51
|
Abstract
Lamins are intermediate filament proteins able to polymerise and form an organised meshwork underlying the inner nuclear membrane in most differentiated somatic cells. Mutations in the LMNA gene, which encodes the two major lamin A and C isoforms, cause a diverse range of diseases, called laminopathies, including dilated cardiomyopathy, associated with a poor prognosis and high rate of sudden death due to conduction defect and early ventricular arrhythmia. Identification of mutations in LMNA gene in clinical practice is rapidly increasing, as well as comprehensive cardiac and genetic family screening. As a consequence, cardiologists are more and more frequently faced to difficult questions regarding optimal management of patients and relatives, especially timing for prophylactic cardioverter defibrillator. This review focuses on recent data useful for the clinician, as well as therapeutic perspectives both in human and animal models.
Collapse
Affiliation(s)
- Philippe Charron
- AP-HP, Hôpital Pitié-Salpêtrière, Centre de référence maladies cardiaques héréditaires, Paris, France; 2. UPMC Université Paris VI, INSERM UMR-S956.,Paris, France
| | - Eloisa Arbustini
- Centre for Inherited Cardiovascular Diseases, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Gisèle Bonne
- INSERM U974; UPMC Université Paris 6; CNRS UMR 7215; Institut de Myologie, Paris, France.,AP-HP, Groupe Hospitalier Pitié-Salpêtrière, UF Cardiogénétique et Myogénétique, Service de Biochimie Métabolique, Paris, France
| |
Collapse
|
52
|
Ishikawa T, Tsuji Y, Makita N. Inherited bradyarrhythmia: A diverse genetic background. J Arrhythm 2015; 32:352-358. [PMID: 27761158 PMCID: PMC5063261 DOI: 10.1016/j.joa.2015.09.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 09/03/2015] [Accepted: 09/16/2015] [Indexed: 12/31/2022] Open
Abstract
Bradyarrhythmia is a common heart rhythm abnormality comprising number of diseases and is associated with decreased heart rate due to the failure of action potential generation and propagation at the sinus node. Permanent pacemaker implantation is often used therapeutically to compensate for decreased heart rate and cardiac output. The vast majority of bradyarrhythmia cases are attributable either to aging or to structural abnormalities of the cardiac conduction system, caused by underlying structural heart disease. However, there is a subset of bradyarrhythmia primarily caused by genetic defects in the absence of aging or underlying structural heart disease. These include several genes that play principal roles in cardiac electrophysiology, heart development, cardioprotection, and the structural integrity of the membrane and sarcomere. Recent advances in the functional analysis of mutations using a heterologous expression system and genetically engineered animal models have provided significant insights into the underlying molecular mechanisms responsible for inherited arrhythmia. In this review, current understandings of the genetic and molecular basis of inherited bradyarrhythmia are presented.
Collapse
Affiliation(s)
- Taisuke Ishikawa
- Department of Molecular Physiology, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Yukiomi Tsuji
- Department of Molecular Physiology, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Naomasa Makita
- Department of Molecular Physiology, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| |
Collapse
|
53
|
Zhang L, Shen H, Zhao Z, Bing Q, Hu J. Cardiac effects of the c.1583 C→G LMNA mutation in two families with Emery-Dreifuss muscular dystrophy. Mol Med Rep 2015; 12:5065-71. [PMID: 26165385 PMCID: PMC4581790 DOI: 10.3892/mmr.2015.4065] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 06/05/2015] [Indexed: 11/24/2022] Open
Abstract
The present study aimed to examine and analyze cardiac involvement in two Emery-Dreifuss muscular dystrophy (EDMD) pedigrees caused by the c.1583 C→G mutation of the lamin A/C gene (LMNA). The clinical and genetic characteristics of members of two families with EDMD were evaluated by performing neurological examinations, skeletal muscle biopsies, cardiac evaluations, including electrocardiography, 24 h Holter, ultrasound cardiography and 99TcM-MIBI-gated myocardiac perfusion imaging, and genomic DNA sequencing. Family history investigations revealed an autosomal dominant transmission pattern of the disease in Family 1 and a sporadic case in Family 2. The three affected patients exhibited typical clinical features of EDMD, including joint contractures, muscle weakness and cardiac involvement. Muscle histopathological investigation revealed dystrophic features. In addition, each affected individual exhibited either cardiac arrhythmia, which was evident as sinus tachycardia, atrial flutter or complete atrioventricular inhibition. Cardiac imaging revealed dilated cardiomyopathy in two of the individuals, one of whom was presented with heart failure. The second patient presented with no significant abnormalities in cardiac structure or function. The three affected individuals exhibited a heterozygous missense mutation in the LMNA gene (c.1583 C→G), which caused a T528R amino acid change in the LMNA protein. In conclusion, the present study identified three patients with EDMD, exhibiting the same dominant LMNA mutation and presenting with a spectrum of severe cardiac abnormalities, including cardiac conduction system defects, cardiomyopathy and heart failure. As LMNA mutations have been associated with at least six clinical disorders, including EDMD, the results of the present study provide additional mutational and functional data, which may assist in further establishing LMNA mutational variation and disease pathogenesis.
Collapse
Affiliation(s)
- Li Zhang
- Department of Cardiovascular Disorders, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei 050051, P.R. China
| | - Hongrui Shen
- Department of Neuromuscular Disorders, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei 050051, P.R. China
| | - Zhe Zhao
- Department of Neuromuscular Disorders, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei 050051, P.R. China
| | - Qi Bing
- Department of Neuromuscular Disorders, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei 050051, P.R. China
| | - Jing Hu
- Department of Neuromuscular Disorders, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei 050051, P.R. China
| |
Collapse
|
54
|
Parent JJ, Towbin JA, Jefferies JL. Left ventricular noncompaction in a family with lamin A/C gene mutation. Tex Heart Inst J 2015; 42:73-6. [PMID: 25873806 DOI: 10.14503/thij-13-3843] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Left ventricular noncompaction is a rare type of cardiomyopathy, the genetics of which are poorly understood to date. Lamin A/C gene mutations have been associated with dilated cardiomyopathy and diseases of the conduction system, but rarely in left ventricular noncompaction cardiomyopathy. This report describes the cases of 4 family members with a lamin A/C gene mutation, 3 of whom had phenotypic expression of left ventricular noncompaction.
Collapse
|
55
|
Sakiyama Y, Watanabe E, Otsuka M, Hirahara T, Momomura S, Hayashi Y. [Case with Emery-Dreifuss muscular dystrophy diagnosed forty-two years after onset and implanted with a cardiac resynchronization therapy defibrillator]. Rinsho Shinkeigaku 2014; 54:489-94. [PMID: 24990833 DOI: 10.5692/clinicalneurol.54.489] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The patient was a 53-year-old male. He showed steppage gait at the age of 11 and equinus foot at 13. He walked unaided with shoe-insoles to support his heels. Atrial fibrillation and cardiac hypertrophy were found in his 30s, and ventricular tachycardia (VT) was observed at the age of 48. Electrophysiological studies were performed, but VT was not sustained, symptomatic, or showed signs of infra-Hisian block, and a pacemaker was not indicated. At 53, he was introduced to a neurologist because of tetraplegia after the first episode of syncope. A spinal MR showed ossification of posterior longitudinal ligament (OPLL) and central cervical cord injury. Furthermore, he presented not only contracture in his shoulder, elbow, and ankles but also atrophy in his scapulohumeral and gastrocnemius muscles. In accordance with a diagnosis of Emery-Dreifuss muscular dystrophy (EDMD), provocative testing of VT was carried out, and a cardiac resynchronization therapy defibrillator (CRT-D) was implanted. Later, a mutation analysis of the LMNA gene disclosed a known missense mutation of p.Arg377His, and we diagnosed him as EDMD2 (laminopathy). Contractures could be the clue to diagnose EDMD and indicate the need for pacemakers and defibrillators in patients with cardiac conduction disorders.
Collapse
Affiliation(s)
- Yoshio Sakiyama
- Department of Neurology, Jichi Medical University, Saitama Medical Center
| | | | | | | | | | | |
Collapse
|
56
|
Peeters K, Chamova T, Jordanova A. Clinical and genetic diversity of SMN1-negative proximal spinal muscular atrophies. ACTA ACUST UNITED AC 2014; 137:2879-96. [PMID: 24970098 PMCID: PMC4208460 DOI: 10.1093/brain/awu169] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Peeters et al. review current knowledge regarding the phenotypes, causative genes, and disease mechanisms associated with proximal SMN1-negative spinal muscular atrophies (SMA). They describe the molecular and cellular functions enriched among causative genes, and discuss the challenges facing the post-genomics era of SMA research. Hereditary spinal muscular atrophy is a motor neuron disorder characterized by muscle weakness and atrophy due to degeneration of the anterior horn cells of the spinal cord. Initially, the disease was considered purely as an autosomal recessive condition caused by loss-of-function SMN1 mutations on 5q13. Recent developments in next generation sequencing technologies, however, have unveiled a growing number of clinical conditions designated as non-5q forms of spinal muscular atrophy. At present, 16 different genes and one unresolved locus are associated with proximal non-5q forms, having high phenotypic variability and diverse inheritance patterns. This review provides an overview of the current knowledge regarding the phenotypes, causative genes, and disease mechanisms associated with proximal SMN1-negative spinal muscular atrophies. We describe the molecular and cellular functions enriched among causative genes, and discuss the challenges in the post-genomics era of spinal muscular atrophy research.
