51
|
Grumish EL, Armstrong AR, Voigt RM, Forsyth CB, Bishehsari F. Alcohol-Induced Immune Dysregulation in the Colon Is Diurnally Variable. Visc Med 2020; 36:212-219. [PMID: 32775352 DOI: 10.1159/000507124] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 03/11/2020] [Indexed: 01/17/2023] Open
Abstract
Introduction Alcohol increases the risk of colon cancer. Colonic inflammation mediates the effects of alcohol on colon carcinogenesis. Circadian rhythm disruption enhances the alcohol's effect on colonic inflammation and cancer. Objective Here, we investigate the diurnal variation of lymphocyte infiltration in the colonic mucosa in response to alcohol. Methods Sixty C57BL6/J mice were fed a chow diet, and gavaged with alcohol at a specific time once per day for 3 consecutive days. Immunohistochemistry and immunofluorescence staining were used to quantify total, effector, and regulatory T cells in the colon. Student's t test, one-way ANOVA, and two-way ANOVA were used to determine significance. Results Following the alcohol binge, the composition of immune T cell subsets in the mouse colon was time-dependent. Alcohol did not alter the total number of CD3+ T cells. However, upon alcohol treatment, T-bet+ T helper 1 (Th1) cells appeared to dominate the T cell population following a reduction in Foxp3+ regulatory T cell (Treg) numbers. Depletion of Tregs was time-dependent, and their numbers were dramatically reduced when alcohol was administered during the rest phase. A reduction in Tregs significantly increased the Th1/Treg ratio, resulting in a more proinflammatory milieu. Conclusions Alcohol enhanced the proinflammatory profile in the colon mucosa, as demonstrated by a higher T-bet+/Foxp3+ ratio, especially during the rest phase. These findings may partly account for the interaction of circadian rhythm disruption with alcohol in colon inflammation and cancer.
Collapse
Affiliation(s)
- Eve Lauren Grumish
- Division of Gastroenterology, Department of Internal Medicine, Rush University Medical Center, Chicago, Illinois, USA
| | - Andrew R Armstrong
- Division of Gastroenterology, Department of Internal Medicine, Rush University Medical Center, Chicago, Illinois, USA
| | - Robin M Voigt
- Division of Gastroenterology, Department of Internal Medicine, Rush University Medical Center, Chicago, Illinois, USA
| | - Christopher B Forsyth
- Division of Gastroenterology, Department of Internal Medicine, Rush University Medical Center, Chicago, Illinois, USA
| | - Faraz Bishehsari
- Division of Gastroenterology, Department of Internal Medicine, Rush University Medical Center, Chicago, Illinois, USA
| |
Collapse
|
52
|
Effects of aging and tumorigenesis on coupling between the circadian clock and cell cycle in colonic mucosa. Mech Ageing Dev 2020; 190:111317. [PMID: 32745473 DOI: 10.1016/j.mad.2020.111317] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 06/21/2020] [Accepted: 07/14/2020] [Indexed: 01/20/2023]
Abstract
Aging and tumorigenesis are associated with decline and disruption of circadian rhythms in many tissues and accumulating evidence indicates molecular link between circadian clock and cell cycle. The aim of this study was to investigate the effect of aging and tumorigenesis on coupling between cell cycle and circadian clock oscillators in colon, which undergoes regular rhythmicity of cell cycle and expresses peripheral circadian clock. Using healthy 14-week-old mice and 33-week-old mice with and without colorectal tumors, we showed that the 24-h expression profiles of clock genes and clock-controlled genes were mostly unaffected by aging, whereas the genes of cell cycle and cell proliferation were rhythmic in the young colons but were silenced during aging. On the other hand, tumorigenesis completely silenced or dampened the circadian rhythmicity of the clock genes but only a few genes associated with cell cycle progression and cell proliferation. These results suggest that aging impacts the colonic circadian clock moderately but markedly suppresses the rhythms of cell cycle genes and appears to uncouple the cell cycle machinery from circadian clock control. Conversely, tumorigenesis predominantly affects the rhythms of colonic circadian clocks but is not associated with uncoupling of circadian clock and cell cycle.
Collapse
|
53
|
Bentley-Hewitt KL, Perrott M, Butts CA, Hedderley DI, Stoklosinski HM, Parkar SG. Influence of kiwifruit on gastric and duodenal inflammation-related gene expression in aspirin-induced gastric mucosal damage in rats. Sci Rep 2020; 10:13055. [PMID: 32747727 PMCID: PMC7400567 DOI: 10.1038/s41598-020-70006-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 07/20/2020] [Indexed: 12/12/2022] Open
Abstract
Kiwifruit (KF) contains bioactive compounds with potential anti-inflammatory properties. In this study, we investigated the protective effects of KF on gastric and duodenal damage induced by soluble aspirin in healthy rats. Sixty-four male Sprague Dawley rats were allocated to eight experimental treatments (n = 8) and the experimental diets were fed for 14 days ad libitum. The experimental diets were 20% fresh pureed KF (green-fleshed and gold-fleshed) or 10% glucose solution (control diet). A positive anti-inflammatory control treatment (ranitidine) was included. At the end of the 14-day feeding period, the rats were fasted overnight, and the following morning soluble aspirin (400 mg/kg aspirin) or water (control) was administered by oral gavage. Four hours after aspirin administration, the rats were euthanized and samples taken for analysis. We observed no significant ulcer formation or increase in infiltration of the gastric mucosal inflammatory cells in the rats with the aspirin treatment. Despite this, there were significant changes in gene expression, such as in the duodenum of aspirin-treated rats fed green KF where there was increased expression of inflammation-related genes NOS2 and TNF-alpha. We also observed that gold and green KF diets had a number of contrasting effects on genes related to inflammation and gastro-protective effects.
