin CY, Chin YT, Lin HL, Chiu HC, Fu MMJ, Fu E. CD147 self-regulates matrix metalloproteinase-2 release in gingival fibroblasts after coculturing with U937 monocytic cells. J Periodontol 2019; 91:651-660. [PMID: 31557319 DOI: 10.1002/jper.19-0278] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 08/11/2019] [Accepted: 08/26/2019] [Indexed: 01/17/2023]
Abstract
BACKGROUND Cluster of differentiation 147 (CD147) is a multifunctional glycoprotein that functions as an inducer of matrix metalloproteinase (MMP) expression in fibroblasts. Synergistically enhanced MMP-2 expression was recently observed in the coculture of human gingival fibroblasts (HGFs) and U937 human monocytic cells; however, the responsible mechanisms have not yet been fully established. The aim of this study was to evaluate the release of soluble CD147 in HGFs after coculturing with U937 cells and its functional effect on the enhancement of MMP-2 expression in HGFs. METHODS Enzyme-linked immunosorbent assay was used to determine the amount of CD147 protein in media, whereas real-time polymerase chain reaction was performed to evaluate the mRNA levels of CD147 and MMP-2 in HGFs and U937 cells. The enzyme activities of MMP-2 released from cells were examined by zymography. Transwell coculturing and conditioned media treatments were selected to rule out the effect of direct contact of HGFs and U937 cells. RESULTS The protein and mRNA expression of CD147 in HGFs were enhanced after transwell coculturing with U937 cells and exposure to U937-conditioned medium. MMP-2 enzyme activities in HGFs were also significantly increased by the coculturing methods. Administration of exogenous CD147 enhanced MMP-2 expression in HGFs, whereas treatment with cyclosporine-A, which inhibited CD147 expression, reduced U937-enhanced MMP-2 expression in HGFs. CONCLUSIONS CD147 can interact with fibroblasts to stimulate the expression of MMPs associated with periodontal extracellular matrix degradation. This study has demonstrated that CD147 released from fibroblasts might play a role in monocyte-enhanced MMP-2 expression in HGFs.
Collapse
Affiliation(s)
- Tat-Ming Lai
- Dental Department, Cardinal Tien Hospital, New Taipei City, Taiwan
| | - Po-Jan Kuo
- Department of Periodontology, School of Dentistry, National Defense Medical Center and Tri-Service General Hospital, Taipei, Taiwan
| | - Chi-Yu Lin
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan.,Center for Teeth Bank and Dental Stem Cell Technology, Taipei Medical University, Taipei, Taiwan
| | - Yu-Tang Chin
- Taipei Cancer Center, Taipei Medical University, Taipei, Taiwan
| | - Hsiao-Lun Lin
- Department of Periodontology, School of Dentistry, National Defense Medical Center and Tri-Service General Hospital, Taipei, Taiwan
| | - Hsien-Chung Chiu
- Department of Periodontology, School of Dentistry, National Defense Medical Center and Tri-Service General Hospital, Taipei, Taiwan
| | - Martin M J Fu
- Department of Periodontology, School of Dentistry, National Defense Medical Center and Tri-Service General Hospital, Taipei, Taiwan
| | - Earl Fu
- Department of Periodontology, School of Dentistry, National Defense Medical Center and Tri-Service General Hospital, Taipei, Taiwan.,Department of Dentistry, Taipei Tzu Chi Hospital, New Taipei City, Taiwan
| |
Collapse
|
81
|
Aoki M, Koga K, Miyazaki M, Hamasaki M, Koshikawa N, Oyama M, Kozuka-Hata H, Seiki M, Toole BP, Nabeshima K. CD73 complexes with emmprin to regulate MMP-2 production from co-cultured sarcoma cells and fibroblasts. BMC Cancer 2019; 19:912. [PMID: 31510956 PMCID: PMC6739984 DOI: 10.1186/s12885-019-6127-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Accepted: 09/03/2019] [Indexed: 12/14/2022] Open
Abstract
Background Interaction between cancer cells and fibroblasts mediated by extracellular matrix metalloproteinase inducer (emmprin, CD147) is important in the invasion and proliferation of cancer cells. However, the exact mechanism of emmprin mediated stimulation of matrix metalloprotease-2 (MMP-2) production from fibroblasts has not been elucidated. Our previous studies using an inhibitory peptide against emmprin suggested the presence of a molecule on the cell membrane which forms a complex with emmprin. Here we show that CD73 expressed on fibroblasts interacts with emmprin and is a required factor for MMP-2 production in co-cultures of sarcoma cells with fibroblasts. Methods CD73 along with CD99 was identified by mass spectrometry analysis as an emmprin interacting molecule from a co-culture of cancer cells (epithelioid sarcoma cell line FU-EPS-1) and fibroblasts (immortalized fibroblasts cell line ST353i). MMP-2 production was measured by immunoblot and ELISA. The formation of complexes of CD73 with emmprin was confirmed by immunoprecipitation, and their co-localization in tumor cells and fibroblasts was shown by fluorescent immunostaining and proximity ligation assays. Results Stimulated MMP-2 production in co-culture of cancer cells and fibroblasts was completely suppressed by siRNA knockdown of CD73, but not by CD99 knockdown. MMP-2 production was not suppressed by CD73-specific enzyme inhibitor (APCP). However, MMP-2 production was decreased by CD73 neutralizing antibodies, suggesting that CD73-mediated suppression of MMP-2 production is non-enzymatic. In human epithelioid sarcoma tissues, emmprin was immunohistochemically detected to be mainly expressed in tumor cells, and CD73 was expressed in fibroblasts and tumor cells: emmprin and CD73 were co-localized predominantly on tumor cells. Conclusion This study provides a novel insight into the role of CD73 in emmprin-mediated regulation of MMP-2 production.
