51
|
Obreja O, Rukwied R, Steinhoff M, Schmelz M. Neurogenic components of trypsin- and thrombin-induced inflammation in rat skin, in vivo. Exp Dermatol 2006; 15:58-65. [PMID: 16364032 DOI: 10.1111/j.0906-6705.2005.00392.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Activation of protease-activated receptors (PAR) can induce vasodilation (VD) and increase of vascular permeability either directly by stimulating endothelial cells or indirectly via activation of nociceptors and subsequent release of neuropeptides (neurogenic inflammation). We aimed to estimate the relative contribution of the two pathways for stimulation with endogenous activators of PAR-2 (trypsin) and of PAR-1, 3 and 4 (thrombin) using in vivo dermal microdialysis in rats. Protein extravasation (PE) was assessed by increase of protein concentration in the dialysate, and VD was quantified by laser Doppler scanning. Both trypsin (10(-8)-10(-4) M) and thrombin (10(-6), 10(-5.5) and 10(-5) M) provoked PE and local VD in a dose-dependent manner. Trypsin (10(-4) M)-induced PE was inhibited by 87.2 +/- 21% due to the substance P (SP) NK1 receptor antagonist SR140333. VD was blocked by 58.15 +/- 10.1% in response to the calcitonin gene-related peptide (CGRP) receptor antagonist CGRP(8-37). By contrast, CGRP(8-37) did not affect thrombin-induced VD, while blockade of SP receptors prevented the PE elicited only by low doses of thrombin (10(-6) M), being ineffective at higher thrombin concentrations. In conclusion, intradermal trypsin elicits a neurogenic inflammation in rat, probably mediated via PAR-2 activation on nociceptors and subsequent SP and CGRP release. Thrombin-induced PE and VD are mediated mainly by a non-neurogenic mechanism.
Collapse
Affiliation(s)
- Otilia Obreja
- Department of Anaesthesiology and Intensive Care, Faculty of Clinical Medicine Mannheim, University of Medicine Heidelberg, Mannheim, Germany
| | | | | | | |
Collapse
|
52
|
Bushell TJ, Plevin R, Cobb S, Irving AJ. Characterization of proteinase-activated receptor 2 signalling and expression in rat hippocampal neurons and astrocytes. Neuropharmacology 2006; 50:714-25. [PMID: 16430928 DOI: 10.1016/j.neuropharm.2005.11.024] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2005] [Revised: 10/31/2005] [Accepted: 11/29/2005] [Indexed: 10/25/2022]
Abstract
Proteinase-activated receptors (PARs1-4) have recently been identified as the molecular entity underlying the cellular effects of serine proteinases. In the present study we have investigated PAR2 signalling, expression and desensitization using cultured and acute slice preparations. Trypsin, SLIGRL and 2f-LIGKV-OH, agonists for PAR2, induced a transient increase in intracellular Ca(2+) levels in both neurons and astrocytes, via activation of the phospholipase C/IP(3) pathway. Furthermore, a single application of trypsin, but not SLIGRL nor 2f-LIGKV-OH, leads to prolonged desensitization of PAR2 responses. PAR2 immunoreactivity was observed in neurons (glutamatergic and GABAergic) and astrocytes within cultures and acute slices, with prominent labelling in neuronal somata and proximal dendrites. Functionally, cultured neurons which exhibited the highest levels of PAR2 labelling, also exhibited the largest Ca(2+) signals upon PAR2 activation. Given the importance of Ca(2+) signalling in hippocampal synaptic plasticity and neurodegeneration, PAR2 may play a key modulatory role in these processes.
Collapse
Affiliation(s)
- Trevor J Bushell
- Department of Pharmacology and Physiology, Strathclyde Institute for Biomedical Sciences, University of Strathclyde, 27 Taylor Street, Glasgow G4 0NR, UK. trevor
| | | | | | | |
Collapse
|
53
|
Xue M, Balasubramaniam J, Parsons KAL, McIntyre IW, Peeling J, Del Bigio MR. Does thrombin play a role in the pathogenesis of brain damage after periventricular hemorrhage? Brain Pathol 2005; 15:241-9. [PMID: 16196391 PMCID: PMC8096014 DOI: 10.1111/j.1750-3639.2005.tb00527.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Neonatal periventricular hemorrhage (PVH) is a devastating complication of prematurity in the human infant. Based upon observations made primarily in adult rodents and the fact that the immature brain uses proteolytic systems for cell migration and growth, we hypothesized that thrombin and plasmin enzyme activities contribute to the brain damage after PVH. The viability of mixed brain cells derived from newborn rat periventricular region was suppressed by whole blood and thrombin, but not plasmin. Following injection of autologous blood into the periventricular region of newborn rat brain, proteolytic activity was detected in a halo around the hematoma using membrane overlays impregnated with thrombin and plasmin fluorogenic substrates. Two-day old rats received periventricular injection of blood, thrombin, and plasminogen. After 2 days, thrombin and blood were associated with significantly greater damage than saline or plasminogen. Two-day old mice received intracerebral injections of blood in combination with saline or the proteolytic inhibitors hirudin, alpha2macroglobulin, or plasminogen activator inhibitor-1. After 2 days, hirudin significantly reduced brain cell death and inflammation. Two-day-old mice then received low and high doses of hirudin mixed with blood after which behavioral testing was conducted repeatedly. At 10 weeks there was no statistically significant evidence for behavioral or structural brain protection. These results indicate that thrombin likely plays a role in neonatal periventricular brain damage following PVH. However, additional factors are likely important in the recovery from this result.
Collapse
Affiliation(s)
- Mengzhou Xue
- Departments of Pathology, University of Manitoba, Winnipeg, Canada
- Manitoba Institute of Child Health, Winnipeg, Canada
| | - Janani Balasubramaniam
- Departments of Pathology, University of Manitoba, Winnipeg, Canada
- Manitoba Institute of Child Health, Winnipeg, Canada
| | | | | | - James Peeling
- Departments of Radiology, University of Manitoba, Winnipeg, Canada
| | - Marc R. Del Bigio
- Departments of Pathology, University of Manitoba, Winnipeg, Canada
- Manitoba Institute of Child Health, Winnipeg, Canada
| |
Collapse
|
54
|
Balezina OP, Gerasimenko NY, Dugina TN, Strukova SM. Study of neurotrophic activity of thrombin on the model of regenerating mouse nerve. Bull Exp Biol Med 2005; 139:4-6. [PMID: 16142261 DOI: 10.1007/s10517-005-0196-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Experiments demonstrated a dose-dependent facilitating effect of thrombin and peptide thrombin receptor agonist PAR1 (TRAP6) on regeneration of mouse peripheral nerve after its crushing. The maximum neurotrophic effect was observed at low concentrations of thrombin (10 nM) and TRAP6 (10 microM).
Collapse
Affiliation(s)
- O P Balezina
- Department of Human and Animal Physiology, Biological Faculty, M. V. Lomonosov Moscow State University, Moscow, Russia.
| | | | | | | |
Collapse
|
55
|
Xue M, Del Bigio MR. Injections of blood, thrombin, and plasminogen more severely damage neonatal mouse brain than mature mouse brain. Brain Pathol 2005; 15:273-80. [PMID: 16389939 PMCID: PMC8095988 DOI: 10.1111/j.1750-3639.2005.tb00111.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The mechanism of brain cell injury associated with intracerebral hemorrhage may be in part related to proteolytic enzymes in blood, some of which are also functional in the developing brain. We hypothesized that there would be an age-dependent brain response following intracerebral injection of blood, thrombin, and plasminogen. Mice at 3 ages (neonatal, 10-day-old, and young adult) received autologous blood (15, 25, and 50 microl respectively), thrombin (3, 5, and 10 units respectively), plasminogen (0.03, 0.05, and 0.1 units respectively) (the doses expected in same volume blood), or saline injection into lateral striatum. Forty-eight hours later they were perfusion fixed. Hematoxylin and eosin, lectin histochemistry, Fluoro-Jade, and TUNEL staining were used to quantify changes related to the hemorrhagic lesion. Damage volume, dying neurons, neutrophils, and microglial reaction were significantly greater following injections of blood, plasminogen, and thrombin compared to saline in all three ages of mice. Plasminogen and thrombin associated brain damage was greatest in neonatal mice and, in that group unlike the other 2, greater than the damage caused by whole blood. These results suggest that the neonatal brain is relatively more sensitive to proteolytic plasma enzymes than the mature brain.
Collapse
Affiliation(s)
- Mengzhou Xue
- Department of Pathology, University of Manitoba and Manitoba Institute of Child Health, Winnipeg, MB, Canada
| | - Marc R. Del Bigio
- Department of Pathology, University of Manitoba and Manitoba Institute of Child Health, Winnipeg, MB, Canada
| |
Collapse
|
56
|
Gorbacheva LR, Storozhevykh TP, Kiseleva EV, Pinelis VG, Strukova SM. Proteinase-Activated Type 1 Receptors are Involved in the Mechanism of Protection of Rat Hippocampal Neurons from Glutamate Toxicity. Bull Exp Biol Med 2005; 140:285-8. [PMID: 16307037 DOI: 10.1007/s10517-005-0468-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Survival of cultured rat hippocampal neurons was estimated 4, 24, and 48 h after 15-min exposure to the toxic effect of glutamate under conditions of pre- or coincubation with 10 nM thrombin. Thrombin inhibited glutamate-induced apoptosis in neurons 24 and 48 h after treatment, but had no effect on necrosis. Selective peptide agonist of proteinase-activated type 1 receptors simulated, but receptor antagonist suppressed the neuroprotective effect of thrombin. Our results suggest that peptide antagonist of type 1 receptors play a role in the mechanisms of neuronal protection from glutamate toxicity.
Collapse
Affiliation(s)
- L R Gorbacheva
- Department of Human and Animal Physiology, Biological Faculty, M. V. Lomonosov Moscow State University
| | | | | | | | | |
Collapse
|
57
|
Sheehan JJ, Tsirka SE. Fibrin-modifying serine proteases thrombin, tPA, and plasmin in ischemic stroke: a review. Glia 2005; 50:340-350. [PMID: 15846799 DOI: 10.1002/glia.20150] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Ischemic stroke is a sudden loss of circulation to a portion of the brain that results in a loss of neurologic function. Many ischemic strokes are embolic. They result from a thrombus traveling into the central circulation and occluding a blood vessel. Treatment of ischemic stroke with recombinant tissue plasminogen activator (tPA) can improve patient outcomes. However, tPA must be used during a specific time window after the stroke onset to be effective and it risks converting an ischemic stroke into a hemorrhagic one. We explore the basic effects of fibrin-modifying proteases on neurons, astrocytes, and microglia during ischemia. tPA, thrombin, and plasmin can initiate microglial activation and change both neuronal and astrocytic survival. As a result of these functions and of their role in blood homeostasis, all three of these proteases have profound effects on neurons and glial cells in the brain and are capable of altering the development and severity of ischemic stroke.
