51
|
|
52
|
Gholijani N, Gharagozloo M, Farjadian S, Amirghofran Z. Modulatory effects of thymol and carvacrol on inflammatory transcription factors in lipopolysaccharide-treated macrophages. J Immunotoxicol 2015; 13:157-64. [DOI: 10.3109/1547691x.2015.1029145] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Nasser Gholijani
- Department of Immunology, Shiraz University of Medical Sciences, Shiraz, Iran,
| | - Marjan Gharagozloo
- Department of Immunology, Isfahan University of Medical Sciences, Isfahan, Iran,
- School of Pharmacy, University of Waterloo, Ontario, Canada, and
| | - Shirin Farjadian
- Department of Immunology, Shiraz University of Medical Sciences, Shiraz, Iran,
| | - Zahra Amirghofran
- Department of Immunology, Shiraz University of Medical Sciences, Shiraz, Iran,
- Autoimmune Disease Research Center and Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
53
|
Pivotal roles of GM-CSF in autoimmunity and inflammation. Mediators Inflamm 2015; 2015:568543. [PMID: 25838639 PMCID: PMC4370199 DOI: 10.1155/2015/568543] [Citation(s) in RCA: 151] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 02/23/2015] [Indexed: 12/14/2022] Open
Abstract
Granulocyte macrophage-colony stimulating factor (GM-CSF) is a hematopoietic growth factor, which stimulates the proliferation of granulocytes and macrophages from bone marrow precursor cells. In autoimmune and inflammatory diseases, Th17 cells have been considered as strong inducers of tissue inflammation. However, recent evidence indicates that GM-CSF has prominent proinflammatory functions and that this growth factor (not IL-17) is critical for the pathogenicity of CD4+ T cells. Therefore, the mechanism of GM-CSF-producing CD4+ T cell differentiation and the role of GM-CSF in the development of autoimmune and inflammatory diseases are gaining increasing attention. This review summarizes the latest knowledge of GM-CSF and its relationship with autoimmune and inflammatory diseases. The potential therapies targeting GM-CSF as well as their possible side effects have also been addressed in this review.
Collapse
|
54
|
Kardassis D, Gafencu A, Zannis VI, Davalos A. Regulation of HDL genes: transcriptional, posttranscriptional, and posttranslational. Handb Exp Pharmacol 2015; 224:113-179. [PMID: 25522987 DOI: 10.1007/978-3-319-09665-0_3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
HDL regulation is exerted at multiple levels including regulation at the level of transcription initiation by transcription factors and signal transduction cascades; regulation at the posttranscriptional level by microRNAs and other noncoding RNAs which bind to the coding or noncoding regions of HDL genes regulating mRNA stability and translation; as well as regulation at the posttranslational level by protein modifications, intracellular trafficking, and degradation. The above mechanisms have drastic effects on several HDL-mediated processes including HDL biogenesis, remodeling, cholesterol efflux and uptake, as well as atheroprotective functions on the cells of the arterial wall. The emphasis is on mechanisms that operate in physiologically relevant tissues such as the liver (which accounts for 80% of the total HDL-C levels in the plasma), the macrophages, the adrenals, and the endothelium. Transcription factors that have a significant impact on HDL regulation such as hormone nuclear receptors and hepatocyte nuclear factors are extensively discussed both in terms of gene promoter recognition and regulation but also in terms of their impact on plasma HDL levels as was revealed by knockout studies. Understanding the different modes of regulation of this complex lipoprotein may provide useful insights for the development of novel HDL-raising therapies that could be used to fight against atherosclerosis which is the underlying cause of coronary heart disease.
Collapse
Affiliation(s)
- Dimitris Kardassis
- Department of Biochemistry, University of Crete Medical School and Institute of Molecular Biology and Biotechnology, Foundation of Research and Technology of Hellas, Heraklion, Crete, 71110, Greece,
| | | | | | | |
Collapse
|
55
|
Keeler GD, Durdik JM, Stenken JA. Localized delivery of dexamethasone-21-phosphate via microdialysis implants in rat induces M(GC) macrophage polarization and alters CCL2 concentrations. Acta Biomater 2015; 12:11-20. [PMID: 25449921 DOI: 10.1016/j.actbio.2014.10.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2014] [Revised: 09/19/2014] [Accepted: 10/17/2014] [Indexed: 11/27/2022]
Abstract
Microdialysis sampling probes were implanted into the subcutaneous space on the dorsal side of male Sprague Dawley rats to locally deliver dexamethasone-21-phosphate (Dex) with the aim of altering in vivo macrophage polarization. Macrophage polarization is of significant interest in the field of biomaterials since wound-healing macrophages are a possible means to extend implant life as well as improve tissue remodeling to an implant. Quantitative analysis of CCL2 in collected dialysates, gene expression and immunohistochemistry performed on the tissue surrounding the microdialysis implant were used to evaluate if Dex polarized macrophages. Dex infusion down-regulated IL-6 and CCL2 gene expression and decreased CCL2 concentrations in dialysates collected at the implant site. Dex appeared to have no significant effect on the gene regulation of CD163, a commonly used M2c macrophage surface marker; Arg2; and iNOS2. However, Dex infusion was effective at increasing the number of CD163(+) cells surrounding the implanted microdialysis probe. This work demonstrates the use of microdialysis sampling to deliver agents such as Dex to alter macrophage polarization in vivo while allowing the ability to collect cytokines in the surrounding microenvironment.
Collapse
|
56
|
Louw-du Toit R, Hapgood JP, Africander D. Medroxyprogesterone acetate differentially regulates interleukin (IL)-12 and IL-10 in a human ectocervical epithelial cell line in a glucocorticoid receptor (GR)-dependent manner. J Biol Chem 2014; 289:31136-49. [PMID: 25202013 DOI: 10.1074/jbc.m114.587311] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Medroxyprogesterone acetate (MPA), designed to mimic the actions of the endogenous hormone progesterone (P4), is extensively used by women as a contraceptive and in hormone replacement therapy. However, little is known about the steroid receptor-mediated molecular mechanisms of action of MPA in the female genital tract. In this study, we investigated the regulation of the pro-inflammatory cytokine, interleukin (IL)-12, and the anti-inflammatory cytokine IL-10, by MPA versus P4, in an in vitro cell culture model of the female ectocervical environment. This study shows that P4 and MPA significantly increase the expression of the IL-12p40 and IL-12p35 genes, whereas IL-10 gene expression is suppressed in a dose-dependent manner. Moreover, these effects were abrogated when reducing the glucocorticoid receptor (GR) levels with siRNA. Using a combination of chromatin immunoprecipitation (ChIP), siRNA, and re-ChIP assays, we show that recruitment of the P4- and MPA-bound GR to the IL-12p40 promoter requires CCAAT enhancer-binding protein (C/EBP)-β and nuclear factor κB (NFκB), although recruitment to the IL-10 promoter requires signal transducer and activator of transcription (STAT)-3. These results suggest that both P4 and MPA may modulate inflammation in the ectocervix via this genomic mechanism.
Collapse
Affiliation(s)
- Renate Louw-du Toit
- From the Department of Biochemistry, University of Stellenbosch, Private Bag X1, Matieland 7602 and
| | - Janet P Hapgood
- the Department of Molecular and Cell Biology, University of Cape Town, Rondebosch 7700, South Africa
| | - Donita Africander
- From the Department of Biochemistry, University of Stellenbosch, Private Bag X1, Matieland 7602 and
| |
Collapse
|
57
|
Chen Z, Zhang L, He Y, Li Y. Sandwich-type Au-PEI/DNA/PEI-Dexa nanocomplex for nucleus-targeted gene delivery in vitro and in vivo. ACS APPLIED MATERIALS & INTERFACES 2014; 6:14196-14206. [PMID: 25019323 DOI: 10.1021/am503483w] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Many synthetic Au-based cationic nanoparticles (AuNPs) for nonviral gene delivery show high efficiency in vitro, but their excessive charge density, harsh reducing conditions, and nontarget delivery prevent their application in vivo. Herein, we constructed a sandwich-type layered polyethylenimine (PEI)-coated gold nanocomposite outerlaid with a nucleus-targeted Dexamethasone (Dexa), namely, Au-PEI/DNA/PEI-Dexa nanocomplex, for DNA delivery system using a low molecular weight PEI as a mild reducing agent. The nucleus-targeting Au-PEI/DNA/PEI-Dexa nanocomplex with low positive charge and low cytotoxicity condensed DNA and protected from enzymatic degradation. In vitro transfection studies demonstrated that Au-PEI/DNA/PEI-Dexa nanocomplex exhibited much more efficient nucleus transfection than Au-PEI/DNA/PEI without nucleus-targeted residues and commercially available PEI 25 kDa due to the Dexa targeting of the nucleus. Furthermore, the nanocomplex markedly transfected pTRAIL (TRAIL = tumor-necrosis-factor-related apoptosis-inducing ligand) to tumors in vivo and subsequently inhibited the tumor growth with minimal side effects. These findings suggest that nucleus-targeting Au-PEI/DNA/PEI-Dexa ternary complexes have promising potential in gene delivery.