Collapse
Affiliation(s)
- M Aoki
- Department of Pathology, Fukuoka University School of Medicine, 7-45-1 Nanakuma, Jonan-ku, Fukuoka, 814-0180, Japan
| | - K Koga
- Department of Pathology, Fukuoka University School of Medicine, 7-45-1 Nanakuma, Jonan-ku, Fukuoka, 814-0180, Japan
| | - M Miyazaki
- Department of Pathology, Fukuoka University School of Medicine, 7-45-1 Nanakuma, Jonan-ku, Fukuoka, 814-0180, Japan
| | - M Hamasaki
- Department of Pathology, Fukuoka University School of Medicine, 7-45-1 Nanakuma, Jonan-ku, Fukuoka, 814-0180, Japan
| | - N Koshikawa
- Division of Cancer Cell Research, Kanagawa Cancer Center Research Institute, Yokohama, Japan.,Division of Cancer Cell Research, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - M Oyama
- Medical Proteomics Laboratory, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - H Kozuka-Hata
- Medical Proteomics Laboratory, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - M Seiki
- Division of Cancer Cell Research, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - B P Toole
- Regenerative Medicine & Cell Biology, Medical University of South Carolina, Charleston, USA
| | - K Nabeshima
- Department of Pathology, Fukuoka University School of Medicine, 7-45-1 Nanakuma, Jonan-ku, Fukuoka, 814-0180, Japan.
| |
Collapse
|
82
|
Pahk K, Noh H, Joung C, Jang M, Song HY, Kim KW, Han K, Hwang JI, Kim S, Kim WK. A novel CD147 inhibitor, SP-8356, reduces neointimal hyperplasia and arterial stiffness in a rat model of partial carotid artery ligation. J Transl Med 2019; 17:274. [PMID: 31429778 PMCID: PMC6700999 DOI: 10.1186/s12967-019-2024-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Accepted: 08/14/2019] [Indexed: 12/20/2022] Open
Abstract
Background Neointimal hyperplasia and its related arterial stiffness are the crucial pathophysiological features in atherosclerosis and in-stent restenosis. Cluster of differentiation 147 (CD147), a member of the immunoglobulin super family that induces the expression of matrix metalloproteinase-9 (MMP-9) by dimerization, may play important roles in neointimal hyperplasia and may therefore be an effective target for the treatment of this condition. Here, we investigated whether a novel CD147 inhibitor SP-8356 ((1S,5R)-4-(3,4-dihydroxy-5-methoxystyryl)-6,6-dimethylbicyclo[3.1.1]hept-3-en-2-one) reduces neointimal hyperplasia and arterial stiffness in a rat model of partial carotid artery ligation. Methods Neointimal hyperplasia was induced in Sprague–Dawley rats by partial ligation of the right carotid artery combined with a high fat diet and vitamin D injection. Rats were subdivided into vehicle, SP-8356 (50 mg/kg), and rosuvastatin (10 mg/kg) groups. The drugs were administrated via intraperitoneal injections for 4 weeks. The elasticity of blood vessels was assessed by measuring pulse wave velocity using Doppler ultrasonography before sacrifice. Histomolecular analysis was carried out on harvested carotid arteries. Results SP-8356 significantly reduced MMP activity by inhibiting CD147 dimerization. SP-8356 reduced neointimal hyperplasia and prevented the deterioration of vascular elasticity. SP-8356 had a greater inhibitory effect on neointimal hyperplasia than did rosuvastatin. Furthermore, rosuvastatin did not improve vascular elasticity. SP-8356 increased the expression of smooth muscle myosin heavy chain (SM-MHC), but decreased the expression of collagen type III and MMP-9 in the neointimal region. In contrast to SP-8356, rosuvastatin did not alter the expression of SM-MHC or MMP-9. Conclusions The ability of SP-8356 to reduce neointimal hyperplasia and improve arterial stiffness in affected carotid artery suggests that SP-8356 could be a promising therapeutic drug for vascular remodeling disorders involving neointimal hyperplasia and arterial stiffness.
Collapse
Affiliation(s)
- Kisoo Pahk
- Institute for Inflammation Control, Korea University, Seoul, South Korea.,Department of Neuroscience, Korea University College of Medicine, 126-1, Anam-Dong 5-Ga, Seongbuk-Gu, Seoul, 136-705, South Korea.,Department of Nuclear Medicine, Korea University Anam Hospital, Seoul, South Korea
| | - Hyojin Noh
- Institute for Inflammation Control, Korea University, Seoul, South Korea.,Department of Neuroscience, Korea University College of Medicine, 126-1, Anam-Dong 5-Ga, Seongbuk-Gu, Seoul, 136-705, South Korea
| | - Chanmin Joung
- Institute for Inflammation Control, Korea University, Seoul, South Korea.,Department of Neuroscience, Korea University College of Medicine, 126-1, Anam-Dong 5-Ga, Seongbuk-Gu, Seoul, 136-705, South Korea
| | - Mi Jang
- Institute for Inflammation Control, Korea University, Seoul, South Korea.,Department of Neuroscience, Korea University College of Medicine, 126-1, Anam-Dong 5-Ga, Seongbuk-Gu, Seoul, 136-705, South Korea
| | - Hwa Young Song
- Institute for Inflammation Control, Korea University, Seoul, South Korea.,Department of Neuroscience, Korea University College of Medicine, 126-1, Anam-Dong 5-Ga, Seongbuk-Gu, Seoul, 136-705, South Korea
| | - Kyung Won Kim
- Department of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Kihoon Han
- Institute for Inflammation Control, Korea University, Seoul, South Korea.,Department of Neuroscience, Korea University College of Medicine, 126-1, Anam-Dong 5-Ga, Seongbuk-Gu, Seoul, 136-705, South Korea
| | - Jong-Ik Hwang
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, South Korea
| | - Sungeun Kim
- Department of Nuclear Medicine, Korea University Anam Hospital, Seoul, South Korea
| | - Won-Ki Kim
- Institute for Inflammation Control, Korea University, Seoul, South Korea. .,Department of Neuroscience, Korea University College of Medicine, 126-1, Anam-Dong 5-Ga, Seongbuk-Gu, Seoul, 136-705, South Korea.
| |
Collapse
|
83
|
Nasry WHS, Wang H, Jones K, Tesch M, Rodriguez-Lecompte JC, Martin CK. Cyclooxygenase and CD147 expression in oral squamous cell carcinoma patient samples and cell lines. Oral Surg Oral Med Oral Pathol Oral Radiol 2019; 128:400-410.e3. [PMID: 31350224 DOI: 10.1016/j.oooo.2019.06.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 05/09/2019] [Accepted: 06/05/2019] [Indexed: 12/21/2022]
Abstract
OBJECTIVES In oral squamous cell carcinoma (OSCC), cyclooxygenases (COX-1 and COX-2) contribute to inflammation, and cluster of differentiation factor 147 (CD147) contributes to invasiveness, but their relationship has not been previously examined within a cohort of patients with OSCC or OSCC cell lines. STUDY DESIGN COX-2 and CD147 expression was determined by using immunohistochemistry on 39 surgical biopsy specimens of OSCC. Expression in tumor cells, stroma, and adjacent oral epithelium was characterized by using a visual grading system. COX-1, COX-2, and CD147 expression was determined in vitro by using OSCC cell lines (SCC25, BHY, and HN) and reverse transcriptase-quantitative polymerase chain reaction. Secretion of prostagladin E2 (PGE2) from OSCC cell lines was determined by using PGE2 enzyme-linked immunosorbent assay. RESULTS Biopsy specimens showed higher COX-2 expression in tumor cells compared with stroma and adjacent epithelium (P < .05). There was no difference in CD147 expression among the tumor cells, stroma, and adjacent epithelium. In OSCC cell lines, there was a trend for COX-2 and CD147 gene expression to be coordinated. Interestingly, PGE2 secretion was more closely related to COX-1 expression than to COX-2 expression. CONCLUSIONS COX-1, COX-2, and CD147 appear to be independently regulated in OSCC, potentially representing 2 therapeutic targets for future investigation. COX-1 expression in OSCC deserves further study because it may be an important determinant of PGE2 secretion from OSCC cells.