Collapse
Affiliation(s)
- John J Sheehan
- Program in Molecular and Cellular Pharmacology and Department of Pharmacological Sciences, University Medical Center at Stony Brook, Stony Brook, New York
| | - Stella E Tsirka
- Program in Molecular and Cellular Pharmacology and Department of Pharmacological Sciences, University Medical Center at Stony Brook, Stony Brook, New York
| |
Collapse
|
58
|
|
59
|
Steinhoff M, Buddenkotte J, Shpacovitch V, Rattenholl A, Moormann C, Vergnolle N, Luger TA, Hollenberg MD. Proteinase-activated receptors: transducers of proteinase-mediated signaling in inflammation and immune response. Endocr Rev 2005; 26:1-43. [PMID: 15689571 DOI: 10.1210/er.2003-0025] [Citation(s) in RCA: 364] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Serine proteinases such as thrombin, mast cell tryptase, trypsin, or cathepsin G, for example, are highly active mediators with diverse biological activities. So far, proteinases have been considered to act primarily as degradative enzymes in the extracellular space. However, their biological actions in tissues and cells suggest important roles as a part of the body's hormonal communication system during inflammation and immune response. These effects can be attributed to the activation of a new subfamily of G protein-coupled receptors, termed proteinase-activated receptors (PARs). Four members of the PAR family have been cloned so far. Thus, certain proteinases act as signaling molecules that specifically regulate cells by activating PARs. After stimulation, PARs couple to various G proteins and activate signal transduction pathways resulting in the rapid transcription of genes that are involved in inflammation. For example, PARs are widely expressed by cells involved in immune responses and inflammation, regulate endothelial-leukocyte interactions, and modulate the secretion of inflammatory mediators or neuropeptides. Together, the PAR family necessitates a paradigm shift in thinking about hormone action, to include proteinases as key modulators of biological function. Novel compounds that can modulate PAR function may be potent candidates for the treatment of inflammatory or immune diseases.
Collapse
Affiliation(s)
- Martin Steinhoff
- Department of Dermatology and Boltzmann Institute for Immunobiology of the Skin, University of Münster, von-Esmarch-Strasse 58, 48149 Münster, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
60
|
Rong Y, Wang T, Morgan JI. Identification of candidate Purkinje cell-specific markers by gene expression profiling in wild-type and pcd(3J) mice. ACTA ACUST UNITED AC 2005; 132:128-45. [PMID: 15582153 DOI: 10.1016/j.molbrainres.2004.10.015] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/07/2004] [Indexed: 10/26/2022]
Abstract
The identification of mRNAs that have restricted expression patterns in the brain represents powerful tools with which to characterize and manipulate the nervous system. Here, we describe a strategy using microarray technology (Affymetrix Mouse Genome 430 2.0 Arrays) to identify mRNA transcripts that are candidate markers of cerebellar Purkinje neurons. Initially, gene expression profiles were compared between cerebella of 4-month-old Purkinje cell degeneration (pcd(3J)) mice, in which most Purkinje cells had already degenerated and wild-type littermates with a normal complement of Purkinje neurons. Of 14,563 probe sets expressed in wild-type cerebellum, 797 showed a significant (p<0.0001) reduction in pcd(3J) mice. These probes could represent transcripts with varying levels of specificity for Purkinje cells as well as transcripts in other cell types that decline as a secondary consequence of Purkinje cell loss. Ranking of the probe signals revealed that well-known Purkinje cell-specific transcripts such as calbindin and L7/pcp2 clustered in a group that was <33% of wild-type levels. Therefore, to identify potentially new Purkinje cell-specific transcripts that cluster with the known markers, more stringent selection criteria were applied (<33% of wild-type signal and p<0.0001). With these criteria, 55 independent transcripts were identified of which 33 were annotated genes and 22 were ESTs and RIKEN cDNAs. A literature search revealed that 25 of the 33 annotated genes were expressed in Purkinje cells, with no data being available on the other 8. Thus, the additional 8 annotated and 22 un-annotated genes are clustered with many genes expressed in Purkinje cells making them candidate markers. To confirm the microarray data, eight representative annotated genes were selected including five reported to be in Purkinje neurons and three for which no data was available. Semi-quantitative RT-PCR demonstrated reduced expression of all eight transcripts in cerebella from pcd(3J) mice. The promoters of genes expressed selectively in subsets of neurons can be used to direct heterologous gene expression in transgenic mice and the more restricted the expression pattern the greater their utility. Therefore, microarray analysis was used to assess expression levels of all 55 transcripts in cerebral cortex, striatum, substantia nigra and ventral tegmental area. This permitted the identification of a set of genes whose promoters might have utility for selectively targeting gene expression to cerebellar Purkinje cells.
Collapse
Affiliation(s)
- Yongqi Rong
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, 332 N. Lauderdale Street, Memphis, TN 38105, United States
| | | | | |
Collapse
|
61
|
Saito T, Bunnett NW. Protease-activated receptors: regulation of neuronal function. Neuromolecular Med 2005; 7:79-99. [PMID: 16052040 DOI: 10.1385/nmm:7:1-2:079] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2004] [Revised: 02/13/2005] [Accepted: 02/17/2005] [Indexed: 12/20/2022]
Abstract
Certain serine proteases from the circulation (e.g., coagulation factors), inflammatory cells (e.g., mast-cell tryptase, neutrophil proteinase 3), and from many other cell types (e.g., trypsins) can specifically signal to cells by cleaving protease-activated receptors (PARs), a family of four G protein-coupled receptors. Proteases cleave PARs at specific sites within the extracellular amino-terminus to expose amino-terminal tethered ligand domains that bind to and activate the cleaved receptors. The proteases that activate PARs are often generated and released during injury and inflammation, and activated PARs orchestrate tissue responses to injury, including hemostasis, inflammation, pain, and repair. This review concerns protease and PAR signaling in the nervous system. Neurons of the central and peripheral nervous systems express all four PARs. Proteases that may derive from the circulation, inflammatory cells, or neural tissues can cleave PARs on neurons and thereby activate diverse signaling pathways that control survival, morphology, release of neurotransmitters, and activity of ion channels. In this manner proteases and PARs regulate neurodegeneration, neurogenic inflammation, and pain transmission. Thus, PARs may participate in disease states and PAR antagonists or agonists may be useful therapies for certain disorders.
Collapse
Affiliation(s)
- Toshiyuki Saito
- Department of Surgery, University of California, San Francisco, CA, USA
| | | |
Collapse
|
62
|
Hirano K, Yufu T, Hirano M, Nishimura J, Kanaide H. Physiology and Pathophysiology of Proteinase-Activated Receptors (PARs): Regulation of the Expression of PARs. J Pharmacol Sci 2005; 97:31-7. [PMID: 15655296 DOI: 10.1254/jphs.fmj04005x6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
The level of receptors expressed on the cell surface determines the cellular responsiveness to agonists. Proteinase-activated receptors (PARs) have been reported to be either up-regulated or down-regulated in response to various types of stimulation and pathological situations. In addition, the transcriptional regulation plays a major role in the alteration of the expression of PARs under pathological conditions, while post-translational mechanisms such as phosphorylation, arresting-binding, internalization, and lysosomal degradation, which desensitize activated PARs and terminate intracellular signaling, also play an important role in regulating the expression of PARs and the cellular responsiveness to the agonists. Elucidating the mechanisms related to the expression of PARs is a critical step to understand the pathophysiology of various diseases and establish new therapeutic strategies. However, the molecular mechanism regulating the expression of PARs still remains to be elucidated. This minireview discusses our current understanding of the mechanisms regulating the expression of PARs. The transcription factors and the regulatory elements in the promoter regions, and the proteins that interact with the receptors and thereby regulate their trafficking and desensitization are the main problems that need to be elucidated.
Collapse
Affiliation(s)
- Katsuya Hirano
- Division of Molecular Cardiology, Research Institute of Angiocardiology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | | | | | | | | |
Collapse
|
63
|
Yamamoto C, Sugato M, Fujiwara Y, Kaji T. Selective Promotion of Plasminogen Activator Inhibitor-1 Secretion by Activation of Proteinase-Activated Receptor-1 in Cultured Human Brain Microvascular Pericytes: Comparison with Endothelial Cells. Biol Pharm Bull 2005; 28:208-11. [PMID: 15684470 DOI: 10.1248/bpb.28.208] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Microvessels are composed of endothelial cells that cover the luminal surface and pericytes that wrap around and along endothelial cells. In the present study, we investigated the regulation of fibrinolysis in cultured human brain microvascular pericytes and endothelial cells after exposure to thrombin. It was found that the regulation in pericytes is different from that in endothelial cells. Specifically, thrombin increases the secretion of fibrinolytic proteins (tissue- and urokinase-type plasminogen activators and plasminogen activator inhibitor-1), resulting in an enhancement of plasminogen activator activity in endothelial cells, whereas the proteinase increases the secretion of only plasminogen activator inhibitor-1 by activation of proteinase-activated receptor-1 and induces suppression of plasminogen activator activity in pericytes. The present data suggest that thrombin regulation of fibrinolytic activity in endothelial cells and pericytes may be involved in the removal of intravascular thrombi and the maintenance of hemostasis, respectively, in human brain microvessels.
Collapse
Affiliation(s)
- Chika Yamamoto
- Department of Environmental Health, Faculty of Pharmaceutical Sciences, Hokuriku University, Ho-3, Kanagawa-machi, Kanazawa 920-1181, Japan
| | | | | | | |
Collapse
|
64
|
Junge CE, Lee CJ, Hubbard KB, Zhang Z, Olson JJ, Hepler JR, Brat DJ, Traynelis SF. Protease-activated receptor-1 in human brain: localization and functional expression in astrocytes. Exp Neurol 2004; 188:94-103. [PMID: 15191806 DOI: 10.1016/j.expneurol.2004.02.018] [Citation(s) in RCA: 133] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2003] [Revised: 02/11/2004] [Accepted: 02/23/2004] [Indexed: 10/26/2022]
Abstract
Protease-activated receptor-1 (PAR1) is a G-protein coupled receptor that is proteolytically activated by blood-derived serine proteases. Although PAR1 is best known for its role in coagulation and hemostasis, recent findings demonstrate that PAR1 activation has actions in the central nervous system (CNS) apart from its role in the vasculature. Rodent studies have demonstrated that PAR1 is expressed throughout the brain on neurons and astrocytes. PAR1 activation in vitro and in vivo appears to influence neurodegeneration and neuroprotection in animal models of stroke and brain injury. Because of increasing evidence that PAR1 has important and diverse roles in the CNS, we explored the protein localization and function of PAR1 in human brain. PAR1 is most intensely expressed in astrocytes of white and gray matter and moderately expressed in neurons. PAR1 and GFAP co-localization demonstrates that PAR1 is expressed on the cell body and on astrocytic endfeet that invest capillaries. PAR1 activation in the U178MG human glioblastoma cell line increased PI hydrolysis and intracellular Ca(2+), indicating that PAR1 is functional in human glial-derived tumor cells. Primary cultures of human astrocytes and human glioblastoma cells respond to PAR1 activation by increasing intracellular Ca(2+). Together, these results demonstrate that PAR1 is expressed in human brain and functional in glial tumors and cultures derived from it. Because serine proteases may enter brain tissue and activate PAR1 when the blood brain barrier (BBB) breaks down, pharmacological manipulation of PAR1 signaling may provide a potential therapeutic target for neuroprotection in human neurological disorders.