Collapse
Affiliation(s)
- Kristien Peeters
- 1 Molecular Neurogenomics Group, Department of Molecular Genetics, VIB, University of Antwerp, Antwerpen 2610, Belgium 2 Neurogenetics Laboratory, Institute Born-Bunge, University of Antwerp, Antwerpen 2610, Belgium
| | - Teodora Chamova
- 3 Department of Neurology, Medical University-Sofia, Sofia 1000, Bulgaria
| | - Albena Jordanova
- 1 Molecular Neurogenomics Group, Department of Molecular Genetics, VIB, University of Antwerp, Antwerpen 2610, Belgium 2 Neurogenetics Laboratory, Institute Born-Bunge, University of Antwerp, Antwerpen 2610, Belgium 4 Department of Medical Chemistry and Biochemistry, Molecular Medicine Centre, Medical University-Sofia, Sofia 1431, Bulgaria
| |
Collapse
|
57
|
Abstract
Lamins A and C, encoded by LMNA, are constituent of the nuclear lamina, a meshwork of proteins underneath the nuclear envelope first described as scaffolding proteins of the nucleus. Since the discovery of LMNA mutations in highly heterogeneous human disorders (including cardiac and muscular dystrophies, lipodystrophies and progeria), the number of functions described for lamin A/C has expanded. Lamin A/C is notably involved in the regulation of chromatin structure and gene transcription, and in the resistance of cells to mechanical stress. This review focuses on studies performed on knock-out and knock-in Lmna mouse models, which have led to decipher some of the lamin A/C functions in striated muscles and to the first preclinical trials of pharmaceutical therapies.
Collapse
|
58
|
|
59
|
Abstract
PURPOSE OF REVIEW LMNA gene encodes the nuclear A-type lamins. LMNA mutations are associated with more than 10 clinical entities and represent one of the first causes of inherited dilated cardiomyopathy. LMNA-dilated cardiomyopathy is associated with conduction disease (DCM-CD) and is a severe and aggressive form of DCM. However, pathogenesis remains largely unknown and no specific treatment is currently available for the patients. In this review, we present recent discoveries that improve the understanding of the cardiac pathophysiological roles of A-type lamins and shed light on potential therapeutic targets. RECENT FINDINGS In the last decade, many efforts have been made to elucidate how mutations in A-type lamins, ubiquitous proteins, lead to DCM-CD. No clear genotype/phenotype correlations have been found to help in elucidating those mechanisms. Analysis of several mouse models has helped in deciphering critical pathomechanisms. Among those, Mitogen-activated protein kinases (MAPK) and Akt/mTOR appear to be key early-activated signaling pathways in LMNA DCM-CD in both humans and mice. Inhibition of these signaling pathways has shown encouraging beneficial effects upon cardiac evolution of DCM-CD. SUMMARY These recent findings suggest that targeting MAPK and Akt/mTOR pathways with potent and specific compounds represents a promising intervention for the treatment of LMNA DCM-CD.
Collapse
|
60
|
Implantable cardioverter-defibrillators in lamin A/C mutation carriers with cardiac conduction disorders. Heart Rhythm 2013; 10:1492-8. [DOI: 10.1016/j.hrthm.2013.06.020] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Indexed: 11/20/2022]
|
61
|
de Voogt WG. Further evidence for ICD implantation in patients with lamin A/C mutations and conduction disease. Heart Rhythm 2013; 10:1499. [DOI: 10.1016/j.hrthm.2013.07.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Indexed: 10/26/2022]
|
62
|
Al-Saaidi R, Rasmussen TB, Palmfeldt J, Nissen PH, Beqqali A, Hansen J, Pinto YM, Boesen T, Mogensen J, Bross P. The LMNA mutation p.Arg321Ter associated with dilated cardiomyopathy leads to reduced expression and a skewed ratio of lamin A and lamin C proteins. Exp Cell Res 2013; 319:3010-9. [PMID: 24001739 DOI: 10.1016/j.yexcr.2013.08.024] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Revised: 07/31/2013] [Accepted: 08/19/2013] [Indexed: 11/19/2022]
Abstract
Dilated cardiomyopathy (DCM) is a disease of the heart muscle characterized by cardiac chamber enlargement and reduced systolic function of the left ventricle. Mutations in the LMNA gene represent the most frequent known genetic cause of DCM associated with disease of the conduction systems. The LMNA gene generates two major transcripts encoding the nuclear lamina major components lamin A and lamin C by alternative splicing. Both haploinsuffiency and dominant negative effects have been proposed as disease mechanism for premature termination codon (PTC) mutations in LMNA. These mechanisms however are still not clearly established. In this study, we used a representative LMNA nonsense mutation, p.Arg321Ter, to shed light on the molecular disease mechanisms. Cultured fibroblasts from three DCM patients carrying this mutation were analyzed. Quantitative reverse transcriptase PCR and sequencing of these PCR products indicated that transcripts from the mutant allele were degraded by the nonsense-mediated mRNA decay (NMD) mechanism. The fact that no truncated mutant protein was detectable in western blot (WB) analysis strengthens the notion that the mutant transcript is efficiently degraded. Furthermore, WB analysis showed that the expression of lamin C protein was reduced by the expected approximately 50%. Clearly decreased lamin A and lamin C levels were also observed by immunofluorescence microscopy analysis. However, results from both WB and nano-liquid chromatography/mass spectrometry demonstrated that the levels of lamin A protein were more reduced suggesting an effect on expression of lamin A from the wild type allele. PCR analysis of the ratio of lamin A to lamin C transcripts showed unchanged relative amounts of lamin A transcript suggesting that the effect on the wild type allele was operative at the protein level. Immunofluorescence microscopy analysis showed no abnormal nuclear morphology of patient fibroblast cells. Based on these data, we propose that heterozygosity for the nonsense mutation causes NMD degradation of the mutant transcripts blocking expression of the truncated mutant protein and an additional trans effect on lamin A protein levels expressed from the wild type allele. We discuss the possibility that skewing of the lamin A to lamin C ratio may contribute to ensuing processes that destabilize cardiomyocytes and trigger cardiomyopathy.
Collapse
Affiliation(s)
- Rasha Al-Saaidi
- Research Unit for Molecular Medicine, Aarhus University and Aarhus University Hospital, Aarhus, Denmark
| | | | | | | | | | | | | | | | | | | |
Collapse
|
63
|
Affiliation(s)
- Boon Yew Tan
- Johns Hopkins University, Division of Cardiology, Center for Inherited Heart Disease, Baltimore, MD, USA
| | | |
Collapse
|
64
|
Eymard B, Ferreiro A, Ben Yaou R, Stojkovic T. Muscle diseases with prominent joint contractures: Main entities and diagnostic strategy. Rev Neurol (Paris) 2013; 169:546-63. [DOI: 10.1016/j.neurol.2013.07.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Revised: 07/23/2013] [Accepted: 07/24/2013] [Indexed: 01/13/2023]
|
65
|
Abstract
Remarkable progress has been made in understanding the genetic basis of dilated cardiomyopathy (DCM). Rare variants in >30 genes, some also involved in other cardiomyopathies, muscular dystrophy, or syndromic disease, perturb a diverse set of important myocardial proteins to produce a final DCM phenotype. Large, publicly available datasets have provided the opportunity to evaluate previously identified DCM-causing mutations, and to examine the population frequency of sequence variants similar to those that have been observed to cause DCM. The frequency of these variants, whether associated with dilated or hypertrophic cardiomyopathy, is greater than estimates of disease prevalence. This mismatch might be explained by one or more of the following possibilities: that the penetrance of DCM-causing mutations is lower than previously thought, that some variants are noncausal, that DCM prevalence is higher than previously estimated, or that other more-complex genomics underlie DCM. Reassessment of our assumptions about the complexity of the genomic and phenomic architecture of DCM is warranted. Much about the genomic basis of DCM remains to be investigated, which will require comprehensive genomic studies in much larger cohorts of rigorously phenotyped probands and family members than previously examined.