Collapse
Affiliation(s)
- Walaa Hamed Shaker Nasry
- Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, Prince Edward Island, Canada
| | - Haili Wang
- Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, Prince Edward Island, Canada
| | - Kathleen Jones
- Diagnostic Services, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, Prince Edward Island, Canada
| | - Marvin Tesch
- Provincial Health Services, Health PEI, Charlottetown, Prince Edward Island, Canada
| | - Juan Carlos Rodriguez-Lecompte
- Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, Prince Edward Island, Canada
| | - Chelsea K Martin
- Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, Prince Edward Island, Canada.
| |
Collapse
|
84
|
YIPF2 is a novel Rab-GDF that enhances HCC malignant phenotypes by facilitating CD147 endocytic recycle. Cell Death Dis 2019; 10:462. [PMID: 31189879 PMCID: PMC6561952 DOI: 10.1038/s41419-019-1709-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 04/24/2019] [Accepted: 05/27/2019] [Indexed: 02/05/2023]
Abstract
An increased surface level of CIE (clathrin-independent endocytosis) proteins is a new feature of malignant neoplasms. CD147 is a CIE glycoprotein highly up-regulated in hepatocellular carcinoma (HCC). The ability to sort out the early endosome and directly target the recycling pathway confers on CD147 a prolonged surface half-life. However, current knowledge on CD147 trafficking to and from the cell-surface is limited. In this study, an MSP (membrane and secreted protein)-cDNA library was screened against EpoR/LR-F3/CD147EP-expressed cells by MAPPIT (mammalian protein–protein interaction trap). CD147 co-expressing with the new binder was investigated by GEPIA (gene expression profiling interactive analysis). The endocytosis, ER-Golgi trafficking and recycling of CD147 were measured by confocal imaging, flow cytometry, and biotin-labeled chase assays, respectively. Rab GTPase activation was checked by GST-RBD pull-down and MMP activity was measured by gelatin zymography. HCC malignant phenotypes were determined by cell adhesion, proliferation, migration, Transwell motility, and invasion assays. An ER-Golgi-resident transmembrane protein YIPF2 was identified as an intracellular binder to CD147. YIPF2 correlated and co-expressed with CD147, which is a survival predictor for HCC patients. YIPF2 is critical for CD147 glycosylation and trafficking functions in HCC cells. YIPF2 acts as a Rab-GDF (GDI-displacement factor) regulating three independent trafficking steps. First, YIPF2 recruits and activates Rab5 and Rab22a GTPases to the endomembrane structures. Second, YIPF2 modulates the endocytic recycling of CD147 through distinctive regulation on Rab5 and Rab22a. Third, YIPF2 mediates the mature processing of CD147 via the ER-Golgi trafficking route. Decreased YIPF2 expression induced a CD147 efficient delivery to the cell-surface, promoted MMP secretion, and enhanced the adhesion, motility, migration, and invasion behaviors of HCC cells. Thus, YIPF2 is a new trafficking determinant essential for CD147 glycosylation and transport. Our findings revealed a novel YIPF2-controlled ER-Golgi trafficking signature that promotes CD147-medated malignant phenotypes in HCC.
Collapse
|
85
|
Toole BP. The CD147-HYALURONAN Axis in Cancer. Anat Rec (Hoboken) 2019; 303:1573-1583. [PMID: 31090215 DOI: 10.1002/ar.24147] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 11/08/2018] [Accepted: 11/24/2018] [Indexed: 12/15/2022]
Abstract
CD147 (basigin; EMMPRIN), hyaluronan, and hyaluronan receptors (e.g., CD44) are intimately involved in several phenomena that underlie malignancy. A major avenue whereby they influence tumor progression is most likely their role in the characteristics of cancer stem cells (CSCs), subpopulations of tumor cells that exhibit chemoresistance, invasiveness, and potent tumorigenicity. Both CD147 and hyaluronan have been strongly implicated in chemoresistance and invasiveness, and may be drivers of CSC characteristics, since current evidence indicates that both are involved in epithelial-mesenchymal transition, a crucial process in the acquisition of CSC properties. Hyaluronan is a prominent constituent of the tumor microenvironment whose interactions with cell surface receptors influence several signaling pathways that lead to chemoresistance and invasiveness. CD147 is an integral plasma membrane glycoprotein of the Ig superfamily and cofactor in assembly and activity of monocarboxylate transporters (MCTs). CD147 stimulates hyaluronan synthesis and interaction of hyaluronan with its receptors, in particular CD44 and LYVE-1, which in turn result in activation of multiprotein complexes containing members of the membrane-type matrix metalloproteinase, receptor tyrosine kinase, ABC drug transporter, or MCT families within lipid raft domains. Multivalent hyaluronan-receptor interactions are essential for formation or stabilization of these lipid raft complexes and for downstream signaling pathways or transporter activities. We conclude that stimulation of hyaluronan-receptor interactions by CD147 and the consequent activities of these complexes may be critical to the properties of CSCs and their role in malignancy. Anat Rec, 2019. © 2019 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Bryan P Toole
- Department of Regenerative Medicine & Cell Biology and Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina
| |
Collapse
|
86
|
Yunusova NV, Tugutova EA, Tamkovich SN, Kondakova IV. [The role of exosomal tetraspanins and proteases in tumor progression]. BIOMEDIT︠S︡INSKAI︠A︡ KHIMII︠A︡ 2019; 64:123-133. [PMID: 29723143 DOI: 10.18097/pbmc20186402123] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Major (CD9, CD63, CD81) and others (CD82, CD151, Tspan8) tetraspanins are widely represented in exosomes, where they interact with various proteins and form functional tetraspanin complexes. Tetraspanin complexes include proteases. Tetraspanin-associated exosomal proteases (ADAM proteases, MMPs, EMMPRIN) play an important role in the processes of cell motility, migration, invasion and formation of metastases. Also, a significant contribution to tumor progression is made by proteases that are not associated with tetraspanins. They destabilize intercellular contacts, promote migration and invasion of tumor cells, participate in the regulation of the expression IGF-I, VEGF and transcription factors activation/deactivation. The role of other proteases of exosomes in the processes of tumor progression is being clarified.