Collapse
Affiliation(s)
- Zhenzhen Chen
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Institute of Biochemical Engineering & Environmental Technology, Lanzhou University , Lanzhou 730000, China
| | | | | | | |
Collapse
|
58
|
Wang W, Zhou F, Ge L, Liu X, Kong F. A promising targeted gene delivery system: folate-modified dexamethasone-conjugated solid lipid nanoparticles. PHARMACEUTICAL BIOLOGY 2014; 52:1039-1044. [PMID: 24611745 DOI: 10.3109/13880209.2013.876655] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
CONTEXT Non-viral gene delivery could deliver drugs/genes through cellular membranes and nuclear membranes by some modification of materials. OBJECTIVE This study develops a kind of vector to target the cells through receptor-mediated pathways. Nuclear localization signal (NLS) was also used to increase the nuclear uptake of genetic materials. MATERIALS AND METHODS A lipid containing dexamethasone (Dexa) was synthesized as the material of the preparation of solid lipid nanoparticles (SLNs) and folate (Fa)-conjugated PEG-PE (Fa-PEG-PE) ligands were used to modify the SLNs. The in vitro cytotoxicity of the carriers at various concentrations (10, 20, 50, 100, and 200 μg/ml) were evaluated in KB human carcinoma cells (KB cells). In vivo transfection efficiency of the novel modified vectors was evaluated in disseminated peritoneal tumors on mice bearing KB cells. RESULTS Fa-PEG-PE modified SLNs/enhanced green fluorescence protein plasmid (pEGFP) has a particle size of 258 nm, and the gene loading quantity of the vector was 90%. The in vitro cytotoxicity of Fa-PEG-PE-modified SLNs/pEGFP (Fa-SLNs/pEGFP) was low (cell viabilities were between 80% and 100% compared with controls). Fa-SLNs/pEGFP displayed remarkably higher transfection efficiency (40%) than non-modified SLNs/pEGFP (24%) and the vectors not containing Dexa (30%) in vivo. CONCLUSION The results demonstrate that Fa and Dexa could function as excellent active targeting ligands to improve the cell targeting and nuclear targeting ability of the carriers and the resulting vectors could be promising active targeting drug/gene delivery systems.
Collapse
Affiliation(s)
- Wei Wang
- Department of Chinese Medicine Integrated Traditional Chinese Medicine and Western Medicine and
| | | | | | | | | |
Collapse
|
59
|
Tanabe K, Matsushima-Nishiwaki R, Kozawa O, Iida H. Dexmedetomidine suppresses interleukin-1β-induced interleukin-6 synthesis in rat glial cells. Int J Mol Med 2014; 34:1032-8. [PMID: 25069417 DOI: 10.3892/ijmm.2014.1863] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Accepted: 07/18/2014] [Indexed: 11/06/2022] Open
Abstract
Dexmedetomidine, an α2-adrenoceptor agonist, is used as a sedative medication for criticalyl ill patients and is known to exert neuroprotective effects by direct action on neurons and indirect action on neurons through astrocytes. Interleukin (IL)-6 plays a key role in neuroinflammation, which accompanies infection, traumatic brain injury, ischemia, neurodegenerative disorders, as both a pro-inflammatory cytokine and an anti-inflammatory cytokine. Dexmedetomidine suppresses immune function. However, the effects of dexmedetomidine on cytokine synthesis in the central nervous system (CNS) remain elusive. We previously reported that IL-1β stimulates IL-6 synthesis in the rat C6 glioma cell line through the phosphorylation of p38 mitogen-activated protein (MAP) kinase, stress-activated protein kinase (SAPK)/c-Jun N-terminal kinase (JNK) and IκB. In the present study, we investigated the effects of dexmedetomidine on the IL-1β-induced IL-6 synthesis in C6 cells. Dexmedetomidine inhibited the IL-1β-stimulated IL-6 release and mRNA expression in C6 cells. 8-Bromo-adenosine-3',5'-cyclic monophosphate, but not 8-bromo-guanosine 3',5'-cyclic monophosphate, significantly enhanced the IL-1β-induced IL-6 release and mRNA expression. However, dexmedetomidine failed to affect cAMP accumulation in the cells treated with IL-1β or forskolin, an activator of adenylyl cyclase. Yohimbine, an α2-adrenoceptor antagonist, did not reverse the suppressive effects of dexmedetomidine on the IL-1β-induced IL-6 release. Dexmedetomidine did not affect the IL-1β-induced phosphorylation of p38 MAP kinase, SAPK/JNK, IκB, nuclear factor (NF)-κB or c-Jun. Our findings strongly suggest that dexmedetomidine inhibits the IL-1β-induced IL-6 synthesis independently of the adenylyl cyclase-cAMP pathway through α2-adrenoceptors in C6 glioma cells. It is possible that dexmedetomidine may affect the immune system in the CNS by regulating the production of IL-6.
Collapse
Affiliation(s)
- Kumiko Tanabe
- Department of Anesthesiology and Pain Medicine, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan
| | | | - Osamu Kozawa
- Department of Pharmacology, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan
| | - Hiroki Iida
- Department of Anesthesiology and Pain Medicine, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan
| |
Collapse
|
60
|
Tsai Y, Ko Y, Huang M, Lin M, Wu C, Wang C, Chen Y, Li J, Tseng Y, Wang T. CHI3L1 polymorphisms associate with asthma in a Taiwanese population. BMC MEDICAL GENETICS 2014; 15:86. [PMID: 25056157 PMCID: PMC4113488 DOI: 10.1186/1471-2350-15-86] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 07/08/2014] [Indexed: 11/10/2022]
Abstract
BACKGROUND A genome-wide association study uncovered Chitinase 3 like 1 (CHI3L1) as a candidate gene for asthma susceptibility. CHI3L1, which encodes the YKL-40 protein, is associated with asthma in Western European and American populations and with atopy in a Korean population. However, asthma-associated polymorphisms remain unknown for a Taiwanese population. METHODS We enrolled 628 adult asthmatic patients and 1:1 age-sex matched community-based controls in southern Taiwan and performed a combined effect sizes analysis to test if CHI3L1 polymorphisms were related to genetic risks for asthma in the Asian population. Ten tagSNP polymorphisms for the CHI3L1 gene were selected from the HapMap database and genotyped using a TaqMan allelic discrimination assay. RESULTS Adjusted odds ratios of the CHI3L1 rs1538372 CC genotype (aOR = 1.97, 95% CI: 1.23-3.14) and the rs10399931 GG genotype (aOR = 1.77, 95% CI: 1.13-2.77) were significantly associated with asthma in the Taiwanese populations. Predictive values of forced expiratory volume in the first second of the forced vital capacity (12.37%, P = 0.03) and of forced vital capacity (12.10%, P = 0.036) decreased in conjunction with an increase in YKL-40 levels among CHI3L1 rs1538372 CC carriers; these values were 16.1% (P = 0.004) and 14.5% (P = 0.011), respectively, among CHI3L1 rs10399931 GG carriers. Furthermore, steroid use by asthma patients did not affect serum YKL-40 levels, but both polymorphisms had significant effects on YKL-40 levels in asthma patients who used steroids. CONCLUSIONS Our findings suggest that the CHI3L1 polymorphisms rs1538372 and rs10399931 can be used as genetic markers for predicting asthma risk in the Taiwanese population.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Tsunai Wang
- Department of Public Health, College of Health Science, Kaohsiung Medical University, No, 100, Shi-Chuan 1st Rd, Kaohsiung 807, Taiwan.
| |
Collapse
|
61
|
Tan H, Wang W, Yin X, Li Y, Yin R. Identification of a selective glucocorticoid receptor ligand for the treatment of chronic inflammation in type 2 diabetes mellitus. Exp Ther Med 2014; 8:1111-1114. [PMID: 25187806 PMCID: PMC4151629 DOI: 10.3892/etm.2014.1860] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 07/01/2014] [Indexed: 11/23/2022] Open
Abstract
The present study aimed to identify a new selective glucocorticoid receptor (GR) ligand for the treatment of chronic inflammation in type 2 diabetes mellitus. The IN Cell Analyzer 1000 platform was employed to screen for compounds that may promote GR nuclear translocation. A mammalian two-hybrid system and transactivation assay-were used to analyze the selected GR ligands and evaluate their activities for GR transcription and the recruitment of co-activators. A novel selective GR ligand, compound Q40, was identified that was able to promote GR nuclear translocation in a short period of time. It increased the ability of GR to recruit co-activators in a concentration-dependent manner, but had no positive effect on GR transcriptional activity. In conclusion, an increase in the expression levels of gluconeogeneic genes, induced by the transcriptional activation of GR, is the predisposing factor most commonly associated with the side-effects of glucocorticoids. The results suggest that compound Q40 is a ligand of the GR and exerts an agonistic action on the recruitment of co-activators without sugar dysmetabolism-related side-effects. Thus, compound Q40 has the potential to be used as an anti-inflammatory adjuvant therapy with minimal side-effects in patients with type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Haifeng Tan
- Health Examination Center, The Second People's Hospital of Jinan, Shandong 250001, P.R. China
| | - Wei Wang
- Community Health Service, The Second People's Hospital of Jinan, Shandong 250001, P.R. China
| | - Xiangang Yin
- The Cardiovascular Center, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Yao Li
- Department of Comprehensive Interventional Therapy, General Hospital of Jinan Military Area Command, Jinan, Shandong 250021, P.R. China
| | - Rui Yin
- Department of Reproductive Medicine, Reproductive Hospital Affiliated to Shandong University, Jinan, Shangdong 250021, P.R. China
| |
Collapse
|
62
|
Abstract
Asthma is a common medical condition affecting 300 million people worldwide. Airway inflammation, smooth muscle bronchoconstriction leading to airflow obstruction, and mucous hypersecretion are clinical hallmarks of asthma. The NHLBI Expert Panel Report 3 recommends inhaled corticosteroids (ICS) for patients with moderate to severe persistent asthma. Inhaled corticosteroids (ICS) target gene transcription through their interactions with the glucocorticoid (GC) receptor (GR) at the glucocorticoid response element (GRE). The GC/GR complex enhances anti-inflammatory but inhibits pro-inflammatory mediator production. Classically, asthma has been described as a Th2-associated eosinophil-predominant disease, but recently alternative models have been described including a Th17-mediated neutrophil-predominant phenotype resulting in patients with more severe disease who may be less responsive to steroids. Additional mechanisms of steroid resistance include increased activity of GR phosphorylating kinases which modify the interactions of GR with transcription factors to inhibit the ability of GR to bind with GRE, leading to an increase in pro-inflammatory gene transcription. Oxidative stress also affects the balance between pro-inflammatory and anti-inflammatory gene transcription through the modification of transcription factors and cofactors (such as PI3K) leading to the inhibition of histone deacetylase 2. Continued investigations into the mechanisms behind glucocorticoid resistance will lead to novel treatments that improve control of severe refractory asthma.
