51
|
Aboukamar WA, Habib S, Tharwat S, Nassar MK, Elzoheiry MA, Atef R, Elmehankar MS. Association between toxoplasmosis and autoimmune rheumatic diseases in Egyptian patients. REUMATOLOGIA CLINICA 2023; 19:488-494. [PMID: 37945182 DOI: 10.1016/j.reumae.2023.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 03/07/2023] [Indexed: 11/12/2023]
Abstract
PURPOSE To explore the association between T. gondii and autoimmune rheumatic diseases (ARDs). METHODS This study involved 82 patients with ARDs: 44 rheumatoid arthritis (RA), 28 systemic lupus erythematosus (SLE), and 10 systemic sclerosis (SSc) and 61 age- and sex-matched controls. Sociodemographic, clinical, and laboratory data were collected, and disease activity was assessed. Exposure to toxoplasmosis risk factors was investigated. Serological tests for anti-Toxoplasma IgM and IgG antibodies were assessed using ELISA. RESULTS In SLE patients, a significant difference of T. gondii IgM versus controls was detected (P=.03). In RA and SLE patients, T. gondii IgG showed a significant difference versus controls (34 (77.3%) P=.001 and 18 (64.3%) P=.03, respectively). There was no significant difference in SSc versus controls. Fetal congenital anomalies displayed a significant difference in IgM seropositive compared to seronegative patients (P=.04). Cat exposure showed a significant difference between IgM and IgG seropositive versus seronegative patients (12 (80.0%) P=.02 and 34 (59.6) P=.04, respectively). There was no significant difference in seropositive patients regarding history of abortion, neuro-psychiatric manifestations, disease activity parameters (ESR, CRP), or different regimens of medications. CONCLUSION Toxoplasma IgM seropositivity is associated with SLE patients. T. gondii IgG seropositivity is associated with both RA and SLE patients. However, Toxoplasma seropositivity had no association with SSc patients. An association between fetal congenital anomalies and IgM seropositivity was demonstrated. A linkage between cat exposure as a risk factor and toxoplasmosis was suggested among ARD patiants. Exploration of impact of toxoplasmosis on ARDs is a necessity through randomized controlled trials.
Collapse
Affiliation(s)
- Wafaa A Aboukamar
- Department of Medical Parasitology, Faculty of Medicine, Mansoura University, Mansoura, Egypt.
| | - Samar Habib
- Department of Medical Parasitology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Samar Tharwat
- Rheumatology & Immunology Unit, Department of Internal Medicine, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Mohamed Kamal Nassar
- Mansoura Nephrology & Dialysis Unit, Department of Internal Medicine, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Manal A Elzoheiry
- Department of Medical Parasitology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Rania Atef
- Medical Student, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Manar S Elmehankar
- Department of Medical Parasitology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| |
Collapse
|
52
|
Novoa MB, Aguirre N, Ormaechea N, Palmero S, Valentini B, Vanzini V, Molineri AI. Evaluation of frequency of antibodies against Neospora caninum, Toxoplasma gondii and Brucella melitensis, risk factors and spatial distribution of infection in goat and sheep flocks from Argentina. Vet Parasitol Reg Stud Reports 2023; 46:100939. [PMID: 37935540 DOI: 10.1016/j.vprsr.2023.100939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 09/19/2023] [Accepted: 10/09/2023] [Indexed: 11/09/2023]
Abstract
Neospora caninum, Toxoplasma gondii and Brucella melitensis are pathogens that cause abortion in small ruminants. Besides, B. melitensis and T. gondii are zoonotic pathogens. The aim of this study was to describe the frequency of antibodies against N. caninum, T. gondii and B. melitensis in sheep and goats from three provinces of the center region of Argentina. In addition, the spatial distribution of the infected flocks/herds and risk factors were evaluated. A cross-sectional study was conducted from 2015 through 2016. Serum samples from 4783 goats and 1524 sheep from 186 goat, 51 sheep and 38 mixed flocks/herds were analyzed. Competitive inhibition enzyme-linked immunosorbent assay (ciELISA) and indirect fluorescent antibody test (IFAT) were performed for detection of antibodies against N. caninum and IFAT for T. gondii. The buffered plate antigen test and complement fixation test were performed for detection of antibodies against B. melitensis. The frequency of anti-T. gondii antibodies was 41.2% and 29.7% for sheep and goats, respectively. The frequency of anti-N. caninum antibodies was 17.2% and 14% for sheep and goats, respectively. About 97.1% of the sheep flocks, 79.4% of the goat herds and the 91.3% of the mixed flocks had seropositive animals to T. gondii. About 61.8% of the sheep flocks, 58% of the goat herds and the 82.6% of the mixed flocks had seropositive animals to N. caninum. All the analyzed animals were negative to anti-B. melitensis antibodies. For T. gondii, a significant cluster of high risk of seropositive flocks/herds was detected in the littoral of the Parana River. The province of origin of the flock/herd was the only variable associated to T. gondii positivity (p = 0.003). Animals from Santiago del Estero and Santa Fe Provinces had 3.48 and 1.77 times more risk to be positive to T. gondii than animals from Entre Ríos Province, respectively. For N. caninum, a cluster of high risk of seropositive flocks/herds was detected in the north of Santa Fe Province. The only explanatory variable associated to N. caninum positivity was animal species (p = 0.003). Sheep had 1.73 times more risk to be positive to N. caninum than goats. The absence of antibodies against B. melitensis in all the analyzed animals is an important finding for the public health of the region. Since bordering provinces have infected flocks/herds, brucellosis in small ruminants should be under epidemiologic surveillance in the region.
Collapse
Affiliation(s)
- Maria Belen Novoa
- Instituto de Investigación de la Cadena Láctea (INTA-CONICET), Ruta 34, km 227, CP 2300, Rafaela, Santa Fe, Argentina.
| | - Nerina Aguirre
- Instituto de Investigación de la Cadena Láctea (INTA-CONICET), Ruta 34, km 227, CP 2300, Rafaela, Santa Fe, Argentina
| | - Nadia Ormaechea
- Instituto de Ciencias Veterinarias del Litoral (ICiVet-Litoral), Kreder 2805, CP 3080, Esperanza, Santa Fe, Argentina
| | - Sebastian Palmero
- Facultad de Ciencias Veterinarias, Universidad Nacional del Litoral (UNL), Kreder 2805, CP 3080, Esperanza, Santa Fe, Argentina
| | - Beatriz Valentini
- Instituto de Investigación de la Cadena Láctea (INTA-CONICET), Ruta 34, km 227, CP 2300, Rafaela, Santa Fe, Argentina
| | - Victor Vanzini
- Instituto de Investigación de la Cadena Láctea (INTA-CONICET), Ruta 34, km 227, CP 2300, Rafaela, Santa Fe, Argentina
| | - Ana Ines Molineri
- Instituto de Investigación de la Cadena Láctea (INTA-CONICET), Ruta 34, km 227, CP 2300, Rafaela, Santa Fe, Argentina
| |
Collapse
|
53
|
Denis J, Lemoine JP, L'ollivier C, Deleplancque AS, Fricker Hidalgo H, Pelloux H, Pomares C, Cimon B, Paris L, Houzé S, Villena I, Villard O. Contribution of serology in congenital toxoplasmosis diagnosis: results from a 10-year French retrospective study. J Clin Microbiol 2023; 61:e0035423. [PMID: 37728898 PMCID: PMC10595068 DOI: 10.1128/jcm.00354-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 07/11/2023] [Indexed: 09/22/2023] Open
Abstract
This study aimed to evaluate different serological strategies for the postnatal diagnosis of congenital toxoplasmosis (CT) and establish a biological algorithm for CT diagnosis. The study analyzed serological data of immunoglobulins M, A, and G (IgM, IgA, IgG) performed by immunoenzymatic and compared immunological profile (CIP) assays in 668 newborns with CT diagnosis across four testing periods: P1 (D0- D10), P2 (D11-D35), P3 (D36-D45), and P4 (>D45). Forty-nine percent of the 668 CT cases were diagnosed during P1 and 34%, 4%, and 12% during P2, P3, and P4, respectively. CIP assays detected neosynthetized IgMs/IgGs in 98% of CT cases diagnosed during P1, while IgMs and IgAs were detected in 90% and 57% of CT cases diagnosed during P2 and in 88% and 67% of diagnoses made during P3, respectively. Detection of neosynthesized IgMs/IgGs, IgMs, and IgAs by immunoassay contributed to CT diagnosis in 81%, 77%, and 60% of cases, respectively. In total, 46% of serum samples were positive for all three parameters, 27% for two, and 27% for one of the three. The study recommends using the CIP assay as standard during P1 for CT diagnosis and IgM and IgA immunoassays after P1. A clinical and biological follow-up in a specialized center with a close collaboration between biologists and clinicians is highly recommended to increase the chances of early diagnosis. Overall, this study provides useful information for the development of a biological algorithm for CT diagnosis, which can aid in early detection and appropriate treatment of this disease.
Collapse
Affiliation(s)
- Julie Denis
- Institut de Parasitologie et de Pathologie Tropicale, UR7292 Dynamique des interactions hôte pathogène, Fédération de Médecine Transrationnelle, Université de Strasbourg, Strasbourg, France
- Laboratoire de Parasitologie et Mycologie Médicale, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | | | - Coralie L'ollivier
- Centre National de Référence Toxoplasmose-Pôle sérologie, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
- IHU-Méditerranée Infection, Assistance Publique Hôpitaux de Marseille (AP-HM), Marseille, France
- Aix Marseille University, IRD, AP-HM, SSA, VITROME, IHU Méditerranée, Marseille, France
| | - Anne-Sophie Deleplancque
- Centre National de Référence Toxoplasmose-Pôle sérologie, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
- CHU Lille, Parasitology Mycology Department, Lille University, Inserm, U995 - LIRIC - Lille Inflammation Research International Center, Lille, France
| | - Hélène Fricker Hidalgo
- Centre National de Référence Toxoplasmose-Pôle sérologie, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
- Laboratory of Parasitology and Mycology, INSERM U1209, CNRS UMR5309, Grenoble-Alpes University Hospital, Institute for Advanced Biosciences, Grenoble Alpes University Hospital, Grenoble, France
| | - Hervé Pelloux
- Centre National de Référence Toxoplasmose-Pôle sérologie, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
- Laboratory of Parasitology and Mycology, INSERM U1209, CNRS UMR5309, Grenoble-Alpes University Hospital, Institute for Advanced Biosciences, Grenoble Alpes University Hospital, Grenoble, France
| | - Christelle Pomares
- Centre National de Référence Toxoplasmose-Pôle sérologie, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
- Parasitology-Mycology laboratory, Côte d'Azur University, INSERM 1065, Nice University Hospital, Nice, France
- Centre Méditerranéen de Médecine Moléculaire (C3M), U1065, Université Côte d'Azur, Inserm, Nice, France
| | - Bernard Cimon
- Laboratoire de Parasitologie-Mycologie, CHU d'Angers, Angers, France
- Centre National de Référence Toxoplasmose-Pôle sérologie, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
- Angers University, Brest University, IRF, SFR 4208 ICAT, Angers, France
| | - Luc Paris
- Centre National de Référence Toxoplasmose-Pôle sérologie, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
- Parasitology laboratory, AP-HP Pitié-Salpêtrière, Paris, France
| | - Sandrine Houzé
- Centre National de Référence Toxoplasmose-Pôle sérologie, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
- Parasitology laboratory, AP-HP, Hôpital Bichat - Claude Bernard, Paris, France
- University of Paris Cité, IRD 261, MERIT, Paris, France
| | - Isabelle Villena
- Centre National de Référence Toxoplasmose-Pôle sérologie, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
- Department of Parasitology and Medical Mycology, National Reference Centre on Toxoplasmosis, Reims Hospital, Reims, France
- Team EA 7510, SFR CAP-SANTE, Reims Champagne Ardenne University, Reims, France
| | - Odile Villard
- Institut de Parasitologie et de Pathologie Tropicale, UR7292 Dynamique des interactions hôte pathogène, Fédération de Médecine Transrationnelle, Université de Strasbourg, Strasbourg, France
- Laboratoire de Parasitologie et Mycologie Médicale, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
- Centre National de Référence Toxoplasmose-Pôle sérologie, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| |
Collapse
|
54
|
Thind AC, Mota CM, Gonçalves APN, Sha J, Wohlschlegel JA, Mineo TWP, Bradley PJ. The Toxoplasma gondii effector GRA83 modulates the host's innate immune response to regulate parasite infection. mSphere 2023; 8:e0026323. [PMID: 37768053 PMCID: PMC10597413 DOI: 10.1128/msphere.00263-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 08/07/2023] [Indexed: 09/29/2023] Open
Abstract
Toxoplasma gondii's propensity to infect its host and cause disease is highly dependent on its ability to modulate host cell functions. One of the strategies the parasite uses to accomplish this is via the export of effector proteins from the secretory dense granules. Dense granule (GRA) proteins are known to play roles in nutrient acquisition, host cell cycle manipulation, and immune regulation. Here, we characterize a novel dense granule protein named GRA83, which localizes to the parasitophorous vacuole (PV) in tachyzoites and bradyzoites. Disruption of GRA83 results in increased virulence, weight loss, and parasitemia during the acute infection, as well as a marked increase in the cyst burden during the chronic infection. This increased parasitemia was associated with an accumulation of inflammatory infiltrates in tissues in both acute and chronic infections. Murine macrophages infected with ∆gra83 tachyzoites produced less interleukin-12 (IL-12) in vitro, which was confirmed with reduced IL-12 and interferon-gamma in vivo. This dysregulation of cytokines correlates with reduced nuclear translocation of the p65 subunit of the nuclear factor-κB (NF-κB) complex. While GRA15 similarly regulates NF-κB, infection with ∆gra83/∆gra15 parasites did not further reduce p65 translocation to the host cell nucleus, suggesting these GRAs function in converging pathways. We also used proximity labeling experiments to reveal candidate GRA83 interacting T. gondii-derived partners. Taken together, this work reveals a novel effector that stimulates the innate immune response, enabling the host to limit the parasite burden. Importance Toxoplasma gondii poses a significant public health concern as it is recognized as one of the leading foodborne pathogens in the United States. Infection with the parasite can cause congenital defects in neonates, life-threatening complications in immunosuppressed patients, and ocular disease. Specialized secretory organelles, including the dense granules, play an important role in the parasite's ability to efficiently invade and regulate components of the host's infection response machinery to limit parasite clearance and establish an acute infection. Toxoplasma's ability to avoid early clearance, while also successfully infecting the host long enough to establish a persistent chronic infection, is crucial in allowing for its transmission to a new host. While multiple GRAs directly modulate host signaling pathways, they do so in various ways highlighting the parasite's diverse arsenal of effectors that govern infection. Understanding how parasite-derived effectors harness host functions to evade defenses yet ensure a robust infection is important for understanding the complexity of the pathogen's tightly regulated infection. In this study, we characterize a novel secreted protein named GRA83 that stimulates the host cell's response to limit infection.
Collapse
Affiliation(s)
- Amara C. Thind
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, California, USA
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, California, USA
| | - Caroline M. Mota
- Laboratory of Immunoparasitology “Dr. Mário Endsfeldz Camargo,” Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil
| | - Ana Paula N. Gonçalves
- Laboratory of Immunoparasitology “Dr. Mário Endsfeldz Camargo,” Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil
| | - Jihui Sha
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA
| | - James A. Wohlschlegel
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA
| | - Tiago W. P. Mineo
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, California, USA
- Laboratory of Immunoparasitology “Dr. Mário Endsfeldz Camargo,” Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil
| | - Peter J. Bradley
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, California, USA
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, California, USA
| |
Collapse
|
55
|
Doghish AS, Ali MA, Elrebehy MA, Mohamed HH, Mansour R, Ghanem A, Hassan A, Elballal MS, Elazazy O, Elesawy AE, Abdel Mageed SS, Nassar YA, Mohammed OA, Abulsoud AI. The interplay between toxoplasmosis and host miRNAs: Mechanisms and consequences. Pathol Res Pract 2023; 250:154790. [PMID: 37683390 DOI: 10.1016/j.prp.2023.154790] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 08/24/2023] [Accepted: 09/01/2023] [Indexed: 09/10/2023]
Abstract
Toxoplasmosis is one of the highly prevalent zoonotic diseases worldwide caused by the parasite Toxoplasma gondii (T. gondii). The infection with T. gondii could pass unidentified in immunocompetent individuals; however, latent cysts remain dormant in their digestive tract, but they could be shed and excreted with feces infesting the environment. However, active toxoplasmosis can create serious consequences, particularly in newborns and infected persons with compromised immunity. These complications include ocular toxoplasmosis, in which most cases cannot be treated. Additionally, it caused many stillbirths and miscarriages. Circulating miRNAs are important regulatory molecules ensuring that the normal physiological role of various organs is harmonious. Upon infection with T. gondii, the tightly regulated miRNA profile is disrupted to favor the parasite's survival and further participate in the disease pathogenesis. Interestingly, this dysregulated profile could be useful in acute and chronic disease discrimination and in providing insights into the pathomechanisms of the disease. Thus, this review sheds light on the various roles of miRNAs in signaling pathways regulation involved in the pathogenesis of T. gondii and provides insights into the application of miRNAs clinically for its diagnosis and prognosis.