Collapse
Affiliation(s)
- N V Yunusova
- Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia; Siberian State Medical University, Tomsk, Russia
| | - E A Tugutova
- Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - S N Tamkovich
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia; Novosibirsk State University, Novosibirsk, Russia; Novosibirsk State Medical University, Novosibirsk, Russia
| | - I V Kondakova
- Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| |
Collapse
|
87
|
Kumar D, Vetrivel U, Parameswaran S, Subramanian KK. Structural insights on druggable hotspots in CD147: A bull's eye view. Life Sci 2019; 224:76-87. [DOI: 10.1016/j.lfs.2019.03.044] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 03/11/2019] [Accepted: 03/19/2019] [Indexed: 12/13/2022]
|
88
|
Wu XD, Zhang MY, Chen YT, Yao H, Zhang Q, Wang WJ, Fu DF, Wei RJ, Zhang JY, Li Y, Dang D, Bian HJ, Xu J, Chen ZN. Generation and Characterization of Fibroblast-Specific Basigin Knockout Mice. Mol Biotechnol 2019; 61:111-121. [PMID: 30539414 DOI: 10.1007/s12033-018-0141-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Basigin is a well-known extracellular stimulator of fibroblasts and may confer resistance to apoptosis of fibroblasts in vitro under some pathological status, but its exact function in fibroblasts and the underlying mechanism remain poorly understood. The systematic Basigin gene knockout leads to the perinatal lethality of mice, which limits the delineation of its function in vivo. In this study, we generated a fibroblast-specific Basigin knock-out mouse model and demonstrated the successful deletion of Basigin in fibroblasts. The fibroblast-specific deletion of Basigin did not influence the growth, fertility and the general condition of the mice. No obvious differences were found in the size, morphology, and histological structure of the major organs, including heart, liver, spleen, lung and kidney, between the knockout mice and the control mice. The deletion of Basigin in fibroblasts did not induce apoptosis in the tissues of the major organs. These results provide the first evidence that the fibroblast-specific Basigin knock-out mice could be a useful tool for exploring the function of Basigin in fibroblasts in vivo.
Collapse
Affiliation(s)
- Xiao-Dong Wu
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, State Key Laboratory of Cancer Biology, Fourth Military Medical University, No. 169 Changle West Road, Xi'an, 710032, China.,Center of Anesthesiology & Operation, Chinese PLA General Hospital, Beijing, 100853, China
| | - Meng-Yao Zhang
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, State Key Laboratory of Cancer Biology, Fourth Military Medical University, No. 169 Changle West Road, Xi'an, 710032, China.,Beijing Institute of Biotechnology, Beijing, 100071, China
| | - Ya-Tong Chen
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, State Key Laboratory of Cancer Biology, Fourth Military Medical University, No. 169 Changle West Road, Xi'an, 710032, China
| | - Hui Yao
- Department of Radiation Oncology, The First Peoples' Hospital of Changzhou, The Third Affiliated Hospital of Soochow University, Changzhou, 213000, China
| | - Qing Zhang
- Institute of Liver Surgery, General Hospital of Chinese People's Armed Police Forces, Beijing, 100039, China
| | - Wen-Jing Wang
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, State Key Laboratory of Cancer Biology, Fourth Military Medical University, No. 169 Changle West Road, Xi'an, 710032, China
| | - Da-Fu Fu
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, State Key Laboratory of Cancer Biology, Fourth Military Medical University, No. 169 Changle West Road, Xi'an, 710032, China
| | - Ren-Ji Wei
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, State Key Laboratory of Cancer Biology, Fourth Military Medical University, No. 169 Changle West Road, Xi'an, 710032, China
| | - Jia-Yu Zhang
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, State Key Laboratory of Cancer Biology, Fourth Military Medical University, No. 169 Changle West Road, Xi'an, 710032, China
| | - Yin Li
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, State Key Laboratory of Cancer Biology, Fourth Military Medical University, No. 169 Changle West Road, Xi'an, 710032, China
| | - Dan Dang
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, State Key Laboratory of Cancer Biology, Fourth Military Medical University, No. 169 Changle West Road, Xi'an, 710032, China
| | - Hui-Jie Bian
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, State Key Laboratory of Cancer Biology, Fourth Military Medical University, No. 169 Changle West Road, Xi'an, 710032, China
| | - Jing Xu
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, State Key Laboratory of Cancer Biology, Fourth Military Medical University, No. 169 Changle West Road, Xi'an, 710032, China.
| | - Zhi-Nan Chen
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, State Key Laboratory of Cancer Biology, Fourth Military Medical University, No. 169 Changle West Road, Xi'an, 710032, China.
| |
Collapse
|
89
|
Huet E, Jaroz C, Nguyen HQ, Belkacemi Y, de la Taille A, Stavrinides V, Whitaker H. Stroma in normal and cancer wound healing. FEBS J 2019; 286:2909-2920. [PMID: 30958920 DOI: 10.1111/febs.14842] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 02/18/2019] [Accepted: 04/05/2019] [Indexed: 12/28/2022]
Abstract
It is currently believed that stroma, the connective framework of biological tissues, plays a central role in normal wound healing and in cancer. In both these contexts, stromal cellular components such as activated fibroblasts interact with complex protein networks that include growth factors, structural protein or proteinases in order to initiate and sustain an extensive remodelling process. However, although this process is usually spatially and temporally self-limited, it is unregulated in the case of cancer and leads to uncontrolled cell proliferation and invasion within tissues, metastasis and therapeutic resistance. In this review, we outline the role of stroma in normal healing, cancer and post radiotherapy, with a particular focus on the crosstalk between normal or cancer cells and fibroblasts. Understanding these mechanisms is particularly important as several stromal components have been proposed as potential therapeutic targets.