Collapse
Affiliation(s)
- Candice E Junge
- Department of Pharmacology, Emory University, Atlanta, GA 30322, USA
| | | | | | | | | | | | | | | |
Collapse
|
65
|
Festoff BW, Ameenuddin S, Santacruz K, Morser J, Suo Z, Arnold PM, Stricker KE, Citron BA. Neuroprotective Effects of Recombinant Thrombomodulin in Controlled Contusion Spinal Cord Injury Implicates Thrombin Signaling. J Neurotrauma 2004; 21:907-22. [PMID: 15307903 DOI: 10.1089/0897715041526168] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Although the central nervous system (CNS) of mammals has had poor prospects for regeneration, recent studies suggest this might improve from blocking "secondary cell loss" or apoptosis. In this regard, intravenous activated protein C (aPC) improved neurologic outcomes in a rat compression spinal cord injury (SCI) model. Protein C activation occurs when the serine protease thrombin binds to the cell surface proteoglycan thrombomodulin (TM) forming a complex that halts coagulation. In culture, rTM blocks thrombin's activation of protease-activated receptors (PARs), that mediate thrombin killing of neurons and glial reactivity. Both PAR1 and prothrombin are rapidly upregulated after contusion SCI in rats, prior to peak apoptosis. We now report neuroprotective effects of intraperitoneal soluble recombinant human rTM on open-field locomotor rating scale (BBB) and spinal cord lesion volume when given 1 h after SCI. BBB scores from four separate experiments showed a 7.6 +/- 1.4 absolute score increase (p < 0.05) at 3 days, that lasted throughout the time course. Histological sections at 14 days were even more dramatic where a twofold reduction in lesion volume was quantified in rTM-treated rats. Thionin staining revealed significant preservation of motor neuronal profiles both at, and two segments below, the lesion epicenter. Activated caspase-3 immunocytochemistry indicated apoptosis was quite prominent in motor neurons in vehicle (saline) controls, but was dramatically reduced by rTM. Microglia, increased and activated after injury, were reduced with rTM treatment. Taken together, these and previous results support a prominent role for coagulation-inflammation signaling cascades in the subacute changes following SCI. They identify a neuroprotective role for rTM by its inhibition of thrombin generation and blockade of PAR activation.
Collapse
Affiliation(s)
- Barry W Festoff
- Neurobiology Research Laboratory, Heartland Network, Department of Veterans Affairs Medical Center, Kansas City, Missouri 64128, USA.
| | | | | | | | | | | | | | | |
Collapse
|
66
|
Faraut B, Ravel-Chapuis A, Bonavaud S, Jandrot-Perrus M, Verdière-Sahuqué M, Schaeffer L, Koenig J, Hantaï D. Thrombin reduces MuSK and acetylcholine receptor expression along with neuromuscular contact size in vitro. Eur J Neurosci 2004; 19:2099-108. [PMID: 15090037 DOI: 10.1111/j.1460-9568.2004.03300.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In the course of studies on thrombin and its inhibitor(s) in synaptic plasticity, we addressed the question of their roles in the formation of neuromuscular junctions (NMJ) and used a model of rat neuron-myotube cocultures. We report that the size of acetylcholinesterase (AChE) patches used as a marker of neuromuscular contacts was decreased in the presence of either thrombin or SFLLRN, the agonist peptide of the thrombin receptor PAR-1, whereas it was increased with hirudin, a specific thrombin inhibitor. In an attempt to relate these neuromuscular contact size variations to molecular changes, we studied muscle-specific tyrosine kinase receptor (MuSK), acetylcholine receptor (AChR) and rapsyn expression in the presence of thrombin. We showed that thrombin did not change rapsyn gene and protein expression. However, the expression of MuSK and surface AChR proteins was diminished in both myotube cultures and neuron-myotube cocultures. These reductions in protein expression were associated with a decrease in MuSK and AChR alpha-subunit gene expression in myotube cultures but not in neuron-myotube cocultures. Moreover, the expression of the AChR epsilon-subunit gene, specifically enhanced by neuron-released factors, was not modified by thrombin in neuron-myotube cocultures. This suggests that thrombin did not affect the expression of synaptic AChRs enhanced by neuron-released factors but rather reduced the level of extrasynaptic AChRs. Taken together, these results indicate that thrombin in balance with its inhibitor(s) could modulate the formation of neuromuscular contacts in vitro by affecting the expression of two essential molecules in NMJ postsynaptic differentiation, MuSK and AChR.
Collapse
Affiliation(s)
- Brice Faraut
- INSERM U582, Institut de Myologie, Groupe Hospitalier Pitié-Salpêtrière, 47, Boulevard de l'Hôpital, 75651 Paris Cedex 13, France
| | | | | | | | | | | | | | | |
Collapse
|
67
|
Koetzner L, Gregory JA, Yaksh TL. Intrathecal Protease-Activated Receptor Stimulation Produces Thermal Hyperalgesia through Spinal Cyclooxygenase Activity. J Pharmacol Exp Ther 2004; 311:356-63. [PMID: 15175421 DOI: 10.1124/jpet.104.069484] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Activation of protease-activated receptors (PARs) in non-neural tissue results in prostaglandin production. Because PARs are found in the spinal cord and increased prostaglandin release in the spinal cord causes thermal hyperalgesia, we hypothesized that activation of these spinal PARs would stimulate prostaglandin production and cause a cyclooxygenase-dependent thermal hyperalgesia. PARs were activated using either thrombin or peptide agonists derived from the four PAR subtypes, delivered to the lumbar spinal cord. Dialysis experiments were conducted in conscious, unrestrained rats using loop microdialysis probes placed in the lumbar intrathecal space. Intrathecal thrombin stimulated release of prostaglandin E (PGE)(2) but not aspartate or glutamate. Intrathecal delivery of the PAR 1-derived peptide SFLLRN-NH(2) and the PAR 2-derived peptide SLIGRL both stimulated PGE(2) release; PAR 3-derived TFRGAP and PAR 4-derived GYPGQV were inactive. Intrathecal thrombin had no effect upon formalin-induced flinching or tactile sensitivity but resulted in a thermal hyperalgesia. Intrathecal SFLLRN-NH(2) and SLIGRL both produced thermal hyperalgesia. Consistent with their effects on spinal PGE(2), hyperalgesia from these peptides was blocked by pretreatment with the cyclooxygenase inhibitor ibuprofen. SLIGRL-induced hyperalgesia was also blocked by the selective inhibitors SC 58,560 [5-(4-fluorophenyl)-1-[4-(methylsulfonyl)phenyl]-3-(trifluoromethyl)-1H-pyrazole; cyclooxygenase (COX) 1] and SC 58,125 [5-(4-chlorophenyl)-1-(4-methoxyphenyl)-3-(trifluoromethyl)-1H-pyrazole; COX 2]. These data indicate that activation of spinal PAR 2 and possibly PAR 1 results in the stimulation of the spinal cyclooxygenase cascade and a prostaglandin-dependent thermal hyperalgesia.
Collapse
Affiliation(s)
- Lee Koetzner
- Anesthesiology Research Laboratory-0818, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093-0818, USA
| | | | | |
Collapse
|
68
|
Abstract
Experimental models such as the facial nerve axotomy paradigm in rodents allow the systematic and detailed study of the response of neurones and their microenvironment to various types of challenges. Well-studied experimental examples include peripheral nerve trauma, the retrograde axonal transport of neurotoxins and locally enhanced inflammation following the induction of experimental autoimmune encephalomyelitis in combination with axotomy. These studies have led to novel insights into the regeneration programme of the motoneurone, the role of microglia and astrocytes in synaptic plasticity and the biology of glial cells. Importantly, many of the findings obtained have proven to be valid in other functional systems and even across species barriers. In particular, microglial expression of major histocompatibility complex molecules has been found to occur in response to various types of neuronal damage and is now regarded as a characteristic component of "glial inflammation". It is found in the context of numerous neurodegenerative disorders including Parkinson's and Alzheimer's disease. The detachment of afferent axonal endings from the surface membrane of regenerating motoneurones and their subsequent displacement by microglia ("synaptic stripping") and long-lasting insulation by astrocytes have also been confirmed in humans. The medical implications of these findings are significant. Also, the facial nerve system of rats and mice has become the best studied and most widely used test system for the evaluation of neurotrophic factors.
Collapse
Affiliation(s)
- Linda B Moran
- Department of Neuropathology, Division of Neuroscience and Psychological Medicine, Faculty of Medicine, Imperial College London, Charing Cross Campus, Fulham Palace Road, London W6 8RF, UK
| | | |
Collapse
|
69
|
Sinnreich M, Meins M, Niclou SP, Suidan HS, Monard D. Prothrombin overexpressed in post-natal neurones requires blood factors for activation in the mouse brain. J Neurochem 2004; 88:1380-8. [PMID: 15009638 DOI: 10.1046/j.1471-4159.2003.02268.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Thrombin is thought to mediate, through protease-activated receptors, both protective as well as cytotoxic effects. As thrombin receptors are expressed in the CNS, an important question arises as to whether the intact nervous system is able to generate thrombin by activation of its precursor prothrombin, derived endogenously or only upon extravasation following brain injury. To address this question, transgenic mice that express C-terminally haemagglutinin tagged human prothrombin in post-mitotic neurones were generated. In situ hybridization and immunohistochemical analysis showed abundant and widespread cerebral expression of the transgene. Amidolytic assays of brain homogenates and hippocampal slice cultures demonstrated that activation of transgenic prothrombin required added factors, such as snake venom or blood components. This strongly suggests that any possible action of thrombin in the adult CNS depends on blood-derived factors that activate prothrombin. Furthermore, the results are consistent with the idea that in the non-pathological situation an as yet unidentified ligand activates thrombin receptors in the nervous system.