Collapse
Affiliation(s)
- J. L. Trevor
- Division of Pulmonary Allergy and Critical Care Medicine Department of Medicine The University of Alabama at Birmingham Birmingham AL USA
| | - J. S. Deshane
- Division of Pulmonary Allergy and Critical Care Medicine Department of Medicine The University of Alabama at Birmingham Birmingham AL USA
| |
Collapse
|
63
|
Palma L, Amatori S, Cruz Chamorro I, Fanelli M, Magnani M. Promoter-specific relevance of histone modifications induced by dexamethasone during the regulation of pro-inflammatory mediators. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1839:571-8. [PMID: 24844181 DOI: 10.1016/j.bbagrm.2014.05.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 05/07/2014] [Accepted: 05/08/2014] [Indexed: 01/05/2023]
Abstract
Glucocorticosteroids (GCs) are widely used to treat different kinds of chronic inflammatory and immune diseases through transcriptional regulation of inflammatory genes. Modulation of gene expression by GCs is known to occur through diverse mechanisms of varying relevance to specific classes of genes. Epigenetic modifications are indeed a pivotal regulatory feature of glucocorticoid receptor and other transcription factors. In this study, histone post-translational modifications were investigated for their involvement in the regulation of selected pro-inflammatory genes - expressed in human monocyte-derived macrophages - in response to treatment with synthetic GC dexamethasone (DEX). We show that histone tail acetylation status is modified following DEX administration, through distinct and alternative mechanisms at the promoters of interleukin-8 and interleukin-23. In addition to histone H3 acetylation, our results demonstrate that H3 lysine 4 trimethylation is affected following drug treatment.
Collapse
Affiliation(s)
- Linda Palma
- Dipartimento di Scienze Biomolecolari, Università degli Studi di Urbino "Carlo Bo", Sezione di Biochimica e Biologia Molecolare "G. Fornaini", Via A. Saffi 2, 61029 Urbino, PU, Italy.
| | - Stefano Amatori
- Dipartimento di Scienze Biomolecolari, Università degli Studi di Urbino "Carlo Bo", Sezione di Biotecnologie, Laboratorio di Patologia Molecolare "M. PaoLa", Via Arco d'Augusto 2, 61032 Fano, PU, Italy
| | - Ivan Cruz Chamorro
- Dipartimento di Scienze Biomolecolari, Università degli Studi di Urbino "Carlo Bo", Sezione di Biochimica e Biologia Molecolare "G. Fornaini", Via A. Saffi 2, 61029 Urbino, PU, Italy
| | - Mirco Fanelli
- Dipartimento di Scienze Biomolecolari, Università degli Studi di Urbino "Carlo Bo", Sezione di Biotecnologie, Laboratorio di Patologia Molecolare "M. PaoLa", Via Arco d'Augusto 2, 61032 Fano, PU, Italy
| | - Mauro Magnani
- Dipartimento di Scienze Biomolecolari, Università degli Studi di Urbino "Carlo Bo", Sezione di Biochimica e Biologia Molecolare "G. Fornaini", Via A. Saffi 2, 61029 Urbino, PU, Italy
| |
Collapse
|
64
|
Arruda-Silva F, Nascimento MVP, Luz AB, Venzke D, Queiroz GS, Fröde TS, Pizzolatti MG, Dalmarco EM. Polygala molluginifolia A. St.-Hil. and Moq. prevent inflammation in the mouse pleurisy model by inhibiting NF-κB activation. Int Immunopharmacol 2014; 19:334-41. [DOI: 10.1016/j.intimp.2014.02.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Revised: 02/05/2014] [Accepted: 02/10/2014] [Indexed: 10/25/2022]
|
65
|
Jahromi SR, Sahraian MA, Ashtari F, Ayromlou H, Etemadifar M, Ghaffarpour M, Mohammadianinejad E, Nafissi S, Nickseresht A, Shaygannejad V, Togha M, Torabi HR, Ziaie S. Islamic fasting and multiple sclerosis. BMC Neurol 2014; 14:56. [PMID: 24655543 PMCID: PMC3994348 DOI: 10.1186/1471-2377-14-56] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 03/18/2014] [Indexed: 11/10/2022] Open
Abstract
Background Month-long daytime Ramadan fasting pose s major challenges to multiple sclerosis (MS) patients in Muslim countries. Physicians should have practical knowledge on the implications of fasting on MS. We present a summary of database searches (Cochrane Database of Systematic Reviews, PubMed) and a mini-symposium on Ramadan fasting and MS. In this symposium, we aimed to review the effect of fasting on MS and suggest practical guidelines on management. Discussion In general, fasting is possible for most stable patients. Appropriate amendment of drug regimens, careful monitoring of symptoms, as well as providing patients with available evidence on fasting and MS are important parts of management. Evidence from experimental studies suggests that calorie restriction before disease induction reduces inflammation and subsequent demyelination and attenuates disease severity. Fasting does not appear to have unfavorable effects on disease course in patients with mild disability (Expanded Disability Status Scale (EDSS) score ≤3). Most experts believed that during fasting (especially in summer), some MS symptoms (fatigue, fatigue perception, dizziness, spasticity, cognitive problems, weakness, vision, balance, gait) might worsen but return to normal levels during feasting. There was a general consensus that fasting is not safe for patients: on high doses of anti-convulsants, anti-spastics, and corticosteroids; with coagulopathy or active disease; during attacks; with EDSS score ≥7. Summary These data suggest that MS patients should have tailored care. Fasting in MS patients is a challenge that is directly associated with the spiritual belief of the patient.
Collapse
Affiliation(s)
| | - Mohammad Ali Sahraian
- MS Research Center, Neuroscience Institute, Sina Hospital, Tehran University of Medical Sciences, Tehran, Iran.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
66
|
Jiang Y, Wang MH. Ethanol extract of Synurus deltoides (Aiton) Nakai suppresses in vitro LPS-induced cytokine production in RAW 264.7 macrophages and in vivo acute inflammatory symptoms. Nutr Res Pract 2014; 8:11-9. [PMID: 24611100 PMCID: PMC3944149 DOI: 10.4162/nrp.2014.8.1.11] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Revised: 09/07/2013] [Accepted: 10/21/2013] [Indexed: 12/14/2022] Open
Abstract
Synurus deltoides (Aiton) Nakai, belonging to the Compositae family, is an edible plant widely distributed in Northeast Asia. In this study, we examined the mechanisms underlying the immunomodulative effects of the ethanol extract of S. deltoides (SDE). The SDE extract strongly down-regulated the mRNA expression of the inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), and tumour necrosis factor (TNF)-α, thereby inhibiting the production of nitric oxide (NO), prostaglandin E2 (PGE2), and TNF-α in the lipopolysaccharide (LPS)-stimulated RAW 264.7 cells. Furthermore, SDE also suppressed the nuclear translocation of the activation protein (AP)-1 and the nuclear factor-κB (NF-κB), and simultaneously decreased the phosphorylation of extracellular signal-regulated protein kinases (ERK), p38, and Akt. In agreement with the in vitro observations, the orally administered SDE ameliorated the acute inflammatory symptoms in the arachidonic acid-induced ear edema and the EtOH/HCl-induced gastritis in mice. Therefore, S. deltoides have a potential anti-inflammatory capacity in vitro and in vivo, suggesting the potential therapeutic use in the inflammation-associated disorders.
Collapse
Affiliation(s)
- Yunyao Jiang
- Department of Medical Biotechnology, College of Biomedical Science, Kangwon National University, 1 Kangwondaehak-gil, Chuncheon, Gangwon 200-701, Korea
| | - Myeong-Hyeon Wang
- Department of Medical Biotechnology, College of Biomedical Science, Kangwon National University, 1 Kangwondaehak-gil, Chuncheon, Gangwon 200-701, Korea
| |
Collapse
|
67
|
Matoulková P, Pávek P, Malý J, Vlček J. Cytochrome P450 enzyme regulation by glucocorticoids and consequences in terms of drug interaction. Expert Opin Drug Metab Toxicol 2014; 10:425-35. [PMID: 24451000 DOI: 10.1517/17425255.2014.878703] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
INTRODUCTION Due to their multiple effects, glucocorticoids (GCs) have versatile medical uses. They can regulate many xenobiotic-metabolizing enzymes of the cytochrome P450 (CYP) superfamily, and thus, influence pharmacotherapy. AREAS COVERED The aim of this paper is to summarize the molecular effects of GCs on CYP as well as the available clinical evidence on drug-drug interactions (DDIs) between GCs and other drugs in which GCs influence the metabolism of other medicines through modifying CYP activity. We used the factographic database DRUGDEX® along with bibliographic searches. EXPERT OPINION Most of the literature reported CYP3A4 induction by GCs, but this was not proved in all research. As the conclusions on these DDIs are conflicting, there are several issues to be considered like the dosage of GCs, the length of GCs treatment and concomitant therapy, all of which can have an additive inducing effect. Further, in designing a DDI study, crossover studies are preferred. A literature search of the abovementioned information resources provided dissimilar results.
