51
|
Neupane S, Andersen EJ, Neupane A, Nepal MP. Genome-Wide Identification of NBS-Encoding Resistance Genes in Sunflower (Helianthus annuus L.). Genes (Basel) 2018; 9:genes9080384. [PMID: 30061549 PMCID: PMC6115920 DOI: 10.3390/genes9080384] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 07/17/2018] [Accepted: 07/20/2018] [Indexed: 01/08/2023] Open
Abstract
Nucleotide Binding Site—Leucine-Rich Repeat (NBS-LRR) genes encode disease resistance proteins involved in plants’ defense against their pathogens. Although sunflower is affected by many diseases, only a few molecular details have been uncovered regarding pathogenesis and resistance mechanisms. Recent availability of sunflower whole genome sequences in publicly accessible databases allowed us to accomplish a genome-wide identification of Toll-interleukin-1 receptor-like Nucleotide-binding site Leucine-rich repeat (TNL), Coiled Coil (CC)-NBS-LRR (CNL), Resistance to powdery mildew8 (RPW8)-NBS-LRR (RNL) and NBS-LRR (NL) protein encoding genes. Hidden Markov Model (HMM) profiling of 52,243 putative protein sequences from sunflower resulted in 352 NBS-encoding genes, among which 100 genes belong to CNL group including 64 genes with RX_CC like domain, 77 to TNL, 13 to RNL, and 162 belong to NL group. We also identified signal peptides and nuclear localization signals present in the identified genes and their homologs. We found that NBS genes were located on all chromosomes and formed 75 gene clusters, one-third of which were located on chromosome 13. Phylogenetic analyses between sunflower and Arabidopsis NBS genes revealed a clade-specific nesting pattern in CNLs, with RNLs nested in the CNL-A clade, and species-specific nesting pattern for TNLs. Surprisingly, we found a moderate bootstrap support (BS = 50%) for CNL-A clade being nested within TNL clade making both the CNL and TNL clades paraphyletic. Arabidopsis and sunflower showed 87 syntenic blocks with 1049 high synteny hits between chromosome 5 of Arabidopsis and chromosome 6 of sunflower. Expression data revealed functional divergence of the NBS genes with basal level tissue-specific expression. This study represents the first genome-wide identification of NBS genes in sunflower paving avenues for functional characterization and potential crop improvement.
Collapse
Affiliation(s)
- Surendra Neupane
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57007, USA.
| | - Ethan J Andersen
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57007, USA.
| | - Achal Neupane
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57007, USA.
| | - Madhav P Nepal
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57007, USA.
| |
Collapse
|
52
|
Takahashi T, Murano T, Ishikawa A. SOBIR1 and AGB1 independently contribute to nonhost resistance to Pyricularia oryzae (syn. Magnaporthe oryzae) in Arabidopsis thaliana. Biosci Biotechnol Biochem 2018; 82:1922-1930. [PMID: 30022707 DOI: 10.1080/09168451.2018.1498727] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Rice blast caused by Pyricularia oryzae (syn. Magnaporthe oryzae) is a disease devastating to rice. We have studied the Arabidopsis-P. oryzae pathosystem as a model system for nonhost resistance (NHR) and found that SOBIR1, but not BAK1, is a positive regulator of NHR to P. oryzae in Arabidopsis. AGB1 is also involved in NHR. However, the genetic interactions between SOBIR1, BAK1, and AGB1 are uncharacterized. In this study, we delineated the genetic interactions between SOBIR1, BAK1, and AGB1 in NHR to P. oryzae in Arabidopsis and found SOBIR1 and AGB1 independently control NHR to P. oryzae in Arabidopsis pen2-1 mutant plants. Furthermore, XLG2, but not TMM, has a positive role in penetration resistance to P. oryzae in Arabidopsis pen2-1 mutant plants. Our study characterized genetic interactions in Arabidopsis NHR. Abbreviations: PRR: pattern recognition receptor, RLK: receptor-like kinase, RLP: receptor-like protein, BAK1: BRASSINOSTEROID INSENSITIVE 1-ASSOCIATED RECEPTOR KINASE 1, BIR1: BAK1-INTERACTING RECEPTOR-LIKE KINASE 1, SOBIR1: SUPPRESSOR OF BIR1-1-1, AGB1: ARABIDOPSIS G PROTEIN ß-SUBUNIT 1, XLG2: EXTRA-LARGE G PROTEIN 2.
Collapse
Affiliation(s)
- Toshiharu Takahashi
- a Department of Bioscience and Biotechnology , Fukui Prefectural University , Fukui , Japan
| | - Tomoya Murano
- a Department of Bioscience and Biotechnology , Fukui Prefectural University , Fukui , Japan
| | - Atsushi Ishikawa
- a Department of Bioscience and Biotechnology , Fukui Prefectural University , Fukui , Japan
| |
Collapse
|
53
|
Sopeña-Torres S, Jordá L, Sánchez-Rodríguez C, Miedes E, Escudero V, Swami S, López G, Piślewska-Bednarek M, Lassowskat I, Lee J, Gu Y, Haigis S, Alexander D, Pattathil S, Muñoz-Barrios A, Bednarek P, Somerville S, Schulze-Lefert P, Hahn MG, Scheel D, Molina A. YODA MAP3K kinase regulates plant immune responses conferring broad-spectrum disease resistance. THE NEW PHYTOLOGIST 2018; 218:661-680. [PMID: 29451312 DOI: 10.1111/nph.15007] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 12/11/2017] [Indexed: 06/08/2023]
Abstract
Mitogen-activated protein kinases (MAPKs) cascades play essential roles in plants by transducing developmental cues and environmental signals into cellular responses. Among the latter are microbe-associated molecular patterns perceived by pattern recognition receptors (PRRs), which trigger immunity. We found that YODA (YDA) - a MAPK kinase kinase regulating several Arabidopsis developmental processes, like stomatal patterning - also modulates immune responses. Resistance to pathogens is compromised in yda alleles, whereas plants expressing the constitutively active YDA (CA-YDA) protein show broad-spectrum resistance to fungi, bacteria, and oomycetes with different colonization modes. YDA functions in the same pathway as ERECTA (ER) Receptor-Like Kinase, regulating both immunity and stomatal patterning. ER-YDA-mediated immune responses act in parallel to canonical disease resistance pathways regulated by phytohormones and PRRs. CA-YDA plants exhibit altered cell-wall integrity and constitutively express defense-associated genes, including some encoding putative small secreted peptides and PRRs whose impairment resulted in enhanced susceptibility phenotypes. CA-YDA plants show strong reprogramming of their phosphoproteome, which contains protein targets distinct from described MAPKs substrates. Our results suggest that, in addition to stomata development, the ER-YDA pathway regulates an immune surveillance system conferring broad-spectrum disease resistance that is distinct from the canonical pathways mediated by described PRRs and defense hormones.
Collapse
Affiliation(s)
- Sara Sopeña-Torres
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus Montegancedo UPM, 28223, Pozuelo de Alarcón (Madrid), Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, 28040, Madrid, Spain
| | - Lucía Jordá
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus Montegancedo UPM, 28223, Pozuelo de Alarcón (Madrid), Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, 28040, Madrid, Spain
| | - Clara Sánchez-Rodríguez
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus Montegancedo UPM, 28223, Pozuelo de Alarcón (Madrid), Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, 28040, Madrid, Spain
| | - Eva Miedes
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus Montegancedo UPM, 28223, Pozuelo de Alarcón (Madrid), Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, 28040, Madrid, Spain
| | - Viviana Escudero
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus Montegancedo UPM, 28223, Pozuelo de Alarcón (Madrid), Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, 28040, Madrid, Spain
| | - Sanjay Swami
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus Montegancedo UPM, 28223, Pozuelo de Alarcón (Madrid), Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, 28040, Madrid, Spain
| | - Gemma López
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus Montegancedo UPM, 28223, Pozuelo de Alarcón (Madrid), Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, 28040, Madrid, Spain
| | | | - Ines Lassowskat
- Department of Stress & Developmental Biology, Leibniz-Institut für Pflanzenbiochemie, Weinberg 3, D06120, Halle (Saale), Germany
| | - Justin Lee
- Department of Stress & Developmental Biology, Leibniz-Institut für Pflanzenbiochemie, Weinberg 3, D06120, Halle (Saale), Germany
| | - Yangnan Gu
- Department of Biology, Duke University, PO Box 90338, Durham, NC, 27708, USA
| | - Sabine Haigis
- Department of Plant-Microbe Interactions, Max Planck Institut für Züchtungsforschung, Carl-von-Linné-Weg 10, D50829, Cologne, Germany
| | - Danny Alexander
- Metabolon Inc., 617 Davis Drive, Suite 400, Durham, NC, 27713, USA
| | - Sivakumar Pattathil
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, 30605, USA
| | - Antonio Muñoz-Barrios
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus Montegancedo UPM, 28223, Pozuelo de Alarcón (Madrid), Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, 28040, Madrid, Spain
| | - Pawel Bednarek
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704, Poznan, Poland
| | - Shauna Somerville
- Energy Biosciences Institute, University of California, 94720, Berkeley, CA, USA
| | - Paul Schulze-Lefert
- Department of Plant-Microbe Interactions, Max Planck Institut für Züchtungsforschung, Carl-von-Linné-Weg 10, D50829, Cologne, Germany
| | - Michael G Hahn
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, 30605, USA
| | - Dierk Scheel
- Department of Stress & Developmental Biology, Leibniz-Institut für Pflanzenbiochemie, Weinberg 3, D06120, Halle (Saale), Germany
| | - Antonio Molina
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus Montegancedo UPM, 28223, Pozuelo de Alarcón (Madrid), Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, 28040, Madrid, Spain
| |
Collapse
|
54
|
Bacete L, Mélida H, Miedes E, Molina A. Plant cell wall-mediated immunity: cell wall changes trigger disease resistance responses. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 93:614-636. [PMID: 29266460 DOI: 10.1111/tpj.13807] [Citation(s) in RCA: 282] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 12/07/2017] [Accepted: 12/14/2017] [Indexed: 05/18/2023]
Abstract
Plants have evolved a repertoire of monitoring systems to sense plant morphogenesis and to face environmental changes and threats caused by different attackers. These systems integrate different signals into overreaching triggering pathways which coordinate developmental and defence-associated responses. The plant cell wall, a dynamic and complex structure surrounding every plant cell, has emerged recently as an essential component of plant monitoring systems, thus expanding its function as a passive defensive barrier. Plants have a dedicated mechanism for maintaining cell wall integrity (CWI) which comprises a diverse set of plasma membrane-resident sensors and pattern recognition receptors (PRRs). The PRRs perceive plant-derived ligands, such as peptides or wall glycans, known as damage-associated molecular patterns (DAMPs). These DAMPs function as 'danger' alert signals activating DAMP-triggered immunity (DTI), which shares signalling components and responses with the immune pathways triggered by non-self microbe-associated molecular patterns that mediate disease resistance. Alteration of CWI by impairment of the expression or activity of proteins involved in cell wall biosynthesis and/or remodelling, as occurs in some plant cell wall mutants, or by wall damage due to colonization by pathogens/pests, activates specific defensive and growth responses. Our current understanding of how these alterations of CWI are perceived by the wall monitoring systems is scarce and few plant sensors/PRRs and DAMPs have been characterized. The identification of these CWI sensors and PRR-DAMP pairs will help us to understand the immune functions of the wall monitoring system, and might allow the breeding of crop varieties and the design of agricultural strategies that would enhance crop disease resistance.
Collapse
Affiliation(s)
- Laura Bacete
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus de Montegancedo UPM, 28223, Pozuelo de Alarcón, Madrid, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaría y de Biosistemas, UPM, 28040, Madrid, Spain
| | - Hugo Mélida
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus de Montegancedo UPM, 28223, Pozuelo de Alarcón, Madrid, Spain
| | - Eva Miedes
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus de Montegancedo UPM, 28223, Pozuelo de Alarcón, Madrid, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaría y de Biosistemas, UPM, 28040, Madrid, Spain
| | - Antonio Molina
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus de Montegancedo UPM, 28223, Pozuelo de Alarcón, Madrid, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaría y de Biosistemas, UPM, 28040, Madrid, Spain
| |
Collapse
|
55
|
Yamchi A, Ben C, Rossignol M, Zareie SR, Mirlohi A, Sayed-Tabatabaei BE, Pichereaux C, Sarrafi A, Rickauer M, Gentzbittel L. Proteomics analysis ofMedicago truncatularesponse to infection by the phytopathogenic bacteriumRalstonia solanacearumpoints to jasmonate and salicylate defence pathways. Cell Microbiol 2018; 20. [DOI: 10.1111/cmi.12796] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Revised: 10/19/2017] [Accepted: 10/19/2017] [Indexed: 01/01/2023]
Affiliation(s)
- Ahad Yamchi
- Department of Plant Breeding and Biotechnology; Gorgan University of Agricultural Sciences and Natural Resources; Gorgan Iran
| | - Cécile Ben
- EcoLab; Université de Toulouse, CNRS, INPT, UPS; Toulouse France
| | - Michel Rossignol
- Universite de Toulouse, IFR40, Plateforme Protéomique du Génopole Toulouse Midi-Pyrénées; Institut de Pharmacologie et de Biologie Structurale; CNRS UMR 5089, 31077 Toulouse France
| | - Sayed Reza Zareie
- Department of Agricultural biotechnology, College of Agriculture; Isfahan University of Technology; 84156-83111 Isfahan Iran
| | - Aghafakhr Mirlohi
- Department of Agricultural biotechnology, College of Agriculture; Isfahan University of Technology; 84156-83111 Isfahan Iran
| | | | - Carole Pichereaux
- Universite de Toulouse, IFR40, Plateforme Protéomique du Génopole Toulouse Midi-Pyrénées; Institut de Pharmacologie et de Biologie Structurale; CNRS UMR 5089, 31077 Toulouse France
| | - Ahmad Sarrafi
- EcoLab; Université de Toulouse, CNRS, INPT, UPS; Toulouse France
| | - Martina Rickauer
- EcoLab; Université de Toulouse, CNRS, INPT, UPS; Toulouse France
| | | |
Collapse
|
56
|
Kimura Y, Tasaka M, Torii KU, Uchida N. ERECTA-family genes coordinate stem cell functions between the epidermal and internal layers of the shoot apical meristem. Development 2018; 145:dev.156380. [PMID: 29217754 DOI: 10.1242/dev.156380] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 11/20/2017] [Indexed: 01/20/2023]
Abstract
The epidermal cell layer and the tissues that lie underneath have different intrinsic functions during plant development. The stem cells within the shoot apical meristem (SAM) that give rise to aerial structures are located in the epidermal and internal tissue layers. However, our understanding of how the functions of these stem cells are coordinated across tissue layers so stem cells can behave as a single population remains limited. WUSCHEL (WUS) functions as a master regulator of stem cell activity. Here, we show that loss of function in the ERECTA (ER)-family receptor kinase genes can rescue the mutant phenotype of wus plants (loss of stem cells), as demonstrated by the reinstated expression of a stem cell marker gene in the SAM epidermis. Localized ER expression in the epidermis can suppress the SAM phenotype caused by loss of ER-family activity. Furthermore, the CLAVATA3- and cytokinin-induced outputs, which contribute to stem cell homeostasis, are dysfunctional in a tissue layer-specific manner in ER-family mutants. Collectively, our findings suggest that the ER family plays a role in the coordination of stem cell behavior between different SAM tissue layers.