Collapse
Affiliation(s)
- Michael Sinnreich
- Friedrich-Miescher Institute for Biomedical Research, Basel, Switzerland
| | | | | | | | | |
Collapse
|
70
|
Abstract
Proteases acting at the surface of cells generate and destroy receptor agonists and activate and inactivate receptors, thereby making a vitally important contribution to signal transduction. Certain serine proteases that derive from the circulation (e.g., coagulation factors), inflammatory cells (e.g., mast cell and neutrophil proteases), and from multiple other sources (e.g., epithelial cells, neurons, bacteria, fungi) can cleave protease-activated receptors (PARs), a family of four G protein-coupled receptors. Cleavage within the extracellular amino terminus exposes a tethered ligand domain, which binds to and activates the receptors to initiate multiple signaling cascades. Despite this irreversible mechanism of activation, signaling by PARs is efficiently terminated by receptor desensitization (receptor phosphorylation and uncoupling from G proteins) and downregulation (receptor degradation by cell-surface and lysosomal proteases). Protease signaling in tissues depends on the generation and release of proteases, availability of cofactors, presence of protease inhibitors, and activation and inactivation of PARs. Many proteases that activate PARs are produced during tissue damage, and PARs make important contributions to tissue responses to injury, including hemostasis, repair, cell survival, inflammation, and pain. Drugs that mimic or interfere with these processes are attractive therapies: selective agonists of PARs may facilitate healing, repair, and protection, whereas protease inhibitors and PAR antagonists can impede exacerbated inflammation and pain. Major future challenges will be to understand the role of proteases and PARs in physiological control mechanisms and human diseases and to develop selective agonists and antagonists that can be used to probe function and treat disease.
Collapse
|
71
|
Rohatgi T, Henrich-Noack P, Sedehizade F, Goertler M, Wallesch CW, Reymann KG, Reiser G. Transient focal ischemia in rat brain differentially regulates mRNA expression of protease-activated receptors 1 to 4. J Neurosci Res 2004; 75:273-279. [PMID: 14705148 DOI: 10.1002/jnr.10847] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Degeneration or survival of cerebral tissue after ischemic injury depends on the source, intensity, and duration of the insult. In the model of focal ischemia, reduced blood flow results in a cascade of pathophysiologic events, including inflammation, excitotoxicity, and platelet activation at the site of injury. One serine protease that is associated closely with and produced in response to central nervous system (CNS) injury is thrombin. Thrombin enters the injury cascade in brain either via a compromised blood-brain barrier or possibly from endogenous prothrombin. Thrombin mediates its action through the protease-activated receptor family (PAR-1, -3, and -4). PARs belong to the superfamily of G protein-coupled receptors with a 7-transmembrane domain structure and are activated by proteolytic cleavage of their N-terminus. We showed that thrombin can be neuroprotective or deleterious when present at different concentrations before and during oxygen-glucose deprivation, an in vitro model of ischemia. We examined the change in mRNA expression levels of PAR-1 to 4 as a result of transient focal ischemia in rat brain, induced by microinjection of endothelin near the middle cerebral artery. Using semiquantitative reverse transcription-polymerase chain reaction (RT-PCR) analysis, after ischemic insult on the ipsilesional side, PAR-1 was found to be downregulated significantly, whereas PAR-2 mRNA levels decreased only moderately. PAR-3 was upregulated transiently and then downregulated, and PAR-4 mRNA levels showed the most striking (2.5-fold) increase 12 hr after ischemia, in the injured side. In the contralateral hemisphere, mRNA expression was also affected, where decreased mRNA levels were observed for PAR-1, -2, and -3, whereas PAR-4 levels were reduced only after 7 days. Taken together, these data suggest involvement of the thrombin receptors PAR-1, PAR-3, and PAR-4 in the pathophysiology of brain ischemia.
Collapse
Affiliation(s)
- T Rohatgi
- Institut für Neurobiochemie, Otto-von-Guericke-Universität Magdeburg, Medizinische Fakultät, Magdeburg, Germany
| | - P Henrich-Noack
- Forschungsinstitut Angewandte Neurowissenschaften (FAN), Magdeburg, Germany
| | - F Sedehizade
- Institut für Neurobiochemie, Otto-von-Guericke-Universität Magdeburg, Medizinische Fakultät, Magdeburg, Germany
| | - M Goertler
- Klinik für Neurologie, Medizinische Fakultät der Otto-von-Guericke-Universität Magdeburg, Magdeburg, Germany
| | - C W Wallesch
- Klinik für Neurologie, Medizinische Fakultät der Otto-von-Guericke-Universität Magdeburg, Magdeburg, Germany
| | - K G Reymann
- Forschungsinstitut Angewandte Neurowissenschaften (FAN), Magdeburg, Germany
| | - G Reiser
- Institut für Neurobiochemie, Otto-von-Guericke-Universität Magdeburg, Medizinische Fakultät, Magdeburg, Germany
| |
Collapse
|
72
|
Choi SH, Lee DY, Ryu JK, Kim J, Joe EH, Jin BK. Thrombin induces nigral dopaminergic neurodegeneration in vivo by altering expression of death-related proteins. Neurobiol Dis 2004; 14:181-93. [PMID: 14572441 DOI: 10.1016/s0969-9961(03)00085-8] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
One week after intranigral injection of thrombin resulted in a dose-dependent loss of dopaminergic neurons (20-78%) in the rat substantia nigra (SN), as evidenced by tyrosine hydroxylase (TH) immunohistochemistry. This cell death was accompanied by localization of terminal deoxynucleotidyl transferase-mediated fluorecein UTP nick end labeling (TUNEL) staining within dopaminergic neurons, activation of caspase-3 and attenuation of dopaminergic neuronal cell death in the SN by the caspase inhibitor (zVAD-fmk), indicative of apoptosis. Furthermore, Western blot analyses and double-immunofluorescent staining showed activation of c-Jun N-terminal kinase (JNK) and p53, and a localization of p53 in the dopaminergic neurons in the SN after thrombin, respectively. Intriguingly, Western blot analyses demonstrated significant down-regulation of Bcl-2 protein, but no alteration in Bax protein expression in the SN after thrombin. Consistent with in vivo data, degeneration of dopaminergic neurons and colocalization of TUNEL and TH were observed in mesencephalic cultures, following treatment with thrombin. Cell death was almost completely abolished by the thrombin-specific inhibitor, hirudin. Thrombin receptor-activating peptides (TRAP-6 and-14) did not mimic the effects of thrombin, even at much higher (1,000 to 2,000-fold) concentrations, although expression of protease-activated receptor-1 (PAR-1) mRNA was detected using RT-PCR. Morphological evidence and molecular events in vivo and in vitro collectively suggest that thrombin induces apoptosis in dopaminergic neurons via non-PAR-1 receptors.
Collapse
Affiliation(s)
- Sang-H Choi
- Brain Disease Research Center, Ajou University School of Medicine, Suwon 442-721, Korea
| | | | | | | | | | | |
Collapse
|
73
|
Noorbakhsh F, Vergnolle N, Hollenberg MD, Power C. Proteinase-activated receptors in the nervous system. Nat Rev Neurosci 2004; 4:981-90. [PMID: 14682360 DOI: 10.1038/nrn1255] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Recent data point to important roles for proteinases and their cognate proteinase-activated receptors (PARs) in the ontogeny and pathophysiology of the nervous system. PARs are a family of G-protein-coupled receptors that can affect neural cell proliferation, morphology and physiology. PARs also have important roles in neuroinflammatory and degenerative diseases such as human immunodeficiency virus-associated dementia, Alzheimer's disease and pain. These receptors might also influence the pathogenesis of stroke and multiple sclerosis, conditions in which the blood-brain barrier is disrupted. The diversity of effects of PARs on neural function and their widespread distribution in the nervous system make them attractive therapeutic targets for neurological disorders. Here, we review the roles of PARs in the central and peripheral nervous systems during health and disease, with a focus on neuroinflammatory and degenerative disorders.
Collapse
|
74
|
Rhodes KE, Fawcett JW. Chondroitin sulphate proteoglycans: preventing plasticity or protecting the CNS? J Anat 2004; 204:33-48. [PMID: 14690476 PMCID: PMC1571240 DOI: 10.1111/j.1469-7580.2004.00261.x] [Citation(s) in RCA: 234] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/05/2003] [Indexed: 12/21/2022] Open
Abstract
It is well established that axonal regeneration in the adult CNS is largely unsuccessful. Numerous axon-inhibitory molecules are now known to be present in the injured CNS, and various strategies for overcoming these obstacles and enhancing CNS regeneration have been experimentally developed. Recently, the use of chondroitinase-ABC to treat models of CNS injury in vivo has proven to be highly beneficial towards regenerating axons, by degrading the axon-inhibitory chondroitin sulphate glycosaminoglycan chains found on many proteoglycans in the astroglial scar. This enzyme has now been shown to restore synaptic plasticity in the visual cortex of adult rats by disrupting perineuronal nets, which contain high levels of chondroitin sulphate proteoglycans (CS-PGs) and are expressed postnatally around groups of certain neurons in the normal CNS. The findings suggest exciting prospects for enhancing growth and plasticity in the adult CNS; however, some protective roles of CS-PGs in the CNS have also been demonstrated. Clearly many questions concerning the mechanisms regulating expression of extracellular matrix molecules in CNS pathology remain to be answered.
Collapse
Affiliation(s)
- K E Rhodes
- Cambridge Centre for Brain Repair, University of Cambridge, UK.
| | | |
Collapse
|
75
|
Vergnolle N, Ferazzini M, D'Andrea MR, Buddenkotte J, Steinhoff M. Proteinase-activated receptors: novel signals for peripheral nerves. Trends Neurosci 2003; 26:496-500. [PMID: 12948661 DOI: 10.1016/s0166-2236(03)00208-x] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The discovery of proteinase-activated receptors (PARs) in the nervous system has led to new insights about the potential physiological functions of these enzymes, which were traditionally considered merely as degradative molecules. This review summarizes evidence that proteinases, through activation of PARs, interact with the peripheral nervous system (PNS), playing roles in neurogenic inflammation, pain perception, secretory and motor functions, as well as in the response to nerve injuries. Activation of PARs interferes with numerous physiological events that are under tight neural control, in addition to modulating nerve survival. New potential roles are suggested for members of the PAR family, highlighting proteinases and their receptors as potential therapeutic targets for diseases associated with PNS activation.
Collapse
Affiliation(s)
- Nathalie Vergnolle
- Department of Pharmacology and Therapeutics, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, Canada, T2N 4N1.
| | | | | | | | | |
Collapse
|
76
|
Rohatgi T, Sedehizade F, Sabel BA, Reiser G. Protease-activated receptor subtype expression in developing eye and adult retina of the rat after optic nerve crush. J Neurosci Res 2003; 73:246-54. [PMID: 12836167 DOI: 10.1002/jnr.10643] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Protease-activated receptors (PARs), 7-transmembrane domain G protein-coupled receptors, are involved in tissue degeneration and repair upon injury. We demonstrate the expression of all four PAR subtypes in the postnatal eye and in retina of the adult rat by reverse transcription-polymerase chain reaction (RT-PCR). PAR-1 is regulated developmentally in the eye, with a decrease from P1, P9, to P16, whereas levels for PAR-2, PAR-3, and PAR-4 remain unchanged throughout. In the retina of the adult rat, PAR-1 is highly expressed, whereas PAR-2 and PAR-3 are moderately expressed, compared to low PAR-4 expression. To elucidate possible roles of PARs after trauma, we carried out semiquantitative RT-PCR analysis of expression of all 4 PAR subtypes, beginning 6 hr after partial optic nerve crush (ONC) in the adult rat until 3 weeks after the mild trauma. Levels of PAR mRNA for all four subtypes were upregulated as early as 6 hr after unilateral ONC, except PAR-3, which showed a delayed upregulation. PAR-1, PAR-3, and PAR-4 mRNA levels returned to almost basal levels at 3 weeks post-crush, whereas PAR-2 mRNA level was still high by the end of 3 weeks after crush. Although the lesion was unilateral, PAR mRNA expression in the contralateral, uninjured side was affected to levels almost comparable to those in the injured side. Previous studies have shown an increase in thrombin levels at the site of injury, retinal ganglion cell degeneration by necrosis and apoptosis, and PAR activation as consequences of nerve crush. PAR upregulation because of nerve crush in the mild trauma model could act as an effector of early cell death. Eventual return of receptor mRNA to basal levels is consistent with neuroprotection.