Collapse
Affiliation(s)
- Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo 11231, Egypt.
| | - Mohamed A Ali
- School of Biotechnology, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Mahmoud A Elrebehy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt.
| | - Hend H Mohamed
- School of Biotechnology, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Biochemistry Department, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Reda Mansour
- Zoology and Entomology Department, Faculty of Science, Helwan University, Helwan 11795, Egypt; Biology Department, School of Biotechnology, Badr University in Cairo, Badr City, Cairo 11829, Egypt
| | - Aml Ghanem
- School of Biotechnology, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Ahmed Hassan
- School of Biotechnology, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Botany and Microbiology Department, Faculty of Science, Helwan University, Helwan 11795, Egypt
| | - Mohammed S Elballal
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Ola Elazazy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Ahmed E Elesawy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Sherif S Abdel Mageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Yara A Nassar
- Biology Department, School of Biotechnology, Badr University in Cairo, Badr City, Cairo 11829, Egypt
| | - Osama A Mohammed
- Department of Clinical Pharmacology, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Ahmed I Abulsoud
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo 11231, Egypt; Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| |
Collapse
|
56
|
Selim A, Alshammari A, Gattan HS, Alruhaili MH, Rashed GA, Shoulah S. Seroprevalence and associated risk factors for Toxoplasma gondii in water buffaloes (Bubalus bubalis) in Egypt. Comp Immunol Microbiol Infect Dis 2023; 101:102058. [PMID: 37672959 DOI: 10.1016/j.cimid.2023.102058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/22/2023] [Accepted: 09/01/2023] [Indexed: 09/08/2023]
Abstract
Toxoplasmosis is a parasitic disease caused by Toxoplasma gondii and affecting all warm-blooded animals. The available data about the epidemiological situation of T. gondii in water buffaloes in Egypt are scarce. Thus, a cross-sectional study was conducted to determine the seroprevalence of T. gondii in water buffaloes in three Egyptian governorates and to evaluate the associated risk factors for the infection. A total of 430 sera samples were examined using commercial Indirect ELISA Multi-species kit. The overall seroprevalence rate of T. gondii in examined water buffaloes was 7.4 %, and the highest rate (9.3 %) was found in Kafr ElSheikh governorate. Multivariate logistic regression analysis showed that adult buffalo (OR = 7.10; 95 % CI: 0.87-57.68; P = 0.067) and small herds (OR = 8.42; 95 % CI: 1.07-66.02; P = 0.043) were more likely than young buffalo and large herds to become infected with T. gondii. Moreover, the risk of buffaloes contracting T. gondii infection was higher in winter and especially among animals contacted with cats. It is necessary to identify risk factors in order to determine what mitigation, control, and prevention strategies to implement in order to reduce, control, and prevent T. gondii infection in domestic animals, which will in turn reduce human infection with the disease.
Collapse
Affiliation(s)
- Abdelfattah Selim
- Department of Animal Medicine (Infectious Diseases), Faculty of Veterinary Medicine, Benha University, Toukh 13736, Egypt.
| | - Ayed Alshammari
- Department of Biology, College of Science, University of Hafr Al-Batin, Hafr Al-Batin, Saudi Arabia
| | - Hattan S Gattan
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia; Special Infectious Agents Unit, King Fahad Medical Research Center, King AbdulAziz University, Jeddah, Saudi Arabia
| | - Mohammed H Alruhaili
- Special Infectious Agents Unit, King Fahad Medical Research Center, King AbdulAziz University, Jeddah, Saudi Arabia; Department of Clinical Microbiology and Immunology, Faculty of Medicine, King AbdulAziz University, Jeddah, Saudi Arabia
| | - Gehan A Rashed
- Department of Parasitology, Faculty of Medicine, Benha University, Benha 13511, Egypt
| | - Salma Shoulah
- Department of Animal Medicine (Infectious Diseases), Faculty of Veterinary Medicine, Benha University, Toukh 13736, Egypt
| |
Collapse
|
57
|
Ferrel A, Romano J, Panas MW, Coppens I, Boothroyd JC. Host MOSPD2 enrichment at the parasitophorous vacuole membrane varies between Toxoplasma strains and involves complex interactions. mSphere 2023; 8:e0067022. [PMID: 37341482 PMCID: PMC10449529 DOI: 10.1128/msphere.00670-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 04/25/2023] [Indexed: 06/22/2023] Open
Abstract
Toxoplasma gondii is an obligate, intracellular parasite. Infection of a cell produces a unique niche for the parasite named the parasitophorous vacuole (PV) initially composed of host plasma membrane invaginated during invasion. The PV and its membrane (parasitophorous vacuole membrane [PVM]) are subsequently decorated with a variety of parasite proteins allowing the parasite to optimally grow in addition to manipulate host processes. Recently, we reported a proximity-labeling screen at the PVM-host interface and identified host endoplasmic reticulum (ER)-resident motile sperm domain-containing protein 2 (MOSPD2) as being enriched at this location. Here we extend these findings in several important respects. First, we show that the extent and pattern of host MOSPD2 association with the PVM differ dramatically in cells infected with different strains of Toxoplasma. Second, in cells infected with Type I RH strain, the MOSPD2 staining is mutually exclusive with regions of the PVM that associate with mitochondria. Third, immunoprecipitation and liquid chromatography tandem mass spectrometry (LC-MS/MS) with epitope-tagged MOSPD2-expressing host cells reveal strong enrichment of several PVM-localized parasite proteins, although none appear to play an essential role in MOSPD2 association. Fourth, most MOSPD2 associating with the PVM is newly translated after infection of the cell and requires the major functional domains of MOSPD2, identified as the CRAL/TRIO domain and tail anchor, although these domains were not sufficient for PVM association. Lastly, ablation of MOSPD2 results in, at most, a modest impact on Toxoplasma growth in vitro. Collectively, these studies provide new insight into the molecular interactions involving MOSPD2 at the dynamic interface between the PVM and the host cytosol. IMPORTANCE Toxoplasma gondii is an intracellular pathogen that lives within a membranous vacuole inside of its host cell. This vacuole is decorated by a variety of parasite proteins that allow it to defend against host attack, acquire nutrients, and interact with the host cell. Recent work identified and validated host proteins enriched at this host-pathogen interface. Here, we follow up on one candidate named MOSPD2 shown to be enriched at the vacuolar membrane and describe it as having a dynamic interaction at this location depending on a variety of factors. Some of these include the presence of host mitochondria, intrinsic domains of the host protein, and whether translation is active. Importantly, we show that MOSPD2 enrichment at the vacuole membrane differs between strains indicating active involvement of the parasite with this phenotype. Altogether, these results shed light on the mechanism and role of protein associations in the host-pathogen interaction.
Collapse
Affiliation(s)
- Abel Ferrel
- Department of Microbiology and Immunology, Stanford School of Medicine, Stanford, California, USA
| | - Julia Romano
- Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Michael W. Panas
- Department of Microbiology and Immunology, Stanford School of Medicine, Stanford, California, USA
| | - Isabelle Coppens
- Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - John C. Boothroyd
- Department of Microbiology and Immunology, Stanford School of Medicine, Stanford, California, USA
| |
Collapse
|
58
|
Zhang R, Zheng W, Daugschies A, Bangoura B. Monocyte-Derived Chicken Macrophages Exposed to Eimeria tenella Sporozoites Display Reduced Susceptibility to Invasion by Toxoplasma gondii Tachyzoite. Microorganisms 2023; 11:1999. [PMID: 37630559 PMCID: PMC10460027 DOI: 10.3390/microorganisms11081999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 07/28/2023] [Accepted: 07/30/2023] [Indexed: 08/27/2023] Open
Abstract
Both Eimeria tenella and Toxoplasma gondii are common apicomplexan parasites in chickens. Host cell invasion by both protozoans includes gliding motility, host cell attachment and active penetration. Chicken macrophages as phagocytic cells participate in the innate host immune response against these two parasites. In this study, primary chicken monocyte-derived macrophages (MM) were infected with both pathogens to investigate mutual and host-parasite interactions. MM cultures were assigned to groups that were infected with E. tenella, T. gondii or both. In co-infected cultures, MM were first exposed to E. tenella sporozoites for 2 h. Afterwards, T. gondii tachyzoite infection was performed. Live-cell imaging was carried out to observe cell invasion and survival of T. gondii by single parasite tracking over a period of 20 h post infection (hpi). Quantitative analysis for parasite replication was performed by real-time quantitative PCR (qPCR) at 2, 6, 12 and 24 hpi. Overall, the ability of T. gondii to penetrate the cell membrane of the potential host cell was reduced, although high motility was displayed. We found that T. gondii tachyzoites adhered for more than 4 h to macrophages during early co-infection. qPCR results confirmed that significantly less T. gondii entered in E. tenella-activated MM at 2 hpi, and a reduced proportion of intracellular T. gondii survived and replicated in these cells at 24 hpi. We conclude that E. tenella modulates host cell responses to another apicomplexan agent, T. gondii, reducing active invasion and multiplication in chicken primary macrophages.
Collapse
Affiliation(s)
- Runhui Zhang
- Key Laboratory of Animal Medicine, Southwest Minzu University of Sichuan Province, Southwest Minzu University, Chengdu 610225, China
| | - Wanpeng Zheng
- Institute of Parasitology, Centre for Infectious Diseases, Leipzig University, 04103 Leipzig, Germany; (W.Z.); (A.D.)
| | - Arwid Daugschies
- Institute of Parasitology, Centre for Infectious Diseases, Leipzig University, 04103 Leipzig, Germany; (W.Z.); (A.D.)
- Albrecht-Daniel-Thaer-Institute, 04103 Leipzig, Germany
| | - Berit Bangoura
- Department of Veterinary Sciences, University of Wyoming, Laramie, WY 82071, USA;
| |
Collapse
|
59
|
Matas Méndez P, Fuentes Corripio I, Montoya Matute A, Bailo Barroso B, Grande Gómez R, Apruzzese Rubio A, Ponce Gordo F, Mateo Barrientos M. Prevalence of Toxoplasma gondii in Endangered Wild Felines ( Felis silvestris and Lynx pardinus) in Spain. Animals (Basel) 2023; 13:2488. [PMID: 37570297 PMCID: PMC10417606 DOI: 10.3390/ani13152488] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/20/2023] [Accepted: 07/28/2023] [Indexed: 08/13/2023] Open
Abstract
The wildcat (Felis silvestris) and the Iberian lynx (Lynx pardinus) are important species in Spain, considered as near-threatened and endangered, respectively. Both can be infected by Toxoplasma gondii, a parasite that can cause morbidity and mortality in transplacentally-infected or immunocompromised mammals. The data on the prevalence of this parasite in wild populations of these species in Spain are outdated. The objective of this study was to update information and evaluate the role of these felines in parasite epidemiology and the potential impact of the parasite on their conservation. Blood and fecal samples were collected from captured animals, as well as the tongue, diaphragm, and spleen, from animals killed in road accidents in central Spain. An indirect fluorescent antibody test (IFAT) was used to detect parasite antibodies in serum, microscopy and molecular analysis were used to detect oocysts in feces, and molecular analysis was used to determine the existence of tissue cysts. Seroprevalence was 85% in wildcats and 45% in lynx, and parasite DNA was detected in the feces of one wildcat and in tissue samples from 10 wildcats and 11 Iberian lynxes. These results highlight the epidemiological importance and high risk of T. gondii infection in animals and humans in the studied areas. Considering feline susceptibility to infection, monitoring programs are needed to assess the health status of wild felines.
Collapse
Affiliation(s)
- Pablo Matas Méndez
- Facultad de Veterinaria, Universidad Alfonso X el Sabio, Villanueva de la Cañada, 28691 Madrid, Spain;
| | - Isabel Fuentes Corripio
- Laboratorio de Referencia e Investigación en Parasitología, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid, Spain; (I.F.C.); (B.B.B.)
| | - Ana Montoya Matute
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad Complutense, 28040 Madrid, Spain;
| | - Begoña Bailo Barroso
- Laboratorio de Referencia e Investigación en Parasitología, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid, Spain; (I.F.C.); (B.B.B.)
| | - Rebeca Grande Gómez
- Technical Assistence, General Direction of Natural Environment and Biodiversity, Ministry of Sustainable Development, Autonomous Community of Castilla-La Mancha, 45007 Toledo, Spain; (R.G.G.); (A.A.R.)
| | - Ariadna Apruzzese Rubio
- Technical Assistence, General Direction of Natural Environment and Biodiversity, Ministry of Sustainable Development, Autonomous Community of Castilla-La Mancha, 45007 Toledo, Spain; (R.G.G.); (A.A.R.)
| | - Francisco Ponce Gordo
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense, 28040 Madrid, Spain
| | - Marta Mateo Barrientos
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense, 28040 Madrid, Spain
| |
Collapse
|
60
|
Abdugheni R, Li L, Yang ZN, Huang Y, Fang BZ, Shurigin V, Mohamad OAA, Liu YH, Li WJ. Microbial Risks Caused by Livestock Excrement: Current Research Status and Prospects. Microorganisms 2023; 11:1897. [PMID: 37630456 PMCID: PMC10456746 DOI: 10.3390/microorganisms11081897] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/21/2023] [Accepted: 07/25/2023] [Indexed: 08/27/2023] Open
Abstract
Livestock excrement is a major pollutant yielded from husbandry and it has been constantly imported into various related environments. Livestock excrement comprises a variety of microorganisms including certain units with health risks and these microorganisms are transferred synchronically during the management and utilization processes of livestock excrement. The livestock excrement microbiome is extensively affecting the microbiome of humans and the relevant environments and it could be altered by related environmental factors as well. The zoonotic microorganisms, extremely zoonotic pathogens, and antibiotic-resistant microorganisms are posing threats to human health and environmental safety. In this review, we highlight the main feature of the microbiome of livestock excrement and elucidate the composition and structure of the repertoire of microbes, how these microbes transfer from different spots, and they then affect the microbiomes of related habitants as a whole. Overall, the environmental problems caused by the microbiome of livestock excrement and the potential risks it may cause are summarized from the microbial perspective and the strategies for prediction, prevention, and management are discussed so as to provide a reference for further studies regarding potential microbial risks of livestock excrement microbes.
Collapse
Affiliation(s)
- Rashidin Abdugheni
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Ürümqi 830011, China
| | - Li Li
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Ürümqi 830011, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhen-Ni Yang
- Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yin Huang
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Ürümqi 830011, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bao-Zhu Fang
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Ürümqi 830011, China
| | - Vyacheslav Shurigin
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Ürümqi 830011, China
| | - Osama Abdalla Abdelshafy Mohamad
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Ürümqi 830011, China
| | - Yong-Hong Liu
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Ürümqi 830011, China
| | - Wen-Jun Li
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Ürümqi 830011, China
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| |
Collapse
|
61
|
Sun HC, Deng PM, Fu Y, Deng JH, Xie RH, Huang J, Qi M, Shi TY. Protective efficacy of Toxoplasma gondii GRA12 or GRA7 recombinant proteins encapsulated in PLGA nanoparticles against acute Toxoplasma gondii infection in mice. Front Cell Infect Microbiol 2023; 13:1209755. [PMID: 37502604 PMCID: PMC10368986 DOI: 10.3389/fcimb.2023.1209755] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 06/26/2023] [Indexed: 07/29/2023] Open
Abstract
Background Toxoplasma gondii is an apicomplexan parasite that affects the health of humans and livestock, and an effective vaccine is urgently required. Nanoparticles can modulate and improve cellular and humoral immune responses. Methods In the current study, poly (D, L-lactic-co-glycolic acid) (PLGA) nanoparticles were used as a delivery system for the T. gondii dense granule antigens GRA12 and GRA7. BALB/c mice were injected with the vaccines and protective efficacy was evaluated. Results Mice immunized with PLGA+GRA12 exhibited significantly higher IgG, and a noticeable predominance of IgG2a over IgG1 was also observed. There was a 1.5-fold higher level of lymphocyte proliferation in PLGA+GRA12-injected mice compared to Alum+GRA12-immunized mice. Higher levels of IFN-g and IL-10 and a lower level of IL-4 were detected, indicating that Th1 and Th2 immune responses were induced but the predominant response was Th1. There were no significant differences between Alum+GRA7-immunized and PLGA+GRA7-immunized groups. Immunization with these four vaccines resulted in significantly reduced parasite loads, but they were lowest in PLGA+GRA12-immunized mice. The survival times of mice immunized with PLGA+GRA12 were also significantly longer than those of mice in the other vaccinated groups. Conclusion The current study indicated that T. gondii GRA12 recombinant protein encapsulated in PLGA nanoparticles is a promising vaccine against acute toxoplasmosis, but PLGA is almost useless for enhancing the immune response induced by T. gondii GRA7 recombinant protein.