Collapse
Affiliation(s)
- Yuka Kimura
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan.,Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8602, Japan
| | - Masao Tasaka
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, 630-0192, Japan
| | - Keiko U Torii
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan .,Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8602, Japan.,Department of Biology, University of Washington, Seattle, WA 98195, USA.,Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
| | - Naoyuki Uchida
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan .,Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8602, Japan
| |
Collapse
|
57
|
Zhang Y, Li S, Xue S, Yang S, Huang J, Wang L. Phylogenetic and CRISPR/Cas9 Studies in Deciphering the Evolutionary Trajectory and Phenotypic Impacts of Rice ERECTA Genes. FRONTIERS IN PLANT SCIENCE 2018; 9:473. [PMID: 29692796 PMCID: PMC5902711 DOI: 10.3389/fpls.2018.00473] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Accepted: 03/26/2018] [Indexed: 05/03/2023]
Abstract
The ERECTA family genes (ERfs) have been found to play diverse functions in Arabidopsis, including controlling cell proliferation and cell growth, regulating stomata patterning, and responding to various stresses. This wide range of functions has rendered them as a potential candidate for crop improvement. However, information on their functional roles, particularly their morphological impact, in crop genomes, such as rice, is limited. Here, through evolutionary prediction, we first depict the evolutionary trajectory of the ER family, and show that the ER family is actually highly conserved across different species, suggesting that most of their functions may also be observed in other plant species. We then take advantage of the CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats-associated nuclease 9) system to assess their morphological impact on one of the most important crops, rice. Loss-of-function mutants of OsER1 and OsER2 display shortened plant stature and reduced panicle size, suggesting they possibly also functioned in regulating cell proliferation and cell growth in rice. In addition to functions similar to that in Arabidopsis, we also find clues that rice ERfs may play unique functional roles. The OsER2 displayed more severe phenotypic changes than OsER1, indicating putative differentiation in their functions. The OsERL might be of essential in its function, and the proper function of all three rice ER genes might be dependent of their genetic background. Future investigations relating to these functions are key to exploiting ERfs in crop development.
Collapse
Affiliation(s)
| | | | | | | | - Ju Huang
- *Correspondence: Ju Huang, Long Wang,
| | - Long Wang
- *Correspondence: Ju Huang, Long Wang,
| |
Collapse
|
58
|
Abstract
Plant peptides secreted as signal molecular to trigger cell-to-cell signaling are indispensable for plant growth and defense processes. Preciously, it is regraded some plant peptides function in plant growth and development, whereas others regulate defense response in plant-microbe interactions. However, this prejudice is got rid due to more and more evidence showed growth-related plant peptides also exhibit bifunctional roles in plant defense response against different microbial pathogens. Here we provide a mini-review of reported types of plant peptides, including their basic information, reported receptor ligands, and especially direct or indirect roles in plant immune responses.
Collapse
Affiliation(s)
- Z. Hu
- Department of Horticulture, Zhejiang University, Hangzhou, P.R. China
| | - H. Zhang
- Department of Horticulture, Zhejiang University, Hangzhou, P.R. China
| | - K. Shi
- Department of Horticulture, Zhejiang University, Hangzhou, P.R. China
- CONTACT Kai Shi Department of Horticulture, Zhejiang University, Hangzhou, P.R. China
| |
Collapse
|
59
|
Goff KE, Ramonell KM. The Role and Regulation of Receptor-Like Kinases in Plant Defense. GENE REGULATION AND SYSTEMS BIOLOGY 2017. [DOI: 10.1177/117762500700100015] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Receptor-like kinases (RLKs) in plants are a large superfamily of proteins that are structurally similar. RLKs are involved in a diverse array of plant responses including development, growth, hormone perception and the response to pathogens. Current studies have focused attention on plant receptor-like kinases as an important class of sentinels acting in plant defense responses. RLKs have been identified that act in both broad-spectrum, elicitor-initiated defense responses and as dominant resistance (R) genes in race-specific pathogen defense. Most defense-related RLKs are of the leucine-rich repeat (LRR) subclass although new data are highlighting other classes of RLKs as important players in defense responses. As our understanding of RLK structure, activation and signaling has expanded, the role of the ubiquitin/proteasome system in the regulation of these receptors has emerged as a central theme.
Collapse
Affiliation(s)
- Kerry E. Goff
- Department of Biological Sciences, Box 870344, The University of Alabama, Tuscaloosa, AL 35487-0344 U.S.A
| | - Katrina M. Ramonell
- Department of Biological Sciences, Box 870344, The University of Alabama, Tuscaloosa, AL 35487-0344 U.S.A
| |
Collapse
|
60
|
Gehring C, Turek IS. Cyclic Nucleotide Monophosphates and Their Cyclases in Plant Signaling. FRONTIERS IN PLANT SCIENCE 2017; 8:1704. [PMID: 29046682 PMCID: PMC5632652 DOI: 10.3389/fpls.2017.01704] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 09/19/2017] [Indexed: 05/19/2023]
Abstract
The cyclic nucleotide monophosphates (cNMPs), and notably 3',5'-cyclic guanosine monophosphate (cGMP) and 3',5'-cyclic adenosine monophosphate (cAMP) are now accepted as key signaling molecules in many processes in plants including growth and differentiation, photosynthesis, and biotic and abiotic defense. At the single molecule level, we are now beginning to understand how cNMPs modify specific target molecules such as cyclic nucleotide-gated channels, while at the systems level, a recent study of the Arabidopsis cNMP interactome has identified novel target molecules with specific cNMP-binding domains. A major advance came with the discovery and characterization of a steadily increasing number of guanylate cyclases (GCs) and adenylate cyclases (ACs). Several of the GCs are receptor kinases and include the brassinosteroid receptor, the phytosulfokine receptor, the Pep receptor, the plant natriuretic peptide receptor as well as a nitric oxide sensor. We foresee that in the near future many more molecular mechanisms and biological roles of GCs and ACs and their catalytic products will be discovered and further establish cNMPs as a key component of plant responses to the environment.
Collapse
Affiliation(s)
- Chris Gehring
- Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| | - Ilona S. Turek
- Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- Leibniz Institute of Plant Biochemistry, Halle, Germany
| |
Collapse
|
61
|
Aoun N, Tauleigne L, Lonjon F, Deslandes L, Vailleau F, Roux F, Berthomé R. Quantitative Disease Resistance under Elevated Temperature: Genetic Basis of New Resistance Mechanisms to Ralstonia solanacearum. FRONTIERS IN PLANT SCIENCE 2017; 8:1387. [PMID: 28878784 PMCID: PMC5572249 DOI: 10.3389/fpls.2017.01387] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 07/25/2017] [Indexed: 05/18/2023]
Abstract
In the context of climate warming, plants will be facing an increased risk of epidemics as well as the emergence of new highly aggressive pathogen species. Although a permanent increase of temperature strongly affects plant immunity, the underlying molecular mechanisms involved are still poorly characterized. In this study, we aimed to uncover the genetic bases of resistance mechanisms that are efficient at elevated temperature to the Ralstonia solanacearum species complex (RSSC), one of the most harmful phytobacteria causing bacterial wilt. To start the identification of quantitative trait loci (QTLs) associated with natural variation of response to R. solanacearum, we adopted a genome wide association (GWA) mapping approach using 176 worldwide natural accessions of Arabidopsis thaliana inoculated with the R. solanacearum GMI1000 strain. Following two different procedures of root-inoculation (root apparatus cut vs. uncut), plants were grown either at 27 or 30°C, with the latter temperature mimicking a permanent increase in temperature. At 27°C, the RPS4/RRS1-R locus was the main QTL of resistance detected regardless of the method of inoculation used. This highlights the power of GWA mapping to identify functionally important loci for resistance to the GMI1000 strain. At 30°C, although most of the accessions developed wilting symptoms, we identified several QTLs that were specific to the inoculation method used. We focused on a QTL region associated with response to the GMI1000 strain in the early stages of infection and, by adopting a reverse genetic approach, we functionally validated the involvement of a strictosidine synthase-like 4 (SSL4) protein that shares structural similarities with animal proteins known to play a role in animal immunity.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Richard Berthomé
- LIPM, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, INPT, Université de ToulouseCastanet-Tolosan, France
| |
Collapse
|
62
|
Ikematsu S, Tasaka M, Torii KU, Uchida N. ERECTA-family receptor kinase genes redundantly prevent premature progression of secondary growth in the Arabidopsis hypocotyl. THE NEW PHYTOLOGIST 2017; 213:1697-1709. [PMID: 27891614 DOI: 10.1111/nph.14335] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 10/18/2016] [Indexed: 05/19/2023]
Abstract
Secondary growth is driven by continuous cell proliferation and differentiation of the cambium that acts as vascular stem cells, producing xylem and phloem to expand vascular tissues laterally. During secondary growth of hypocotyls in Arabidopsis thaliana, the xylem undergoes a drastic phase transition from a parenchyma-producing phase to a fiber-producing phase at the appropriate time. However, it remains to be fully elucidated how progression of secondary growth is properly controlled. We focused on phenotypes of hypocotyl vasculatures caused by double mutation in ERECTA (ER) and ER-LIKE1 (ERL1) receptor-kinase genes to elucidate their roles in secondary growth. ER and ERL1 redundantly suppressed excessive radial growth of the hypocotyl vasculature during secondary growth. ER and ERL1 also prevented premature initiation of the fiber differentiation process mediated by the NAC SECONDARY WALL THICKENING PROMOTING FACTORs in the hypocotyl xylem. Upon floral transition, the hypocotyl xylem gained a competency to respond to GA in a BREVIPEDICELLUS-dependent manner, which was a prerequisite for fiber differentiation. However, even after the floral transition, ER and ERL1 prevented precocious initiation of the GA-mediated fiber formation. Collectively, our findings reveal that ER and ERL1 redundantly prevent premature progression of sequential events in secondary growth.
Collapse
Affiliation(s)
- Shuka Ikematsu
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan
- Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8602, Japan
| | - Masao Tasaka
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, 630-0192, Japan
| | - Keiko U Torii
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan
- Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8602, Japan
- Department of Biology, University of Washington, Seattle, WA, 98195, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, 98195, USA
| | - Naoyuki Uchida
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan
- Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8602, Japan
| |
Collapse
|
63
|
Kosentka PZ, Zhang L, Simon YA, Satpathy B, Maradiaga R, Mitoubsi O, Shpak ED. Identification of critical functional residues of receptor-like kinase ERECTA. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:1507-1518. [PMID: 28207053 PMCID: PMC5441908 DOI: 10.1093/jxb/erx022] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
In plants, extracellular signals are primarily sensed by plasma membrane-localized receptor-like kinases (RLKs). ERECTA is a leucine-rich repeat RLK that together with its paralogs ERECTA-like 1 (ERL1) and ERL2 regulates multiple aspects of plant development. ERECTA forms complexes with a range of co-receptors and senses secreted cysteine-rich small proteins from the EPF/EPFL family. Currently the mechanism of the cytoplasmic domain activation and transmission of the signal by ERECTA is unclear. To gain a better understanding we performed a structure-function analysis by introducing altered ERECTA genes into erecta and erecta erl1 erl2 mutants. These experiments indicated that ERECTA's ability to phosphorylate is functionally significant, and that while the cytoplasmic juxtamembrane domain is important for ERECTA function, the C-terminal tail is not. An analysis of multiple putative phosphorylation sites identified four amino acids in the activation segment of the kinase domain as functionally important. Homology of those residues to functionally significant amino acids in multiple other plant RLKs emphasizes similarities in RLK function. Specifically, our data predicts Thr812 as a primary site of phosphor-activation and potential inhibitory phosphorylation of Tyr815 and Tyr820. In addition, our experiments suggest that there are differences in the molecular mechanism of ERECTA function during regulation of stomata development and in elongation of above-ground organs.
Collapse
Affiliation(s)
- Pawel Z Kosentka
- Department of Biochemistry, Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Liang Zhang
- Department of Biochemistry, Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Yonas A Simon
- Department of Biochemistry, Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Binita Satpathy
- Department of Biochemistry, Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Richard Maradiaga
- Department of Biochemistry, Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Omar Mitoubsi
- Department of Biochemistry, Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Elena D Shpak
- Department of Biochemistry, Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| |
Collapse
|
64
|
Tameshige T, Ikematsu S, Torii KU, Uchida N. Stem development through vascular tissues: EPFL-ERECTA family signaling that bounces in and out of phloem. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:45-53. [PMID: 27965367 PMCID: PMC5854166 DOI: 10.1093/jxb/erw447] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 11/10/2016] [Indexed: 05/19/2023]
Abstract
Plant cells communicate with each other using a variety of signaling molecules. Recent studies have revealed that various types of secreted peptides, as well as phytohormones known since long ago, mediate cell-cell communication in diverse contexts of plant life. These peptides affect cellular activities, such as proliferation and cell fate decisions, through their perception by cell surface receptors located on the plasma membrane of target cells. ERECTA (ER), an Arabidopsis thaliana receptor kinase gene, was first identified as a stem growth regulator, and since then an increasing number of studies have shown that ER is involved in a wide range of developmental and physiological processes. In particular, molecular functions of ER have been extensively studied in stomatal patterning. Furthermore, the importance of ER signaling in vascular tissues of inflorescence stems, especially in phloem cells, has recently been highlighted. In this review article, first we briefly summarize the history of ER research including studies on stomatal development, then introduce ER functions in vascular tissues, and discuss its interactions with phytohormones and other receptor kinase signaling pathways. Future questions and challenges will also be addressed.