Collapse
Affiliation(s)
- T Rohatgi
- Institut für Neurobiochemie, Otto-von-Guericke-Universität Magdeburg, Medizinische Fakultät, Magdeburg, Germany
| | | | | | | |
Collapse
|
77
|
Faraut B, Barbier J, Ravel-Chapuis A, Doyennette MA, Jandrot-Perrus M, Verdière-Sahuqué M, Schaeffer L, Koenig J, Hantaï D. Thrombin downregulates muscle acetylcholine receptors via an IP3 signaling pathway by activating its G-protein-coupled protease-activated receptor-1. J Cell Physiol 2003; 196:105-12. [PMID: 12767046 DOI: 10.1002/jcp.10280] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Regulation of thrombin activity may be required during skeletal muscle differentiation since the thrombin tissue inhibitor protease nexin-1 appears at the myotube stage before being localized at the neuromuscular synapse. Here, we have used a model of rat fetal myotube primary cultures to study the effect of thrombin on acetylcholine receptor (AChR) expression, which is enhanced at the myotube stage. Our results show that thrombin decreases both the number of surface AChRs (AChRn) and AChR alpha-subunit gene expression. Using the agonist peptide SFLLRN, we establish that the AChRn decrease is mediated by the G protein-coupled thrombin receptor "protease-activated receptor-1" (PAR-1). Moreover, the specific thrombin inhibitor hirudin increases AChRn by inhibiting the thrombin intrinsically present in the cultures. We further demonstrate that the activation of PAR-1 by thrombin induces intracellular calcium movements that are blocked by 2-APB, an inhibitor of inositol 1,4,5-triphosphate (IP3)-induced calcium release. These calcium signals are more intense in nuclei than in the cytoplasm and are consistent with the intracellular distribution of IP3 receptor that we find in the cytoplasm in a cross-striated pattern and at a high level in the nuclear envelope zone. Finally, we show that the blockade of these IP3-induced calcium signals by 2-APB prevents the AChRn decrease induced by thrombin. Our results thus demonstrate that thrombin downregulates AChR expression by activating PAR-1 and that this effect is mediated via an IP3 signaling pathway.
Collapse
MESH Headings
- Acetylcholine/pharmacology
- Animals
- Boron Compounds/pharmacology
- Calcium/metabolism
- Cells, Cultured
- Down-Regulation/drug effects
- Fluorescence
- Heterotrimeric GTP-Binding Proteins/metabolism
- Inositol 1,4,5-Trisphosphate/metabolism
- Muscle, Skeletal/cytology
- Muscle, Skeletal/drug effects
- Muscle, Skeletal/metabolism
- Oligopeptides/pharmacology
- Peptide Fragments/pharmacology
- Protein Subunits
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Rats
- Receptor, PAR-1
- Receptors, Cholinergic/chemistry
- Receptors, Cholinergic/genetics
- Receptors, Cholinergic/metabolism
- Receptors, Thrombin/agonists
- Receptors, Thrombin/metabolism
- Signal Transduction/drug effects
- Thrombin/pharmacology
Collapse
Affiliation(s)
- Brice Faraut
- INSERM U 523, Institut de Myologie, Hôpital de la Salpêtrière, Paris, France
| | | | | | | | | | | | | | | | | |
Collapse
|
78
|
Lanuza MA, Garcia N, González CM, Santafé MM, Nelson PG, Tomas J. Role and expression of thrombin receptor PAR-1 in muscle cells and neuromuscular junctions during the synapse elimination period in the neonatal rat. J Neurosci Res 2003; 73:10-21. [PMID: 12815704 DOI: 10.1002/jnr.10576] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
A role for thrombin and its receptor (ThR) during mammalian skeletal muscle cell differentiation and neuromuscular junction (NMJ) formation has been suggested. Previously, we found that the synapse elimination process in the neonatal rat muscle was accelerated by thrombin and blocked by hirudin, its specific inhibitor (Lanuza et al. [2001] J. Neurosci. Res. 63:330-340). To test whether this process resulted from a signal transduction cascade initiated by activation of ThR, in particular PAR-1, we applied to the levator auris longus (LAL) muscle of newborn rats two synthetic peptides (SFLL and FSLL). SFLL is a potent specific agonist for activation of PAR-1, whereas FSLL is an inactive peptide. We have demonstrated that the activation of PAR-1 by SFLL produced acceleration of the presynaptic loss of connections and the postsynaptic maturation of NMJs. Moreover, Western blot analysis showed that PAR-1 was present in the skeletal muscle, and by immunohistochemistry we detected PAR-1 in muscle fibers concentrated in the synaptic area but also in satellite cells. Several lines of evidence suggested that PAR-1 is localized in the postsynaptic membrane: PAR-1 immunofluorescence was concentrated at denervated synaptic sites and was present in the myotube membrane in vitro in the absence of neurons and in dissociated single muscle fibers from which nerve terminals and Schwann cells had been removed. Taken together, these results indicate that thrombin mediates certain stages of activity-dependent synapse elimination in the skeletal muscle and does so through its action on the thrombin receptor PAR-1 localized, at least in part, on the postsynaptic membrane.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Cells, Cultured
- Female
- Immunohistochemistry
- Muscle Denervation
- Muscle Fibers, Skeletal/cytology
- Muscle Fibers, Skeletal/metabolism
- Muscle, Skeletal/cytology
- Muscle, Skeletal/growth & development
- Muscle, Skeletal/innervation
- Neuromuscular Junction/growth & development
- Neuromuscular Junction/metabolism
- Peptide Fragments/pharmacology
- Pregnancy
- Protein Kinase C/metabolism
- Rats
- Rats, Sprague-Dawley
- Receptor, PAR-1
- Receptors, Thrombin/biosynthesis
- Receptors, Thrombin/physiology
- Synapses/metabolism
- Thrombin/metabolism
Collapse
Affiliation(s)
- María A Lanuza
- Unitat d'Histologia i Neurobiologia (UHN), Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, Reus (Tarragona), Spain.
| | | | | | | | | | | |
Collapse
|
79
|
Fang M, Kovács KJ, Fisher LL, Larson AA. Thrombin inhibits NMDA-mediated nociceptive activity in the mouse: possible mediation by endothelin. J Physiol 2003; 549:903-17. [PMID: 12717003 PMCID: PMC2342990 DOI: 10.1113/jphysiol.2002.036384] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The CNS expresses many components of an extracellular protease signalling system, including the protease-activated receptor-1 (PAR-1) whose tethered ligand is generated by thrombin. Activation of PAR-1 potentiates NMDA receptor activity in hippocampal neurons. Because NMDA activity mediates hyperalgesia, we tested the hypothesis that PAR-1 receptors also regulate pain processing. In contrast to the potentiating effect of thrombin in the hippocampus, NMDA-induced behaviours and the transient mechanical hyperalgesia (von Frey fibres) induced by intrathecally injected NMDA in mice were inhibited by thrombin in a dose-related fashion. This anti-hyperalgesic effect was mimicked by SFLLRN, the natural ligand at PAR-1 binding sites, but not SLIGRL-amide, a PAR-2 agonist. The effects of SFLLRN were less potent and shorter in duration than that of thrombin, consistent with its more transient effect on PAR-1 sites. Both thrombin and SFLLRN inhibited acetic acid-induced abdominal stretch (writhing) behaviours, which were also sensitive to NMDA antagonism, but not hot plate or tail flick latencies, which were insensitive to NMDA antagonists. TFLLR-amide, a selective ligand for PAR-1 sites, mimicked the effects of thrombin while RLLFT-amide, an inactive, reverse peptide sequence, did not. In addition, the effect of TFLLR-amide was prevented by RWJ-56110, a PAR-1 antagonist. Thrombin and TFLLR-amide produced no oedema (Evans Blue extravasation) in the spinal cord that would account for these effects. Based on the reported ability of thrombin to mobilize endothelin-1 from astrocytes, we tested the role of this compound in thrombin's activity. BQ123, an endothelin A receptor antagonist, prevented thrombin's inhibition of writhing and NMDA-induced behaviours while BQ788, an endothelin B receptor antagonist, did not. Thus, activation of PAR-1 sites by thrombin in the CNS appears to inhibit NMDA-mediated nociception by a pathway involving endothelin type A receptors.
Collapse
Affiliation(s)
- Ming Fang
- University of Minnesota, Department of Veterinary Pathobiology, 1988 Fitch Avenue, St Paul, MN 55108, USA.
| | | | | | | |
Collapse
|
80
|
Zhang G, Kim H, Cai X, López-Guisa JM, Alpers CE, Liu Y, Carmeliet P, Eddy AA. Urokinase receptor deficiency accelerates renal fibrosis in obstructive nephropathy. J Am Soc Nephrol 2003; 14:1254-71. [PMID: 12707394 DOI: 10.1097/01.asn.0000064292.37793.fb] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The urokinase cellular receptor (uPAR) recognizes the N-terminal growth factor domain of urokinase-type plasminogen activator (uPA) and is expressed by several cell types. The present study was designed to test the hypothesis that uPAR regulates the renal fibrogenic response to chronic injury. Groups of uPAR wild-type (+/+) and deficient (-/-) mice were investigated between 3 and 14 d after unilateral ureteral obstruction (UUO) or sham surgery. Not detected in normal kidneys, uPAR mRNA was expressed in response to UUO in the +/+ mice. By in situ hybridization, uPAR mRNA transcripts were detected in renal tubules and interstitial cells of the obstructed uPAR+/+ kidneys. The severity of renal fibrosis, based on the measurement of total collagen (13.5 +/- 1.5 versus 9.8 +/- 1.0 microg/mg kidney on day 14; -/- versus +/+) and interstitial area stained by Masson trichrome (22 +/- 4% versus 14 +/- 3% on day 14; -/- versus +/+) was significantly greater in the uPAR-/- mice. In the absence of uPAR, renal uPA activity was significantly decreased compared with the wild-type animals after UUO (62 +/- 20 versus 135 +/- 13 units at day 3 UUO; 74 +/- 17 versus 141 +/- 16 at day 7 UUO; 98 +/- 20 versus 165 +/- 10 at day 14 UUO; -/- versus +/+). In contrast, renal expression of several genes that regulate plasmin activity were similar in both genotypes, including uPA, tPA, PAI-1, protease nexin-1, and alpha2-antiplasmin. Worse renal fibrosis in the uPAR-/- mice appears to be TGF-beta-independent, as TGF-beta activity was actually reduced by 65% in the -/- mice despite similar renal TGF-beta1 mRNA levels. Significantly lower levels of the major 2.3-kb transcript and the 69-kd active protein of hepatocyte growth factor (HGF), a known anti-fibrotic growth factor, in the uPAR-/- mice suggests a potential link between HGF and the renoprotective effects of uPAR. These data suggest that renal uPAR attenuates the fibrogenic response to renal injury, an outcome that is mediated in part by urokinase-dependent but plasminogen-independent functions.