Collapse
|
66
|
Muchir A, Kim YJ, Reilly SA, Wu W, Choi JC, Worman HJ. Inhibition of extracellular signal-regulated kinase 1/2 signaling has beneficial effects on skeletal muscle in a mouse model of Emery-Dreifuss muscular dystrophy caused by lamin A/C gene mutation. Skelet Muscle 2013; 3:17. [PMID: 23815988 PMCID: PMC3702458 DOI: 10.1186/2044-5040-3-17] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Accepted: 04/22/2013] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Autosomal Emery-Dreifuss muscular dystrophy is caused by mutations in the lamin A/C gene (LMNA) encoding A-type nuclear lamins, intermediate filament proteins of the nuclear envelope. Classically, the disease manifests as scapulo-humeroperoneal muscle wasting and weakness, early joint contractures and dilated cardiomyopathy with conduction block; however, move variable skeletal muscle involvement can be present. Previously, we demonstrated increased activity of extracellular signal-regulated kinase (ERK) 1/2 in hearts of LmnaH222P/H222P mice, a model of autosomal Emery-Dreifuss muscular dystrophy, and that blocking its activation improved cardiac function. We therefore examined the role of ERK1/2 activity in skeletal muscle pathology. METHODS Sections of skeletal muscle from LmnaH222P/H222P mice were stained with hematoxylin and eosin and histological analysis performed using light microscopy. ERK1/2 activity was assessed in mouse tissue and cultured cells by immunoblotting and real-time polymerase chain reaction to measure expression of downstream target genes. LmnaH222P/H222P mice were treated with selumetinib, which blocks mitogen-activated protein kinase/extracellular signal-regulated kinase kinase 1/2 that activates ERK1/2, from 16 to 20 weeks of age to assess the effects of treatment on muscle histology, ERK1/2 activity and limb grip strength. RESULTS We detected enhanced activation of ERK1/2 in skeletal muscle of LmnaH222P/H222P mice. Treatment with selumetinib ameliorated skeletal muscle histopathology and reduced serum creatine phosphokinase and aspartate aminotransferase activities. Selumetinib treatment also improved muscle function as assessed by in vivo grip strength testing. CONCLUSIONS Our results show that ERK1/2 plays a role in the development of skeletal muscle pathology in LmnaH222/H222P mice. They further provide the first evidence that a small molecule drug may be beneficial for skeletal muscle in autosomal Emery-Dreifuss muscular dystrophy.
Collapse
Affiliation(s)
- Antoine Muchir
- Department of Medicine, College of Physicians and Surgeons, Columbia University, 630 West 168th Street, New York, NY 10032, USA.
| | | | | | | | | | | |
Collapse
|
67
|
Chen W, Huo J, Ma A, Bai L, Liu P. A novel mutation of the LMNA gene in a family with dilated cardiomyopathy, conduction system disease, and sudden cardiac death of young females. Mol Cell Biochem 2013; 382:307-11. [DOI: 10.1007/s11010-013-1734-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Accepted: 06/14/2013] [Indexed: 12/11/2022]
|
68
|
Siu CW, Lee YK, Ho JCY, Lai WH, Chan YC, Ng KM, Wong LY, Au KW, Lau YM, Zhang J, Lay KW, Colman A, Tse HF. Modeling of lamin A/C mutation premature cardiac aging using patient‐specific induced pluripotent stem cells. Aging (Albany NY) 2013; 4:803-822. [PMID: 23362510 PMCID: PMC3560431 DOI: 10.18632/aging.100503] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
AIMS We identified an autosomal dominant non-sense mutation (R225X) in exon 4 of the lamin A/C (LMNA) gene in a Chinese family spanning 3 generations with familial dilated cardiomyopathy (DCM). In present study, we aim to generate induced pluripotent stem cells derived cardiomyocytes (iPSC-CMs) from an affected patient with R225X and another patient bearing LMNA frame-shift mutation for drug screening. METHODS and RESULTS Higher prevalence of nuclear bleb formation and micronucleation was present in LMNAR225X/WT and LMNAFramshift/WT iPSC-CMs. Under field electrical stimulation, percentage of LMNA-mutated iPSC-CMs exhibiting nuclear senescence and cellular apoptosis markedly increased. shRNA knockdown of LMNA replicated those phenotypes of the mutated LMNA field electrical stress. Pharmacological blockade of ERK1/2 pathway with MEK1/2 inhibitors, U0126 and selumetinib (AZD6244) significantly attenuated the pro-apoptotic effects of field electric stimulation on the mutated LMNA iPSC-CMs. CONCLUSION LMNA-related DCM was modeled in-vitro using patient-specific iPSC-CMs. Our results demonstrated that haploinsufficiency due to R225X LMNA non-sense mutation was associated with accelerated nuclear senescence and apoptosis of iPSC- CMs under electrical stimulation, which can be significantly attenuated by therapeutic blockade of stress-related ERK1/2 pathway.
Collapse
Affiliation(s)
- Chung-Wah Siu
- Cardiology Division, Department of Medicine, Queen Mary Hospital, the University of Hong Kong, Hong Kong SAR, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
69
|
Allen HD, Thrush PT, Hoffman TM, Flanigan KM, Mendell JR. Cardiac management in neuromuscular diseases. Phys Med Rehabil Clin N Am 2013; 23:855-68. [PMID: 23137741 DOI: 10.1016/j.pmr.2012.08.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
This article addresses the pathophysiology, diagnostic approaches, and therapeutic options in the more common forms of muscular dystrophy, especially those seen in pediatric and young adult populations. The major emphasis is on the dystrophinopathies because their treatment options are templates for those used in various other forms of dystrophy. Most patients with cardiomyopathy are treated with angiotensin-converting enzyme inhibitors or angiotensin receptor blockers, with other agents added as the disease progresses. Destination therapies and transplantation options are mentioned where appropriate. Some dystrophies can have significant conduction abnormalities requiring pacemaker treatment. Others with ventricular tachydysrhythmias may necessitate internal cardiac defibrillator placement.
Collapse
Affiliation(s)
- Hugh D Allen
- The Ohio State University College of Medicine, Columbus, OH, USA.
| | | | | | | | | |
Collapse
|
70
|
Cattin ME, Bertrand AT, Schlossarek S, Le Bihan MC, Skov Jensen S, Neuber C, Crocini C, Maron S, Lainé J, Mougenot N, Varnous S, Fromes Y, Hansen A, Eschenhagen T, Decostre V, Carrier L, Bonne G. Heterozygous LmnadelK32 mice develop dilated cardiomyopathy through a combined pathomechanism of haploinsufficiency and peptide toxicity. Hum Mol Genet 2013; 22:3152-64. [DOI: 10.1093/hmg/ddt172] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
|
71
|
Gossios TD, Lopes LR, Elliott PM. Left ventricular hypertrophy caused by a novel nonsense mutation in FHL1. Eur J Med Genet 2013; 56:251-5. [PMID: 23500067 DOI: 10.1016/j.ejmg.2013.03.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2012] [Accepted: 03/03/2013] [Indexed: 11/25/2022]
Abstract
Emery Dreifuss muscular dystrophy (EDMD) is a hereditary muscular disorder, characterized by contractures, progressive muscular wasting and cardiac involvement. The majority of EDMD patients harbor mutations in the lamin A/C (LMNA) and emerin (STA) genes. Emerging data implicate mutations in FHL1 (four and a half LIM protein 1) gene, located in chromosome Xq26, in EDMD pathogenesis. FHL1 is mainly expressed in striated and cardiac muscle, and plays an important role in sarcomeric protein synthesis, maintenance of cellular integrity, intracellular signaling and genetic transcription pathways. We report the identification of a novel nonsense mutation in FHL1 gene, associated with left ventricular hypertrophy and a family history of stroke and sudden cardiac death. The management implications of this diagnosis are also discussed.
Collapse
Affiliation(s)
- Thomas D Gossios
- The Heart Hospital, Institute of Cardiovascular Science, University College London, 16-18 Westmoreland Street, London W1G 8PH, United Kingdom
| | | | | |
Collapse
|
72
|
Ng KK, Kaye G. A case of Lamin C gene-mutation with preserved systolic function and ventricular dysrrhythmia. Australas Med J 2013; 6:75-8. [PMID: 23483212 DOI: 10.4066/amj.2013.1546] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Lamin A/C gene-related cardiomyopathy is associated with progressive heart failure and malignant arrhythmias. Current guidelines advise the use of implantable defibrillators to prevent arrhythmogenic sudden cardiac death only in situations where there is evidence of severe left ventricular dysfunction. We describe a case of a woman with genetically confirmed Lamin C deficiency with preserved left ventricular function in whom an implantable defibrillator was inserted and within a month of implantation was used to terminate symptomatic ventricular tachycardia.