Collapse
Affiliation(s)
- Hong-chao Sun
- Institute of Animal Husbandry and Veterinary Medicine, Department of Animal Parasitology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Pu-ming Deng
- Institute of Animal Science and Technology, Department of Animal Diseases Diagnosis and Control of Xinjiang Production & Construction Corps, Tarim University, Alar, China
| | - Yuan Fu
- Institute of Animal Husbandry and Veterinary Medicine, Department of Animal Parasitology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Jin-hua Deng
- Institute of Animal Science and Technology, Department of Animal Diseases Diagnosis and Control of Xinjiang Production & Construction Corps, Tarim University, Alar, China
| | - Rong-hui Xie
- Department of Animal Epidemic Surveillance, Zhejiang Provincial Animal Disease Prevention and Control Center, Hangzhou, China
| | - Jing Huang
- Department of Animal Epidemic Surveillance, Zhejiang Provincial Animal Disease Prevention and Control Center, Hangzhou, China
| | - Meng Qi
- Institute of Animal Science and Technology, Department of Animal Diseases Diagnosis and Control of Xinjiang Production & Construction Corps, Tarim University, Alar, China
| | - Tuan-yuan Shi
- Institute of Animal Husbandry and Veterinary Medicine, Department of Animal Parasitology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|
62
|
Zhu S, VanWormer E, Martínez-López B, Bahia-Oliveira LMG, DaMatta RA, Rodrigues PS, Shapiro K. Quantitative Risk Assessment of Oocyst Versus Bradyzoite Foodborne Transmission of Toxoplasma gondii in Brazil. Pathogens 2023; 12:870. [PMID: 37513717 PMCID: PMC10384504 DOI: 10.3390/pathogens12070870] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 06/16/2023] [Accepted: 06/18/2023] [Indexed: 07/30/2023] Open
Abstract
Toxoplasma gondii is a globally distributed zoonotic protozoan parasite. Infection with T. gondii can cause congenital toxoplasmosis in developing fetuses and acute outbreaks in the general population, and the disease burden is especially high in South America. Prior studies found that the environmental stage of T. gondii, oocysts, is an important source of infection in Brazil; however, no studies have quantified this risk relative to other parasite stages. We developed a Bayesian quantitative risk assessment (QRA) to estimate the relative attribution of the two primary parasite stages (bradyzoite and oocyst) that can be transmitted in foods to people in Brazil. Oocyst contamination in fruits and greens contributed significantly more to overall estimated T. gondii infections than bradyzoite-contaminated foods (beef, pork, poultry). In sensitivity analysis, treatment, i.e., cooking temperature for meat and washing efficiency for produce, most strongly affected the estimated toxoplasmosis incidence rate. Due to the lack of regional food contamination prevalence data and the high level of uncertainty in many model parameters, this analysis provides an initial estimate of the relative importance of food products. Important knowledge gaps for oocyst-borne infections were identified and can drive future studies to improve risk assessments and effective policy actions to reduce human toxoplasmosis in Brazil.
Collapse
Affiliation(s)
- Sophie Zhu
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - Elizabeth VanWormer
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska, Lincoln, NE 68588, USA
- School of Natural Resources, University of Nebraska, Lincoln, NE 68588, USA
| | - Beatriz Martínez-López
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | | | - Renato Augusto DaMatta
- Laboratory of Cell and Tissue Biology, Universidade Estadual do Norte Fluminense, Campos dos Goytacazes, Rio de Janeiro 28013-602, Brazil
| | - Pedro Souto Rodrigues
- Laboratory of Cell and Tissue Biology, Universidade Estadual do Norte Fluminense, Campos dos Goytacazes, Rio de Janeiro 28013-602, Brazil
| | - Karen Shapiro
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| |
Collapse
|
63
|
Doline FR, Farinhas JH, Biondo LM, de Oliveira PRF, Rodrigues NJL, Patrício KP, Mota RA, Langoni H, Pettan-Brewer C, Giuffrida R, Santarém VA, de Castro WAC, dos Santos AP, Kmetiuk LB, Biondo AW. Toxoplasma gondii exposure in Brazilian indigenous populations, their dogs, environment, and healthcare professionals. One Health 2023; 16:100567. [PMID: 37363212 PMCID: PMC10288134 DOI: 10.1016/j.onehlt.2023.100567] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 05/13/2023] [Accepted: 05/15/2023] [Indexed: 06/28/2023] Open
Abstract
Although Toxoplasma gondii exposure has been reported in indigenous populations worldwide, a One Health approach has not been applied to date. This study concurrently assessed T. gondii exposure in indigenous populations, and their dogs, environment, and indigenous or non-indigenous healthcare professionals (HPs). Human and dog serum samples from 9 indigenous communities in Brazil were assessed by indirect immunofluorescence antibody test for anti-T. gondii antibodies. Soil samples (30 per community) were processed with PCR to amplify T. gondii DNA. Associated risk factors and seroprevalence were analyzed using logistic regression models. Human seropositivity and type of water source were assessed by generalized linear mixed model (GLMM) with binomial error distribution, and game meat consumption with chi-squared test. Overall, 225/463 (49%) indigenous persons were seropositive for anti-T. gondii antibodies. Of all the HPs, 67/168 (40%) were positive, and included 54/147 (37%) positive non-indigenous HPs. Indigenous persons more likely to be seropositive compared with non-indigenous HPs (OR: 1.63; 95% CI: 1.11-2.39). A total of 97/253 (38%) dogs were seropositive and highly associated with seropositive owners (p < 0.001). Based on univariate analysis for indigenous individuals, state location of community (p < 0.001), ethnicity (p < 0.001), consumption of game meat (p < 0.001), type of water source (p < 0.001), and educational level (p = 0.026) were associated with seropositivity. Logistic regression showed that indigenous seropositivity was associated with eating game meat (p = 0.002), drinking water from rivers (p < 0.001), and inversely proportional to the educational level. According to univariate analysis for non-indigenous HP, age (p = 0.005), frequency of visits to the indigenous populations (p < 0.001), consumption of water at the indigenous communities (p < 0.001), and ingestion of raw meat (p = 0.023) were associated with T. gondii seropositivity. Logistic regression revealed living outdoors (p = 0.042), habit of hunting (p = 0.008), and drinking river water (p = 0.007) as risk factors associated to seropositivity in dogs. In addition, indigenous communities lacking water treatment had higher seroprevalence for all groups including indigenous persons (GLMM; z = -7.153; p < 0.001), their dogs (GLMM; z = -2.405; p = 0.0162), and all HPs (GLMM; z = -2.420; p = 0.0155). Human seropositivity was associated with that of their dogs (p < 0.001). A single soil sample, out of 270 (0.37%), was positive for T. gondii by PCR. Our results indicate water source is a risk for human and dog toxoplasmosis in indigenous communities; both share similar exposure. Moreover, quality water access was shown to be crucial to prevent toxoplasmosis in both total and non-indigenous HPs who work in these indigenous communities.
Collapse
Affiliation(s)
- Fernando Rodrigo Doline
- Graduate College of Cellular and Molecular Biology, Federal University of Paraná, Curitiba, PR, Brazil
| | - João Henrique Farinhas
- Graduate College of Cellular and Molecular Biology, Federal University of Paraná, Curitiba, PR, Brazil
| | - Leandro Meneguelli Biondo
- National Institute of the Atlantic Forest (INMA), Brazilian Ministry of Science, Technology, and Innovation, Santa Teresa, Espirito Santo, Brazil
| | | | - Nássarah Jabur Lot Rodrigues
- Department for Animal Production and Preventive Veterinary Medicine department for Animal Production and Preventive Veterinary Medicine, Botucatu, SP, Brazil
| | - Karina Pavão Patrício
- Department of Public Health, Medical School, São Paulo State University, Botucatu, SP, Brazil
| | - Rinaldo Aparecido Mota
- Graduate College of Animal Bioscience, Federal Rural University of Pernambuco, Recife, PE, Brazil
| | - Helio Langoni
- Department for Animal Production and Preventive Veterinary Medicine department for Animal Production and Preventive Veterinary Medicine, Botucatu, SP, Brazil
| | - Christina Pettan-Brewer
- Department of Comparative Medicine, School of Medicine, University of Washington, Seattle, WA, USA
| | - Rogério Giuffrida
- Laboratory of Veterinary Parasitology, Veterinary Teaching Hospital, University of Western São Paulo, Presidente Prudente, SP, Brazil
| | - Vamilton Alvares Santarém
- Laboratory of Veterinary Parasitology, Veterinary Teaching Hospital, University of Western São Paulo, Presidente Prudente, SP, Brazil
| | - Wagner Antônio Chiba de Castro
- Latin-American Institute of Life and Nature Sciences, Federal University for Latin American Integration, Foz do Iguaçu, PR, Brazil
| | | | - Louise Bach Kmetiuk
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN, USA
| | - Alexander Welker Biondo
- Graduate College of Cellular and Molecular Biology, Federal University of Paraná, Curitiba, PR, Brazil
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
64
|
Salem DA, Al-Ghamdi AH, Alghamdi JM, Ismail A, Alghamdi BA, Abdelrazek E. Toxoplasma and Toxocara seropositivity in juvenile idiopathic arthritis and its relation to disease activity and type of therapies. Food Waterborne Parasitol 2023; 31:e00195. [PMID: 37256200 PMCID: PMC10225886 DOI: 10.1016/j.fawpar.2023.e00195] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 05/03/2023] [Accepted: 05/18/2023] [Indexed: 06/01/2023] Open
Abstract
Juvenile idiopathic arthritis (JIA) is the most frequently encountered autoimmune rheumatic disease in children. To our knowledge, this is the first study aimed to estimate the frequency of Toxoplasma gondii (T. gondii) and Toxocara seropositivity in JIA and assess its relation to the disease activity, IL-10 levels, and type of the received therapies. This study was conducted on 43 JIA patients and 50 cases as a control group. All participants were evaluated by disease activity score (JADAS-27), and the presence of specific IgG and IgM antibodies against T. gondii and IgG against Toxocara species using an enzyme-linked immunosorbent assay. IL-10 serum levels were measured using an ELISA kit. The results show that JIA patients have significantly higher seropositivity for anti-T. gondii IgG compared to control subjects (p = 0.02) and a non-significant difference for Toxocara seropositivity (p = 0.41). All participants were negative for IgM anti-Toxoplasma gondii. Demographic parameters did not significantly affect these seroprevalence frequencies (p > 0.05). IL-10 was significantly higher among JIA patients compared to controls (p = 0.007) and seropositive anti-T. gondii JIA exhibited significantly higher IL-10 levels compared to seronegative ones (p = 0.03). Seropositive anti-T. gondii IgG JIA patients had a significantly higher disease activity score (JADAS-27) than seronegative anti-T. gondii IgG cases (p = 0.02). There was a significant positive correlation between anti-T. gondii IgG and JADAS-27 score (p = 0.009). A significant association was detected between T. gondii infection and DMARDs including the biological therapies (p < 0.05). Overall, this study supports a possible association between T. gondii infection and JIA, IL-10, disease activity score, and DMARDs therapies. It is possible that IL-10 plays a role in the development of JIA and contributes to persistent asymptomatic infection with T. gondii in JIA patients. As a result, a recommendation for screening tests for T. gondii infection among JIA patients is crucial before and during commencing DMARDs therapies and closely monitoring early signs of infection.
Collapse
Affiliation(s)
- Doaa A. Salem
- Department of Medical Parasitology, Mansoura University, Faculty of Medicine, Egypt
| | | | | | - Amira Ismail
- Department of Medical Parasitology, Mansoura University, Faculty of Medicine, Egypt
| | - Bakheet A. Alghamdi
- Department of Emergency Medicine, King Saud Medical City, Riyadh, Saudi Arabia
| | - Eman Abdelrazek
- Department of Rheumatology and Immunology, Mansoura University, Faculty of Medicine, Egypt
| |
Collapse
|
65
|
Dámek F, Fremaux B, Aubert D, Thoumire S, Delsart M, Martin JL, Vuillermet S, Opsteegh M, Jokelainen P, Le Roux D, Boireau P, Villena I, Blaga R. Inactivation of Toxoplasma gondii in dry sausage and processed pork, and quantification of the pathogen in pig tissues prior to production. Food Waterborne Parasitol 2023; 31:e00194. [PMID: 37250657 PMCID: PMC10209801 DOI: 10.1016/j.fawpar.2023.e00194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 05/04/2023] [Accepted: 05/14/2023] [Indexed: 05/31/2023] Open
Abstract
Toxoplasma gondii is an important zoonotic foodborne parasite. Meat of infected animals appears to be a major source of infection in Europe. Pork is the most consumed meat in France, with dry sausages well represented. The risk of transmission via consumption of processed pork products is largely unknown, mainly since processing will affect viability but may not entirely inactivate all T. gondii parasites. We investigated the presence and concentration of T. gondii DNA in the shoulder, breast, ham, and heart of pigs orally inoculated with 1000 oocysts (n = 3) or tissue cysts (n = 3) and naturally infected pigs (n = 2), by means of magnetic capture qPCR (MC-qPCR). Muscle tissues of experimentally infected pigs were further used to evaluate the impact of manufacturing processes of dry sausages, including different concentrations of nitrates (0, 60, 120, 200 ppm), nitrites (0, 60, 120 ppm), and NaCl (0, 20, 26 g/kg), ripening (2 days at 16-24 °C) and drying (up to 30 days at 13 °C), by a combination of mouse bioassay, qPCR and MC-qPCR. DNA of T. gondii was detected in all eight pigs, including in 41.7% (10/24) of muscle samples (shoulder, breast and ham) and 87.5% (7/8) of hearts by MC-qPCR. The number of parasites per gram of tissue was estimated to be the lowest in the hams (arithmetic mean (M) = 1, standard deviation (SD) = 2) and the highest in the hearts (M = 147, SD = 233). However, the T. gondii burden estimates varied on the individual animal level, the tissue tested and the parasitic stage used for the experimental infection (oocysts or tissue cysts). Of dry sausages and processed pork, 94.4% (51/54) were positive for T. gondii by MC-qPCR or qPCR, with the mean T. gondii burden estimate equivalent to 31 parasites per gram (SD = 93). Only the untreated processed pork sample collected on the day of production was positive by mouse bioassay. The results suggest an uneven distribution of T. gondii in the tissues examined, and possibly an absence or a concentration below the detection limit in some of them. Moreover, the processing of dry sausages and processed pork with NaCl, nitrates, and nitrites has an impact on the viability of T. gondii from the first day of production. Results are valuable input for future risk assessments aiming to estimate the relative contribution of different sources of T. gondii human infections.
