51
|
Teilum M, Hansson MJ, Dainiak MB, Månsson R, Surve S, Elmér E, Onnerfjord P, Mattiasson G. Binding mitochondria to cryogel monoliths allows detection of proteins specifically released following permeability transition. Anal Biochem 2006; 348:209-21. [PMID: 16310157 DOI: 10.1016/j.ab.2005.08.032] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2005] [Revised: 08/12/2005] [Accepted: 08/19/2005] [Indexed: 10/25/2022]
Abstract
Following proapoptotic signals such as calcium-induced mitochondrial permeability transition or translocation of proapoptotic proteins, mitochondria induce cell death through release of apoptogenic proteins. The mechanism of release and the identity of the released proteins are currently debated. Earlier attempts at identification of the apoptogenic proteins have been hampered by a high nonspecific background. Our aim was to develop a novel method where background release was eliminated, allowing proteins specifically released from mitochondria following proapoptotic stimulation to be identified. Liver mitochondria were immobilized and washed on cryogel monoliths prior to induction of protein release (calcium or Bid/Bax). Immobilized mitochondria exhibited normal morphology and swelling response and retained respiratory activity. The released proteins were collected, concentrated, separated on polyacrylamide gels which were cut into pieces, trypsin-digested, and analyzed using liquid chromatography-tandem mass spectrometry. Control samples contained no protein, and stimulation with calcium and Bid/Bax resulted in identification of 68 and 82 proteins, respectively. We conclude that, in combination with the robust proteomic approach, immobilization on cryogel monoliths is a fruitful approach for studying specific protein release from isolated mitochondria. We propose that this method is a powerful tool to further characterize the role of mitochondria in cell death induction.
Collapse
Affiliation(s)
- M Teilum
- Laboratory for Experimental Brain Research, Wallenberg Neuroscience Center, Lund University, 221 84 Lund, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|
52
|
Fuks B, Talaga P, Huart C, Hénichart JP, Bertrand K, Grimée R, Lorent G. In vitro properties of 5-(benzylsulfonyl)-4-bromo-2-methyl-3(2H)-pyridazinone: a novel permeability transition pore inhibitor. Eur J Pharmacol 2005; 519:24-30. [PMID: 16099453 DOI: 10.1016/j.ejphar.2005.06.046] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2005] [Revised: 06/23/2005] [Accepted: 06/30/2005] [Indexed: 12/16/2022]
Abstract
Despite the increasing implication of the permeability transition pore (PTP) in the pathophysiology of neurodegenerative diseases, few selective PTP inhibitors have been reported so far. Here, we evaluate the pharmacological properties of a novel PTP inhibitor, BBMP (5-(benzylsulfonyl)-4-bromo-2-methyl-3(2H)-pyridazinone). This drug was discovered from the screening of a compound library against the PTP using a functional assay with isolated mitochondria. Similarly to cyclosporin A, the drug prevented Ca2+-induced permeability transition and mitochondrial depolarization. BBMP appeared more potent that minocycline in both swelling and membrane potential assays displaying pIC50 values of 5.5+/-0.1 and 5.6+/-0.0, respectively. Unlike minocycline, BBMP dose-dependently prevented DNA fragmentation induced by KCl 25/5 mM shift and serum deprivation in cerebellar granule neurons with a pIC50 of 5.7+/-0.6. The inhibition of PTP-mediated cytochrome c release observed in isolated mitochondria at 10 and 100 microM may explain its neuroprotective properties in vitro. These data suggest that the mitochondrial PTP is potentially involved in neuronal cell death and that PTP inhibitors, like BBMP, may possess a therapeutic potential in neurodegenerative disorders.
Collapse
Affiliation(s)
- Bruno Fuks
- UCB, Center for CNS Innovation, Chemin du Foriest, 1420 Braine-l'Alleud, Belgium.
| | | | | | | | | | | | | |
Collapse
|
53
|
Pretorius E, Bornman MS. Calcium-mediated aponecrosis plays a central role in the pathogenesis of estrogenic chemical-induced neurotoxicity. Med Hypotheses 2005; 65:893-904. [PMID: 16051444 DOI: 10.1016/j.mehy.2005.03.032] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2005] [Accepted: 03/10/2005] [Indexed: 12/28/2022]
Abstract
Estrogen is traditionally associated with females but is also present in males, and influences aspects of brain chemistry and brain morphology in males, females and also during prenatal development. Humans as well as animals are additionally exposed to environmental products that mimic estrogen activity, also known as endocrine disrupters (EDCs). This hypothesis article investigates the role of estrogen (and also EDCs) in the brain and how it influences the Ca2+ pathway. Ca2+ and its movement in and out of the cell is an extremely important ion controlling normal cell physiology. Any dysfunction in the movement from outside to inside the cell or between organelles may have fundamentally negative effects and the disturbance may even lead to apoptosis and/or necrosis. Therefore we consider whether estrogen and EDCs may alter the Ca2+ physiology and whether these changes may be one of the main causes of interference in physiology that is seen when humans and animals are exposed to EDCs. We come to the conclusion that on a molecular level Ca2+ and Ca2+ fluxes ([Ca2+]i, endocrine disrupting chemicals, redox modulation, mitochondria and cytochrome c followed by apoptosis, necrosis or most likely aponecrosis may contribute to chemical-mediated developmental toxicity. Similarly, we hypothesize that calcium-mediated aponecrosis do not only play a central role in the pathophysiology of estrogenic chemical-induced neurotoxicity, but can contribute to chemical-mediated developmental toxicity in general, thereby affecting almost all cells and organs of the living organism.
Collapse
Affiliation(s)
- E Pretorius
- Department of Anatomy, School of Health Sciences, Medical Faculty of the University of Pretoria, P.O. Box 2034, BMW Building, Pretoria 0001, South Africa.
| | | |
Collapse
|
54
|
Lifshitz J, Sullivan PG, Hovda DA, Wieloch T, McIntosh TK. Mitochondrial damage and dysfunction in traumatic brain injury. Mitochondrion 2005; 4:705-13. [PMID: 16120426 DOI: 10.1016/j.mito.2004.07.021] [Citation(s) in RCA: 140] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2003] [Accepted: 07/12/2004] [Indexed: 11/24/2022]
Abstract
The enduring cognitive deficits and histopathology associated with traumatic brain injury (TBI) may arise from damage to mitochondrial populations, which initiates the metabolic dysfunction observed in clinical and experimental TBI. The anecdotal evidence for in vivo structural damage to mitochondria corroborates metabolic and physiologic dysfunction, which depletes substrates and promotes free radical generation. Excessive calcium pathology differentially disrupts the heterogeneous mitochondrial population, such that calcium sensitivity increases after TBI. The ongoing pathology may escalate to include protein and DNA oxidation that impacts mitochondrial function and promotes cell death. Thus, in vivo TBI damages, if not eliminates, mitochondrial populations depending on injury severity, with the remaining population left to provide metabolic support for survival or repair in the wake of cellular pathology. With a considerable understanding of post-injury mitochondrial populations, therapeutic interventions targeted to the mitochondria may delay or prevent secondary cascades that lead to long-term cell death and neurobehavioral disability.
Collapse
Affiliation(s)
- Jonathan Lifshitz
- Traumatic Brain Injury Laboratory, Department of Neurosurgery, University of Pennsylvania, 5 Silverstein, 3400 Spruce Street, Philadelphia, PA 19104, USA.
| | | | | | | | | |
Collapse
|
55
|
Brustovetsky N, LaFrance R, Purl KJ, Brustovetsky T, Keene CD, Low WC, Dubinsky JM. Age-dependent changes in the calcium sensitivity of striatal mitochondria in mouse models of Huntington's Disease. J Neurochem 2005; 93:1361-70. [PMID: 15935052 DOI: 10.1111/j.1471-4159.2005.03036.x] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Striatal and cortical mitochondria from knock-in and transgenic mutant huntingtin mice were examined for their sensitivity to calcium induction of the permeability transition, a cause of mitochondrial depolarization and ATP loss. The permeability transition has been suggested to contribute to cell death in Huntington's Disease. Mitochondria were examined from slowly progressing knock-in mouse models with different length polyglutarnine expansions (Q20, Q50, Q92, Q111) and from the rapidly progressing transgenic R6/2 mice overexpressing exon I of human huntingtin with more than 110 polyglutamines. As previously observed in rats, striatal mitochondria from background strain CD1 and C57BL/6 control mice were more sensitive to calcium than cortical mitochondria. Between 5 and 12 months in knock-in Q92 mice and between 8 and 12 weeks in knock-in Q111 mice, striatal mitochondria developed resistance, becoming equally sensitive to calcium as cortical mitochondria, while those from Q50 mice were unchanged. Cortical mitochondrial calcium sensitivity did not change. In R6/2 mice striatal and cortical mitochondria were equally resistant to Ca2+ while striatal mitochondria from littermate controls were more susceptible. No increases in calcium sensitivity were observed in the mitochondria from Huntington's Disease (HD) mice compared to controls. Neither motor abnormalities, nor expression of cyclophilin D corresponded to the changes in mitochondrial sensitivity. Polyglutamine expansions in huntingtin produced an early increased resistance to calcium in striatal mitochondria suggesting mitochondria undergo compensatory changes in calcium sensitivity in response to the many cellular changes wrought by polyglutamine expansion.
Collapse
Affiliation(s)
- N Brustovetsky
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | | | | | | | | | | | |
Collapse
|
56
|
Kushnareva YE, Wiley SE, Ward MW, Andreyev AY, Murphy AN. Excitotoxic injury to mitochondria isolated from cultured neurons. J Biol Chem 2005; 280:28894-902. [PMID: 15932874 DOI: 10.1074/jbc.m503090200] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Neuronal death in response to excitotoxic levels of glutamate is dependent upon mitochondrial Ca2+ accumulation and is associated with a drop in ATP levels and a loss in ionic homeostasis. Yet the mapping of temporal events in mitochondria subsequent to Ca2+ sequestration is incomplete. By isolating mitochondria from primary cultures, we discovered that glutamate treatment of cortical neurons for 10 min caused 44% inhibition of ADP-stimulated respiration, whereas the maximal rate of electron transport (uncoupler-stimulated respiration) was inhibited by approximately 10%. The Ca2+ load in mitochondria from glutamate-treated neurons was estimated to be 167 +/- 19 nmol/mg protein. The glutamate-induced Ca2+ load was less than the maximal Ca2+ uptake capacity of the mitochondria determined in vitro (363 +/- 35 nmol/mg protein). Comparatively, mitochondria isolated from cerebellar granule cells demonstrated a higher Ca2+ uptake capacity (686 +/- 71 nmol/mg protein) than the cortical mitochondria, and the glutamate-induced load of Ca2+ was a smaller percentage of the maximal Ca2+ uptake capacity. Thus, this study indicated that Ca(2+)-induced impairment of mitochondrial ATP production is an early event in the excitotoxic cascade that may contribute to decreased cellular ATP and loss of ionic homeostasis that precede commitment to neuronal death.