Collapse
Affiliation(s)
- Petra Matoulková
- Charles University in Prague, Faculty of Pharmacy, Department of Social and Clinical Pharmacy , Hradec Kralove , Czech Republic
| | | | | | | |
Collapse
|
68
|
Parish CR. Immunology and Cell Biology
turns 90. Immunol Cell Biol 2014. [DOI: 10.1038/icb.2013.89] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Christopher R Parish
- Cancer and Vascular Biology Group, Department of Immunology, John Curtin School of Medical Research, Australian National UniversityCanberraACT 2601Australia
| |
Collapse
|
69
|
Vasiljević A, Veličković N, Bursać B, Djordjevic A, Milutinović DV, Nestorović N, Matić G. Enhanced prereceptor glucocorticoid metabolism and lipogenesis impair insulin signaling in the liver of fructose-fed rats. J Nutr Biochem 2013; 24:1790-7. [DOI: 10.1016/j.jnutbio.2013.04.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Revised: 02/18/2013] [Accepted: 04/01/2013] [Indexed: 12/19/2022]
|
70
|
Itoi S, Terao M, Murota H, Katayama I. 11β-Hydroxysteroid dehydrogenase 1 contributes to the pro-inflammatory response of keratinocytes. Biochem Biophys Res Commun 2013; 440:265-70. [DOI: 10.1016/j.bbrc.2013.09.065] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Accepted: 09/12/2013] [Indexed: 11/15/2022]
|
71
|
Effects of Cortisol Administered through Slow-Release Implants on Innate Immune Responses in Rainbow Trout (Oncorhynchus mykiss). Int J Genomics 2013; 2013:619714. [PMID: 24073392 PMCID: PMC3773382 DOI: 10.1155/2013/619714] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Revised: 07/21/2013] [Accepted: 07/30/2013] [Indexed: 01/28/2023] Open
Abstract
Cortisol is a key hormone in the fish stress response with a well-known ability to regulate several physiological functions, including energy metabolism and the immune system. However, data concerning cortisol effects on fish innate immune system using a more controlled increase in cortisol levels isolated from any other stress related signaling is scarce. The present study describes the effect of doses of cortisol corresponding to acute and chronic levels on the complement and lysozyme activity in plasma of the rainbow trout (Oncorhynchus mykiss). We also evaluated the effects of these cortisol levels (from intraperitoneally implanted hydrocortisone) on the mRNA levels quantified by RT-qPCR of selected key immune-related genes in the liver, head kidney, and spleen. For that purpose, 60 specimens of rainbow trout were divided in to two groups: a control group injected with a coconut oil implant and another group injected with the same implant and cortisol (50 μg cortisol/g body weight). Our results demonstrate the role of cortisol as a modulator of the innate immune response without the direct contribution of other stress axes. Our results also show a relationship between the complement and lysozyme activity in plasma and mRNA levels in liver, supporting the important role of this organ in producing these immune system proteins after a rise of cortisol in the fish plasma.
Collapse
|
72
|
Bergquist M, Nurkkala M, Rylander C, Kristiansson E, Hedenstierna G, Lindholm C. Expression of the glucocorticoid receptor is decreased in experimental Staphylococcus aureus sepsis. J Infect 2013; 67:574-83. [PMID: 23933016 DOI: 10.1016/j.jinf.2013.07.028] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Revised: 07/19/2013] [Accepted: 07/31/2013] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Glucocorticoid treatment in septic shock remains controversial after recent trials. We hypothesized that failure to respond to steroid therapy may be caused by decreased expression and/or function of glucocorticoid receptors (GR) and studied this in a mouse model of Staphylococcus aureus sepsis. The impact of timing of dexamethasone treatment was also investigated. METHODS Male C57BL/6J mice were intravenously inoculated with S. aureus and GR expression and binding ability in blood, spleen and lymph nodes were analysed by means of flow cytometry. GR translocation was analysed using Image Stream. Septic mice were administered dexamethasone at 22, 26, 48, 72 and 96 h after inoculation and body weight, as a sign of dehydration, was observed. RESULTS GR expression was decreased in septic animals, but not the ligand binding capacity. GR translocation was decreased in septic mice compared to control animals. Early dexamethasone treatment (22 and 26 h) improved clinical outcome as studied by weight gain compared to when treatment was started at later time points (48, 72 and 96 h). CONCLUSION Our data provide evidence that GR expression is progressively decreased in experimental sepsis and that dexamethasone has a decreased ability to translocate into the cell nucleus. This may explain why steroid treatment is only beneficial when administered early in sepsis and septic shock.
Collapse
Affiliation(s)
- Maria Bergquist
- Department of Medical Sciences, The Hedenstierna Laboratory, Uppsala University, Sweden; Department of Rheumatology and Inflammation Research, Sahlgrenska Academy, University of Gothenburg, Sweden.
| | | | | | | | | | | |
Collapse
|
73
|
Gerbal-Chaloin S, Iankova I, Maurel P, Daujat-Chavanieu M. Nuclear receptors in the cross-talk of drug metabolism and inflammation. Drug Metab Rev 2013; 45:122-44. [PMID: 23330545 DOI: 10.3109/03602532.2012.756011] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Inflammation and infection have long been known to affect the activity and expression of enzymes involved in hepatic and extrahepatic drug clearance. Significant advances have been made to elucidate the molecular mechanisms underlying the complex cross-talk between inflammation and drug-metabolism alterations. The emergent role of ligand-activated transcriptional regulators, belonging to the nuclear receptor (NR) superfamily, is now well established. The NRs, pregnane X receptor, constitutive androstane receptor, retinoic X receptor, glucocorticoid receptor, and hepatocyte nuclear factor 4, and the basic helix-loop-helix/Per-ARNT-Sim family member, aryl hydrocarbon receptor, are the main regulators of the detoxification function. According to the panel of mediators secreted during inflammation, a cascade of numerous signaling pathways is activated, including nuclear factor kappa B, mitogen-activated protein kinase, and the Janus kinase/signal transducer and activator of transcription pathways. Complex cross-talk is established between these signaling pathways regulating either constitutive or induced gene expression. In most cases, a mutual antagonism between xenosensor and inflammation signaling occurs. This review focuses on the molecular and cellular mechanisms implicated in this cross-talk.
Collapse
|
74
|
Nayebosadri A, Ji JY. Endothelial nuclear lamina is not required for glucocorticoid receptor nuclear import but does affect receptor-mediated transcription activation. Am J Physiol Cell Physiol 2013; 305:C309-22. [PMID: 23703529 DOI: 10.1152/ajpcell.00293.2012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The lamina serves to maintain the nuclear structure and stiffness while acting as a scaffold for heterochromatin and many transcriptional proteins. Its role in endothelial mechanotransduction, specifically how nuclear mechanics impact gene regulation under shear stress, is not fully understood. In this study, we successfully silenced lamin A/C in bovine aortic endothelial cells to determine its role in both glucocorticoid receptor (GR) nuclear translocation and glucocorticoid response element (GRE) transcriptional activation in response to dexamethasone and shear stress. Nuclear translocation of GR, an anti-inflammatory nuclear receptor, in response to dexamethasone or shear stress (5, 10, and 25 dyn/cm(2)) was observed via time-lapse cell imaging and quantified using a Bayesian image analysis algorithm. Transcriptional activity of the GRE promoter was assessed using a dual-luciferase reporter plasmid. We found no dependence on nuclear lamina for GR translocation from the cytoplasm into the nucleus. However, the absence of lamin A/C led to significantly increased expression of luciferase under dexamethasone and shear stress induction as well as changes in histone protein function. PCR results for NF-κB inhibitor alpha (NF-κBIA) and dual specificity phosphatase 1 (DUSP1) genes further supported our luciferase data with increased expression in the absence of lamin. Our results suggest that absence of lamin A/C does not hinder passage of GR into the nucleus, but nuclear lamina is important to properly regulate GRE transcription. Nuclear lamina, rather than histone deacetylase (HDAC), is a more significant mediator of shear stress-induced transcriptional activity, while dexamethasone-initiated transcription is more HDAC dependent. Our findings provide more insights into the molecular pathways involved in nuclear mechanotransduction.
Collapse
Affiliation(s)
- Arman Nayebosadri
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indiana University Purdue University Indianapolis, Indianapolis, Indiana, USA
| | | |
Collapse
|
75
|
Villar SR, Ronco MT, Fernández Bussy R, Roggero E, Lepletier A, Manarin R, Savino W, Pérez AR, Bottasso O. Tumor necrosis factor-α regulates glucocorticoid synthesis in the adrenal glands of Trypanosoma cruzi acutely-infected mice. the role of TNF-R1. PLoS One 2013; 8:e63814. [PMID: 23717489 PMCID: PMC3661674 DOI: 10.1371/journal.pone.0063814] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Accepted: 04/07/2013] [Indexed: 11/30/2022] Open
Abstract
Adrenal steroidogenesis is under a complex regulation involving extrinsic and intrinsic adrenal factors. TNF-α is an inflammatory cytokine produced in response to tissue injury and several other stimuli. We have previously demonstrated that TNF-R1 knockout (TNF-R1−/−) mice have a dysregulated synthesis of glucocorticoids (GCs) during Trypanosoma cruzi acute infection. Since TNF-α may influence GCs production, not only through the hypothalamus-pituitary axis, but also at the adrenal level, we now investigated the role of this cytokine on the adrenal GCs production. Wild type (WT) and TNF-R1−/− mice undergoing acute infection (Tc-WT and Tc-TNF-R1−/− groups), displayed adrenal hyperplasia together with increased GCs levels. Notably, systemic ACTH remained unchanged in Tc-WT and Tc-TNF-R1−/− compared with uninfected mice, suggesting some degree of ACTH-independence of GCs synthesis. TNF-α expression was increased within the adrenal gland from both infected mouse groups, with Tc-WT mice showing an augmented TNF-R1 expression. Tc-WT mice showed increased levels of P-p38 and P-ERK compared to uninfected WT animals, whereas Tc-TNF-R1−/− mice had increased p38 and JNK phosphorylation respect to Tc-WT mice. Strikingly, adrenal NF-κB and AP-1 activation during infection was blunted in Tc-TNF-R1−/− mice. The accumulation of mRNAs for steroidogenic acute regulatory protein and cytochrome P450 were significantly increased in both Tc-WT and Tc-TNF-R1−/− mice; being much more augmented in the latter group, which also had remarkably increased GCs levels. TNF-α emerges as a potent modulator of steroidogenesis in adrenocortical cells during T. cruzi infection in which MAPK pathways, NF-κB and AP-1 seem to play a role in the adrenal synthesis of pro-inflammatory cytokines and enzymes regulating GCs synthesis. These results suggest the existence of an intrinsic immune-adrenal interaction involved in the dysregulated synthesis of GCs during murine Chagas disease.