Collapse
Affiliation(s)
- Toshiaki Tameshige
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan
| | - Shuka Ikematsu
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan
- Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8602, Japan
| | - Keiko U Torii
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan
- Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8602, Japan
- Department of Biology, University of Washington, Seattle, WA 98195, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
| | - Naoyuki Uchida
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan
- Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8602, Japan
| |
Collapse
|
65
|
Zhang C, Chen H, Cai T, Deng Y, Zhuang R, Zhang N, Zeng Y, Zheng Y, Tang R, Pan R, Zhuang W. Overexpression of a novel peanut NBS-LRR gene AhRRS5 enhances disease resistance to Ralstonia solanacearum in tobacco. PLANT BIOTECHNOLOGY JOURNAL 2017; 15:39-55. [PMID: 27311738 PMCID: PMC5253469 DOI: 10.1111/pbi.12589] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 05/16/2016] [Accepted: 06/10/2016] [Indexed: 05/20/2023]
Abstract
Bacterial wilt caused by Ralstonia solanacearum is a ruinous soilborne disease affecting more than 450 plant species. Efficient control methods for this disease remain unavailable to date. This study characterized a novel nucleotide-binding site-leucine-rich repeat resistance gene AhRRS5 from peanut, which was up-regulated in both resistant and susceptible peanut cultivars in response to R. solanacearum. The product of AhRRS5 was localized in the nucleus. Furthermore, treatment with phytohormones such as salicylic acid (SA), abscisic acid (ABA), methyl jasmonate (MeJA) and ethephon (ET) increased the transcript level of AhRRS5 with diverse responses between resistant and susceptible peanuts. Abiotic stresses such as drought and cold conditions also changed AhRRS5 expression. Moreover, transient overexpression induced hypersensitive response in Nicotiana benthamiana. Overexpression of AhRRS5 significantly enhanced the resistance of heterogeneous tobacco to R. solanacearum, with diverse resistance levels in different transgenic lines. Several defence-responsive marker genes in hypersensitive response, including SA, JA and ET signals, were considerably up-regulated in the transgenic lines as compared with the wild type inoculated with R. solanacearum. Nonexpressor of pathogenesis-related gene 1 (NPR1) and non-race-specific disease resistance 1 were also up-regulated in response to the pathogen. These results indicate that AhRRS5 participates in the defence response to R. solanacearum through the crosstalk of multiple signalling pathways and the involvement of NPR1 and R gene signals for its resistance. This study may guide the resistance enhancement of peanut and other economic crops to bacterial wilt disease.
Collapse
Affiliation(s)
- Chong Zhang
- College of Plant ProtectionFujian Agriculture and Forestry UniversityFuzhouChina
- Fujian Key Laboratory of Crop Molecular and Cell BiologyFujian Agriculture and Forestry UniversityFuzhouFujianChina
| | - Hua Chen
- College of Plant ProtectionFujian Agriculture and Forestry UniversityFuzhouChina
- Fujian Key Laboratory of Crop Molecular and Cell BiologyFujian Agriculture and Forestry UniversityFuzhouFujianChina
| | - Tiecheng Cai
- College of Plant ProtectionFujian Agriculture and Forestry UniversityFuzhouChina
- Fujian Key Laboratory of Crop Molecular and Cell BiologyFujian Agriculture and Forestry UniversityFuzhouFujianChina
| | - Ye Deng
- College of Plant ProtectionFujian Agriculture and Forestry UniversityFuzhouChina
- Fujian Key Laboratory of Crop Molecular and Cell BiologyFujian Agriculture and Forestry UniversityFuzhouFujianChina
| | - Ruirong Zhuang
- Fujian Key Laboratory of Crop Molecular and Cell BiologyFujian Agriculture and Forestry UniversityFuzhouFujianChina
| | - Ning Zhang
- Fujian Key Laboratory of Crop Molecular and Cell BiologyFujian Agriculture and Forestry UniversityFuzhouFujianChina
| | - Yuanhuan Zeng
- Fujian Key Laboratory of Crop Molecular and Cell BiologyFujian Agriculture and Forestry UniversityFuzhouFujianChina
| | - Yixiong Zheng
- Fujian Key Laboratory of Crop Molecular and Cell BiologyFujian Agriculture and Forestry UniversityFuzhouFujianChina
- College of AgronomyZhongkai Agriculture and Engineering CollegeGuangzhouGuangdongChina
| | - Ronghua Tang
- Cash Crops Research InstituteGuangxi Academy of Agricultural SciencesNanningChina
| | - Ronglong Pan
- Department of Life Science and Institute of Bioinformatics and Structural BiologyCollege of Life ScienceNational Tsing Hua UniversityHsinchuTaiwan
| | - Weijian Zhuang
- College of Plant ProtectionFujian Agriculture and Forestry UniversityFuzhouChina
- Fujian Key Laboratory of Crop Molecular and Cell BiologyFujian Agriculture and Forestry UniversityFuzhouFujianChina
| |
Collapse
|
66
|
Salgon S, Jourda C, Sauvage C, Daunay MC, Reynaud B, Wicker E, Dintinger J. Eggplant Resistance to the Ralstonia solanacearum Species Complex Involves Both Broad-Spectrum and Strain-Specific Quantitative Trait Loci. FRONTIERS IN PLANT SCIENCE 2017; 8:828. [PMID: 28580001 PMCID: PMC5437220 DOI: 10.3389/fpls.2017.00828] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 05/02/2017] [Indexed: 05/20/2023]
Abstract
Bacterial wilt (BW) is a major disease of solanaceous crops caused by the Ralstonia solanacearum species complex (RSSC). Strains are grouped into five phylotypes (I, IIA, IIB, III, and IV). Varietal resistance is the most sustainable strategy for managing BW. Nevertheless, breeding to improve cultivar resistance has been limited by the pathogen's extensive genetic diversity. Identifying the genetic bases of specific and non-specific resistance is a prerequisite to breed improvement. A major gene (ERs1) was previously mapped in eggplant (Solanum melongena L.) using an intraspecific population of recombinant inbred lines derived from the cross of susceptible MM738 (S) × resistant AG91-25 (R). ERs1 was originally found to control three strains from phylotype I, while being totally ineffective against a virulent strain from the same phylotype. We tested this population against four additional RSSC strains, representing phylotypes I, IIA, IIB, and III in order to clarify the action spectrum of ERs1. We recorded wilting symptoms and bacterial stem colonization under controlled artificial inoculation. We constructed a high-density genetic map of the population using single nucleotide polymorphisms (SNPs) developed from genotyping-by-sequencing and added 168 molecular markers [amplified fragment length polymorphisms (AFLPs), simple sequence repeats (SSRs), and sequence-related amplified polymorphisms (SRAPs)] developed previously. The new linkage map based on a total of 1,035 markers was anchored on eggplant, tomato, and potato genomes. Quantitative trait locus (QTL) mapping for resistance against a total of eight RSSC strains resulted in the detection of one major phylotype-specific QTL and two broad-spectrum QTLs. The major QTL, which specifically controls three phylotype I strains, was located at the bottom of chromosome 9 and corresponded to the previously identified major gene ERs1. Five candidate R-genes were underlying this QTL, with different alleles between the parents. The two other QTLs detected on chromosomes 2 and 5 were found to be associated with partial resistance to strains of phylotypes I, IIA, III and strains of phylotypes IIA and III, respectively. Markers closely linked to these three QTLs will be crucial for breeding eggplant with broad-spectrum resistance to BW. Furthermore, our study provides an important contribution to the molecular characterization of ERs1, which was initially considered to be a major resistance gene.
Collapse
Affiliation(s)
- Sylvia Salgon
- UMR Peuplements Végétaux et Bioagresseurs en Milieu Tropical, Centre de Coopération Internationale en Recherche Agronomique pour le DéveloppementSaint-Pierre, Réunion
- Association Réunionnaise pour la Modernisation de l’Economie Fruitière, Légumière et HORticoleSaint-Pierre, Réunion
- UMR Peuplements Végétaux et Bioagresseurs en Milieu Tropical, Université de la RéunionSaint-Pierre, Réunion
- *Correspondence: Sylvia Salgon, Jacques Dintinger,
| | - Cyril Jourda
- UMR Peuplements Végétaux et Bioagresseurs en Milieu Tropical, Centre de Coopération Internationale en Recherche Agronomique pour le DéveloppementSaint-Pierre, Réunion
| | - Christopher Sauvage
- UR 1052 Génétique et Amélioration des Fruits et Légumes, Institut National de la Recherche AgronomiqueMontfavet, France
| | - Marie-Christine Daunay
- UR 1052 Génétique et Amélioration des Fruits et Légumes, Institut National de la Recherche AgronomiqueMontfavet, France
| | - Bernard Reynaud
- UMR Peuplements Végétaux et Bioagresseurs en Milieu Tropical, Centre de Coopération Internationale en Recherche Agronomique pour le DéveloppementSaint-Pierre, Réunion
- UMR Peuplements Végétaux et Bioagresseurs en Milieu Tropical, Université de la RéunionSaint-Pierre, Réunion
| | - Emmanuel Wicker
- UMR Peuplements Végétaux et Bioagresseurs en Milieu Tropical, Centre de Coopération Internationale en Recherche Agronomique pour le DéveloppementSaint-Pierre, Réunion
- UMR Interactions Plantes-Microorganismes-Environnement, Centre de Coopération Internationale en Recherche Agronomique pour le DéveloppementMontpellier, France
| | - Jacques Dintinger
- UMR Peuplements Végétaux et Bioagresseurs en Milieu Tropical, Centre de Coopération Internationale en Recherche Agronomique pour le DéveloppementSaint-Pierre, Réunion
- *Correspondence: Sylvia Salgon, Jacques Dintinger,
| |
Collapse
|
67
|
Shumayla, Sharma S, Kumar R, Mendu V, Singh K, Upadhyay SK. Genomic Dissection and Expression Profiling Revealed Functional Divergence in Triticum aestivum Leucine Rich Repeat Receptor Like Kinases (TaLRRKs). FRONTIERS IN PLANT SCIENCE 2016; 7:1374. [PMID: 27713749 PMCID: PMC5031697 DOI: 10.3389/fpls.2016.01374] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 08/29/2016] [Indexed: 09/01/2023]
Abstract
The leucine rich repeat receptor like kinases (LRRK) constitute the largest subfamily of receptor like kinases (RLK), which play critical roles in plant development and stress responses. Herein, we identified 531 TaLRRK genes in Triticum aestivum (bread wheat), which were distributed throughout the A, B, and D sub-genomes and chromosomes. These were clustered into 233 homologous groups, which were mostly located on either homeologous chromosomes from various sub-genomes or in proximity on the same chromosome. A total of 255 paralogous genes were predicted which depicted the role of duplication events in expansion of this gene family. Majority of TaLRRKs consisted of trans-membrane region and localized on plasma-membrane. The TaLRRKs were further categorized into eight phylogenetic groups with numerous subgroups on the basis of sequence homology. The gene and protein structure in terms of exon/intron ratio, domains, and motifs organization were found to be variably conserved across the different phylogenetic groups/subgroups, which indicated a potential divergence and neofunctionalization during evolution. High-throughput transcriptome data and quantitative real time PCR analyses in various developmental stages, and biotic and abiotic (heat, drought, and salt) stresses provided insight into modus operandi of TaLRRKs during these conditions. Distinct expression of majority of stress responsive TaLRRKs homologous genes suggested their specified role in a particular condition. These results provided a comprehensive analysis of various characteristic features including functional divergence, which may provide the way for future functional characterization of this important gene family in bread wheat.
Collapse
Affiliation(s)
- Shumayla
- Deparment of Botany, Panjab UniversityChandigarh, India
- Deparment of Biotechnology, Panjab UniversityChandigarh, India
| | | | - Rohit Kumar
- Deparment of Biotechnology, Panjab UniversityChandigarh, India
| | - Venugopal Mendu
- Department of Plant and Soil Science, Fiber and Biopolymer Research Institute, Texas Tech UniversityLubbock, TX, USA
| | - Kashmir Singh
- Deparment of Biotechnology, Panjab UniversityChandigarh, India
| | | |
Collapse
|
68
|
Roux F, Bergelson J. The Genetics Underlying Natural Variation in the Biotic Interactions of Arabidopsis thaliana: The Challenges of Linking Evolutionary Genetics and Community Ecology. Curr Top Dev Biol 2016; 119:111-56. [PMID: 27282025 DOI: 10.1016/bs.ctdb.2016.03.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In the context of global change, predicting the responses of plant communities in an ever-changing biotic environment calls for a multipronged approach at the interface of evolutionary genetics and community ecology. However, our understanding of the genetic basis of natural variation involved in mediating biotic interactions, and associated adaptive dynamics of focal plants in their natural communities, is still in its infancy. Here, we review the genetic and molecular bases of natural variation in the response to biotic interactions (viruses, bacteria, fungi, oomycetes, herbivores, and plants) in the model plant Arabidopsis thaliana as well as the adaptive value of these bases. Among the 60 identified genes are a number that encode nucleotide-binding site leucine-rich repeat (NBS-LRR)-type proteins, consistent with early examples of plant defense genes. However, recent studies have revealed an extensive diversity in the molecular mechanisms of defense. Many types of genetic variants associate with phenotypic variation in biotic interactions, even among the genes of large effect that tend to be identified. In general, we found that (i) balancing selection rather than directional selection explains the observed patterns of genetic diversity within A. thaliana and (ii) the cost/benefit tradeoffs of adaptive alleles can be strongly dependent on both genomic and environmental contexts. Finally, because A. thaliana rarely interacts with only one biotic partner in nature, we highlight the benefit of exploring diffuse biotic interactions rather than tightly associated host-enemy pairs. This challenge would help to improve our understanding of coevolutionary quantitative genetics within the context of realistic community complexity.