Collapse
|
73
|
Bonne G, Quijano-Roy S. Emery-Dreifuss muscular dystrophy, laminopathies, and other nuclear envelopathies. HANDBOOK OF CLINICAL NEUROLOGY 2013; 113:1367-76. [PMID: 23622360 DOI: 10.1016/b978-0-444-59565-2.00007-1] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The nuclear envelopathies, more frequently known as laminopathies are a rapidly expanding group of human hereditary diseases caused by mutations of genes that encode proteins of the nuclear envelope. The most frequent and best known form is Emery-Dreifuss muscular dystrophy (EDMD), a skeletal myopathy characterized by progressive muscular weakness, joint contractures, and cardiac disease. EMD gene, encoding emerin, causes the X-linked form of EDMD, while LMNA gene encoding lamins A and C, is responsible for autosomal forms, usually with a dominant transmission. In the last years, the spectrum of conditions has been extraordinarily enlarged, from a congenital muscular dystrophy with severe paralytic or rapidly progressive picture due to de novo mutations in LMNA (L-CMD) to a limb-girdle muscular dystrophy with adult onset and much milder weakness (LGMD1B). LMNA has also been involved in a form of isolated cardiomyopathy associated with cardiac conduction disease and in an axonal form of hereditary neuropathy. Identification of this gene has been reported also in a number of non-neuromuscular disorders including lipodystrophy syndromes and a wide spectrum of premature aging syndromes ranging from mandibuloacral dysplasia to restrictive dermopathy. Mutations in other genes implicated in the processing or maturation of nuclear lamins have also been found. The extraordinary complexity of the molecular and pathophysiological mechanisms of these diseases is still not well known and the occurrence of modifying factors or genes is highly suspected. Identification of new genes and investigation of new therapeutic approaches are in progress.
Collapse
Affiliation(s)
- Gisèle Bonne
- Inserm, U974; Université Pierre et Marie Curie - Paris 6, UM 76; CNRS, UMR 7215; Institut de Myologie, and AP-HP - U.F. Cardiogénétique et Myogénétique, Groupe Hospitalier Pitié-Salpêtrière, Paris, France.
| | | |
Collapse
|
74
|
Chen SC, Kennedy BK, Lampe PD. Phosphorylation of connexin43 on S279/282 may contribute to laminopathy-associated conduction defects. Exp Cell Res 2012; 319:888-96. [PMID: 23261543 DOI: 10.1016/j.yexcr.2012.12.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Revised: 12/11/2012] [Accepted: 12/13/2012] [Indexed: 01/07/2023]
Abstract
An understanding of the molecular mechanism behind the arrhythmic phenotype associated with laminopathies has yet to emerge. A-type lamins have been shown to interact and sequester activated phospho-ERK1/2(pERK1/2) at the nucleus. The gap junction protein connexin43 (Cx43) can be phosphorylated by pERK1/2 on S279/282 (pS279/282), inhibiting intercellular communication. We hypothesized that without A-type lamins, pS279/282 Cx43 will increase due to inappropriate phosphorylation by pERK1/2, resulting in decreased gap junction function. We observed a 1.6-fold increase in pS279/282 Cx43 levels in Lmna(-/-) mouse embryonic fibroblasts (MEFs) compared to Lmna(+/+), and 1.8-fold more pERK1/2 co-precipitated from Lmna(-/-) MEFs with Cx43 antibodies. We found a 3-fold increase in the fraction of non-nuclear pERK1/2 and a concomitant 2-fold increase in the fraction of pS279/282 Cx43 in Lmna(-/-) MEFs by immunofluorescence. In an assay of gap junctional function, Lmna(-/-) MEFs transferred dye to 60% fewer partners compared to Lmna(+/+) controls. These results are mirrored in 5-6 week-old Lmna(-/-) mice compared to their Lmna(+/+) littermates as we detect increased pS279/282 Cx43 in gap junctions by immunofluorescence and 1.7-fold increased levels by immunoblot. We conclude that increased pS279/282 Cx43 in the Lmna(-/-) background results in decreased cell communication and may contribute to the arrhythmic pathology in vivo.
Collapse
Affiliation(s)
- Steven C Chen
- Fred Hutchinson Cancer Research Center (FHCRC), Public Health Sciences Division, 1100 Fairview Ave. N., Seattle, WA 98109, USA
| | | | | |
Collapse
|
75
|
Russo V, Rago A, Politano L, Papa AA, Di Meo F, Russo MG, Golino P, Calabrò R, Nigro G. Increased dispersion of ventricular repolarization in Emery Dreifuss muscular dystrophy patients. Med Sci Monit 2012; 18:CR643-CR647. [PMID: 23111739 PMCID: PMC3560603 DOI: 10.12659/msm.883541] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Accepted: 05/28/2012] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Sudden cardiac death (SCD) is common in patients with Emery-Dreifuss muscular dystrophy (EDMD) and is attributed to the development of life-threatening arrhythmias that occur in the presence of normal left ventricular systolic function. Heterogeneity of ventricular repolarization is considered to provide an electrophysiological substrate for malignant arrhythmias. QTc dispersion (QTc-D) and JTc dispersion (JTc-D) are electrocardiographic parameters indicative of heterogeneity of ventricular repolarization. The aim of our study was to evaluate the heterogeneity of ventricular repolarization in patients with Emery-Dreifuss muscular dystrophy with preserved systolic and diastolic cardiac function. MATERIAL/METHODS The study involved 36 EDMD patients (age 20 ± 12, 26 M) and 36 healthy subjects used as controls, matched for age and sex. Heart rate, QRS duration, maximum and minimum QT and JT interval, QTc-D and JTc-D measurements were performed. RESULTS Compared to the healthy control group, the EDMD group presented increased values of QTc-D (82.7 ± 44.2 vs. 53.1 ± 13.7; P=0,003) and JTc-D (73.6 ± 32.3 vs. 60.4 ± 11.1 ms; P=0.001). No correlation between QTc dispersion and ejection fraction (R=0.2, P=0.3) was found. CONCLUSIONS Our study showed a significant increase of QTc-D and JTc-D in Emery-Dreifuss muscular dystrophy patients with preserved systolic and diastolic cardiac function.
Collapse
Affiliation(s)
- Vincenzo Russo
- Chair of Cardiology, 2 University of Naples, Naples, Italy
| | - Anna Rago
- Chair of Cardiology, 2 University of Naples, Naples, Italy
| | - Luisa Politano
- Cardiomyology and Genetic Section, Department of Internal and Experimental Medicine, 2 University of Naples, Naples, Italy
| | | | | | | | - Paolo Golino
- Chair of Cardiology, 2 University of Naples, Naples, Italy
| | | | - Gerardo Nigro
- Chair of Cardiology, 2 University of Naples, Naples, Italy
| |
Collapse
|
76
|
Abstract
Mutations in the LMNA gene encoding lamins A/C are responsible for more than ten different disorders called laminopathies which affect various tissues in an isolated (striated muscle, adipose tissue or peripheral nerve) or systemic (premature aging syndromes) fashion. Overlapping phenotypes are also observed. Associated with this wide clinical variability, there is also a large genetic heterogeneity, with 408 different mutations being reported to date. Whereas a few hotspot mutations emerge for some types of laminopathies, relationships between genotypes and phenotypes remain poor for laminopathies affecting the striated muscles. In addition, there is important intrafamilial variability, explained only in a few cases by digenism, thus suggesting an additional contribution from modifier genes. In this regard, a chromosomal region linked to the variability in the age at onset of myopathic symptoms in striated muscle laminopathies has recently been identified. This locus is currently under investigation to identify modifier variants responsible for this variability.
Collapse
|
77
|
Cruz Guzmán ODR, Chávez García AL, Rodríguez-Cruz M. Muscular dystrophies at different ages: metabolic and endocrine alterations. Int J Endocrinol 2012; 2012:485376. [PMID: 22701119 PMCID: PMC3371686 DOI: 10.1155/2012/485376] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Accepted: 04/02/2012] [Indexed: 12/15/2022] Open
Abstract
Common metabolic and endocrine alterations exist across a wide range of muscular dystrophies. Skeletal muscle plays an important role in glucose metabolism and is a major participant in different signaling pathways. Therefore, its damage may lead to different metabolic disruptions. Two of the most important metabolic alterations in muscular dystrophies may be insulin resistance and obesity. However, only insulin resistance has been demonstrated in myotonic dystrophy. In addition, endocrine disturbances such as hypogonadism, low levels of testosterone, and growth hormone have been reported. This eventually will result in consequences such as growth failure and delayed puberty in the case of childhood dystrophies. Other consequences may be reduced male fertility, reduced spermatogenesis, and oligospermia, both in childhood as well as in adult muscular dystrophies. These facts all suggest that there is a need for better comprehension of metabolic and endocrine implications for muscular dystrophies with the purpose of developing improved clinical treatments and/or improvements in the quality of life of patients with dystrophy. Therefore, the aim of this paper is to describe the current knowledge about of metabolic and endocrine alterations in diverse types of dystrophinopathies, which will be divided into two groups: childhood and adult dystrophies which have different age of onset.