Collapse
Affiliation(s)
- Guoqiang Zhang
- Division of Nephrology, University of Washington, Children's Hospital and Regional Medical Center, 4800 Sand Point Way NE, Seattle, WA 98105, USA
| | | | | | | | | | | | | | | |
Collapse
|
81
|
Abstract
Signaling by the protease thrombin has started to be appreciated in cell biology, especially since the gene for protease-activated receptor-1 (PAR-1) has been cloned. Apart from the central role of thrombin in blood coagulation and wound healing, thrombin also regulates cellular functions in a large variety of cells through PAR-1, PAR-3 and PAR-4. Receptors are activated by a proteolytic cleavage mechanism via G protein-coupled signaling pathways. Accumulating evidence shows that thrombin changes the morphology of neurons and astrocytes, induces glial cell proliferation, and even exerts, depending on the concentration applied, either cytoprotective or cytotoxic effects on neural cells. These effects may be mediated, through either distinct or overlapping signal transduction cascades, by activation of PARs. This review focuses on the underlying signaling events initiated by thrombin in neuronal and glial cells, to summarize our understanding of the intracellular signaling machinery linking thrombin receptors to their potential physiological and pathological functions in the CNS.
Collapse
Affiliation(s)
- Hong Wang
- Institut für Neurobiochemie, Medizinische Fakultät der Otto-von-Guericke-Universität Magdeburg, Leipziger Strasse 44, D-39120 Magdeburg, Germany
| | | |
Collapse
|
82
|
Matsuoka H, Hamada R. Role of thrombin in CNS damage associated with intracerebral haemorrhage: opportunity for pharmacological intervention? CNS Drugs 2002; 16:509-16. [PMID: 12096932 DOI: 10.2165/00023210-200216080-00001] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Intracerebral haemorrhage (ICH) results in high mortality and morbidity. The most important causes of neurological deterioration after ICH are progression of oedema and injury to nerve cells and axons surrounding the haematoma, as well as haematoma enlargement. Recent studies have indicated that thrombin, formed upon clotting of the haematoma, plays an important role in these processes. As opposed to conventional therapeutic approaches, administration of a thrombin inhibitor could effectively limit oedema formation and neuronal damage, improving survival and functional outcome. A small, preliminary clinical trial has suggested that antithrombin therapy with intravenously administered argatroban may be useful in treatment of ICH. Randomised, controlled studies are needed to confirm these initial findings.
Collapse
Affiliation(s)
- Hideki Matsuoka
- Division of Neurology, National Hospital Kyushu Cardiovascular Center, 8-1 Shiroyama-cho, Kagoshima City 892-0853, Japan.
| | | |
Collapse
|
83
|
Riek-Burchardt M, Striggow F, Henrich-Noack P, Reiser G, Reymann KG. Increase of prothrombin-mRNA after global cerebral ischemia in rats, with constant expression of protease nexin-1 and protease-activated receptors. Neurosci Lett 2002; 329:181-4. [PMID: 12165407 DOI: 10.1016/s0304-3940(02)00645-6] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Prothrombin, protease-activated receptors (PARs) and the specific thrombin inhibitor protease nexin-1 (PN-1) are expressed in the brain. Recent studies have shown that the serine protease thrombin, depending on its concentration, plays an important role in neuronal degeneration or protection after cerebral ischemia. However, it is still uncertain whether a change in prothrombin or alterations in the expression of specific PAR-subtypes or PN-1 are associated with postischemic thrombin effects. Using semi-quantitative reverse transcription-polymerase chain reaction analysis, we show that prothrombin was up-regulated in the hippocampal formation 24 h after transient global ischemia in rats (two-vessel occlusion with hypotension), whereas the expression of PN-1 and the expression of PAR-subtypes 1-3 did not change significantly. Thus, control of the balance between the expression of prothrombin and PN-1 may reflect an important mechanism that underlies postischemic thrombin effects.
Collapse
Affiliation(s)
- M Riek-Burchardt
- Project Group Neuropharmacology, Leibniz-Institute for Neurobiology, POB 1860, Brenneckestrasse 6, 39118 Magdeburg, Germany.
| | | | | | | | | |
Collapse
|
84
|
Lo EH, Wang X, Cuzner ML. Extracellular proteolysis in brain injury and inflammation: role for plasminogen activators and matrix metalloproteinases. J Neurosci Res 2002; 69:1-9. [PMID: 12111810 DOI: 10.1002/jnr.10270] [Citation(s) in RCA: 269] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The role of intracellular proteases (e.g., calpains and caspases) in the pathophysiology of neuronal cell death has been extensively investigated. More recently, accumulating data have suggested that extracellular proteolysis also plays a critical role. The two major systems that modify the extracellular matrix in brain are the plasminogen activator (PA) and matrix metalloproteinase (MMP) axes. This Mini-Review delineates major pathways of PA and MMP action after stroke, brain trauma, and chronic inflammation. Deleterious effects include the disruption of blood-brain barrier integrity, amplification of inflammatory infiltrates, demyelination, and possibly interruption of cell-cell and cell-matrix interactions that may trigger cell death. In contrast, PA-MMP actions may contribute to extracellular proteolysis that mediates parenchymal and angiogenic recovery after brain injury. As the mechanisms of deleterious vs. potentially beneficial PA and MMP actions become better defined, it is hoped that new therapeutic targets will emerge for ameliorating the sequelae of brain injury and inflammation.
Collapse
Affiliation(s)
- Eng H Lo
- Neuroprotection Research Laboratory, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA.
| | | | | |
Collapse
|
85
|
Drapkin PT, Monard D, Silverman AJ. The role of serine proteases and serine protease inhibitors in the migration of gonadotropin-releasing hormone neurons. BMC DEVELOPMENTAL BIOLOGY 2002; 2:1. [PMID: 11872147 PMCID: PMC65692 DOI: 10.1186/1471-213x-2-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2001] [Accepted: 02/05/2002] [Indexed: 11/10/2022]
Abstract
BACKGROUND Mechanisms regulating neuronal migration during development remain largely undefined. Extracellular matrix cues, target site released factors, and components of the migratory neurons themselves are likely all coordinated in time and space directing neurons to their appropriate locations. We have studied the effects of proteases and their inhibitors on the extracellular matrix and the consequences to the migration of gonadotropin releasing hormone (GnRH) neurons in the embryonic chick. Chick GnRH neurons differentiate in the olfactory epithelium, migrate along the olfactory nerve and enter the forebrain. The accessibility of this coherent cell group make it amenable for studying protease/inhibitor roles in migratory processes. RESULTS Affigel blue beads were used to deliver a serine protease inhibitor, protease nexin-1 (PN-1), and a target protease, trypsin, to the olfactory epithelium coincident with initiation of GnRH neuronal migration. PN-1 inhibited neuronal migration while trypsin accelerated their transit into the CNS. Prior to initiation of migration, neither PN-1 nor trypsin altered the timing of neuronal exit. Trypsin did, however, accelerate the timing of neuronal crossing into the nerve-forebrain junction. CONCLUSIONS These data support the hypothesis that protease activity modulates neuronal movements across barriers. Moreover, the data suggest, for the first time, that aspects of GnRH neuronal migration may be cell autonomous but modulated by ECM alterations.
Collapse
Affiliation(s)
| | - Denis Monard
- Friedrich Miescher Institut, P.O. Box 2543, CH-4002 Basel, Switzerland
| | - Ann-Judith Silverman
- Department of Anatomy and Cell Biology, Columbia University, College of Physicians and Surgeons, 630 West 168th Street, New York, NY 10032, USA
| |
Collapse
|
86
|
Carmel JB, Galante A, Soteropoulos P, Tolias P, Recce M, Young W, Hart RP. Gene expression profiling of acute spinal cord injury reveals spreading inflammatory signals and neuron loss. Physiol Genomics 2001; 7:201-13. [PMID: 11773606 DOI: 10.1152/physiolgenomics.00074.2001] [Citation(s) in RCA: 124] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
We have completed the first large-scale gene expression study of acute spinal cord injury (SCI) in rat. Oligonucleotide microarrays containing 1,200 gene-specific probes were used to quantify mRNA levels, relative to uninjured controls, in spinal cords injured using a standard contusion model. Our results revealed a marked loss of neuron-specific mRNAs at the injury site. The surviving cells showed a characteristic inflammatory response that started at the injury site and spread to the distal cord. Changes in several mRNA levels were associated with putative regenerative responses in the spinal cord. Notably, phosphodiesterase 4, nestin, glia-derived neurite promoting factor, and GAP-43 mRNAs increased significantly. Other mRNAs clustered temporally and spatially with these regeneration-associated genes. Thus we have described global patterns of gene expression following acute SCI, and we have identified targets for future study and possible therapeutic intervention.
Collapse
Affiliation(s)
- J B Carmel
- W. M. Keck Center for Collaborative Neuroscience, Rutgers University, Piscataway 08854, USA
| | | | | | | | | | | | | |
Collapse
|
87
|
Progressive neuronal and motor dysfunction in mice overexpressing the serine protease inhibitor protease nexin-1 in postmitotic neurons. J Neurosci 2001. [PMID: 11698595 DOI: 10.1523/jneurosci.21-22-08830.2001] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Perturbation of the homeostasis between proteases and their inhibitors has been associated with lesion-induced or degenerative neuronal changes. Protease nexin-1 (PN-1), a secreted serine protease inhibitor, is constitutively expressed in distinct neuronal cell populations of the adult CNS. In an earlier study we showed that transgenic mice with ectopic or increased expression of PN-1 in postnatal neurons have altered synaptic transmission. Here these mice are used to examine the impact of an extracellular proteolytic imbalance on long-term neuronal function. These mice develop disturbances in motor behavior from 12 weeks on, with some of the histopathological changes described in early stages of human motor neuron disease, and neurogenic muscle atrophy in old age. In addition, sensorimotor integration, measured by epicranial multichannel recording of sensory evoked potentials, is impaired. Our results suggest that axonal dysfunction rather than cell death underlies these phenotypes. In particular, long projecting neurons, namely cortical layer V pyramidal and spinal motor neurons, show an age-dependent vulnerability to PN-1 overexpression. These mice can serve to study early stages of in vivo neuronal dysfunction not yet associated with cell loss.