Collapse
Affiliation(s)
- F Roux
- INRA, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR441, Castanet-Tolosan, France; CNRS, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR2594, Castanet-Tolosan, France.
| | - J Bergelson
- University of Chicago, Chicago, IL, United States
| |
Collapse
|
69
|
Zhou F, Guo Y, Qiu LJ. Genome-wide identification and evolutionary analysis of leucine-rich repeat receptor-like protein kinase genes in soybean. BMC PLANT BIOLOGY 2016; 16:58. [PMID: 26935840 PMCID: PMC4776374 DOI: 10.1186/s12870-016-0744-1] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2015] [Accepted: 02/24/2016] [Indexed: 05/03/2023]
Abstract
BACKGROUND Leucine-rich repeat receptor-like kinases (LRR-RLKs) constitute the largest subfamily of receptor-like kinases in plant. A number of reports have demonstrated that plant LRR-RLKs play important roles in growth, development, differentiation, and stress responses. However, no comprehensive analysis of this gene family has been carried out in legume species. RESULTS Based on the principles of sequence similarity and domain conservation, a total of 467 LRR-RLK genes were identified in soybean genome. The GmLRR-RLKs are non-randomly distributed across all 20 chromosomes of soybean and about 73.3 % of them are located in segmental duplicated regions. The analysis of synonymous substitutions for putative paralogous gene pairs indicated that most of these gene pairs resulted from segmental duplications in soybean genome. Furthermore, the exon/intron organization, motif composition and arrangements were considerably conserved among members of the same groups or subgroups in the constructed phylogenetic tree. The close phylogenetic relationship between soybean LRR-RLK genes with identified Arabidopsis genes in the same group also provided insight into their putative functions. Expression profiling analysis of GmLRR-RLKs suggested that they appeared to be differentially expressed among different tissues and some of duplicated genes exhibited divergent expression patterns. In addition, artificial selected GmLRR-RLKs were also identified by comparing the SNPs between wild and cultivated soybeans and 17 genes were detected in regions previously reported to contain domestication-related QTLs. CONCLUSIONS Comprehensive and evolutionary analysis of soybean LRR-RLK gene family was performed at whole genome level. The data provides valuable tools in future efforts to identify functional divergence of this gene family and gene diversity among different genotypes in legume species.
Collapse
Affiliation(s)
- Fulai Zhou
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI) and MOA Key Labs of Crop Germplasm and Soybean Biology (Beijing), Institute of Crop Science, Chinese Academy of Agricultural Sciences, No.12 Zhongguancun South Street, Haidian District, Beijing, 100081, P. R. China.
| | - Yong Guo
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI) and MOA Key Labs of Crop Germplasm and Soybean Biology (Beijing), Institute of Crop Science, Chinese Academy of Agricultural Sciences, No.12 Zhongguancun South Street, Haidian District, Beijing, 100081, P. R. China.
| | - Li-Juan Qiu
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI) and MOA Key Labs of Crop Germplasm and Soybean Biology (Beijing), Institute of Crop Science, Chinese Academy of Agricultural Sciences, No.12 Zhongguancun South Street, Haidian District, Beijing, 100081, P. R. China.
| |
Collapse
|
70
|
Takahashi T, Shibuya H, Ishikawa A. ERECTA contributes to non-host resistance to Magnaporthe oryzae in Arabidopsis. Biosci Biotechnol Biochem 2016; 80:1390-2. [PMID: 26924213 DOI: 10.1080/09168451.2016.1151345] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
ERECTA controls both developmental processes and disease resistance in Arabidopsis. We investigated the function of ERECTA in non-host resistance to Magnaporthe oryzae in Arabidopsis. In the pen2 er mutant, penetration resistance and post-penetration resistance to M. oryzae were compromised. These results suggest that ERECTA is involved in both penetration and post-penetration resistance to M. oryzae in Arabidopsis.
Collapse
Affiliation(s)
| | - Haruki Shibuya
- a Department of Bioscience , Fukui Prefectural University , Fukui , Japan
| | - Atsushi Ishikawa
- a Department of Bioscience , Fukui Prefectural University , Fukui , Japan
| |
Collapse
|
71
|
Chang HX, Brown PJ, Lipka AE, Domier LL, Hartman GL. Genome-wide association and genomic prediction identifies associated loci and predicts the sensitivity of Tobacco ringspot virus in soybean plant introductions. BMC Genomics 2016; 17:153. [PMID: 26924079 PMCID: PMC4770782 DOI: 10.1186/s12864-016-2487-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 02/17/2016] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Genome-wide association study (GWAS) is a useful tool for detecting and characterizing traits of interest including those associated with disease resistance in soybean. The availability of 50,000 single nucleotide polymorphism (SNP) markers (SoySNP50K iSelect BeadChip; www.soybase.org ) on 19,652 soybean and wild soybean plant introductions (PIs) in the USDA Soybean Germplasm Collection allows for fast and robust identification of loci associated with a desired phenotype. By using a genome-wide marker set to predict phenotypic values, genomic prediction for phenotype-unknown but genotype-determined PIs has become possible. The goal of this study was to describe the genetic architecture associated with sensitivity to Tobacco ringspot virus (TRSV) infection in the USDA Soybean Germplasm Collection. RESULTS TRSV-induced disease sensitivities of the 697 soybean PIs were rated on a one to five scale with plants rated as one exhibiting mild symptoms and plants rated as five displaying terminal bud necrosis (i.e., bud blight). The GWAS identified a single locus on soybean chromosome 2 strongly associated with TRSV sensitivity. Cross-validation showed a correlation of 0.55 (P < 0.01) to TRSV sensitivity without including the most significant SNP marker from the GWAS as a covariate, which was a better estimation compared to the mean separation by using significant SNPs. The genomic estimated breeding values for the remaining 18,955 unscreened soybean PIs in the USDA Soybean Germplasm Collection were obtained using the GAPIT R package. To evaluate the prediction accuracy, an additional 55 soybean accessions were evaluated for sensitivity to TRSV, which resulted in a correlation of 0.67 (P < 0.01) between actual and predicted severities. CONCLUSION A single locus responsible for TRSV sensitivity in soybean was identified on chromosome 2. Two leucine-rich repeat receptor-like kinase genes were located near the locus and may control sensitivity of soybean to TRSV infection. Furthermore, a comprehensive genomic prediction for TRSV sensitivity for all accessions in the USDA Soybean Germplasm Collection was completed.
Collapse
Affiliation(s)
- Hao-Xun Chang
- Department of Crop Sciences, University of Illinois, Urbana, IL, 61801, USA.
| | - Patrick J Brown
- Department of Crop Sciences, University of Illinois, Urbana, IL, 61801, USA.
| | - Alexander E Lipka
- Department of Crop Sciences, University of Illinois, Urbana, IL, 61801, USA.
| | - Leslie L Domier
- Department of Crop Sciences, University of Illinois, Urbana, IL, 61801, USA.
- USDA-Agricultural Research Service, Urbana, IL, 61801, USA.
| | - Glen L Hartman
- Department of Crop Sciences, University of Illinois, Urbana, IL, 61801, USA.
- USDA-Agricultural Research Service, Urbana, IL, 61801, USA.
- National Soybean Research Center, University of Illinois, 1101 W. Peabody Dr., Urbana, IL, 61801, USA.
| |
Collapse
|
72
|
Wu Y, Xun Q, Guo Y, Zhang J, Cheng K, Shi T, He K, Hou S, Gou X, Li J. Genome-Wide Expression Pattern Analyses of the Arabidopsis Leucine-Rich Repeat Receptor-Like Kinases. MOLECULAR PLANT 2016; 9:289-300. [PMID: 26712505 DOI: 10.1016/j.molp.2015.12.011] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2015] [Revised: 11/30/2015] [Accepted: 12/03/2015] [Indexed: 05/18/2023]
Abstract
Receptor-like protein kinases (RLKs) are a large group of transmembrane proteins playing critical roles in cell-cell and cell-environment communications. Based on extracellular domain structures, RLKs were classified into more than 21 subfamilies, among which leucine-rich repeat RLKs (LRR-RLKs) belong to the largest subfamily in plants such as Arabidopsis and rice. In Arabidopsis, there are approximately 223 LRR-RLKs, but only about 60 of which have been functionally described to date. To systematically investigate the roles of LRR-RLKs in regulating plant growth, development, and stress adaptations, we generated promoter::GUS transgenic plants for all 223 LRR-RLK genes in Arabidopsis and analyzed their detailed expression patterns at various developmental stages. The results provide valuable resources for functionally elucidating this large and essential signaling protein subfamily.
Collapse
Affiliation(s)
- Yunzhe Wu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Qingqing Xun
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Yi Guo
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Jinghua Zhang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Kaili Cheng
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Tao Shi
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Kai He
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Suiwen Hou
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Xiaoping Gou
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Jia Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
73
|
Zhao Y, Zhang C, Chen H, Yuan M, Nipper R, Prakash CS, Zhuang W, He G. QTL mapping for bacterial wilt resistance in peanut ( Arachis hypogaea L.). MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2016; 36:13. [PMID: 26869849 PMCID: PMC4735223 DOI: 10.1007/s11032-015-0432-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 12/31/2015] [Indexed: 05/24/2023]
Abstract
Bacterial wilt (BW) caused by Ralstonia solanacearum is a serious, global, disease of peanut (Arachis hypogaea L.), but it is especially destructive in China. Identification of DNA markers linked to the resistance to this disease will help peanut breeders efficiently develop resistant cultivars through molecular breeding. A F2 population, from a cross between disease-resistant and disease-susceptible cultivars, was used to detect quantitative trait loci (QTL) associated with the resistance to this disease in the cultivated peanut. Genome-wide SNPs were identified from restriction-site-associated DNA sequencing tags using next-generation DNA sequencing technology. SNPs linked to disease resistance were determined in two bulks of 30 resistant and 30 susceptible plants along with two parental plants using bulk segregant analysis. Polymorphic SSR and SNP markers were utilized for construction of a linkage map and for performing the QTL analysis, and a moderately dense linkage map was constructed in the F2 population. Two QTL (qBW-1 and qBW-2) detected for resistance to BW disease were located in the linkage groups LG1 and LG10 and account for 21 and 12 % of the bacterial wilt phenotypic variance. To confirm these QTL, the F8 RIL population with 223 plants was utilized for genotyping and phenotyping plants by year and location as compared to the F2 population. The QTL qBW-1 was consistent in the location of LG1 in the F8 population though the QTL qBW-2 could not be clarified due to fewer markers used and mapped in LG10. The QTL qBW-1, including four linked SNP markers and one SSR marker within 14.4-cM interval in the F8, was closely related to a disease resistance gene homolog and was considered as a candidate gene for resistance to BW. QTL identified in this study would be useful to conduct marker-assisted selection and may permit cloning of resistance genes. Our study shows that bulk segregant analysis of genome-wide SNPs is a useful approach to expedite the identification of genetic markers linked to disease resistance traits in the allotetraploidy species peanut.
Collapse
Affiliation(s)
- Yongli Zhao
- />Tuskegee University, Tuskegee, AL 36088 USA
| | - Chong Zhang
- />Key Laboratory of Crop Molecular and Cell Biology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Hua Chen
- />Key Laboratory of Crop Molecular and Cell Biology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Mei Yuan
- />Shandong Peanut Research Institute, Qingdao, China
| | | | | | - Weijian Zhuang
- />Key Laboratory of Crop Molecular and Cell Biology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Guohao He
- />Tuskegee University, Tuskegee, AL 36088 USA
| |
Collapse
|
74
|
Jordá L, Sopeña-Torres S, Escudero V, Nuñez-Corcuera B, Delgado-Cerezo M, Torii KU, Molina A. ERECTA and BAK1 Receptor Like Kinases Interact to Regulate Immune Responses in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2016; 7:897. [PMID: 27446127 PMCID: PMC4923796 DOI: 10.3389/fpls.2016.00897] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 06/07/2016] [Indexed: 05/19/2023]
Abstract
ERECTA (ER) receptor-like kinase (RLK) regulates Arabidopsis thaliana organ growth, and inflorescence and stomatal development by interacting with the ERECTA-family genes (ERf) paralogs, ER-like 1 (ERL1) and ERL2, and the receptor-like protein (RLP) TOO MANY MOUTHS (TMM). ER also controls immune responses and resistance to pathogens such as the bacterium Pseudomonas syringae pv. tomato DC3000 (Pto) and the necrotrophic fungus Plectosphaerella cucumerina BMM (PcBMM). We found that er null-mutant plants overexpressing an ER dominant-negative version lacking the cytoplasmic kinase domain (ERΔK) showed an enhanced susceptibility to PcBMM, suggesting that ERΔK associates and forms inactive complexes with additional RLKs/RLPs required for PcBMM resistance. Genetic analyses demonstrated that ER acts in a combinatorial specific manner with ERL1, ERL2, and TMM to control PcBMM resistance. Moreover, BAK1 (BRASSINOSTEROID INSENSITIVE 1-associated kinase 1) RLK, which together with ERf/TMM regulates stomatal patterning and resistance to Pto, was also found to have an unequal contribution with ER in regulating immune responses and resistance to PcBMM. Co-immunoprecipitation experiments in Nicotiana benthamiana further demonstrated BAK1-ER protein interaction. The secreted epidermal pattern factor peptides (EPF1 and EPF2), which are perceived by ERf members to specify stomatal patterning, do not seem to regulate ER-mediated immunity to PcBMM, since their inducible overexpression in A. thaliana did not impact on PcBMM resistance. Our results indicate that the multiproteic receptorsome formed by ERf, TMM and BAK1 modulates A. thaliana resistance to PcBMM, and suggest that the cues underlying ERf/TMM/BAK1-mediated immune responses are distinct from those regulating stomatal pattering.