Collapse
Affiliation(s)
- Oriana del Rocío Cruz Guzmán
- Laboratorio de Biología Molecular, Unidad de Investigación Médica en Nutrición, Hospital de Pediatría, Centro Médico Nacional Siglo XXI, IMSS, 06703 Ciudad México, DF, Mexico
| | - Ana Laura Chávez García
- Laboratorio de Biología Molecular, Unidad de Investigación Médica en Nutrición, Hospital de Pediatría, Centro Médico Nacional Siglo XXI, IMSS, 06703 Ciudad México, DF, Mexico
| | - Maricela Rodríguez-Cruz
- Laboratorio de Biología Molecular, Unidad de Investigación Médica en Nutrición, Hospital de Pediatría, Centro Médico Nacional Siglo XXI, IMSS, 06703 Ciudad México, DF, Mexico
- *Maricela Rodríguez-Cruz:
| |
Collapse
|
78
|
Bertrand AT, Chikhaoui K, Ben Yaou R, Bonne G. [Laminopathies: one gene, several diseases]. Biol Aujourdhui 2011; 205:147-62. [PMID: 21982404 DOI: 10.1051/jbio/2011017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Indexed: 01/03/2023]
Abstract
Lamins A and C, encoded by the LMNA gene, are nuclear proteins expressed in all post-mitotic cells. Together with B-type lamins, they form a meshwork of proteins beneath the inner nuclear membrane, the lamina, in connection with the cytoskeleton. Lamins A/C also interact with chromatin and numerous proteins, including transcription factors. Mutations in LMNA are responsible for more than ten different disorders, commonly called "laminopathies". These diseases affect tissues in a specific (striated muscle, adipose tissue, peripheral nerve) or in a systemic manner (premature ageing syndromes). This wide spectrum of phenotypes is associated to a wide variety of mutations. This large clinical and genetic heterogeneity, unique to the LMNA gene, makes genotype-phenotype relations particularly difficult to establish. However, correlations have been obtained in several cases. Hence, LMNA mutations identified in premature ageing syndromes lead to the accumulation of immature proteins with a toxic effect for cells. Mutations in laminopathies of the adipose tissue mainly localize in the Ig-like domain of the proteins, potentially affecting the interaction with the SREBP-1 transcription factor. In laminopathies of the striated muscles, the mutations are spread throughout the gene. These mutations are thought to induce structural modifications of the proteins, thereby affecting their polymerization into nuclear lamina. Such defect would lead to a mechanical weakness of the nuclear lamina and of the cells, particularly in striated muscles continuously stretching. The exploration of pathophysiological mechanisms of LMNA mutations largely benefits from the numerous mouse models created, which have been widely used to analyze affected molecular pathways and to test putative therapeutic treatments.
Collapse
|
79
|
Rodríguez S, Eriksson M. Low and high expressing alleles of the LMNA gene: implications for laminopathy disease development. PLoS One 2011; 6:e25472. [PMID: 21980471 PMCID: PMC3183053 DOI: 10.1371/journal.pone.0025472] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Accepted: 09/05/2011] [Indexed: 11/18/2022] Open
Abstract
Today, there are at least a dozen different genetic disorders caused by mutations within the LMNA gene, and collectively, they are named laminopathies. Interestingly, the same mutation can cause phenotypes with different severities or even different disorders and might, in some cases, be asymptomatic. We hypothesized that one possible contributing mechanism for this phenotypic variability could be the existence of high and low expressing alleles in the LMNA locus. To investigate this hypothesis, we developed an allele-specific absolute quantification method for lamin A and lamin C transcripts using the polymorphic rs4641(C/T)LMNA coding SNP. The contribution of each allele to the total transcript level was investigated in nine informative human primary dermal fibroblast cultures from Hutchinson-Gilford progeria syndrome (HGPS) and unaffected controls. Our results show differential expression of the two alleles. The C allele is more frequently expressed and accounts for ∼70% of the lamin A and lamin C transcripts. Analysis of samples from six patients with Hutchinson-Gilford progeria syndrome showed that the c.1824C>T, p.G608G mutation is located in both the C and the T allele, which might account for the variability in phenotype seen among HGPS patients. Our method should be useful for further studies of human samples with mutations in the LMNA gene and to increase the understanding of the link between genotype and phenotype in laminopathies.
Collapse
Affiliation(s)
- Sofía Rodríguez
- Department of Biosciences and Nutrition, Center for Biosciences, Karolinska Institutet, Huddinge, Sweden
| | - Maria Eriksson
- Department of Biosciences and Nutrition, Center for Biosciences, Karolinska Institutet, Huddinge, Sweden
- * E-mail:
| |
Collapse
|
80
|
Holmström M, Kivistö S, Heliö T, Jurkko R, Kaartinen M, Antila M, Reissell E, Kuusisto J, Kärkkäinen S, Peuhkurinen K, Koikkalainen J, Lötjönen J, Lauerma K. Late gadolinium enhanced cardiovascular magnetic resonance of lamin A/C gene mutation related dilated cardiomyopathy. J Cardiovasc Magn Reson 2011; 13:30. [PMID: 21689390 PMCID: PMC3135551 DOI: 10.1186/1532-429x-13-30] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Accepted: 06/20/2011] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The purpose of this study was to identify early features of lamin A/C gene mutation related dilated cardiomyopathy (DCM) with cardiovascular magnetic resonance (CMR). We characterise myocardial and functional findings in carriers of lamin A/C mutation to facilitate the recognition of these patients using this method. We also investigated the connection between myocardial fibrosis and conduction abnormalities. METHODS Seventeen lamin A/C mutation carriers underwent CMR. Late gadolinium enhancement (LGE) and cine images were performed to evaluate myocardial fibrosis, regional wall motion, longitudinal myocardial function, global function and volumetry of both ventricles. The location, pattern and extent of enhancement in the left ventricle (LV) myocardium were visually estimated. RESULTS Patients had LV myocardial fibrosis in 88% of cases. Segmental wall motion abnormalities correlated strongly with the degree of enhancement. Myocardial enhancement was associated with conduction abnormalities. Sixty-nine percent of our asymptomatic or mildly symptomatic patients showed mild ventricular dilatation, systolic failure or both in global ventricular analysis. Decreased longitudinal systolic LV function was observed in 53% of patients. CONCLUSIONS Cardiac conduction abnormalities, mildly dilated LV and depressed systolic dysfunction are common in DCM caused by a lamin A/C gene mutation. However, other cardiac diseases may produce similar symptoms. CMR is an accurate tool to determine the typical cardiac involvement in lamin A/C cardiomyopathy and may help to initiate early treatment in this malignant familiar form of DCM.