Collapse
Affiliation(s)
- Filip Dámek
- Anses, INRAE, Ecole Nationale Vétérinaire d'Alfort, Laboratoire de Santé Animale, BIPAR, Maisons-Alfort, France
| | - Bastien Fremaux
- IFIP - Institut du Porc, Ecole Nationale Vétérinaire d'Alfort, Maisons-Alfort, France
| | - Dominique Aubert
- National Reference Centre on Toxoplasmosis, Toxoplasma Biological Resources Centre, CHU Reims and EA7510, SFR CAP-Santé, University of Reims Champagne-Ardenne, USC EpiToxo Anses, France
| | - Sandra Thoumire
- Anses, INRAE, Ecole Nationale Vétérinaire d'Alfort, Laboratoire de Santé Animale, BIPAR, Maisons-Alfort, France
| | - Maxime Delsart
- Anses, Ecole nationale vétérinaire d'Alfort, Laboratoire de Santé Animale USC EPIMAI, Maisons-Alfort, France
| | - Jean-Luc Martin
- IFIP - Institut du Porc, Ecole Nationale Vétérinaire d'Alfort, Maisons-Alfort, France
| | - Sandra Vuillermet
- Anses, INRAE, Ecole Nationale Vétérinaire d'Alfort, Laboratoire de Santé Animale, BIPAR, Maisons-Alfort, France
| | - Marieke Opsteegh
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Pikka Jokelainen
- Statens Serum Institut, Infectious Disease Preparedness, Copenhagen, Denmark
| | - Delphine Le Roux
- Anses, INRAE, Ecole Nationale Vétérinaire d'Alfort, Laboratoire de Santé Animale, BIPAR, Maisons-Alfort, France
| | - Pascal Boireau
- Anses, INRAE, Ecole Nationale Vétérinaire d'Alfort, Laboratoire de Santé Animale, BIPAR, Maisons-Alfort, France
| | - Isabelle Villena
- National Reference Centre on Toxoplasmosis, Toxoplasma Biological Resources Centre, CHU Reims and EA7510, SFR CAP-Santé, University of Reims Champagne-Ardenne, USC EpiToxo Anses, France
| | - Radu Blaga
- Anses, INRAE, Ecole Nationale Vétérinaire d'Alfort, Laboratoire de Santé Animale, BIPAR, Maisons-Alfort, France
| |
Collapse
|
66
|
Thind AC, Mota CM, Gonçalves APN, Sha J, Wohlschlegel JA, Mineo TWP, Bradley PJ. The Toxoplasma gondii effector GRA83 modulates the host's innate immune response to regulate parasite infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.31.543158. [PMID: 37398161 PMCID: PMC10312501 DOI: 10.1101/2023.05.31.543158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Toxoplasma gondii 's propensity to infect its host and cause disease is highly dependent on its ability to modulate host cell functions. One of the strategies the parasite uses to accomplish this is via the export of effector proteins from the secretory dense granules. Dense granule (GRA) proteins are known to play roles in nutrient acquisition, host cell cycle manipulation, and immune regulation. Here, we characterize a novel dense granule protein named GRA83, which localizes to the parasitophorous vacuole in tachyzoites and bradyzoites. Disruption of GRA83 results in increased virulence, weight loss, and parasitemia during the acute infection, as well as a marked increase in the cyst burden during the chronic infection. This increased parasitemia was associated with an accumulation of inflammatory infiltrates in tissues in both the acute and chronic infection. Murine macrophages infected with Δ gra83 tachyzoites produced less interleukin-12 (IL-12) in vitro , which was confirmed with reduced IL-12 and interferon gamma (IFN-γ) in vivo . This dysregulation of cytokines correlates with reduced nuclear translocation of the p65 subunit of the NF-κB complex. While GRA15 similarly regulates NF-κB, infection with Δ gra83/ Δ gra15 parasites did not further reduce p65 translocation to the host cell nucleus, suggesting these GRAs function in converging pathways. We also used proximity labelling experiments to reveal candidate GRA83 interacting T. gondii derived partners. Taken together, this work reveals a novel effector that stimulates the innate immune response, enabling the host to limit parasite burden. Importance Toxoplasma gondii poses a significant public health concern as it is recognized as one of the leading foodborne pathogens in the United States. Infection with the parasite can cause congenital defects in neonates, life-threatening complications in immunosuppressed patients, and ocular disease. Specialized secretory organelles, including the dense granules, play an important role in the parasite's ability to efficiently invade and regulate components of the host's infection response machinery to limit parasite clearance and establish an acute infection. Toxoplasma' s ability to avoid early clearance, while also successfully infecting the host long enough to establish a persistent chronic infection, is crucial in allowing for its transmission to a new host. While multiple GRAs directly modulate host signaling pathways, they do so in various ways highlighting the parasite's diverse arsenal of effectors that govern infection. Understanding how parasite-derived effectors harness host functions to evade defenses yet ensure a robust infection are important for understanding the complexity of the pathogen's tightly regulated infection. In this study, we characterize a novel secreted protein named GRA83 that stimulates the host cell's response to limit infection.
Collapse
|
67
|
Finkensieper J, Mayerle F, Rentería-Solís Z, Fertey J, Makert GR, Lange F, Besecke J, Schopf S, Poremba A, König U, Standfest B, Thoma M, Daugschies A, Ulbert S. Apicomplexan parasites are attenuated by low-energy electron irradiation in an automated microfluidic system and protect against infection with Toxoplasma gondii. Parasitol Res 2023:10.1007/s00436-023-07880-w. [PMID: 37233817 DOI: 10.1007/s00436-023-07880-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 05/14/2023] [Indexed: 05/27/2023]
Abstract
Radiation-attenuated intracellular parasites are promising immunization strategies. The irradiated parasites are able to invade host cells but fail to fully replicate, which allows for the generation of an efficient immune response. Available radiation technologies such as gamma rays require complex shielding constructions and are difficult to be integrated into pharmaceutical production processes. In this study, we evaluated for the first time low-energy electron irradiation (LEEI) as a method to generate replication-deficient Toxoplasma gondii and Cryptosporidium parvum. Similar to other radiation technologies, LEEI mainly damages nucleic acids; however, it is applicable in standard laboratories. By using a novel, continuous, and microfluidic-based LEEI process, tachyzoites of T. gondii and oocysts of C. parvum were irradiated and subsequently analyzed in vitro. The LEEI-treated parasites invaded host cells but were arrested in intracellular replication. Antibody-based analysis of surface proteins revealed no significant structural damage due to LEEI. Similarly, excystation rates of sporozoites from irradiated C. parvum oocysts were similar to those from untreated controls. Upon immunization of mice, LEEI-attenuated T. gondii tachyzoites induced high levels of antibodies and protected the animals from acute infection. These results suggest that LEEI is a useful technology for the generation of attenuated Apicomplexan parasites and has potential for the development of anti-parasitic vaccines.
Collapse
Affiliation(s)
- Julia Finkensieper
- Fraunhofer Institute for Cell Therapy and Immunology IZI, Perlickstrasse 1, 04103, Leipzig, Germany
| | - Florian Mayerle
- Fraunhofer Institute for Manufacturing Engineering and Automation IPA, Nobelstrasse 12, 70569, Stuttgart, Germany
| | - Zaida Rentería-Solís
- Institute of Parasitology, Centre for Infection Medicine, Faculty of Veterinary Medicine, Leipzig University, An den Tierkliniken 35, 04103, Leipzig, Germany
- Albrecht-Daniel-Thaer Institute, Rudolf-Breitscheid-Str. 35, 04463 Großpösna, Germany
| | - Jasmin Fertey
- Fraunhofer Institute for Cell Therapy and Immunology IZI, Perlickstrasse 1, 04103, Leipzig, Germany
| | - Gustavo R Makert
- Fraunhofer Institute for Cell Therapy and Immunology IZI, Perlickstrasse 1, 04103, Leipzig, Germany
| | - Franziska Lange
- Fraunhofer Institute for Cell Therapy and Immunology IZI, Perlickstrasse 1, 04103, Leipzig, Germany
| | - Joana Besecke
- Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, Winterbergstrasse 28, 01277, Dresden, Germany
| | - Simone Schopf
- Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, Winterbergstrasse 28, 01277, Dresden, Germany
| | - Andre Poremba
- Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, Winterbergstrasse 28, 01277, Dresden, Germany
| | - Ulla König
- Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, Winterbergstrasse 28, 01277, Dresden, Germany
| | - Bastian Standfest
- Fraunhofer Institute for Manufacturing Engineering and Automation IPA, Nobelstrasse 12, 70569, Stuttgart, Germany
| | - Martin Thoma
- Fraunhofer Institute for Manufacturing Engineering and Automation IPA, Nobelstrasse 12, 70569, Stuttgart, Germany
| | - Arwid Daugschies
- Institute of Parasitology, Centre for Infection Medicine, Faculty of Veterinary Medicine, Leipzig University, An den Tierkliniken 35, 04103, Leipzig, Germany
| | - Sebastian Ulbert
- Fraunhofer Institute for Cell Therapy and Immunology IZI, Perlickstrasse 1, 04103, Leipzig, Germany.
| |
Collapse
|
68
|
Selim A, Marzok M, Alshammari A, Al-Jabr OA, Salem M, Wakid MH. Toxoplasma gondii infection in Egyptian domestic sheep and goats: seroprevalence and risk factors. Trop Anim Health Prod 2023; 55:182. [PMID: 37129639 DOI: 10.1007/s11250-023-03603-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 04/18/2023] [Indexed: 05/03/2023]
Abstract
Toxoplasma gondii is an apicomplexan protozoan parasite that has been associated with reproductive failure in small ruminants. Although T. gondii infections in ruminants and humans have been recorded in several Egypt's governorates, but little is known about the risk factors associated with T. gondii infections. In this study, 350 sheep and 290 goat serum samples from three governorates in Egypt were examined for presence of antibodies against T. gondii, and evaluate the associate risk factors for the infection. The seroprevalence in sheep and goats was 24% and 38.28%, respectively. In sheep and goats, age, sex, the presence of cats, and hygienic conditions were identified as risk factors for T. gondii infection. In addition, the prevalence rates were significantly higher in older animals more than 2 years old, females, among animals contacted with cats, and animals living in bad hygienic condition. In conclusion, sheep and goats in the examined regions are commonly infected with T. gondii. The identification of risk variables defines the sort of actions to be implemented in order to decrease, and prevent T. gondii infection in small ruminant animals and, as a result, human infection.
Collapse
Affiliation(s)
- Abdelfattah Selim
- Department of Animal Medicine (Infectious Diseases), Faculty of Veterinary Medicine, Benha University, Toukh, 13736, Egypt.
| | - Mohamed Marzok
- Department of Clinical Sciences, College of Veterinary Medicine, King Faisal University, Al-Ahsa, 31982, Saudi Arabia.
- Department of Surgery, Faculty of Veterinary Medicine, Kafr El Sheikh University, Kafr El Sheikh, Egypt.
| | - Ayed Alshammari
- Department of Biology, College of Science, University of Hafr Al-Batin, Hafr Al-Batin, Saudi Arabia
| | - Omar A Al-Jabr
- Department of Microbiology, College of Veterinary Medicine, King Faisal University, Al-Asha, 31982, Saudi Arabia
| | - Mohamed Salem
- Department of Clinical Sciences, College of Veterinary Medicine, King Faisal University, Al-Ahsa, 31982, Saudi Arabia
- Department of Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Cairo University, Cairo, 12613, Egypt
| | - Majed H Wakid
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| |
Collapse
|
69
|
Altharawi A. Targeting Toxoplasma gondii ME49 TgAPN2: A Bioinformatics Approach for Antiparasitic Drug Discovery. Molecules 2023; 28:molecules28073186. [PMID: 37049948 PMCID: PMC10096047 DOI: 10.3390/molecules28073186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 03/29/2023] [Accepted: 03/29/2023] [Indexed: 04/07/2023] Open
Abstract
As fewer therapeutic options are available for treating toxoplasmosis, newer antiparasitic drugs that can block TgAPN2 M1 aminopeptidase are of significant value. Herein, we employed several computer-aided drug-design approaches with the objective of identifying drug molecules from the Asinex library with stable conformation and binding energy scores. By a structure-based virtual screening process, three molecules—LAS_52160953, LAS_51177972, and LAS_52506311—were identified as promising candidates, with binding affinity scores of −8.6 kcal/mol, −8.5 kcal/mol, and −8.3 kcal/mol, respectively. The compounds produced balanced interacting networks of hydrophilic and hydrophobic interactions, vital for holding the compounds at the docked cavity and stable binding conformation. The docked compound complexes with TgAPN2 were further subjected to molecular dynamic simulations that revealed mean RMSD for the LAS_52160953 complex of 1.45 Å), LAS_51177972 complex 1.02 Å, and LAS_52506311 complex 1.087 Å. Another round of binding free energy validation by MM-GBSA/MM-PBSA was done to confirm docking and simulation findings. The analysis predicted average MM-GBSA value of <−36 kcal/mol and <−35 kcal/mol by MM-PBSA. The compounds were further classified as appropriate candidates to be used as drug-like molecules and showed favorable pharmacokinetics. The shortlisted compounds showed promising biological potency against the TgAPN2 enzyme and may be used in experimental validation. They may also serve as parent structures to design novel derivatives with enhanced biological potency.
Collapse
Affiliation(s)
- Ali Altharawi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| |
Collapse
|
70
|
Kuruca L, Belluco S, Vieira-Pinto M, Antic D, Blagojevic B. Current control options and a way towards risk-based control of Toxoplasma gondii in the meat chain. Food Control 2023. [DOI: 10.1016/j.foodcont.2022.109556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
71
|
da Costa A, de Andrade HF. Toxoplasma gondii in CD36 -/- mice shows lethal infection and poor immunization with probable macrophage immune defects. Parasitol Res 2023; 122:1283-1291. [PMID: 36988683 DOI: 10.1007/s00436-023-07828-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 03/24/2023] [Indexed: 03/30/2023]
Abstract
Experimental toxoplasmosis is an excellent model for adaptive immune response. Gamma-irradiated tachyzoites or soluble tachyzoite antigen extracts (STag) induce protection against experimental toxoplasmosis in mice. Scavenger receptors recognize irradiated proteins, promote their entry into cells, and lead to antigen presentation. CD36 is a specific scavenger receptor involved in intracellular transport of free fatty acid (FFA), cellular recycling, and intracellular trafficking in lipid rafts outside the lysosomal pathways. CD36 is also associated with an altered immune response, as CD36-/- mice presented some immune defects in the cyst-forming Toxoplasma gondii. We studied T. gondii infection in CD36-/- mice, naïve or immunized, with irradiated T. gondii STags by investigating protection, antibody production, and primed macrophage transplantation. CD36-/- mice presented no resistance against the viable RH tachyzoites, even after immunization with gamma-irradiated STags that protected wild-type mice. The animals presented poor humoral responses to both immunogens despite adequate levels of serum immunoglobulins. CD36-/- mice failed to induce protection against virulent T. gondii infection with inadequate antibody production or an innate response. Irradiated antigens failed to induce antibodies in CD36-/- mice and only produced adequate levels of immunoglobulin G when transplanted with irradiated STag-primed wild-type macrophages. The CD36 pathway is necessary for humoral response against the irradiated antigen; however, several other pathways are also involved in mounting a humoral response against any antigen. CD36 is a multipurpose molecule for FFA and lipid transport, as well as for the immune response, and gamma radiation mimics the innate response by targeting irradiated antigens of this pathway.
Collapse
Affiliation(s)
- Andrea da Costa
- Protozoology Laboratory, Instituto de Medicina Tropical de São Paulo and Department Pathology, School of Medicine, Universidade de São Paulo, Av. Dr. Eneas de Carvalho Aguiar, 470, 1St Floor, São Paulo, SP, CEP 05403-000, Brazil
| | - Heitor Franco de Andrade
- Protozoology Laboratory, Instituto de Medicina Tropical de São Paulo and Department Pathology, School of Medicine, Universidade de São Paulo, Av. Dr. Eneas de Carvalho Aguiar, 470, 1St Floor, São Paulo, SP, CEP 05403-000, Brazil.
| |
Collapse
|
72
|
Kokkinaki KCG, Saridomichelakis MN, Mylonakis ME, Leontides L, Xenoulis PG. Seroprevalence of and Risk Factors for Toxoplasma gondii Infection in Cats from Greece. Animals (Basel) 2023; 13:ani13071173. [PMID: 37048429 PMCID: PMC10093379 DOI: 10.3390/ani13071173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 03/20/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023] Open
Abstract
Toxoplasmosis is one of the most important protozoan diseases with a global impact on the health of domestic cats and with zoonotic significance. The aims of this study were to determine the prevalence of seropositivity for Toxoplasma gondii in different populations of cats in Greece and to assess risk factors for seropositivity. A total of 457 cats were prospectively enrolled, and a commercially available indirect immunofluorescence antibody testing (IFAT) kit was used for the detection of anti-T. gondii immunoglobulin G (IgG) in serum. Overall, 95 (20.8%) of the 457 cats were seropositive for T. gondii. Based on multivariate analysis, factors associated with seropositivity included older age [Odds ratio (OR), 1.33; p < 0.001]; a history of cat-fight trauma (OR, 3.88; p = 0.004); and lack of vaccination against calicivirus, herpesvirus-1, panleukopenia, and rabies (OR, 10; p = 0.002). This study shows a high prevalence of seropositivity for T. gondii in cats in Greece. This implies that toxoplasmosis is still a major public health concern and that optimal strategies for the prevention of infection with T. gondii in cats should be established.