Collapse
Affiliation(s)
- Kerry L Bentley-Hewitt
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 11600, Palmerston North, 4442, New Zealand.
| | - Matthew Perrott
- School of Veterinary Science, Massey University, Palmerston North, New Zealand
| | - Christine A Butts
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 11600, Palmerston North, 4442, New Zealand
| | - Duncan I Hedderley
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 11600, Palmerston North, 4442, New Zealand
| | - Halina M Stoklosinski
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 11600, Palmerston North, 4442, New Zealand
| | - Shanthi G Parkar
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 11600, Palmerston North, 4442, New Zealand
| |
Collapse
|
54
|
Sun H, Li C, Zhang Y, Jiang M, Dong Q, Wang Z. Light-resetting impact on behavior and the central circadian clock in two vole species (genus: Lasiopodomys). Comp Biochem Physiol B Biochem Mol Biol 2020; 248-249:110478. [PMID: 32687979 DOI: 10.1016/j.cbpb.2020.110478] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/03/2020] [Accepted: 07/13/2020] [Indexed: 10/23/2022]
Abstract
The behavioral circadian rhythms of subterranean rodents show intra- and interspecies diversity in terms of adaptation to dark underground environments, but the endogenous molecular mechanism of rhythm regulation in the suprachiasmatic nuclei (SCN) is stable to many species. In this study, we sought to determine the rhythms of behavior and central molecular regulatory mechanisms in the SCN of the subterranean Mandarin voles (Lasiopodomys mandarinus) compared with a related aboveground species, Brandt's voles (Lasiopodomys brandtii). Both species were reared under a 12 L:12 D cycle or in continuous darkness for 4 weeks. The pattern of wheel-running activity was similar in both species and had a periodicity of almost 24 h regardless of rearing conditions. However, the intensity of daily activity in Brandt's voles decreased markedly in darkness, while there was no significant difference in activity intensity in mandarin voles under different light regimes. In both vole species, all tested genes in the SCN showed significant time-dependent expression regardless of rearing conditions, and the expression levels of most genes did not differ significantly between different species and conditions. However, the peak phase shift in gene expression differed between the two species. In conclusion, behavioral patterns in mandarin and Brandt's voles were regulated by a stable molecular endogenous biological clock. The observed differences in activity intensity and phase shift suggest that different mechanisms regulate circadian rhythms in different living environments.
Collapse
Affiliation(s)
- Hong Sun
- College of Physical Education (main Campus), Zhengzhou University, Zhengzhou, Henan Province, China; School of Life Sciences, Zhengzhou University, Zhengzhou, Henan Province, China
| | - Chuyi Li
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan Province, China
| | - Yifeng Zhang
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan Province, China
| | - Mengwan Jiang
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan Province, China
| | - Qianqian Dong
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan Province, China
| | - Zhenlong Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan Province, China.
| |
Collapse
|
55
|
Bishehsari F, Moossavi S, Engen PA, Liu X, Zhang Y. Abnormal Food Timing Promotes Alcohol-Associated Dysbiosis and Colon Carcinogenesis Pathways. Front Oncol 2020; 10:1029. [PMID: 32850307 PMCID: PMC7396506 DOI: 10.3389/fonc.2020.01029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 05/26/2020] [Indexed: 12/21/2022] Open
Abstract
Background: Alcohol consumption is an established risk factor for colorectal cancer (CRC). Identifying cofactor(s) that modulate the effect of alcohol on colon inflammation and carcinogenesis could help risk stratification for CRC. Disruption of circadian rhythm by light/dark shift promotes alcohol-induced colonic inflammation and cancer. More recently, we found that abnormal food timing causes circadian rhythm disruption and promotes alcohol associated colon carcinogenesis. In this study, we examined the interaction of wrong-time feeding (WTF) and alcohol on CRC-related pathways, in relation to changes in microbial community structure. Methods: Polyposis mice (TS4Cre ×cAPC Δ468) underwent four conditions: alcohol or water and feeding during the light (wrong-time fed/WTF) or during the dark (right-time fed). Colonic cecum mucosal gene expression was analyzed by RNA-seq. Microbiota 16S ribosomal RNA sequencing analysis was used to examine colonic feces. Modeling was used to estimate the extent of the gene expression changes that could be related to the changes in the colonic microbial composition. Results: The circadian rhythm pathway was the most altered pathway by the WTF treatment, indicating that WTF is disruptive to the colonic circadian rhythm. Pathway analysis revealed interaction of WTF with alcohol in dysregulating pathways related to colon carcinogenesis. Similarly, the interaction of alcohol and WTF was detected at multiple parameters of the colonic microbiota including α and β diversity, as well as the community structure. Our modeling revealed that almost a third of total gene alterations induced by our treatments could be related to alterations in the abundance of the microbial taxa. Conclusion: These data support the promoting effect of abnormal food timing alcohol-associated CRC-related pathways in the colon and suggest colon dysbiosis as a targetable mechanism.