Collapse
MESH Headings
- Adolescent
- Adult
- Cardiomyopathy, Dilated/diagnosis
- Cardiomyopathy, Dilated/genetics
- Cardiomyopathy, Dilated/physiopathology
- Chi-Square Distribution
- Contrast Media
- Electrocardiography
- Female
- Fibrosis
- Finland
- Genetic Predisposition to Disease
- Humans
- Hypertrophy, Left Ventricular/diagnosis
- Hypertrophy, Left Ventricular/genetics
- Lamin Type A/genetics
- Magnetic Resonance Imaging, Cine
- Male
- Meglumine
- Middle Aged
- Mutation
- Myocardium/pathology
- Organometallic Compounds
- Phenotype
- Predictive Value of Tests
- Severity of Illness Index
- Ventricular Dysfunction, Left/diagnosis
- Ventricular Dysfunction, Left/genetics
- Ventricular Function, Left
- Ventricular Function, Right
Collapse
Affiliation(s)
- Miia Holmström
- Department of Radiology, University of Helsinki and HUS Radiology (Medical Imaging Center) P.O. Box 340, FI-00029 HUS, Finland
| | - Sari Kivistö
- Department of Radiology, University of Helsinki and HUS Radiology (Medical Imaging Center) P.O. Box 340, FI-00029 HUS, Finland
| | - Tiina Heliö
- Department of Cardiology, Helsinki University Central Hospital, P.O. Box 340, FI-00029 HUS, Finland
| | - Raija Jurkko
- Department of Cardiology, Helsinki University Central Hospital, P.O. Box 340, FI-00029 HUS, Finland
| | - Maija Kaartinen
- Department of Cardiology, Helsinki University Central Hospital, P.O. Box 340, FI-00029 HUS, Finland
| | - Margareta Antila
- Department of Radiology, University of Helsinki and HUS Radiology (Medical Imaging Center) P.O. Box 340, FI-00029 HUS, Finland
| | - Eeva Reissell
- Boehringer Ingelheim Finland Ky Tammasaarenkatu 5, FI-00180 Helsinki, Finland
| | - Johanna Kuusisto
- Heart Center, Kuopio University Hospital, P.O. Box 1777, FI-70211 Kuopio, Finland
| | - Satu Kärkkäinen
- Heart Center, Kuopio University Hospital, P.O. Box 1777, FI-70211 Kuopio, Finland
| | - Keijo Peuhkurinen
- Heart Center, Kuopio University Hospital, P.O. Box 1777, FI-70211 Kuopio, Finland
| | - Juha Koikkalainen
- VTT Technical Research Centre of Finland, P.O. Box 1300, FI-33101 Tampere, Finland
| | - Jyrki Lötjönen
- VTT Technical Research Centre of Finland, P.O. Box 1300, FI-33101 Tampere, Finland
| | - Kirsi Lauerma
- Department of Radiology, University of Helsinki and HUS Radiology (Medical Imaging Center) P.O. Box 340, FI-00029 HUS, Finland
| |
Collapse
|
81
|
Hershberger RE, Siegfried JD. Update 2011: clinical and genetic issues in familial dilated cardiomyopathy. J Am Coll Cardiol 2011; 57:1641-9. [PMID: 21492761 PMCID: PMC3088091 DOI: 10.1016/j.jacc.2011.01.015] [Citation(s) in RCA: 268] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2010] [Revised: 12/27/2010] [Accepted: 01/31/2011] [Indexed: 11/19/2022]
Abstract
A great deal of progress has recently been made in the discovery and understanding of the genetics of familial dilated cardiomyopathy (FDC). A consensus has emerged that with a new diagnosis of idiopathic dilated cardiomyopathy (IDC), the clinical screening of first-degree family members will reveal FDC in at least 20% to 35% of those family members. Point mutations in 31 autosomal and 2 X-linked genes representing diverse gene ontogeny have been implicated in causing FDC but account for only 30% to 35% of genetic causes. Next-generation sequencing methods have dramatically decreased sequencing costs, making clinical genetic testing feasible for extensive panels of dilated cardiomyopathy genes. Next-generation sequencing also provides opportunities to discover additional genetic causes of FDC and IDC. Guidelines for evaluation and testing of FDC and IDC are now available, and when combined with FDC genetic testing and counseling, will bring FDC/IDC genetics to the forefront of cardiovascular genetic medicine.
Collapse
Affiliation(s)
- Ray E Hershberger
- Cardiovascular Division, Department of Medicine, University of Miami Miller School of Medicine, 1501 NW 10th Avenue, Miami, FL 33136, USA.
| | | |
Collapse
|
82
|
Burkett EL, Hershberger RE. Clinical and genetic issues in dilated cardiomyopathy: a review for genetics professionals. Genet Med 2011; 45:969-81. [PMID: 15808750 DOI: 10.1016/j.jacc.2004.11.066] [Citation(s) in RCA: 251] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2004] [Revised: 09/16/2004] [Accepted: 11/22/2004] [Indexed: 12/19/2022] Open
Abstract
Dilated cardiomyopathy (DCM), usually diagnosed as idiopathic dilated cardiomyopathy (IDC), has been shown to have a familial basis in 20-35% of cases. Genetic studies in familial dilated cardiomyopathy (FDC) have shown dramatic locus heterogeneity with mutations identified in >30 mostly autosomal genes showing primarily dominant transmission. Most mutations are private missense, nonsense or short insertion/deletions. Marked allelic heterogeneity is the rule. Although to date most DCM genetics fits into a Mendelian rare variant disease paradigm, this paradigm may be incomplete with only 30-35% of FDC genetic cause identified. Despite this incomplete knowledge, we predict that DCM genetics will become increasingly relevant for genetics and cardiovascular professionals. This is because DCM causes heart failure, a national epidemic, with considerable morbidity and mortality. The fact that early, even pre-symptomatic intervention can prevent or ameliorate DCM, coupled with more cost-effective genetic testing, will drive further progress in the field. Ongoing questions include: whether sporadic (IDC) disease has a genetic basis, and if so, how it differs from familial disease; which gene-specific or genetic pathways are most relevant; and whether other genetic mechanisms (e.g., DNA structural variants, epigenetics, mitochondrial mutations and others) are operative in DCM. We suggest that such new knowledge will lead to novel approaches to the prevention and treatment of DCM.
Collapse
Affiliation(s)
- Emily L Burkett
- Division of Cardiology, Department of Medicine, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OT 97239, USA
| | | |
Collapse
|
83
|
Clinical and genetic issues in dilated cardiomyopathy: a review for genetics professionals. Genet Med 2011; 12:655-67. [PMID: 20864896 DOI: 10.1097/gim.0b013e3181f2481f] [Citation(s) in RCA: 193] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Dilated cardiomyopathy (DCM), usually diagnosed as idiopathic dilated cardiomyopathy (IDC), has been shown to have a familial basis in 20-35% of cases. Genetic studies in familial dilated cardiomyopathy (FDC) have shown dramatic locus heterogeneity with mutations identified in >30 mostly autosomal genes showing primarily dominant transmission. Most mutations are private missense, nonsense or short insertion/deletions. Marked allelic heterogeneity is the rule. Although to date most DCM genetics fits into a Mendelian rare variant disease paradigm, this paradigm may be incomplete with only 30-35% of FDC genetic cause identified. Despite this incomplete knowledge, we predict that DCM genetics will become increasingly relevant for genetics and cardiovascular professionals. This is because DCM causes heart failure, a national epidemic, with considerable morbidity and mortality. The fact that early, even pre-symptomatic intervention can prevent or ameliorate DCM, coupled with more cost-effective genetic testing, will drive further progress in the field. Ongoing questions include: whether sporadic (IDC) disease has a genetic basis, and if so, how it differs from familial disease; which gene-specific or genetic pathways are most relevant; and whether other genetic mechanisms (e.g., DNA structural variants, epigenetics, mitochondrial mutations and others) are operative in DCM. We suggest that such new knowledge will lead to novel approaches to the prevention and treatment of DCM.
Collapse
|
84
|
Ishikawa K, Mimuro M, Tanaka T. Ventricular arrhythmia in X-linked Emery-Dreifuss muscular dystrophy: a lesson from an autopsy case. Intern Med 2011; 50:459-62. [PMID: 21372459 DOI: 10.2169/internalmedicine.50.4598] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Emery-Dreifuss muscular dystrophy (EDMD) is a distinctive form of muscular dystrophy which is often associated with cardiac abnormalities. Conduction disturbances are frequently observed, and may necessitate pacemaker implantation to prevent sudden death. In this case report, we present an autopsy of a 31-year-old man with X-linked EDMD who developed only minimal skeletal muscle symptoms, and who died from ventricular arrhythmia despite undergoing a previous pacemaker implantation. Ventricular arrhythmias in X-linked EDMD patients are also discussed.
Collapse
MESH Headings
- Adult
- Arrhythmias, Cardiac/etiology
- Atrioventricular Block/etiology
- Autopsy
- Cardiomyopathy, Dilated/etiology
- Cardiomyopathy, Dilated/pathology
- Death, Sudden, Cardiac/etiology
- Humans
- Male
- Muscular Dystrophy, Emery-Dreifuss/complications
- Muscular Dystrophy, Emery-Dreifuss/diagnosis
- Muscular Dystrophy, Emery-Dreifuss/genetics
- Pacemaker, Artificial
- Tachycardia, Ventricular/etiology
- Ventricular Fibrillation/etiology
Collapse
|
85
|
Miopatie dei cingoli. Neurologia 2011. [DOI: 10.1016/s1634-7072(11)70573-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
86
|
Arnous S, Syrris P, Sen-Chowdhry S, McKenna WJ. Genetics of Dilated Cardiomyopathy: Risk of Conduction Defects and Sudden Cardiac Death. Card Electrophysiol Clin 2010; 2:599-609. [PMID: 28770722 DOI: 10.1016/j.ccep.2010.09.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Dilated cardiomyopathy is familial in at least 40--60% of cases and causal mutations have been identified in more than 40 different genes. Mutations in lamin A/C (LMNA) and desmosomal components appear associated with increased risk of sudden cardiac death, the latter in the context of left-dominant arrhythmogenic cardiomyopathy. Specific clinical features may be valuable in identifying patients with these mutations. Routine sequencing of all the genes implicated in dilated cardiomyopathy may not be cost-effective at present. Targeted mutation screening of LMNA and desmosomal components is recommended and may facilitate prognostication and management.