Collapse
Affiliation(s)
- Eric Huet
- Université Paris-Est, UPEC, Créteil, France.,INSERM, U955, Equipe 7, Créteil, France.,Molecular Diagnostics and Therapeutics Group, Charles Bell House, Division of Surgery and Interventional Science, University College London, UK
| | | | | | - Yazid Belkacemi
- INSERM, U955, Equipe 7, Créteil, France.,AP-HP, Hôpitaux Universitaires Henri Mondor, Service d'oncologie-radiothérapie et Centre Sein Henri Mondor Créteil, France
| | - Alexandre de la Taille
- INSERM, U955, Equipe 7, Créteil, France.,AP-HP, Hôpitaux Universitaires Henri Mondor, Service d'urologie, Créteil, France
| | - Vasilis Stavrinides
- Molecular Diagnostics and Therapeutics Group, Charles Bell House, Division of Surgery and Interventional Science, University College London, UK
| | - Hayley Whitaker
- Molecular Diagnostics and Therapeutics Group, Charles Bell House, Division of Surgery and Interventional Science, University College London, UK
| |
Collapse
|
90
|
Choi D, Spinelli C, Montermini L, Rak J. Oncogenic Regulation of Extracellular Vesicle Proteome and Heterogeneity. Proteomics 2019; 19:e1800169. [PMID: 30561828 DOI: 10.1002/pmic.201800169] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 09/05/2018] [Indexed: 12/12/2022]
Abstract
Mutational and epigenetic driver events profoundly alter intercellular communication pathways in cancer. This effect includes deregulated release, molecular composition, and biological activity of extracellular vesicles (EVs), membranous cellular fragments ranging from a few microns to less than 100 nm in diameter and filled with bioactive molecular cargo (proteins, lipids, and nucleic acids). While EVs are usually classified on the basis of their physical properties and biogenetic mechanisms, recent analyses of their proteome suggest a larger than expected molecular diversity, a notion that is also supported by multicolour nano-flow cytometry and other emerging technology platforms designed to analyze single EVs. Both protein composition and EV diversity are markedly altered by oncogenic transformation, epithelial to mesenchymal transition, and differentiation of cancer stem cells. Interestingly, only a subset of EVs released from mutant cells may carry oncogenic proteins (e.g., EGFRvIII), hence, these EVs are often referred to as "oncosomes". Indeed, oncogenic transformation alters the repertoire of EV-associated proteins, increases the presence of pro-invasive cargo, and alters the composition of distinct EV populations. Molecular profiling of single EVs may reveal a more intricate effect of transforming events on the architecture of EV populations in cancer and shed new light on their biological role and diagnostic utility.
Collapse
Affiliation(s)
- Dongsic Choi
- Research Institute, Health Centre, Glen Site, McGill University, Montreal, Quebec, H4A 3J1, Canada
| | - Cristiana Spinelli
- Research Institute, Health Centre, Glen Site, McGill University, Montreal, Quebec, H4A 3J1, Canada
| | - Laura Montermini
- Research Institute, Health Centre, Glen Site, McGill University, Montreal, Quebec, H4A 3J1, Canada
| | - Janusz Rak
- Research Institute, Health Centre, Glen Site, McGill University, Montreal, Quebec, H4A 3J1, Canada
| |
Collapse
|
91
|
Simanovich E, Brod V, Rahat MA. Active Vaccination With EMMPRIN-Derived Multiple Antigenic Peptide (161-MAP) Reduces Angiogenesis in a Dextran Sodium Sulfate (DSS)-Induced Colitis Model. Front Immunol 2018; 9:2919. [PMID: 30619283 PMCID: PMC6295553 DOI: 10.3389/fimmu.2018.02919] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 11/28/2018] [Indexed: 12/26/2022] Open
Abstract
Ulcerative colitis (UC) is an autoimmune disease that affects the colon and shares many clinical and histological features with the dextran sulfate sodium (DSS)-induced colitis model in mice. Angiogenesis is a critical component in many autoimmune diseases, as well as in the DSS-induced colitis model, and is it partially mediated by EMMPRIN, a multifunctional protein that can induce the expression of both the potent pro-angiogenic vascular endothelial growth factor (VEGF) and matrix metalloproteinases (MMPs). We asked whether targeting EMMPRIN by active vaccination, using a novel, specific epitope in the protein, synthesized as a multiple antigenic peptide (MAP), could trigger beneficial effects in the DSS-induced colitic C57BL/6J mice. Mice were vaccinated with four boost injections (50 μg each) of either 161-MAP coding for the EMMPRIN epitope or the scrambled control peptide (Scr-MAP) emulsified in Freund's adjuvant. We show that male mice that were vaccinated with 161-MAP lost less weight, demonstrated improved disease activity indices (DAI), had reduced colitis histological score, and their colons were longer in comparison to mice vaccinated with the Scr-MAP. The 161-MAP vaccination also reduced serum and colon levels of EMMPRIN, colon concentrations of VEGF, MMP-9, and TGFβ, and vessel density assessed by CD31 staining. A similar effect was observed in female mice vaccinated with 161-MAP, including weight loss, colitis histological score, colon length, colon levels of EMMPRIN and colon concentrations of VEGF. However, for female mice, the changes in DAI values, EMMPRIN serum levels, and MMP-9 and TGFβ colon concentrations did not reach significance. We conclude that our strategy of alleviating autoimmunity in this model through targeting angiogenesis by actively vaccinating against EMMPRIN was successful and efficient in reducing angiogenesis.
Collapse
Affiliation(s)
| | - Vera Brod
- Immunotherapy Laboratory, Carmel Medical Center, Haifa, Israel
| | - Michal A Rahat
- Immunotherapy Laboratory, Carmel Medical Center, Haifa, Israel.,The Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
92
|
Go CK, Soboloff J. Hold the door: hPMCA1/neuroplastin interactions regulate Ca 2+-binding site accessibility. Cell Calcium 2018; 76:135-136. [PMID: 30401481 DOI: 10.1016/j.ceca.2018.10.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 10/23/2018] [Accepted: 10/23/2018] [Indexed: 02/08/2023]
Abstract
In a September 2018 paper published in Nature Communications, Gong et al. identified the domains through which human PMCA1 and neuroplastin (NPTN) interact. Upon binding, hPMCA1 TM domains separate T110 in TM1 and A370 in TM3 to reveal the Ca2+-binding site. Thus, NPTN is able to directly modulate the accessibility of cytosolic Ca2+ to PMCA.