Collapse
Affiliation(s)
- Silvina R Villar
- Instituto de Inmunología, Facultad de Ciencias Médicas, Universidad Nacional de Rosario, Rosario, Argentina.
| | | | | | | | | | | | | | | | | |
Collapse
|
76
|
Brain-specific homeobox factor as a target selector for glucocorticoid receptor in energy balance. Mol Cell Biol 2013; 33:2650-8. [PMID: 23671185 DOI: 10.1128/mcb.00094-13] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The molecular basis underlying the physiologically well-defined orexigenic function of glucocorticoid (Gc) is unclear. Brain-specific homeobox factor (Bsx) is a positive regulator of the orexigenic neuropeptide, agouti-related peptide (AgRP), in AgRP neurons of the hypothalamic arcuate nucleus. Here, we show that in response to fasting-elevated Gc levels, Gc receptor (GR) and Bsx synergize to direct activation of AgRP transcription. This synergy is dictated by unique sequence features in a novel Gc response element in AgRP (AgRP-GRE). In contrast to AgRP-GRE, Bsx suppresses transactivation directed by many conventional GREs, functioning as a gene context-dependent modulator of GR actions or a target selector for GR. Consistent with this finding, AgRP-GRE drives fasting-dependent activation of a target gene specifically in GR(+) Bsx(+) AgRP neurons. These results define AgRP as a common orexigenic target gene of GR and Bsx and provide an opportunity to identify their additional common targets, facilitating our understanding of the molecular basis underlying the orexigenic activity of Gc and Bsx.
Collapse
|
77
|
Zhang Y, Leung DYM, Goleva E. Vitamin D enhances glucocorticoid action in human monocytes: involvement of granulocyte-macrophage colony-stimulating factor and mediator complex subunit 14. J Biol Chem 2013; 288:14544-14553. [PMID: 23572530 DOI: 10.1074/jbc.m112.427054] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Vitamin D (VitD) is now recognized for its pleiotrophic roles in regulating immune function. VitD interaction with other steroid receptor superfamily receptors in peripheral blood mononuclear cells is poorly understood. In the current study, we demonstrate that VitD enhanced glucocorticoid (GC) responses in human peripheral blood mononuclear cells because it stimulated GC induction of mitogen-activated protein kinase phosphatase-1 (MKP-1) and enhanced GC inhibition of LPS-induced IL-6. These VitD effects were abolished in purified CD14(+) and CD14(-) cells but were recovered in CD14(+) cells co-cultured with CD14(-) cells separated by tissue culture inserts. GM-CSF, found in culture supernatants from CD14(-) cells, was shown to mediate VitD enhancement of GC-induced MKP-1 production in monocytes via increased production of mediator complex subunit 14 (MED14). Recruitment of VitD receptor and MED14, 4.7 kbp upstream of the human MKP-1 gene transcription start site, enhanced binding of glucocorticoid receptor and histone H4 acetylation at the 4.6-kbp glucocorticoid response element of the MKP-1 promoter in the presence of GM-CSF in U937 cells. Knockdown of MED14 abolished VitD-mediated enhancement of GC-induced MKP-1 production. These data demonstrate VitD-mediated stimulation of GC anti-inflammatory effects in human monocytes and identify a role for GM-CSF and MED14 as mediators of this process.
Collapse
Affiliation(s)
- Yong Zhang
- Department of Pediatrics, National Jewish Health, Denver, Colorado 80206
| | - Donald Y M Leung
- Department of Pediatrics, National Jewish Health, Denver, Colorado 80206; Department of Pediatrics, University of Colorado Denver, Aurora, Colorado 80045
| | - Elena Goleva
- Department of Pediatrics, National Jewish Health, Denver, Colorado 80206.
| |
Collapse
|
78
|
Francisco-Cruz A, Mata-Espinosa D, Estrada-Parra S, Xing Z, Hernández-Pando R. Immunotherapeutic effects of recombinant adenovirus encoding granulocyte-macrophage colony-stimulating factor in experimental pulmonary tuberculosis. Clin Exp Immunol 2013; 171:283-97. [PMID: 23379435 DOI: 10.1111/cei.12015] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/16/2012] [Indexed: 01/01/2023] Open
Abstract
BALB/c mice with pulmonary tuberculosis (TB) develop a T helper cell type 1 that temporarily controls bacterial growth. Bacterial proliferation increases, accompanied by decreasing expression of interferon (IFN)-γ, tumour necrosis factor (TNF)-α and inducible nitric oxide synthase (iNOS). Activation of dendritic cells (DCs) is delayed. Intratracheal administration of only one dose of recombinant adenoviruses encoding granulocyte-macrophage colony-stimulating factor (AdGM-CSF) 1 day before Mycobacterium tuberculosis (Mtb) infection produced a significant decrease of pulmonary bacterial loads, higher activated DCs and increased expression of TNF-α, IFN-γ and iNOS. When AdGM-CSF was given in female mice B6D2F1 (C57BL/6J X DBA/2J) infected with a low Mtb dose to induce chronic infection similar to latent infection and corticosterone was used to induce reactivation, a very low bacilli burden in lungs was detected, and the same effect was observed in healthy mice co-housed with mice infected with mild and highly virulent bacteria in a model of transmissibility. Thus, GM-CSF is a significant cytokine in the immune protection against Mtb and gene therapy with AdGM-CSF increased protective immunity when administered in a single dose 1 day before Mtb infection in a model of progressive disease, and when used to prevent reactivation of latent infection or transmission.
Collapse
Affiliation(s)
- A Francisco-Cruz
- Section of Experimental Pathology, Department of Pathology, National Institute of Medical Sciences and Nutrition Salvador Zubirán, Mexico City, Mexico
| | | | | | | | | |
Collapse
|
79
|
Caramori G, Casolari P, Adcock I. Role of transcription factors in the pathogenesis of asthma and COPD. ACTA ACUST UNITED AC 2013; 20:21-40. [PMID: 23472830 DOI: 10.3109/15419061.2013.775257] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Inflammation is a central feature of asthma and chronic obstructive pulmonary disease (COPD). Despite recent advances in the knowledge of the pathogenesis of asthma and COPD, much more research on the molecular mechanisms of asthma and COPD are needed to aid the logical development of new therapies for these common and important diseases, particularly in COPD where no effective treatments currently exist. In the future the role of the activation/repression of different transcription factors and the genetic regulation of their expression in asthma and COPD may be an increasingly important aspect of research, as this may be one of the critical mechanisms regulating the expression of different clinical phenotypes and their responsiveness to therapy, particularly to anti-inflammatory drugs.
Collapse
Affiliation(s)
- Gaetano Caramori
- Centro Interdipartimentale per lo Studio delle Malattie Infiammatorie delle Vie Aeree e Patologie Fumo-correlate CEMICEF; formerly named Centro di Ricerca su Asma e BPCO, Sezione di Malattie dell'Apparato Respiratorio, Università di Ferrara, Ferrara, Italy.
| | | | | |
Collapse
|
80
|
Fang Z, Grütter C, Rauh D. Strategies for the selective regulation of kinases with allosteric modulators: exploiting exclusive structural features. ACS Chem Biol 2013; 8:58-70. [PMID: 23249378 DOI: 10.1021/cb300663j] [Citation(s) in RCA: 149] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The modulation of kinase function has become an important goal in modern drug discovery and chemical biology research. In cancer-targeted therapies, kinase inhibitors have been experiencing an upsurge, which can be measured by the increasing number of kinase inhibitors approved by the FDA in recent years. However, lack of efficacy, limited selectivity, and the emergence of acquired drug resistance still represent major bottlenecks in the clinic and challenge inhibitor development. Most known kinase inhibitors target the active kinase and are ATP competitive. A second class of small organic molecules, which address remote sites of the kinase and stabilize enzymatically inactive conformations, is rapidly moving to the forefront of kinase inhibitor research. Such allosteric modulators bind to sites that are less conserved across the kinome and only accessible upon conformational changes. These molecules are therefore thought to provide various advantages such as higher selectivity and extended drug target residence times. This review highlights various strategies that have been developed to utilizing exclusive structural features of kinases and thereby modulating their activity allosterically.
Collapse
Affiliation(s)
- Zhizhou Fang
- Technische Universität Dortmund, Fakultät
Chemie − Chemische Biologie, Otto-Hahn-Strasse
6, D-44227 Dortmund, Germany
| | - Christian Grütter
- Technische Universität Dortmund, Fakultät
Chemie − Chemische Biologie, Otto-Hahn-Strasse
6, D-44227 Dortmund, Germany
| | - Daniel Rauh
- Technische Universität Dortmund, Fakultät
Chemie − Chemische Biologie, Otto-Hahn-Strasse
6, D-44227 Dortmund, Germany
| |
Collapse
|
81
|
Salem S, Harris T, Mok JSL, Li MYS, Keenan CR, Schuliga MJ, Stewart AG. Transforming growth factor-β impairs glucocorticoid activity in the A549 lung adenocarcinoma cell line. Br J Pharmacol 2012; 166:2036-48. [PMID: 22300324 DOI: 10.1111/j.1476-5381.2012.01885.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND AND PURPOSE The lung adenocarcinoma cell line, A549, undergoes epithelial-mesenchymal cell transition (EMT) in response to TGF-β. Glucocorticoids do not prevent the EMT response, but TGF-β induced resistance to the cytokine-regulatory action of glucocorticoids. We sought to characterize the impairment of glucocorticoid response in A549 cells. EXPERIMENTAL APPROACH A549 cells were exposed to TGF-β for up to 96 h before glucocorticoid treatment and challenge with IL-1α to assess glucocorticoid regulation of IL-6 and CXCL8 production. Nuclear localization of the glucocorticoid receptor α (GRα) was ascertained by immunofluorescence and Western blotting. Transactivation of the glucocorticoid response element (GRE) was measured with a transfected GRE-secreted human placental alkaline phosphatase reporter. KEY RESULTS TGF-β (40-400 pM) reduced the maximum inhibitory effect of dexamethasone on IL-1α-induced IL-6 and CXCL8 production. The impaired glucocorticoid response was detected with 4 h of TGF-β (40 pM) exposure (and 4 h IL-1α to induce CXCL8 expression) and therefore was not secondary to EMT, a process that requires longer incubation periods and higher concentrations of TGF-β. TGF-β also impaired dexamethasone regulation of granulocyte-macrophage colony-stimulating factor in thrombin-stimulated BEAS-2B epithelial cells. Impaired regulation of CXCL8 was associated with markedly reduced GRE transactivation and reduced induction of mRNA for IκBα, the glucocorticoid-inducible leucine zipper and the epithelial sodium channel (SCNN1A). The expression, cellular levels and nuclear localization of GRα were reduced by TGF-β. CONCLUSIONS AND IMPLICATIONS We have identified mechanisms underlying the impairment of responses to glucocorticoids by TGF-β in the A549 and BEAS-2B cell lines.