Collapse
Affiliation(s)
- Lucía Jordá
- Centro de Biotecnología y Genómica de Plantas, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Universidad Politécnica de MadridMadrid, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaría y de Biosistemas, Universidad Politécnica de MadridMadrid, Spain
- *Correspondence: Lucía Jordá,
| | - Sara Sopeña-Torres
- Centro de Biotecnología y Genómica de Plantas, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Universidad Politécnica de MadridMadrid, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaría y de Biosistemas, Universidad Politécnica de MadridMadrid, Spain
| | - Viviana Escudero
- Centro de Biotecnología y Genómica de Plantas, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Universidad Politécnica de MadridMadrid, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaría y de Biosistemas, Universidad Politécnica de MadridMadrid, Spain
| | - Beatriz Nuñez-Corcuera
- Centro de Biotecnología y Genómica de Plantas, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Universidad Politécnica de MadridMadrid, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaría y de Biosistemas, Universidad Politécnica de MadridMadrid, Spain
| | - Magdalena Delgado-Cerezo
- Centro de Biotecnología y Genómica de Plantas, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Universidad Politécnica de MadridMadrid, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaría y de Biosistemas, Universidad Politécnica de MadridMadrid, Spain
| | - Keiko U. Torii
- Department of Biology, University of Washington, SeattleWA, USA
| | - Antonio Molina
- Centro de Biotecnología y Genómica de Plantas, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Universidad Politécnica de MadridMadrid, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaría y de Biosistemas, Universidad Politécnica de MadridMadrid, Spain
| |
Collapse
|
75
|
Genomic and Post-Translational Modification Analysis of Leucine-Rich-Repeat Receptor-Like Kinases in Brassica rapa. PLoS One 2015; 10:e0142255. [PMID: 26588465 PMCID: PMC4654520 DOI: 10.1371/journal.pone.0142255] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 10/20/2015] [Indexed: 12/19/2022] Open
Abstract
Among several receptor-like kinases (RLKs), leucine-rich-repeat receptor-like kinases (LRR-RLKs) are a major group of genes that play crucial roles in growth, development and stress responses in plant systems. Given that they have several functional roles, it is important to investigate their roles in Brassica rapa. In the present study, 303 LRR-RLKs were identified in the genome of B. rapa and comparative phylogenetic analysis of 1213 combined LRR-RLKs of B. rapa, Arabidopsis thaliana, Oryza sativa and Populus trichocarpa helped us to categorize the gene family into 15 subfamilies based on their sequence and structural similarities. The chromosome localizations of 293 genes allowed the prediction of duplicates, and motif conservation and intron/exon patterns showed differences among the B. rapa LRR-RLK (BrLRR-RLK) genes. Additionally, computational function annotation and expression analysis was used to predict their possible functional roles in the plant system. Biochemical results for 11 selected genes showed variations in phosphorylation activity. Interestingly, BrBAK1 showed strong auto-phosphorylation and trans-phosphorylation on its tyrosine and threonine residues compared with AtBAK1 in previous studies. The AtBAK1 receptor kinase is involved in plant growth and development, plant innate immunity, and programmed cell death, and our results suggest that BrBAK1 might also be involved in the same functions. Another interesting result was that BrBAK1, BrBRI1, BrPEPR1 and BrPEPR2 showed activity with both anti-phosphotyrosine and anti-phosphothreonine antibodies, indicating that they might have dual-specificity kinase activity. This study provides comprehensive results for the BrLRR-RLKs, revealing expansion of the gene family through gene duplications, structural similarities and variations among the genes, and potential functional roles according to gene ontology, transcriptome profiling and biochemical analysis.
Collapse
|
76
|
Bae C, Han SW, Song YR, Kim BY, Lee HJ, Lee JM, Yeam I, Heu S, Oh CS. Infection processes of xylem-colonizing pathogenic bacteria: possible explanations for the scarcity of qualitative disease resistance genes against them in crops. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2015; 128:1219-29. [PMID: 25917599 DOI: 10.1007/s00122-015-2521-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 04/17/2015] [Indexed: 05/22/2023]
Abstract
Disease resistance against xylem-colonizing pathogenic bacteria in crops. Plant pathogenic bacteria cause destructive diseases in many commercially important crops. Among these bacteria, eight pathogens, Ralstonia solanacearum, Xanthomonas oryzae pv. oryzae, X. campestris pv. campestris, Erwinia amylovora, Pantoea stewartii subsp. stewartii, Clavibacter michiganensis subsp. michiganensis, Pseudomonas syringae pv. actinidiae, and Xylella fastidiosa, infect their host plants through different infection sites and paths and eventually colonize the xylem tissues of their host plants, resulting in wilting symptoms by blocking water flow or necrosis of xylem tissues. Noticeably, only a relatively small number of resistant cultivars in major crops against these vascular bacterial pathogens except X. oryzae pv. oryzae have been found or generated so far, although these pathogens threaten productivity of major crops. In this review, we summarize the lifestyles of major xylem-colonizing bacterial pathogens and then discuss the progress of current research on disease resistance controlled by qualitative disease resistance genes or quantitative trait loci against them. Finally, we propose infection processes of xylem-colonizing bacterial pathogens as one of possible reasons for why so few qualitative disease resistance genes against these pathogens have been developed or identified so far in crops.
Collapse
Affiliation(s)
- Chungyun Bae
- Department of Horticultural Biotechnology and Institute of Life Science and Resources, College of Life Science, Kyung Hee University, Yongin, 446-701, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
77
|
Cui H, Kong D, Wei P, Hao Y, Torii KU, Lee JS, Li J. SPINDLY, ERECTA, and its ligand STOMAGEN have a role in redox-mediated cortex proliferation in the Arabidopsis root. MOLECULAR PLANT 2014; 7:1727-39. [PMID: 25267734 PMCID: PMC4261839 DOI: 10.1093/mp/ssu106] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Reactive oxygen species (ROS) are harmful to all living organisms and therefore they must be removed to ensure normal growth and development. ROS are also signaling molecules, but so far little is known about the mechanisms of ROS perception and developmental response in plants. We here report that hydrogen peroxide induces cortex proliferation in the Arabidopsis root and that SPINDLY (SPY), an O-linked glucosamine acetyltransferase, regulates cortex proliferation by maintaining cellular redox homeostasis. We also found that mutation in the leucine-rich receptor kinase ERECTA and its putative peptide ligand STOMAGEN block the effect of hydrogen peroxide on root cortex proliferation. However, ERECTA and STOMAGEN are expressed in the vascular tissue, whereas extra cortex cells are produced from the endodermis, suggesting the involvement of intercellular signaling. SPY appears to act downstream of ERECTA, because the spy mutation still caused cortex proliferation in the erecta mutant background. We therefore have not only gained insight into the mechanism by which SPY regulates root development but also uncovered a novel pathway for ROS signaling in plants. The importance of redox-mediated cortex proliferation as a protective mechanism against oxidative stress is also discussed.
Collapse
Affiliation(s)
- Hongchang Cui
- Department of Biological Science, Florida State University, Tallahassee, FL 32306-4295, USA
| | - Danyu Kong
- Department of Biological Science, Florida State University, Tallahassee, FL 32306-4295, USA
| | - Pengcheng Wei
- Department of Biological Science, Florida State University, Tallahassee, FL 32306-4295, USA Present address: Biotechnical Group, Institute of Rice Research, Anhui Agricultural Academy of Science, 40#, Nongke South Road, Hefei, Anhui, 230031, China
| | - Yueling Hao
- Department of Biological Science, Florida State University, Tallahassee, FL 32306-4295, USA
| | - Keiko U Torii
- Howard Hughes Medical Institute, Department of Biology, University of Washington, Seattle, WA 98195-1800, USA
| | - Jin Suk Lee
- Howard Hughes Medical Institute, Department of Biology, University of Washington, Seattle, WA 98195-1800, USA
| | - Jie Li
- Department of Biological Science, Florida State University, Tallahassee, FL 32306-4295, USA
| |
Collapse
|
78
|
Sanabria NM, Huang JC, Dubery IA. Self/nonself perception in plants in innate immunity and defense. SELF NONSELF 2014; 1:40-54. [PMID: 21559176 DOI: 10.4161/self.1.1.10442] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Revised: 10/27/2009] [Accepted: 10/27/2009] [Indexed: 11/19/2022]
Abstract
The ability to distinguish 'self' from 'nonself' is the most fundamental aspect of any immune system. The evolutionary solution in plants to the problems of perceiving and responding to pathogens involves surveillance of nonself, damaged-self and altered-self as danger signals. This is reflected in basal resistance or non-host resistance, which is the innate immune response that protects plants against the majority of pathogens. In the case of surveillance of nonself, plants utilize receptor-like proteins or -kinases (RLP/Ks) as pattern recognition receptors (PRRs), which can detect conserved pathogen/microbe-associated molecular pattern (P/MAMP) molecules. P/MAMP detection serves as an early warning system for the presence of a wide range of potential pathogens and the timely activation of plant defense mechanisms. However, adapted microbes express a suite of effector proteins that often interfere or act as suppressors of these defenses. In response, plants have evolved a second line of defense that includes intracellular nucleotide binding leucine-rich repeat (NB-LRR)-containing resistance proteins, which recognize isolate-specific pathogen effectors once the cell wall has been compromised. This host-immunity acts within the species level and is controlled by polymorphic host genes, where resistance protein-mediated activation of defense is based on an 'altered-self' recognition mechanism.
Collapse
Affiliation(s)
- Natasha M Sanabria
- Department of Biochemistry; University of Johannesburg; Auckland Park, South Africa
| | | | | |
Collapse
|
79
|
Huang Y, Tao Z, Liu Q, Wang X, Yu J, Liu G, Wang H. BnEPFL6, an EPIDERMAL PATTERNING FACTOR-LIKE (EPFL) secreted peptide gene, is required for filament elongation in Brassica napus. PLANT MOLECULAR BIOLOGY 2014; 85:505-517. [PMID: 24838654 DOI: 10.1007/s11103-014-0200-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2013] [Accepted: 05/11/2014] [Indexed: 06/03/2023]
Abstract
Inflorescence architecture, pedicel length and stomata patterning in Arabidopsis thaliana are specified by inter-tissue communication mediated by ERECTA and its signaling ligands in the EPIDERMAL PATTERNING FACTOR-LIKE (EPFL) family of secreted cysteine-rich peptides. Here, we identified and characterized BnEPFL6 from Brassica napus. Heterologous expression of this gene under the double enhanced CaMV promoter (D35S) in Arabidopsis resulted in shortened stamen filaments, filaments degradation, and reduced filament cell size that displayed down-regulated expression of AHK2, in which phenotypic variation of ahk2-1 mutant presented highly consistent with that of BnEPFL6 transgenic lines. Especially, the expression level of BnEPFL6 in the shortened filaments of four B. napus male sterile lines (98A, 86A, SA, and Z11A) was similar to that of BnEPFL6 in the transgenic Arabidopsis lines. The activity of pBnEPFL6.2::GUS was intensive in the filaments of transgenic lines. These observations reveal that BnEPFL6 plays an important role in filament elongation and may also affect organ morphology and floral organ specification via a BnEPFL6-mediated cascade.
Collapse
Affiliation(s)
- Yi Huang
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, Hubei, People's Republic of China,
| | | | | | | | | | | | | |
Collapse
|
80
|
Häffner E, Karlovsky P, Splivallo R, Traczewska A, Diederichsen E. ERECTA, salicylic acid, abscisic acid, and jasmonic acid modulate quantitative disease resistance of Arabidopsis thaliana to Verticillium longisporum. BMC PLANT BIOLOGY 2014; 14:85. [PMID: 24690463 PMCID: PMC4021371 DOI: 10.1186/1471-2229-14-85] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Accepted: 03/13/2014] [Indexed: 05/19/2023]
Abstract
BACKGROUND Verticillium longisporum is a soil-borne vascular pathogen infecting cruciferous hosts such as oilseed rape. Quantitative disease resistance (QDR) is the major control means, but its molecular basis is poorly understood so far. Quantitative trait locus (QTL) mapping was performed using a new (Bur×Ler) recombinant inbred line (RIL) population of Arabidopsis thaliana. Phytohormone measurements and analyses in defined mutants and near-isogenic lines (NILs) were used to identify genes and signalling pathways that underlie different resistance QTL. RESULTS QTL for resistance to V. longisporum-induced stunting, systemic colonization by the fungus and for V. longisporum-induced chlorosis were identified. Stunting resistance QTL were contributed by both parents. The strongest stunting resistance QTL was shown to be identical with Erecta. A functional Erecta pathway, which was present in Bur, conferred partial resistance to V. longisporum-induced stunting. Bur showed severe stunting susceptibility in winter. Three stunting resistance QTL of Ler origin, two co-localising with wall-associated kinase-like (Wakl)-genes, were detected in winter. Furthermore, Bur showed a much stronger induction of salicylic acid (SA) by V. longisporum than Ler. Systemic colonization was controlled independently of stunting. The vec1 QTL on chromosome 2 had the strongest effect on systemic colonization. The same chromosomal region controlled the level of abscisic acid (ABA) and jasmonic acid (JA) in response to V. longisporum: The level of ABA was higher in colonization-susceptible Ler than in colonization-resistant Bur after V. longisporum infection. JA was down-regulated in Bur after infection, but not in Ler. These differences were also demonstrated in NILs, varying only in the region containing vec1. All phytohormone responses were shown to be independent of Erecta. CONCLUSIONS Signalling systems with a hitherto unknown role in the QDR of A. thaliana against V. longisporum were identified: Erecta mediated resistance against V. longisporum-induced stunting. Independent of Erecta, stunting was caused in a light-dependent manner with possible participation of SA and Wakl genes. ABA and JA showed a genotype-specific response that corresponded with systemic colonization by the fungus. Understanding the biological basis of phenotypic variation in A. thaliana with respect to V. longisporum resistance will provide new approaches for implementing durable resistance in cruciferous crops.
Collapse
Affiliation(s)
- Eva Häffner
- Freie Universität Berlin, Fachbereich Biologie, Chemie, Pharmazie, Institut für Biologie, Dahlem Centre of Plant Sciences, Angewandte Genetik, Albrecht-Thaer-Weg 6, 14195 Berlin, Germany
| | - Petr Karlovsky
- Department of Crop Sciences, Georg-August-Universität Göttingen, Molecular Phytopathology and Mycotoxin Research Section, Grisebachstraße 6, 37077 Göttingen, Germany
| | - Richard Splivallo
- Department of Crop Sciences, Georg-August-Universität Göttingen, Molecular Phytopathology and Mycotoxin Research Section, Grisebachstraße 6, 37077 Göttingen, Germany
| | - Anna Traczewska
- Freie Universität Berlin, Fachbereich Biologie, Chemie, Pharmazie, Institut für Biologie, Dahlem Centre of Plant Sciences, Angewandte Genetik, Albrecht-Thaer-Weg 6, 14195 Berlin, Germany
| | - Elke Diederichsen
- Freie Universität Berlin, Fachbereich Biologie, Chemie, Pharmazie, Institut für Biologie, Dahlem Centre of Plant Sciences, Angewandte Genetik, Albrecht-Thaer-Weg 6, 14195 Berlin, Germany
| |
Collapse
|
81
|
García-Guzmán G, Heil M. Life histories of hosts and pathogens predict patterns in tropical fungal plant diseases. THE NEW PHYTOLOGIST 2014; 201:1106-1120. [PMID: 24171899 DOI: 10.1111/nph.12562] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Accepted: 09/19/2013] [Indexed: 05/26/2023]
Abstract
Plant pathogens affect the fitness of their hosts and maintain biodiversity. However, we lack theories to predict the type and intensity of infections in wild plants. Here we demonstrate using fungal pathogens of tropical plants that an examination of the life histories of hosts and pathogens can reveal general patterns in their interactions. Fungal infections were more commonly reported for light-demanding than for shade-tolerant species and for evergreen rather than for deciduous hosts. Both patterns are consistent with classical defence theory, which predicts lower resistance in fast-growing species and suggests that the deciduous habit can reduce enemy populations. In our literature survey, necrotrophs were found mainly to infect shade-tolerant woody species whereas biotrophs dominated in light-demanding herbaceous hosts. Far-red signalling and its inhibitory effects on jasmonic acid signalling are likely to explain this phenomenon. Multiple changes between the necrotrophic and the symptomless endophytic lifestyle at the ecological and evolutionary scale indicate that endophytes should be considered when trying to understand large-scale patterns in the fungal infections of plants. Combining knowledge about the molecular mechanisms of pathogen resistance with classical defence theory enables the formulation of testable predictions concerning general patterns in the infections of wild plants by fungal pathogens.
Collapse
Affiliation(s)
| | - Martin Heil
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados (CINVESTAV), Irapuato, Guanajuato, México
| |
Collapse
|
82
|
Yang L, Wu K, Gao P, Liu X, Li G, Wu Z. GsLRPK, a novel cold-activated leucine-rich repeat receptor-like protein kinase from Glycine soja, is a positive regulator to cold stress tolerance. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2014; 215-216:19-28. [PMID: 24388511 DOI: 10.1016/j.plantsci.2013.10.009] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Revised: 10/12/2013] [Accepted: 10/17/2013] [Indexed: 05/11/2023]
Abstract
Plant LRR-RLKs serve as protein interaction platforms, and as regulatory modules of protein activation. Here, we report the isolation of a novel plant-specific LRR-RLK from Glycine soja (termed GsLRPK) by differential screening. GsLRPK expression was cold-inducible and shows Ser/Thr protein kinase activity. Subcellular localization studies using GFP fusion protein indicated that GsLRPK is localized in the plasma membrane. Real-time PCR analysis indicated that temperature, salt, drought, and ABA treatment can alter GsLRPK gene transcription in G. soja. However, just protein induced by cold stress not by salinity and ABA treatment in tobacco was found to possess kinase activity. Furthermore, we found that overexpression of GsLRPK in yeast and Arabidopsis can enhance resistance to cold stress and increase the expression of a number of cold responsive gene markers.
Collapse
Affiliation(s)
- Liang Yang
- Key Laboratory of Plant Virology of Fujian Province, Institute of Plant Virology, Fujian Agricultural and Forestry University, Fuzhou 350002, Fujian, China
| | - Kangcheng Wu
- Key Laboratory of Plant Virology of Fujian Province, Institute of Plant Virology, Fujian Agricultural and Forestry University, Fuzhou 350002, Fujian, China
| | - Peng Gao
- College of Horticulture, Northeast Agricultural University, Harbin 150030, Heilongjiang, China
| | - Xiaojuan Liu
- Key Laboratory of Plant Virology of Fujian Province, Institute of Plant Virology, Fujian Agricultural and Forestry University, Fuzhou 350002, Fujian, China
| | - Guangpu Li
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Zujian Wu
- Key Laboratory of Plant Virology of Fujian Province, Institute of Plant Virology, Fujian Agricultural and Forestry University, Fuzhou 350002, Fujian, China.
| |
Collapse
|
83
|
Miedes E, Vanholme R, Boerjan W, Molina A. The role of the secondary cell wall in plant resistance to pathogens. FRONTIERS IN PLANT SCIENCE 2014; 5:358. [PMID: 25161657 PMCID: PMC4122179 DOI: 10.3389/fpls.2014.00358] [Citation(s) in RCA: 302] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 07/04/2014] [Indexed: 05/18/2023]
Abstract
Plant resistance to pathogens relies on a complex network of constitutive and inducible defensive barriers. The plant cell wall is one of the barriers that pathogens need to overcome to successfully colonize plant tissues. The traditional view of the plant cell wall as a passive barrier has evolved to a concept that considers the wall as a dynamic structure that regulates both constitutive and inducible defense mechanisms, and as a source of signaling molecules that trigger immune responses. The secondary cell walls of plants also represent a carbon-neutral feedstock (lignocellulosic biomass) for the production of biofuels and biomaterials. Therefore, engineering plants with improved secondary cell wall characteristics is an interesting strategy to ease the processing of lignocellulosic biomass in the biorefinery. However, modification of the integrity of the cell wall by impairment of proteins required for its biosynthesis or remodeling may impact the plants resistance to pathogens. This review summarizes our understanding of the role of the plant cell wall in pathogen resistance with a focus on the contribution of lignin to this biological process.
Collapse
Affiliation(s)
- Eva Miedes
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica MadridMadrid, Spain
- Departamento Biotecnología, Escuela Técnica Superior Ingenieros Agrónomos, Universidad Politécnica MadridMadrid, Spain
| | - Ruben Vanholme
- Department of Plant Systems Biology, VIB (Flanders Institute for Biotechnology)Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent UniversityGent, Belgium
| | - Wout Boerjan
- Department of Plant Systems Biology, VIB (Flanders Institute for Biotechnology)Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent UniversityGent, Belgium
| | - Antonio Molina
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica MadridMadrid, Spain
- Departamento Biotecnología, Escuela Técnica Superior Ingenieros Agrónomos, Universidad Politécnica MadridMadrid, Spain
- *Correspondence: Antonio Molina, Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica Madrid, Campus Montegancedo, M40 (Km. 38), Pozuelo de Alarcón, Madrid 28223, Spain e-mail:
| |
Collapse
|
84
|
Huet G. Breeding for resistances to Ralstonia solanacearum. FRONTIERS IN PLANT SCIENCE 2014; 5:715. [PMID: 25566289 PMCID: PMC4264415 DOI: 10.3389/fpls.2014.00715] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 11/27/2014] [Indexed: 05/20/2023]
Abstract
Ralstonia solanacearum is one of the most devastating bacterial plant pathogens due to its large host range, worldwide geographic distribution and persistence in fields. This soilborne pathogen is the causal agent of bacterial wilt and it can infect major agricultural crops thereby reducing significantly their yield. To favor infection, the bacterium delivers, through the type three secretion system, effectors that manipulate plant immunity. In this review, the relative efficiency of control strategies and existing resistances to R. solanacearum will be presented. Then, the genetic and molecular insights gained from the study of bacterial wilt in model plants will be described. Finally, I will explore how the knowledge gathered from unraveling avirulence and virulence mechanisms of R. solanacearum effectors could help to develop more durable resistances in crop plants toward this destructive pathogen.
Collapse
Affiliation(s)
- Gaëlle Huet
- INRA, Laboratoire des Interactions Plantes-Microorganismes, UMR441, Castanet-TolosanFrance
- CNRS, Laboratoire des Interactions Plantes-Microorganismes, UMR2594, Castanet-TolosanFrance
- *Correspondence: Gaëlle Huet, Laboratoire des Interactions Plantes Microorganismes, 24 chemin de Borde Rouge - Auzeville, CS 52627, 31326 Castanet-Tolosan, France e-mail:
| |
Collapse
|
85
|
Shpak ED. Diverse roles of ERECTA family genes in plant development. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2013; 55:1238-50. [PMID: 24016315 DOI: 10.1111/jipb.12108] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Accepted: 09/03/2013] [Indexed: 05/19/2023]
Abstract
Multiple receptor-like kinases (RLKs) enable intercellular communication that coordinates growth and development of plant tissues. ERECTA family receptors (ERfs) are an ancient family of leucine-rich repeat RLKs that in Arabidopsis consists of three genes: ERECTA, ERL1, and ERL2. ERfs sense secreted cysteine-rich peptides from the EPF/EPFL family and transmit the signal through a MAP kinase cascade. This review discusses the functions of ERfs in stomata development, in regulation of longitudinal growth of aboveground organs, during reproductive development, and in the shoot apical meristem. In addition the role of ERECTA in plant responses to biotic and abiotic factors is examined. Elena D. Shpak (Corresponding author).
Collapse
Affiliation(s)
- Elena D Shpak
- Department of Biochemistry, Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee, 37996, USA
| |
Collapse
|
86
|
Landoni M, De Francesco A, Bellatti S, Delledonne M, Ferrarini A, Venturini L, Pilu R, Bononi M, Tonelli C. A mutation in the FZL gene of Arabidopsis causing alteration in chloroplast morphology results in a lesion mimic phenotype. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:4313-28. [PMID: 23963675 PMCID: PMC3808314 DOI: 10.1093/jxb/ert237] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Lesion mimic mutants (LMMs) are a class of mutants in which hypersensitive cell death and defence responses are constitutively activated in the absence of pathogen attack. Various signalling molecules, such as salicylic acid (SA), reactive oxygen species (ROS), nitric oxide (NO), Ca(2+), ethylene, and jasmonate, are involved in the regulation of multiple pathways controlling hypersensitive response (HR) activation, and LMMs are considered useful tools to understand the role played by the key elements of the HR cell death signalling cascade. Here the characterization of an Arabidopsis LMM lacking the function of the FZL gene is reported. This gene encodes a membrane-remodelling GTPase playing an essential role in the determination of thylakoid and chloroplast morphology. The mutant displayed alteration in chloroplast number, size, and shape, and the typical characteristics of an LMM, namely development of chlorotic lesions on rosette leaves and constitutive expression of genetic and biochemical markers associated with defence responses. The chloroplasts are a major source of ROS, and the characterization of this mutant suggests that their accumulation, triggered by damage to the chloroplast membranes, is a signal sufficient to start the HR signalling cascade, thus confirming the central role of the chloroplast in HR activation.
Collapse
Affiliation(s)
- Michela Landoni
- Dipartimento di Bioscienze, Università degli Studi di Milano, via Celoria 26, 20133 Milano, Italy
- *To whom correspondence should be addressed. E-mail:
| | - Alessandra De Francesco
- Dipartimento di Bioscienze, Università degli Studi di Milano, via Celoria 26, 20133 Milano, Italy
| | - Silvia Bellatti
- Dipartimento di Bioscienze, Università degli Studi di Milano, via Celoria 26, 20133 Milano, Italy
| | - Massimo Delledonne
- Dipartimento di Biotecnologie, Università degli Studi di Verona, Strada le Grazie 15, 37134 Verona, Italy
| | - Alberto Ferrarini
- Dipartimento di Biotecnologie, Università degli Studi di Verona, Strada le Grazie 15, 37134 Verona, Italy
| | - Luca Venturini
- Dipartimento di Biotecnologie, Università degli Studi di Verona, Strada le Grazie 15, 37134 Verona, Italy
| | - Roberto Pilu
- Dipartimento di Scienze Agrarie e Ambientali-Produzione, Territorio, Agroenergia, via Celoria 2, 20133 Milano, Italy
| | - Monica Bononi
- Dipartimento di Scienze Agrarie e Ambientali-Produzione, Territorio, Agroenergia, via Celoria 2, 20133 Milano, Italy
| | - Chiara Tonelli
- Dipartimento di Bioscienze, Università degli Studi di Milano, via Celoria 26, 20133 Milano, Italy
| |
Collapse
|
87
|
Rant JC, Arraiano LS, Chabannes M, Brown JKM. Quantitative trait loci for partial resistance to Pseudomonas syringae pv. maculicola in Arabidopsis thaliana. MOLECULAR PLANT PATHOLOGY 2013; 14:828-37. [PMID: 23724899 PMCID: PMC3902988 DOI: 10.1111/mpp.12043] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Segregation of partial resistance to Pseudomonas syringae pv. maculicola (Psm) ES4326 was studied in the recombinant inbred population created from accessions (ecotypes) Columbia (Col-4), the more susceptible parent, and Landsberg (Ler-0). Plants were spray inoculated with lux-transformed bacteria in experiments to measure susceptibility. The amount of disease produced on a range of Col × Ler lines by spray inoculation was highly correlated with that produced by pressure infiltration of bacteria into the apoplast. Quantitative trait locus (QTL) analysis identified four loci that contributed to partial resistance: QRpsJIC-1.1, QRpsJIC-2.1, QRpsJIC-3.1 and QRpsJIC-5.1 on chromosomes 1, 2, 3 and 5, respectively. QRpsJIC-3.1, located 8.45 cM from the top of the consensus genetic map of chromosome 3, had a large, approximately additive effect on partial resistance, explaining 50% of the genetic variation in this population. Fine mapping narrowed the region within which this QTL was located to 62 genes. A list of candidate genes included several major classes of resistance gene.
Collapse
|
88
|
Peeters N, Guidot A, Vailleau F, Valls M. Ralstonia solanacearum, a widespread bacterial plant pathogen in the post-genomic era. MOLECULAR PLANT PATHOLOGY 2013; 14:651-62. [PMID: 23718203 PMCID: PMC6638647 DOI: 10.1111/mpp.12038] [Citation(s) in RCA: 199] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
UNLABELLED Ralstonia solanacearum is a soil-borne bacterium causing the widespread disease known as bacterial wilt. Ralstonia solanacearum is also the causal agent of Moko disease of banana and brown rot of potato. Since the last R. solanacearum pathogen profile was published 10 years ago, studies concerning this plant pathogen have taken a genomic and post-genomic direction. This was pioneered by the first sequenced and annotated genome for a major plant bacterial pathogen and followed by many more genomes in subsequent years. All molecular features studied now have a genomic flavour. In the future, this will help in connecting the classical field of pathology and diversity studies with the gene content of specific strains. In this review, we summarize the recent research on this bacterial pathogen, including strain classification, host range, pathogenicity determinants, regulation of virulence genes, type III effector repertoire, effector-triggered immunity, plant signalling in response to R. solanacearum, as well as a review of different new pathosystems. TAXONOMY Bacteria; Proteobacteria; β subdivision; Ralstonia group; genus Ralstonia. DISEASE SYMPTOMS Ralstonia solanacearum is the agent of bacterial wilt of plants, characterized by a sudden wilt of the whole plant. Typically, stem cross-sections will ooze a slimy bacterial exudate. In the case of Moko disease of banana and brown rot of potato, there is also visible bacterial colonization of banana fruit and potato tuber. DISEASE CONTROL As a soil-borne pathogen, infected fields can rarely be reused, even after rotation with nonhost plants. The disease is controlled by the use of resistant and tolerant plant cultivars. The prevention of spread of the disease has been achieved, in some instances, by the application of strict prophylactic sanitation practices. USEFUL WEBSITES Stock centre: International Centre for Microbial Resources-French Collection for Plant-associated Bacteria CIRM-CFBP, IRHS UMR 1345 INRA-ACO-UA, 42 rue Georges Morel, 49070 Beaucouzé Cedex, France, http://www.angers-nantes.inra.fr/cfbp/. Ralstonia Genome browser: https://iant.toulouse.inra.fr/R.solanacearum. GMI1000 insertion mutant library: https://iant.toulouse.inra.fr/R.solanacearumGMI1000/GenomicResources. MaGe Genome Browser: https://www.genoscope.cns.fr/agc/microscope/mage/viewer.php?
Collapse
Affiliation(s)
- Nemo Peeters
- INRA UMR441 Laboratoire des Interactions Plantes Micro-organismes (LIPM), 24 chemin de Borde Rouge-Auzeville CS 52627, 31326, Castanet Tolosan Cedex, France
| | | | | | | |
Collapse
|
89
|
Ben C, Debellé F, Berges H, Bellec A, Jardinaud MF, Anson P, Huguet T, Gentzbittel L, Vailleau F. MtQRRS1, an R-locus required for Medicago truncatula quantitative resistance to Ralstonia solanacearum. THE NEW PHYTOLOGIST 2013; 199:758-72. [PMID: 23638965 DOI: 10.1111/nph.12299] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Accepted: 03/27/2013] [Indexed: 05/21/2023]
Abstract
Ralstonia solanacearum is a major soilborne pathogen that attacks > 200 plant species, including major crops. To characterize MtQRRS1, a major quantitative trait locus (QTL) for resistance towards this bacterium in the model legume Medicago truncatula, genetic and functional approaches were combined. QTL analyses together with disease scoring of heterogeneous inbred families were used to define the locus. The candidate region was studied by physical mapping using a bacterial artificial chromosome (BAC) library of the resistant line, and sequencing. In planta bacterial growth measurements, grafting experiments and gene expression analysis were performed to investigate the mechanisms by which this locus confers resistance to R. solanacearum. The MtQRRS1 locus was localized to the same position in two recombinant inbred line populations and was narrowed down to a 64 kb region. Comparison of parental line sequences revealed 15 candidate genes with sequence polymorphisms, but no evidence of differential gene expression upon infection. A role for the hypocotyl in resistance establishment was shown. These data indicate that the quantitative resistance to bacterial wilt conferred by MtQRRS1, which contains a cluster of seven R genes, is shared by different accessions and may act through intralocus interactions to promote resistance.
Collapse
Affiliation(s)
- Cécile Ben
- INP, UPS, Laboratoire d'Ecologie Fonctionnelle et Environnement (Ecolab), ENSAT, Université de Toulouse, Castanet Tolosan, France
| | | | | | | | | | | | | | | | | |
Collapse
|
90
|
Teixeira PJPL, Costa GGL, Fiorin GL, Pereira GAG, Mondego JMC. Novel receptor-like kinases in cacao contain PR-1 extracellular domains. MOLECULAR PLANT PATHOLOGY 2013; 14:602-9. [PMID: 23573899 PMCID: PMC6638629 DOI: 10.1111/mpp.12028] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Members of the pathogenesis-related protein 1 (PR-1) family are well-known markers of plant defence responses, forming part of the arsenal of the secreted proteins produced on pathogen recognition. Here, we report the identification of two cacao (Theobroma cacao L.) PR-1s that are fused to transmembrane regions and serine/threonine kinase domains, in a manner characteristic of receptor-like kinases (RLKs). These proteins (TcPR-1f and TcPR-1g) were named PR-1 receptor kinases (PR-1RKs). Phylogenetic analysis of RLKs and PR-1 proteins from cacao indicated that PR-1RKs originated from a fusion between sequences encoding PR-1 and the kinase domain of a LecRLK (Lectin Receptor-Like Kinase). Retrotransposition marks surround TcPR-1f, suggesting that retrotransposition was involved in the origin of PR-1RKs. Genes with a similar domain architecture to cacao PR-1RKs were found in rice (Oryza sativa), barrel medic (Medicago truncatula) and a nonphototrophic bacterium (Herpetosiphon aurantiacus). However, their kinase domains differed from those found in LecRLKs, indicating the occurrence of convergent evolution. TcPR-1g expression was up-regulated in the biotrophic stage of witches' broom disease, suggesting a role for PR-1RKs during cacao defence responses. We hypothesize that PR-1RKs transduce a defence signal by interacting with a PR-1 ligand.
Collapse
Affiliation(s)
- Paulo José Pereira Lima Teixeira
- Laboratório de Genômica e Expressão, Departamento de Genética, Evolução e Bioagentes, Instituto de Biologia, Universidade Estadual de Campinas-Uicamp, CP 6109, Campinas, SP 13083-970, Brazil
| | | | | | | | | |
Collapse
|
91
|
Zan Y, Ji Y, Zhang Y, Yang S, Song Y, Wang J. Genome-wide identification, characterization and expression analysis of populus leucine-rich repeat receptor-like protein kinase genes. BMC Genomics 2013; 14:318. [PMID: 23663326 PMCID: PMC3682895 DOI: 10.1186/1471-2164-14-318] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Accepted: 05/03/2013] [Indexed: 12/31/2022] Open
Abstract
Background Leucine-rich repeat receptor-like kinases (LRR-RLKs) comprise the largest group within the receptor-like kinase (RLK) superfamily in plants. This gene family plays critical and diverse roles in plant growth, development and stress response. Although the LRR-RLK families in Arabidopsis and rice have been previously analyzed, no comprehensive studies have been performed on this gene family in tree species. Results In this work, 379 LRR-RLK genes were retrieved from the Populus trichocarpa genome and further grouped into 14 subfamilies based on their structural and sequence similarities. Approximately 82% (312 out of 379) of the PtLRR-RLK genes are located in segmental duplication blocks indicating the role of duplication process in the expansion of this gene family. The conservation and variation in motif composition and intron/exon arrangement among PtLRR-RLK subfamilies were analyzed to provide additional support for their phylogenetic relationship and more importantly to indicate the potential divergence in their functions. Expression profiling of PtLRR-RLKs showed that they were differentially expressed in different organs and tissues and some PtLRR-RLKs were specifically expressed in meristem tissues, which indicated their potential involvement in tissue development and differentiation. For most AtLRR-RLKs with defined functions, Populus homologues exhibiting similar expression patterns could be identified, which might indicate the functional conservation during evolution. Among 12 types of environmental cues analyzed by the genome-wide microarray data, PtLRR-RLKs showed specific responses to shoot organogenesis, wounding, low ammonium feeding, hypoxia and seasonal dormancy, but not to drought, re-watering after drought, flooding, AlCl3 treatment and bacteria or fungi treatments. Conclusions This study provides the first comprehensive genomic analysis of the Populus LRR-RLK gene family. Segmental duplication contributes significantly to the expansion of this gene family. Populus and Arabidopsis LRR-RLK homologues not only share similar genetic structures but also exhibit comparable expression patterns which point to the possible functional conservation of these LRR-RLKs in two model systems. Transcriptome profiling provides the first insight into the functional divergence among PtLRR-RLK gene subfamilies and suggests that they might take important roles in growth and adaptation of tree species.
Collapse
Affiliation(s)
- Yanjun Zan
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | | | | | | | | | | |
Collapse
|
92
|
Kasulin L, Agrofoglio Y, Botto JF. The receptor-like kinase ERECTA contributes to the shade-avoidance syndrome in a background-dependent manner. ANNALS OF BOTANY 2013; 111:811-9. [PMID: 23444123 PMCID: PMC3631326 DOI: 10.1093/aob/mct038] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Accepted: 01/10/2013] [Indexed: 05/19/2023]
Abstract
BACKGROUND AND AIMS Plants growing at high densities perceive a decrease in the red to far-red (R/FR) ratio of incoming light. These changes in light quality trigger a suite of responses collectively known as the shade-avoidance syndrome (SAS) including hypocotyl and stem elongation, inhibition of branching and acceleration of flowering. METHODS Quantitative trait loci (QTLs) were mapped for hypocotyl length to end-of-day far-red (EOD), a simulated shade-avoidance response, in recombinant inbred line (RIL) populations of Arabidopsis thaliana seedlings, derived from Landsberg erecta (Ler) and three accessions (Columbia, Col; Nossen, No-0; and Cape Verde Islands, Cvi-0). KEY RESULTS Five loci were identified as being responsible for the EOD response, with a positive contribution of Ler alleles on the phenotype independently of the RIL population. Quantitative complementation analysis and transgenic lines showed that PHYB is the candidate gene for EODRATIO5 in the Ler × Cvi-0 RIL population, but not for two co-localized QTLs, EODRATIO1 and EODRATIO2 mapped in the Ler × No-0 and Ler × Col RIL populations, respectively. The ERECTA gene was also implicated in the SAS in a background-dependent manner. For hypocotyl length EOD response, a positive contribution of erecta alleles was found in Col and Van-0, but not in Ler, Cvi-0, Hir-1 or Ws. Furthermore, pleiotropic effects of ERECTA in the EOD response were also detected for petiole and lamina elongation, hyponastic growth, and flowering time. CONCLUSIONS The results show that the analysis of multiple mapping populations leads to a better understanding of the SAS genetic architecture. Moreover, the background- and trait-dependent contribution of ERECTA in the SAS suggest that its function in shaded natural environments may be relevant for some populations in different phases of plant development. It is proposed that ERECTA is involved in canalization processes buffering the genetic variation of the SAS against environmental light fluctuations.
Collapse
Affiliation(s)
| | | | - Javier F. Botto
- IFEVA, Facultad de Agronomía, Universidad de Buenos Aires y Consejo Nacional de Investigaciones Científicas y Técnicas, C1417DSE, Ciudad de Buenos Aires, Argentina
| |
Collapse
|
93
|
Ballini E, Lauter N, Wise R. Prospects for advancing defense to cereal rusts through genetical genomics. FRONTIERS IN PLANT SCIENCE 2013; 4:117. [PMID: 23641250 PMCID: PMC3640194 DOI: 10.3389/fpls.2013.00117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Accepted: 04/15/2013] [Indexed: 05/03/2023]
Abstract
Rusts are one of the most severe threats to cereal crops because new pathogen races emerge regularly, resulting in infestations that lead to large yield losses. In 1999, a new race of stem rust, Puccinia graminis f. sp. tritici (Pgt TTKSK or Ug99), was discovered in Uganda. Most of the wheat and barley cultivars grown currently worldwide are susceptible to this new race. Pgt TTKSK has already spread northward into Iran and will likely spread eastward throughout the Indian subcontinent in the near future. This scenario is not unique to stem rust; new races of leaf rust (Puccinia triticina) and stripe rust (Puccinia striiformis) have also emerged recently. One strategy for countering the persistent adaptability of these pathogens is to stack complete- and partial-resistance genes, which requires significant breeding efforts in order to reduce deleterious effects of linkage drag. These varied resistance combinations are typically more difficult for the pathogen to defeat, since they would be predicted to apply lower selection pressure. Genetical genomics or expression Quantitative Trait Locus (eQTL) analysis enables the identification of regulatory loci that control the expression of many to hundreds of genes. Integrated deployment of these technologies coupled with efficient phenotyping offers significant potential to elucidate the regulatory nodes in genetic networks that orchestrate host defense responses. The focus of this review will be to present advances in genetical genomic experimental designs and analysis, particularly as they apply to the prospects for discovering partial disease resistance alleles in cereals.
Collapse
Affiliation(s)
| | | | - Roger Wise
- Corn Insects and Crop Genetics Research, Department of Plant Pathology and Microbiology, US Department of Agriculture - Agricultural Research Service, Center for Plant Responses to Environmental Stresses, Iowa State UniversityAmes, IA, USA
| |
Collapse
|
94
|
Liu Z, Feng S, Pandey MK, Chen X, Culbreath AK, Varshney RK, Guo B. Identification of expressed resistance gene analogs from peanut (Arachis hypogaea L.) expressed sequence tags. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2013; 55:453-461. [PMID: 23384141 DOI: 10.1111/jipb.12037] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Accepted: 01/24/2013] [Indexed: 06/01/2023]
Abstract
Low genetic diversity makes peanut (Arachis hypogaea L.) very vulnerable to plant pathogens, causing severe yield loss and reduced seed quality. Several hundred partial genomic DNA sequences as nucleotide-binding-site leucine-rich repeat (NBS-LRR) resistance genes (R) have been identified, but a small portion with expressed transcripts has been found. We aimed to identify resistance gene analogs (RGAs) from peanut expressed sequence tags (ESTs) and to develop polymorphic markers. The protein sequences of 54 known R genes were used to identify homologs from peanut ESTs from public databases. A total of 1,053 ESTs corresponding to six different classes of known R genes were recovered, and assembled 156 contigs and 229 singletons as peanut-expressed RGAs. There were 69 that encoded for NBS-LRR proteins, 191 that encoded for protein kinases, 82 that encoded for LRR-PK/transmembrane proteins, 28 that encoded for Toxin reductases, 11 that encoded for LRR-domain containing proteins and four that encoded for TM-domain containing proteins. Twenty-eight simple sequence repeats (SSRs) were identified from 25 peanut expressed RGAs. One SSR polymorphic marker (RGA121) was identified. Two polymerase chain reaction-based markers (Ahsw-1 and Ahsw-2) developed from RGA013 were homologous to the Tomato Spotted Wilt Virus (TSWV) resistance gene. All three markers were mapped on the same linkage group AhIV. These expressed RGAs are the source for RGA-tagged marker development and identification of peanut resistance genes.