Collapse
|
57
|
Abstract
Mitochondria benefit their host cells by generating ATP, detoxifying oxygen, maintaining cellular redox potential, and detoxifying reactive oxygen species and xenobiotics. These beneficial roles are in stark contrast to mitochondrial participation in both necrotic and apoptotic degenerative pathways. However, cellular stresses do not always result in deleterious mitochondrial changes. Decreases in the calcium sensitivity of the permeability transition may be initial mitochondrial responses to stress that act to preserve mitochondrial function and prolong normal functioning of the host cell.
Collapse
Affiliation(s)
- Janet M Dubinsky
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455, USA.
| | | | | |
Collapse
|
58
|
Stavrovskaya IG, Kristal BS. The powerhouse takes control of the cell: is the mitochondrial permeability transition a viable therapeutic target against neuronal dysfunction and death? Free Radic Biol Med 2005; 38:687-97. [PMID: 15721979 DOI: 10.1016/j.freeradbiomed.2004.11.032] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2004] [Accepted: 11/30/2004] [Indexed: 11/22/2022]
Abstract
Stroke and neurodegenerative disease exert an increasing large toll on human health at the levels both of the individual and of society. As an example of each, in the United States, stroke is the major single cause of overall morbidity and mortality, and the financial costs of Alzheimer's disease alone dwarfs the entire federal medical research budget. It has been long recognized that mitochondrial energy production is essential for the second to second functions of the central nervous system (CNS), and that severe mitochondrial impairment is incompatible with normal cerebral function. The last decade, however, has brought a growing understanding that mitochondria play an even greater role than previously suspected. Increased understanding of the role of mitochondria in antioxidant defense and calcium homeostasis further solidified the importance of mitochondria in CNS function--just as increased understanding of mitochondrial roles in calcium-mediated toxicity and production of reactive species further exemplified the Janus role of mitochondria--as mediators of CNS dysfunction. Perhaps most unexpected, however, was the evidence that mitochondria serve as the dominant integrators, checkpoints, and amplifiers of the cell death signals in the CNS. The mechanism of propagation of cell death cascades by mitochondria remains controversial. In this review, we focus on the evidence that supports the involvement of an event termed the mitochondrial permeability transition that (i) occurs (patho)physiologically; (ii) occurs in the CNS, and; (iii) is a potential target for pharmaceutical intervention against CNS dysfunction, injury, and cell loss resulting from stroke, trauma, and neurodegenerative disease.
Collapse
Affiliation(s)
- Irina G Stavrovskaya
- Dementia Research Service, Burke Medical Research Institute, 785 Mamaroneck Avenue, White Plains, NY 10605, USA
| | | |
Collapse
|
59
|
Dłuzniewska J, Beresewicz M, Wojewódzka U, Gajkowska B, Zabłocka B. Transient cerebral ischemia induces delayed proapoptotic Bad translocation to mitochondria in CA1 sector of hippocampus. ACTA ACUST UNITED AC 2005; 133:274-80. [PMID: 15710244 DOI: 10.1016/j.molbrainres.2004.10.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2004] [Indexed: 11/27/2022]
Abstract
Delayed ischemic brain damage is associated with mitochondrial dysfunction, but the underlying mechanisms are not known in detail. Recent data suggest that the process is associated with multidirectional changes in the activities of various proteins located in mitochondria. Of these, the stress-activated kinase JNK is delay-activated postischemia. We induced 5 min cerebral ischemia in gerbils followed by 3, 24, 48, 72 and 96 h of reperfusion. Here we show the postischemic translocation of proapoptotic protein Bad to mitochondria. Immunoelectron microscopic examination revealed the co-appearance of Bad and Bcl-2 proteins in postischemic mitochondria in ischemia-vulnerable CA1 sector of hippocampus as opposed to the ischemia-resistant DG region. Mitochondrial increase of Bad protein is coincident with a transient decrease of the active, phosphorylated form of prosurvival kinase, Raf-1, under conditions of long reperfusion. The above demonstrated sequence of events is likely to play a role in delayed postischemic nerve cell death.
Collapse
Affiliation(s)
- Joanna Dłuzniewska
- Molecular Biology Unit, Medical Research Centre, Polish Academy of Sciences, 5 Pawińskiego St., 02-106 Warsaw, Poland
| | | | | | | | | |
Collapse
|
60
|
Zoratti M, Szabò I, De Marchi U. Mitochondrial permeability transitions: how many doors to the house? BIOCHIMICA ET BIOPHYSICA ACTA 2005; 1706:40-52. [PMID: 15620364 DOI: 10.1016/j.bbabio.2004.10.006] [Citation(s) in RCA: 169] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2004] [Revised: 10/20/2004] [Accepted: 10/21/2004] [Indexed: 12/18/2022]
Abstract
The inner mitochondrial membrane is famously impermeable to solutes not provided with a specific carrier. When this impermeability is lost, either in a developmental context or under stress, the consequences for the cell can be far-reaching. Permeabilization of isolated mitochondria, studied since the early days of the field, is often discussed as if it were a biochemically well-defined phenomenon, occurring by a unique mechanism. On the contrary, evidence has been accumulating that it may be the common outcome of several distinct processes, involving different proteins or protein complexes, depending on circumstances. A clear definition of this putative variety is a prerequisite for an understanding of mitochondrial permeabilization within cells, of its roles in the life of organisms, and of the possibilities for pharmacological intervention.
Collapse
Affiliation(s)
- Mario Zoratti
- CNR Institute of Neuroscience, Biomembranes Section, Department of Biomedical Sciences, University of Padova, Viale G. Colombo 3, 35121 Padova, Italy.
| | | | | |
Collapse
|
61
|
Jiang X, Mu D, Manabat C, Koshy AA, Christen S, Täuber MG, Vexler ZS, Ferriero DM. Differential vulnerability of immature murine neurons to oxygen-glucose deprivation. Exp Neurol 2004; 190:224-32. [PMID: 15473995 DOI: 10.1016/j.expneurol.2004.07.010] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2004] [Revised: 07/22/2004] [Accepted: 07/22/2004] [Indexed: 11/19/2022]
Abstract
In vivo studies support selective neuronal vulnerability to hypoxia-ischemia (HI) in the developing brain. Since differences in intrinsic properties of neurons might be responsible, pure cultures containing immature neurons (6-8 days in vitro) isolated from mouse cortex and hippocampus, regions chosen for their marked vulnerability to oxidative stress, were studied under in vitro ischemic conditions-oxygen-glucose deprivation (OGD). Twenty-four hours of reoxygenation after 2.5 h of OGD induced significantly greater cell death in hippocampal than in cortical neurons (67.8% vs. 33.4%, P = 0.0068). The expression of neuronal nitric oxide synthase (nNOS) protein, production of nitric oxide (NO), and reactive oxygen species (ROS), as well as glutathione peroxidase (GPx) activity and intracellular levels of reduced glutathione (GSH), were measured as indicators of oxidative stress. Hippocampal neurons had markedly higher nNOS expression than cortical neurons by 24 h of reoxygenation, which coincided with an increase in NO production, and significantly greater ROS accumulation. GPx activity declined significantly in hippocampal but not in cortical neurons at 4 and 24 h after OGD. The decrease in GSH level in hippocampal neurons correlated with the decline of GPx activity. Our data suggest that developing hippocampal neurons are more sensitive to OGD than cortical neurons. This finding supports our in vivo studies showing that mouse hippocampus is more vulnerable than cortex after neonatal HI. An imbalance between excess prooxidant production (increased nNOS expression, and NO and ROS production) and insufficient antioxidant defenses created by reduced GPx activity and GSH levels may, in part, explain the higher susceptibility to OGD of immature hippocampal neurons.
Collapse
Affiliation(s)
- Xiangning Jiang
- Department of Neurology, University of California-San Francisco, 521 Parnassus Avenue, San Francisco, CA 94143-0663, USA
| | | | | | | | | | | | | | | |
Collapse
|
62
|
Signoretti S, Marmarou A, Tavazzi B, Dunbar J, Amorini AM, Lazzarino G, Vagnozzi R. The Protective Effect of Cyclosporin A upon N-Acetylaspartate and Mitochondrial Dysfunction following Experimental Diffuse Traumatic Brain Injury. J Neurotrauma 2004; 21:1154-67. [PMID: 15453986 DOI: 10.1089/neu.2004.21.1154] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Pre- and post-injury Cyclosporin A (CsA) administration has shown neuroprotective properties by ameliorating mitochondrial damage. The aim of this study was to assess the effect of CsA upon N-acetylaspartate (NAA) reduction and ATP loss, two sensitive markers of mitochondrial dysfunction and bioenergetic impairment. Adult male Sprague-Dawley rats were exposed to impact acceleration traumatic brain injury (2 m/450 g) and randomized into the following experimental groups: intrathecal CsA/vehicle treated (n = 12), intravenous CsA/vehicle treated (n = 18) and sham (n = 12). Intrathecal treatment consisted of post-injury (30 min) cisternal bolus of CsA or Vehicle (0.15 mL, 10 mg/kg). Intravenous administration consisted of 30 min post-injury continuous 1 hour infusion of either 20 or 35 mg/kg CsA or Vehicle. Quantitative HPLC analysis of whole brain samples was performed 6 h post-injury for levels of NAA and ATP. Following intrathecal delivery CsA demonstrated significant neuroprotection blunting a 30% NAA reduction (p < 0.001) and restoring 26% of the ATP loss (p < 0.005). The 20 mg/kg intravenous dose failed to ameliorate the biochemical damages while the 35 mg/kg dosage showed 36% NAA recovery and 39% ATP restoration (p < 0.001). In conclusion, CsA is capable of restoring ATP and blunting NAA reduction. Intravenous infusion of 35 mg/kg appears to be the optimal therapeutic strategy in this model. These findings contribute to the notion that CsA achieves neuroprotection, preserving mitochondrial function, and provides a rationale for the assessment of CsA in the clinical setting where MR spectroscopy can monitor NAA and ATP in brain-injured patients.