Collapse
Affiliation(s)
- S Salem
- Department of Pharmacology, University of Melbourne, Vic., Australia
| | | | | | | | | | | | | |
Collapse
|
82
|
Jeong Y, Park J, Jin GW, Park JS. Elevation of Transfection Efficiency by Conjugation of Poly(amindoamine)-diethylenetriamine (PAM-DET) with Dexamethasone. B KOREAN CHEM SOC 2012. [DOI: 10.5012/bkcs.2012.33.11.3849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
83
|
Behrsing HP, Furniss MJ, Davis M, Tomaszewski JE, Parchment RE. In vitro exposure of precision-cut lung slices to 2-(4-amino-3-methylphenyl)-5-fluorobenzothiazole lysylamide dihydrochloride (NSC 710305, Phortress) increases inflammatory cytokine content and tissue damage. Toxicol Sci 2012; 131:470-9. [PMID: 23143926 DOI: 10.1093/toxsci/kfs319] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The anticancer drug (2-[4-amino-3-methylphenyl]-5-fluorobenzothiazole lysylamide dihydrochloride) (NSC 710305, Phortress) is a metabolically activated prodrug that causes DNA adduct formation and subsequent toxicity. Preclinically, it was found that hepatic, bone marrow, and pulmonary toxicity presented challenges to developing this drug. An ex vivo precision-cut lung slice (PCLS) model was used to search for concentration dependent effects of NSC 710305 (10, 25, 50, and 100 µM) on cytokine content, protein content, and immuno/histological endpoints. Preparation and culture of PCLS caused an initial spike in proinflammatory cytokine expression and therefore treatment with NSC 710305 was delayed until 48 h after initiating the slice cultures to avoid confounding the response to slicing with any drug response. PCLSs were evaluated after 24, 48, and 72 h exposures to NSC 710305. Reversibility of toxicity due to the 72-h treatment was evaluated after a 24-h recovery period. NSC 710305 caused a concentration-dependent cytokine response, and only the toxicity caused by a 72-h exposure to 25 µM reversed during the 24-h recovery period. Immuno/histological examination and quantitation of tissue protein levels indicated that tissue destruction, ED-1 (activated macrophage) staining, and protein levels were associated with the levels of proinflammatory cytokines in the tissue. In conclusion, the concentration- and time-dependent inflammatory response of PCLS to NSC 710305 preceded relevant tissue damage by a few days. The no-observable adverse effect level (NOAEL) for 24, 48, and 72 h exposures was established as 10 µM NSC 710305.
Collapse
Affiliation(s)
- Holger P Behrsing
- Laboratory of Investigative & Screening Toxicology, LHTP, SAIC-Frederick, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, USA.
| | | | | | | | | |
Collapse
|
84
|
Faure AJ, Schmidt D, Watt S, Schwalie PC, Wilson MD, Xu H, Ramsay RG, Odom DT, Flicek P. Cohesin regulates tissue-specific expression by stabilizing highly occupied cis-regulatory modules. Genome Res 2012; 22:2163-75. [PMID: 22780989 PMCID: PMC3483546 DOI: 10.1101/gr.136507.111] [Citation(s) in RCA: 123] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Accepted: 07/09/2012] [Indexed: 12/16/2022]
Abstract
The cohesin protein complex contributes to transcriptional regulation in a CTCF-independent manner by colocalizing with master regulators at tissue-specific loci. The regulation of transcription involves the concerted action of multiple transcription factors (TFs) and cohesin's role in this context of combinatorial TF binding remains unexplored. To investigate cohesin-non-CTCF (CNC) binding events in vivo we mapped cohesin and CTCF, as well as a collection of tissue-specific and ubiquitous transcriptional regulators using ChIP-seq in primary mouse liver. We observe a positive correlation between the number of distinct TFs bound and the presence of CNC sites. In contrast to regions of the genome where cohesin and CTCF colocalize, CNC sites coincide with the binding of master regulators and enhancer-markers and are significantly associated with liver-specific expressed genes. We also show that cohesin presence partially explains the commonly observed discrepancy between TF motif score and ChIP signal. Evidence from these statistical analyses in wild-type cells, and comparisons to maps of TF binding in Rad21-cohesin haploinsufficient mouse liver, suggests that cohesin helps to stabilize large protein-DNA complexes. Finally, we observe that the presence of mirrored CTCF binding events at promoters and their nearby cohesin-bound enhancers is associated with elevated expression levels.
Collapse
Affiliation(s)
- Andre J. Faure
- European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, United Kingdom
| | - Dominic Schmidt
- Cancer Research UK, Cambridge Research Institute, Li Ka Shing Centre, Cambridge CB2 0RE, United Kingdom
- Department of Oncology, Hutchison/MRC Research Centre, Cambridge CB1 9RN, United Kingdom
| | - Stephen Watt
- Cancer Research UK, Cambridge Research Institute, Li Ka Shing Centre, Cambridge CB2 0RE, United Kingdom
- Department of Oncology, Hutchison/MRC Research Centre, Cambridge CB1 9RN, United Kingdom
| | - Petra C. Schwalie
- European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, United Kingdom
| | - Michael D. Wilson
- Cancer Research UK, Cambridge Research Institute, Li Ka Shing Centre, Cambridge CB2 0RE, United Kingdom
- Department of Oncology, Hutchison/MRC Research Centre, Cambridge CB1 9RN, United Kingdom
| | - Huiling Xu
- Differentiation and Transcription Laboratory, Cancer Research Division, Peter MacCallum Cancer Centre, East Melbourne, Victoria 3002, Australia
- Sir Peter MacCallum Department of Oncology and Department of Pathology, The University of Melbourne, Parkville, Victoria 3000, Australia
| | - Robert G. Ramsay
- Differentiation and Transcription Laboratory, Cancer Research Division, Peter MacCallum Cancer Centre, East Melbourne, Victoria 3002, Australia
- Sir Peter MacCallum Department of Oncology and Department of Pathology, The University of Melbourne, Parkville, Victoria 3000, Australia
| | - Duncan T. Odom
- Cancer Research UK, Cambridge Research Institute, Li Ka Shing Centre, Cambridge CB2 0RE, United Kingdom
- Department of Oncology, Hutchison/MRC Research Centre, Cambridge CB1 9RN, United Kingdom
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, United Kingdom
| | - Paul Flicek
- European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, United Kingdom
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, United Kingdom
| |
Collapse
|
85
|
Lepletier A, de Frias Carvalho V, Morrot A, Savino W. Thymic atrophy in acute experimental Chagas disease is associated with an imbalance of stress hormones. Ann N Y Acad Sci 2012; 1262:45-50. [PMID: 22823434 DOI: 10.1111/j.1749-6632.2012.06601.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Disorders in the hypothalamic-pituitary-adrenal axis are associated with the pathogenesis of Trypanosoma cruzi infection. During the acute phase of this disease, increased levels of circulating glucocorticoids (GCs) correlate with thymic atrophy. Recently, we demonstrated that this phenomenon is paralleled by a decrease of prolactin (PRL) secretion, another stress hormone that seems to counteract many immunosuppressive effects of GCs. Both GCs and PRL are intrathymically produced and exhibit mutual antagonism through the activation of their respective receptors, GR, and PRLR. Considering that GCs induce apoptosis and inhibit double-positive (DP) thymocyte proliferation and that PRL administration prevents these effects, it seems plausible that a local imbalance of GR-PRLR crosstalk underlies the thymic involution occurring in acute T. cruzi infection. In this respect, preserving PRLR signaling seems to be crucial for protecting DP from GC-induced apoptosis.
Collapse
Affiliation(s)
- Ailin Lepletier
- Laboratory of Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | | | | | | |
Collapse
|
86
|
Lodhi N, Mehra NK, Jain NK. Development and characterization of dexamethasone mesylate anchored on multi walled carbon nanotubes. J Drug Target 2012; 21:67-76. [DOI: 10.3109/1061186x.2012.729213] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
87
|
Activity-guided screening of bioactive natural compounds implementing a new glucocorticoid-receptor-translocation assay and detection of new anti-inflammatory steroids from bacteria. Biotechnol Lett 2012; 35:11-20. [DOI: 10.1007/s10529-012-1042-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Accepted: 08/24/2012] [Indexed: 12/23/2022]
|
88
|
Söderberg E, Lipcsey M, Sjölin J, Larsson A, Eriksson MB. Counteraction of early circulatory derangement by administration of low dose steroid treatment at the onset of established endotoxemic shock is not directly mediated by TNF-α and IL-6. Steroids 2012; 77:1101-6. [PMID: 22705410 DOI: 10.1016/j.steroids.2012.06.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Revised: 05/30/2012] [Accepted: 06/05/2012] [Indexed: 02/02/2023]
Abstract
BACKGROUND Once a septic condition is progressing, administration of steroids in the pro-inflammatory phase of septic shock ought to yield maximal effect on the subsequent, devastating inflammatory response. Recently, a retrospective study showed that early initiation of corticosteroid therapy improved survival in septic shock. We aimed to prospectively evaluate effects of early administrated hydrocortisone therapy on physiologic variables in a porcine model of septic shock. EXPERIMENT Eight anesthetized pigs were given a continuous infusion of endotoxin during this 6 h prospective, randomized, parallel-grouped placebo-controlled experimental study. At the onset of endotoxemic shock, defined as the moment when the mean pulmonary arterial pressure reached the double baseline value, the pigs were either given a single intravenous dose of hydrocortisone (5 mg kg(-1)) or the corresponding volume of saline. RESULTS Mean arterial pressure and systemic vascular resistance index were significantly higher (both p<0.05), and heart rate was significantly lower (p<0.05), in the endotoxin+hydrocortisone group as compared to the endotoxin+saline group. Body temperature and blood hemoglobin levels increased significantly in the endotoxin+saline group (both p<0.05). Urinary hydrocortisone increased significantly in both groups (p<0.05). There were no significant differences in the plasma levels of TNF-alpha, IL-6 or nitrite/nitrate between the groups. CONCLUSION Early treatment with hydrocortisone ameliorates some endotoxin mediated circulatory derangements, fever response and microvascular outflow. Our results suggest that these effects are not directly mediated by the pro-inflammatory cytokines TNF-alpha or IL-6, nor by NO.