Collapse
|
88
|
Magnusson C, Högklint L, Libelius R, Tågerud S. Expression of mRNA for plasminogen activators and protease nexin-1 in innervated and denervated mouse skeletal muscle. J Neurosci Res 2001; 66:457-63. [PMID: 11746363 DOI: 10.1002/jnr.10000] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Plasminogen activators (urokinase-type, u-PA and tissue-type, t-PA) are serine proteases that have been suggested to play important roles in synaptic remodeling. The enzymatic activity of u-PA in particular has previously been shown to increase dramatically after denervation of skeletal muscle. Using (32)P-labeled riboprobes and Northern blots the expression of mRNA for u-PA, t-PA and the inhibitor protease nexin-1 (PN-1) has been studied in innervated and 1-10-days denervated hind-limb muscle from mouse. Using RNA extracted from innervated and 6-days-denervated mouse hemidiaphragm muscles the expression of these mRNAs has also been investigated in synaptic and extrasynaptic muscle regions. For both u-PA and t-PA the observed autoradiographic signals were similar for RNA extracted from innervated and denervated leg muscles. The signals were also similar for RNA extracted from perisynaptic and extrasynaptic regions of hemidiaphragm muscle but u-PA signals were lower in denervated than in innervated hemidiaphragm. No such difference was observed for t-PA. PN-1 mRNA levels were also found to decrease after denervation in the hemidiaphragm but no substantial decrease was observed in denervated hind-limb muscles. No difference was observed between PN-1 expression in perisynaptic and extrasynaptic regions. The effect of denervation on PA enzymatic activity in skeletal muscle is therefore likely to be mediated at some post-transcriptional level.
Collapse
Affiliation(s)
- C Magnusson
- Department of Chemistry and Biomedical Sciences, University of Kalmar, Sweden
| | | | | | | |
Collapse
|
89
|
Smirnova IV, Citron BA, Arnold PM, Festoff BW. Neuroprotective signal transduction in model motor neurons exposed to thrombin: G-protein modulation effects on neurite outgrowth, Ca(2+) mobilization, and apoptosis. ACTA ACUST UNITED AC 2001. [PMID: 11438939 DOI: 10.1002/neu.1044] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Thrombin, the ultimate protease in the blood coagulation cascade, mediates its known cellular effects by unique proteolytic activation of G-protein-coupled protease-activated receptors (PARs), such as PAR1, PAR3, and PAR4, and a "tethered ligand" mechanism. PAR1 is variably expressed in subpopulations of neurons and largely determines thrombin's effects on morphology, calcium mobilization, and caspase-mediated apoptosis. In spinal cord motoneurons, PAR1 expression correlates with transient thrombin-mediated [Ca(2+)](i) flux, receptor cleavage, and elevation of rest [Ca(2+)](i) activating intracellular proteases. At nanomolar concentrations, thrombin retracts neurites via PAR1 activation of the monomeric, 21 kDa Ras G-protein RhoA, which is also involved in neuroprotection at lower thrombin concentrations. Such results suggest potential downstream targets for thrombin's injurious effects. Consequently, we employed several G-protein-specific modulators prior to thrombin exposure in an attempt to uncouple both heterotrimeric and monomeric G-proteins from motoneuronal PAR1. Cholera toxin, stimulating Gs, and lovastatin, which blocks isoprenylation of Rho, reduced thrombin-induced calcium mobilization. In contrast, pertussis toxin and mastoparan, inhibiting or stimulating G(o)/G(i), were found to exacerbate thrombin action. Effects on neuronal rounding and apoptosis were also detected, suggesting therapeutic utility may result from interference with downstream components of thrombin signaling pathways in human motor neuron disorders, and possibly other neurodegenerative diseases. Published 2001 John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- I V Smirnova
- Neurobiology Research Laboratory, Department of Veterans Affairs Heartland Network, Kansas City, Missouri 64128, USA
| | | | | | | |
Collapse
|
90
|
Striggow F, Riek-Burchardt M, Kiesel A, Schmidt W, Henrich-Noack P, Breder J, Krug M, Reymann KG, Reiser G. Four different types of protease-activated receptors are widely expressed in the brain and are up-regulated in hippocampus by severe ischemia. Eur J Neurosci 2001; 14:595-608. [PMID: 11556885 DOI: 10.1046/j.0953-816x.2001.01676.x] [Citation(s) in RCA: 165] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A variety of extracellular serine proteases are expressed in the central nervous system or might permeate the blood-brain barrier under pathological conditions. However, their intracerebral targets and physiological functions are largely unknown. Here, we show that four distinct subtypes of protease-activated receptors (PARs) are abundantly expressed in the adult rat brain and in organotypic hippocampal slice cultures. PAR-1 expression was significant in the hippocampus, cortex and amygdala. Highest densities of PAR-2 and PAR-3 were observed in hippocampus, cortex, amygdala, thalamus, hypothalamus and striatum. Apart from the striatum, a similar localization was found for PAR-4. Within the hippocampal formation, each PAR subtype was predominantly localized in the pyramidal cell layers. Additionally, we identified PAR-2 in mossy fibers between dentate gyrus and CA3, PAR-3 in the subiculum and PAR-4 in CA3 and in mossy fibres as well as in the stratum lacunosum moleculare. After exposing hippocampal slice cultures to a severe experimental ischemia (oxygen-glucose deprivation), the expression of PARs 1-3 was up-regulated with subtype-specific kinetics. The localization of PARs in brain regions particularly vulnerable to ischemic insults as well as distinct alterations in the expression pattern after experimental ischemia support the notion of an important role of extracellular serine proteases and PARs in cerebral ischemia.
Collapse
Affiliation(s)
- F Striggow
- Institute for Neurobiochemistry, Otto-von-Guericke-University Magdeburg, Medical School, Leipziger Strasse 44, D-39120 Magdeburg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
91
|
Citron BA, Smirnova IV, Arnold PM, Festoff BW. Upregulation of neurotoxic serine proteases, prothrombin, and protease-activated receptor 1 early after spinal cord injury. J Neurotrauma 2000; 17:1191-203. [PMID: 11186232 DOI: 10.1089/neu.2000.17.1191] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Apoptosis, well-established in development and now also in degenerative disease, occurs with regularity in several cell compartments early after controlled contusion spinal cord injury (SCI). Cell death in astrocytic, microglial, and neuronal populations peaks at 3 days, while oligodendroglial apoptosis is found 10-14 days later. In this regard, the executioners of apoptosis, the caspase proteases, are also activated within 3 days of SCI. On the other hand, serine proteases, which have been shown to initiate apoptosis and activate caspases in culture models, have not been extensively studied in regards to nervous system trauma. As part of an ongoing effort to examine the spectrum of genes that are up- and downregulated in the injured rat spinal cord, we synthesized serine protease family specific primers to take advantage of conserved residues in the charge relay system and the codon preferences of these mammalian genes. These primers were then employed in a modified, family-specific differential mRNA display technique. One specific serine protease gene we found that was upregulated after injury was prothrombin. Qualitative and quantitative RT-PCR techniques indicated that this increase occurred early, already evident at 8 h after injury, and reached a maximum level fourfold above baseline at 24 h. Peak expression for prothrombin mRNA occurred prior to peak levels of apoptosis in astrocytic, microglial and neuronal compartments at 72 h. Of additional interest, gene database mining revealed that prothrombin shared approximately 48% similarity with myelencephalon-specific protease (MSP), a neurotoxic serine protease previously found to be increased two- to threefold at 3 days after excitotoxic SCI. Since thrombin induces apoptosis in murine and chick motor and rat hippocampal neurons by activating a member of the novel protease-activated receptor (PAR) gene family known as PAR-1, we also analyzed PAR-1 by similar techniques and found that it, too, was upregulated after SCI with the same kinetics as prothrombin. We confirmed these results with gene array analyses that revealed more than one trypsin subfamily serine protease was activated by SCI. They imply the possibility of using specific, tissue-directed serine protease inhibition at translational or transcriptional levels, and offer a potential paradigm shift in drug discovery for SCI to limit the extent of apoptosis, and consequent functional loss, in the human spinal cord.
Collapse
Affiliation(s)
- B A Citron
- Neurobiology Research Laboratory, Heartland Veterans Integrated Service Network, VA Medical Center, Kansas City, Missouri 64128, USA
| | | | | | | |
Collapse
|
92
|
Mahajan VB, Pai KS, Lau A, Cunningham DD. Creatine kinase, an ATP-generating enzyme, is required for thrombin receptor signaling to the cytoskeleton. Proc Natl Acad Sci U S A 2000; 97:12062-7. [PMID: 11050237 PMCID: PMC17294 DOI: 10.1073/pnas.97.22.12062] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Thrombin orchestrates cellular events after injury to the vascular system and extravasation of blood into surrounding tissues. The pathophysiological response to thrombin is mediated by protease-activated receptor-1 (PAR-1), a seven-transmembrane G protein-coupled receptor expressed in the nervous system that is identical to the thrombin receptor in platelets, fibroblasts, and endothelial cells. Once activated by thrombin, PAR-1 induces rapid and dramatic changes in cell morphology, notably the retraction of growth cones, axons, and dendrites in neurons and processes in astrocytes. The signal is conveyed by a series of localized ATP-dependent reactions directed to the actin cytoskeleton. How cells meet the dynamic and localized energy demands during signal transmission is unknown. Using the yeast two-hybrid system, we identified an interaction between PAR-1 cytoplasmic tail and the brain isoform of creatine kinase, a key ATP-generating enzyme that regulates ATP within subcellular compartments. The interaction was confirmed in vitro and in vivo. Reducing creatine kinase levels or its ATP-generating potential inhibited PAR-1-mediated cellular shape changes as well as a PAR-1 signaling pathway involving the activation of RhoA, a small G protein that relays signals to the cytoskeleton. Thrombin-stimulated intracellular calcium release was not affected. Our results suggest that creatine kinase is bound to PAR-1 where it may be poised to provide bursts of site-specific high-energy phosphate necessary for efficient receptor signal transduction during cytoskeletal reorganization.
Collapse
Affiliation(s)
- V B Mahajan
- Department of Microbiology and Molecular Genetics, College of Medicine University of California, Irvine, CA 92697-4025, USA
| | | | | | | |
Collapse
|
93
|
Abstract
Microglia are the resident immune cells of the CNS. Upon brain damage, these cells are rapidly activated and function as tissue macrophages. The first steps in this activation still remain unclear, but it is widely believed that substances released from damaged brain tissue trigger this process. In this article, we describe the effects of the blood coagulation factor thrombin on cultured rodent microglial cells. Thrombin induced a transient Ca(2+) increase in microglial cells, which persisted in Ca(2+)-free media. It was blocked by thapsigargin, indicating that thrombin caused a Ca(2+) release from internal stores. Preincubation with pertussis toxin did not alter the thrombin-induced [Ca(2+)](i) signal, whereas it was blocked by hirudin, a blocker of thrombin's proteolytic activity. Incubation with thrombin led to the production of nitric oxide and the release of the cytokines tumor necrosis factor-alpha, interleukin-6, interleukin-12, the chemokine KC, and the soluble tumor necrosis factor-alpha receptor II and had a significant proliferative effect. Our findings indicate that thrombin, a molecule that enters the brain at sites of injury, rapidly triggered microglial activation.