Collapse
Affiliation(s)
- Kassiopi Christina G. Kokkinaki
- Clinic of Medicine, Faculty of Veterinary Science, University of Thessaly, 224 Trikalon Str., GR-43132 Karditsa, Greece
- Correspondence: (K.C.G.K.); (P.G.X.); Tel.: +30-244-106-6053 (K.C.G.K.); +30-244-106-6085 (P.G.X.)
| | - Manolis N. Saridomichelakis
- Clinic of Medicine, Faculty of Veterinary Science, University of Thessaly, 224 Trikalon Str., GR-43132 Karditsa, Greece
| | - Mathios E. Mylonakis
- Companion Animal Clinic, School of Veterinary Medicine, Aristotle University of Thessaloniki, 11 Stavrou Voutyra Str., GR-54627 Thessaloniki, Greece
| | - Leonidas Leontides
- Laboratory of Epidemiology, Biostatistics and Animal Health Economics, Faculty of Veterinary Science, University of Thessaly, 224 Trikalon Str., GR-43132 Karditsa, Greece
| | - Panagiotis G. Xenoulis
- Clinic of Medicine, Faculty of Veterinary Science, University of Thessaly, 224 Trikalon Str., GR-43132 Karditsa, Greece
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A & M University, College Station, TX 77843, USA
- Correspondence: (K.C.G.K.); (P.G.X.); Tel.: +30-244-106-6053 (K.C.G.K.); +30-244-106-6085 (P.G.X.)
| |
Collapse
|
73
|
Marzok M, Al-Jabr OA, Salem M, Alkashif K, Sayed-Ahmed M, Wakid MH, Kandeel M, Selim A. Seroprevalence and Risk Factors for Toxoplasma gondii Infection in Horses. Vet Sci 2023; 10:vetsci10030237. [PMID: 36977276 PMCID: PMC10057672 DOI: 10.3390/vetsci10030237] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/14/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
BACKGROUND Toxoplasma gondii is classified as intracellular protozoa and is one of the major zoonotic parasites. Most warm-blooded intermediate hosts, including humans, are commonly infected by this parasite. The epidemiology of T. gondii infection in Egyptian horses is currently poorly understood. METHODS 420 blood samples were randomly collected from horses raised in four governorates in Northern Egypt (110 each from Giza and Kafr El Sheikh, and 100 each from Qalyubia and Gharbia) to investigate the existence of antibodies against T. gondii using a commercial ELISA kit, and to ascertain the risk factors for the infection. RESULTS the antibodies for T. gondii were found in 16.2% (68/420) of the examined horses, with no significant differences among the four studied governorates. The highest prevalence rate was observed in Giza. The results revealed that sex, breed, age, and contact with domestic ruminants or cats were recognized as potential risk factors. The high prevalence rate was found in mixed breed horses (OR = 2.63, 95% CI: 0.95-7.26), mares (OR = 2.35, 95% CI: 1.31-4.19), and horses aged over 10 years (OR = 2.78, 95% CI: 1.30-3.44). Moreover, the likelihood of seropositivity for T. gondii infection was higher in horses raised in environments with cats (OR = 1.97, 95% CI: 1.13-3.44, p = 0.017) or domestic ruminants (OR = 2.16, 1.21-3.86, p = 0.010). This report confirms that horses in Northern Egypt are exposed to T. gondii and thus raises the possibility that people and other animals could contract the disease. CONCLUSIONS routine examination and management of T. gondii infection in horses in these governorates is advised.
Collapse
Affiliation(s)
- Mohamed Marzok
- Department of Clinical Sciences, College of Veterinary Medicine, King Faisal University, Al-Hofuf 31982, Saudi Arabia
- Department of Surgery, Faculty of Veterinary Medicine, Kafr El Sheikh University, Kafr El Sheikh 33511, Egypt
- King Faisal University Veterinary Hospital, Al-Asha 31982, Saudi Arabia
| | - Omar A Al-Jabr
- Department of Microbiology, College of Veterinary Medicine, King Faisal University, Al-Asha 31982, Saudi Arabia
| | - Mohamed Salem
- Department of Clinical Sciences, College of Veterinary Medicine, King Faisal University, Al-Hofuf 31982, Saudi Arabia
- King Faisal University Veterinary Hospital, Al-Asha 31982, Saudi Arabia
- Department of Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Cairo University, Cairo 12613, Egypt
| | - Khalid Alkashif
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan 82722, Saudi Arabia
| | - Mohamed Sayed-Ahmed
- Department of Clinical Pharmacy, College of Pharmacy, Jazan University, Jazan 82722, Saudi Arabia
- Department of Internal Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Majed H Wakid
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mahmoud Kandeel
- Department of Pharmacology, Faculty of Veterinary Medicine, Kafr El Sheikh University, Kafr El Sheikh 33511, Egypt
- Department of Biomedical Sciences, College of Veterinary Medicine, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Abdelfattah Selim
- Department of Animal Medicine (Infectious Diseases), Faculty of Veterinary Medicine, Benha University, Toukh 13736, Egypt
| |
Collapse
|
74
|
Shams M, Heydaryan S, Bashi MC, Gorgani BN, Ghasemi E, Majidiani H, Nazari N, Irannejad H. In silico design of a novel peptide-based vaccine against the ubiquitous apicomplexan Toxoplasma gondii using surface antigens. In Silico Pharmacol 2023; 11:5. [PMID: 36960094 PMCID: PMC10027966 DOI: 10.1007/s40203-023-00140-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 01/23/2023] [Indexed: 03/25/2023] Open
Abstract
Human toxoplasmosis is a global public health concern and a commercial vaccine is still lacking. The present in silico study was done to design a novel vaccine candidate using tachyzoite-specific SAG1-realted sequence (SRS) proteins. Overlapping B-cell and strictly-chosen human MHC-I binding epitopes were predicted and connected together using appropriate spacers. Moreover, a TLR4 agonist, human high mobility group box protein 1 (HMGB1), and His-tag were added to the N- and C-terminus of the vaccine sequence. The final vaccine had 442 residues and a molecular weight of 47.71 kDa. Physico-chemical evaluation showed a soluble, highly antigenic and non-allergen protein, with coils and helices as secondary structures. The vaccine 3D model was predicted by ITASSER server, subsequently refined and was shown to possess significant interactions with human TLR4. As well, potent stimulation of cellular and humoral immunity was demonstrated upon chimeric vaccine injection. Finally, the outputs showed that this vaccine model possesses top antigenicity, which could provoke significant cell-mediated immune profile including IFN-γ, and can be utilized towards prophylactic purposes. Supplementary Information The online version contains supplementary material available at 10.1007/s40203-023-00140-w.
Collapse
Affiliation(s)
- Morteza Shams
- Zoonotic Diseases Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Saeed Heydaryan
- Department of Internal Medicine, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Mehdi Cheraghchi Bashi
- Department of Avian Diseases, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | | | - Ezatollah Ghasemi
- Department of Medical Parasitology, School of Medicine, Dezful University of Medical Sciences, Dezful, Iran
| | - Hamidreza Majidiani
- Department of Basic Medical Sciences, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Naser Nazari
- Department of Parasitology and Mycology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Hamid Irannejad
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
- Pharmaceutical Sciences Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
75
|
Nemati S, Shalileh F, Mirjalali H, Omidfar K. Toward waterborne protozoa detection using sensing technologies. Front Microbiol 2023; 14:1118164. [PMID: 36910193 PMCID: PMC9999019 DOI: 10.3389/fmicb.2023.1118164] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 01/30/2023] [Indexed: 03/14/2023] Open
Abstract
Drought and limited sufficient water resources will be the main challenges for humankind during the coming years. The lack of water resources for washing, bathing, and drinking increases the use of contaminated water and the risk of waterborne diseases. A considerable number of waterborne outbreaks are due to protozoan parasites that may remain active/alive in harsh environmental conditions. Therefore, a regular monitoring program of water resources using sensitive techniques is needed to decrease the risk of waterborne outbreaks. Wellorganized point-of-care (POC) systems with enough sensitivity and specificity is the holy grail of research for monitoring platforms. In this review, we comprehensively gathered and discussed rapid, selective, and easy-to-use biosensor and nanobiosensor technologies, developed for the early detection of common waterborne protozoa.
Collapse
Affiliation(s)
- Sara Nemati
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farzaneh Shalileh
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - Hamed Mirjalali
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kobra Omidfar
- Biosensor Research Center, Endocrinology and Metabolism Molecular–Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
76
|
Huertas-López A, Álvarez-García G, Sánchez-Sánchez R, Cantos-Barreda A, Ibáñez-López FJ, Martínez-Subiela S, Cerón JJ, Martínez-Carrasco C. A systematic review and meta-analysis of the serological diagnosis of Toxoplasma gondii infection highlight the lack of a One Health integrative research. Res Vet Sci 2023; 155:137-149. [PMID: 36682338 DOI: 10.1016/j.rvsc.2023.01.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/27/2022] [Accepted: 01/05/2023] [Indexed: 01/12/2023]
Abstract
Toxoplasma gondii is a globally distributed food-borne zoonotic parasite with numerous infection sources. The control of this zoonosis requires a One Health response that partially depends on serological monitoring in humans and animals. Herein, a systematic review and a meta-analysis were performed to analyse and compare the transdisciplinary and integrative research under the One Health approach. We searched for articles published between January 1st 2014 and September 5th 2022, focused on the development and evaluation of serological techniques for the diagnosis of T. gondii infection in humans and animals. After an exhaustive search on three scientific databases, a quality assessment was performed on 291 articles by QUADAS-2 tool, and 113 articles were finally selected. A total of 18 variables were extracted and analysed, including bibliometric characteristics, study aims and methodology. Remarkably, none of the studies included in the meta-analysis explicitly quoted the words "One Health", and only 23.9% of them alluded to the principles underlying the One Health approach; in particular, none were conducted by physician-only teams, with the majority of these studies involving interdisciplinary research teams, followed by veterinarians and by non-physician or non-veterinarian researchers. The One Health approach followed in the serodiagnosis of T. gondii still needs further integration among scientific disciplines, which is essential to design effective control strategies.
Collapse
Affiliation(s)
- Ana Huertas-López
- Interdisciplinary Laboratory of Clinical Analysis, Interlab-UMU, University of Murcia - Regional Campus of International Excellence "Campus Mare Nostrum", 30100 Espinardo, Murcia, Spain
| | - Gema Álvarez-García
- Animal Health Department, Complutense University of Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain.
| | - Roberto Sánchez-Sánchez
- Animal Health Department, Complutense University of Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain
| | - Ana Cantos-Barreda
- Department of Biochemistry and Molecular Biology-A, University of Murcia - Regional Campus of International Excellence "Campus Mare Nostrum", 30100 Espinardo, Murcia, Spain; Animal Health Department, University of Murcia - Regional Campus of International Excellence "Campus Mare Nostrum", 30100 Espinardo, Murcia, Spain
| | - Francisco Javier Ibáñez-López
- Statistical Support Section (SAE), Scientific and Research Area (ACTI), University of Murcia - Regional Campus of International Excellence "Campus Mare Nostrum", 30100 Espinardo, Murcia, Spain
| | - Silvia Martínez-Subiela
- Interdisciplinary Laboratory of Clinical Analysis, Interlab-UMU, University of Murcia - Regional Campus of International Excellence "Campus Mare Nostrum", 30100 Espinardo, Murcia, Spain
| | - José Joaquín Cerón
- Interdisciplinary Laboratory of Clinical Analysis, Interlab-UMU, University of Murcia - Regional Campus of International Excellence "Campus Mare Nostrum", 30100 Espinardo, Murcia, Spain
| | - Carlos Martínez-Carrasco
- Animal Health Department, University of Murcia - Regional Campus of International Excellence "Campus Mare Nostrum", 30100 Espinardo, Murcia, Spain
| |
Collapse
|
77
|
Wang M, Jiang W. Virulence evolution of
Toxoplasma gondii
within a multi‐host system. Evol Appl 2023; 16:721-737. [PMID: 36969145 PMCID: PMC10033858 DOI: 10.1111/eva.13530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 11/04/2022] [Accepted: 12/27/2022] [Indexed: 01/25/2023] Open
Abstract
Current research on the virulence evolution of Toxoplasma gondii is mainly conducted via experiments, and studies using mathematical models are still limited. Here, we constructed a complex cycle model of T. gondii in a multi-host system considering multiple transmission routes and cat-mouse interaction. Based on this model, we studied how the virulence of T. gondii evolves with the factors related to transmission routes and the regulation of infection on host behavior under an adaptive dynamics framework. The study shows that all factors that enhance the role of mice favored decreased virulence of T. gondii, except the decay rate of oocysts that led to different evolutionary trajectories under different vertical transmission. The same was true of the environmental infection rate of cats, whose effect was different under different vertical transmission. The effect of the regulation factor on the virulence evolution of T. gondii was the same as that of the inherent predation rate depending on its net effect on direct and vertical transmissions. The global sensitivity analysis on the evolutionary outcome suggests that changing the vertical infection rate and decay rate was most effective in regulating the virulence of T. gondii. Furthermore, the presence of coinfection would favor virulent T. gondii and make evolutionary bifurcation easy to occur. The results reveal that the virulence evolution of T. gondii had a compromise between adapting to different transmission routes and maintaining the cat-mouse interaction thereby leading to different evolutionary scenarios. This highlights the significance of evolutionary ecological feedback to evolution. In addition, the qualitative verification of T. gondii virulence evolution in different areas by the present framework will provide a new perspective for the study of evolution.
Collapse
Affiliation(s)
- Mengyue Wang
- Department of Mechanics Huazhong University of Science and Technology Wuhan China
- Hubei Key Laboratory for Engineering Structural Analysis and Safety Assessment Wuhan China
| | - Wen Jiang
- Department of Mechanics Huazhong University of Science and Technology Wuhan China
- Hubei Key Laboratory for Engineering Structural Analysis and Safety Assessment Wuhan China
| |
Collapse
|
78
|
Holzer I, Desiatkina O, Anghel N, Johns SK, Boubaker G, Hemphill A, Furrer J, Păunescu E. Synthesis and Antiparasitic Activity of New Trithiolato-Bridged Dinuclear Ruthenium(II)-arene-carbohydrate Conjugates. Molecules 2023; 28:902. [PMID: 36677958 PMCID: PMC9865825 DOI: 10.3390/molecules28020902] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/09/2023] [Accepted: 01/11/2023] [Indexed: 01/18/2023] Open
Abstract
Eight novel carbohydrate-tethered trithiolato dinuclear ruthenium(II)-arene complexes were synthesized using CuAAC ‘click’ (Cu(I)-catalyzed azide-alkyne cycloaddition) reactions, and there in vitro activity against transgenic T. gondii tachyzoites constitutively expressing β-galactosidase (T. gondii β-gal) and in non-infected human foreskin fibroblasts, HFF, was determined at 0.1 and 1 µM. When evaluated at 1 µM, seven diruthenium-carbohydrate conjugates strongly impaired parasite proliferation by >90%, while HFF viability was retained at 50% or more, and they were further subjected to the half-maximal inhibitory concentration (IC50) measurement on T. gondii β-gal. Results revealed that the biological activity of the hybrids was influenced both by the nature of the carbohydrate (glucose vs. galactose) appended on ruthenium complex and the type/length of the linker between the two units. 23 and 26, two galactose-based diruthenium conjugates, exhibited low IC50 values and reduced effect on HFF viability when applied at 2.5 µM (23: IC50 = 0.032 µM/HFF viability 92% and 26: IC50 = 0.153 µM/HFF viability 97%). Remarkably, compounds 23 and 26 performed significantly better than the corresponding carbohydrate non-modified diruthenium complexes, showing that this type of conjugates are a promising approach for obtaining new antiparasitic compounds with reduced toxicity.
Collapse
Affiliation(s)
- Isabelle Holzer
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | - Oksana Desiatkina
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | - Nicoleta Anghel
- Institute of Parasitology Vetsuisse Faculty, University of Bern, Länggass-Strasse 122, 3012 Bern, Switzerland
| | - Serena K. Johns
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
- School of Chemistry, Cardiff University, Park Place, Cardiff CF103AT, UK
| | - Ghalia Boubaker
- Institute of Parasitology Vetsuisse Faculty, University of Bern, Länggass-Strasse 122, 3012 Bern, Switzerland
| | - Andrew Hemphill
- Institute of Parasitology Vetsuisse Faculty, University of Bern, Länggass-Strasse 122, 3012 Bern, Switzerland
| | - Julien Furrer
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | - Emilia Păunescu
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| |
Collapse
|
79
|
Sint NH, Htun YM, Win TT, Mon AS, Lwin TZ, Maung LO, Win PS, Naing KM, Zaw TP, Naing PH, Tun SNL, Kyaw AA, Wunna K, Su KK, Tun KM. Seroprevalence and associated risk factors of Toxoplasma gondii infection among slaughterhouse workers in Yangon Region, Myanmar: A cross-sectional study. PLoS One 2023; 18:e0284352. [PMID: 37053192 PMCID: PMC10101469 DOI: 10.1371/journal.pone.0284352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 03/29/2023] [Indexed: 04/14/2023] Open
Abstract
BACKGROUND Toxoplasmosis, having the significant consequences affecting mortality and quality of life, is still prevalent in various places throughout the world. The major gap in surveillance for Toxoplasma gondii infection among high-risk population, slaughterhouse workers, is an obstacle for the effective policies formulation to reduce the burden of toxoplasmosis in Myanmar. Therefore, this study aimed to assess the seroprevalence of toxoplasmosis and associated factors of seropositivity among slaughterhouse workers in Yangon Region, Myanmar. METHODS A cross-sectional study that was conducted from June to November 2020 included 139 slaughterhouse workers involving at five main slaughterhouses under Yangon City Development Committee, Myanmar. The presence of IgG and IgM anti-T. gondii antibodies in serum was detected using the OnSite Toxo IgG/IgM Combo Rapid Test. A face-to-face interview was also performed using pretested structured questionnaires to obtain the detail histories: sociodemographic characteristics, level of knowledge, occupational factors, and environmental factors related to T. gondii infection. Bivariate logistic regression was used to determine the factors associated with T. gondii infection. RESULTS Of all participants, the overall seroprevalence of anti-T. gondii was 43.9% (95% CI: 35.5-52.5%), of whom 98.4% (95% CI: 91.2-100.0%) were reactive only for IgG antibody and 1.6% (95% CI: 0.0-8.8%) were reactive for IgG and IgM antibodies. The significant factors associated with the seropositivity of T. gondii antibodies were blood transfusion history (OR: 5.74, 95% CI: 1.17-28.09), low level of knowledge (OR: 2.91, 95% CI: 1.46-5.83), contact with animal organs, muscles or blood (OR: 14.29, 95% CI: 1.83-111.51), and animals most frequently slaughtered (cattle) (OR: 3.22, 95% CI: 1.16-8.93). CONCLUSIONS A high seroprevalence of toxoplasmosis was detected among slaughterhouse workers in Yangon Region and it raises a significant public health concern. Therefore, providing health education regarding toxoplasmosis, enforcement of personal hygiene practices in workplaces, the establishment of training for occupational hygiene, and commencement of the risk assessment and serological screening for toxoplasmosis are crucial to curtail the prevalence of T. gondii infection among slaughterhouse workers.
Collapse
Affiliation(s)
- Nay Hein Sint
- Department of Preventive and Social Medicine, Defence Services Medical Academy, Yangon, Myanmar
| | - Ye Minn Htun
- Department of Prevention and Research Development of Hepatitis, AIDS and Other Viral Diseases, Health and Disease Control Unit, Nay Pyi Taw, Myanmar
| | - Tun Tun Win
- Department of Preventive and Social Medicine, Defence Services Medical Academy, Yangon, Myanmar
| | - Aye Sandar Mon
- Department of Biostatistics and Medical Demography, University of Public Health, Yangon, Myanmar
| | - Thant Zaw Lwin
- Department of Preventive and Social Medicine, Defence Services Medical Academy, Yangon, Myanmar
| | - Lwin Oo Maung
- Department of Microbiology, Defence Services Medical Academy, Yangon, Myanmar
| | - Pyae Sone Win
- Department of Preventive and Social Medicine, Defence Services Medical Academy, Yangon, Myanmar
| | - Kaung Myat Naing
- Department of Preventive and Social Medicine, Defence Services Medical Academy, Yangon, Myanmar
| | - Thet Paing Zaw
- Department of Preventive and Social Medicine, Defence Services Medical Academy, Yangon, Myanmar
| | - Pyae Hpone Naing
- Department of Preventive and Social Medicine, Defence Services Medical Academy, Yangon, Myanmar
| | - Sai Nyan Lin Tun
- Traditional Medicine Research Division, Defence Services Medical Research Centre, Nay Pyi Taw, Myanmar
| | - Aung Aye Kyaw
- Department of Anaesthesiology, Defence Services Medical Academy, Yangon, Myanmar
| | - Kyaw Wunna
- Department of Microbiology, Military Institute of Nursing and Paramedical Sciences, Yangon, Myanmar
| | - Khine Khine Su
- Department of Microbiology, Defence Services Medical Academy, Yangon, Myanmar
| | - Kyaw Myo Tun
- Department of Preventive and Social Medicine, Defence Services Medical Academy, Yangon, Myanmar
| |
Collapse
|
80
|
Sing A, Berger A. Cats – Revered and Reviled – and Associated Zoonoses. ZOONOSES: INFECTIONS AFFECTING HUMANS AND ANIMALS 2023:837-914. [DOI: 10.1007/978-3-031-27164-9_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
81
|
Bregman G, Lalzar M, Livne L, Bigal E, Zemah-Shamir Z, Morick D, Tchernov D, Scheinin A, Meron D. Preliminary study of shark microbiota at a unique mix-species shark aggregation site, in the Eastern Mediterranean Sea. Front Microbiol 2023; 14:1027804. [PMID: 36910211 PMCID: PMC9996248 DOI: 10.3389/fmicb.2023.1027804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 01/16/2023] [Indexed: 02/25/2023] Open
Abstract
Sharks, as apex predators, play an essential ecological role in shaping the marine food web and maintaining healthy and balanced marine ecosystems. Sharks are sensitive to environmental changes and anthropogenic pressure and demonstrate a clear and rapid response. This designates them a "keystone" or "sentinel" group that may describe the structure and function of the ecosystem. As a meta-organism, sharks offer selective niches (organs) for microorganisms that can provide benefits for their hosts. However, changes in the microbiota (due to physiological or environmental changes) can turn the symbiosis into a dysbiosis and may affect the physiology, immunity and ecology of the host. Although the importance of sharks within the ecosystem is well known, relatively few studies have focused on the microbiome aspect, especially with long-term sampling. Our study was conducted at a site of coastal development in Israel where a mixed-species shark aggregation (November-May) is observed. The aggregation includes two shark species, the dusky (Carcharhinus obscurus) and sandbar (Carcharhinus plumbeus) which segregate by sex (females and males, respectively). In order to characterize the bacterial profile and examine the physiological and ecological aspects, microbiome samples were collected from different organs (gills, skin, and cloaca) from both shark species over 3 years (sampling seasons: 2019, 2020, and 2021). The bacterial composition was significantly different between the shark individuals and the surrounding seawater and between the shark species. Additionally, differences were apparent between all the organs and the seawater, and between the skin and gills. The most dominant groups for both shark species were Flavobacteriaceae, Moraxellaceae, and Rhodobacteraceae. However, specific microbial biomarkers were also identified for each shark. An unexpected difference in the microbiome profile and diversity between the 2019-2020 and 2021 sampling seasons, revealed an increase in the potential pathogen Streptococcus. The fluctuations in the relative abundance of Streptococcus between the months of the third sampling season were also reflected in the seawater. Our study provides initial information on shark microbiome in the Eastern Mediterranean Sea. In addition, we demonstrated that these methods were also able to describe environmental episodes and the microbiome is a robust measure for long-term ecological research.
Collapse
Affiliation(s)
- Goni Bregman
- Morris Kahn Marine Research Station, Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
| | - Maya Lalzar
- Bioinformatics Services Unit, University of Haifa, Haifa, Israel
| | - Leigh Livne
- Morris Kahn Marine Research Station, Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
| | - Eyal Bigal
- Morris Kahn Marine Research Station, Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
| | - Ziv Zemah-Shamir
- Morris Kahn Marine Research Station, Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
| | - Danny Morick
- Morris Kahn Marine Research Station, Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
| | - Dan Tchernov
- Morris Kahn Marine Research Station, Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
| | - Aviad Scheinin
- Morris Kahn Marine Research Station, Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
| | - Dalit Meron
- Morris Kahn Marine Research Station, Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
| |
Collapse
|
82
|
Podulka A, Klus M. CEREBRAL TOXOPLASMOSIS IN THE COURSE OF HIV INFECTION - CASE STUDY. POLSKI MERKURIUSZ LEKARSKI : ORGAN POLSKIEGO TOWARZYSTWA LEKARSKIEGO 2023; 51:654-659. [PMID: 38207068 DOI: 10.36740/merkur202306112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
OBJECTIVE Aim: To the aim of our study is to draw attention to the need to take into account HIV infection and its complications, such as CNS toxoplasmosis, in the differential diagnosis of people presenting with impaired consciousness. We analyzed our patient's medical records and available statistical data on HIV infection, as well as literature on nervous system involvement in the course of AIDS. PATIENTS AND METHODS Materials and Methods: In our paper, we present the case of a 43-year-old male who was admitted to a neurological ward due to impaired consciousness. Diagnostic imaging and laboratory tests were conducted, and patient was diagnosed with toxoplasmosis in the course of AIDS. CONCLUSION Conclusions: HIV infection is a global public health problem. In the absence or ineffectiveness of treatment, it leads to profound immunodeficiency and, consequently, opportunistic infections. One of them is the reactivation of the latent Toxoplasma gondii infection. It is the most common cause of extensive cerebral lesions in patients infected with the HIV virus. In these cases, MRI reveals numerous scattered ring-enhancing lesions. The symptoms are non-specific: headaches, impaired consciousness, convulsions, behavioral changes, and focal neurological deficits. The onset of neurological symptoms may be the first clinically relevant manifestation of AIDS. It is key to diagnose such patients as soon as possible and treat them accordingly.
Collapse
Affiliation(s)
- Aleksandra Podulka
- CLINICAL NEUROLOGY DEPARTMENT WITH STROKE UNIT, 5TH MILITARY CLINICAL HOSPITAL WITH POLYCLINIC IN CRACOW, CRACOW, POLAND
| | - Marek Klus
- CLINICAL NEUROLOGY DEPARTMENT WITH STROKE UNIT, 5TH MILITARY CLINICAL HOSPITAL WITH POLYCLINIC IN CRACOW, CRACOW, POLAND
| |
Collapse
|
83
|
Ashraf T, Sarker PK, Hosen MI, Rahman A, Hasan AKMM, Rahman T. Association of Chronic Toxoplasma gondii Infection with Pro-Inflamatory Cytokine Interleukin (IL)-12 Responses in Type-2 Diabetes Mellitus Patients of Bangladesh. J Parasitol Res 2023; 2023:3885160. [PMID: 37197738 PMCID: PMC10185420 DOI: 10.1155/2023/3885160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 04/13/2023] [Accepted: 04/26/2023] [Indexed: 05/19/2023] Open
Abstract
Toxoplasma gondii is an intracellular protozoan parasite that causes toxoplasmosis in around one-third of the world population, particularly in pregnant women and immunocompromised individuals. Diabetes mellitus (DM) is one of the most severe global health challenges in the 21st century, and especially, type-2 diabetes mellitus (T2DM) accounts for 90% of the diabetes cases diagnosed globally. In Bangladesh, the rate of T2DM is rising gradually with the improvement in living standards. The aim of this study is to find out the correlation between latent toxoplasmosis and T2DM, emphasizing the pro-inflammatory cytokine immunity. For this, 100 (N = 100) patients with T2DM and 100 (N = 100) healthy controls were enrolled to determine the seroprevalence of toxoplasmosis using enzyme-linked immunosorbent assay (ELISA). In addition, ELISA was also performed to determine the level of pro-inflammatory cytokine, interleukin (IL)-12, to understand its role in the development of toxoplasmosis. In our study, 39.39% of the T2DM patients were positive with anti-T. gondii Immunoglobulin G by ELISA, whereas the rate of seropositivity in healthy controls was 39.73%. We did not find significant association between T. gondii infection and T2DM, but our data confirmed a high prevalence of chronic toxoplasmosis in Bangladeshi population. From hematology tests, it was found that the T2DM patients had significantly lower levels of total white blood cells (P = 0.0015), circulating eosinophils (P = 0.0026), and neutrophils (P = 0.0128) than the healthy controls. On the other hand, the levels of lymphocytes (P = 0.0204) and monocytes (P = 0.0067) were significantly higher in patients. Furthermore, T. gondii infected T2DM patients had significantly higher levels of IL-12 than the healthy controls (P = 0.026), suggesting a link between parasitic infection and IL-12 secretion. Further studies are to be performed to find out the exact cause of high prevalence of chronic T. gondii infection in Bangladeshi population.
Collapse
Affiliation(s)
- Tamanna Ashraf
- Laboratory of Infection Biology, Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka 1000, Bangladesh
| | - Pankaj Kumar Sarker
- Laboratory of Biochemistry, Dinajpur Diabetic Hospital, Dinajpur, Bangladesh
| | - Md. Ismail Hosen
- Laboratory of Clinical Biochemistry and Translational Medicine, Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka 1000, Bangladesh
| | - Atiqur Rahman
- Laboratory of Infection Biology, Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka 1000, Bangladesh
| | - A. K. M. Mahbub Hasan
- Laboratory of Infection Biology, Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka 1000, Bangladesh
| | - Taibur Rahman
- Laboratory of Infection Biology, Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka 1000, Bangladesh
| |
Collapse
|
84
|
Fereig RM, Omar MA, Alsayeqh AF. Exploiting the Macrophage Production of IL-12 in Improvement of Vaccine Development against Toxoplasma gondii and Neospora caninum Infections. Vaccines (Basel) 2022; 10:vaccines10122082. [PMID: 36560492 PMCID: PMC9783364 DOI: 10.3390/vaccines10122082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/02/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022] Open
Abstract
Toxoplasmosis and neosporosis are major protozoan diseases of global distribution. Toxoplasma gondii is the cause of toxoplasmosis, which affects almost all warm-blooded animals, including humans, while Neospora caninum induces neosporosis in many animal species, especially cattle. The current defective situation with control measures is hindering all efforts to overcome the health hazards and economic losses of toxoplasmosis and neosporosis. Adequate understanding of host-parasite interactions and host strategies to combat such infections can be exploited in establishing potent control measures, including vaccine development. Macrophages are the first defense line of innate immunity, which is responsible for the successful elimination of T.gondii or N. caninum. This action is exerted via the immunoregulatory interleukin-12 (IL-12), which orchestrates the production of interferon gamma (IFN-γ) from various immune cells. Cellular immune response and IFN-γ production is the hallmark for successful vaccine candidates against both T. gondii and N. caninum. However, the discovery of potential vaccine candidates is a highly laborious, time-consuming and expensive procedure. In this review, we will try to exploit previous knowledge and our research experience to establish an efficient immunological approach for exploring potential vaccine candidates against T. gondii and N. caninum. Our previous studies on vaccine development against both T. gondii and N. caninum revealed a strong association between the successful and potential vaccine antigens and their ability to promote the macrophage secretion of IL-12 using a murine model. This phenomenon was emphasized using different recombinant antigens, parasites, and experimental approaches. Upon these data and research trials, IL-12 production from murine macrophages can be used as an initial predictor for judgment of vaccine efficacy before further evaluation in time-consuming and laborious in vivo experiments. However, more studies and research are required to conceptualize this immunological approach.
Collapse
Affiliation(s)
- Ragab M. Fereig
- Department of Animal Medicine, Faculty of Veterinary Medicine, South Valley University, Qena 83523, Egypt
- Correspondence: (R.M.F.); (A.F.A.)
| | - Mosaab A. Omar
- Department of Parasitology, Faculty of Veterinary Medicine, South Valley University, Qena 83523, Egypt
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, Qassim University, Buraidah 51452, Saudi Arabia
| | - Abdullah F. Alsayeqh
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, Qassim University, Buraidah 51452, Saudi Arabia
- Correspondence: (R.M.F.); (A.F.A.)
| |
Collapse
|
85
|
Mataca AR, Melo RPBD, Oliveira PRF, Camargos MF, Freitas TRP, Galinari GCF, Guedes MIMC, Rebouças M, Porto WJN, Moreira MAS, Schwarz DGG, Mota RA, Silva-Júnior A. Scenario of viral and protozoa diseases in commercial dairy goats from Zona da Mata of Minas Gerais State, Brazil. Small Rumin Res 2022. [DOI: 10.1016/j.smallrumres.2022.106851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
86
|
Mahdi Ghahari SM, Ajami A, Sadeghizadeh M, Esmaeili Rastaghi AR, Mahdavi M. Nanocurcumin as an adjuvant in killed Toxoplasma gondii vaccine formulation: An experience in BALB/c mice. Exp Parasitol 2022; 243:108404. [DOI: 10.1016/j.exppara.2022.108404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 09/29/2022] [Accepted: 10/10/2022] [Indexed: 11/28/2022]
|
87
|
Wang L, Wang H, Wei S, Huang X, Yu C, Meng Q, Wang D, Yin G, Huang Z. Toxoplasma gondii induces MLTC-1 apoptosis via ERS pathway. Exp Parasitol 2022; 244:108429. [PMID: 36403802 DOI: 10.1016/j.exppara.2022.108429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 11/10/2022] [Accepted: 11/13/2022] [Indexed: 11/18/2022]
Abstract
Toxoplasma gondii (T. gondii) is a serious intracellular parasite and mammalian infection can damage the reproductive system and lead to apoptosis of Murine Leydig tumor cells (MLTC-1); however, the mechanism is unclear. The testis Leydig cell is the main testosterone synthesis cell in male mammals. We studied the mechanism of T. gondii infection on Leydig cell apoptosis in vitro. MLTC-1 were divided into control and experimental groups. Experiment group cells and tachyzoites were co-cultured, in a 1:20 ratio, for 3, 6, 9, and 12 h. T. gondii entered the cells and caused lesions at 12 h. Flow cytometry showed that the apoptosis rate of the experiment group increased with time and was significantly higher (P < 0.05) than the control group. RT-qPCR and western blot demonstrated that the expression of P53, Caspase-3, and Bax were significantly increased at 12 h (P < 0.05). Bcl-2 expression was significantly increased at 12 h (P < 0.05). The ER stress (ERS) pathway was important in cell apoptosis. RT-qPCR and western blot showed that the expression of CHOP was significantly increased at 12 h (P < 0.05). These data indicate that T. gondii induced MLTC-1 cell apoptosis may occur via the ERS pathway.
Collapse
Affiliation(s)
- Lei Wang
- Engineering Laboratory of Animal Pharmaceuticals and College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, Fujian Province, 350002, PR China
| | - Hailun Wang
- Engineering Laboratory of Animal Pharmaceuticals and College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, Fujian Province, 350002, PR China
| | - Shihao Wei
- Engineering Laboratory of Animal Pharmaceuticals and College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, Fujian Province, 350002, PR China
| | - Xiaoyu Huang
- Engineering Laboratory of Animal Pharmaceuticals and College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, Fujian Province, 350002, PR China
| | - Chunchen Yu
- Engineering Laboratory of Animal Pharmaceuticals and College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, Fujian Province, 350002, PR China
| | - Qingrui Meng
- Jinshan College, Fujian Agriculture and Forestry University, Fuzhou, Fujian Province, 350002, PR China
| | - Dengfeng Wang
- Engineering Laboratory of Animal Pharmaceuticals and College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, Fujian Province, 350002, PR China
| | - Guangwen Yin
- Engineering Laboratory of Animal Pharmaceuticals and College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, Fujian Province, 350002, PR China.
| | - Zhijian Huang
- Engineering Laboratory of Animal Pharmaceuticals and College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, Fujian Province, 350002, PR China.
| |
Collapse
|
88
|
Barakat AM, Fadaly HAME, Gareh A, Abd El-Razik KA, Ali FAZ, Saleh AA, Sadek SAS, Dahran N, El-Gendy AENG, El-Khadragy MF, Elmahallawy EK. Wheat Germ Oil and Propolis Decrease Parasite Burden and Restore Marked Histopathological Changes in Liver and Lung in Mice with Chronic Toxoplasmosis. Animals (Basel) 2022; 12:ani12223069. [PMID: 36428297 PMCID: PMC9686545 DOI: 10.3390/ani12223069] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/26/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022] Open
Abstract
Toxoplasmosis is a parasitic zoonotic disease with a worldwide distribution. Its effects can be critical in immunocompromised patients. However, there is a limited availability of effective, low-toxicity drugs against this disease, particularly in its chronic form. The present study evaluated the effect of propolis and wheat germ oil (WGO) as safe, natural products to reduce Toxoplasma cysts in experimentally infected mice. For the experiment, five groups (10 mice per group) were examined: Group 1: negative control (noninfected, nontreated); Group 2: positive control (infected, nontreated); Group 3: infected and treated with WGO at a dose of 0.2 mg/1.5 mL per kg body weight/day; Group 4: infected and treated with 0.1 mL propolis extract/day; and Group 5: infected and treated with a combination of WGO and propolis at the same doses as Group 3 and 4. After the mice were sacrificed, liver and lung specimens underwent histopathological examination, and the parasite burden was investigated by parasitological methods and quantified using real-time polymerase chain reaction. Notably, the results showed a substantial decrease in parasitic burden in Group 5 compared to the control group. These results were further confirmed by molecular analysis and quantification of the DNA concentration of the Toxoplasma P29 gene after treatment in all tested samples. Furthermore, the combination of propolis and WGO restored all histopathological changes in the liver and lungs. Taken together, these findings provide remarkably promising evidence of the effects of the combination of WGO and propolis against chronic toxoplasmosis in mice.
Collapse
Affiliation(s)
- Ashraf Mohamed Barakat
- Department of Zoonotic Diseases, National Research Centre, El Buhouth St., Dokki, Giza 12622, Egypt
| | | | - Ahmed Gareh
- Department of Parasitology, Faculty of Veterinary Medicine, Aswan University, Aswan 24101, Egypt
| | - Khaled A. Abd El-Razik
- Department of Animal Reproduction, Veterinary Research Institute, National Research Centre, Dokki, Giza 12622, Egypt
| | - Fatma Abo Zakaib Ali
- Department of Pathology and Clinical Pathology, Faculty of Veterinary Medicine, Sohag University, Sohag 82524, Egypt
| | - Amira A. Saleh
- Department of Human Medical Parasitology, Faculty of Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Sabry A. S. Sadek
- Department of Zoonotic Diseases, National Research Centre, El Buhouth St., Dokki, Giza 12622, Egypt
| | - Naief Dahran
- Department of Anatomy, Faculty of Medicine, University of Jeddah, Jeddah 21959, Saudi Arabia
| | - Abd El-Nasser G. El-Gendy
- Medicinal and Aromatic Plants Research Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Dokki, Giza 12622, Egypt
| | - Manal F. El-Khadragy
- Department of biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Ehab Kotb Elmahallawy
- Department of Zoonoses, Faculty of Veterinary Medicine, Sohag University, Sohag 82524, Egypt
- Correspondence:
| |
Collapse
|
89
|
Stasic AJ, Moreno SNJ, Carruthers VB, Dou Z. The Toxoplasma plant-like vacuolar compartment (PLVAC). J Eukaryot Microbiol 2022; 69:e12951. [PMID: 36218001 PMCID: PMC10576567 DOI: 10.1111/jeu.12951] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 10/06/2022] [Accepted: 10/07/2022] [Indexed: 11/28/2022]
Abstract
Toxoplasma gondii belongs to the phylum Apicomplexa and is an important cause of congenital disease and infection in immunocompromised patients. T. gondii shares several characteristics with plants including a nonphotosynthetic plastid termed apicoplast and a multivesicular organelle that was named the plant-like vacuole (PLV) or vacuolar compartment (VAC). The name plant-like vacuole was selected based on its resemblance in composition and function to plant vacuoles. The name VAC represents its general vacuolar characteristics. We will refer to the organelle as PLVAC in this review. New findings in recent years have revealed that the PLVAC represents the lysosomal compartment of T. gondii which has adapted peculiarities to fulfill specific Toxoplasma needs. In this review, we discuss the composition and functions of the PLVAC highlighting its roles in ion storage and homeostasis, endocytosis, exocytosis, and autophagy.
Collapse
Affiliation(s)
- Andrew J Stasic
- Department of Microbiology, Heartland FPG, Carmel, Indiana, USA
| | - Silvia N J Moreno
- Department of Cellular Biology, University of Georgia, Georgia, Athens, USA
- Center for Tropical and Emerging Global Diseases and Department of Cellular Biology, University of Georgia, Georgia, Athens, USA
| | - Vern B Carruthers
- Department of Microbiology & Immunology, University of Michigan Medical School, Michigan, Ann Arbor, USA
| | - Zhicheng Dou
- Department of Biological Sciences, Clemson University, South Carolina, Clemson, USA
| |
Collapse
|
90
|
NF kappa B regulator Bcl3 controls development and function of classical dendritic cells required for resistance to Toxoplasma gondii. PLoS Pathog 2022; 18:e1010502. [DOI: 10.1371/journal.ppat.1010502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 11/11/2022] [Accepted: 10/18/2022] [Indexed: 11/13/2022] Open
Abstract
The atypical IκB family member Bcl3 associates with p50/NF-κB1 or p52/NF-κB2 homodimers in the nucleus, and positively or negatively modulates transcription in a context-dependent manner. In mice lacking Bcl3 globally or specifically in CD11c+ cells, we previously reported that Toxoplasma gondii infection is uniformly fatal and is associated with an impaired Th1 immune response. Since Bcl3 expression in dendritic cells (DC) is pivotal for antigen presentation and since classical DCs (cDC) are major antigen presenting cells, we investigated the role of Bcl3 specifically in cDCs in vivo by crossing Zbtb46 cre mice with Bcl3flx/flx mice. Bcl3flx/flx Zbtb46 cre mice were as susceptible to lethal T. gondii infection as total Bcl3-/- mice and generated poor Th1 immune responses. Consistent with this, compared to wildtype controls, splenic Xcr1+ Bcl3-deficient cDC1 cells were defective in presenting Ova antigen to OT-I cells both for Ova257-264 peptide and after infection with Ovalbumin-expressing T. gondii. Moreover, splenic CD4+ and CD8+ T cells from infected Bcl3flx/flx Zbtb46 cre mice exhibited decreased T. gondii-specific priming as revealed by both reduced cytokine production and reduced T. gondii-specific tetramer staining. In vitro differentiation of cDCs from bone marrow progenitors also revealed Bcl3-dependent cDC-specific antigen-presentation activity. Consistent with this, splenocyte single cell RNA seq (scRNAseq) in infected mice revealed Bcl3-dependent expression of genes involved in antigen processing in cDCs. We also identified by scRNAseq, a unique Bcl3-dependent hybrid subpopulation of Zbtb46+ DCs co-expressing the monocyte/macrophage transcription factor Lysozyme M. This subpopulation exhibited Bcl3-dependent expansion after infection. Likewise, by flow cytometry we identified two T. gondii-induced hybrid subpopulations of Bcl3-dependent cDC1 and cDC2 cells both expressing monocyte/macrophage markers, designated as icDC1 and icDC2. Together, our results indicate that Bcl3 in classical DCs is a major determinant of protective T cell responses and survival in T. gondii-infection.
Collapse
|
91
|
Sleda MA, Li ZH, Behera R, Baierna B, Li C, Jumpathong J, Malwal SR, Kawamukai M, Oldfield E, Moreno SNJ. The Heptaprenyl Diphosphate Synthase (Coq1) Is the Target of a Lipophilic Bisphosphonate That Protects Mice against Toxoplasma gondii Infection. mBio 2022; 13:e0196622. [PMID: 36129297 PMCID: PMC9600589 DOI: 10.1128/mbio.01966-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 08/15/2022] [Indexed: 11/20/2022] Open
Abstract
Prenyldiphosphate synthases catalyze the reaction of allylic diphosphates with one or more isopentenyl diphosphate molecules to form compounds such as farnesyl diphosphate, used in, e.g., sterol biosynthesis and protein prenylation, as well as longer "polyprenyl" diphosphates, used in ubiquinone and menaquinone biosynthesis. Quinones play an essential role in electron transport and are associated with the inner mitochondrial membrane due to the presence of the polyprenyl group. In this work, we investigated the synthesis of the polyprenyl diphosphate that alkylates the ubiquinone ring precursor in Toxoplasma gondii, an opportunistic pathogen that causes serious disease in immunocompromised patients and the unborn fetus. The enzyme that catalyzes this early step of the ubiquinone synthesis is Coq1 (TgCoq1), and we show that it produces the C35 species heptaprenyl diphosphate. TgCoq1 localizes to the mitochondrion and is essential for in vitro T. gondii growth. We demonstrate that the growth defect of a T. gondii TgCoq1 mutant is rescued by complementation with a homologous TgCoq1 gene or with a (C45) solanesyl diphosphate synthase from Trypanosoma cruzi (TcSPPS). We find that a lipophilic bisphosphonate (BPH-1218) inhibits T. gondii growth at low-nanomolar concentrations, while overexpression of the TgCoq1 enzyme dramatically reduced growth inhibition by the bisphosphonate. Both the severe growth defect of the mutant and the inhibition by BPH-1218 were rescued by supplementation with a long-chain (C30) ubiquinone (UQ6). Importantly, BPH-1218 also protected mice against a lethal T. gondii infection. TgCoq1 thus represents a potential drug target that could be exploited for improved chemotherapy of toxoplasmosis. IMPORTANCE Millions of people are infected with Toxoplasma gondii, and the available treatment for toxoplasmosis is not ideal. Most of the drugs currently used are only effective for the acute infection, and treatment can trigger serious side effects requiring changes in the therapeutic approach. There is, therefore, a compelling need for safe and effective treatments for toxoplasmosis. In this work, we characterize an enzyme of the mitochondrion of T. gondii that can be inhibited by an isoprenoid pathway inhibitor. We present evidence that demonstrates that inhibition of the enzyme is linked to parasite death. In addition, the inhibitor can protect mice against a lethal dose of T. gondii. Our results thus reveal a promising chemotherapeutic target for the development of new medicines for toxoplasmosis.
Collapse
Affiliation(s)
- Melissa A. Sleda
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia, USA
- Department of Cellular Biology, University of Georgia, Athens, Georgia, USA
| | - Zhu-Hong Li
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia, USA
| | - Ranjan Behera
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia, USA
| | - Baihetiya Baierna
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia, USA
- Department of Cellular Biology, University of Georgia, Athens, Georgia, USA
| | - Catherine Li
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia, USA
| | - Jomkwan Jumpathong
- Department of Life Sciences, Faculty of Life and Environmental Sciences, Shimane University, Matsue, Japan
| | - Satish R. Malwal
- Department of Chemistry, University of Illinois at Urbana Champaign, Urbana, Illinois, USA
| | - Makoto Kawamukai
- Department of Life Sciences, Faculty of Life and Environmental Sciences, Shimane University, Matsue, Japan
| | - Eric Oldfield
- Department of Chemistry, University of Illinois at Urbana Champaign, Urbana, Illinois, USA
| | - Silvia N. J. Moreno
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia, USA
- Department of Cellular Biology, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
92
|
da Silva VS, Machado CR. Sex in protists: A new perspective on the reproduction mechanisms of trypanosomatids. Genet Mol Biol 2022; 45:e20220065. [PMID: 36218381 PMCID: PMC9552303 DOI: 10.1590/1678-4685-gmb-2022-0065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 08/07/2022] [Indexed: 11/04/2022] Open
Abstract
The Protist kingdom individuals are the most ancestral representatives of eukaryotes. They have inhabited Earth since ancient times and are currently found in the most diverse environments presenting a great heterogeneity of life forms. The unicellular and multicellular algae, photosynthetic and heterotrophic organisms, as well as free-living and pathogenic protozoa represents the protist group. The evolution of sex is directly associated with the origin of eukaryotes being protists the earliest protagonists of sexual reproduction on earth. In eukaryotes, the recombination through genetic exchange is a ubiquitous mechanism that can be stimulated by DNA damage. Scientific evidences support the hypothesis that reactive oxygen species (ROS) induced DNA damage can promote sexual recombination in eukaryotes which might have been a decisive factor for the origin of sex. The fact that some recombination enzymes also participate in meiotic sex in modern eukaryotes reinforces the idea that sexual reproduction emerged as consequence of specific mechanisms to cope with mutations and alterations in genetic material. In this review we will discuss about origin of sex and different strategies of evolve sexual reproduction in some protists such that cause human diseases like malaria, toxoplasmosis, sleeping sickness, Chagas disease, and leishmaniasis.
Collapse
Affiliation(s)
- Verônica Santana da Silva
- Universidade Federal de Minas Gerais, Departamento de Genética,
Ecologia e Evolução, Belo Horizonte, MG, Brazil
| | - Carlos Renato Machado
- Universidade Federal de Minas Gerais, Departamento de Bioquímica e
Imunologia, Belo Horizonte, MG, Brazil
| |
Collapse
|
93
|
TOXOPLASMA GONDII PREVALENCE, PARTIAL GENOTYPES, AND SPATIAL VARIATION IN NORTH AMERICAN RIVER OTTERS (LONTRA CANADENSIS) IN THE UPPER PENINSULA OF MICHIGAN, USA. J Wildl Dis 2022; 58:869-881. [PMID: 36321926 DOI: 10.7589/jwd-d-22-00021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 07/06/2022] [Indexed: 12/05/2022]
Abstract
Toxoplasma gondii is a ubiquitous parasitic protozoan that poses a health threat to wildlife and human health worldwide. Oocysts shed into the environment in felid host feces may persist for several years. Runoff from rainfall and snowmelt may carry the oocysts into waterways. Semiaquatic mammals such as the Northern American river otter (Lontra canadensis) are particularly at risk of exposure, as they may encounter infective stages in both terrestrial and aquatic environments. Despite this risk, only a small number of studies have examined the prevalence of T. gondii in US river otter populations. Tongue tissue was sampled from 124 otters from the Upper Peninsula of Michigan submitted by trappers to the Michigan Department of Natural Resources in the 2018-19 harvest season. Following DNA extraction, a portion of the B1 T. gondii gene was amplified with PCR. A subset of positive samples was genotyped for comparison with known T. gondii sequences. Of the 124 tongue samples, 35 (28%) were positive for T. gondii. Prevalence did not differ significantly between sexes or age classes across the entire study area. Most (53.8%) of the genotyped samples were type 4 (type 12), a genotype commonly found in North American wildlife. Genotypes 127 and 197 were also found. Three clusters of T. gondii prevalence were identified through SaTScan analysis, although they were not significant. When modeling prevalence of T. gondii with covariates at individual otter locations, the top three models included the presence of Sarcocystis, area of exotic plants, area of agriculture, and sex of the otter. Our results suggest that T. gondii is widespread in otter populations in the Upper Peninsula of Michigan.