Collapse
Affiliation(s)
- Ewa Söderberg
- Section of Anaesthesiology & Intensive Care, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden.
| | | | | | | | | |
Collapse
|
89
|
Lannan EA, Galliher-Beckley AJ, Scoltock AB, Cidlowski JA. Proinflammatory actions of glucocorticoids: glucocorticoids and TNFα coregulate gene expression in vitro and in vivo. Endocrinology 2012; 153:3701-12. [PMID: 22673229 PMCID: PMC3404340 DOI: 10.1210/en.2012-1020] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Synthetic glucocorticoids are widely used for treatment of many inflammatory diseases. However, long-term glucocorticoid treatment can cause a variety of negative side effects. A genome-wide microarray analysis was performed in human lung A549 cells to identify genes regulated by both the antiinflammatory steroid dexamethasone (Dex) and the proinflammatory cytokine TNFα. Unexpectedly, we discovered that numerous genes were coregulated by treatment with both Dex and TNFα. We evaluated the mechanism of coregulation of one of these genes, serpinA3 (α-1 antichymotrypsin), a secreted, acute phase protein strongly associated with numerous inflammatory diseases. Up-regulation of serpinA3 requires the presence of both the glucocorticoid receptor and TNFα soluble receptor 1. Treatment with Dex or TNFα resulted in a 10- to 25-fold increase of serpinA3 mRNA, whereas coadministration of Dex and TNFα led to a synergistic increase in serpinA3 mRNA. The naturally occurring glucocorticoid, cortisol, also resulted in a synergistic increase in serpinA3 mRNA levels in A549 cells. Furthermore, in vivo treatment of C57BL/6 mice with Dex and TNFα resulted in coregulation of serpinA3 mRNA levels in both lung and liver tissues. Finally, chromatin immunoprecipitation analyses suggest that glucocorticoid receptor binding to the serpinA3 transcriptional start site can be enhanced by the combination of Dex plus TNFα treatment of A549 cells. These studies demonstrate that glucocorticoids and proinflammatory compounds can coregulate genes associated with human disease. This discovery may underlie the basis of some of the adverse effects associated with long-term glucocorticoid therapy.
Collapse
Affiliation(s)
- Erica A Lannan
- Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, 111 T. W. Alexander Drive, Research Triangle Park, North Carolina 27709, USA
| | | | | | | |
Collapse
|
90
|
Hanaoka BY, Peterson CA, Horbinski C, Crofford LJ. Implications of glucocorticoid therapy in idiopathic inflammatory myopathies. Nat Rev Rheumatol 2012; 8:448-57. [PMID: 22688888 DOI: 10.1038/nrrheum.2012.85] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Glucocorticoids are the cornerstone of therapy in patients with idiopathic inflammatory myopathies (IIM), despite adverse effects and suboptimal therapy success rates. Glucocorticoids are used in patients with IIM to suppress inflammatory and immune responses implicated in the pathogenesis of these diseases. Nevertheless, potential inhibitory effects of glucocorticoids on skeletal muscle mass, myogenesis and immune responses that promote skeletal muscle regeneration after muscle injury warrant attention. Glucocorticoids lead to skeletal muscle catabolism by modulating major pathways involved in regulating muscle mass. Glucocorticoids also inhibit muscle regeneration by decreasing myogenic cell proliferation and differentiation. Finally, glucocorticoids might have inhibitory effects on immune cells that have been shown to be an important component of the muscle regenerative response. Better understanding of the signalling pathways involved in restorative versus adverse effects of glucocorticoids in IIM could yield additional insight into the aetiopathogenesis of persistent muscle weakness in patients with IIM after glucocorticoid treatment, and help in the development of novel, targeted treatment options with fewer adverse effects.
Collapse
Affiliation(s)
- Beatriz Y Hanaoka
- Department of Internal Medicine, Division of Rheumatology, University of Kentucky, Room J-509, 740 South Limestone Drive, Lexington, KY 40502, USA
| | | | | | | |
Collapse
|
91
|
Wang W, Zhou F, Ge L, Liu X, Kong F. Transferrin-PEG-PE modified dexamethasone conjugated cationic lipid carrier mediated gene delivery system for tumor-targeted transfection. Int J Nanomedicine 2012; 7:2513-22. [PMID: 22679364 PMCID: PMC3367492 DOI: 10.2147/ijn.s31915] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Background The main barriers to non-viral gene delivery include cellular and nuclear membranes. As such, the aim of this study was to develop a type of vector that can target cells through receptor-mediated pathways and by using nuclear localization signal (NLS) to increase the nuclear uptake of genetic materials. Methods A dexamethasone (Dexa)-conjugated lipid was synthesized as the material of the solid lipid nanoparticles (SLNs), and transferrin (Tf) was linked onto polyethylene glycol-phosphatidylethanolamine (PEG-PE) to obtain Tf-PEG-PE ligands for the surface modification of the carriers. The in vitro transfection efficiency of the novel modified vectors was evaluated in human hepatoma carcinoma cell lines, and in vivo effects were observed in an animal model. Results Tf-PEG-PE modified SLNs/enhanced green fluorescence protein plasmid (pEGFP) had a particle size of 222 nm and a gene loading quantity of 90%. Tf-PEG-PE-modified SLNs/pEGFP (Tf-SLNs/pEGFP) displayed remarkably higher transfection efficiency than non-modified SLNs/pEGFP and the vectors not containing Dexa, both in vitro and in vivo. Conclusion It can be concluded that Tf and Dexa could function as an excellent active targeting ligand to improve the cell targeting and nuclear targeting ability of the carriers, and the resulting nanomedicine could be a promising active targeting drug/gene delivery system.
Collapse
Affiliation(s)
- Wei Wang
- Department of Chinese Medicine Integrated Traditional Chinese Medicine and Western Medicine, General Hospital of Ji'nan Command, Ji'nan, China
| | | | | | | | | |
Collapse
|
92
|
Lee J, Hyun H, Kim HA, Lee M. Dexamethasone loaded R3V6 peptide micelles for gene delivery. J Control Release 2012; 152 Suppl 1:e151-2. [PMID: 22195815 DOI: 10.1016/j.jconrel.2011.08.056] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Jiyoung Lee
- Department of Bioengineering, College of Engineering, Hanyang University, Haengdang 1-dong, Seongdong-gu, Seoul 133-791, Republic of Korea.
| | | | | | | |
Collapse
|
93
|
He Q, Huang HY, Zhang YY, Li X, Qian SW, Tang QQ. TAZ is downregulated by dexamethasone during the differentiation of 3T3-L1 preadipocytes. Biochem Biophys Res Commun 2012; 419:573-7. [PMID: 22374070 DOI: 10.1016/j.bbrc.2012.02.074] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Accepted: 02/12/2012] [Indexed: 11/25/2022]
Abstract
TAZ (transcriptional co-activator with PDZ binding motif) is a transcriptional modulator of mesenchymal stem cell differentiation. We have found that TAZ was expressed in postconfluent 3T3-L1 preadipocytes and downregulated during differentiation. Downregulation of TAZ was specifically mediated by dexamethasone (DEX), one component of induction cocktails routinely used in adipocyte differentiation. DEX repressed the transcription of TAZ by direct binding of the glucocorticoid receptor (GR) to the GR binding element in its promoter. More importantly, overexpression of TAZ inhibited adipogenesis and promoted the trans-differentiation of preadipocytes into osteocytes. This establishes a new functional interaction between DEX and TAZ that contributes to the mechanism of adipogenesis.
Collapse
Affiliation(s)
- Qun He
- Key Laboratory of Molecular Medicine, The Ministry of Education, Department of Biochemistry and Molecular Biology, Fudan University Shanghai Medical College, PR China
| | | | | | | | | | | |
Collapse
|
94
|
Kresfelder TL, Janssen R, Bont L, Pretorius M, Venter M. Confirmation of an association between single nucleotide polymorphisms in the VDR gene with respiratory syncytial virus related disease in South African children. J Med Virol 2012; 83:1834-40. [PMID: 21837802 DOI: 10.1002/jmv.22179] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Respiratory syncytial virus is a leading cause of lower respiratory tract infection in infants. Disease severity has been linked to host immune responses and polymorphisms in genes associated with innate immunity. A large-scale genetics study of single nucleotide polymorphisms (SNPs) in children in the Netherlands identified SNPs in the vitamin D receptor (VDR) and JUN genes which have a strong association with an increased risk of developing bronchiolitis following the first respiratory syncytial virus (RSV) infection. The Toll-like receptor 4 (TLR4) gene has two SNPs which have been associated previously with RSV disease severity in various populations. The aim of this study was to determine if these SNPs may be associated with RSV disease in African children in South Africa. RSV patient (n = 296) and control (n = 113) groups were established (median ages: 3 and 3.5 months) and DNA extracted from the collected specimens. Real-time polymerase chain reaction using hydrolysis probes was used to screen for SNPs in the VDR (Thr1Meth; rs10735810), TLR4 (Asp299Gly; rs4986790 and Thr399Ile; rs4986791) and JUN (c.750G/A; rs11688) genes. Carriers of the VDR (Thr1Meth) SNP minor T allele were more prone to RSV disease than individuals in the control group. The TLR4 (Asp299Gly), TLR4 (Thr399Ile), and JUN (c.750G/A) SNPs showed no significant association with RSV disease. It is concluded that children carrying the minor T allele of the VDR (Thr1Meth) SNP may be predisposed to RSV disease, as this SNP was identified as a risk factor for severe RSV disease in South African children, confirming the findings in the Netherlands.