Collapse
Affiliation(s)
- Samer Arnous
- Inherited Cardiovascular Disease Group, University College London Hospitals NHS Trust, The Heart Hospital, 16-18 Westmoreland Street, Westminster, London W1G 8PH, UK
| | - Petros Syrris
- Inherited Cardiovascular Disease Group, Institute of Cardiovascular Science, University College London, Paul O'Gorman Building, 72 Huntley Street, Camden, London WC1E 6DD, UK
| | - Srijita Sen-Chowdhry
- Inherited Cardiovascular Disease Group, Institute of Cardiovascular Science, University College London, Paul O'Gorman Building, 72 Huntley Street, Camden, London WC1E 6DD, UK; Department of Epidemiology, Imperial College- St Mary's Campus, Norfolk Place, London W2 1NY, UK
| | - William J McKenna
- Inherited Cardiovascular Disease Group, University College London Hospitals NHS Trust, The Heart Hospital, 16-18 Westmoreland Street, Westminster, London W1G 8PH, UK; Inherited Cardiovascular Disease Group, Institute of Cardiovascular Science, University College London, Paul O'Gorman Building, 72 Huntley Street, Camden, London WC1E 6DD, UK
| |
Collapse
|
87
|
Modifier locus of the skeletal muscle involvement in Emery-Dreifuss muscular dystrophy. Hum Genet 2010; 129:149-59. [PMID: 21063730 DOI: 10.1007/s00439-010-0909-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2010] [Accepted: 10/28/2010] [Indexed: 02/02/2023]
Abstract
Autosomal dominant Emery-Dreifuss muscular dystrophy is caused by mutations in LMNA gene encoding lamins A and C. The disease is characterized by early onset joint contractures during childhood associated with humero-peroneal muscular wasting and weakness, and by the development of a cardiac disease in adulthood. Important intra-familial variability characterized by a wide range of age at onset of myopathic symptoms (AOMS) has been recurrently reported, suggesting the contribution of a modifier gene. Our objective was to identify a modifier locus of AOMS in relation with the LMNA mutation. To map the modifier locus, we genotyped 291 microsatellite markers in 59 individuals of a large French family, where 19 patients carrying the same LMNA mutation, exhibited wide range of AOMS. We performed Bayesian Markov Chain Monte Carlo-based joint segregation and linkage methods implemented in the Loki software, and detected a strong linkage signal on chromosome 2 between markers D2S143 and D2S2244 (211 cM) with a Bayes factor of 28.7 (empirical p value = 0.0032). The linked region harbours two main candidate genes, DES and MYL1 encoding desmin and light chain of myosin. Importantly, the impact of the genotype on the phenotype for this locus showed an overdominant effect with AOMS 2 years earlier for the homozygotes of the rare allele and 37 years earlier for the heterozygotes than the homozygotes for the common allele. These results provide important highlights for the natural history and for the physiopathology of Emery-Dreifuss muscular dystrophy.
Collapse
|
88
|
Use of Genetics in the Clinical Evaluation and Management of Heart Failure. CURRENT TREATMENT OPTIONS IN CARDIOVASCULAR MEDICINE 2010; 12:566-77. [DOI: 10.1007/s11936-010-0092-7] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
89
|
Prigogine C, Richard P, Van den Bergh P, Groswasser J, Deconinck N. Novel LMNA mutation presenting as severe congenital muscular dystrophy. Pediatr Neurol 2010; 43:283-6. [PMID: 20837309 DOI: 10.1016/j.pediatrneurol.2010.05.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2009] [Revised: 02/08/2010] [Accepted: 05/11/2010] [Indexed: 11/28/2022]
Abstract
Mutations in the lamin A/C gene determine a heterogeneous group of congenital diseases, termed laminopathies, consisting of more than 15 phenotypes, including autosomal dominant Emery-Dreifuss muscular dystrophy and limb-girdle muscular dystrophy type 1B. Early onset in infancy has been described in these muscular dystrophies. Reported here is a 7-year-old male with congenital muscular dystrophy. Remarkably, muscle weakness and wasting affected predominantly axial muscles as well as proximal upper and distal lower extremities. The patient rapidly developed joint contractures and spine rigidity with the head only mildly flexed. Serum creatine kinase was moderately elevated. Muscle biopsy indicated a dystrophic pattern with normal immunochemical findings. A novel, de novo missense substitution p.Asn39Tyr within the lamin A/C gene confirmed the diagnosis of a laminopathy. This report broadens the spectrum of lamin A/C gene mutations and illustrates the phenotypic variability of laminopathies with early onset congenital muscular dystrophy. Mutations in the lamin A/C gene should be sought in any infant with dystrophic features and normal tissue immunochemical studies; especially in the presence of moderately elevated serum creatine kinase, predominant axial and humeroperoneal weakness, spine rigidity, and joint contractures.
Collapse
Affiliation(s)
- Cynthia Prigogine
- Department of Neurology, Queen Fabiola Children's University Hospital, Free University of Brussels, Brussels, Belgium
| | | | | | | | | |
Collapse
|
90
|
Abstract
In the past decade, a wide range of fascinating monogenic diseases have been linked to mutations in the LMNA gene, which encodes the A-type nuclear lamins, intermediate filament proteins of the nuclear envelope. These diseases include dilated cardiomyopathy with variable muscular dystrophy, Dunnigan-type familial partial lipodystrophy, a Charcot-Marie-Tooth type 2 disease, mandibuloacral dysplasia, and Hutchinson-Gilford progeria syndrome. Several diseases are also caused by mutations in genes encoding B-type lamins and proteins that associate with the nuclear lamina. Studies of these so-called laminopathies or nuclear envelopathies, some of which phenocopy common human disorders, are providing clues about functions of the nuclear envelope and insights into disease pathogenesis and human aging.
Collapse
Affiliation(s)
- Howard J Worman
- Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, New York 10032, USA.
| | | | | |
Collapse
|
91
|
Hermans M, Pinto Y, Merkies I, de Die-Smulders C, Crijns H, Faber C. Hereditary muscular dystrophies and the heart. Neuromuscul Disord 2010; 20:479-92. [DOI: 10.1016/j.nmd.2010.04.008] [Citation(s) in RCA: 131] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2010] [Revised: 04/19/2010] [Accepted: 04/21/2010] [Indexed: 01/16/2023]
|
92
|
N-terminal Pro brain natriuretic peptide is a reliable biomarker of reduced myocardial contractility in patients with lamin A/C gene mutations. Int J Cardiol 2010; 151:160-3. [PMID: 20627339 DOI: 10.1016/j.ijcard.2010.05.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2009] [Revised: 04/06/2010] [Accepted: 05/13/2010] [Indexed: 01/16/2023]
Abstract
BACKGROUND Recently, concerns have been raised about a possible lack of sensitivity of biomarkers to detect left ventricular (LV) dysfunction in patients with myopathies. We examined the ability of the N-terminal brain natriuretic peptide (NT-proBNP) to detect LV or right ventricular (RV) dysfunction in patients with lamin A/C (LMNA) gene mutations. METHODS We prospectively measured plasma NT-proBNP in consecutive patients with documented LMNA mutations and age-sex matched controls. All patients underwent standard echocardiography implemented by pulsed tissue-Doppler echocardiography (TDE). RESULTS Twenty-three patients were included (10 males, mean age 39.2 ± 18.9 years);10 had previous atrial arrhythmias, 8 had been implanted with cardioverter defibrillator for primary prevention of sudden death, 5 patients were of NYHA class II and 18 of NHYA class I. Sinus rhythm was recorded in all. NT-proBNP was increased in LMNA patients versus controls (123 ± 229 versus 26 ± 78 pg/ml, p=0.0004); 7 patients had depressed LV and/or RV contractility. Patients with reduced LV or RV contractility had increased mean NT-proBNP (341 ± 1032 pg/ml versus 80 ± 79 pg/ml in patients with normal myocardial contractility, p=0.004). Receiver-operating-characteristics analysis shows that NT-proBNP reliably detected depressed contractility (area under the curve 0.889 [0.697-1.000]). Sensitivity and specificity were 88% and 83% respectively, applying manufacturer's recommended cut-off concentration of 125 pg/ml. CONCLUSION NT-proBNP reliably detected the presence of reduced LV/RV contractility in LMNA patients.
Collapse
|
93
|
Chang SH, Tsai CT, Lai LP, Lei MH. Identification of a lamin A/C gene mutation in a Taiwanese family with limb girdle muscular dystrophy and cardiomyopathy. Int J Cardiol 2010; 145:598-9. [PMID: 20615561 DOI: 10.1016/j.ijcard.2010.06.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Accepted: 06/04/2010] [Indexed: 10/19/2022]
|
94
|
Volpi L, Ricci G, Passino C, Di Pierri E, Alì G, Maccherini M, Benedetti S, Lattanzi G, Columbaro M, Ferrari M, Caramella D, Tanganelli P, Emdin M, Siciliano G. Prevalent cardiac phenotype resulting in heart transplantation in a novel LMNA gene duplication. Neuromuscul Disord 2010; 20:512-6. [PMID: 20580235 DOI: 10.1016/j.nmd.2010.03.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2009] [Revised: 03/17/2010] [Accepted: 03/26/2010] [Indexed: 10/19/2022]
Abstract
Mutations in the lamin A/C gene (LMNA) are known to be involved in several diseases such as Emery-Dreifuss muscular dystrophy, limb-girdle muscular dystrophy type 1B and dilated cardiomyopathies with conduction disease, with considerable phenotype heterogeneity. Here we report on a novel autosomal dominant mutation in LMNA in two direct relatives presenting with different clinical phenotypes, characterized by severe life-threatening limb-girdle muscle involvement and cardiac dysfunction treated with heart transplantation in the proband, and by ventricular tachyarrhythmias with preserved cardiac and skeletal muscle function in her young son. To our knowledge, this is the first report of a duplication in the LMNA gene. The two phenotypes described could reflect different clinical stages of the same disease. We hypothesize that early recognition and initiation of therapeutic manoeuvres in the younger patient may retard the rate of progression of the cardiomyopathy.
Collapse
Affiliation(s)
- L Volpi
- Department of Neuroscience, University of Pisa, Via Roma 67, 56126 Pisa, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
95
|
|
96
|
Abstract
PURPOSE OF REVIEW More than 40 different individual genes have been implicated in the inheritance of dilated cardiomyopathy. For a subset of these genes, mutations can lead to a spectrum of cardiomyopathy that extends to hypertrophic cardiomyopathy and left ventricular noncompaction. In nearly all cases, there is an increased risk of arrhythmias. With some genetic mutations, extracardiac manifestations are likely to be present. The precise genetic cause can usually not be discerned from the cardiac and/or extracardiac manifestations and requires molecular genetic diagnosis for prognostic determination and cardiac care. RECENT FINDINGS Newer technologies are influencing genetic testing, especially cardiomyopathy genetic testing, wherein an increased number of genes are now routinely being tested simultaneously. Although this approach to testing multiple genes is increasing the diagnostic yield, the analysis of multiple genes in one test is also resulting in a large amount of genetic information of unclear significance. SUMMARY Genetic testing is highly useful in the care of patients and families, as it guides diagnosis, influences care and aids in prognosis. However, the large amount of benign human genetic variation may complicate genetic results and often requires a skilled team to accurately interpret the findings.
Collapse
Affiliation(s)
- Lisa Dellefave
- Department of Medicine and Human Genetics, The University of Chicago, Chicago, Illinois 60637, USA
| | | |
Collapse
|
97
|
Callis TE, Jensen BC, Weck KE, Willis MS. Evolving molecular diagnostics for familial cardiomyopathies: at the heart of it all. Expert Rev Mol Diagn 2010; 10:329-51. [PMID: 20370590 PMCID: PMC5022563 DOI: 10.1586/erm.10.13] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cardiomyopathies are an important and heterogeneous group of common cardiac diseases. An increasing number of cardiomyopathies are now recognized to have familial forms, which result from single-gene mutations that render a Mendelian inheritance pattern, including hypertrophic cardiomyopathy, dilated cardiomyopathy, restrictive cardiomyopathy, arrhythmogenic right ventricular cardiomyopathy and left ventricular noncompaction cardiomyopathy. Recently, clinical genetic tests for familial cardiomyopathies have become available for clinicians evaluating and treating patients with these diseases, making it necessary to understand the current progress and challenges in cardiomyopathy genetics and diagnostics. In this review, we summarize the genetic basis of selected cardiomyopathies, describe the clinical utility of genetic testing for cardiomyopathies and outline the current challenges and emerging developments.
Collapse
Affiliation(s)
- Thomas E Callis
- PGxHealth Division, Clinical Data, Inc., 5 Science Park, New Haven, CT 06511, USA
| | - Brian C Jensen
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC, 27599-7126, USA and Department of Internal Medicine, Section of Cardiology, University of North Carolina, Chapel Hill, NC 27599-7075, USA
| | - Karen E Weck
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599-7525, USA
| | - Monte S Willis
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599-7525, USA and McAllister Heart Institute, University of North Carolina at Chapel Hill, 2340B Medical Biomolecular Research Building, 103 Mason Farm Road, Chapel Hill, NC 27599-7525, USA Tel.: +1 919 843 1938 Fax: +1 919 843 4585
| |
Collapse
|
98
|
Nigro G, Russo V, Ventriglia VM, Della Cioppa N, Palladino A, Nigro V, Calabrò R, Nigro G, Politano L. Early onset of cardiomyopathy and primary prevention of sudden death in X-linked Emery-Dreifuss muscular dystrophy. Neuromuscul Disord 2010; 20:174-177. [PMID: 20149661 DOI: 10.1016/j.nmd.2009.12.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2008] [Revised: 12/02/2009] [Accepted: 12/03/2009] [Indexed: 11/25/2022]
Abstract
We report the case of 14-year-old boy with X-linked Emery-Dreifuss muscular dystrophy who developed sick sinus syndrome and required placement of an implantable intracardiac cardioverter-defibrillator (ICD) to prevent sudden death. He demonstrated no significant risk factors for sudden death such as depressed left ventricular ejection fraction, or spontaneous or inducible ventricular tachycardia. One month after implantation, the patient experienced one appropriate ICD discharge.
Collapse
Affiliation(s)
- Gerardo Nigro
- Department of Cardiothoracic and Respiratory Sciences, Second University of Naples, Monaldi Hospital, Naples, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
99
|
Gupta P, Bilinska ZT, Sylvius N, Boudreau E, Veinot JP, Labib S, Bolongo PM, Hamza A, Jackson T, Ploski R, Walski M, Grzybowski J, Walczak E, Religa G, Fidzianska A, Tesson F. Genetic and ultrastructural studies in dilated cardiomyopathy patients: a large deletion in the lamin A/C gene is associated with cardiomyocyte nuclear envelope disruption. Basic Res Cardiol 2010; 105:365-77. [PMID: 20127487 DOI: 10.1007/s00395-010-0085-4] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2009] [Revised: 01/12/2010] [Accepted: 01/13/2010] [Indexed: 12/24/2022]
Abstract
Major nuclear envelope abnormalities, such as disruption and/or presence of intranuclear organelles, have rarely been described in cardiomyocytes from dilated cardiomyopathy (DCM) patients. In this study, we screened a series of 25 unrelated DCM patient samples for (a) cardiomyocyte nuclear abnormalities and (b) mutations in LMNA and TMPO as they are two DCM-causing genes that encode proteins involved in maintaining nuclear envelope architecture. Among the 25 heart samples investigated, we identified major cardiomyocyte nuclear abnormalities in 8 patients. Direct sequencing allowed the detection of three heterozygous LMNA mutations (p.D192G, p.Q353K and p.R541S) in three patients. By multiplex ligation-dependant probe amplification (MLPA)/quantitative real-time PCR, we found a heterozygous deletion encompassing exons 3-12 of the LMNA gene in one patient. Immunostaining demonstrated that this deletion led to a decrease in lamin A/C expression in cardiomyocytes from this patient. This LMNA deletion as well as the p.D192G mutation was found in patients displaying major cardiomyocyte nuclear envelope abnormalities, while the p.Q353K and p.R541S mutations were found in patients without specific nuclear envelope abnormalities. None of the DCM patients included in the study carried a mutation in the TMPO gene. Taken together, we found no evidence of a genotype-phenotype relationship between the onset and the severity of DCM, the presence of nuclear abnormalities and the presence or absence of LMNA mutations. We demonstrated that a large deletion in LMNA associated with reduced levels of the protein in the nuclear envelope suggesting a haploinsufficiency mechanism can lead to cardiomyocyte nuclear envelope disruption and thus underlie the pathogenesis of DCM.
Collapse
Affiliation(s)
- Pallavi Gupta
- Faculty of Health Sciences, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
100
|
Abstract
A-type laminopathies are a group of diseases resulting from mutations in the intermediate filament proteins lamin A and C (both encoded by the LMNA gene), but for which the pathogenic mechanisms are little understood. In some laminopathies, there is a good correlation between the presence of a specific LMNA mutation and the disease diagnosed. In others however, many different mutations can give rise to the same clinical condition, even though the mutations may be distributed throughout one, or more, of the three functionally distinct protein domains of lamin A/C. Conversely, certain mutations can cause multiple laminopathies, with related patients carrying an identical mutation even having separate diseases, often affecting different tissues. Therefore clarifying genotype–phenotype links may provide important insights into both disease penetrance and mechanism. In the present paper, we review recent developments in genotype–phenotype correlations in laminopathies and discuss the factors that could influence pathology.
Collapse
|