Collapse
Affiliation(s)
- Christina K Go
- Fels Institute for Cancer Research and Molecular Biology, Temple University School of Medicine, Philadelphia, PA, 19140, United States
| | - Jonathan Soboloff
- Fels Institute for Cancer Research and Molecular Biology, Temple University School of Medicine, Philadelphia, PA, 19140, United States; Department of Medical Genetics & Molecular Biochemistry, Temple University School of Medicine, Philadelphia, PA, 19140, United States.
| |
Collapse
|
93
|
Schulz A, Chuquimia OD, Antypas H, Steiner SE, Sandoval RM, Tanner GA, Molitoris BA, Richter-Dahlfors A, Melican K. Protective vascular coagulation in response to bacterial infection of the kidney is regulated by bacterial lipid A and host CD147. Pathog Dis 2018; 76:5210089. [PMID: 30476069 PMCID: PMC7297223 DOI: 10.1093/femspd/fty087] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 11/23/2018] [Indexed: 01/26/2023] Open
Abstract
Bacterial infection of the kidney leads to a rapid cascade of host protective responses, many of which are still poorly understood. We have previously shown that following kidney infection with uropathogenic Escherichia coli (UPEC), vascular coagulation is quickly initiated in local perivascular capillaries that protects the host from progressing from a local infection to systemic sepsis. The signaling mechanisms behind this response have not however been described. In this study, we use a number of in vitro and in vivo techniques, including intravital microscopy, to identify two previously unrecognized components influencing this protective coagulation response. The acylation state of the Lipid A of UPEC lipopolysaccharide (LPS) is shown to alter the kinetics of local coagulation onset in vivo. We also identify epithelial CD147 as a potential host factor influencing infection-mediated coagulation. CD147 is expressed by renal proximal epithelial cells infected with UPEC, contingent to bacterial expression of the α-hemolysin toxin. The epithelial CD147 subsequently can activate tissue factor on endothelial cells, a primary step in the coagulation cascade. This study emphasizes the rapid, multifaceted response of the kidney tissue to bacterial infection and the interplay between host and pathogen during the early hours of renal infection.
Collapse
Affiliation(s)
- Anette Schulz
- Swedish Medical Nanoscience Center, Department of Neuroscience, Karolinska Institutet, SE-171 77, Stockholm, Sweden
| | - Olga D Chuquimia
- Swedish Medical Nanoscience Center, Department of Neuroscience, Karolinska Institutet, SE-171 77, Stockholm, Sweden
| | - Haris Antypas
- Swedish Medical Nanoscience Center, Department of Neuroscience, Karolinska Institutet, SE-171 77, Stockholm, Sweden
| | - Svava E Steiner
- Swedish Medical Nanoscience Center, Department of Neuroscience, Karolinska Institutet, SE-171 77, Stockholm, Sweden
| | - Ruben M Sandoval
- Indiana University School of Medicine, Roudebush VAMC, Indiana Center for Biological Microscopy, Indianapolis, IN 46202, USA
| | - George A Tanner
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Bruce A Molitoris
- Indiana University School of Medicine, Roudebush VAMC, Indiana Center for Biological Microscopy, Indianapolis, IN 46202, USA
| | - Agneta Richter-Dahlfors
- Swedish Medical Nanoscience Center, Department of Neuroscience, Karolinska Institutet, SE-171 77, Stockholm, Sweden
| | - Keira Melican
- Swedish Medical Nanoscience Center, Department of Neuroscience, Karolinska Institutet, SE-171 77, Stockholm, Sweden
| |
Collapse
|
94
|
Choi D, Montermini L, Kim DK, Meehan B, Roth FP, Rak J. The Impact of Oncogenic EGFRvIII on the Proteome of Extracellular Vesicles Released from Glioblastoma Cells. Mol Cell Proteomics 2018; 17:1948-1964. [PMID: 30006486 DOI: 10.1074/mcp.ra118.000644] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 06/16/2018] [Indexed: 12/21/2022] Open
Abstract
Glioblastoma multiforme (GBM) is a highly aggressive and heterogeneous form of primary brain tumors, driven by a complex repertoire of oncogenic alterations, including the constitutively active epidermal growth factor receptor (EGFRvIII). EGFRvIII impacts both cell-intrinsic and non-cell autonomous aspects of GBM progression, including cell invasion, angiogenesis and modulation of the tumor microenvironment. This is, at least in part, attributable to the release and intercellular trafficking of extracellular vesicles (EVs), heterogeneous membrane structures containing multiple bioactive macromolecules. Here we analyzed the impact of EGFRvIII on the profile of glioma EVs using isogenic tumor cell lines, in which this oncogene exhibits a strong transforming activity. We observed that EGFRvIII expression alters the expression of EV-regulating genes (vesiculome) and EV properties, including their protein composition. Using mass spectrometry, quantitative proteomic analysis and Gene Ontology terms filters, we observed that EVs released by EGFRvIII-transformed cells were enriched for extracellular exosome and focal adhesion related proteins. Among them, we validated the association of pro-invasive proteins (CD44, BSG, CD151) with EVs of EGFRvIII expressing glioma cells, and downregulation of exosomal markers (CD81 and CD82) relative to EVs of EGFRvIII-negative cells. Nano-flow cytometry revealed that the EV output from individual glioma cell lines was highly heterogeneous, such that only a fraction of vesicles contained specific proteins (including EGFRvIII). Notably, cells expressing EGFRvIII released EVs double positive for CD44/BSG, and these proteins also colocalized in cellular filopodia. We also detected the expression of homophilic adhesion molecules and increased homologous EV uptake by EGFRvIII-positive glioma cells. These results suggest that oncogenic EGFRvIII reprograms the proteome and uptake of GBM-related EVs, a notion with considerable implications for their biological activity and properties relevant for the development of EV-based cancer biomarkers.
Collapse
Affiliation(s)
- Dongsic Choi
- From the ‡Research Institute of the McGill University Health Centre, Glen Site, McGill University, Montreal, Quebec, H4A 3J1, Canada
| | - Laura Montermini
- From the ‡Research Institute of the McGill University Health Centre, Glen Site, McGill University, Montreal, Quebec, H4A 3J1, Canada
| | - Dae-Kyum Kim
- §Donnelly Centre and Departments of Molecular Genetics and Computer Science, University of Toronto, Toronto, Ontario, M5S 3E1, Canada.,¶Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, M5G 1X5, Canada
| | - Brian Meehan
- From the ‡Research Institute of the McGill University Health Centre, Glen Site, McGill University, Montreal, Quebec, H4A 3J1, Canada
| | - Frederick P Roth
- §Donnelly Centre and Departments of Molecular Genetics and Computer Science, University of Toronto, Toronto, Ontario, M5S 3E1, Canada.,¶Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, M5G 1X5, Canada.,‖Canadian Institute for Advanced Research, Toronto, Ontario, M5G 1M1, Canada
| | - Janusz Rak
- From the ‡Research Institute of the McGill University Health Centre, Glen Site, McGill University, Montreal, Quebec, H4A 3J1, Canada;
| |
Collapse
|
95
|
Li F, Zhang J, Guo J, Jia Y, Han Y, Wang Z. RNA interference targeting CD147 inhibits metastasis and invasion of human breast cancer MCF-7 cells by downregulating MMP-9/VEGF expression. Acta Biochim Biophys Sin (Shanghai) 2018; 50:676-684. [PMID: 29901696 DOI: 10.1093/abbs/gmy062] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Indexed: 12/18/2022] Open
Abstract
Breast cancer is one of the most common malignancies. It is necessary to identify new markers for predicting tumor progression and therapeutic molecular targets. It has been reported that CD147 is one of the most commonly expressed proteins in primary tumors and in metastatic cells. In this study, we investigated the role of CD147 in human breast cancer metastasis and invasion, and examined its underlying molecular mechanisms. Immunohistochemistry results revealed high expression of CD147 in human breast tumor tissues, which was positively correlated with the malignancy of breast cancer. MCF-7 cells were transfected with CD147 siRNA eukaryotic expression vector, which resulted in significant knockdown of CD147. We found that CD147 siRNA dramatically inhibited cell proliferation, metastasis, and invasion. Furthermore, our results demonstrated that CD147 siRNA inhibited the synthesis of matrix metalloproteinase 9 (MMP-9) but had no significant effect on matrix metalloproteinase 2 (MMP-2). In addition, CD147 siRNA significantly inhibited the production of vascular endothelial growth factor (VEGF). Taken together, these data indicate that CD147 promotes breast cancer cell proliferation, metastasis, and invasion by modulating MMP-9 and VEGF expression. Thus, CD147 may be used as an important indicator for the judgment of malignant behavior of breast cancer, and may be a potential novel target for breast cancer therapy.
Collapse
Affiliation(s)
- Fang Li
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan, China
- Department of Oncology, Shanxi Academy of Medical Sciences, Shanxi Dayi Hospital, Taiyuan, China
| | - Junping Zhang
- Department of Oncology, Shanxi Academy of Medical Sciences, Shanxi Dayi Hospital, Taiyuan, China
| | - Jiqiang Guo
- Department of Oncology, Shanxi Academy of Medical Sciences, Shanxi Dayi Hospital, Taiyuan, China
| | - Yuan Jia
- Department of Oncology, Shanxi Academy of Medical Sciences, Shanxi Dayi Hospital, Taiyuan, China
| | - Yaping Han
- Department of Oncology, Shanxi Academy of Medical Sciences, Shanxi Dayi Hospital, Taiyuan, China
| | - Zhuanhua Wang
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan, China
| |
Collapse
|
96
|
Ru NY, Cui LB, Jiao B, Zhang L, Jiang S, Yu ZB. Glycosylated CD147 reduces myocardial collagen cross-linking in cardiac hypertrophy. J Cell Biochem 2018; 119:8022-8034. [PMID: 29377254 DOI: 10.1002/jcb.26713] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 01/24/2018] [Indexed: 02/06/2023]
Abstract
The mechanism of transition from chronic pressure overload-induced cardiac hypertrophy to heart failure is still unclear. Angiotensin II (Ang II) may be an important factor that mediates the transition in the end-stage of cardiac hypertrophy. In the present study, Goldblatt two-kidney one-clip (2K1C) rat model was used to simulate Ang II-induced hypertension. The elevated Ang II not only induced the concentric hypertrophy of left ventricle and cardiac fibrosis, but also increased the expression and glycosylation of CD147 in 2K1C rats. The left ventricular structure and function detected by echocardiogram showed a sign of the transition from cardiac hypertrophy to heart failure in 16 weeks of 2K1C rats. Ang II can activate N-acetylglucosamine transferase V (GnT-V), a key enzyme for CD147 glycosylation. Retinoic acid, an agonist of GnT-V, further increased glycosylated CD147, and activated matrix metalloproteinase-2/-9 (MMP-2 and MMP-9) in the hypertrophied left ventricle of 2K1C rat. Meanwhile, collagen cross-linking in the hypertrophied left ventricle significantly reduced in 2K1C rats. On the contrary, tunicamycin, an inhibitor of N-glycan biosynthesis, inhibited glycosylation of CD147 and activity of MMP-2 and MMP-9, and then maintained a stable of collagen cross-linking in the 2K1C rat hearts. The above results suggested that Ang II increased glycosylated CD147 which activated MMP-2 and MMP-9. Collagens were degraded by the activated MMPs and then reduced collagen cross-linking. Finally, the hypertrophied left ventricle was progressively dilated in chronic pressure overload due to losing the limitation of collagen cross-linking. Therefore, the compensated hypertrophy of left ventricle gradually transited to congestive heart failure.
Collapse
Affiliation(s)
- Ning-Yu Ru
- Department of Aerospace Physiology, Fourth Military Medical University, Xi'an, China
| | - Long-Biao Cui
- Department of Aerospace Physiology, Fourth Military Medical University, Xi'an, China.,School of Medical Psychology, Fourth Military Medical University, Xi'an, China
| | - Bo Jiao
- Department of Aerospace Physiology, Fourth Military Medical University, Xi'an, China
| | - Lin Zhang
- Department of Aerospace Physiology, Fourth Military Medical University, Xi'an, China
| | - Shuai Jiang
- Department of Aerospace Physiology, Fourth Military Medical University, Xi'an, China
| | - Zhi-Bin Yu
- Department of Aerospace Physiology, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
97
|
Elevated CD147 expression is associated with shorter overall survival in non-small cell lung cancer. Oncotarget 2018; 8:37673-37680. [PMID: 28445149 PMCID: PMC5514939 DOI: 10.18632/oncotarget.16948] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 03/13/2017] [Indexed: 01/11/2023] Open
Abstract
A number of studies have reported on the prognostic role of CD147 expression in non-small cell lung cancer (NSCLC); however, the results remain controversial. This study aims to investigate the impact of CD147 on the prognosis of NSCLC by means of a meta-analysis. A literature search was performed for relevant studies published before October 29, 2016. The hazard ratios (HRs), odds ratios (ORs), and 95% confidence intervals (CIs) were calculated as effective measures. Sensitivity analysis and publication bias examination were also conducted. Ten eligible studies with a total of 1605 patients were included in this meta-analysis. CD147 overexpression was correlated with poor overall survival (OS) (HR=1.59, 95% CI=1.32-1.91, p<0.001). Elevated CD147 expression was associated with the presence of lymph node metastasis (OR=2.31, 95% CI=1.74-3.07, p<0.001) and advanced TNM stage (OR=3.03, 95% CI=1.24-7.39, p=0.015). However, no significant association between CD147 and sex, age, differentiation, or histology was found. No evidence of significant publication bias was identified. This meta-analysis revealed that overexpression of CD147 was associated with shorter OS, the presence of lymph node metastasis and advanced TNM stage in NSCLC. Therefore, CD147 could serve as a potential prognostic marker for NSCLC.
Collapse
|
98
|
Simanovich E, Brod V, Rahat MM, Rahat MA. Function of miR-146a-5p in Tumor Cells As a Regulatory Switch between Cell Death and Angiogenesis: Macrophage Therapy Revisited. Front Immunol 2018; 8:1931. [PMID: 29354134 PMCID: PMC5760497 DOI: 10.3389/fimmu.2017.01931] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Accepted: 12/15/2017] [Indexed: 12/13/2022] Open
Abstract
Tumors survive and progress by evading killing mechanisms of the immune system, and by generating a tumor microenvironment (TME) that reprograms macrophages in situ to produce factors that support tumor growth, angiogenesis, and metastasis. We have previously shown that by blocking the translation of the enzyme inducible nitric oxide synthase (iNOS), miR-146a-5p inhibits nitric oxide (NO) production in a mouse renal carcinoma cell line (RENCA), thereby endowing RENCA cells with resistance to macrophage-induced cell death. Here, we expand these findings to the mouse colon carcinoma CT26 cell line and demonstrate that neutralizing miR-146a-5p's activity by transfecting both RENCA and CT26 cells with its antagomir restored iNOS expression and NO production and enhanced susceptibility to macrophage-induced cell death (by 48 and 25%, respectively, p < 0.001). Moreover, miR-146a-5p suppression simultaneously inhibited the expression of the pro-angiogenic protein EMMPRIN (threefolds, p < 0.001), leading to reduced MMP-9 and vascular endothelial growth factor secretion (twofolds and threefolds, respectively, p < 0.05), and reduced angiogenesis, as estimated by in vitro tube formation and scratch assays. When we injected tumors with pro-inflammatory-stimulated RAW 264.7 macrophages together with i.v. injection of the miR-146a-5p antagomir, we found inhibited tumor growth (sixfolds, p < 0.001) and angiogenesis (twofolds, p < 0.01), and increased apoptosis (twofolds, p < 0.01). This combination therapy increased nitrites and reduced TGFβ concentrations in tumor lysates, alleviated immune suppression, and allowed enhanced infiltration of cytotoxic CD8+ T cells. Thus, miR-146a-5p functions as a control switch between angiogenesis and cell death, and its neutralization can manipulate the crosstalk between tumor cells and macrophages and profoundly change the TME. This strategy can be therapeutically utilized in combination with the macrophage therapy approach to induce the immune system to successfully attack the tumor, and should be further explored as a new therapy for the treatment of cancer.
Collapse
Affiliation(s)
- Elina Simanovich
- Immunotherapy Laboratory, Carmel Medical Center, Haifa, Israel.,The Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Vera Brod
- Immunotherapy Laboratory, Carmel Medical Center, Haifa, Israel
| | - Maya M Rahat
- Immunotherapy Laboratory, Carmel Medical Center, Haifa, Israel
| | - Michal A Rahat
- Immunotherapy Laboratory, Carmel Medical Center, Haifa, Israel.,The Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
99
|
Jin S, Ding P, Chu P, Li H, Sun J, Liang D, Song F, Xia B. Zn(II) can mediate self-association of the extracellular C-terminal domain of CD147. Protein Cell 2017; 9:310-315. [PMID: 28822092 PMCID: PMC5829271 DOI: 10.1007/s13238-017-0443-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Affiliation(s)
- Shujuan Jin
- Beijing Nuclear Magnetic Resonance Center, Peking University, Beijing, 100871, China.,College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Pengfei Ding
- Beijing Nuclear Magnetic Resonance Center, Peking University, Beijing, 100871, China.,School of Life Sciences, Peking University, Beijing, 100871, China
| | - Pengxiang Chu
- Beijing Nuclear Magnetic Resonance Center, Peking University, Beijing, 100871, China.,College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Hongwei Li
- Beijing Nuclear Magnetic Resonance Center, Peking University, Beijing, 100871, China.,College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Jianbo Sun
- College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Dehai Liang
- College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Fei Song
- Cell Engineering Research Center and Department of Cell Biology, State Key Laboratory of Cancer Biology, The Fourth Military Medical University, Xi'an, 710032, China
| | - Bin Xia
- Beijing Nuclear Magnetic Resonance Center, Peking University, Beijing, 100871, China. .,College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China. .,School of Life Sciences, Peking University, Beijing, 100871, China.
| |
Collapse
|
100
|
High-Fat Feeding Protects Mice From Ventilator-Induced Lung Injury, Via Neutrophil-Independent Mechanisms. Crit Care Med 2017; 45:e831-e839. [PMID: 28426531 DOI: 10.1097/ccm.0000000000002403] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Obesity has a complex impact on acute respiratory distress syndrome patients, being associated with increased likelihood of developing the syndrome but reduced likelihood of dying. We propose that such observations are potentially explained by a model in which obesity influences the iatrogenic injury that occurs subsequent to intensive care admission. This study therefore investigated whether fat feeding protected mice from ventilator-induced lung injury. DESIGN In vivo study. SETTING University research laboratory. SUBJECTS Wild-type C57Bl/6 mice or tumor necrosis factor receptor 2 knockout mice, either fed a high-fat diet for 12-14 weeks, or age-matched lean controls. INTERVENTIONS Anesthetized mice were ventilated with injurious high tidal volume ventilation for periods up to 180 minutes. MEASUREMENTS AND MAIN RESULTS Fat-fed mice showed clear attenuation of ventilator-induced lung injury in terms of respiratory mechanics, blood gases, and pulmonary edema. Leukocyte recruitment and activation within the lungs were not significantly attenuated nor were a host of circulating or intra-alveolar inflammatory cytokines. However, intra-alveolar matrix metalloproteinase activity and levels of the matrix metalloproteinase cleavage product soluble receptor for advanced glycation end products were significantly attenuated in fat-fed mice. This was associated with reduced stretch-induced CD147 expression on lung epithelial cells. CONCLUSIONS Consumption of a high-fat diet protects mice from ventilator-induced lung injury in a manner independent of neutrophil recruitment, which we postulate instead arises through blunted up-regulation of CD147 expression and subsequent activation of intra-alveolar matrix metalloproteinases. These findings may open avenues for therapeutic manipulation in acute respiratory distress syndrome and could have implications for understanding the pathogenesis of lung disease in obese patients.
Collapse
|