Collapse
Affiliation(s)
- T L Kresfelder
- Department of Medical Virology, University of Pretoria, Pretoria, South Africa
| | | | | | | | | |
Collapse
|
95
|
Dexamethasone-loaded peptide micelles for delivery of the heme oxygenase-1 gene to ischemic brain. J Control Release 2012; 158:131-8. [DOI: 10.1016/j.jconrel.2011.11.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Revised: 09/09/2011] [Accepted: 11/01/2011] [Indexed: 11/19/2022]
|
96
|
Uva L, Miguel D, Pinheiro C, Antunes J, Cruz D, Ferreira J, Filipe P. Mechanisms of action of topical corticosteroids in psoriasis. Int J Endocrinol 2012; 2012:561018. [PMID: 23213332 PMCID: PMC3508578 DOI: 10.1155/2012/561018] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Revised: 10/14/2012] [Accepted: 10/20/2012] [Indexed: 11/17/2022] Open
Abstract
Psoriasis is a lifelong, chronic, and immune-mediated systemic disease, which affects approximately 1-3% of the Caucasian population. The different presentations of psoriasis require different approaches to treatment and appropriate prescriptions according to disease severity. The use of topical therapy remains a key component of the management of almost all psoriasis patients, and while mild disease is commonly treated only with topical agents, the use of topical therapy as adjuvant therapy in moderate-to-severe disease may also be helpful. This paper focuses on the cutaneous mechanisms of action of corticosteroids and on the currently available topical treatments, taking into account adverse effects, bioavailability, new combination treatments, and strategies to improve the safety of corticosteroids. It is established that the treatment choice should be tailored to match the individual patient's needs and his/her expectations, prescribing to each patient the most suitable vehicle.
Collapse
Affiliation(s)
- Luís Uva
- Clínica Universitária de Dermatologia, Faculdade de Medicina de Lisboa, Av. Professor Egas Moniz, 1649-035 Lisbon, Portugal
- *Luís Uva:
| | - Diana Miguel
- Clínica Universitária de Dermatologia, Faculdade de Medicina de Lisboa, Av. Professor Egas Moniz, 1649-035 Lisbon, Portugal
| | - Catarina Pinheiro
- Clínica Universitária de Dermatologia, Faculdade de Medicina de Lisboa, Av. Professor Egas Moniz, 1649-035 Lisbon, Portugal
| | - Joana Antunes
- Clínica Universitária de Dermatologia, Faculdade de Medicina de Lisboa, Av. Professor Egas Moniz, 1649-035 Lisbon, Portugal
| | - Diogo Cruz
- Clínica Universitária de Dermatologia, Faculdade de Medicina de Lisboa, Av. Professor Egas Moniz, 1649-035 Lisbon, Portugal
| | - João Ferreira
- Clínica Universitária de Dermatologia, Faculdade de Medicina de Lisboa, Av. Professor Egas Moniz, 1649-035 Lisbon, Portugal
| | - Paulo Filipe
- Clínica Universitária de Dermatologia, Faculdade de Medicina de Lisboa, Av. Professor Egas Moniz, 1649-035 Lisbon, Portugal
| |
Collapse
|
97
|
Lee JY, Park W. Anti-inflammatory effect of myristicin on RAW 264.7 macrophages stimulated with polyinosinic-polycytidylic acid. Molecules 2011; 16:7132-42. [PMID: 21991618 PMCID: PMC6264243 DOI: 10.3390/molecules16087132] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Myristicin (1-allyl-5-methoxy-3,4-methylenedioxybenzene) is an active aromatic compound found in nutmeg (the seed of Myristica fragrans), carrot, basil,cinnamon, and parsley. Myristicin has been known to have anti-cholinergic, antibacterial,and hepatoprotective effects, however, the effects of myristicin on virus-stimulated macrophages are not fully reported. In this study, the anti-inflammatory effect of myristicin on double-stranded RNA (dsRNA)-stimulated macrophages was examined. Myristicin did not reduce the cell viability of RAW 264.7 mouse macrophages at concentrations of up to 50 μM. Myristicin significantly inhibited the production of calcium, nitric oxide (NO),interleukin (IL)-6, IL-10, interferon inducible protein-10, monocyte chemotactic protein(MCP)-1, MCP-3, granulocyte-macrophage colony-stimulating factor, macrophage inflammatory protein (MIP)-1α, MIP-1β, and leukemia inhibitory factor in dsRNA[polyinosinic-polycytidylic acid]-induced RAW 264.7 cells (P < 0.05). In conclusion,myristicin has anti-inflammatory properties related with its inhibition of NO, cytokines,chemokines, and growth factors in dsRNA-stimulated macrophages via the calcium pathway.
Collapse
Affiliation(s)
| | - Wansu Park
- Author to whom correspondence should be addressed; ; Tel.: +82-31-750-8821; Fax: +82-31-750-8821
| |
Collapse
|
98
|
Lee JY, Park W, Yi DK. Immunostimulatory effects of gold nanorod and silica-coated gold nanorod on RAW 264.7 mouse macrophages. Toxicol Lett 2011; 209:51-7. [PMID: 22155353 DOI: 10.1016/j.toxlet.2011.11.024] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Revised: 11/23/2011] [Accepted: 11/23/2011] [Indexed: 10/14/2022]
Abstract
In this study, we have investigated immunostimulatory effects of gold nanorod (Au) and silica-coated gold nanorod (SiAu) concerned with inflammatory mediators such as calcium (Ca), hydrogen peroxide, nitric oxide (NO), various cytokines, prostaglandin E2 (PGE2), transcription factors, and immune response gene in RAW 264.7 mouse macrophages. Both Au and SiAu significantly increased the release of Ca, hydrogen peroxide, NO, IL-1α, IL-1β, IL-6, IL-10, IP-10, MCP-1, MCP-3, TNF-α, RANTES, G-CSF, GM-CSF, LIF, MIP-2, VEGF, and PGE2 with enhancing expression of STAT1, STAT3, c-Fos, and COX-2 mRNA in RAW 264.7 cells. The results suggest that Au and SiAu have immunostimulatory properties to strengthen immune reactions via calcium-transcription factors pathway in macrophage.
Collapse
Affiliation(s)
- Ji Young Lee
- College of Oriental Medicine, Kyungwon University, Seongnam 461-701, Republic of Korea
| | | | | |
Collapse
|
99
|
Terao M, Murota H, Kimura A, Kato A, Ishikawa A, Igawa K, Miyoshi E, Katayama I. 11β-Hydroxysteroid dehydrogenase-1 is a novel regulator of skin homeostasis and a candidate target for promoting tissue repair. PLoS One 2011; 6:e25039. [PMID: 21949844 PMCID: PMC3176795 DOI: 10.1371/journal.pone.0025039] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Accepted: 08/26/2011] [Indexed: 12/30/2022] Open
Abstract
11β-hydroxysteroid dehydrogenase 1 (11β-HSD1) catalyzes the interconversion of cortisone and cortisol within the endoplasmic reticulum. 11β-HSD1 is expressed widely, most notably in the liver, adipose tissue, and central nervous system. It has been studied intensely over the last 10 years because its activity is reported to be increased in visceral adipose tissue of obese people. Epidermal keratinocytes and dermal fibroblasts also express 11β-HSD1. However, the function of the enzymatic activity 11β-HSD1 in skin is not known. We found that 11β-HSD1 was expressed in human and murine epidermis, and this expression increased as keratinocytes differentiate. The expression of 11β-HSD1 by normal human epidermal keratinocytes (NHEKs) was increased by starvation or calcium-induced differentiation in vitro. A selective inhibitor of 11β-HSD1 promoted proliferation of NHEKs and normal human dermal fibroblasts, but did not alter the differentiation of NHEKs. Topical application of selective 11β-HSD1 inhibitor to the dorsal skin of hairless mice caused proliferation of keratinocytes. Taken together, these data suggest that 11β-HSD1 is involved in tissue remodeling of the skin. This hypothesis was further supported by the observation that topical application of the selective 11β-HSD1 inhibitor enhanced cutaneous wound healing in C57BL/6 mice and ob/ob mice. Collectively, we conclude that 11β-HSD1 is negatively regulating the proliferation of keratinocytes and fibroblasts, and cutaneous wound healing. Hence, 11β-HSD1 might maintain skin homeostasis by regulating the proliferation of keratinocytes and dermal fibroblasts. Thus 11β-HSD1 is a novel candidate target for the design of skin disease treatments.
Collapse
Affiliation(s)
- Mika Terao
- Department of Dermatology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
100
|
Dvorak Z, Pavek P. Regulation of drug-metabolizing cytochrome P450 enzymes by glucocorticoids. Drug Metab Rev 2011; 42:621-35. [PMID: 20482443 DOI: 10.3109/03602532.2010.484462] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The regulation of drug-metabolizing cytochrome P450 enzymes (CYP) is a complex process involving multiple mechanisms. Among them, transcriptional regulation through ligand-activated nuclear receptors is the crucial mechanism involved in hormone-controlled and xenobiotic-induced expression of drug-metabolizing CYPs. In this article, we focus, in detail, on the role of the glucocorticoid receptor (GR) in the transcriptional regulation of human drug-metabolizing CYP enzymes and the mechanisms of the regulation. There are at least three distinct transcriptional mechanisms by which GR controls the expression of CYPs: 1) direct binding of GR to a specific gene-promoter sequence called the glucocorticoid responsive element (GRE); 2) indirect binding of GR in the form of a multiprotein complex to gene promoters without a direct contact between GR and promoter DNA; and 3) up- or downregulation of other CYP transcriptional regulators or nuclear receptors (i.e., transcriptional regulatory cross-talk). However, due to the general effect of glucocorticoids on numerous cellular pathways and functions, the net transcriptional effect of glucocorticoids on drug-metabolizing enzymes is usually a combination of several mechanisms. Since synthetic glucocorticoids are widely prescribed in human pharmacotherapy for the treatment of many diseases, comprehensive understanding of the transcriptional regulation of drug-metabolizing CYPs via GR with respect to glucocorticoid therapy or glucocorticoid hormonal status will aid in the development of efficient individualized pharmacotherapy without drug-drug interactions.
Collapse
Affiliation(s)
- Zdenek Dvorak
- Department of Cell Biology and Genetics, Faculty of Science, Palacky University, Olomouc, Czech Republic.
| | | |
Collapse
|