Collapse
Affiliation(s)
- Stefano Signoretti
- Division of Neurosurgery, Medical College of Virginia, Virginia Commonwealth University, Richmond, VA 23298-0508, USA
| | | | | | | | | | | | | |
Collapse
|
63
|
Stavrovskaya IG, Narayanan MV, Zhang W, Krasnikov BF, Heemskerk J, Young SS, Blass JP, Brown AM, Beal MF, Friedlander RM, Kristal BS. Clinically approved heterocyclics act on a mitochondrial target and reduce stroke-induced pathology. ACTA ACUST UNITED AC 2004; 200:211-22. [PMID: 15263028 PMCID: PMC2212009 DOI: 10.1084/jem.20032053] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Substantial evidence indicates that mitochondria are a major checkpoint in several pathways leading to neuronal cell death, but discerning critical propagation stages from downstream consequences has been difficult. The mitochondrial permeability transition (mPT) may be critical in stroke-related injury. To address this hypothesis, identify potential therapeutics, and screen for new uses for established drugs with known toxicity, 1,040 FDA-approved drugs and other bioactive compounds were tested as potential mPT inhibitors. We report the identification of 28 structurally related drugs, including tricyclic antidepressants and antipsychotics, capable of delaying the mPT. Clinically achievable doses of one drug in this general structural class that inhibits mPT, promethazine, were protective in both in vitro and mouse models of stroke. Specifically, promethazine protected primary neuronal cultures subjected to oxygen-glucose deprivation and reduced infarct size and neurological impairment in mice subjected to middle cerebral artery occlusion/reperfusion. These results, in conjunction with new insights provided to older studies, (a) suggest a class of safe, tolerable drugs for stroke and neurodegeneration; (b) provide new tools for understanding mitochondrial roles in neuronal cell death; (c) demonstrate the clinical/experimental value of screening collections of bioactive compounds enriched in clinically available agents; and (d) provide discovery-based evidence that mPT is an essential, causative event in stroke-related injury.
Collapse
Affiliation(s)
- Irina G Stavrovskaya
- Dementia Research Service, Burke Medical Research Institute, 785 Mamaroneck Ave., White Plains, NY 10605, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
64
|
Vergun O, Votyakova TV, Reynolds IJ. Spontaneous changes in mitochondrial membrane potential in single isolated brain mitochondria. Biophys J 2004; 85:3358-66. [PMID: 14581237 PMCID: PMC1303613 DOI: 10.1016/s0006-3495(03)74755-9] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
In this study we measured DeltaPsim in single isolated brain mitochondria using rhodamine 123. Mitochondria were attached to coverslips and superfused with K(+)-based HEPES-buffer medium supplemented with malate and glutamate. In approximately 70% of energized mitochondria we observed large amplitude spontaneous fluctuations in DeltaPsim with a time course comparable to that observed previously in mitochondria of intact cells. The other 30% of mitochondria maintained a stable DeltaPsim. Some of the "stable" mitochondria began to fluctuate spontaneously during the recording period. However, none of the initially fluctuating mitochondria became stable. Upon the removal of substrates from the medium or application of small amounts of Ca(2+), rhodamine 123 fluorescence rapidly dropped to background values in fluctuating mitochondria, while nonfluctuating mitochondria depolarized with a delay and often began to fluctuate before complete depolarization. The changes in DeltaPsim were not connected to oxidant production since reducing illumination or the addition of antioxidants had no effect on DeltaPsim. Fluctuating mitochondria did not lose calcein, nor was there any effect of cyclosporin A on DeltaPsim, which ruled out a contribution of permeability transition. We conclude that the fluctuations in DeltaPsim reflect an intermediate, unstable state of mitochondria that may lead to or reflect mitochondrial dysfunction.
Collapse
Affiliation(s)
- Olga Vergun
- Department of Pharmacology, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
| | | | | |
Collapse
|
65
|
Hansson MJ, Månsson R, Mattiasson G, Ohlsson J, Karlsson J, Keep MF, Elmér E. Brain-derived respiring mitochondria exhibit homogeneous, complete and cyclosporin-sensitive permeability transition. J Neurochem 2004; 89:715-29. [PMID: 15086528 DOI: 10.1111/j.1471-4159.2004.02400.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The mitochondrial permeability transition (mPT) is increasingly implicated in neuronal cell death. In the present study, isolated respiring brain mitochondria were examined for their ability to undergo calcium-induced mPT and their sensitivity to mPT inhibition by cyclosporin A (CsA). Previous studies have suggested a heterogeneous response to calcium, a limitation of CsA inhibition, and a relative resistance in the ability of respiring brain mitochondria to undergo mPT. Using fluorometric and electron microscopic analyses, we found that virtually the whole population of respiring brain mitochondria readily undergo mPT and swell upon calcium exposure. Further, brain mitochondria were highly sensitive to CsA which potentiated morphological recovery after transient swelling as well as completely blocked mPT induction in the presence of a low concentration of ADP. Using flow cytometry, which allows analysis of individual mitochondria, we demonstrate that both brain and liver mitochondria display homogeneous responses to calcium-induced mPT. We conclude that the mPT is one likely target for the broad in vivo neuroprotective effects displayed by CsA when allowed to penetrate the blood-brain barrier, and that development of compounds inhibiting mPT may prove beneficial for the treatment of severe brain disease.
Collapse
Affiliation(s)
- Magnus J Hansson
- Laboratory for Experimental Brain Research, Wallenberg Neuroscience Center, Lund University, Sweden.
| | | | | | | | | | | | | |
Collapse
|
66
|
Nakai A, Shibazaki Y, Taniuchi Y, Miyake H, Oya A, Takeshita T. Role of mitochondrial permeability transition in fetal brain damage in rats. Pediatr Neurol 2004; 30:247-53. [PMID: 15087102 DOI: 10.1016/j.pediatrneurol.2003.09.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2003] [Accepted: 09/09/2003] [Indexed: 11/29/2022]
Abstract
Recirculation after transient in utero ischemia has previously been found to be accompanied by delayed deterioration of cellular bioenergetic state and of mitochondrial function in the fetal rat brain. Our objective was to assess whether the delayed deterioration is a result of the activation of mitochondrial permeability transition which is observed ultrastructurally as mitochondrial swelling. The respiratory activities and ultrastructure of isolated mitochondria and the cellular bioenergetic state in fetal rat brain were examined at the end of 30 minutes of in utero ischemia and after 1, 2, 3 and 4 hours of recirculation. Cyclosporin A, a potent and virtually specific mitochondrial permeability transition blocker, or vehicle was administered 1 hour after recirculation. In the vehicle-treated animals, the transient ischemia was associated with a delayed deterioration of cellular bioenergetic state and mitochondrial activities at 4 hours of recirculation. The number of swollen mitochondria increased markedly after 4 hours of recirculation. The deterioration and the swelling were prevented by cyclosporin A. The present study indicates that cyclosporin A treatment improves recovery of fetal brain energy metabolism and inhibits the mitochondrial swelling after transient in utero ischemia. The results suggest that mitochondria and mitochondrial permeability transition may be involved in the development of ischemic brain damage in the immature rat.
Collapse
Affiliation(s)
- Akihito Nakai
- Department of Obstetrics and Gynecology, Nippon Medical School, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
67
|
Domañska-Janik K, Buzañska L, Dłuzniewska J, Kozłowska H, Sarnowska A, Zabłocka B. Neuroprotection by cyclosporin A following transient brain ischemia correlates with the inhibition of the early efflux of cytochrome C to cytoplasm. ACTA ACUST UNITED AC 2004; 121:50-9. [PMID: 14969736 DOI: 10.1016/j.molbrainres.2003.11.006] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/17/2003] [Indexed: 10/26/2022]
Abstract
The efflux of mitochondrial protein cytochrome C to cytoplasm is one of the key events of mitochondrial dysfunction observed in post-ischemic pathology. We investigated the effect of intra-carotid infusion of 5-10 mg/kg of cyclosporin A (CsA) on the neuronal survival in CA1 sector of hippocampus and on the subcellular localization of cytochrome C in the model of 5 min gerbil brain ischemia. To discriminate between the immunosuppressive and the mitochondria protecting component of CsA action, we compared the effect of CsA with one other immunosuppressant FK506. Almost 75% of neurons in ischemia-affected brain area were saved after CsA but not after FK506 treatment. This protective effect was only observed when the drug was infused immediately upon reperfusion. Early CsA treatment was able to block an initial phase of cytochrome C release, occurring transiently at 30 min post-ischemia, an effect never observed after FK506 administration. We assessed the neuroprotective potency of CsA vs. FK506 in rat cortical primary culture treated with compounds that mimic destructive signals induced by brain ischemia. In all cases, neuronal death and cytochrome C release were evidently suppressed by CsA applied not later than 30 min after the initial insult. Thus, early treatment with CsA in vitro and after bolus intra-carotid injection in vivo can save neurons by inhibition of cytochrome C efflux to cytoplasm.
Collapse
Affiliation(s)
- Krystyna Domañska-Janik
- Laboratory of Molecular Neuropathology, Medical Research Centre, 5 Pawińskiego St., 02-106 Warsaw, Poland.
| | | | | | | | | | | |
Collapse
|
68
|
Sullivan PG, Rabchevsky AG, Keller JN, Lovell M, Sodhi A, Hart RP, Scheff SW. Intrinsic differences in brain and spinal cord mitochondria: Implication for therapeutic interventions. J Comp Neurol 2004; 474:524-34. [PMID: 15174070 DOI: 10.1002/cne.20130] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
It is well known that regions of the CNS differentially respond to insults. After brain injury, cyclosporine A reduces damage but is ineffective following spinal cord injury. We address this disparity by assessing several parameters of mitochondrial physiology in the normal neocortex and spinal cord. In situ measurements of O(2) (-.) production, lipid peroxidation, and mitochondrial DNA oxidation revealed significantly higher levels in spinal cord vs. neocortical neurons. Real-time PCR demonstrated differences in mitochondrial transcripts coupled with decreases in complex I enzyme activity and respiration in spinal cord mitochondria. The threshold for calcium-induced mitochondrial permeability transition was substantially reduced in spinal cord vs. neocortex and modulated by lipid peroxidation. These intrinsic differences may provide a pivotal target for strategies to ameliorate neuronal damage following injury, and this imbalance in oxidative stress may contribute to the susceptibility of spinal cord motor neurons in neuropathologies such as amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- Patrick G Sullivan
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, Kentucky 40536, USA.
| | | | | | | | | | | | | |
Collapse
|
69
|
Abe T, Takagi N, Nakano M, Tanonaka K, Takeo S. The Effects of Monobromobimane on Calcium and Phenylarsineoxide-Induced Mitochondrial Swelling and Cytochrome c Release in Isolated Brain Mitochondria. Biol Pharm Bull 2004; 27:524-7. [PMID: 15056859 DOI: 10.1248/bpb.27.524] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A possible involvement of inhibitory effects of monobromobimane (MBM), a thiol reagent, on the swelling and the release of cytochrome c in the isolated brain mitochondria was examined. MBM dose-dependently inhibited the calcium and phenylarsineoxide-induced mitochondrial swelling and cytochrome c release. Significant relationships between mitochondrial swelling and cytochrome c release were detected. Furthermore, effects of in vivo treatment with MBM on neuronal cell damage after transient (15 min) global ischemia in rats were examined. Infusion of MBM (1 or 3 microg/animal) to cerebral ventricles attenuated an increased number of TUNEL-positive cells and neuronal cell death in the hippocampal CA1 region at 72 h of reperfusion. These results suggest that MBM may have an ability to inhibit mitochondria-associated apoptotic pathways through attenuation of the mitochondrial swelling and the release of cytochrome c.