Collapse
|
94
|
Hu H, Lu Z, Feng H, Chen G, Wang Y, Yang C, Yue Z. DGPD: a knowledge database of dense granule proteins of the Apicomplexa. Database (Oxford) 2022; 2022:6718167. [PMID: 36164976 PMCID: PMC9513560 DOI: 10.1093/database/baac085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 08/24/2022] [Accepted: 09/07/2022] [Indexed: 11/30/2022]
Abstract
Apicomplexan parasites cause severe diseases in human and livestock. Dense granule proteins (GRAs), specific to the Apicomplexa, participate in the maintenance of intracellular parasitism of host cells. GRAs have better immunogenicity and they can be emerged as important players in vaccine development. Although studies on GRAs have increased gradually in recent years, due to incompleteness and complexity of data collection, biologists have difficulty in the comprehensive utilization of information. Thus, there is a desperate need of user-friendly resource to integrate with existing GRAs. In this paper, we developed the Dense Granule Protein Database (DGPD), the first knowledge database dedicated to the integration and analysis of typical GRAs properties. The current version of DGPD includes annotated GRAs metadata of 245 samples derived from multiple web repositories and literature mining, involving five species that cause common diseases (Plasmodium falciparum, Toxoplasma gondii, Hammondia hammondi, Neospora caninum and Cystoisospora suis). We explored the baseline characteristics of GRAs and found that the number of introns and transmembrane domains in GRAs are markedly different from those of non-GRAs. Furthermore, we utilized the data in DGPD to explore the prediction algorithms for GRAs. We hope DGPD will be a good database for researchers to study GRAs. Database URL: http://dgpd.tlds.cc/DGPD/index/
Collapse
Affiliation(s)
- Hang Hu
- School of Information and Computer, College of Animal Science and Technology, Anhui Provincial Engineering Laboratory for Beidou Precision Agriculture Information, Anhui Agricultural University , 130 Changjiangxilu, Hefei, Anhui 230036, P. R. China
| | - Zhenxiao Lu
- School of Information and Computer, College of Animal Science and Technology, Anhui Provincial Engineering Laboratory for Beidou Precision Agriculture Information, Anhui Agricultural University , 130 Changjiangxilu, Hefei, Anhui 230036, P. R. China
| | - Haisong Feng
- School of Information and Computer, College of Animal Science and Technology, Anhui Provincial Engineering Laboratory for Beidou Precision Agriculture Information, Anhui Agricultural University , 130 Changjiangxilu, Hefei, Anhui 230036, P. R. China
| | - Guojun Chen
- School of Information and Computer, College of Animal Science and Technology, Anhui Provincial Engineering Laboratory for Beidou Precision Agriculture Information, Anhui Agricultural University , 130 Changjiangxilu, Hefei, Anhui 230036, P. R. China
| | - Yongmei Wang
- School of Information and Computer, College of Animal Science and Technology, Anhui Provincial Engineering Laboratory for Beidou Precision Agriculture Information, Anhui Agricultural University , 130 Changjiangxilu, Hefei, Anhui 230036, P. R. China
| | - Congshan Yang
- School of Information and Computer, College of Animal Science and Technology, Anhui Provincial Engineering Laboratory for Beidou Precision Agriculture Information, Anhui Agricultural University , 130 Changjiangxilu, Hefei, Anhui 230036, P. R. China
| | - Zhenyu Yue
- School of Information and Computer, College of Animal Science and Technology, Anhui Provincial Engineering Laboratory for Beidou Precision Agriculture Information, Anhui Agricultural University , 130 Changjiangxilu, Hefei, Anhui 230036, P. R. China
| |
Collapse
|
95
|
Chikweto A, Alhassan A, Su C, Macpherson C, Bhaiyat MI, Dubey JP. Toxoplasma gondii clonal type III is the dominant genotype identified in Grenadian pigs. Vet Med Sci 2022; 8:2005-2011. [PMID: 35809056 PMCID: PMC9514473 DOI: 10.1002/vms3.870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND Toxoplasma gondii is a widespread zoonotic protozoan parasite capable of infecting all warm-blooded animals. Although the genotypes of T. gondii in pigs have been reported worldwide, there is no information on the genotypes and diversity of T. gondii in pigs in Grenada, West Indies. OBJECTIVES The aims of the present study were to isolate, genotype and determine the diversity of T. gondii genotypes in pigs. METHODS We carried out a modified agglutination test (MAT) on blood from 149 pig hearts collected from a local meat market. Myocardial tissue homogenate from pigs that tested positive for T. gondii was homogenized and inoculated into mice for isolation of the parasite. We collected mouse tissues and extracted DNA for genotyping based on 11 polymerase chain reaction-restriction fragment length polymorphism markers (SAG1, SAG2, alt. SAG2, SAG 3, BTUB, GRA6, L358, PK1, C22-8, C 29-2 and Apico). RESULTS Out of the 149 pig hearts, 31 (20.8%) tested positive for T. gondii on MAT. Bioassays in mice yielded 12 isolates designated TgpgGr1 to TgpgGr12. Molecular characterisation of T. gondii revealed four genotypes as follows: ToxoDB #2-clonal type III (seven isolates); ToxoDB #7 (three isolates); ToxoDB #13 (one isolate); ToxoDB #30 (1 isolate). Overall, ToxoDB #2 was the most common (58%). Toxo database (DB) # 13, which causes interstitial pneumonia in affected mice, has also been reported. CONCLUSION The genetic diversity of T. gondii in pigs in Grenada is lower than that in other surrounding Caribbean areas.
Collapse
Affiliation(s)
- Alfred Chikweto
- Department of PathobiologySchool of Veterinary MedicineSt. George's UniversitySt. George'sGrenada
| | - Andy Alhassan
- Department of PathobiologySchool of Veterinary MedicineSt. George's UniversitySt. George'sGrenada
| | - Chunlei Su
- Department of MicrobiologyUniversity of TennesseeKnoxvilleTennesseeUSA
| | - Calum Macpherson
- Windward Islands Research FoundationSt. George's UniversitySt. George'sGrenada
| | - Muhammad Iqbal Bhaiyat
- Department of PathobiologySchool of Veterinary MedicineSt. George's UniversitySt. George'sGrenada
| | - Jitender P. Dubey
- Animal Parasitic Diseases LaboratoryBeltsville Agricultural Research CenterUnited States Department of AgricultureAgricultural Research ServiceBeltsvilleMarylandUSA
| |
Collapse
|
96
|
Sultana S, González-Parra G, Arenas AJ. Dynamics of toxoplasmosis in the cat's population with an exposed stage and a time delay. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2022; 19:12655-12676. [PMID: 36654016 DOI: 10.3934/mbe.2022591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
We propose a new mathematical model to investigate the effect of the introduction of an exposed stage for the cats who become infected with the T. gondii parasite, but that are not still able to produce oocysts in the environment. The model considers a time delay in order to represent the duration of the exposed stage. Besides the cat population the model also includes the oocysts related to the T. gondii in the environment. The model includes the cats since they are the only definitive host and the oocysts, since they are relevant to the dynamics of toxoplasmosis. The model considers lifelong immunity for the recovered cats and vaccinated cats. In addition, the model considers that cats can get infected through an effective contact with the oocysts in the environment. We find conditions such that the toxoplasmosis disease becomes extinct. We analyze the consequences of considering the exposed stage and the time delay on the stability of the equilibrium points. We numerically solve the constructed model and corroborated the theoretical results.
Collapse
Affiliation(s)
- Sharmin Sultana
- Department of Mathematics, New Mexico Tech, New Mexico, 87801, USA
| | | | - Abraham J Arenas
- Departamento de Matemáticas y Estadística, Universidad de Córdoba, Montería, Colombia
| |
Collapse
|
97
|
Toxoplasma gondii in Foods: Prevalence, Control, and Safety. Foods 2022; 11:foods11162542. [PMID: 36010541 PMCID: PMC9407268 DOI: 10.3390/foods11162542] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/17/2022] [Accepted: 08/19/2022] [Indexed: 11/25/2022] Open
Abstract
Toxoplasma gondii is an obligate intracellular parasite that causes toxoplasmosis, with approximately one third of the population around the world seropositive. The consumption of contaminated food is the main source of infection. These include meat products with T. gondii tissue cysts, and dairy products with tachyzoites. Recently, contamination has been detected in fresh products with oocysts and marine products. Despite the great health problems that are caused by T. gondii, currently there are no standardized methods for its detection in the food industry. In this review, we analyze the current detection methods, the prevalence of T. gondii in different food products, and the control measures. The main detection methods are bioassays, cell culture, molecular and microscopic techniques, and serological methods, but some of these do not have applicability in the food industry. As a result, emerging techniques are being developed that are aimed at the detection of multiple parasites simultaneously that would make their application more efficient in the industry. Since the prevalence of this parasite is high in many products (meat and milk, marine products, and vegetables), it is necessary to standardize detection methods, as well as implement control measures.
Collapse
|
98
|
Live-attenuated ME49Δcdpk3 strain of Toxoplasma gondii protects against acute and chronic toxoplasmosis. NPJ Vaccines 2022; 7:98. [PMID: 35986017 PMCID: PMC9391373 DOI: 10.1038/s41541-022-00518-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 07/20/2022] [Indexed: 11/09/2022] Open
Abstract
Toxoplasmosis, a common parasitic disease, is caused by Toxoplasma gondii, which infects approximately 30% of the world’s population. This obligate intracellular protozoan causes significant economic losses and poses serious public health challenges worldwide. However, the development of an effective toxoplasmosis vaccine in humans remains a challenge to date. In this study, we observed that the knockout of calcium-dependent protein kinase 3 (CDPK3) in the type II ME49 strain greatly attenuated virulence in mice and significantly reduced cyst formation. Hence, we evaluated the protective immunity of ME49Δcdpk3 as a live attenuated vaccine against toxoplasmosis. Our results showed that ME49Δcdpk3 vaccination triggered a strong immune response marked by significantly elevated proinflammatory cytokine levels, such as IFN-γ, IL-12, and TNF-α, and increased the percentage of CD4+ and CD8+ T-lymphocytes. The high level of Toxoplasma-specific IgG was maintained, with mixed IgG1/IgG2a levels. Mice vaccinated with ME49Δcdpk3 were efficiently protected against the tachyzoites of a variety of wild-type strains, including type I RH, type II ME49, Chinese 1 WH3 and Chinese 1 WH6, as well as the cysts of wild-type strains ME49 and WH6. These data demonstrated that ME49Δcdpk3 inoculation induced effective cellular and humoral immune responses against acute and chronic Toxoplasma infections with various strains and was a potential candidate to develop a vaccine against toxoplasmosis.
Collapse
|
99
|
Denis J, Gommenginger C, Strechie T, Filisetti D, Beal L, Pfaff AW, Villard O. Dynamic immune profile in French toxoplasmosis patients. J Infect Dis 2022; 226:1834-1841. [PMID: 35978487 DOI: 10.1093/infdis/jiac305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Toxoplasma gondii infection is usually benign in Europe due to the strong predominance of type II strains. Few studies have been conducted to examine the immunological course of infection in humans and have yielded conflicting results, maybe influenced by heterogeneous parasite strains. METHODS We measured 23 immune mediators in 39, 40, and 29 sera of French non-infected, acutely infected, and chronically infected immunocompetent pregnant women, respectively. RESULTS Four different cytokine patterns were identified regarding their dynamics through infection phases. For eleven of the cytokines, IFN-β, IFN-γ, IL-4, IL5, IL-6, IL-10, IL-12, IL-15, CXCL9, CCL2 and CSF2, the serum levels were significantly elevated during acute infection. The inflammatory mediators IL-1β, IL-17A, IL-18, TNF-α and CSF3 remained unchanged during acute infection, while they were significantly lower in chronically infected compared to non-infected patients. As for the anti-inflammatory cytokines TGF-β and CCL5, their levels remained significantly elevated during chronic infection. We also observed a significant negative correlation of several cytokine concentrations with IgG levels, indicating a rapid decline of serum concentrations during the acute phase. DISCUSSION These results indicate an anti-inflammatory pattern in chronically infected patients in a type II dominated setting and demonstrate the highly dynamic immune situation during acute infection.
Collapse
Affiliation(s)
- Julie Denis
- Institut de Parasitologie et de Pathologie Tropicale, UR7292 Dynamique des interactions hôte pathogène, Fédération de Médecine Translationnelle, Université de Strasbourg, Strasbourg, France.,Laboratoire de Parasitologie et Mycologie Médicale, Les Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Chloé Gommenginger
- Laboratoire de Parasitologie et Mycologie Médicale, Les Hôpitaux Universitaires de Strasbourg, Strasbourg, France.,Centre National de Référence Toxoplasmose-Pôle sérologie, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Teodora Strechie
- Institut de Parasitologie et de Pathologie Tropicale, UR7292 Dynamique des interactions hôte pathogène, Fédération de Médecine Translationnelle, Université de Strasbourg, Strasbourg, France.,Centre National de Référence Toxoplasmose-Pôle sérologie, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Denis Filisetti
- Institut de Parasitologie et de Pathologie Tropicale, UR7292 Dynamique des interactions hôte pathogène, Fédération de Médecine Translationnelle, Université de Strasbourg, Strasbourg, France.,Laboratoire de Parasitologie et Mycologie Médicale, Les Hôpitaux Universitaires de Strasbourg, Strasbourg, France.,Centre National de Référence Toxoplasmose-Pôle sérologie, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Laetitia Beal
- Laboratoire de Parasitologie et Mycologie Médicale, Les Hôpitaux Universitaires de Strasbourg, Strasbourg, France.,Centre National de Référence Toxoplasmose-Pôle sérologie, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Alexander W Pfaff
- Institut de Parasitologie et de Pathologie Tropicale, UR7292 Dynamique des interactions hôte pathogène, Fédération de Médecine Translationnelle, Université de Strasbourg, Strasbourg, France.,Laboratoire de Parasitologie et Mycologie Médicale, Les Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Odile Villard
- Institut de Parasitologie et de Pathologie Tropicale, UR7292 Dynamique des interactions hôte pathogène, Fédération de Médecine Translationnelle, Université de Strasbourg, Strasbourg, France.,Laboratoire de Parasitologie et Mycologie Médicale, Les Hôpitaux Universitaires de Strasbourg, Strasbourg, France.,Centre National de Référence Toxoplasmose-Pôle sérologie, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| |
Collapse
|
100
|
Mitchell DJ, Reinhard CL, Cole SD, Stefanovski D, Watson B. Seroprevalence of Toxoplasmosis among Shelter-Housed Felines in a Philadelphia Suburb. Animals (Basel) 2022; 12:ani12162012. [PMID: 36009604 PMCID: PMC9404424 DOI: 10.3390/ani12162012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/02/2022] [Accepted: 08/04/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Cats serve as a host for a parasite called Toxoplasma gondii. This parasite can infect other animal species, including humans, and, therefore, the study of toxoplasmosis is relevant to both human and animal health. In this study, we analyzed blood samples from 84 shelter-housed cats to determine if they had been exposed to T. gondii. Our results revealed that 28.6% of the cats in our study had been exposed to toxoplasmosis. This study serves as a pilot study for further investigation into the rates of toxoplasmosis infection in shelter-housed felines. Abstract Members of the Felidae family are the definitive host of the ubiquitous zoonotic parasite Toxoplasma gondii. Few studies have been conducted to determine the epidemiology of T. gondii in domestic felines within animal shelter populations. The goal of this study was to assess seroprevalence in a limited-admission shelter in the greater Philadelphia area. Serum samples were collected from cats at a shelter in Media, Pennsylvania during the summer of 2018 to assess the proportion of the population that was IgM or IgG seropositive for antibodies against T. gondii, using a commercially available ELISA. Out of the 84 cats that were sampled, 24 cats were seropositive, giving a population prevalence of 28.6%. Nine cats were seropositive for IgM, nine were seropositive for IgG, and six were seropositive for both IgM and IgG. Based on our data, we found that a large percentage of this population was seronegative. Although the sample size in this study was limited and prevented us from obtaining statistically significant results, this research can serve as a pilot study for further investigations into the seroprevalence of toxoplasmosis among shelter-housed felines.
Collapse
Affiliation(s)
- Danni J. Mitchell
- Department of Clinical Sciences and Advanced Medicine, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104, USA
| | - Chelsea L. Reinhard
- Department of Clinical Sciences and Advanced Medicine, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104, USA
| | - Stephen D. Cole
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104, USA
| | - Darko Stefanovski
- Department of Clinical Studies—New Bolton Center, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19348, USA
| | - Brittany Watson
- Department of Clinical Sciences and Advanced Medicine, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104, USA
- Correspondence:
| |
Collapse
|