Collapse
Affiliation(s)
- T Möller
- Department of Neurology, University of Washington, Seattle, Washington 98195, USA.
| | | | | |
Collapse
|
94
|
Abstract
The protective blood-brain barrier normally allows diffusion of small molecules such as oxygen and carbon dioxide, and transport of essential nutrients, but excludes large proteins and other blood constituents from the interstitial space of the CNS. However, head trauma, stroke, status epilepticus and other pathological conditions can all compromise the integrity of this barrier, and allow blood proteins as large as albumin to gain access to the extracellular spaces that surround neurons and glia. Given their possible entry into brain tissue during cerebrovascular insult, the effects of blood-derived proteases such as thrombin, tissue plasminogen activator and plasmin in the CNS have come under increasing scrutiny. Evidence now supports a role for serine proteases in the sequence of events that can lead to glial scarring, edema, seizure and neuronal death.
Collapse
Affiliation(s)
- M B Gingrich
- Center for Reproduction, University of Virginia, Charlottesville, VA 22908-0391, USA
| | | |
Collapse
|
95
|
Abstract
Although serine proteases and their receptors are best known for their role in blood coagulation and fibrinolysis, the CNS expresses many components of an extracellular protease signaling system including the protease-activated receptor-1 (PAR1), for which thrombin is the most effective activator. In this report we show that activation of PAR1 potentiates hippocampal NMDA receptor responses in CA1 pyramidal cells by 2.07 +/- 0.27-fold (mean +/- SEM). Potentiation of neuronal NMDA receptor responses by thrombin can be blocked by thrombin and a protein kinase inhibitor, and the effects of thrombin can be mimicked by a peptide agonist (SFLLRN) that activates PAR1. Potentiation of the NMDA receptor by thrombin in hippocampal neurons is significantly attenuated in mice lacking PAR1. Although high concentrations of thrombin can directly cleave both native and recombinant NR1 subunits, the thrombin-induced potentiation we observe is independent of NMDA receptor cleavage. Activation of recombinant PAR1 also potentiates recombinant NR1/NR2A (1.7 +/- 0.06-fold) and NR1/NR2B (1.41 +/- 0.11-fold) receptor function but not NR1/NR2C or NR1/NR2D receptor responses. PAR1-mediated potentiation of recombinant NR1/NR2A receptors occurred after activation with as little as 300 pm thrombin. These data raise the intriguing possibility that potentiation of neuronal NMDA receptor function after entry of thrombin or other serine proteases into brain parenchyma during intracerebral hemorrhage or extravasation of plasma proteins during blood-brain barrier breakdown may exacerbate glutamate-mediated cell death and possibly participate in post-traumatic seizure. Furthermore, the ability of neuronal protease signaling to control NMDA receptor function may also have roles in normal brain development.
Collapse
|
96
|
Thrombomodulin as a new marker of lesion-induced astrogliosis: involvement of thrombin through the G-protein-coupled protease-activated receptor-1. J Neurosci 2000. [PMID: 10729334 DOI: 10.1523/jneurosci.20-07-02543.2000] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Because injury of the CNS causes an astrogliosis, characterized by cell swelling and proliferation, similar to the effects of the serine protease thrombin on astrocytes, we hypothesized that a high level of thrombin at the site of injury might initially induce an astrocyte reaction and later increase the expression of its specific inhibitor, thrombomodulin. Thrombomodulin could then stabilize the astroglial scar through its adhesive properties. Here, we studied the in vivo injury response of astrocytes in the anterior medullary velum of adult rat by immunostaining and in situ hybridization of thrombomodulin. Thrombomodulin was poorly expressed on astrocytes in normal tissue, increased up to 2 d after injury, and was still highly expressed at 6 d. To check that thrombin had a direct effect on thrombomodulin expression by astrocytes, we used brain cortical astrocyte primary cultures treated with either thrombin or the agonist peptide thrombin receptor-activating peptide-6, known to activate directly the thrombin G-protein-coupled receptor (GPCR) protease-activated receptor-1 (PAR-1). Modification of thrombomodulin expression was studied by Western blotting and quantitative reverse transcription-PCR. There was a dose-dependent increase in thrombomodulin after 48 hr of treatment, with gene expression peaking at 24 hr but falling to control levels by 48 hr. Together, these results show the following: (1) injury increases astrocyte thrombomodulin expression; (2) thrombin might mediate thrombomodulin expression via the specific receptor PAR-1; and (3) serine proteases, their inhibitors, and the new family of GPCR, PARs, are active on astrogliosis.
Collapse
|
97
|
Abstract
Although the thrombolytic activity of tissue-type plasminogen activator (t-PA) may be beneficial in the acute treatment of stroke, recent studies have suggested that this serine protease could also play a critical role in determining the extent of neuronal death after injury to the central nervous system (CNS). This hypothesis is based on several experimental results: t-PA-deficient mice are resistant to excitotoxic neuronal death induced by the intrahippocampal injection of kainate; the infarct volume induced by occlusion of the middle cerebral artery is reduced in t-PA knockout mice; and the intravenous injection of t-PA can under certain circumstances potentiate the infarct volume in animals subjected to middle cerebral artery occlusion. In the CNS, the serine proteases have been identified to occur both in neurons and glial cells. Their enzymatic activity regulates the balance between the accumulation and the degradation of the extracellular matrix. They are involved in many physiologic functions, ranging from synaptic outgrowth during perinatal development to plasticity in adults. For instance, thrombin and t-PA are known to modulate neurite outgrowth and tissue remodeling in the early stages of development. In the adult brain, t-PA may contribute to the late phase of long-term potentiation and to the subsequent synaptic growth in the hippocampal mossy fiber pathway. This balance between the degradation and accumulation of the extracellular matrix may also be integral to various pathologic processes involved in acute brain injury. For example, compounds that modulate the activity of serine proteases exhibit neuroprotective activity. Based on the above, numerous studies have focused on the production and modulation of the endogenously produced serine protease inhibitors, termed serpins, such as type 1 plasminogen activator inhibitor, neuroserpin, and protease nexin-1. In the present review, we will discuss the need to distinguish between the potentially neurotoxic effects of t-PA and its beneficial effect on reperfusion. We will present data supporting the idea that the modulation of serine protease activity may represent a novel and efficient strategy for the treatment of acute cerebral injury in humans.
Collapse
Affiliation(s)
- D Vivien
- Université de Caen, CNRS UMR 6551, IFR47, France
| | | |
Collapse
|
98
|
Festoff BW, D’Andrea MR, Citron BA, Salcedo RM, Smirnova IV, Andrade-Gordon P. Motor Neuron Cell Death in Wobbler Mutant Mice Follows Overexpression of the G-protein-coupled, Protease-activated Receptor for Thrombin. Mol Med 2000. [DOI: 10.1007/bf03401784] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
99
|
Striggow F, Riek M, Breder J, Henrich-Noack P, Reymann KG, Reiser G. The protease thrombin is an endogenous mediator of hippocampal neuroprotection against ischemia at low concentrations but causes degeneration at high concentrations. Proc Natl Acad Sci U S A 2000; 97:2264-9. [PMID: 10681455 PMCID: PMC15789 DOI: 10.1073/pnas.040552897] [Citation(s) in RCA: 235] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We have considered the extracellular serine protease thrombin and its receptor as endogenous mediators of neuronal protection against brain ischemia. Exposure of gerbils to prior mild ischemic insults, here two relatively short-lasting occlusions (2 min) of both common carotid arteries applied at 1-day intervals 2 days before a severe occlusion (6 min), caused a robust ischemic tolerance of hippocampal CA1 neurons. This resistance was impaired if the specific thrombin inhibitor hirudin was injected intracerebroventricularly before each short-lasting insult. Thus, efficient native neuroprotective mechanisms exist and endogenous thrombin seems to be involved therein. In vitro experiments using organotypic slice cultures of rat hippocampus revealed that thrombin can have protective but also deleterious effects on hippocampal CA1 neurons. Low concentrations of thrombin (50 pM, 0.01 unit/ml) or of a synthetic thrombin receptor agonist (10 microM) induced significant neuroprotection against experimental ischemia. In contrast, 50 nM (10 units/ml) thrombin decreased further the reduced neuronal survival that follows the deprivation of oxygen and glucose, and 500 nM even caused neuronal cell death by itself. Degenerative thrombin actions also might be relevant in vivo, because hirudin increased the number of surviving neurons when applied before a 6-min occlusion. Among the thrombin concentrations tested, 50 pM induced intracellular Ca(2+) spikes in fura-2-loaded CA1 neurons whereas higher concentrations caused a sustained Ca(2+) elevation. Thus, distinct Ca(2+) signals may define whether or not thrombin initiates protection. Taken together, in vivo and in vitro data suggest that thrombin can determine neuronal cell death or survival after brain ischemia.
Collapse
Affiliation(s)
- F Striggow
- Institute of Neurobiochemistry, Otto-von-Guericke-University Magdeburg, Medical School, Leipziger Strasse 44, D-39120 Magdeburg, Germany
| | | | | | | | | | | |
Collapse
|
100
|
Fritsche J, Reber BF, Schindelholz B, Bandtlow CE. Differential cytoskeletal changes during growth cone collapse in response to hSema III and thrombin. Mol Cell Neurosci 1999; 14:398-418. [PMID: 10588393 DOI: 10.1006/mcne.1999.0777] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Growth cones are known as the site of action of many factors that influence neurite growth behavior. To assess how different collapsing agents influence the growth cone cytoskeleton, we used recombinant human Semaphorin III (hSema III) and the serine protease thrombin. Embryonic chick dorsal root ganglion neurons showed a dramatic depolymerization of actin filaments within 5 min upon hSema III exposure and virtually no influence on microtubules (MT). Only at later time points (20-30 min) was the polymerization/depolymerization rate of MT significantly affected. Thrombin induced a morphologically and kinetically similar growth cone collapse. Moreover, thrombin induced an early and selective depolymerization of dynamic MT, accompanied by the formation of loops of stable MT bundles. Selective changes in the phosphorylation pattern of tau were associated with microtubule assembly in thrombin-induced responses. Our data provide evidence that different signal transduction pathways lead to distinct changes of the growth cone cytoskeleton.
Collapse
Affiliation(s)
- J Fritsche
- Brain Research Institute, University of Zurich, and Swiss Federal Institute of Technology
| | | | | | | |
Collapse
|