Collapse
Affiliation(s)
- Tsutomu Abe
- Department of Pharmacology, Tokyo University of Pharmacy and Life Science, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | | | | | | | | |
Collapse
|
70
|
Sullivan PG, Rabchevsky AG, Waldmeier PC, Springer JE. Mitochondrial permeability transition in CNS trauma: Cause or effect of neuronal cell death? J Neurosci Res 2004; 79:231-9. [PMID: 15573402 DOI: 10.1002/jnr.20292] [Citation(s) in RCA: 276] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Experimental traumatic brain injury (TBI) and spinal cord injury (SCI) result in a rapid and significant necrosis of neuronal tissue at the site of injury. In the ensuing hours and days, secondary injury exacerbates the primary damage, resulting in significant neurologic dysfunction. It is believed that alterations in excitatory amino acids (EAA), increased reactive oxygen species (ROS), and the disruption of Ca(2+) homeostasis are major factors contributing to the ensuing neuropathology. Mitochondria serve as the powerhouse of the cell by maintaining ratios of ATP:ADP that thermodynamically favor the hydrolysis of ATP to ADP + P(i), yet a byproduct of this process is the generation of ROS. Proton-pumping by components of the electron transport system (ETS) generates a membrane potential (DeltaPsi) that can then be used to phosphorylate ADP or sequester Ca(2+) out of the cytosol into the mitochondrial matrix. This allows mitochondria to act as cellular Ca(2+) sinks and to be in phase with changes in cytosolic Ca(2+) levels. Under extreme loads of Ca(2+), however, opening of the mitochondrial permeability transition pore (mPTP) results in the extrusion of mitochondrial Ca(2+) and other high- and low-molecular weight components. This catastrophic event discharges DeltaPsi and uncouples the ETS from ATP production. Cyclosporin A (CsA), a potent immunosuppressive drug, inhibits mitochondrial permeability transition (mPT) by binding to matrix cyclophilin D and blocking its binding to the adenine nucleotide translocator. Peripherally administered CsA attenuates mitochondrial dysfunction and neuronal damage in an experimental rodent model of TBI, in a dose-dependent manner. The underlying mechanism of neuroprotection afforded by CsA is most likely via interaction with the mPTP because the immunosuppressant FK506, which has no effect on the mPT, was not neuroprotective. When CsA was administrated after experimental SCI at the same dosage and regimen used TBI paradigms, however, it had no beneficial neuroprotective effects. This review takes a comprehensive and critical look at the evidence supporting the role for mPT in central nervous system (CNS) trauma and highlights the differential responses of CNS mitochondria to mPT induction and the implications this has for therapeutically targeting the mPT in TBI and SCI.
Collapse
Affiliation(s)
- P G Sullivan
- Spinal Cord and Brain Injury Research Center, 240 HSRB, University of Kentucky, Lexington, KY 40536-0305, USA.
| | | | | | | |
Collapse
|
71
|
Mattiasson G. Flow cytometric analysis of isolated liver mitochondria to detect changes relevant to cell death. ACTA ACUST UNITED AC 2004; 60:145-54. [PMID: 15290715 DOI: 10.1002/cyto.a.20024] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
BACKGROUND Mitochondria are key players in many forms of cell death, and mitochondrial production of reactive oxygen species (ROS), membrane depolarization, permeability changes, and release of apoptogenic proteins are involved in these processes. Flow cytometric analysis of isolated mitochondria enables parallel analysis of mitochondrial structure and function in individual mitochondria, and small mitochondrial samples are sufficient for analysis. This article describes a well-characterized protocol for flow cytometric analysis of isolated liver mitochondria that can be used to detect mitochondrial alterations relevant to cell death. METHODS Fluorescent probes were used to selectively stain mitochondria (nonyl acridine orange), and to measure membrane potential (tetramethylrhodamine-methyl-ester, 1,1',3,3,3',3'-hexamethylindodicarbocyanine-iodide), as well as production of ROS (2',7'-dichlorodihydrofluorescein-diacetate). Calcium-induced mitochondrial swelling was detected as a decrease in SSC. To ensure optimal concentrations of all probes, the effect on mitochondrial respiration was evaluated. RESULTS This protocol can be used to determine the purity of the mitochondrial preparation, to detect calcium-induced morphological changes, small mitochondrial de- and hyperpolarizations, as well as physiological changes in ROS generation. CONCLUSIONS Flow cytometry is a very useful tool to simultaneously analyze several mitochondrial parameters that are important in the induction of mitochondria-mediated cell death.
Collapse
Affiliation(s)
- Gustav Mattiasson
- Laboratory for Experimental Brain Research, Wallenberg Neuroscience Center, Lund University, Lund, Sweden.
| |
Collapse
|
72
|
Mattiasson G, Friberg H, Hansson M, Elmér E, Wieloch T. Flow cytometric analysis of mitochondria from CA1 and CA3 regions of rat hippocampus reveals differences in permeability transition pore activation. J Neurochem 2003; 87:532-44. [PMID: 14511130 DOI: 10.1046/j.1471-4159.2003.02026.x] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Mitochondria are important in the pathophysiology of several neurodegenerative diseases, and mitochondrial production of reactive oxygen species (ROS), membrane depolarization, permeability changes and release of apoptogenic proteins are involved in these processes. Following brain insults, cell death often occurs in discrete regions of the brain, such as the subregions of the hippocampus. To analyse mitochondrial structure and function in such subregions, only small amounts of mitochondria are available. We developed a protocol for flow cytometric analysis of very small samples of isolated brain mitochondria, and analysed mitochondrial swelling and formation of ROS in mitochondria from the CA1 and CA3 regions of the hippocampus. Calcium-induced mitochondrial swelling was measured, and fluorescent probes were used to selectively stain mitochondria (nonyl acridine orange), to measure membrane potential (tetramethylrhodamine-methyl-ester, 1,1',3,3,3',3'-hexamethylindodicarbocyanine-iodide) and to measure production of ROS (2',7'-dichlorodihydrofluorescein-diacetate). We found that formation of ROS and mitochondrial permeability transition pore activation were higher in mitochondria from the CA1 than from the CA3 region, and propose that differences in mitochondrial properties partly underlie the selective vulnerability of the CA1 region to brain insults. We also conclude that flow cytometry is a useful tool to analyse the role of mitochondria in cell death processes.
Collapse
Affiliation(s)
- Gustav Mattiasson
- Laboratory for Experimental Brain Research, Wallenberg Neuroscience Center, Lund University, Lund, Sweden.
| | | | | | | | | |
Collapse
|
73
|
Abstract
Mitochondria were simultaneously isolated from striatum and cortex of adult rats and compared in functional assays for their sensitivity to calcium activation of the permeability transition. Striatal mitochondria showed an increased dose-dependent sensitivity to Ca2+ compared with cortical mitochondria, as measured by mitochondrial depolarization, swelling, Ca2+ uptake, reactive oxygen species production, and respiration. Ratios of ATP to ADP were lower in striatal mitochondria exposed to calcium despite equal amounts of ADP and ATP under respiring and nonrespiring conditions. The Ca2+-induced changes were inhibited by cyclosporin A or ADP. These responses are consistent with Ca2+ activation of both low and high permeability pathways constituting the mitochondrial permeability transition. In addition to the striatal supersensitivity to induction of the permeability transition, cyclosporin A inhibition was less potent in striatal mitochondria. Immunoblots indicated that striatal mitochondria contained more cyclophilin D than cortical mitochondria. Thus striatal mitochondria may be selectively vulnerable to the permeability transition. Subsequent mitochondrial dysfunction could contribute to the initial toxicity of striatal neurons in Huntington's disease.
Collapse
|
74
|
Phelka AD, Beck MJ, Philbert MA. 1,3-Dinitrobenzene inhibits mitochondrial complex II in rat and mouse brainstem and cortical astrocytes. Neurotoxicology 2003; 24:403-15. [PMID: 12782105 DOI: 10.1016/s0161-813x(03)00031-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
1,3-Dinitrobenzene (DNB) produces edematous, glio-vascular lesions that are initially confined to brainstem nuclei with high energy requirements in rats and mice. Perturbation of energy producing processes in the cell is known to induce formation of the mitochondrial permeability transition pore (mtPTP) complex. Selective vulnerability of brainstem astrocytes to DNB is mediated by a 10-fold lower threshold for opening of the cyclosporin A-inhibitable mitochondrial permeability transition (MPT) pore than their cortical counterparts. Other nitrocompounds, such as 3-nitropropionic acid, selectively interfere with regional energy metabolism, including mitochondrial succinate dehydrogenase activity. However, the link between DNB-induced onset of the MPT and disruption of energy producing processes in the astrocyte remains unclear. The effects of DNB on succinate dehydrogenase activity were evaluated in cultured neonatal rat and mouse brainstem and cortical astrocytes. Both histochemical and spectrophotometric assays confirmed significant temporal inhibition of SDH activity in brainstem and cortical astrocytes 0.5, 2 and 5h following exposure to 100 microM DNB in vitro. Although DNB-induced inhibition of SDH was significantly decreased by CsA pretreatment in brainstem astrocytes after 0.5 and 2h and with a second pore inhibitor, bongkrekic acid (BKA) after 5h, both inhibitors failed to reduce inhibition of SDH activity in cortical astrocytes. These data suggest that DNB-induced inhibition of SDH may be independent of differential regional activation of the mtPTP complex in astrocytes and that an unidentified cyclosporin A-inhibitable factor mediates DNB-induced loss of SDH function.
Collapse
Affiliation(s)
- Amanda D Phelka
- Toxicology Program, Department of Environmental Health Sciences, University of Michigan, 48109-2029, Ann Arbor, MI, USA
| | | | | |
Collapse
|
75
|
Chalmers S, Nicholls DG. The relationship between free and total calcium concentrations in the matrix of liver and brain mitochondria. J Biol Chem 2003; 278:19062-70. [PMID: 12660243 DOI: 10.1074/jbc.m212661200] [Citation(s) in RCA: 294] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Three sequential phases of mitochondrial calcium accumulation can be distinguished: matrix dehydrogenase regulation, buffering of extramitochondrial free calcium, and finally activation of the permeability transition. Relationships between these phases, free and total matrix calcium concentration, and phosphate concentration are investigated in rat liver and brain mitochondria. Slow, continuous calcium infusion is employed to avoid transient bioenergetic consequences of bolus additions. Liver and brain mitochondria undergo permeability transitions at precise matrix calcium loads that are independent of infusion rate. Cytochrome c release precedes the permeability transition. Cyclosporin A enhances the loading capacity in the presence or absence of acetoacetate. A remarkably constant free matrix calcium concentration, in the range 1-5 microM as monitored by matrix-loaded fura2-FF, was observed when total matrix calcium was increased from 10 to at least 500 nmol of calcium/mg of protein. Increasing phosphate decreased both the free matrix calcium and the matrix calcium-loading capacity. Thus the permeability transition is not triggered by a critical matrix free calcium concentration. The rate of hydrogen peroxide detection by Amplex Red decreased during calcium infusion arguing against a role for oxidative stress in permeability pore activation in this model. A transition between a variable and buffered matrix free calcium concentration occurred at 10 nmol of total matrix calcium/mg protein. The solubility product of amorphous Ca3(PO4)2 is consistent with the observed matrix free calcium concentration, and the matrix pH is proposed to play the major role in maintaining the low matrix free calcium concentration.
Collapse
Affiliation(s)
- Susan Chalmers
- Buck Institute for Age Research, Novato, California 94945, USA
| | | |
Collapse
|
76
|
Blomgren K, Zhu C, Hallin U, Hagberg H. Mitochondria and ischemic reperfusion damage in the adult and in the developing brain. Biochem Biophys Res Commun 2003; 304:551-9. [PMID: 12729590 DOI: 10.1016/s0006-291x(03)00628-4] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The developing and the adult brain respond in similar ways to ischemia, but also display clear differences. For example, the relative contributions of necrosis and apoptosis to neuronal death may be different, such that apoptotic mechanisms would be more prevalent in the developing brain. During normal development, more than half of the neurons in some brain regions are removed through apoptosis, and effectors like caspase-3 are highly upregulated in the immature brain. Mitochondria are pivotal regulators of cell death through their role in energy production and calcium homeostasis, their capacity to release apoptogenic proteins and to produce reactive oxygen species. This review will summarize some of the current studies dealing with mitochondria-related mechanisms of ischemic brain damage, with special reference to developmental aspects.
Collapse
Affiliation(s)
- Klas Blomgren
- Department of Physiology, Perinatal Center, Göteborg University, P.O. Box 432, SE 405 30 Göteborg, Sweden.
| | | | | | | |
Collapse
|
77
|
Dineley KE, Votyakova TV, Reynolds IJ. Zinc inhibition of cellular energy production: implications for mitochondria and neurodegeneration. J Neurochem 2003; 85:563-70. [PMID: 12694382 DOI: 10.1046/j.1471-4159.2003.01678.x] [Citation(s) in RCA: 247] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
An increasing body of evidence suggests that high intracellular free zinc promotes neuronal death by inhibiting cellular energy production. A number of targets have been postulated, including complexes of the mitochondrial electron transport chain, components of the tricarboxylic acid cycle, and enzymes of glycolysis. Consequences of cellular zinc overload may include increased cellular reactive oxygen species (ROS) production, loss of mitochondrial membrane potential, and reduced cellular ATP levels. Additionally, zinc toxicity might involve zinc uptake by mitochondria and zinc induction of mitochondrial permeability transition. The present review discusses these processes with special emphasis on their potential involvement in brain injury.
Collapse
Affiliation(s)
- Kirk E Dineley
- Department of Pharmacology, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
| | | | | |
Collapse
|
78
|
Zablocka B, Dluzniewska J, Zajac H, Domańska-Janik K, Duzniewska J. Opposite reaction of ERK and JNK in ischemia vulnerable and resistant regions of hippocampus: involvement of mitochondria. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2003; 110:245-52. [PMID: 12591160 DOI: 10.1016/s0169-328x(02)00653-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Delayed ischemic death of neurones is observed selectively in CA1 region of hippocampus at 3-4 days of reperfusion. Signals generated immediately during and after ischemia are further propagated by a variety of kinases, proteases and phosphatases. Tissue samples from dorsal (vulnerable) and abdominal (resistant) parts of gerbil hippocampi were collected to determine the activation state of key signaling molecules: Akt, Raf-1, JNK, ERK1/2 in the course of reperfusion after 5 min of global cerebral ischemia. Western blot analysis of phosphorylated forms of the kinases revealed persistent activation of JNK, being limited mostly to vulnerable CA1 region. On the contrary, activation of ERK, although observed transiently in both parts, was enhanced for a longer time in the abdominal hippocampus. The levels of the active/phosphorylated Akt and Raf-1 kinases did not change significantly during the recovery period. No significant correlation between postischemic JNK activation and c-Jun phosphorylation or its contribution to AP1-like complex formation was found. In contrast, the amount of active JNK linked with mitochondrial membranes was significantly increased and preceded neuronal death in CA1. In the same period of time the AP1 complex, augmented in CA1 region, did not appear to contain a classical c-Fos protein. These results are consistent with the theory that either long-lasting activation of JNK and/or contrasting ERK and JNK activities in critical time of reperfusion, contribute to selective apoptosis of CA1 neurons. This, in connection with the translocation of activated JNK to mitochondria and time/regional differences in AP1 binding protein complexes can affect final postischemic outcome.
Collapse
Affiliation(s)
- Barbara Zablocka
- Molecular Biology Unit, Medical Research Centre, Polish Academy of Sciences, 5 Pawińskiego Street, 02-106 Warsaw, Poland
| | | | | | | | | |
Collapse
|
79
|
Structural and Functional Damage Sustained by Mitochondria After Traumatic Brain Injury in the Rat: Evidence for Differentially Sensitive Populations in the Cortex and Hippocampus. J Cereb Blood Flow Metab 2003. [DOI: 10.1097/00004647-200302000-00009] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
80
|
Lifshitz J, Friberg H, Neumar RW, Raghupathi R, Welsh FA, Janmey P, Saatman KE, Wieloch T, Grady MS, McIntosh TK. Structural and functional damage sustained by mitochondria after traumatic brain injury in the rat: evidence for differentially sensitive populations in the cortex and hippocampus. J Cereb Blood Flow Metab 2003; 23:219-31. [PMID: 12571453 DOI: 10.1097/01.wcb.0000040581.43808.03] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The cellular and molecular pathways initiated by traumatic brain injury (TBI) may compromise the function and structural integrity of mitochondria, thereby contributing to cerebral metabolic dysfunction and cell death. The extent to which TBI affects regional mitochondrial populations with respect to structure, function, and swelling was assessed 3 hours and 24 hours after lateral fluid-percussion brain injury in the rat. Significantly less mitochondrial protein was isolated from the injured compared with uninjured parietotemporal cortex, whereas comparable yields were obtained from the hippocampus. After injury, cortical and hippocampal tissue ATP concentrations declined significantly to 60% and 40% of control, respectively, in the absence of respiratory deficits in isolated mitochondria. Mitochondria with ultrastructural morphologic damage comprised a significantly greater percent of the population isolated from injured than uninjured brain. As determined by photon correlation spectroscopy, the mean mitochondrial radius decreased significantly in injured cortical populations (361 +/- 40 nm at 24 hours) and increased significantly in injured hippocampal populations (442 +/- 36 at 3 hours) compared with uninjured populations (Ctx: 418 +/- 44; Hipp: 393 +/- 24). Calcium-induced deenergized swelling rates of isolated mitochondrial populations were significantly slower in injured compared with uninjured samples, suggesting that injury alters the kinetics of mitochondrial permeability transition (MPT) pore activation. Cyclosporin A (CsA)-insensitive swelling was reduced in the cortex, and CsA-sensitive and CsA-insensitive swelling both were reduced in the hippocampus, demonstrating that regulated MPT pores remain in mitochondria isolated from injured brain. A proposed mitochondrial population model synthesizes these data and suggests that cortical mitochondria may be depleted after TBI, with a physically smaller, MPT-regulated population remaining. Hippocampal mitochondria may sustain damage associated with ballooned membranes and reduced MPT pore calcium sensitivity. The heterogeneous mitochondrial response to TBI may underlie posttraumatic metabolic dysfunction and contribute to the pathophysiology of TBI.
Collapse
Affiliation(s)
- Jonathan Lifshitz
- Head Injury Center, Department of Neurosurgery, University of Pensylvania, Philadelphia, Pensylvania 19104-6316, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
81
|
Panov AV, Burke JR, Strittmatter WJ, Greenamyre JT. In vitro effects of polyglutamine tracts on Ca2+-dependent depolarization of rat and human mitochondria: relevance to Huntington's disease. Arch Biochem Biophys 2003; 410:1-6. [PMID: 12559971 DOI: 10.1016/s0003-9861(02)00585-4] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The mechanisms by which neurons die in CAG triplet repeat (polyglutamine) disorders, such as Huntington's disease, are uncertain; however, mitochondrial dysfunction and disordered calcium homeostasis have been implicated. We previously demonstrated abnormal mitochondrial calcium handling in Huntington's disease cell lines and transgenic mice. To examine whether these abnormalities might arise in part from direct effects of the expanded polyglutamine tract contained in mutant huntingtin, we have exposed normal rat liver and human lymphoblast mitochondria to glutathione S-transferase fusion proteins containing polyglutamine tracts of 0, 19, or 62 residues. Similar to bovine serum albumin, each of the protein constructs nonspecifically inhibited succinate-supported respiration, independent of polyglutamine tract length. There was a small but significant reduction of mitochondrial membrane potential (state 4) only in the presence of the pathological-length polyglutamine tract. With successive addition of small Ca(2+) aliquots, mitochondria exposed to pathological-length polyglutamine tracts (approximately 5 microM) depolarized much earlier and to a greater extent than those exposed to the other protein constructs. These results suggest that the mitochondrial calcium handling defects seen in Huntington's disease cell lines and transgenic mice may be due, in part, to direct, deleterious effects of mutant huntingtin on mitochondria.
Collapse
Affiliation(s)
- Alexander V Panov
- Emory Center for Neurodegenerative Diseases, Emory University School of Medicine, Whitehead Biomedical Research Building, 615 Michael Street, Room 575, Atlanta, GA 30322, USA.
| | | | | | | |
Collapse
|
82
|
Lifshitz J, McIntosh TK. Age-associated mitochondrial DNA deletions are not evident chronically after experimental brain injury in the rat. J Neurotrauma 2003; 20:139-49. [PMID: 12675968 DOI: 10.1089/08977150360547062] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The enduring cognitive and sensorimotor deficits that result from traumatic brain injury (TBI) are associated with metabolic stress and free radical cascades, which establish conditions that may promote mitochondrial DNA (mtDNA) deletion and oxidation, often observed as a consequence of normal aging. Without substantial mtDNA repair mechanisms, permanent alterations to essential mitochondrial enzymes could perpetuate post-injury pathologic cascades. To determine whether mitochondria from the injured cortex and hippocampus sustain mtDNA damage after TBI, we evaluated mtDNA deletion and oxidation following lateral fluid percussion TBI in the anesthetized adult Sprague-Dawley rat (4 months) compared with uninjured adult and aged rats (n = 4/group). The presence of the 4.8-KB common deletion in mtDNA was assessed by conventional PCR to generate products representing total, non-deleted wild-type, and deleted mtDNA in homogenized tissue and isolated mitochondria 3 and 14 days following TBI. Total and wild-type mtDNA amplification products were obtained from cortical and hippocampal tissue and mitochondria for all conditions. Although no mtDNA deletions were observed following experimental TBI, mtDNA deletion was detected in cortical tissue, but not isolated mitochondria, of naive, aged (24 months) Sprague-Dawley rats, suggesting that the isolation protocol may exclude mitochondria harboring mtDNA damage. Oxidative mtDNA damage in isolated mitochondria assayed by ELISA for 8-hydroxy-2'-deoxyguanosine (8-OHdG) from cortical (0.50 +/- 0.08 pg 8-OHdG/ micro g mitochondria) and hippocampal (0.35 +/- 0.02) regions were unaffected by TBI. However, mitochondrial protein yields from injured and aged brains were comparable and significantly lower than uninjured brain, suggesting that the underlying pathology between TBI and aging may be similar.
Collapse
Affiliation(s)
- Jonathan Lifshitz
- Head Injury Center, Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA 19104-6316, USA
| | | |
Collapse
|
83
|
Kobayashi T, Kuroda S, Tada M, Houkin K, Iwasaki Y, Abe H. Calcium-induced mitochondrial swelling and cytochrome c release in the brain: its biochemical characteristics and implication in ischemic neuronal injury. Brain Res 2003; 960:62-70. [PMID: 12505658 DOI: 10.1016/s0006-8993(02)03767-8] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The objective of the present study was to determine the biochemical characteristics of Ca(2+)-induced mitochondrial swelling (mitochondrial permeability transition; mPT) and cytochrome c release in the brain, and to clarify its role in neuronal injury following transient forebrain ischemia. Mitochondria were isolated from rat brain and liver. Changes in mitochondrial volume were measured via light absorbance at 540 nm. Using Western blot analysis, we examined the in vitro release of mitochondrial cytochrome c under these conditions. Transient forebrain ischemia was induced by 5 min occlusion of the common carotid arteries in the gerbil. Cyclosporin A (CsA), a specific mPT blocker, and/or trifluoperazine, a blocker of phospholipase A(2), were given before and 24 h after ischemia. The number of surviving neurons in the hippocampal CA1 sector was counted 7 days after ischemia. Calcium induced a moderate decrease of light absorbance in brain mitochondria, which was inhibited by CsA. However, calcium induced a much larger decrease of light absorbance in liver mitochondria. Calcium induced a moderate release of cytochrome c from brain mitochondria, which was not inhibited by CsA. However, calcium induced the release of a larger amount of cytochrome c from liver mitochondria. Selective neuronal injury due to transient forebrain ischemia was significantly ameliorated by treatment with high-dose CsA. The biochemical properties of Ca(2+)-induced mitochondrial swelling in the brain are different from those in the liver. Cytochrome c is released from brain mitochondria through an mPT-independent mechanism. CsA potentially ameliorates delayed neuronal injury in the hippocampus due to transient forebrain ischemia.
Collapse
Affiliation(s)
- Tohru Kobayashi
- Department of Neurosurgery, University of Hokkaido Graduate School of Medicine, North 15 West 7, Kita-ku, , Sapporo 060-8638, Japan
| | | | | | | | | | | |
Collapse
|
84
|
Hansson MJ, Persson T, Friberg H, Keep MF, Rees A, Wieloch T, Elmér E. Powerful cyclosporin inhibition of calcium-induced permeability transition in brain mitochondria. Brain Res 2003; 960:99-111. [PMID: 12505662 DOI: 10.1016/s0006-8993(02)03798-8] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The mitochondrial permeability transition (mPT) is considered to be an important mediator of apoptosis and necrosis, and is specifically blocked by cyclosporin A (CsA). CsA has been shown to exert a potent neuroprotective action in vivo when allowed to cross the blood-brain barrier in various animal models of acute neurological insults and neurodegenerative disease. The neuroprotective effect of CsA is considered to be mediated through specific inhibition of the mitochondrial permeability transition pore (mPTP) and through inhibition of neuronal calcineurin activity. Characterization of mPT has mainly been performed in liver and heart mitochondria, and some brain studies have reported a decreased inhibitory effect of CsA and questioned the importance of mPT in brain-derived mitochondria. We have used the de-energized model of swelling to examine the mPT in brain-derived non-synaptosomal mitochondria. Ca(2+)-induced swelling was evaluated by electron microscopy and by measurement of spectrophotometric alterations in light scattering. Permeability transition was readily induced in a majority of the mitochondria at a wide range of Ca(2+) levels and was powerfully inhibited by CsA with a half-maximal effect at approximately 23 nM CsA. The swelling kinetics and CsA effects were comparable to previous findings in de-energized liver and heart mitochondria. Careful characterization of mPT and CsA effects in brain-derived mitochondria is the first step in evaluating newly developed CsA analogues capable of crossing the blood-brain barrier and preferentially entering the brain. The importance of CsA causing a shift of the mitochondrial sensitivity to Ca(2+) in neurological disorders is discussed.
Collapse
Affiliation(s)
- Magnus J Hansson
- Laboratory for Experimental Brain Research, Wallenberg Neuroscience Center, Lund University, BMC A13, SE-221 84, Lund, Sweden.
| | | | | | | | | | | | | |
Collapse
|
85
|
Uchino H, Ishii N, Shibasaki F. Calcineurin and cyclophilin D are differential targets of neuroprotection by immunosuppressants CsA and FK506 in ischemic brain damage. ACTA NEUROCHIRURGICA. SUPPLEMENT 2003; 86:105-11. [PMID: 14753416 DOI: 10.1007/978-3-7091-0651-8_24] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/28/2023]
Abstract
The search for an effective treatment for global ischemia following cardiac arrest has proved to be very difficult. However, studies by Uchino et al. show that the immunosuppressant cyclosporin A (CsA), when administered in such a way that the drug can bypass the blood brain barrier (BBB), dramatically reduces ischemic damage in rat forebrain preparations. An alternative immunosuppressant, FK506, is apparently less efficacious. Both CsA and FK506 are specific inhibitors of immunophilins, (CsA inhibits cyclophilins, FK506 inhibits FKBPs), and of calcineurin, a type 2B Ser/Thr phosphatase that is abundant in the central nervous system. The superiority of CsA may be partly attributable to its selective amelioration of mitochondrial damage, as assayed in vivo and in vitro. Our results suggest that pathways involving calcineurin and cyclophilins, particularly mitochondrial cyclophilin D, play pivotal roles in the development of ischemic brain damage. The present findings may inform the search for new drugs in the treatment of global ischemic damage to the brain, and in other organs.
Collapse
Affiliation(s)
- H Uchino
- Department of Anesthesiology, Tokyo Medical University Hachioji Medical Center, Tatemachi, Hachioji, Japan.
| | | | | |
Collapse
|
86
|
Matsumoto S, Isshiki A, Watanabe Y, Wieloch T. Restricted clinical efficacy of cyclosporin A on rat transient middle cerebral artery occlusion. Life Sci 2002; 72:591-600. [PMID: 12467900 DOI: 10.1016/s0024-3205(02)02267-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The immunosuppressant cyclosporin A (CsA) has been shown to have neuroprotective action. The inhibition of both calcineurin activation and mitochondrial permeability transition pore (mtPTP) opening are considered the primary neuroprotective mechanisms of CsA. Here we have evaluated the effect of CsA on significantly reducing infarct size induced by transient middle cerebral artery occlusion (MCAO) in rats, and examined variable therapeutic applications for brain infarction. Experimental rats were divided into 12 groups according to: CsA administration time (immediately after occlusion or immediately after reperfusion); dosage (between 10 and 50 mg/kg); route (i.v. or i.p.); and with or without needle insertion, which hypothetically disrupts the blood brain barrier (BBB). Neuroprotective effects of CsA were hardly noticeable when administered immediately after occlusion or by i.v. injection. By needle insertion, CsA administration significantly reduced infarct size, although vehicle treatment also reduced infarct size compared with nontreatment animals, i.e. no needle insertion. These results suggest that needle insertion allows endogenous neuroprotective substances to pass into the brain. Furthermore, single dosages over 30 mg/kg CsA were excessive and negated potential neuroprotective effects. However, two i.p. administrations of 20 mg/kg CsA immediately and 24 hrs after reperfusion significantly ameliorated the infarct size compared to the vehicle-treated group. We conclude that CsA exhibits significant neuroprotective activity, although its therapeutic application for stroke may be limited by very strict and precise management requirements.
Collapse
Affiliation(s)
- Shohei Matsumoto
- Department of Anesthesiology, Tokyo Medical University, 6-7-1 Nishishinjuku, Shinjuku-ku, Tokyo, 160-0023, Japan.
| | | | | | | |
Collapse
|
87
|
Friberg H, Wieloch T, Castilho RF. Mitochondrial oxidative stress after global brain ischemia in rats. Neurosci Lett 2002; 334:111-4. [PMID: 12435484 DOI: 10.1016/s0304-3940(02)01116-3] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Vulnerable neurons in the hippocampus die 2-3 days after transient global brain ischemia. In the present study, rat brain mitochondria were isolated at different time points (4 h, 24 h and 48 h) after transient global ischemia. Detection of mitochondrially-generated reactive oxygen species, measured through dichlorodihydrofluorescein oxidation, was increased up to 40% relative to control in hippocampal mitochondria at 4 h and 48 h of reperfusion. Ischemia-stimulated oxidative stress was observed with mitochondria oxidizing substrates linked to nicotinamide adenine dinucleotide or flavin adenine dinucleotide, but not in the presence of the respiratory chain inhibitor antimycin A. A slightly decreased Ca(2+) uptake capacity was observed in hippocampal mitochondria during reperfusion. We conclude that transient brain ischemia induces oxidative stress in hippocampal mitochondria.
Collapse
Affiliation(s)
- Hans Friberg
- Laboratory for Experimental Brain Research, Wallenberg Neuroscience Center, Lund University, Sölvegatan 17, S-223 62, Lund, Sweden.
| | | | | |
Collapse
|
88
|
Uchino H, Minamikawa-Tachino R, Kristián T, Perkins G, Narazaki M, Siesjö BK, Shibasaki F. Differential Neuroprotection by Cyclosporin A and FK506 Following Ischemia Corresponds with Differing Abilities to Inhibit Calcineurin and the Mitochondrial Permeability Transition. Neurobiol Dis 2002; 10:219-33. [PMID: 12270685 DOI: 10.1006/nbdi.2002.0514] [Citation(s) in RCA: 126] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Transient global or forebrain ischemia leads to severe brain damage following delayed neuronal cell death. We previously reported that cyclosporin A (CsA) provides near total suppression of brain damage in rat forebrain ischemia when allowed to pass the blood brain barrier, whereas Tacrolimus (FK506) is considerably less effective. We demonstrate herein that when administered prior to ischemic insult, both immunosuppressants equally block calcineurin, a type 2B Ser/Thr phosphatase, and efficiently inhibit dephosphorylation of pro-apoptotic protein Bad. CsA demonstrates more potent anti-ischemic effects than FK506, partially attributable to amelioration of mitochondrial damage as assayed in vivo and in vitro. These results suggest that pathways including calcineurin and cyclophilins, particularly mitochondrial cyclophilin D, play pivotal roles in ischemic brain damage. Since previous results have shown that CsA is efficacious also when administered after focal ischemia, the present findings give hints to clinical applications for new drugs for the treatment of ischemic damage in the brain as well as in the heart and liver.
Collapse
Affiliation(s)
- Hiroyuki Uchino
- Department of Molecular Cell Physiology, Tokyo Metropolitan Institute of Medical Science, 3-18-22 Honkomagome, Bunkyo-ku, Tokyo, 113-8613, Japan
| | | | | | | | | | | | | |
Collapse
|
89
|
Alessandri B, Rice AC, Levasseur J, DeFord M, Hamm RJ, Bullock MR. Cyclosporin A improves brain tissue oxygen consumption and learning/memory performance after lateral fluid percussion injury in rats. J Neurotrauma 2002; 19:829-41. [PMID: 12184853 DOI: 10.1089/08977150260190429] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Traumatic brain injury (TBI) triggers a complex pathophysiological cascade, leading to cell death. A major factor in the pathogenesis of TBI is neuronal overloading with calcium, causing the opening of mitochondrial permeability transition pores (MPTP), which consequently inhibit normal mitochondrial function. The immunosuppressant Cyclosporin A (CsA) has been shown to block MPTPs, and to be neuroprotective in ischemia and TBI. However, the translation of these effects on mitochondrial function, into behavioral endpoints has not been investigated thoroughly. Therefore, we tested the effect of a low, clinically evaluated, CsA dose of 0.125 mg/kg (infused for 3 h) and a higher "known" neuroprotective dose of 18.75 mg/kg on brain tissue O(2) consumption, and on motor and cognitive performance following lateral fluid percussion injury (FPI) in rats. CsA at both concentrations abolished the 25% decrease in O(2) consumption (VO(2)), seen in saline-treated animals at 5 h post-FPI. Furthermore, the lower dose of CsA also ameliorated acute motor deficits (days 1-5 post-FPI) and learning and memory impairments in a Morris water maze test on days 11-15 post-FPI. Although, the higher dose of CsA improved cognitive performance, it worsened acute motor functional recovery. These results suggest, that the CsA-induced preservation of mitochondrial function, as assessed by tissue O(2) consumption, directly translated into improvements in motor and cognitive behavior.
Collapse
Affiliation(s)
- Beat Alessandri
- Department of Neurosurgery, Medical College of Virginia, Virginia Commonwealth University, Richmond, Virginia 23298, USA
| | | | | | | | | | | |
Collapse
|
90
|
Zhu S, Stavrovskaya IG, Drozda M, Kim BYS, Ona V, Li M, Sarang S, Liu AS, Hartley DM, Wu DC, Gullans S, Ferrante RJ, Przedborski S, Kristal BS, Friedlander RM. Minocycline inhibits cytochrome c release and delays progression of amyotrophic lateral sclerosis in mice. Nature 2002; 417:74-8. [PMID: 11986668 DOI: 10.1038/417074a] [Citation(s) in RCA: 809] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Minocycline mediates neuroprotection in experimental models of neurodegeneration. It inhibits the activity of caspase-1, caspase-3, inducible form of nitric oxide synthetase (iNOS) and p38 mitogen-activated protein kinase (MAPK). Although minocycline does not directly inhibit these enzymes, the effects may result from interference with upstream mechanisms resulting in their secondary activation. Because the above-mentioned factors are important in amyotrophic lateral sclerosis (ALS), we tested minocycline in mice with ALS. Here we report that minocycline delays disease onset and extends survival in ALS mice. Given the broad efficacy of minocycline, understanding its mechanisms of action is of great importance. We find that minocycline inhibits mitochondrial permeability-transition-mediated cytochrome c release. Minocycline-mediated inhibition of cytochrome c release is demonstrated in vivo, in cells, and in isolated mitochondria. Understanding the mechanism of action of minocycline will assist in the development and testing of more powerful and effective analogues. Because of the safety record of minocycline, and its ability to penetrate the blood-brain barrier, this drug may be a novel therapy for ALS.
Collapse
Affiliation(s)
- Shan Zhu
- Neuroapoptosis Laboratory, Department of Neurosurgery, Brigham & Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
91
|
Abstract
Acute neurodegeneration in man is encountered during and following stroke, transient cardiac arrest, brain trauma, insulin-induced hypoglycemia and status epilepticus. All these severe clinical conditions are characterized by neuronal calcium overload, aberrant cell signaling, generation of free radicals and elevation of cellular free fatty acids, conditions that favor activation of the mitochondrial permeability transition pore (mtPTP). Cyclosporin A (CsA) and its analog N-methyl-valine-4-cyclosporin A (MeValCsA) are potent blockers of the mtPTP and protect against neuronal death following excitotoxicity and oxygen glucose deprivation. Also, CsA and MeValCsA diminish cell death following cerebral ischemia, trauma, and hypoglycemia. Here we present data that strongly imply the mtPT in acute neurodegeneration in vivo. Compounds that readily pass the blood-brain-barrier (BBB) and block the mtPT may be neuroprotective in stroke.
Collapse
Affiliation(s)
- Hans Friberg
- Laboratory for Experimental Brain Research, Wallenberg Neuroscience Center, BMC A13, 221 84 Lund, Sweden
| | | |
Collapse
|
92
|
Limke TL, Atchison WD. Acute exposure to methylmercury opens the mitochondrial permeability transition pore in rat cerebellar granule cells. Toxicol Appl Pharmacol 2002; 178:52-61. [PMID: 11781080 DOI: 10.1006/taap.2001.9327] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Cerebellar granule cells are preferentially targeted during methylmercury (MeHg) poisoning. Following acute MeHg exposure, granule cells in culture undergo an increase in intracellular Ca2+ concentration ([Ca2+]i) that apparently contributes to cell death. This effect consists of several temporally and kinetically distinct phases. The initial elevation arises from release of Ca2+(i) stores; the second phase results from entry of Ca2+(e). In these experiments, we tested the hypothesis that release of mitochondrial Ca2+ through the mitochondrial permeability transition pore (MTP) contributes to the initial release of Ca2+(i). Neonatal rat cerebellar granule cells in culture and single cell microfluorimetry were used to examine MeHg-induced changes in [Ca2+]i and mitochondrial membrane potential (Psi(m)). Pretreatment with the MTP inhibitor cyclosporin A (CsA, 5 microM) delayed the initial phase of increased [Ca2+]i induced by 0.2 and 0.5 microM MeHg, but not 1.0 microM MeHg. CsA (5 microM) also delayed the irreversible loss of Psi(m) induced by 0.5 microM MeHg. Ca2+(e) was not required for either effect, because the effect of CsA on the first phase increase in [Ca2+]i and loss of Psi(m) was not altered in nominally Ca2+-free buffer. Increasing concentrations of MeHg (0.2-2.0 microM) caused increasing incidence of cell death at 24 h postexposure. Treatment with CsA provided protection against cytotoxicity at lower MeHg concentrations (0.2-0.5 microM), but not at higher MeHg concentrations (1.0-2.0 microM). Thus, the MTP appears to play a significant role in the cellular effects following acute exposure of cerebellar granule neurons to MeHg.
Collapse
Affiliation(s)
- Tobi L Limke
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan 48824, USA
| | | |
Collapse
|
93
|
Kristian T, Bernardi P, Siesjö BK. Acidosis promotes the permeability transition in energized mitochondria: implications for reperfusion injury. J Neurotrauma 2001; 18:1059-74. [PMID: 11686493 DOI: 10.1089/08977150152693755] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
We have studied the influence of pH on opening of the mitochondrial permeability transition pore (PTP) in both deenergized and energized mitochondria in the presence of Pi. In deenergized mitochondria from rat brain and heart, we observed the expected inhibition of Ca2+-induced PTP opening at increasingly acidic pH values. Unexpectedly, mitochondria energized with either electron transport complex I or complex II substrates displayed the opposite behavior, acidic pH promoting rather than inhibiting PTP opening. We show that the potentiating effect of acidic pH is due to an increased rate of Pi uptake. The data also revealed that brain mitochondria are more heterogeneous than heart or liver mitochondria in relation to onset of a permeability transition, and that this heterogeneity depends on their Pi transport capacity. Taken together, these results indicate that the inhibitory effects of acidic pH on the PTP may be overcome in situ by an increased rate of Pi uptake, and that ischemic and postischemic acidosis may worsen rather than relieve PTP-dependent tissue damage.
Collapse
Affiliation(s)
- T Kristian
- Center for the Study of Neurological Disease, Neuroscience Institute, The Queen's Medical Center, Honolulu, Hawaii, USA.
| | | | | |
Collapse
|
94
|
Abstract
The cessation of blood flow followed by a reperfusion period results in severe damages to cell structures. This induces a complex cascade of events involving, more particularly, a loss of energy, an alteration of ionic homeostasis promoting H(+) and Ca(2+) build up and the generation of free radicals. In this context, mitochondria are highly vulnerable and play a predominant role in the cell signaling leading from life to death. This is why, recently, efforts to find an effective therapy for ischemia-reperfusion injury have focused on mitochondria. This review summarizes the pharmacological strategies which are currently developed and the potential mitochondrial targets which could be involved in the protection of cells.
Collapse
Affiliation(s)
- D Morin
- Laboratoire de Pharmacologie and Centre National de La Recherche Scientifique, Faculté de Médecine de Paris XII, 8 rue du General Sarrail, F-94010 Créteil, France.
| | | | | | | |
Collapse
|
95
|
Kushnareva YE, Polster BM, Sokolove PM, Kinnally KW, Fiskum G. Mitochondrial precursor signal peptide induces a unique permeability transition and release of cytochrome c from liver and brain mitochondria. Arch Biochem Biophys 2001; 386:251-60. [PMID: 11368349 DOI: 10.1006/abbi.2000.2201] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This study tested the hypothesis that mitochondrial precursor targeting peptides can elicit the release of cytochrome c from both liver and brain mitochondria by a mechanism distinct from that mediated by the classical, Ca2+-activated permeability transition pore. Human cytochrome oxidase subunit IV signal peptide (hCOXIV1-22) at concentrations from 15 to 100 microM induced swelling, a decrease in membrane potential, and cytochrome c release in both types of mitochondria. Although cyclosporin A and bongkrekic acid were without effect, dibucaine, propanolol, dextran, and the uncoupler FCCP were each able to inhibit signal peptide-induced swelling and cytochrome c release. Adenylate kinase was coreleased with cytochrome c, arguing against a signal peptide-induced cytochrome c-specific pathway of efflux across the outer membrane. Taken together, the data indicate that a human mitochondrial signal peptide can evoke the release of cytochrome c from both liver and brain mitochondria by a unique permeability transition that differs in several characteristics from the classical mitochondrial permeability transition.
Collapse
Affiliation(s)
- Y E Kushnareva
- Department of Pharmacology and Experimental Therapeutics, University of Maryland School of Medicine, Baltimore 21201, USA
| | | | | | | | | |
Collapse
|
96
|
Abstract
The relationship between changes in mitochondrial membrane potential (Deltapsi(m)) and the failure of cytoplasmic Ca(2+) homeostasis, delayed Ca(2+)deregulation (DCD), is investigated for cultured rat cerebellar granule cells exposed to glutamate. To interpret the single-cell fluorescence response of cells loaded with tetramethylrhodamine methyl ester (TMRM(+)) or rhodamine-123, we devised and validated a mathematical simulation with well characterized effectors of Deltapsi(m) and plasma membrane potential (Deltapsi(P)). Glutamate usually caused an immediate decrease in Deltapsi(m) of <10 mV, attributable to Ca(2+) accumulation rather than enhanced ATP demand, and these cells continued to generate ATP by oxidative phosphorylation until DCD. Cells for which the mitochondria showed a larger initial depolarization deregulated more rapidly. The mitochondria in a subpopulation of glutamate-exposed cells that failed to extrude Ca(2+) that was released from the matrix after protonophore addition were bioenergetically competent. The onset of DCD during continuous glutamate exposure in the presence or absence of oligomycin was associated with a slowly developing mitochondrial depolarization, but cause and effect could not be established readily. In contrast, the slowly developing mitochondrial depolarization after transient NMDA receptor activation occurs before cytoplasmic free Ca(2+) ([Ca(2+)](c)) has risen to the set point at which mitochondria retain Ca(2+). In the presence of oligomycin no increase in [Ca(2+)](c) occurs during this depolarization. We conclude that transient Ca(2+) loading of mitochondria as a consequence of NMDA receptor activation initiates oxidative damage to both plasma membrane Ca(2+) extrusion pathways and the inhibition of mitochondrial respiration. Depending on experimental conditions, one of these factors becomes rate-limiting and precipitates DCD.
Collapse
|
97
|
Puka-Sundvall M, Wallin C, Gilland E, Hallin U, Wang X, Sandberg M, Karlsson J, Blomgren K, Hagberg H. Impairment of mitochondrial respiration after cerebral hypoxia-ischemia in immature rats: relationship to activation of caspase-3 and neuronal injury. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2000; 125:43-50. [PMID: 11154759 DOI: 10.1016/s0165-3806(00)00111-5] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Mitochondrial damage may play a key role in the development of necrotic and apoptotic hypoxic-ischemic (HI) brain damage. It has previously been shown that mitochondrial respiration is depressed in the cerebral cortex after HI in neonatal animals. The aim of the present study was to further characterize the time course of the mitochondrial impairment during reperfusion and the correlation between the respiratory control ratio and brain injury and activation of caspase-3. Rat pups were subjected to unilateral carotid artery ligation and exposed to hypoxia (7.7% oxygen). Mitochondrial respiration was measured 0-72 h after HI in a mitochondrial fraction isolated from cerebral cortex. Microtubule associated protein-2 (MAP2) and caspase-3 were analyzed with immunoblotting in cerebral cortex homogenates. In addition, the time course of caspase-3 activation was measured as DEVD cleavage. The mitochondrial respiratory control ratio in cerebral cortex decreased immediately after HI followed by a partial recovery at 3-8 h. Thereafter, a secondary drop occurred with a minimum reached at 24 h of reperfusion. The secondary loss of respiratory function was accompanied by depletion of MAP2, cleavage of caspase-3 and an increased caspase-3 -like activity at 3-24 h after the insult. In conclusion, the primary phase of mitochondrial dysfunction was paralleled by a moderate decrease of MAP2 and a limited activation of caspase-3. The secondary mitochondrial impairment was associated with neuronal injury and pronounced activation of caspase-3.
Collapse
Affiliation(s)
- M Puka-Sundvall
- Department of Anatomy and Cell Biology, Perinatal Center, Göteborg University, S-405 30, Göteborg, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
98
|
Abstract
This review examines the appearance of hallmarks of apoptosis following experimental stroke. The reviewed literature leaves no doubt that ischemic cell death in the brain is active, that is, requires energy; is gene directed, that is, requires new gene expression; and is capase-mediated, that is, uses apoptotic proteolytic machinery. However, sufficient differences to both classical necrosis and apoptosis exist which prevent easy mechanistic classification. It is concluded that ischemic cell death in the brain is neither necrosis nor apoptosis but is a chimera which appears on a continuum that has apoptosis and necrosis at the poles. The position on this continuum could be modulated by the intensity of the ischemic injury, the consequent availability of ATP and new protein synthesis, and both the age and context of the neuron in question. Thus the ischemic neuron may look necrotic but have actively died in an energy dependent manner with new gene expression and destruction via the apoptotic proteolytic machinery.
Collapse
Affiliation(s)
- J P MacManus
- Apoptosis Research Group, Institute for Biological Sciences, National Research Council of Canada, Ottawa, Ontario.
| | | |
Collapse
|
99
|
Abstract
Mitochondria play critical roles in cerebral energy metabolism and in the regulation of cellular Ca2+ homeostasis. They are also the primary intracellular source of reactive oxygen species, due to the tremendous number of oxidation-reduction reactions and the massive utilization of O2 that occur there. Metabolic trafficking among cells is also highly dependent upon normal, well-controlled mitochondrial activities. Alterations of any of these functions can cause cell death directly or precipitate death indirectly by compromising the ability of cells to withstand stressful stimuli. Abnormal accumulation of Ca2+ by mitochondria in response to exposure of neurons to excitotoxic levels of excitatory neurotransmitters, for example, glutamate, is a primary mediator of mitochondrial dysfunction and delayed cell death. Excitoxicity, along with inflammatory reactions, mechanical stress, and altered trophic signal transduction, all likely contribute to mitochondrial damage observed during the evolution of traumatic brain injury. The release of apoptogenic proteins from mitochondria into the cytosol serves as a primary mechanism responsible for inducing apoptosis, a form of cell death that contributes significantly to neurologic impairment following neurotrauma. Although several signals for the release of mitochondrial cell death proteins have been identified, the mechanisms by which these signals increase the permeability of the mitochondrial outer membrane to apoptogenic proteins is controversial. Elucidation of the precise biochemical mechanisms responsible for mitochondrial dysfunction during neurotrauma and the roles that mitochondria play in both necrotic and apoptotic cell death should provide new molecular targets for neuroprotective interventions.
Collapse
Affiliation(s)
- G Fiskum
- Department of Anesthesiology, University of Maryland, Baltimore School of Medicine, 21201, USA.
| |
Collapse
|
100
|
Kristal BS, Staats PN, Shestopalov AI. Biochemical characterization of the mitochondrial permeability transition in isolated forebrain mitochondria. Dev Neurosci 2000; 22:376-83. [PMID: 11111153 DOI: 10.1159/000017463] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Induction of the mitochondrial permeability transition (PT) has been proposed to contribute to neuronal cell death. Nearly all studies of the biochemistry of PT induction, however, have been conducted in isolated liver mitochondria. To better understand PT induction in brain mitochondria, we used Ficoll gradients to purify nonsynaptosomal mitochondria from the forebrains of male Fischer 344 rats. Incubation of these mitochondria with Ca(2+) was associated with a loss of absorbance. Inorganic phosphate enhanced this loss of absorbance, and the PT inhibitor cyclosporin A reduced it, especially in conjunction with ADP. These findings suggest that Ca(2+)-mediated loss of absorbance resulted from PT induction. Na(+), which enhances mitochondrial Ca(2+) efflux, but stimulates mitochondrial free radical production, had no effect on PT induction. These data confirm the existence of tissue-specific differences in the nature of PT induction.
Collapse
Affiliation(s)
- B S Kristal
- Dementia Research Service, Burke Medical Research Institute, White Plains, NY 10605, USA.
| | | | | |
Collapse
|