Collapse
Affiliation(s)
- Zhanji Liu
- University of Georgia, Department of Plant Pathology, Tifton, GA 31793, USA
| | | | | | | | | | | | | |
Collapse
|
95
|
Van der Linden L, Bredenkamp J, Naidoo S, Fouché-Weich J, Denby KJ, Genin S, Marco Y, Berger DK. Gene-for-gene tolerance to bacterial wilt in Arabidopsis. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2013; 26:398-406. [PMID: 23234403 DOI: 10.1094/mpmi-07-12-0188-r] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Bacterial wilt caused by Ralstonia solanacearum is a disease of widespread economic importance that affects numerous plant species, including Arabidopsis thaliana. We describe a pathosystem between A. thaliana and biovar 3 phylotype I strain BCCF402 of R. solanacearum isolated from Eucalyptus trees. A. thaliana accession Be-0 was susceptible and accession Kil-0 was tolerant. Kil-0 exhibited no wilting symptoms and no significant reduction in fitness (biomass, seed yield, and germination efficiency) after inoculation with R. solanacearum BCCF402, despite high bacterial numbers in planta. This was in contrast to the well-characterized resistance response in the accession Nd-1, which limits bacterial multiplication at early stages of infection and does not wilt. R. solanacearum BCCF402 was highly virulent because the susceptible accession Be-0 was completely wilted after inoculation. Genetic analyses, allelism studies with Nd-1, and RRS1 cleaved amplified polymorphic sequence marker analysis showed that the tolerance phenotype in Kil-0 was dependent upon the resistance gene RRS1. Knockout and complementation studies of the R. solanacearum BCCF402 effector PopP2 confirmed that the tolerance response in Kil-0 was dependent upon the RRS1-PopP2 interaction. Our data indicate that the gene-for-gene interaction between RRS1 and PopP2 can contribute to tolerance, as well as resistance, which makes it a useful model system for evolutionary studies of the arms race between plants and bacterial pathogens. In addition, the results alert biotechnologists to the risk that deployment of RRS1 in transgenic crops may result in persistence of the pathogen in the field.
Collapse
Affiliation(s)
- Liesl Van der Linden
- Department of Plant Science, Forestry and Agricultural Research Institute, South Africa
| | | | | | | | | | | | | | | |
Collapse
|
96
|
Bai Y, Vaddepalli P, Fulton L, Bhasin H, Hülskamp M, Schneitz K. ANGUSTIFOLIA is a central component of tissue morphogenesis mediated by the atypical receptor-like kinase STRUBBELIG. BMC PLANT BIOLOGY 2013; 13:16. [PMID: 23368817 PMCID: PMC3599385 DOI: 10.1186/1471-2229-13-16] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Accepted: 01/29/2013] [Indexed: 05/03/2023]
Abstract
BACKGROUND During plant tissue morphogenesis cells have to coordinate their behavior to allow the generation of the size, shape and cellular patterns that distinguish an organ. Despite impressive progress the underlying signaling pathways remain largely unexplored. In Arabidopsis thaliana, the atypical leucine-rich repeat receptor-like kinase STRUBBELIG (SUB) is involved in signal transduction in several developmental processes including the formation of carpels, petals, ovules and root hair patterning. The three STRUBBELIG-LIKE MUTANT (SLM) genes DETORQUEO (DOQ), QUIRKY (QKY) and ZERZAUST (ZET) are considered central elements of SUB-mediated signal transduction pathways as corresponding mutants share most phenotypic aspects with sub mutants. RESULTS Here we show that DOQ corresponds to the previously identified ANGUSTIFOLIA gene. The genetic analysis revealed that the doq-1 mutant exhibits all additional mutant phenotypes and conversely that other an alleles show the slm phenotypes. We further provide evidence that SUB and AN physically interact and that AN is not required for subcellular localization of SUB. CONCLUSIONS Our data suggest that AN is involved in SUB signal transduction pathways. In addition, they reveal previously unreported functions of AN in several biological processes, such as ovule development, cell morphogenesis in floral meristems, and root hair patterning. Finally, SUB and AN may directly interact at the plasma membrane to mediate SUB-dependent signaling.
Collapse
Affiliation(s)
- Yang Bai
- Botanisches Institut III, Universität Köln, Zülpicher Straße 47b, 50674, Köln, Germany
- Present address: Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829, Köln, Germany
| | - Prasad Vaddepalli
- Entwicklungsbiologie der Pflanzen, Wissenschaftszentrum Weihenstephan, Technische Universität München, Emil-Ramann-Str. 4, 85354, Freising, Germany
| | - Lynette Fulton
- Entwicklungsbiologie der Pflanzen, Wissenschaftszentrum Weihenstephan, Technische Universität München, Emil-Ramann-Str. 4, 85354, Freising, Germany
- Present address: School of Biological Sciences, Monash University, 3800, Melbourne, VIC, Australia
| | - Hemal Bhasin
- Botanisches Institut III, Universität Köln, Zülpicher Straße 47b, 50674, Köln, Germany
| | - Martin Hülskamp
- Botanisches Institut III, Universität Köln, Zülpicher Straße 47b, 50674, Köln, Germany
| | - Kay Schneitz
- Entwicklungsbiologie der Pflanzen, Wissenschaftszentrum Weihenstephan, Technische Universität München, Emil-Ramann-Str. 4, 85354, Freising, Germany
| |
Collapse
|
97
|
Sakamoto T, Deguchi M, Brustolini OJB, Santos AA, Silva FF, Fontes EPB. The tomato RLK superfamily: phylogeny and functional predictions about the role of the LRRII-RLK subfamily in antiviral defense. BMC PLANT BIOLOGY 2012; 12:229. [PMID: 23198823 PMCID: PMC3552996 DOI: 10.1186/1471-2229-12-229] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Accepted: 11/18/2012] [Indexed: 05/19/2023]
Abstract
BACKGROUND Receptor-like kinases (RLKs) play key roles during development and in responses to the environment. Despite the relevance of the RLK family and the completion of the tomato genome sequencing, the tomato RLK family has not yet been characterized, and a framework for functional predictions of the members of the family is lacking. RESULTS To generate a complete list of all the members of the tomato RLK family, we performed a phylogenetic analysis using the Arabidopsis family as a template. A total of 647 RLKs were identified in the tomato genome, which were organized into the same subfamily clades as Arabidopsis RLKs. Only eight of 58 RLK subfamilies exhibited specific expansion/reduction compared to their Arabidopsis counterparts. We also characterized the LRRII-RLK family by phylogeny, genomic analysis, expression profile and interaction with the virulence factor from begomoviruses, the nuclear shuttle protein (NSP). The LRRII subfamily members from tomato and Arabidopsis were highly conserved in both sequence and structure. Nevertheless, the majority of the orthologous pairs did not display similar conservation in the gene expression profile, indicating that these orthologs may have diverged in function after speciation. Based on the fact that members of the Arabidopsis LRRII subfamily (AtNIK1, AtNIK2 and AtNIK3) interact with the begomovirus nuclear shuttle protein (NSP), we examined whether the tomato orthologs of NIK, BAK1 and NsAK genes interact with NSP of Tomato Yellow Spot Virus (ToYSV). The tomato orthologs of NSP interactors, SlNIKs and SlNsAK, interacted specifically with NSP in yeast and displayed an expression pattern consistent with the pattern of geminivirus infection. In addition to suggesting a functional analogy between these phylogenetically classified orthologs, these results expand our previous observation that NSP-NIK interactions are neither virus-specific nor host-specific. CONCLUSIONS The tomato RLK superfamily is made-up of 647 proteins that form a monophyletic tree with the Arabidopsis RLKs and is divided into 58 subfamilies. Few subfamilies have undergone expansion/reduction, and only six proteins were lineage-specific. Therefore, the tomato RLK family shares functional and structural conservation with Arabidopsis. For the LRRII-RLK members SlNIK1 and SlNIK3, we observed functions analogous to those of their Arabidopsis counterparts with respect to protein-protein interactions and similar expression profiles, which predominated in tissues that support high efficiency of begomovirus infection. Therefore, NIK-mediated antiviral signaling is also likely to operate in tomato, suggesting that tomato NIKs may be good targets for engineering resistance against tomato-infecting begomoviruses.
Collapse
Affiliation(s)
- Tetsu Sakamoto
- National Institute of Science and Technology in Plant-Pest Interactions, Universidade Federal de Viçosa, 36570-000, Viçosa, MG, Brazil
| | - Michihito Deguchi
- National Institute of Science and Technology in Plant-Pest Interactions, Universidade Federal de Viçosa, 36570-000, Viçosa, MG, Brazil
- Departamento de Bioquímica e Biologia Molecular/BIOAGRO, Universidade Federal de Viçosa, 36570-000, Viçosa, MG, Brazil
| | - Otávio JB Brustolini
- National Institute of Science and Technology in Plant-Pest Interactions, Universidade Federal de Viçosa, 36570-000, Viçosa, MG, Brazil
- Departamento de Bioquímica e Biologia Molecular/BIOAGRO, Universidade Federal de Viçosa, 36570-000, Viçosa, MG, Brazil
| | - Anésia A Santos
- National Institute of Science and Technology in Plant-Pest Interactions, Universidade Federal de Viçosa, 36570-000, Viçosa, MG, Brazil
- Departamento de Bioquímica e Biologia Molecular/BIOAGRO, Universidade Federal de Viçosa, 36570-000, Viçosa, MG, Brazil
| | - Fabyano F Silva
- Departamento de Estatística, Universidade Federal de Viçosa, 36570-000, Viçosa, MG, Brazil
| | - Elizabeth PB Fontes
- National Institute of Science and Technology in Plant-Pest Interactions, Universidade Federal de Viçosa, 36570-000, Viçosa, MG, Brazil
- Departamento de Bioquímica e Biologia Molecular/BIOAGRO, Universidade Federal de Viçosa, 36570-000, Viçosa, MG, Brazil
| |
Collapse
|
98
|
Torii KU. Mix-and-match: ligand-receptor pairs in stomatal development and beyond. TRENDS IN PLANT SCIENCE 2012; 17:711-9. [PMID: 22819466 DOI: 10.1016/j.tplants.2012.06.013] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Revised: 06/22/2012] [Accepted: 06/25/2012] [Indexed: 05/19/2023]
Abstract
Stomata are small valves on the plant epidermis balancing gas exchange and water loss. Stomata are formed according to positional cues. In Arabidopsis, two EPIDERMAL PATTERNING FACTOR (EPF) peptides, EPF1 and EPF2, are secreted from stomatal precursors enforcing proper stomatal patterning. Here, I review recent studies revealing the ligand-receptor pairs and revising the previously predicted relations between receptors specifying stomatal patterning: ERECTA-family and TOO MANY MOUTHS (TMM). Furthermore, EPF-LIKE9 (EPFL9/Stomagen) promotes stomatal differentiation from internal tissues. Two EPFL peptides specify inflorescence architecture, a process beyond stomatal development, as ligands for ERECTA. Thus, broadly expressed receptor kinases may regulate multiple developmental processes through perceiving different peptide ligands, each with a specialized expression pattern. TMM in the epidermis may fine-tune multiple EPF/EPFL signals to prevent signal interference.
Collapse
Affiliation(s)
- Keiko U Torii
- Department of Biology, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
99
|
Law YS, Gudimella R, Song BK, Ratnam W, Harikrishna JA. Molecular characterization and comparative sequence analysis of defense-related gene, Oryza rufipogon receptor-like protein kinase 1. Int J Mol Sci 2012; 13:9343-9362. [PMID: 22942769 PMCID: PMC3430300 DOI: 10.3390/ijms13079343] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Revised: 07/06/2012] [Accepted: 07/06/2012] [Indexed: 11/16/2022] Open
Abstract
Many of the plant leucine rich repeat receptor-like kinases (LRR-RLKs) have been found to regulate signaling during plant defense processes. In this study, we selected and sequenced an LRR-RLK gene, designated as Oryza rufipogon receptor-like protein kinase 1 (OrufRPK1), located within yield QTL yld1.1 from the wild rice Oryza rufipogon (accession IRGC105491). A 2055 bp coding region and two exons were identified. Southern blotting determined OrufRPK1 to be a single copy gene. Sequence comparison with cultivated rice orthologs (OsI219RPK1, OsI9311RPK1 and OsJNipponRPK1, respectively derived from O. sativa ssp. indica cv. MR219, O. sativa ssp. indica cv. 9311 and O. sativa ssp. japonica cv. Nipponbare) revealed the presence of 12 single nucleotide polymorphisms (SNPs) with five non-synonymous substitutions, and 23 insertion/deletion sites. The biological role of the OrufRPK1 as a defense related LRR-RLK is proposed on the basis of cDNA sequence characterization, domain subfamily classification, structural prediction of extra cellular domains, cluster analysis and comparative gene expression.
Collapse
Affiliation(s)
- Yee-Song Law
- Centre for Research in Biotechnology for Agriculture (CEBAR) and Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, 50603, Malaysia; E-Mails: (Y.-S.L.); (R.G.)
| | - Ranganath Gudimella
- Centre for Research in Biotechnology for Agriculture (CEBAR) and Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, 50603, Malaysia; E-Mails: (Y.-S.L.); (R.G.)
| | - Beng-Kah Song
- School of Science, Monash University Sunway Campus, Jalan Lagoon Selatan, Bandar Sunway, Selangor 46150, Malaysia; E-Mail:
| | - Wickneswari Ratnam
- School of Environmental and Natural Resource Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor 43600, Malaysia; E-Mail:
| | - Jennifer Ann Harikrishna
- Centre for Research in Biotechnology for Agriculture (CEBAR) and Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, 50603, Malaysia; E-Mails: (Y.-S.L.); (R.G.)
| |
Collapse
|
100
|
Yang X, Deng F, Ramonell KM. Receptor-like kinases and receptor-like proteins: keys to pathogen recognition and defense signaling in plant innate immunity. ACTA ACUST UNITED AC 2012. [DOI: 10.1007/s11515-011-1185-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|