Collapse
Affiliation(s)
- Faraz Bishehsari
- Department of Internal Medicine, Division of Gastroenterology, Rush University Medical Center, Chicago, IL, United States
| | - Shirin Moossavi
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada
- Children's Hospital Research Institute of Manitoba, Winnipeg, MB, Canada
- Digestive Oncology Research Center, Digestive Disease Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Phillip A. Engen
- Department of Internal Medicine, Division of Gastroenterology, Rush University Medical Center, Chicago, IL, United States
| | - Xiaohan Liu
- Department of Mathematics, Statistics, and Computer Science, University of Illinois at Chicago, Chicago, IL, United States
| | - Yue Zhang
- Department of Mathematics, Statistics, and Computer Science, University of Illinois at Chicago, Chicago, IL, United States
| |
Collapse
|
56
|
Bishehsari F, Preuss F, Mirbagheri SS, Zhang L, Shaikh M, Keshavarzian A. Interaction of alcohol with time of eating on markers of circadian dyssynchrony and colon tissue injury. Chem Biol Interact 2020; 325:109132. [PMID: 32437693 PMCID: PMC7315934 DOI: 10.1016/j.cbi.2020.109132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 05/06/2020] [Indexed: 02/08/2023]
Abstract
BACKGROUND Alcohol increases the risk of developing colon cancer (CRC), in part via tissue inflammation and impaired barrier integrity. Circadian dyssynchrony (CD) is an understudied but common lifestyle associated factor that increases the risk of multi-organ tissue injury and number of malignancies including CRC. Our prior studies showed that the shift in light-dark cycle exacerbates barrier dysfunction and colonic inflammation in the setting of alcohol treatment, and increases the risk of CRC. Here we studied the interaction of alcohol with an abnormal eating pattern on markers of CD and colonic barrier integrity. METHOD Mice were subjected to day (rest-phase = wrong-time WT) or night-time (active-phase = right-time RT) access to food in combination with access to water or 15% alcohol for total duration of 10 weeks. The food and liquid intake was measured. The locomotor activity data was recorded throughout the study, using a beam-break system. Mice were euthanized at two time points (ZT2 and ZT14). Time variation in the expression of the molecular marker of circadian clock (per2 gene) was measured in the central (hypothalamus) and intestinal (colon) tissue. Colonic protein expression of barrier markers (Occludin and Claudin-1) was studied. RESULTS No significant differences were present in the weight gain and alcohol intake among the groups over the study period. We observed an interaction of WT eating with alcohol on behavioral markers of circadian rhythm. Compared to the RT + Water treated animals ("reference group"), combination of WT eating and alcohol consumption (WT + Alcohol) significantly changed the per2 oscillatory pattern, that was different between the colon and hypothalamus, indicative of worsening circadian dyssynchrony. This was associated with an overall impaired expression of barrier integrity markers in the colon. CONCLUSIONS Alcohol induces circadian dyssynchrony which is worsened by abnormal food timing, associated with impaired barrier integrity in the colon. Future studies on the interaction of alcohol and food timing could provide further insights into alcohol associated CRC pathophysiology.
Collapse
Affiliation(s)
- Faraz Bishehsari
- Department of Internal Medicine, Division of Gastroenterology, Rush University Medical Center, Chicago, IL, USA.
| | - Fabian Preuss
- Department of Biological Sciences, University of Wisconsin Parkside, Kenosha, WI, USA
| | - Seyed Sina Mirbagheri
- Department of Internal Medicine, Division of Gastroenterology, Rush University Medical Center, Chicago, IL, USA
| | - Lijuan Zhang
- Department of Internal Medicine, Division of Gastroenterology, Rush University Medical Center, Chicago, IL, USA
| | - Maliha Shaikh
- Department of Internal Medicine, Division of Gastroenterology, Rush University Medical Center, Chicago, IL, USA
| | - Ali Keshavarzian
- Department of Internal Medicine, Division of Gastroenterology, Rush University Medical Center, Chicago, IL, USA; Department of Physiology, Rush University Medical Center, Chicago, IL, USA; Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands; Department of Pharmacology, Rush University Medical Center, Chicago, IL, USA
| |
Collapse
|
57
|
Nakao A. Circadian Regulation of the Biology of Allergic Disease: Clock Disruption Can Promote Allergy. Front Immunol 2020; 11:1237. [PMID: 32595651 PMCID: PMC7304491 DOI: 10.3389/fimmu.2020.01237] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 05/18/2020] [Indexed: 12/19/2022] Open
Abstract
Allergic diseases such as allergic rhinitis, asthma, atopic dermatitis, and food allergy are characterized by epithelial barrier dysfunction and deregulated immune responses. Components of the circadian clock interact with critical elements of epithelial barrier function and immune responses, and regulate the biological processes on a 24-h cycle at steady state. This may represent an anticipatory defense response to day-night fluctuation of attack by noxious stimuli such as pathogens in the environment. This review will summarize clock control of epithelial barrier function and immune responses associated with allergic disease and offer novel insights and opportunities into how clock dysfunction impacts allergic disease. Importantly, perturbation of normal clock activity by genetic and environmental disturbances, such as chronic light cycle perturbations or irregular eating habits, deregulates epithelial barrier function and immune responses. This implies that the circadian clock is strongly linked to the fundamental biology of allergic disease, and that clock disruption can precipitate allergic disease by altering the epithelial barrier and immune functions. Given that contemporary lifestyles often involve chronic circadian disruptions such as shift work, we propose that lifestyle or therapeutic interventions that align the endogenous circadian clock with environmental cycles should be a part of the efforts to prevent or treat allergic disease in modern society.
Collapse
Affiliation(s)
- Atsuhito Nakao
- Department of Immunology, Faculty of Medicine, University of Yamanashi, Kofu, Japan.,Atopy Research Center, Juntendo University School of Medicine, Tokyo, Japan
| |
Collapse
|
58
|
Zheng D, Ratiner K, Elinav E. Circadian Influences of Diet on the Microbiome and Immunity. Trends Immunol 2020; 41:512-530. [DOI: 10.1016/j.it.2020.04.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 04/05/2020] [Accepted: 04/06/2020] [Indexed: 02/08/2023]
|
59
|
Zhang J, Lv H, Ji M, Wang Z, Wu W. Low circadian clock genes expression in cancers: A meta-analysis of its association with clinicopathological features and prognosis. PLoS One 2020; 15:e0233508. [PMID: 32437452 PMCID: PMC7241715 DOI: 10.1371/journal.pone.0233508] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 05/06/2020] [Indexed: 02/06/2023] Open
Abstract
Background Per1, Per2, Per3, Cry1, Cry2, Bmal1, Npas2 and CLOCK genes are the eight core circadian clock genes. Low expression of these circadian clock genes plays an important role in the progression of cancers. However, its clinicopathological and prognostic value in patients with cancers remains controversial and inconclusive. We performed a meta-analysis of studies assessing the clinicopathological and prognostic significance of low expression of these genes in cancers. Methods Relevant studies were searched from the Cochrane Central Register of Controlled Trials, Embase, EBSCO, Ovid, PubMed, Science Direct, Wiley Online Library database, CNKI and Wan Fang database. The meta-analysis was performed by using STATA version 12 software. A random-effect model was employed to evaluate all pooled hazard ratios (HRs) and odd ratios (ORs). Results A total of 36 studies comprising 7476 cases met the inclusion criteria. Meta-analysis suggested that low expression of Per1 was associated with poor differentiation (Per1: OR=2.30, 95%CI: 1.36∼3.87, P=0.002) and deeper invasion depth (Per1: OR=2.12, 95%CI: 1.62∼2.77, Ρ<0.001); low Per2 expression was correlated with poor differentiation (Per2: OR=2.41, 95%CI: 1.53∼3.79, Ρ<0.001), worse TNM stage (Per2:OR=3.47, 95%CI: 1.88∼6.42, P<0.001) and further metastasis (Per2:OR=2.35, 95%CI: 1.35∼4.11, Ρ=0.003). Furthermore, the results revealed that low expressions of Per1 and Per2 were also correlated with poor overall survival of cancers (Per1: HR=1.35, 95%CI: 1.06∼1.72, P=0.014; Per2: HR=1.43, 95%CI: 1.10∼1.85, P=0.007). Subgroup analysis indicated that low Per1 and Per2 expressions were especially associated with poor prognosis of gastrointestinal caners (Per1: HR=1.33, 95%CI: 1.14∼1.55, Ρ<0.001, Ι2=4.2%; Per2: HR=1.62, 95%CI: 1.25∼2.18, P<0.001, I2=0.0%). Conclusions Our study suggested that low Per1, Per2 and Npas2 expression played a distinct and crucial role in progression of cancers. Low expressions of Per1 and Per2 could serve as unfavorable indicators for cancers prognosis, especially for gastrointestinal cancers.
Collapse
Affiliation(s)
- Jiangguo Zhang
- Department of Gastroenterology, Shekou People’s Hospital, Shenzhen, Guangdong, China
- * E-mail: (JZ); (WW)
| | - Hong Lv
- Department of Gastroenterology, Shekou People’s Hospital, Shenzhen, Guangdong, China
| | - Mingzhu Ji
- Department of Gastroenterology, Shekou People’s Hospital, Shenzhen, Guangdong, China
| | - Zhimo Wang
- Department of Gastroenterology, Nanshan People’s Hospital, Shenzhen, Guangdong, China
| | - Wenqing Wu
- Shekou People’s Hospital, Shenzhen, Guangdong, China
- * E-mail: (JZ); (WW)
| |
Collapse
|
60
|
Staehle MM, O’Sullivan S, Vadigepalli R, Kernan KF, Gonye GE, Ogunnaike BA, Schwaber JS. Diurnal Patterns of Gene Expression in the Dorsal Vagal Complex and the Central Nucleus of the Amygdala - Non-rhythm-generating Brain Regions. Front Neurosci 2020; 14:375. [PMID: 32477043 PMCID: PMC7233260 DOI: 10.3389/fnins.2020.00375] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 03/27/2020] [Indexed: 11/13/2022] Open
Abstract
Genes that establish the circadian clock have differential expression with respect to solar time in central and peripheral tissues. Here, we find circadian-time-induced differential expression in a large number of genes not associated with circadian rhythms in two brain regions lacking overt circadian function: the dorsal vagal complex (DVC) and the central nucleus of the amygdala (CeA). These regions primarily engage in autonomic, homeostatic, and emotional regulation. However, we find striking diurnal shifts in gene expression in these regions of male Sprague Dawley rats with no obvious patterns that could be attributed to function or region. These findings have implications for the design of gene expression studies as well as for the potential effects of xenobiotics on these regions that regulate autonomic and emotional states.
Collapse
Affiliation(s)
- Mary M. Staehle
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ, United States
- Department of Pathology, Anatomy, and Cell Biology, Daniel Baugh Institute for Functional Genomics and Computational Biology, Thomas Jefferson University, Philadelphia, PA, United States
- Department of Chemical Engineering, University of Delaware, Newark, DE, United States
| | - Sean O’Sullivan
- Department of Pathology, Anatomy, and Cell Biology, Daniel Baugh Institute for Functional Genomics and Computational Biology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Rajanikanth Vadigepalli
- Department of Pathology, Anatomy, and Cell Biology, Daniel Baugh Institute for Functional Genomics and Computational Biology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Kate F. Kernan
- Department of Pathology, Anatomy, and Cell Biology, Daniel Baugh Institute for Functional Genomics and Computational Biology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Gregory E. Gonye
- Department of Pathology, Anatomy, and Cell Biology, Daniel Baugh Institute for Functional Genomics and Computational Biology, Thomas Jefferson University, Philadelphia, PA, United States
| | | | - James S. Schwaber
- Department of Pathology, Anatomy, and Cell Biology, Daniel Baugh Institute for Functional Genomics and Computational Biology, Thomas Jefferson University, Philadelphia, PA, United States
| |
Collapse
|
61
|
Sun H, Cui Z, Zhang Y, Pan D, Wang Z. Expression patterns of clock genes in the hypothalamus and eye of two Lasiopodomys species. Chronobiol Int 2020; 37:327-338. [PMID: 32308052 DOI: 10.1080/07420528.2020.1730881] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
To investigate the relationship between light sensing systems in the eye and circadian oscillators in the hypothalamus of subterranean rodents, we studied subterranean Mandarin voles (Lasiopodomys mandarinus) that spend their entire lives under dark conditions with degenerated eyes, and compared oscillatory expression patterns of clock genes in the hypothalamus and eye between Mandarin voles and their aboveground relatives, Brandt's voles (L. brandtii). Individuals of both vole species were kept under a 12-h light/12-h dark condition or continuous dark condition for 4 weeks. In both species, the expressions of most genes showed significant cosine rhythmicity in the hypothalamus but relatively weak rhythmicity in the eye. The number of rhythmic genes in the eye of Mandarin voles increased under the dark condition, but the opposite trend was observed in the eye of Brandt's voles. The expression levels of most clock genes in the hypothalamus of both vole species did not significantly differ between the two conditions, but unlike in Mandarin voles, these expression levels significantly decreased in the eye of Brandt's voles kept under the dark condition. In both vole species, the peak phase of most clock genes exhibited advanced or invariant change in the hypothalamus under the dark condition, and the peak phase of most clock genes showed consistent changes between the eye and hypothalamus of Mandarin voles. However, most clock genes in the eye showed a delayed phase in Brandt's voles kept under the dark condition. In conclusion, the hypothalamus plays an important role in both vole species irrespective of the light condition. However, the expression patterns of clock genes in the eye differed between the vole species, indicating that each species adapted differently to their environments.
Collapse
Affiliation(s)
- Hong Sun
- School of Physical Education (Main Campus), Zhengzhou University, Zhengzhou, Henan Province, P.R. China.,School of Life Sciences, Zhengzhou University, Zhengzhou, Henan Province, P.R. China
| | - Zhenwei Cui
- School of Physical Education (Main Campus), Zhengzhou University, Zhengzhou, Henan Province, P.R. China.,School of Life Sciences, Zhengzhou University, Zhengzhou, Henan Province, P.R. China
| | - Yifeng Zhang
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan Province, P.R. China
| | - Dan Pan
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan Province, P.R. China
| | - Zhenlong Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan Province, P.R. China
| |
Collapse
|
62
|
Parasram K, Karpowicz P. Time after time: circadian clock regulation of intestinal stem cells. Cell Mol Life Sci 2020; 77:1267-1288. [PMID: 31586240 PMCID: PMC11105114 DOI: 10.1007/s00018-019-03323-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 09/16/2019] [Accepted: 09/25/2019] [Indexed: 12/22/2022]
Abstract
Daily fluctuations in animal physiology, known as circadian rhythms, are orchestrated by a conserved molecular timekeeper, known as the circadian clock. The circadian clock forms a transcription-translation feedback loop that has emerged as a central biological regulator of many 24-h processes. Early studies of the intestine discovered that many digestive functions have a daily rhythm and that intestinal cell production was similarly time-dependent. As genetic methods in model organisms have become available, it has become apparent that the circadian clock regulates many basic cellular functions, including growth, proliferation, and differentiation, as well as cell signalling and stem cell self-renewal. Recent connections between circadian rhythms and immune system function, and between circadian rhythms and microbiome dynamics, have also been revealed in the intestine. These processes are highly relevant in understanding intestinal stem cell biology. Here we describe the circadian clock regulation of intestinal stem cells primarily in two model organisms: Drosophila melanogaster and mice. Like all cells in the body, intestinal stem cells are subject to circadian timing, and both cell-intrinsic and cell-extrinsic circadian processes contribute to their function.
Collapse
Affiliation(s)
- Kathyani Parasram
- Department of Biological Sciences, University of Windsor, 401 Sunset Avenue, Windsor, ON, N9B 3P4, Canada
| | - Phillip Karpowicz
- Department of Biological Sciences, University of Windsor, 401 Sunset Avenue, Windsor, ON, N9B 3P4, Canada.
| |
Collapse
|
63
|
Light and Circadian Signaling Pathway in Pregnancy: Programming of Adult Health and Disease. Int J Mol Sci 2020; 21:ijms21062232. [PMID: 32210175 PMCID: PMC7139376 DOI: 10.3390/ijms21062232] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 03/22/2020] [Accepted: 03/22/2020] [Indexed: 12/12/2022] Open
Abstract
Light is a crucial environmental signal that affects elements of human health, including the entrainment of circadian rhythms. A suboptimal environment during pregnancy can increase the risk of offspring developing a wide range of chronic diseases in later life. Circadian rhythm disruption in pregnant women may have deleterious consequences for their progeny. In the modern world, maternal chronodisruption can be caused by shift work, jet travel across time zones, mistimed eating, and excessive artificial light exposure at night. However, the impact of maternal chronodisruption on the developmental programming of various chronic diseases remains largely unknown. In this review, we outline the impact of light, the circadian clock, and circadian signaling pathways in pregnancy and fetal development. Additionally, we show how to induce maternal chronodisruption in animal models, examine emerging research demonstrating long-term negative implications for offspring health following maternal chronodisruption, and summarize current evidence related to light and circadian signaling pathway targeted therapies in pregnancy to prevent the development of chronic diseases in offspring.
Collapse
|
64
|
Circadian regulation of appetite and time restricted feeding. Physiol Behav 2020; 220:112873. [PMID: 32194073 DOI: 10.1016/j.physbeh.2020.112873] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 02/01/2020] [Accepted: 03/10/2020] [Indexed: 12/15/2022]
Abstract
The circadian system plays an important role in the temporal regulation of metabolic processes as well as food intake to ensure energy efficiency. The 'master' clock is located within the superchiasmatic nucleus and receives input from the retina so that it can be entrained by the light:dark cycle. In turn, the master clock entrains other clocks in the central nervous system, including areas involved in energy homeostasis such as the arcuate nucleus, and the periphery (e.g. adipose tissue and the gastrointestinal tract). This master clock is reinforced by other zeitgebers such as the timing of food intake and activity. If these zeitgebers desynchronise, such as occurs in high fat diet-induced obesity or shift work conditions, it can lead to a misalignment of circadian clocks, disruption of metabolic processes and the development of metabolic disorders. The timing of food intake is a strong zeitgeber, particularly in the gastrointestinal tract, and therefore time restricted feeding offers potential for the treatment of diet and shift work induced metabolic disorders. This review will focus on the role of the circadian system in food intake regulation and the effect of environment factors, such as high fat diet feeding or shift work, on the temporal regulation of food intake along with the benefits of time restricted feeding.
Collapse
|
65
|
Zhang S, Dai M, Wang X, Jiang SH, Hu LP, Zhang XL, Zhang ZG. Signalling entrains the peripheral circadian clock. Cell Signal 2020; 69:109433. [PMID: 31982551 DOI: 10.1016/j.cellsig.2019.109433] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 09/29/2019] [Accepted: 09/29/2019] [Indexed: 12/18/2022]
Abstract
In mammals, 24-h rhythms of behaviour and physiology are regulated by the circadian clock. The circadian clock is controlled by a central clock in the brain's suprachiasmatic nucleus (SCN) that synchronizes peripheral clocks in peripheral tissues. Clock genes in the SCN are primarily entrained by light. Increasing evidence has shown that peripheral clocks are also regulated by light and hormones independent of the SCN. How the peripheral clocks deal with internal signals is dependent on the relevance of a specific cue to a specific tissue. In different tissues, most genes that are under circadian control are not overlapping, revealing the tissue-specific control of peripheral clocks. We will discuss how different signals control the peripheral clocks in different peripheral tissues, such as the liver, gastrointestinal tract, and pancreas, and discuss the organ-to-organ communication between the peripheral clocks at the molecular level.
Collapse
Affiliation(s)
- Shan Zhang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Miao Dai
- Department of Gynecologic Oncology, Hunan Cancer Hospital, the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan Province, China
| | - Xu Wang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Shu-Heng Jiang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Li-Peng Hu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xue-Li Zhang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Zhi-Gang Zhang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
66
|
Camello-Almaraz C, Martin-Cano FE, Santos FJ, Espin MT, Antonio Madrid J, Pozo MJ, Camello PJ. Age-Induced Differential Changes in the Central and Colonic Human Circadian Oscillators. Int J Mol Sci 2020; 21:ijms21020674. [PMID: 31968581 PMCID: PMC7013976 DOI: 10.3390/ijms21020674] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 01/10/2020] [Accepted: 01/16/2020] [Indexed: 12/31/2022] Open
Abstract
Aging modifies not only multiple cellular and homeostatic systems, but also biological rhythms. The circadian system is driven by a central hypothalamic oscillator which entrains peripheral oscillators, in both cases underlain by circadian genes. Our aim was to characterize the effect of aging in the circadian expression of clock genes in the human colon. Ambulatory recordings of the circadian rhythms of skin wrist temperature, motor activity and the integrated variable TAP (temperature, activity and position) were dampened by aging, especially beyond 74 years of age. On the contrary, quantitative analysis of genes expression in the muscle layer of colonic explants during 24 h revealed that the circadian expression of Bmal1, Per1 and Clock genes, was larger beyond that age. In vitro experiments showed that aging induced a parallel increase in the myogenic contractility of the circular colonic muscle. This effect was not accompanied by enhancement of Ca2+ signals. In conclusion, we describe here for the first time the presence of a molecular oscillator in the human colon. Aging has a differential effect on the systemic circadian rhythms, that are impaired by aging, and the colonic oscillator, that is strengthened in parallel with the myogenic contractility.
Collapse
Affiliation(s)
- Cristina Camello-Almaraz
- Department of Physiology, Institute of Molecular Pathology Biomarkers, University of Extremadura, Campus Universitario, 10003 Cáceres, Spain; (C.C.-A.); (F.E.M.-C.); (M.J.P.)
| | - Francisco E. Martin-Cano
- Department of Physiology, Institute of Molecular Pathology Biomarkers, University of Extremadura, Campus Universitario, 10003 Cáceres, Spain; (C.C.-A.); (F.E.M.-C.); (M.J.P.)
| | - Francisco J. Santos
- Surgery Department, University Hospital, Servicio Extremeño de Salud, Avda Universidad, 10004 Cáceres, Spain;
| | - Mª Teresa Espin
- Faculty of Medicine, Infanta Cristina University Hospital, Servicio Extremeño de Salud, Avda Elbas, 06080 Badajoz, Spain;
| | - Juan Antonio Madrid
- Chronobiology Lab, Department of Physiology, College of Biology, University of Murcia, Mare Nostrum Campus, IMIB-Arrixaca, 30100 Murcia, Spain;
| | - Maria J. Pozo
- Department of Physiology, Institute of Molecular Pathology Biomarkers, University of Extremadura, Campus Universitario, 10003 Cáceres, Spain; (C.C.-A.); (F.E.M.-C.); (M.J.P.)
| | - Pedro J. Camello
- Department of Physiology, Institute of Molecular Pathology Biomarkers, University of Extremadura, Campus Universitario, 10003 Cáceres, Spain; (C.C.-A.); (F.E.M.-C.); (M.J.P.)
- Correspondence:
| |
Collapse
|
67
|
Frazier K, Chang EB. Intersection of the Gut Microbiome and Circadian Rhythms in Metabolism. Trends Endocrinol Metab 2020; 31:25-36. [PMID: 31677970 PMCID: PMC7308175 DOI: 10.1016/j.tem.2019.08.013] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 08/27/2019] [Accepted: 08/27/2019] [Indexed: 02/06/2023]
Abstract
The gut microbiome and circadian rhythms (CRs) both exhibit unique influence on mammalian hosts and have been implicated in the context of many diseases, particularly metabolic disorders. It has become increasingly apparent that these systems also interact closely to alter host physiology and metabolism. However, the mechanisms that underlie these observations remain largely unknown. Recent findings have implicated microbially derived mediators as potential signals between the gut microbiome and host circadian clocks; two specific mediators are discussed in this review: short-chain fatty acids (SCFAs) and bile acids (BAs). Key gaps in knowledge and major challenges that remain in the circadian and microbiome fields are also discussed, including animal versus human models and the need for precise timed sample collection.
Collapse
Affiliation(s)
- Katya Frazier
- Department of Medicine, University of Chicago, Chicago, IL 60637, USA.
| | - Eugene B Chang
- Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
68
|
Biancolin AD, Martchenko A, Mitova E, Gurges P, Michalchyshyn E, Chalmers JA, Doria A, Mychaleckyj JC, Adriaenssens AE, Reimann F, Gribble FM, Gil-Lozano M, Cox BJ, Brubaker PL. The core clock gene, Bmal1, and its downstream target, the SNARE regulatory protein secretagogin, are necessary for circadian secretion of glucagon-like peptide-1. Mol Metab 2020; 31:124-137. [PMID: 31918914 PMCID: PMC6920326 DOI: 10.1016/j.molmet.2019.11.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 10/24/2019] [Accepted: 11/01/2019] [Indexed: 12/16/2022] Open
Abstract
OBJECTIVES The incretin hormone glucagon-like peptide-1 (GLP-1) is secreted from intestinal L-cells upon nutrient intake. While recent evidence has shown that GLP-1 is released in a circadian manner in rats, whether this occurs in mice and if this pattern is regulated by the circadian clock remain to be elucidated. Furthermore, although circadian GLP-1 secretion parallels expression of the core clock gene Bmal1, the link between the two remains largely unknown. Secretagogin (Scgn) is an exocytotic SNARE regulatory protein that demonstrates circadian expression and is essential for insulin secretion from β-cells. The objective of the current study was to establish the necessity of the core clock gene Bmal1 and the SNARE protein SCGN as essential regulators of circadian GLP-1 secretion. METHODS Oral glucose tolerance tests were conducted at different times of the day on 4-hour fasted C57BL/6J, Bmal1 wild-type, and Bmal1 knockout mice. Mass spectrometry, RNA-seq, qRT-PCR and/or microarray analyses, and immunostaining were conducted on murine (m) and human (h) primary L-cells and mGLUTag and hNCI-H716 L-cell lines. At peak and trough GLP-1 secretory time points, the mGLUTag cells were co-stained for SCGN and a membrane-marker, ChIP was used to analyze BMAL1 binding sites in the Scgn promoter, protein interaction with SCGN was tested by co-immunoprecipitation, and siRNA was used to knockdown Scgn for GLP-1 secretion assay. RESULTS C57BL/6J mice displayed a circadian rhythm in GLP-1 secretion that peaked at the onset of their feeding period. Rhythmic GLP-1 release was impaired in Bmal1 knockout (KO) mice as compared to wild-type controls at the peak (p < 0.05) but not at the trough secretory time point. Microarray identified SNARE and transport vesicle pathways as highly upregulated in mGLUTag L-cells at the peak time point of GLP-1 secretion (p < 0.001). Mass spectrometry revealed that SCGN was also increased at this time (p < 0.001), while RNA-seq, qRT-PCR, and immunostaining demonstrated Scgn expression in all human and murine primary L-cells and cell lines. The mGLUTag and hNCI-H716 L-cells exhibited circadian rhythms in Scgn expression (p < 0.001). The ChIP analysis demonstrated increased binding of BMAL1 only at the peak of Scgn expression (p < 0.01). Immunocytochemistry showed the translocation of SCGN to the cell membrane after stimulation at the peak time point only (p < 0.05), while CoIP showed that SCGN was pulled down with SNAP25 and β-actin, but only the latter interaction was time-dependent (p < 0.05). Finally, Scgn siRNA-treated cells demonstrated significantly blunted GLP-1 secretion (p < 0.01) in response to stimulation at the peak time point only. CONCLUSIONS These data demonstrate, for the first time, that mice display a circadian pattern in GLP-1 secretion, which is impaired in Bmal1 knockout mice, and that Bmal1 regulation of Scgn expression plays an essential role in the circadian release of the incretin hormone GLP-1.
Collapse
Affiliation(s)
| | | | - Emilia Mitova
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Patrick Gurges
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | | | | | - Alessandro Doria
- Department of Medicine, Harvard Medical School, Boston, MA, USA; Research Division, Joslin Diabetes Center, Boston, MA, USA
| | - Josyf C Mychaleckyj
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - Alice E Adriaenssens
- Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Frank Reimann
- Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Fiona M Gribble
- Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Manuel Gil-Lozano
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Brian J Cox
- Department of Physiology, University of Toronto, Toronto, ON, Canada; Department of Obstetrics and Gynecology, University of Toronto, Toronto, ON, Canada
| | - Patricia L Brubaker
- Department of Physiology, University of Toronto, Toronto, ON, Canada; Department of Medicine, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
69
|
Butler TD, Gibbs JE. Circadian Host-Microbiome Interactions in Immunity. Front Immunol 2020; 11:1783. [PMID: 32922391 PMCID: PMC7456996 DOI: 10.3389/fimmu.2020.01783] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 07/03/2020] [Indexed: 12/12/2022] Open
Abstract
The gut microbiome plays a critical role in regulating host immunity and can no longer be regarded as a bystander in human health and disease. In recent years, circadian (24 h) oscillations have been identified in the composition of the microbiota, its biophysical localization within the intestinal tract and its metabolic outputs. The gut microbiome and its key metabolic outputs, such as short chain fatty acids and tryptophan metabolites contribute to maintenance of intestinal immunity by promoting barrier function, regulating the host mucosal immune system and maintaining the function of gut-associated immune cell populations. Loss of rhythmic host-microbiome interactions disrupts host immunity and increases risk of inflammation and metabolic complications. Here we review factors that drive circadian variation in the microbiome, including meal timing, dietary composition and host circadian clocks. We also consider how host-microbiome interactions impact the core molecular clock and its rhythmic outputs in addition to the potential impact of this relationship on circadian control of immunity.
Collapse
|
70
|
Vagnerová K, Ergang P, Soták M, Balounová K, Kvapilová P, Vodička M, Pácha J. Diurnal expression of ABC and SLC transporters in jejunum is modulated by adrenalectomy. Comp Biochem Physiol C Toxicol Pharmacol 2019; 226:108607. [PMID: 31422161 DOI: 10.1016/j.cbpc.2019.108607] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 08/12/2019] [Accepted: 08/14/2019] [Indexed: 01/20/2023]
Abstract
The circadian clock system drives many physiological processes, including plasma concentration of glucocorticoids and epithelial transport of some ions and nutrients. As glucocorticoids entrain the circadian rhythms in various peripheral organs, we examined whether adrenalectomy affects the expression and circadian rhythmicity of intestinal transporters of the solute carrier (SLC) and ATP-binding cassette (ABC) families, which participate in intestinal barriers for absorption of nutrients, nonnutrients and oral drugs. The rat jejunum showed rhythmic circadian profiles of Sglt1, Pept1, Nhe3, Mdr1 and Mrp2 but not Mct1, Oct1, Octn1, Oatp1, Cnt1 and Bcrp. With the exception of Pept1 and Mct1, adrenalectomy decreased the expression of all rhythmic and arrhythmic transporters including the amplitude of Sglt1 and Nhe3 rhythms but minimally affected the phases of rhythmic transporters except of Nhe3. Similarly, adrenalectomy downregulated the expression of rhythmic (Pparα, Hlf, Pgc1α) and arrhythmic (Hnf1β, Hnf4α) transcription factors, which are known to regulate the expression of transporters. We conclude that endogenous corticosteroids have a profound effect on the expression of intestinal SLC and ABC transporters and their nuclear transcription factors. The circulating corticosteroids are necessary for maintaining upregulated expression of Sglt1, Oct1, Octn1, Oatp1, Cnt1, Nhe3, Mdr1, Bcrp, Mrp2, Pparα, Pgc1α, Hnf1β, Hnf4α and Hlf and for maintaining the high amplitude of Sglt1, Nhe3, Pparα, Pgc1α and Hlf circadian rhythms. The study demonstrates that signals from the adrenal gland are necessary for maintaining the expression of arrhythmic and rhythmic intestinal transporters and that changes in the secretion of corticosteroids associated with stress might reorganize intestinal transport barriers.
Collapse
Affiliation(s)
- Karla Vagnerová
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Peter Ergang
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Matúš Soták
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Kateřina Balounová
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic; Department of Physiology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Pavlína Kvapilová
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Martin Vodička
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Jiří Pácha
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic; Department of Physiology, Faculty of Science, Charles University, Prague, Czech Republic.
| |
Collapse
|
71
|
Bishehsari F, Engen PA, Voigt RM, Swanson G, Shaikh M, Wilber S, Naqib A, Green SJ, Shetuni B, Forsyth CB, Saadalla A, Osman A, Hamaker BR, Keshavarzian A, Khazaie K. Abnormal Eating Patterns Cause Circadian Disruption and Promote Alcohol-Associated Colon Carcinogenesis. Cell Mol Gastroenterol Hepatol 2019; 9:219-237. [PMID: 31689559 PMCID: PMC6957855 DOI: 10.1016/j.jcmgh.2019.10.011] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 10/25/2019] [Accepted: 10/28/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND & AIMS Alcohol intake with circadian rhythm disruption (CRD) increases colon cancer risk. We hypothesized that eating during or around physiologic rest time, a common habit in modern society, causes CRD and investigated the mechanisms by which it promotes alcohol-associated colon carcinogenesis. METHODS The effect of feeding time on CRD was assessed using B6 mice expressing a fusion protein of PERIOD2 and LUCIFERASE (PER2::LUC) were used to model colon polyposis and to assess the effects of feeding schedules, alcohol consumption, and prebiotic treatment on microbiota composition, short-chain fatty acid levels, colon inflammation, and cancer risk. The relationship between butyrate signaling and a proinflammatory profile was assessed by inactivating the butyrate receptor GPR109A. RESULTS Eating at rest (wrong-time eating [WTE]) shifted the phase of the colon rhythm in PER2::LUC mice. In TS4Cre × APClox468 mice, a combination of WTE and alcohol exposure (WTE + alcohol) decreased the levels of short-chain fatty acid-producing bacteria and of butyrate, reduced colonic densities of regulatory T cells, induced a proinflammatory profile characterized by hyperpermeability and an increased mucosal T-helper cell 17/regulatory T cell ratio, and promoted colorectal cancer. Prebiotic treatment improved the mucosal inflammatory profile and attenuated inflammation and cancer. WTE + alcohol-induced polyposis was associated with increased signal transducer and activator of transcription 3 expression. Decreased butyrate signaling activated the epithelial signal transducer and activator of transcription 3 in vitro. The relationship between butyrate signaling and a proinflammatory profile was confirmed in human colorectal cancers using The Cancer Genome Atlas. CONCLUSIONS Abnormal timing of food intake caused CRD and interacts with alcohol consumption to promote colon carcinogenesis by inducing a protumorigenic inflammatory profile driven by changes in the colon microbiota and butyrate signaling. Accession number of repository for microbiota sequence data: raw FASTQ data were deposited in the NCBI Sequence Read Archive under project PRJNA523141.
Collapse
Affiliation(s)
- Faraz Bishehsari
- Department of Internal Medicine, Division of Gastroenterology, