51
|
Valvassori SS, Resende WR, Lopes-Borges J, Mariot E, Dal-Pont GC, Vitto MF, Luz G, de Souza CT, Quevedo J. Effects of mood stabilizers on oxidative stress-induced cell death signaling pathways in the brains of rats subjected to the ouabain-induced animal model of mania: Mood stabilizers exert protective effects against ouabain-induced activation of the cell death pathway. J Psychiatr Res 2015; 65:63-70. [PMID: 25959616 DOI: 10.1016/j.jpsychires.2015.04.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 03/01/2015] [Accepted: 04/09/2015] [Indexed: 01/04/2023]
Abstract
The present study aimed to investigate the effects of mood stabilizers, specifically lithium (Li) and valproate (VPA), on mitochondrial superoxide, lipid peroxidation, and proteins involved in cell death signaling pathways in the brains of rats subjected to the ouabain-induced animal model of mania. Wistar rats received Li, VPA, or saline twice a day for 13 days. On the 7th day of treatment, the animals received a single intracerebroventricular injection of ouabain or aCSF. After the ICV injection, the treatment with mood stabilizers continued for 6 additional days. The locomotor activity of rats was measured using the open-field test. In addition, we analyzed oxidative stress parameters, specifically levels of phosphorylated p53 (pp53), BAX and Bcl-2 in the brain of rats by immunoblot. Li and VPA reversed ouabain-related hyperactivity. Ouabain decreased Bcl-2 levels and increased the oxidative stress parameters BAX and pp53 in the brains of rats. Li and VPA improved these ouabain-induced cellular dysfunctions; however, the effects of the mood stabilizers were dependent on the protein and brain region analyzed. These findings suggest that the Na(+)/K(+)-ATPase can be an important link between oxidative damage and the consequent reduction of neuronal and glial density, which are both observed in BD, and that Li and VPA exert protective effects against ouabain-induced activation of the apoptosis pathway.
Collapse
Affiliation(s)
- Samira S Valvassori
- Laboratório de Neurociências, Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, 88806000, Brazil.
| | - Wilson R Resende
- Laboratório de Neurociências, Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, 88806000, Brazil
| | - Jéssica Lopes-Borges
- Laboratório de Neurociências, Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, 88806000, Brazil
| | - Edemilson Mariot
- Laboratório de Neurociências, Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, 88806000, Brazil
| | - Gustavo C Dal-Pont
- Laboratório de Neurociências, Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, 88806000, Brazil
| | - Marcelo F Vitto
- Laboratory of Exercise Biochemistry and Physiology, Postgraduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciúma, SC, Brazil
| | - Gabrielle Luz
- Laboratory of Exercise Biochemistry and Physiology, Postgraduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciúma, SC, Brazil
| | - Claudio T de Souza
- Laboratory of Exercise Biochemistry and Physiology, Postgraduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciúma, SC, Brazil
| | - João Quevedo
- Laboratório de Neurociências, Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, 88806000, Brazil; Center for Experimental Models in Psychiatry, Department of Psychiatry and Behavioral Sciences, The University of Texas Medical School at Houston, Houston, TX, USA
| |
Collapse
|
52
|
Olde Loohuis NFM, Kole K, Glennon JC, Karel P, Van der Borg G, Van Gemert Y, Van den Bosch D, Meinhardt J, Kos A, Shahabipour F, Tiesinga P, van Bokhoven H, Martens GJM, Kaplan BB, Homberg JR, Aschrafi A. Elevated microRNA-181c and microRNA-30d levels in the enlarged amygdala of the valproic acid rat model of autism. Neurobiol Dis 2015; 80:42-53. [PMID: 25986729 DOI: 10.1016/j.nbd.2015.05.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2014] [Revised: 04/14/2015] [Accepted: 05/10/2015] [Indexed: 11/17/2022] Open
Abstract
Autism spectrum disorders are severe neurodevelopmental disorders, marked by impairments in reciprocal social interaction, delays in early language and communication, and the presence of restrictive, repetitive and stereotyped behaviors. Accumulating evidence suggests that dysfunction of the amygdala may be partially responsible for the impairment of social behavior that is a hallmark feature of ASD. Our studies suggest that a valproic acid (VPA) rat model of ASD exhibits an enlargement of the amygdala as compared to controls rats, similar to that observed in adolescent ASD individuals. Since recent research suggests that altered neuronal development and morphology, as seen in ASD, may result from a common post-transcriptional process that is under tight regulation by microRNAs (miRs), we examined genome-wide transcriptomics expression in the amygdala of rats prenatally exposed to VPA, and detected elevated miR-181c and miR-30d expression levels as well as dysregulated expression of their cognate mRNA targets encoding proteins involved in neuronal system development. Furthermore, selective suppression of miR-181c function attenuates neurite outgrowth and branching, and results in reduced synaptic density in primary amygdalar neurons in vitro. Collectively, these results implicate the small non-coding miR-181c in neuronal morphology, and provide a framework of understanding how dysregulation of a neurodevelopmentally relevant miR in the amygdala may contribute to the pathophysiology of ASD.
Collapse
Affiliation(s)
- N F M Olde Loohuis
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - K Kole
- Department of Neuroinformatics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - J C Glennon
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - P Karel
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - G Van der Borg
- Department of Neuroinformatics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Y Van Gemert
- Department of Neuroinformatics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - D Van den Bosch
- Department of Neuroinformatics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - J Meinhardt
- Department of Neuroinformatics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - A Kos
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - F Shahabipour
- Department of Neuroinformatics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - P Tiesinga
- Department of Neuroinformatics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - H van Bokhoven
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, The Netherlands; Department of Human Genetics, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - G J M Martens
- Department of Molecular Animal Physiology, Donders Institute for Brain, Cognition and Behavior, Nijmegen Centre for Molecular Life Sciences (NCMLS), Radboud University Nijmegen, Nijmegen, The Netherlands
| | - B B Kaplan
- Laboratory of Molecular Biology, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA
| | - J R Homberg
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - A Aschrafi
- Department of Neuroinformatics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, The Netherlands.
| |
Collapse
|
53
|
Chang CC, Jou SH, Lin TT, Lai TJ, Liu CS. Mitochondria DNA change and oxidative damage in clinically stable patients with major depressive disorder. PLoS One 2015; 10:e0125855. [PMID: 25946463 PMCID: PMC4422713 DOI: 10.1371/journal.pone.0125855] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 03/26/2015] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND To compare alterations of mitochondria DNA (mtDNA) copy number, single nucleotide polymorphisms (SNPs), and oxidative damage of mtDNA in clinically stable patients with major depressive disorder (MDD). METHODS Patients met DSM-IV diagnostic criteria for MDD were recruited from the psychiatric outpatient clinic at Changhua Christian Hospital, Taiwan. They were clinically stable and their medications had not changed for at least the preceding two months. Exclusion criteria were substance-induced psychotic disorder, eating disorder, anxiety disorder or illicit substance abuse. Comparison subjects did not have any major psychiatric disorder and they were medically healthy. Peripheral blood leukocytes were analyzed to compare copy number, SNPs and oxidative damage of mtDNA between the two groups. RESULTS 40 MDD patients and 70 comparison subjects were collected. The median age of the subjects was 42 years and 38 years in MDD and comparison groups, respectively. Leukocyte mtDNA copy number of MDD patients was significantly lower than that of the comparison group (p = 0.037). MDD patients had significantly higher mitochondrial oxidative damage than the comparison group (6.44 vs. 3.90, p<0.001). After generalized linear model adjusted for age, sex, smoking, family history, and psychotropic use, mtDNA copy number was still significantly lower in the MDD group (p<0.001). MtDNA oxidative damage was positively correlated with age (p<0.001) and MDD (p<0.001). Antipsychotic use was negatively associated with mtDNA copy number (p = 0.036). LIMITATIONS The study is cross-sectional with no longitudinal follow up. The cohort is clinically stable and generalizability of our result to other cohort should be considered. CONCLUSIONS Our study suggests that oxidative stress and mitochondria may play a role in the pathophysiology of MDD. More large-scale studies are warranted to assess the interplay between oxidative stress, mitochondria dysfunction and MDD.
Collapse
Affiliation(s)
- Cheng-Chen Chang
- The Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Psychiatry, Changhua Christian Hospital, Changhua, Taiwan
| | - Shaw-Hwa Jou
- Department of Psychiatry, Taichung Tzuchi Hospital, The Buddhist Tzuchi Medical Foundation, Taichung, Taiwan
- Department of Medicine, Buddhist Tzu Chi University, Hualien, Taiwan
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Ta-Tsung Lin
- Vascular and Genomic Research Center, Changhua Christian Hospital, Changhua, Taiwan
| | - Te-Jen Lai
- The Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Psychiatry, Chung Shan Medical University Hospital, Taichung, Taiwan
- * E-mail: (TJL); (CSL)
| | - Chin-San Liu
- Vascular and Genomic Research Center, Changhua Christian Hospital, Changhua, Taiwan
- Graduate Institute of Integrated Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan
- * E-mail: (TJL); (CSL)
| |
Collapse
|
54
|
Gildengers AG, Butters MA, Aizenstein HJ, Marron MM, Emanuel J, Anderson SJ, Weissfeld LA, Becker JT, Lopez OL, Mulsant BH, Reynolds CF. Longer lithium exposure is associated with better white matter integrity in older adults with bipolar disorder. Bipolar Disord 2015; 17:248-56. [PMID: 25257942 PMCID: PMC4374042 DOI: 10.1111/bdi.12260] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Accepted: 07/24/2014] [Indexed: 01/08/2023]
Abstract
OBJECTIVES Bipolar disorder (BD) is associated with cognitive dysfunction and structural brain abnormalities. In human and non-human studies, lithium has been related to neuroprotective and neurotrophic effects. We explored whether lithium treatment is related to better brain integrity and cognitive function in older adults with BD. METHODS We examined cognitive and neuroimaging data in 58 individuals with BD [mean (standard deviation) age = 64.5 (9.8) years] and 21 mentally healthy comparators (controls) of similar age and education. Subjects received comprehensive neurocognitive assessment and structural brain imaging, examining total gray matter volume, overall white matter integrity (fractional anisotropy), and total white matter hyperintensity burden. RESULTS In comparison to controls, subjects with BD had worse overall cognitive performance, lower total gray matter volume, and lower white matter integrity. Among subjects with BD, longer duration of lithium treatment was related to higher white matter integrity after controlling for age and vascular disease burden, but not with better cognitive performance. CONCLUSIONS Lithium treatment appears to be related to better brain integrity in older individuals with BD, in particular, in those who take lithium long-term. While intriguing, these findings need to be confirmed in a larger sample.
Collapse
Affiliation(s)
- Ariel G. Gildengers
- University of Pittsburgh School of Medicine, Department of Psychiatry, Pittsburgh, PA, USA,Corresponding author: Dr. Gildengers, 3811 O'Hara Street, Pittsburgh, PA 15213, USA. Phone 412-246-6002; Fax 412-246-6030.
| | - Meryl A. Butters
- University of Pittsburgh School of Medicine, Department of Psychiatry, Pittsburgh, PA, USA
| | - Howard J. Aizenstein
- University of Pittsburgh School of Medicine, Department of Psychiatry, Pittsburgh, PA, USA
| | - Megan M. Marron
- University of Pittsburgh Graduate School of Public Health, Department of Biostatistics, Pittsburgh, PA, USA
| | - James Emanuel
- University of Pittsburgh School of Medicine, Department of Psychiatry, Pittsburgh, PA, USA
| | - Stewart J. Anderson
- University of Pittsburgh Graduate School of Public Health, Department of Biostatistics, Pittsburgh, PA, USA
| | - Lisa A. Weissfeld
- University of Pittsburgh Graduate School of Public Health, Department of Biostatistics, Pittsburgh, PA, USA
| | - James T. Becker
- University of Pittsburgh School of Medicine, Department of Psychiatry, Pittsburgh, PA, USA
| | - Oscar L. Lopez
- University of Pittsburgh School of Medicine, Department of Neurology, Pittsburgh, PA, USA
| | - Benoit H. Mulsant
- Centre for Addiction and Mental Health and the University of Toronto, Department of Psychiatry, Toronto, ON, Canada
| | - Charles F. Reynolds
- University of Pittsburgh School of Medicine, Department of Psychiatry, Pittsburgh, PA, USA
| |
Collapse
|
55
|
Machado-Vieira R, Zanetti MV, Teixeira AL, Uno M, Valiengo LL, Soeiro-de-Souza MG, Oba-Shinjo SM, de Sousa RT, Zarate CA, Gattaz WF, Marie SKN. Decreased AKT1/mTOR pathway mRNA expression in short-term bipolar disorder. Eur Neuropsychopharmacol 2015; 25:468-73. [PMID: 25726893 PMCID: PMC5863235 DOI: 10.1016/j.euroneuro.2015.02.002] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 01/20/2015] [Accepted: 02/06/2015] [Indexed: 01/30/2023]
Abstract
Strong evidence implicates intracellular signaling cascades dysfunction in the pathophysiology of Bipolar Disorder (BD). Regulation of AKT/mTOR pathway is a critical signaling pathway in synaptic neurotransmission and plasticity, also modulating cell proliferation and migration. Gene expression of the AKT/mTOR pathway was assessed in 25 BD (DSM-IV-TR criteria) unmedicated depressed individuals at baseline and after 6 weeks of lithium therapy and 31 matched healthy controls. Decreases in blood AKT1 and mTOR mRNA expression, as well as in BAD/BCL-2 expression ratio were observed in short-term BD patients during depressive episodes in comparison to healthy controls. There was no significant change in the expression of AKT1, mTOR, BCL-2, BAD and NDUFA6 after lithium therapy in the total group of BD subjects. However, the changes in AKT1 expression after lithium treatment were positively correlated with depression improvement. An integrated activity within this pathway was observed at both baseline and post-treatment. The present results support an integrated AKT/mTOR signaling pathway activity in a similar fashion to the described in previous human postmortem and rodents brain studies. Overall, the results reinforce a role for AKT1 and mTOR in the pathophysiology of BD and support the relevance of blood mRNA expression as a valid surrogate biological source to study brain intracellular signaling cascades changes and convergent molecular pathways in psychiatric disorders.
Collapse
Affiliation(s)
- Rodrigo Machado-Vieira
- Laboratory of Neuroscience, LIM- 27, Institute and Department of Psychiatry, University of Sao Paulo, Brazil; Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), University of Sao Paulo, Brazil; Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, NIH, Bethesda, MD, United States.
| | - Marcus V Zanetti
- Laboratory of Neuroscience, LIM- 27, Institute and Department of Psychiatry, University of Sao Paulo, Brazil; Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), University of Sao Paulo, Brazil
| | - Antonio L Teixeira
- Interdisciplinary Laboratory of Medical Investigation, Federal University of Minas Gerais, Brazil
| | - Miyuki Uno
- Laboratory of Molecular and Cellular Biology, Department of Neurology, University of Sao Paulo, Brazil
| | - Leandro L Valiengo
- Laboratory of Neuroscience, LIM- 27, Institute and Department of Psychiatry, University of Sao Paulo, Brazil
| | | | - Sueli M Oba-Shinjo
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, NIH, Bethesda, MD, United States
| | - Rafael T de Sousa
- Laboratory of Neuroscience, LIM- 27, Institute and Department of Psychiatry, University of Sao Paulo, Brazil
| | - Carlos A Zarate
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, NIH, Bethesda, MD, United States
| | - Wagner F Gattaz
- Laboratory of Neuroscience, LIM- 27, Institute and Department of Psychiatry, University of Sao Paulo, Brazil; Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), University of Sao Paulo, Brazil
| | - Suely K N Marie
- Laboratory of Molecular and Cellular Biology, Department of Neurology, University of Sao Paulo, Brazil
| |
Collapse
|
56
|
Effects of lithium on cortical thickness and hippocampal subfield volumes in psychotic bipolar disorder. J Psychiatr Res 2015; 61:180-7. [PMID: 25563516 PMCID: PMC4859940 DOI: 10.1016/j.jpsychires.2014.12.008] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 11/19/2014] [Accepted: 12/11/2014] [Indexed: 12/13/2022]
Abstract
Relative to healthy controls, lithium free bipolar patients exhibit significant gray matter abnormalities. Lithium, the long-time reference standard medication treatment for bipolar disorder, has been proposed to be neuro-protective against these abnormalities. However, its effects on cortical thickness and hippocampal subfield (HSF) volumes remain unstudied and unclear, respectively, in bipolar disorder. This study included 342 healthy controls (HC), 51 lithium free PBD patients (NoLi), and 51 PBD patients taking lithium (Li). Regional gray matter thickness and HSF volume values were extracted from 3T MRI images. After matching NoLi and Li samples, regions where HC differed from either Li or NoLi were identified. In regions of significant or trending HC-NoLi difference, Li-NoLi comparisons were made. No significant HC-Li thickness or HSF volume differences were found. Significantly thinner occipital cortices were observed in NoLi compared to HC. In these regions, Li consistently exhibited non-significant trends for greater cortical thickness relative to NoLi. Significantly less volume was observed in NoLi compared to both HC and Li in right HSFs. Our results suggest that PBD in patients not treated with Li is associated with thinner occipital cortices and reduced HSF volumes compared with HC. Patients treated with Li exhibited significantly larger HSF volumes than NoLi, and those treated with Li were no different from HC in cortical thickness or hippocampal volumes. This evidence directly supports the hypothesis that Li may counteract the locally thinner and smaller gray matter structure found in PBD.
Collapse
|
57
|
Liechti FD, Stüdle N, Theurillat R, Grandgirard D, Thormann W, Leib SL. The mood-stabilizer lithium prevents hippocampal apoptosis and improves spatial memory in experimental meningitis. PLoS One 2014; 9:e113607. [PMID: 25409333 PMCID: PMC4237452 DOI: 10.1371/journal.pone.0113607] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 10/28/2014] [Indexed: 12/20/2022] Open
Abstract
Pneumococcal meningitis is associated with high morbidity and mortality rates. Brain damage caused by this disease is characterized by apoptosis in the hippocampal dentate gyrus, a morphological correlate of learning deficits in experimental paradigms. The mood stabilizer lithium has previously been found to attenuate brain damage in ischemic and inflammatory diseases of the brain. An infant rat model of pneumococcal meningitis was used to investigate the neuroprotective and neuroregenerative potential of lithium. To assess an effect on the acute disease, LiCl was administered starting five days prior to intracisternal infection with live Streptococcus pneumoniae. Clinical parameters were recorded, cerebrospinal fluid (CSF) was sampled, and the animals were sacrificed 42 hours after infection to harvest the brain and serum. Cryosections of the brains were stained for Nissl substance to quantify brain injury. Hippocampal gene expression of Bcl-2, Bax, p53, and BDNF was analyzed. Lithium concentrations were measured in serum and CSF. The effect of chronic lithium treatment on spatial memory function and cell survival in the dentate gyrus was evaluated in a Morris water maze and by quantification of BrdU incorporation after LiCl treatment during 3 weeks following infection. In the hippocampus, LiCl significantly reduced apoptosis and gene expression of Bax and p53 while it increased expression of Bcl-2. IL-10, MCP-1, and TNF were significantly increased in animals treated with LiCl compared to NaCl. Chronic LiCl treatment improved spatial memory in infected animals. The mood stabilizer lithium may thus be a therapeutic alternative to attenuate neurofunctional deficits as a result of pneumococcal meningitis.
Collapse
Affiliation(s)
- Fabian D. Liechti
- Neuroinfection Laboratory, Institute for Infectious Diseases, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Nicolas Stüdle
- Neuroinfection Laboratory, Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Regula Theurillat
- Clinical Pharmacology Laboratory, Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Denis Grandgirard
- Neuroinfection Laboratory, Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Wolfgang Thormann
- Clinical Pharmacology Laboratory, Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Stephen L. Leib
- Neuroinfection Laboratory, Institute for Infectious Diseases, University of Bern, Bern, Switzerland
- Biology Division, Spiez Laboratory, Swiss Federal Office for Civil Protection, Spiez, Switzerland
- * E-mail:
| |
Collapse
|
58
|
Woodward ND. The course of neuropsychological impairment and brain structure abnormalities in psychotic disorders. Neurosci Res 2014; 102:39-46. [PMID: 25152315 DOI: 10.1016/j.neures.2014.08.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 08/07/2014] [Accepted: 08/13/2014] [Indexed: 01/07/2023]
Abstract
Neuropsychological impairment and abnormalities in brain structure are commonly observed in psychotic disorders, including schizophrenia and bipolar disorder. Shared deficits in neuropsychological functioning and abnormalities in brain structure suggest overlapping neuropathology between schizophrenia and bipolar disorder which has important implications for psychiatric nosology, treatment, and our understanding of the etiology of psychotic illnesses. However, the emergence and trajectory of brain dysfunction in psychotic disorders is less well understood. Differences in the course and progression of neuropsychological impairment and brain abnormalities among psychotic disorders may point to unique neuropathological processes. This article reviews the course of neuropsychological impairment and brain structure abnormalities in schizophrenia and bipolar disorder.
Collapse
Affiliation(s)
- Neil D Woodward
- Department of Psychiatry, Vanderbilt University School of Medicine, Nashville, TN, United States.
| |
Collapse
|
59
|
LI DAWEI, YAO MIN, DONG YANHUA, TANG MINNA, CHEN WEI, LI GUANGREN, SUN BIQUAN. Guanosine exerts neuroprotective effects by reversing mitochondrial dysfunction in a cellular model of Parkinson’s disease. Int J Mol Med 2014; 34:1358-64. [DOI: 10.3892/ijmm.2014.1904] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2014] [Accepted: 08/07/2014] [Indexed: 11/06/2022] Open
|
60
|
Chang CC, Jou SH, Lin TT, Liu CS. Mitochondrial DNA variation and increased oxidative damage in euthymic patients with bipolar disorder. Psychiatry Clin Neurosci 2014; 68:551-7. [PMID: 24447331 DOI: 10.1111/pcn.12163] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2013] [Revised: 01/03/2014] [Accepted: 01/15/2014] [Indexed: 12/13/2022]
Abstract
AIM The aim of this study was to compare alterations of mitochondrial DNA (mtDNA) copy number, single nucleotide polymorphisms, and oxidative damage of mtDNA in clinically stable patients with bipolar I disorder (BD). METHODS Patients meeting DSM-IV diagnostic criteria for BD were recruited from the psychiatric outpatient clinic at Changhua Christian Hospital, Taiwan. They were clinically stable and their medications had not changed for at least the preceding 2 months. Exclusion criteria were substance-induced psychotic disorder, eating disorder, anxiety disorder or illicit substance abuse. Comparison subjects did not have any history of major psychiatric disorders and they were non-smokers. By analyzing peripheral blood leukocytes, copy number, single nucleotide polymorphisms and oxidative damage of mtDNA were compared between the two groups. RESULTS The median age of the subjects was 38 years and 41.5 years in the comparison and BD groups, respectively. The leukocyte mtDNA copy number of the BD group was significantly lower than that of the comparison group (P < 0.001). BD patients had significantly higher mitochondrial oxidative damage than the comparison group (6.1 vs 3.9, P < 0.001). After generalized linear model adjusting with age, sex, smoking, family history, and psychotropic use, mtDNA copy number was still significantly lower in the BD group (P < 0.001). MtDNA oxidative damage was positively correlated with age (P = 0.034), although mtDNA oxidative damage was similar between these two groups. CONCLUSION Possible involvement of oxidative stress and mitochondria in the pathophysiology of BD needs more large-scale studies. It is important that psychiatrists retain a high level of suspicion for mitochondrial dysfunction in patients with bipolar disorder.
Collapse
Affiliation(s)
- Cheng-Chen Chang
- Department of Psychiatry, Changhua Christian Hospital, Changhua, Taiwan; The Institute of Medicine, Chungshan Medical University, Taichung, Taiwan
| | | | | | | |
Collapse
|
61
|
Forlenza OV, De-Paula VJR, Diniz BSO. Neuroprotective effects of lithium: implications for the treatment of Alzheimer's disease and related neurodegenerative disorders. ACS Chem Neurosci 2014; 5:443-50. [PMID: 24766396 DOI: 10.1021/cn5000309] [Citation(s) in RCA: 204] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Lithium is a well-established therapeutic option for the acute and long-term management of bipolar disorder and major depression. More recently, based on findings from translational research, lithium has also been regarded as a neuroprotective agent and a candidate drug for disease-modification in certain neurodegenerative disorders, namely, Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS), and, more recently, Parkinson's disease (PD). The putative neuroprotective effects of lithium rely on the fact that it modulates several homeostatic mechanisms involved in neurotrophic response, autophagy, oxidative stress, inflammation, and mitochondrial function. Such a wide range of intracellular responses may be secondary to two key effects, that is, the inhibition of glycogen synthase kinase-3 beta (GSK-3β) and inositol monophosphatase (IMP) by lithium. In the present review, we revisit the neurobiological properties of lithium in light of the available evidence of its neurotrophic and neuroprotective properties, and discuss the rationale for its use in the treatment and prevention of neurodegenerative diseases.
Collapse
Affiliation(s)
- O. V. Forlenza
- Laboratory
of Neuroscience (LIM-27), Department and Institute of Psychiatry,
Faculty of Medicine, University of Sao Paulo, SP, Brazil
| | - V. J. R. De-Paula
- Laboratory
of Neuroscience (LIM-27), Department and Institute of Psychiatry,
Faculty of Medicine, University of Sao Paulo, SP, Brazil
| | - B. S. O. Diniz
- Department
of Mental Health and National Institute of Science and Technology,
Molecular Medicine, Faculty of Medicine, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| |
Collapse
|
62
|
Rodrigues R, Petersen RB, Perry G. Parallels between major depressive disorder and Alzheimer's disease: role of oxidative stress and genetic vulnerability. Cell Mol Neurobiol 2014; 34:925-49. [PMID: 24927694 DOI: 10.1007/s10571-014-0074-5] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 05/14/2014] [Indexed: 12/19/2022]
Abstract
The thesis of this review is that oxidative stress is the central factor in major depressive disorder (MDD) and Alzheimer's disease (AD). The major elements involved are inflammatory cytokines, the hypothalamic-pituitary axis, the hypothalamic-pituitary gonadal, and arginine vasopressin systems, which induce glucocorticoid and "oxidopamatergic" cascades when triggered by psychosocial stress, severe life-threatening events, and mental-affective and somatic diseases. In individuals with a genomic vulnerability to depression, these cascades may result in chronic depression-anxiety-stress spectra, resulting in MDD and other known depressive syndromes. In contrast, in subjects with genomic vulnerability to AD, oxidative stress-induced brain damage triggers specific antioxidant defenses, i.e., increased levels of amyloid-β (Aβ) and aggregation of hyper-phosphorylated tau, resulting in paired helical filaments and impaired functions related to the ApoEε4 isoform, leading to complex pathological cascades culminating in AD. Surprisingly, all the AD-associated molecular pathways mentioned in this review have been shown to be similar or analogous to those found in depression, including structural damage, i.e., hippocampal and frontal cortex atrophy. Other interacting molecular signals, i.e., GSK-3β, convergent survival factors (brain-derived neurotrophic factor and heat shock proteins), and transition redox metals are also mentioned to emphasize the vast array of intermediates that could interact via comparable mechanisms in both MDD and AD.
Collapse
Affiliation(s)
- Roberto Rodrigues
- College of Sciences, The University of Texas at San Antonio, One UTSA Circle, San Antonio, TX, 78249, USA,
| | | | | |
Collapse
|
63
|
Ritsner MS, Bawakny H, Kreinin A. Pregnenolone treatment reduces severity of negative symptoms in recent-onset schizophrenia: an 8-week, double-blind, randomized add-on two-center trial. Psychiatry Clin Neurosci 2014; 68:432-40. [PMID: 24548129 DOI: 10.1111/pcn.12150] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 12/05/2013] [Accepted: 12/12/2013] [Indexed: 11/26/2022]
Abstract
AIMS Management of recent-onset schizophrenia (SZ) and schizoaffective disorder (SA) is challenging owing to frequent insufficient response to antipsychotic agents. This study aimed to test the efficacy and safety of the neurosteroid pregnenolone in patients with recent-onset SZ/SA. METHODS Sixty out- and inpatients who met DSM-IV criteria for SZ/SA, with suboptimal response to antipsychotics were recruited for an 8-week, double-blind, randomized, placebo-controlled, two-center add-on trial, that was conducted between 2008 and 2011. Participants were randomized to receive either pregnenolone (50 mg/day) or placebo added on to antipsychotic medications. The primary outcome measures were the Positive and Negative Symptoms Scale and the Assessment of Negative Symptoms scores. Secondary outcomes included assessments of functioning, and side-effects. RESULTS Analysis was by linear mixed model. Fifty-two participants (86.7%) completed the trial. Compared to placebo, adjunctive pregnenolone significantly reduced Positive and Negative Symptoms Scale negative symptom scores with moderate effect sizes (d = 0.79). Significant improvement was observed in weeks 6 and 8 of pregnenolone therapy among patients who were not treated with concomitant mood stabilizers (arms × visit × mood stabilizers; P = 0.010). Likewise, pregnenolone significantly reduced Assessment of Negative Symptoms scores compared to placebo (d = 0.57), especially on blunted affect, avolition and anhedonia domain scores. Other symptoms, functioning, and side-effects were not significantly affected by adjunctive pregnenolone. Antipsychotic agents, benzodiazepines and sex did not associate with pregnenolone augmentation. Pregnenolone was well tolerated. CONCLUSIONS Thus, add-on pregnenolone reduces the severity of negative symptoms in recent-onset schizophrenia and schizoaffective disorder, especially among patients who are not treated with concomitant mood stabilizers. Further studies are warranted.
Collapse
Affiliation(s)
- Michael S Ritsner
- Sha'ar Menashe Mental Health Center, Hadera, Israel; The Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | | | | |
Collapse
|
64
|
Ma XH, Gao Q, Jia Z, Zhang ZW. Neuroprotective capabilities of TSA against cerebral ischemia/reperfusion injury via PI3K/Akt signaling pathway in rats. Int J Neurosci 2014; 125:140-6. [DOI: 10.3109/00207454.2014.912217] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
65
|
Honarmand AR, Pourtabatabaei N, Rahimi N, Dehpour AR, Javadi-Paydar M. Suppression of memory acquisition following co-administration of lithium and atorvastatin through nitric oxide pathway in mice. Pharmacol Biochem Behav 2014; 122:203-11. [PMID: 24708995 DOI: 10.1016/j.pbb.2014.03.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 02/28/2014] [Accepted: 03/27/2014] [Indexed: 01/09/2023]
Abstract
PURPOSE The aim of this study was to investigate the interactive effect of lithium and atorvastatin on cognitive performance and the role of NO as a potential mechanism involved in this interaction. MATERIALS AND METHODS Memory performance was evaluated in a two-trial recognition Y-maze test and a step-through passive avoidance task in mice. Lithium (5, 10, 20 or 40 mg/kg, i.p.) and atorvastatin (1 mg/kg, p.o.) were administered 1 h before each trial, L-NAME, a non-specific NO synthase inhibitor (3, 10 mg/kg, i.p.); aminoguanidine, a specific inducible NO synthase (iNOS) inhibitor (100 mg/kg); and L-arginine, a NO precursor (750 mg/kg) were administered 30 min before training sessions. The level of plasma NO end-products (NOx) was determined using Griess reagent protocol. RESULTS 1) Lithium (40 mg/kg) impaired the acquisition of spatial recognition memory; 2) lithium did not affect the retrieval phase of spatial memory; 3) atorvastatin (1 mg/kg) significantly impaired the memory performance, when co-administered with the sub-effective dose of lithium (10 mg/kg), but did not affect the status when administered with lithium (5 mg/kg); 4) L-NAME (10 mg/kg) and aminoguanidine (100 mg/kg) dramatically decreased memory performance in mice received sub-effective doses of both lithium (5 mg/kg) and atorvastatin (1 mg/kg); 5) L-arginine (750 mg/kg) improved the memory acquisition in mice administered lithium (10 mg/kg) and atorvastatin (1 mg/kg); 6) lithium did not affect the cognitive performance in the passive avoidance test. All results were compatible and confirmed with in vitro determination of plasma NOx levels. CONCLUSIONS Lithium, dose dependently, impaired acquisition phase of spatial recognition memory. Lithium and atorvastatin co-administration impaired spatial recognition memory mediating by nitrergic pathway. In addition to L-arginine, our data from L-NAME and aminoguanidine also support the involvement of NO pathway in this interaction.
Collapse
Affiliation(s)
- Amir Reza Honarmand
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Iran; Brain and Spinal Cord Injury Repair Research Center, Tehran University of Medical Sciences, Iran
| | - Nasim Pourtabatabaei
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Iran; Brain and Spinal Cord Injury Repair Research Center, Tehran University of Medical Sciences, Iran
| | - Nastaran Rahimi
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Iran; Experimental Medicine Research Center, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad Reza Dehpour
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Iran; Experimental Medicine Research Center, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehrak Javadi-Paydar
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Iran; Brain and Spinal Cord Injury Repair Research Center, Tehran University of Medical Sciences, Iran.
| |
Collapse
|
66
|
Marrus N, Bell M, Luby JL. Psychotropic Medications and Their Effect on Brain Volumes in Childhood Psychopathology. ACTA ACUST UNITED AC 2014; 19:1-8. [PMID: 28701856 DOI: 10.1521/capn.2014.19.2.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Natasha Marrus
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - Marisa Bell
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - Joan L Luby
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
67
|
Thangavel M, Seelan RS, Lakshmanan J, Vadnal RE, Stagner JI, Parthasarathy LK, Casanova MF, El-Mallakh RS, Parthasarathy RN. Proteomic analysis of rat prefrontal cortex after chronic valproate treatment. J Neurosci Res 2014; 92:927-36. [DOI: 10.1002/jnr.23373] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Revised: 01/28/2014] [Accepted: 01/28/2014] [Indexed: 11/08/2022]
Affiliation(s)
- Muthusamy Thangavel
- Molecular Neuroscience and Bioinformatics Laboratories; Mental Health; Behavioral Science; and Research Services; Robley Rex Veterans Affairs Medical Center; Louisville Kentucky
- Department of Psychiatry and Behavioral Sciences; University of Louisville; Louisville Kentucky
| | - Ratnam S. Seelan
- Molecular Neuroscience and Bioinformatics Laboratories; Mental Health; Behavioral Science; and Research Services; Robley Rex Veterans Affairs Medical Center; Louisville Kentucky
- Department of Psychiatry and Behavioral Sciences; University of Louisville; Louisville Kentucky
- Department of Molecular; Cellular; and Craniofacial Biology; School of Dentistry, University of Louisville; Louisville Kentucky
| | - Jaganathan Lakshmanan
- Molecular Neuroscience and Bioinformatics Laboratories; Mental Health; Behavioral Science; and Research Services; Robley Rex Veterans Affairs Medical Center; Louisville Kentucky
- Price Institute of Surgical Research; Department of Surgery; School of Medicine, University of Louisville; Louisville Kentucky
| | - Robert E. Vadnal
- Eastern Colorado Health Care System; Department of Veterans Affairs; Pueblo Colorado
| | - John I. Stagner
- Molecular Neuroscience and Bioinformatics Laboratories; Mental Health; Behavioral Science; and Research Services; Robley Rex Veterans Affairs Medical Center; Louisville Kentucky
| | - Latha K. Parthasarathy
- Molecular Neuroscience and Bioinformatics Laboratories; Mental Health; Behavioral Science; and Research Services; Robley Rex Veterans Affairs Medical Center; Louisville Kentucky
- Department of Psychiatry and Behavioral Sciences; University of Louisville; Louisville Kentucky
| | - Manuel F. Casanova
- Department of Psychiatry and Behavioral Sciences; University of Louisville; Louisville Kentucky
| | - Rifaat Shody El-Mallakh
- Department of Psychiatry and Behavioral Sciences; University of Louisville; Louisville Kentucky
| | - Ranga N. Parthasarathy
- Molecular Neuroscience and Bioinformatics Laboratories; Mental Health; Behavioral Science; and Research Services; Robley Rex Veterans Affairs Medical Center; Louisville Kentucky
- Department of Psychiatry and Behavioral Sciences; University of Louisville; Louisville Kentucky
- Department of Biochemistry and Molecular Biology; University of Louisville; Louisville Kentucky
| |
Collapse
|
68
|
Li DW, Liu ZQ, Chen W, Yao M, Li GR. Association of glycogen synthase kinase-3β with Parkinson's disease (review). Mol Med Rep 2014; 9:2043-50. [PMID: 24681994 PMCID: PMC4055480 DOI: 10.3892/mmr.2014.2080] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Accepted: 02/25/2014] [Indexed: 12/21/2022] Open
Abstract
Glycogen synthase kinase-3 (GSK-3) is a pleiotropic serine/threonine protein kinase found in almost all eukaryotes. It is structurally highly conserved and has been identified as a multifaceted enzyme affecting a wide range of biological functions, including gene expression and cellular processes. There are two closely related isoforms of GSK-3; GSK-3α and GSK-3β. The latter appears to play crucial roles in regulating the pathogenesis of diverse diseases, including neurodegenerative disease. The present review focuses on the involvement of this protein in Parkinson’s disease (PD), a common neurodegenerative disorder characterized by the gradually progressive and selective loss of dopaminergic neurons, and by intracellular inclusions known as Lewy bodies (LBs) expressed in surviving neurons of the substantia nigra (SN). GSK-3β is involved in multiple signaling pathways and has several phosphorylation targets. Numerous apoptotic conditions can be facilitated by the GSK-3β signaling pathways. Studies have shown that GSK-3β inhibition protects the dopaminergic neurons from various stress-induced injuries, indicating the involvement of GSK-3β in PD pathogenesis. However, the underlying mechanisms of the protective effect of GSK-3β inhibition on dopaminergic neurons in PD is not completely understood. Multiple pathological events have been recognized to be responsible for the loss of dopaminergic neurons in PD, including mitochondrial dysfunction, oxidative stress, protein aggregation and neuroinflammation. The present review stresses the regulatory roles of GSK-3β in these events and in dopaminergic neuron degeneration, in an attempt to gain an improved understanding of the underlying mechanisms and to provide a potential effective therapeutic target for PD.
Collapse
Affiliation(s)
- Da-Wei Li
- Department of Neurology, Affiliated Hospital of Beihua University, Jilin, Jilin 132000, P.R. China
| | - Zhi-Qiang Liu
- Department of Neurology, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Wei Chen
- Department of Neurology, The Third Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Min Yao
- Department of Neurology, The Third Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Guang-Ren Li
- Department of Neurology, The Third Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
69
|
Berridge MJ. Calcium signalling and psychiatric disease: bipolar disorder and schizophrenia. Cell Tissue Res 2014; 357:477-92. [PMID: 24577622 DOI: 10.1007/s00441-014-1806-z] [Citation(s) in RCA: 112] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2013] [Accepted: 01/10/2014] [Indexed: 12/21/2022]
Abstract
Neurons have highly developed Ca(2+) signalling systems responsible for regulating many neural functions such as the generation of brain rhythms, information processing and the changes in synaptic plasticity that underpins learning and memory. The signalling mechanisms that regulate neuronal excitability are particularly important for processes such as sensory perception, cognition and consciousness. The Ca(2+) signalling pathway is a key component of the mechanisms responsible for regulating neuronal excitability, information processing and cognition. Alterations in gene transcription are particularly important as they result in subtle alterations in the neuronal signalling mechanisms that have been implicated in many neural diseases. In particular, dysregulation of the Ca(2+) signalling pathway has been implicated in the development of some of the major psychiatric diseases such as bipolar disorder (BPD) and schizophrenia.
Collapse
|
70
|
Can A, Schulze TG, Gould TD. Molecular actions and clinical pharmacogenetics of lithium therapy. Pharmacol Biochem Behav 2014; 123:3-16. [PMID: 24534415 DOI: 10.1016/j.pbb.2014.02.004] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Revised: 02/04/2014] [Accepted: 02/05/2014] [Indexed: 12/21/2022]
Abstract
Mood disorders, including bipolar disorder and depression, are relatively common human diseases for which pharmacological treatment options are often not optimal. Among existing pharmacological agents and mood stabilizers used for the treatment of mood disorders, lithium has a unique clinical profile. Lithium has efficacy in the treatment of bipolar disorder generally, and in particular mania, while also being useful in the adjunct treatment of refractory depression. In addition to antimanic and adjunct antidepressant efficacy, lithium is also proven effective in the reduction of suicide and suicidal behaviors. However, only a subset of patients manifests beneficial responses to lithium therapy and the underlying genetic factors of response are not exactly known. Here we discuss preclinical research suggesting mechanisms likely to underlie lithium's therapeutic actions including direct targets inositol monophosphatase and glycogen synthase kinase-3 (GSK-3) among others, as well as indirect actions including modulation of neurotrophic and neurotransmitter systems and circadian function. We follow with a discussion of current knowledge related to the pharmacogenetic underpinnings of effective lithium therapy in patients within this context. Progress in elucidation of genetic factors that may be involved in human response to lithium pharmacology has been slow, and there is still limited conclusive evidence for the role of a particular genetic factor. However, the development of new approaches such as genome-wide association studies (GWAS), and increased use of genetic testing and improved identification of mood disorder patients sub-groups will lead to improved elucidation of relevant genetic factors in the future.
Collapse
Affiliation(s)
- Adem Can
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Thomas G Schulze
- Department of Psychiatry and Psychotherapy, University of Göttingen, Göttingen, Germany; Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Todd D Gould
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, United States; Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, United States; Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, United States.
| |
Collapse
|
71
|
Tsapakis EM, Fernandes C, Moran-Gates T, Basu A, Sugden K, Aitchison KJ, Tarazi FI. Effects of antidepressant drug exposure on gene expression in the developing cerebral cortex. Synapse 2014; 68:209-20. [PMID: 24458505 DOI: 10.1002/syn.21732] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Revised: 12/27/2013] [Accepted: 01/09/2014] [Indexed: 12/11/2022]
Abstract
To clarify the basis of limited responses in children and adolescents to antidepressant treatments considered standard in the treatment of adult major depressive disorder, juvenile Sprague-Dawley rats were subjected to 21-day treatment with dissimilar antidepressant drugs fluoxetine, imipramine, or vehicle control. Total RNA was extracted from brain frontal cortices and hybridized to the Affymetrix 230.2 chip. A total of 18 microarrays were analyzed (i.e., six biological replicates in three treatment groups). Transcripts identified were validated using Taqman real-time quantitative PCR methodology, and the relative expression of each gene was also determined. In both the imipramine- and fluoxetine-treated animals, expression of six genes was down-regulated (ANOVA-filtered gene expression data using dChip [version 2005]): Gpd1; Lrrn3; Sult1A1; Angptl4; Mt1a; Unknown. Furthermore, four genes were over-expressed: P4Ha1; RDG1311476; Rgc32; and SLC25A18-like by both imipramine and fluoxetine. These data demonstrate that antidepressant drugs interfere with the expression of genes involved in cell signaling, survival, and protein metabolism. Our results show that antidepressants regulate the induction of highly specific transcriptional programs in the developing frontal cortex. These findings provide novel insights into the long-term molecular actions of antidepressant drugs in the developing brain.
Collapse
Affiliation(s)
- Evangelia M Tsapakis
- MRC Social Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, King's College London, London, United Kingdom; Department of Psychiatry and Neuroscience Program, Harvard Medical School and McLean Hospital, Boston, Massachusetts
| | | | | | | | | | | | | |
Collapse
|
72
|
Machado-Vieira R, Soeiro-De-Souza MG, Richards EM, Teixeira AL, Zarate CA. Multiple levels of impaired neural plasticity and cellular resilience in bipolar disorder: developing treatments using an integrated translational approach. World J Biol Psychiatry 2014; 15:84-95. [PMID: 23998912 PMCID: PMC4180367 DOI: 10.3109/15622975.2013.830775] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
OBJECTIVES This paper reviews the neurobiology of bipolar disorder (BD), particularly findings associated with impaired cellular resilience and plasticity. METHODS PubMed/Medline articles and book chapters published over the last 20 years were identified using the following keyword combinations: BD, calcium, cytokines, endoplasmic reticulum (ER), genetics, glucocorticoids, glutamate, imaging, ketamine, lithium, mania, mitochondria, neuroplasticity, neuroprotection, neurotrophic, oxidative stress, plasticity, resilience, and valproate. RESULTS BD is associated with impaired cellular resilience and synaptic dysfunction at multiple levels, associated with impaired cellular resilience and plasticity. These findings were partially prevented or even reversed with the use of mood stabilizers, but longitudinal studies associated with clinical outcome remain scarce. CONCLUSIONS Evidence consistently suggests that BD involves impaired neural plasticity and cellular resilience at multiple levels. This includes the genetic and intra- and intercellular signalling levels, their impact on brain structure and function, as well as the final translation into behaviour/cognitive changes. Future studies are expected to adopt integrated translational approaches using a variety of methods (e.g., microarray approaches, neuroimaging, genetics, electrophysiology, and the new generation of -omics techniques). These studies will likely focus on more precise diagnoses and a personalized medicine paradigm in order to develop better treatments for those who need them most.
Collapse
Affiliation(s)
- Rodrigo Machado-Vieira
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, NIH, Bethesda, MD, USA,Laboratory of Neuroscience, LIM27, Institute and Department of Psychiatry, School of Medicine, University of Sao Paulo, SP, Brazil,Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), University of Sao Paulo, SP, Brazil
| | - Marcio G. Soeiro-De-Souza
- Mood Disorders Unit (GRUDA), Institute and Department of Psychiatry, School of Medicine, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Erica M. Richards
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, NIH, Bethesda, MD, USA
| | - Antonio L. Teixeira
- Neurology Group, Department of Internal Medicine, School of Medicine, UFMG, Belo Horizonte, Brazil
| | - Carlos A. Zarate
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, NIH, Bethesda, MD, USA
| |
Collapse
|
73
|
Ren X, Rizavi HS, Khan MA, Bhaumik R, Dwivedi Y, Pandey GN. Alteration of cyclic-AMP response element binding protein in the postmortem brain of subjects with bipolar disorder and schizophrenia. J Affect Disord 2014; 152-154:326-33. [PMID: 24148789 PMCID: PMC3878615 DOI: 10.1016/j.jad.2013.09.033] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Accepted: 09/20/2013] [Indexed: 02/02/2023]
Abstract
BACKGROUND Abnormalities of cyclic-AMP (cAMP) response element binding protein (CREB) function has been suggested in bipolar (BP) illness and schizophrenia (SZ), based on both indirect and direct evidence. To further elucidate the role of CREB in these disorders, we studied CREB expression and function in two brain areas implicated in these disorders, i.e., dorsolateral prefrontal cortex (DLPFC) and cingulate gyrus (CG). METHODS We determined CREB protein expression using Western blot technique, CRE-DNA binding using gel shift assay, and mRNA expression using real-time RT-polymerase chain reaction (qPCR) in DLPFC and CG of the postmortem brain of BP (n=19), SZ (n=20), and normal control (NC, n=20) subjects. RESULTS We observed that CREB protein and mRNA expression and CRE-DNA binding activity were significantly decreased in the nuclear fraction of DLPFC and CG obtained from BP subjects compared with NC subjects. However, the protein and mRNA expression and CRE-DNA binding in SZ subjects was significantly decreased in CG, but not in DLPFC, compared with NC. CONCLUSION These studies thus indicate region-specific abnormalities of CREB expression and function in both BP and SZ. They suggest that abnormalities of CREB in CG may be associated with both BP and SZ, but its abnormality in DLPFC is specific to BP illness.
Collapse
Affiliation(s)
- Xinguo Ren
- University of Illinois at Chicago, Department of Psychiatry, Chicago, IL 60612, USA
| | | | | | | | | | | |
Collapse
|
74
|
Gray JD, McEwen BS. Lithium's role in neural plasticity and its implications for mood disorders. Acta Psychiatr Scand 2013; 128:347-61. [PMID: 23617566 PMCID: PMC3743945 DOI: 10.1111/acps.12139] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/25/2013] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Lithium (Li) is often an effective treatment for mood disorders, especially bipolar disorder (BPD), and can mitigate the effects of stress on the brain by modulating several pathways to facilitate neural plasticity. This review seeks to summarize what is known about the molecular mechanisms underlying Li's actions in the brain in response to stress, particularly how Li is able to facilitate plasticity through regulation of the glutamate system and cytoskeletal components. METHOD The authors conducted an extensive search of the published literature using several search terms, including Li, plasticity, and stress. Relevant articles were retrieved, and their bibliographies consulted to expand the number of articles reviewed. The most relevant articles from both the clinical and preclinical literature were examined in detail. RESULTS Chronic stress results in morphological and functional remodeling in specific brain regions where structural differences have been associated with mood disorders, such as BPD. Li has been shown to block stress-induced changes and facilitate neural plasticity. The onset of mood disorders may reflect an inability of the brain to properly respond after stress, where changes in certain regions may become 'locked in' when plasticity is lost. Li can enhance plasticity through several molecular mechanisms, which have been characterized in animal models. Further, the expanding number of clinical imaging studies has provided evidence that these mechanisms may be at work in the human brain. CONCLUSION This work supports the hypothesis that Li is able to improve clinical symptoms by facilitating neural plasticity and thereby helps to 'unlock' the brain from its maladaptive state in patients with mood disorders.
Collapse
Affiliation(s)
- Jason D. Gray
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology The Rockefeller University 1230 York Avenue, New York, NY 10065
| | - Bruce S. McEwen
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology The Rockefeller University 1230 York Avenue, New York, NY 10065
| |
Collapse
|
75
|
Rizak J, Tan H, Zhu H, Wang JF. Chronic treatment with the mood-stabilizing drug lithium up-regulates nuclear factor E2-related factor 2 in rat pheochromocytoma PC12 cells in vitro. Neuroscience 2013; 256:223-9. [PMID: 24505606 DOI: 10.1016/j.neuroscience.2013.10.036] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The mood-stabilizing drug lithium is the most commonly used treatment for bipolar disorder. Previous studies have shown that chronic treatment with lithium produces a protective effect against oxidative stress. Nuclear factor E2-related factor 2 (Nrf2) is a gene transcription factor that binds to the electrophile response element (EpRE) and triggers expression of various genes with antioxidant properties. Nrf2 contributes significantly to cytoprotection against oxidative stress. The purpose of this study is to determine the role of Nrf2 in the protective effect of lithium against oxidative stress. We found, using immunoblotting analysis, that chronic, but not acute treatment with lithium increased nuclear levels of Nrf2 in rat pheochromocytoma PC12 cells. DNA pull-down assay has shown that Nrf2 can bind to a double-strained oligonucleotide containing an EpRE site from glutathione s-transferase A4. Electrophorectic gel shift analysis further showed that chronic treatment with lithium increased Nrf-2-EpRE binding activity. We also found that knocking down Nrf2 with its short hairpin RNA inhibited lithium-increased expression of Nrf2 and suppressed the protective effect of lithium against hydrogen peroxide (H₂O₂)-reduced cell viability and H₂O₂-increased DNA fragmentation. Because Nrf2 can induce expression of various genes that play important roles in cytoprotection, the current findings suggest that Nrf2 may mediate the neuroprotective effect of lithium against oxidative stress.
Collapse
|
76
|
Varela RB, Valvassori SS, Lopes-Borges J, Fraga DB, Resende WR, Arent CO, Zugno AI, Quevedo J. Evaluation of acetylcholinesterase in an animal model of mania induced by D-amphetamine. Psychiatry Res 2013; 209:229-34. [PMID: 23245536 DOI: 10.1016/j.psychres.2012.11.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Revised: 09/21/2012] [Accepted: 11/11/2012] [Indexed: 12/23/2022]
Abstract
The present study aims to investigate the effects of mood stabilizers, lithium (Li) and valproate (VPA), on acetylcholinesterase (AChE) activity in the brains of rats subjected to an animal model of mania induced by D-amphetamine (D-AMPH). In the reversal treatment, Wistar rats were first given D-AMPH or saline (Sal) for 14 days. Between days 8 and 14, the rats were treated with Li, VPA, or Sal. In the prevention treatment, rats were pretreated with Li, VPA, or Sal. AChE activity was measured in the brain structures (prefrontal cortex, hippocampus, and striatum). Li, alone in reversion and prevention treatments, increased AChE activity in the brains of rats. VPA, alone in prevention treatment, increased AChE activity in all brain regions evaluated; in the reversion, only in the prefrontal. However, D-AMPH decreased activity of AChE in the striatum of rats in both the reversion and prevention treatments. VPA was able to revert and prevent this AChE activity alteration in the rat striatum. Our findings further support the notion that the mechanisms of mood stabilizers also involve changes in AChE activity, thus reinforcing the need for more studies to better characterize the role of acetylcholine in bipolar disorder.
Collapse
Affiliation(s)
- Roger B Varela
- Laboratory of Neurosciences, National Institute for Translational Medicine (INCT-TM), Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, 88806-000 Criciúma, SC, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
77
|
Wu D, Li Q, Zhu X, Wu G, Cui S. Valproic acid protection against the brachial plexus root avulsion-induced death of motoneurons in rats. Microsurgery 2013; 33:551-9. [PMID: 23843283 DOI: 10.1002/micr.22130] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Revised: 03/27/2013] [Accepted: 03/29/2013] [Indexed: 01/17/2023]
Abstract
In this study, the role of valproic acid (VPA) in protecting motoneuron after brachial plexus root avulsion was investigated in adult rats. Sixty rats were used in this study, and underwent the brachial plexus root avulsion injury, which was created by using a micro-hemostat forceps to pull out brachial plexus root from the intervertebral foramen. The animals were divided into two groups, VPA group administered with VPA dissolved in drinking water (300 mg/kg) daily, and control group had drinking water every day. The spinal cords (C5-T1) were harvested at day 1, 2, 3, 7, 14, and 28 for immunohistochemistry analysis, TUNEL staining, Nissl staining, and electron microscopy, respectively. The results showed that with VPA administration, the survival of motoneurons was promoted and the cell apoptosis was inhibited. The number of c-Jun and Bcl-2 positive motoneurons was increased immediately after avulsion both in control and VPA group, however, the percent of c-Jun positive motoneurons was decreased and the percent of Bcl-2 positive motoneurons was increased by VPA treatment significantly. Our results indicated that motoneurons were protected by VPA against cell death induced by brachial plexus root avulsion through c-Jun inhibition and Bcl-2 induction.
Collapse
Affiliation(s)
- Dianxiu Wu
- Department of Hand Surgery, The Third Clinical Hospital of Jilin University, Changchun, China
| | - Qiang Li
- Department of Hand Surgery, The Third Clinical Hospital of Jilin University, Changchun, China
| | - Xiaojuan Zhu
- Key Laboratory of Molecular Epigenetics Ministry of Education, Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| | - Guangzhi Wu
- Department of Hand Surgery, The Third Clinical Hospital of Jilin University, Changchun, China
| | - Shusen Cui
- Department of Hand Surgery, The Third Clinical Hospital of Jilin University, Changchun, China
| |
Collapse
|
78
|
Qiu A, Gan SC, Wang Y, Sim K. Amygdala-hippocampal shape and cortical thickness abnormalities in first-episode schizophrenia and mania. Psychol Med 2013; 43:1353-1363. [PMID: 23186886 DOI: 10.1017/s0033291712002218] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND Abnormalities in cortical thickness and subcortical structures have been studied in schizophrenia but little is known about corresponding changes in mania and brain structural differences between these two psychiatric conditions, especially early in the stage of the illness. In this study we aimed to compare cortical thickness and shape of the amygdala-hippocampal complex in first-episode schizophrenia (FES) and mania (FEM). Method Structural magnetic resonance imaging (MRI) was performed on 28 FES patients, 28 FEM patients and 28 healthy control subjects who were matched for age, gender and handedness. RESULTS Overall, the shape of the amygdala was deformed in both patient groups, relative to controls. Compared to FEM patients, FES patients had significant inward shape deformation in the left hippocampal tail, right hippocampal body and a small region in the right amygdala. Cortical thinning was more widespread in FES patients, with significant differences found in the temporal brain regions when compared with FEM and controls. CONCLUSIONS Significant differences were observed between the two groups of patients with FES and FEM in terms of the hippocampal shape and cortical thickness in the temporal region, highlighting that distinguishable brain structural changes are present early in the course of schizophrenia and mania.
Collapse
Affiliation(s)
- A Qiu
- Department of Bioengineering, National University of Singapore, Singapore.
| | | | | | | |
Collapse
|
79
|
Abstract
Lithium has been used for the treatment of mood disorders for over 60 years, yet the exact mechanisms by which it exerts its therapeutic effects remain unclear. Two enzymatic chains or pathways emerge as targets for lithium: inositol monophosphatase within the phosphatidylinositol signalling pathway and the protein kinase glycogen synthase kinase 3. Lithium inhibits these enzymes through displacing the normal cofactor magnesium, a vital regulator of numerous signalling pathways. Here we provide an overview of evidence, supporting a role for the inhibition of glycogen synthase kinase 3 and inositol monophosphatase in the pharmacodynamic actions of lithium. We also explore how inhibition of these enzymes by lithium can lead to downstream effects of clinical relevance, both for mood disorders and neurodegenerative diseases. Establishing a better understanding of lithium's mechanisms of action may allow the development of more effective and more tolerable pharmacological agents for the treatment of a range of mental illnesses, and provide clearer insight into the pathophysiology of such disorders.
Collapse
Affiliation(s)
- Kayleigh M Brown
- Institute of Psychiatry, King's College London, PO Box 63, De Crespigny Park, Denmark Hill, London SE5 8AF, UK
| | | |
Collapse
|
80
|
Gene-expression differences in peripheral blood between lithium responders and non-responders in the Lithium Treatment-Moderate dose Use Study (LiTMUS). THE PHARMACOGENOMICS JOURNAL 2013; 14:182-91. [PMID: 23670706 DOI: 10.1038/tpj.2013.16] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Revised: 02/15/2013] [Accepted: 03/18/2013] [Indexed: 11/08/2022]
Abstract
This study was designed to identify genes whose expression in peripheral blood may serve as early markers for treatment response to lithium (Li) in patients with bipolar disorder. Although changes in peripheral blood gene-expression may not relate directly to mood symptoms, differences in treatment response at the biochemical level may underlie some of the heterogeneity in clinical response to Li. Subjects were randomized to treatment with (n=28) or without (n=32) Li. Peripheral blood gene-expression was measured before and 1 month after treatment initiation, and treatment response was assessed after 6 months. In subjects treated with Li, 62 genes were differentially regulated in treatment responders and non-responders. Of these, BCL2L1 showed the greatest difference between Li responders and non-responders. These changes were specific to Li responders (n=9), and were not seen in Li non-responders or patients treated without Li, suggesting that they may have specific roles in treatment response to Li.
Collapse
|
81
|
Neuroprotective effects of the mood stabilizer lamotrigine against glutamate excitotoxicity: roles of chromatin remodelling and Bcl-2 induction. Int J Neuropsychopharmacol 2013; 16:607-20. [PMID: 22564541 PMCID: PMC6324934 DOI: 10.1017/s1461145712000429] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Lamotrigine (LTG), a phenyltriazine derivative and anti-epileptic drug, has emerged as an effective first-line treatment for bipolar mood disorder. Like the other mood stabilizers lithium and valproate, LTG also has neuroprotective properties but its exact mechanisms remain poorly defined. The present study utilized rat cerebellar granule cells (CGCs) to examine the neuroprotective effects of LTG against glutamate-induced excitotoxicity and to investigate potential underlying mechanisms. CGCs pretreated with LTG were challenged with an excitotoxic dose of glutamate. Pretreatment caused a time- and concentration-dependent inhibition of glutamate excitotoxicity with nearly full protection at higher doses (≥ 100 μm), as revealed by cell viability assays and morphology. LTG treatment increased levels of acetylated histone H3 and H4 as well as dose- and time-dependently enhanced B-cell lymphoma-2 (Bcl-2) mRNA and protein levels; these changes were associated with up-regulation of the histone acetylation and activity of the Bcl-2 promoter. Importantly, lentiviral-mediated Bcl-2 silencing by shRNA reduced both LTG-induced Bcl-2 mRNA up-regulation and neuroprotection against glutamate excitotoxicity. Finally, the co-presence of a sub-effective concentration of LTG (10 μm) with lithium or valproate produced synergistic neuroprotection. Together, our results demonstrate that the neuroprotective effects of LTG against glutamate excitotoxicity likely involve histone deacetylase inhibition and downstream up-regulation of anti-apoptotic protein Bcl-2. These underlying mechanisms may contribute to the clinical efficacy of LTG in treating bipolar disorder and warrant further investigation.
Collapse
|
82
|
Arraf Z, Khamisy-Farah R, Amit T, Youdim MBH, Farah R. Lithium's gene expression profile, relevance to neuroprotection A cDNA microarray study. Cell Mol Neurobiol 2013; 33:411-20. [PMID: 23324999 PMCID: PMC11497965 DOI: 10.1007/s10571-013-9907-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2012] [Accepted: 01/04/2013] [Indexed: 12/28/2022]
Abstract
Lithium can prevent 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) dopaminergic neurotoxicity in mice. This is attributed to induced antioxidant and antiapoptotic state, which among other factors results from induction of Bcl-2 and reduction of Bax, however, cDNA microarray reveals that this represents only one cascade of lithium targets. From analyzing the gene expression profile of lithium, we are able to point out candidate genes that might be involved in the antioxidant and neuroprotective properties of lithium. Among these are, the cAMP response element binding (CREB) protein, extracellular signal-regulated kinase (ERK), both CREB and ERK-part of the mitogen-activated kinase pathway-were upregulated by lithium, downregulated by MPTP, and maintained in mice fed with lithium chloride (LiCl) supplemented diet and treated with MPTP. Our positive control included tyrosine hydroxylase which both its mRNA and protein levels were independently measured, in addition to Bcl-2 protein levels. Other important genes which were similarly regulated are plasma glutathione peroxidase precursor (GSHPX-P), protein kinase C alpha type, insulin-like growth factor binding protein 4 precursor, and interferon regulatory factor. In addition, some genes were oppositely regulated, i.e., downregulated by lithium, upregulated by MPTP, and maintained in mice fed with LiCl supplemented diet and treated with MPTP, among these genes were basic fibroblast growth factor receptor 1 precursor, inhibin alpha subunit, glutamate receptor subunit zeta 1 precursor (NMD-R1), postsynaptic density protein-95 which together with NMD-R1 can form an apoptotic promoting complex. The discussed targets represent part of genes altered by chronic lithium. In fact lithium affected the expressions of more than 50 genes among these were basic transcription factors, transcription activators, cell signaling proteins, cell adhesion proteins, oncogenes and tumor suppressors, intracellular transducers, survival and death genes, and cyclins, here we discuss the relevance of these changes to lithium's reported neuroprotective properties.
Collapse
Affiliation(s)
- Zaher Arraf
- Department of Pharmacology, the Bruce Rappaport Family Faculty of Medicine, Technion, Haifa, Israel
| | | | - Tamar Amit
- Department of Pharmacology, the Bruce Rappaport Family Faculty of Medicine, Technion, Haifa, Israel
| | - Moussa B. H. Youdim
- Department of Pharmacology, the Bruce Rappaport Family Faculty of Medicine, Technion, Haifa, Israel
| | - Raymond Farah
- Department of Internal Medicine B, Ziv Medical Center, Safed, Israel
- Faculty of Medicine in the Galilee, Bar-Ilan University, Safed, Israel
| |
Collapse
|
83
|
Rodent models for mania: practical approaches. Cell Tissue Res 2013; 354:191-201. [PMID: 23504091 DOI: 10.1007/s00441-013-1594-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2013] [Accepted: 02/15/2013] [Indexed: 12/16/2022]
Abstract
The scarcity of good animal models for bipolar disorder (BPD) and especially for mania is repeatedly mentioned as one of the rate-limiting factors in the process of gaining a better understanding into its pathophysiology and of developing better treatments. Standard models of BPD have some value but usually represent only one facet of the disease and have partial validity. A number of new approaches for modeling BPD and specifically mania have been suggested in the last few years and can be combined to improve models. These approaches include targeted mutation models representing reverse translation, the identification of advantageous strains for components of the disorder, a search for the most homologous species to address specific human pathology, and the exploration of individual differences of response including the separation between susceptible and resilient animals. Additionally, recent efforts have identified and developed new tests to distinguish between "normal" and "BPD-like" animals including the different utilization of known tests and novel tests such as the female-urine-sniffing test and behavior pattern monitor analysis. Additional tests relating to further domains of BPD are still needed. An ideal model for BPD that will encompass the entire disease and be useful for every demand will probably not become available until we have a full understanding of the pathophysiology of the disorder. However, the current advances in modeling should lead to better comprehension of the disorder and therefore to the gradual development of increasingly improved models.
Collapse
|
84
|
Interferon-α induces nitric oxide synthase expression and haem oxygenase-1 down-regulation in microglia: implications of cellular mechanism of IFN-α-induced depression. Int J Neuropsychopharmacol 2013; 16:433-44. [PMID: 22717332 DOI: 10.1017/s1461145712000338] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Substantiating evidence for the inflammation theory of depression is that interferon-alpha (IFN-α) induces clinical depression. Despite numerous researches on neurochemical and neuroendocrinological mechanisms from human and animal studies, the direct mechanisms of IFN-α at cellular levels are still lacking. In this study, we aimed to identify the cellular mechanisms for IFN-α-induced neuroinflammatory response with the murine BV-2 microglia cell line. IFN-α potently induced nitric oxide synthase (iNOS) and nitric oxide (NO) release and down-regulated haem oxygenase-1 (HO-1) expression, which could be dampened by Janus kinase 1 (JAK1) and c-Jun NH2-terminal kinase (JNK) inhibition, respectively. IFN-α activated JAK1, JNK, signal transducers and activators of transcription (STAT)1 and STAT3, but not extracellular signal-regulated kinases (ERK) and phosphoinositide 3 (PI3) kinase, signal pathways. The transfection with STAT1 and STAT3 siRNA also inhibited IFN-α-induced iNOS/NO expression and HO-1 down-regulation. The HO-1 activator, CoppIX, reversed iNOS/NO up-regulation and HO-1 down-regulation induced by IFN-α. On the other hand, a knockdown of HO-1 expression enhanced IFN-α-induced iNOS/NO expression. The effects of IFN-α-induced iNOS/NO up-regulation and HO-1 down-regulation in microglia are associated with JAK1/JNK/STAT1 and STAT3 signalling pathways. The different effects between IFN-α and IFN-γ on HO-1 regulation and ERK phosphorylation might provide a possible explanation of different risk in their induction of neuropsychiatric adverse effects in clinical and animal studies. The results from this study add the missing part of direct cellular mechanisms for IFN-α-induced depression.
Collapse
|
85
|
Alsaif M, Haenisch F, Guest PC, Rahmoune H, Bahn S. Challenges in drug target discovery in bipolar disorder. Expert Opin Ther Targets 2013; 17:565-77. [PMID: 23419165 DOI: 10.1517/14728222.2013.771169] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
INTRODUCTION Misdiagnosis and subsequent inappropriate treatment of patients with bipolar disorder (BD) can worsen their clinical condition and outcome. AREAS COVERED This review focuses on the therapeutic targets which have been implicated in BD, including the glycogen synthase kinase 3 (GSK-3) and phosphoinositide signaling pathways. In addition, evidence is presented for potential new molecular strategies which involve targeting neuropeptide-converting endopeptidases, glutamatergic excitotoxicity, insulin signaling and dysfunctions in mitochondrial metabolism. Current limitations in study design, molecular platforms, preclinical and cellular models in the context of BD drug target discovery, suggest that there are many areas for improvement. EXPERT OPINION For the future outlook, this review outlines the importance of developments such as the use of BD patient-derived cellular models for providing better understanding of the BD etiology and robust translational drug screening tools in combination with developments in the fields of bioinformatics and systems biology.
Collapse
Affiliation(s)
- Murtada Alsaif
- University of Cambridge, Institute of Biotechnology, Department of Chemical Engineering and Biotechnology , Tennis Court Road, Cambridge, CB2 1QT, Cambridgeshire, UK
| | | | | | | | | |
Collapse
|
86
|
Yi J, Zhang L, Tang B, Han W, Zhou Y, Chen Z, Jia D, Jiang H. Sodium valproate alleviates neurodegeneration in SCA3/MJD via suppressing apoptosis and rescuing the hypoacetylation levels of histone H3 and H4. PLoS One 2013; 8:e54792. [PMID: 23382971 PMCID: PMC3557284 DOI: 10.1371/journal.pone.0054792] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2012] [Accepted: 12/14/2012] [Indexed: 01/10/2023] Open
Abstract
Spinocerebellar ataxia type 3 (SCA3) also known as Machado-Joseph Disease (MJD), is one of nine polyglutamine (polyQ) diseases caused by a CAG-trinucelotide repeat expansion within the coding sequence of the ATXN3 gene. There are no disease-modifying treatments for polyQ diseases. Recent studies suggest that an imbalance in histone acetylation may be a key process leading to transcriptional dysregulation in polyQ diseases. Because of this possible imbalance, the application of histone deacetylase (HDAC) inhibitors may be feasible for the treatment of polyQ diseases. To further explore the therapeutic potential of HDAC inhibitors, we constructed two independent preclinical trials with valproic acid (VPA), a promising therapeutic HDAC inhibitor, in both Drosophila and cell SCA3 models. We demonstrated that prolonged use of VPA at specific dose partly prevented eye depigmentation, alleviated climbing disability, and extended the average lifespan of SCA3/MJD transgenic Drosophila. We found that VPA could both increase the acetylation levels of histone H3 and histone H4 and reduce the early apoptotic rate of cells without inhibiting the aggregation of mutant ataxin-3 proteins in MJDtr-Q68- expressing cells. These results collectively support the premise that VPA is a promising therapeutic agent for the treatment of SCA3 and other polyQ diseases.
Collapse
Affiliation(s)
- Jiping Yi
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- Department of Neurology & Institute of Translational Medicine at University of South China, the First People's Hospital of Chenzhou, Chenzhou, China
| | - Li Zhang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Beisha Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- Neurodegenerative Disorders Research Center, Central South University, Changsha, China
- National Laboratory of Medical Genetics of China, Central South University, Changsha, China
| | - Weiwei Han
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Yafang Zhou
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Zhao Chen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Dandan Jia
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Hong Jiang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- Neurodegenerative Disorders Research Center, Central South University, Changsha, China
| |
Collapse
|
87
|
Nierenberg AA, Kansky C, Brennan BP, Shelton RC, Perlis R, Iosifescu DV. Mitochondrial modulators for bipolar disorder: a pathophysiologically informed paradigm for new drug development. Aust N Z J Psychiatry 2013; 47:26-42. [PMID: 22711881 DOI: 10.1177/0004867412449303] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVES Bipolar patients frequently relapse within 12 months of their previous mood episode, even in the context of adequate treatment, suggesting that better continuation and maintenance treatments are needed. Based on recent research of the pathophysiology of bipolar disorder, we review the evidence for mitochondrial dysregulation and selected mitochondrial modulators (MM) as potential treatments. METHODS We reviewed the literature about mitochondrial dysfunction and potential MMs worthy of study that could improve the course of bipolar disorder, reduce subsyndromal symptoms, and prevent subsequent mood episodes. RESULTS MM treatment targets mitochondrial dysfunction, oxidative stress, altered brain energy metabolism and the dysregulation of multiple mitochondrial genes in patients with bipolar disorder. Several tolerable and readily available candidates include N-acetyl-cysteine (NAC), acetyl-L-carnitine (ALCAR), S-adenosylmethionine (SAMe), coenzyme Q(10) (CoQ10), alpha-lipoic acid (ALA), creatine monohydrate (CM), and melatonin. The specific metabolic pathways by which these MMs may improve the symptoms of bipolar disorder are discussed and combinations of selected MMs could be of interest as well. CONCLUSIONS Convergent data implicate mitochondrial dysfunction as an important component of the pathophysiology of bipolar disorder. Clinical trials of individual MMs as well as combinations are warranted.
Collapse
|
88
|
Chiu CT, Wang Z, Hunsberger JG, Chuang DM. Therapeutic potential of mood stabilizers lithium and valproic acid: beyond bipolar disorder. Pharmacol Rev 2013; 65:105-42. [PMID: 23300133 PMCID: PMC3565922 DOI: 10.1124/pr.111.005512] [Citation(s) in RCA: 290] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The mood stabilizers lithium and valproic acid (VPA) are traditionally used to treat bipolar disorder (BD), a severe mental illness arising from complex interactions between genes and environment that drive deficits in cellular plasticity and resiliency. The therapeutic potential of these drugs in other central nervous system diseases is also gaining support. This article reviews the various mechanisms of action of lithium and VPA gleaned from cellular and animal models of neurologic, neurodegenerative, and neuropsychiatric disorders. Clinical evidence is included when available to provide a comprehensive perspective of the field and to acknowledge some of the limitations of these treatments. First, the review describes how action at these drugs' primary targets--glycogen synthase kinase-3 for lithium and histone deacetylases for VPA--induces the transcription and expression of neurotrophic, angiogenic, and neuroprotective proteins. Cell survival signaling cascades, oxidative stress pathways, and protein quality control mechanisms may further underlie lithium and VPA's beneficial actions. The ability of cotreatment to augment neuroprotection and enhance stem cell homing and migration is also discussed, as are microRNAs as new therapeutic targets. Finally, preclinical findings have shown that the neuroprotective benefits of these agents facilitate anti-inflammation, angiogenesis, neurogenesis, blood-brain barrier integrity, and disease-specific neuroprotection. These mechanisms can be compared with dysregulated disease mechanisms to suggest core cellular and molecular disturbances identifiable by specific risk biomarkers. Future clinical endeavors are warranted to determine the therapeutic potential of lithium and VPA across the spectrum of central nervous system diseases, with particular emphasis on a personalized medicine approach toward treating these disorders.
Collapse
Affiliation(s)
- Chi-Tso Chiu
- Molecular Neurobiology Section, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, USA
| | | | | | | |
Collapse
|
89
|
Lithium and GSK3-β promoter gene variants influence white matter microstructure in bipolar disorder. Neuropsychopharmacology 2013; 38:313-27. [PMID: 22990942 PMCID: PMC3527112 DOI: 10.1038/npp.2012.172] [Citation(s) in RCA: 113] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Lithium is the mainstay for the treatment of bipolar disorder (BD) and inhibits glycogen synthase kinase 3-β (GSK3-β). The less active GSK3-β promoter gene variants have been associated with less detrimental clinical features of BD. GSK3-β gene variants and lithium can influence brain gray matter structure in psychiatric conditions. Diffusion tensor imaging (DTI) measures of white matter (WM) integrity showed widespred disruption of WM structure in BD. In a sample of 70 patients affected by a major depressive episode in course of BD, we investigated the effect of ongoing long-term lithium treatment and GSK3-β promoter rs334558 polymorphism on WM microstructure, using DTI and tract-based spatial statistics with threshold-free cluster enhancement. We report that the less active GSK3-β rs334558*C gene-promoter variants, and the long-term administration of the GSK3-β inhibitor lithium, were associated with increases of DTI measures of axial diffusivity (AD) in several WM fiber tracts, including corpus callosum, forceps major, anterior and posterior cingulum bundle (bilaterally including its hippocampal part), left superior and inferior longitudinal fasciculus, left inferior fronto-occipital fasciculus, left posterior thalamic radiation, bilateral superior and posterior corona radiata, and bilateral corticospinal tract. AD reflects the integrity of axons and myelin sheaths. We suggest that GSK3-β inhibition and lithium could counteract the detrimental influences of BD on WM structure, with specific benefits resulting from effects on specific WM tracts contributing to the functional integrity of the brain and involving interhemispheric, limbic, and large frontal, parietal, and fronto-occipital connections.
Collapse
|
90
|
Soeiro-de-Souza MG, Dias VV, Figueira ML, Forlenza OV, Gattaz WF, Zarate CA, Machado-Vieira R. Translating neurotrophic and cellular plasticity: from pathophysiology to improved therapeutics for bipolar disorder. Acta Psychiatr Scand 2012; 126:332-41. [PMID: 22676371 PMCID: PMC3936785 DOI: 10.1111/j.1600-0447.2012.01889.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
OBJECTIVE Bipolar disorder (BD) likely involves, at a molecular and cellular level, dysfunctions of critical neurotrophic, cellular plasticity and resilience pathways and neuroprotective processes. Therapeutic properties of mood stabilizers are presumed to result from a restoration of the function of these altered pathways and processes through a wide range of biochemical and molecular effects. We aimed to review the altered pathways and processes implicated in BD, such as neurotrophic factors, mitogen-activated protein kinases, Bcl-2, phosphoinositol signaling, intracellular calcium and glycogen synthase kinase-3. METHODS We undertook a literature search of recent relevant journal articles, book chapter and reviews on neurodegeneration and neuroprotection in BD. Search words entered were 'brain-derived neurotrophic factor,''Bcl-2,''mitogen-activated protein kinases,''neuroprotection,''calcium,''bipolar disorder,''mania,' and 'depression.' RESULTS The most consistent and replicated findings in the pathophysiology of BD may be classified as follows: i) calcium dysregulation, ii) mitochondrial/endoplasmic reticulum dysfunction, iii) glial and neuronal death/atrophy and iv) loss of neurotrophic/plasticity effects in brain areas critically involved in mood regulation. In addition, the evidence supports that treatment with mood stabilizers; in particular, lithium restores these pathophysiological changes. CONCLUSION Bipolar disorder is associated with impairments in neurotrophic, cellular plasticity and resilience pathways as well as in neuroprotective processes. The evidence supports that treatment with mood stabilizers, in particular lithium, restores these pathophysiological changes. Studies that attempt to prevent (intervene before the onset of the molecular and cellular changes), treat (minimize severity of these deficits over time), and rectify (reverse molecular and cellular deficits) are promising therapeutic strategies for developing improved treatments for bipolar disorder.
Collapse
Affiliation(s)
- M. G. Soeiro-de-Souza
- Mood Disorders Unit (GRUDA), Department and Institute of Psychiatry, School of Medicine, University of Sao Paulo (HC-FMUSP), São Paulo, Brazil
| | - V. V. Dias
- Mood Disorders Unit (GRUDA), Department and Institute of Psychiatry, School of Medicine, University of Sao Paulo (HC-FMUSP), São Paulo, Brazil
| | - M. L. Figueira
- Bipolar Disorder Research Program, Hospital Santa Maria, Faculty of Medicine, University of Lisbon, (FMUL), Lisbon, Portugal
| | - O. V. Forlenza
- Laboratory of Neuroscience LIM-27, Department and Institute of Psychiatry, School of Medicine, University of Sao Paulo (HC-FMUSP), São Paulo, Brazil
| | - W. F. Gattaz
- Laboratory of Neuroscience LIM-27, Department and Institute of Psychiatry, School of Medicine, University of Sao Paulo (HC-FMUSP), São Paulo, Brazil
| | - C. A. Zarate
- Section on the Neurobiology and Treatment of Mood Disorders, Intramural Research Program, National Institute of Mental Health, Bethesda, MD, USA
| | - R. Machado-Vieira
- Laboratory of Neuroscience LIM-27, Department and Institute of Psychiatry, School of Medicine, University of Sao Paulo (HC-FMUSP), São Paulo, Brazil
| |
Collapse
|
91
|
Lowthert L, Leffert J, Lin A, Umlauf S, Maloney K, Muralidharan A, Lorberg B, Mane S, Zhao H, Sinha R, Bhagwagar Z, Beech R. Increased ratio of anti-apoptotic to pro-apoptotic Bcl2 gene-family members in lithium-responders one month after treatment initiation. BIOLOGY OF MOOD & ANXIETY DISORDERS 2012; 2:15. [PMID: 22967286 PMCID: PMC3448519 DOI: 10.1186/2045-5380-2-15] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2012] [Accepted: 08/15/2012] [Indexed: 12/21/2022]
Abstract
Background Lithium is considered by many as the gold standard medication in the management of bipolar disorder (BD). However, the clinical response to lithium is heterogeneous, and the molecular basis for this difference in response is unknown. In the present study, we sought to determine how the peripheral blood gene expression profiles of patients with bipolar disorder (BD) changed over time following intitiation of treatment with lithium, and whether differences in those profiles over time were related to the clinical response. Methods Illumina Sentrix Beadchip (Human-6v2) microarrays containing > 48,000 transcript probes were used to measure levels of expression of gene-expression in peripheral blood from 20 depressed subjects with BD prior to and every two weeks during 8 weeks of open-label treatment with lithium. Changes in gene-expression were compared between treatment responders (defined as a decrease in the Hamilton Depression Rating Scale of 50% or more) and non-responders. Pathway analysis was conducted using GeneGO Metacore software. Results 127 genes showed a differential response in responders vs. non-responders. Pathway analysis showed that regulation of apoptosis was the most significantly affected pathway among these genes. Closer examination of the time-course of changes among BCL2 related genes showed that in lithium-responders, one month after starting treatment with lithium, several anti-apoptotic genes including Bcl2 and insulin receptor substrate 2 (IRS2) were up-regulated, while pro-apoptotic genes, including BCL2-antagonist/killer 1 (BAK1) and BCL2-associated agonist of cell death (BAD), were down-regulated. In contrast, in lithium non-responders, BCL2 and IRS2 were down-regulated, while BAK1 and BAD up-regulated at the one-month time-point. Conclusions These results suggest that differential changes in the balance of pro- and anti- apoptotic gene-expression following treatment with lithium may explain some of the heterogeneity in clinical response in BD patients.
Collapse
Affiliation(s)
- Lori Lowthert
- Department of Psychiatry, New Haven, CT, 06511, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
92
|
Quiroz JA, Manji HK. Enhancing synaptic plasticity and cellular resilience to develop novel, improved treatments for mood disorders. DIALOGUES IN CLINICAL NEUROSCIENCE 2012. [PMID: 22034240 PMCID: PMC3181673 DOI: 10.31887/dcns.2002.4.1/jquiroz] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
There is mounting evidence that recurrent mood disorders - once considered “good prognosis diseases”- are, in fact, often very severe and life-threatening illnesses. Furthermore, although mood disorders have traditionally been conceptualized as neurochemical disorders, there is now evidence from a variety of sources demonstrating regional reductions in central nervous system (CNS) volume, as well as reductions in the numbers and/or sizes ofglia and neurons in discrete brain areas. Although the precise cellular mechanisms underlying these morphometric changes remain to be fully elucidated, the data suggest that mood disorders are associated with impairments of synaptic plasticity and cellular resilience. In this context, it is noteworthy that there is increasing preclinical evidence that antidepressants regulate the function of the glutamatergic system. Moreover, although clearly preliminary, the available clinical data suggest that attenuation of N-methyl-D-aspartate (NMDA) function has antidepressant effects. Recent preclinical and clinical studies have shown that signaling pathways involved in regulating cell survival and cell death are long-term targets for the actions of antidepressant agents. Antidepressants and mood stabilizers indirectly regulate a number of factors involved in cell survival pathways, including cyclic adenosine monophosphate (cAMP) response element binding protein (CREB), brain-derived neurotrophic factor (BDNF), the antiapoptotic protein bcl-2, and mitogen-activated protein (MAP) kinases, and may thus bring about some of their delayed long-term beneficial effects via underappreciated neurotrophic effects. There is much promise for the future development of treatments that more directly target molecules in critical CNS signaling pathways regulating synaptic plasticity and cellular resilience. These will represent improved long-term treatments for mood disorders.
Collapse
Affiliation(s)
- Jorge A Quiroz
- Laboratory of Molecular Pathophysiology, National Institute of Mental Health, Bethesda, Md, USA
| | | |
Collapse
|
93
|
Chiu CT, Chuang DM. Neuroprotective action of lithium in disorders of the central nervous system. ZHONG NAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF CENTRAL SOUTH UNIVERSITY. MEDICAL SCIENCES 2012; 36:461-76. [PMID: 21743136 DOI: 10.3969/j.issn.1672-7347.2011.06.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Substantial in vitro and in vivo evidence of neurotrophic and neuroprotective effects of lithium suggests that it may also have considerable potential for the treatment of neurodegenerative conditions. Lithium's main mechanisms of action appear to stem from its ability to inhibit glycogen synthase kinase-3 activity and also to induce signaling mediated by brain-derived neurotrophic factor. This in turn alters a wide variety of downstream effectors, with the ultimate effect of enhancing pathways to cell survival. In addition, lithium contributes to calcium homeostasis. By inhibiting N-methyl-D-aspartate receptor-mediated calcium influx, for instance, it suppresses the calcium-dependent activation of pro-apoptotic signaling pathways. By inhibiting the activity of phosphoinositol phosphatases, it decreases levels of inositol 1,4,5-trisphosphate, a process recently identified as a novel mechanism for inducing autophagy. These mechanisms allow therapeutic doses of lithium to protect neuronal cells from diverse insults that would otherwise lead to massive cell death. Lithium, moreover, has been shown to improve behavioral and cognitive deficits in animal models of neurodegenerative diseases, including stroke, amyotrophic lateral sclerosis, fragile X syndrome, and Huntington's, Alzheimer's, and Parkinson's diseases. Since lithium is already FDA-approved for the treatment of bipolar disorder, our conclusions support the notion that its clinical relevance can be expanded to include the treatment of several neurological and neurodegenerative-related diseases.
Collapse
Affiliation(s)
- Chi-Tso Chiu
- Section on Molecular Neurobiology, National Institute of Mental Health, National Institutes of Health, 10 Center Drive MSC 1363, Bethesda, MD 20892-1363, USA
| | | |
Collapse
|
94
|
Vajda F. Dose issues in antiepileptic therapy. J Clin Neurosci 2012; 19:1475-7. [PMID: 22959449 DOI: 10.1016/j.jocn.2012.05.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Accepted: 05/02/2012] [Indexed: 11/30/2022]
Abstract
Antiepileptic drug (AED) therapy is complex, with numerous traditional drugs and more than 10 second-generation drugs being approved since the mid-1990s. The burden of epilepsy is compounded by the adverse effects of these drugs, which comprise a variety of manifestations, the most devastating of which is their association with physical and cognitive foetal malformations in babies exposed to these agents in utero. Many effects are dose-related - a clear understanding of these adverse effects is desirable to be able to adjust medications and medication regimens to suit individual patient needs and to try to prevent them, by a careful introduction, slow escalation, well-considered combination and possible pre-exposure testing of patients for their tolerance, to each proposed AED. The overall problem and the profiles of the main agents are outlined from the perspective of dose-related issues.
Collapse
Affiliation(s)
- F Vajda
- Department of Medicine and Neurosciences, Royal Melbourne Hospital and University of Melbourne, PO Box 2116, Parkville, Victoria 3050, Australia.
| |
Collapse
|
95
|
Ramadan E, Basselin M, Chang L, Chen M, Ma K, Rapoport SI. Chronic lithium feeding reduces upregulated brain arachidonic acid metabolism in HIV-1 transgenic rat. J Neuroimmune Pharmacol 2012; 7:701-13. [PMID: 22760927 PMCID: PMC3478068 DOI: 10.1007/s11481-012-9381-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Accepted: 06/04/2012] [Indexed: 01/09/2023]
Abstract
HIV-1 transgenic (Tg) rats, a model for human HIV-1 associated neurocognitive disorder (HAND), show upregulated markers of brain arachidonic acid (AA) metabolism with neuroinflammation after 7 months of age. Since lithium decreases AA metabolism in a rat lipopolysaccharide model of neuroinflammation, and may be useful in HAND, we hypothesized that lithium would dampen upregulated brain AA metabolism in HIV-1 Tg rats. Regional brain AA incorporation coefficients k* and rates J ( in ), markers of AA signaling and metabolism, were measured in 81 brain regions using quantitative autoradiography, after intravenous [1-(14) C]AA infusion in unanesthetized 10-month-old HIV-1 Tg and age-matched wildtype rats that had been fed a control or LiCl diet for 6 weeks. k* and J ( in ) for AA were significantly higher in HIV-1 Tg than wildtype rats fed the control diet. Lithium feeding reduced plasma unesterified AA concentration in both groups and J ( in ) in wildtype rats, and blocked increments in k* (19 of 54 regions) and J ( in ) (77 of 81 regions) in HIV-1 Tg rats. These in vivo neuroimaging data indicate that lithium treatment dampened upregulated brain AA metabolism in HIV-1 Tg rats. Lithium may improve cognitive dysfunction and be neuroprotective in HIV-1 patients with HAND through a comparable effect.
Collapse
Affiliation(s)
- Epolia Ramadan
- Brain Physiology and Metabolism Section, National Institute on Aging, National Institutes of Health, Bethesda, Maryland, USA
| | - Mireille Basselin
- Brain Physiology and Metabolism Section, National Institute on Aging, National Institutes of Health, Bethesda, Maryland, USA
| | - Lisa Chang
- Brain Physiology and Metabolism Section, National Institute on Aging, National Institutes of Health, Bethesda, Maryland, USA
| | - Mei Chen
- Brain Physiology and Metabolism Section, National Institute on Aging, National Institutes of Health, Bethesda, Maryland, USA
| | - Kaizong Ma
- Brain Physiology and Metabolism Section, National Institute on Aging, National Institutes of Health, Bethesda, Maryland, USA
| | - Stanley I. Rapoport
- Brain Physiology and Metabolism Section, National Institute on Aging, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
96
|
Easing the burden of bipolar disorder: from urgent situations to remission. PRIMARY CARE COMPANION TO THE JOURNAL OF CLINICAL PSYCHIATRY 2012; 10:391-402. [PMID: 19158978 DOI: 10.4088/pcc.v10n0507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
97
|
Berridge MJ. Dysregulation of neural calcium signaling in Alzheimer disease, bipolar disorder and schizophrenia. Prion 2012; 7:2-13. [PMID: 22895098 DOI: 10.4161/pri.21767] [Citation(s) in RCA: 132] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Neurons have highly developed Ca(2+) signaling systems responsible for regulating a large number of neural functions such as the control of brain rhythms, information processing and the changes in synaptic plasticity that underpin learning and memory. The tonic excitatory drive, which is activated by the ascending arousal system, is particularly important for processes such as sensory perception, cognition and consciousness. The Ca(2+) signaling pathway is a key component of this arousal system that regulates the neuronal excitability responsible for controlling the neural brain rhythms required for information processing and cognition. Dysregulation of the Ca(2+) signaling pathway responsible for many of these neuronal processes has been implicated in the development of some of the major neural diseases in man such as Alzheimer disease, bipolar disorder and schizophrenia. Various treatments, which are known to act by reducing the activity of Ca(2+) signaling, have proved successful in alleviating the symptoms of some of these neural diseases.
Collapse
|
98
|
Song N, Boku S, Nakagawa S, Kato A, Toda H, Takamura N, Omiya Y, Kitaichi Y, Inoue T, Koyama T. Mood stabilizers commonly restore staurosporine-induced increase of p53 expression and following decrease of Bcl-2 expression in SH-SY5Y cells. Prog Neuropsychopharmacol Biol Psychiatry 2012; 38:183-9. [PMID: 22484386 DOI: 10.1016/j.pnpbp.2012.03.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2011] [Revised: 03/07/2012] [Accepted: 03/19/2012] [Indexed: 11/25/2022]
Abstract
Adult neurogenesis in dentate gyrus (DG) is involved in the action mechanism of mood stabilizers. However, it is poorly understood how mood stabilizers affect adult neurogenesis in DG. Neurogenesis consists of proliferation, survival (anti-apoptosis) and differentiation of neural precursor cells in adult DG. Using in vitro culture of adult rat DG-derived neural precursor cells (ADP), we have already shown that four mood stabilizers, such as lithium (Li), valproate (VPA), carbamazepine (CBZ) and lamotrigine (LTG), commonly decrease staurosporine (STS)-induced apoptosis of ADP. These suggest that the common anti-apoptotic effect of mood stabilizers could be involved in mood-stabilizing effects. Past studies have shown that Li and VPA increase the expression of Bcl-2, an anti-apoptotic gene. In addition, it has been shown that Li decreases the expression of p53, which plays a prominent role in apoptosis and regulates the expression of Bcl-2. Therefore, p53 and Bcl-2 can be considered to mediate the common anti-apoptotic effects of Li, VPA, CBZ and LTG. To elucidate the molecular mechanism underlying the common anti-apoptotic effects of mood stabilizers, we investigated the effects of Li, VPA, CBZ and LTG on STS-induced expression changes of p53, Bcl-2 and other p53-related molecules using SH-SY5Y cells as a model of neural precursor-like cells. STS increased the expression of p53 and decreased that of Bcl-2. These effects of STS on p53 and Bcl-2 are restored by all of Li, VPA, CBZ and LTG. In addition, p53 overexpression decreased the expression of Bcl-2. Taken together, these results suggest that p53 and Bcl-2 may be involved in a part of mood-stabilizing effects.
Collapse
Affiliation(s)
- Ning Song
- Department of Psychiatry, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
99
|
Ross DA, Cetas JS. Steroid psychosis: a review for neurosurgeons. J Neurooncol 2012; 109:439-47. [PMID: 22763760 DOI: 10.1007/s11060-012-0919-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Accepted: 06/19/2012] [Indexed: 01/11/2023]
Abstract
Steroids are beneficial in neurological illness, but have many serious side effects. Having observed several patients with severe steroid psychoses, which greatly prolonged their hospitalizations, the authors sought to improve understanding of this entity. A literature review was conducted. The incidence of severe psychiatric symptoms was estimated in a meta-analysis of 2,555 patients to be 5.7 % and the incidence of any psychiatric symptoms was 18.6 % in patients receiving >80 mg/day of prednisone (12 mg/day dexamethasone). Dose is not predictive of time of onset, severity, type, or duration of symptoms. Symptoms can develop rapidly following exposure to even low doses and with oral, epidural, or intra-articular administration. Glucocorticoid effects on the brain fall into three categories: genomic, non-genomic, and neurotrophic/neurotoxic and can be permanent. Excessive glucocorticoid exposure may result in decreased production of endogenous neurosteroid molecules, resulting in unopposed glucocorticoid effects. Treatment includes early recognition, steroid withdrawal when appropriate, reduction in stimulation, and medication. Atypical antipsychotics like olanzapine and risperidone may cause fewer dystonic reactions and extrapyramidal symptoms than typical antipsychotics like haloperidol, and therefore, are often recommended as first line treatment. Steroids are powerful medications with many undesirable side effects. They should be used with caution. More research is needed on their effects on the human central nervous system.
Collapse
Affiliation(s)
- Donald A Ross
- Department of Neurological Surgery, Oregon Health & Science University, 3303 SW Bond Avenue, CH8N, Portland, OR 97239, USA.
| | | |
Collapse
|
100
|
Mood disorders. Transl Neurosci 2012. [DOI: 10.1017/cbo9780511980053.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|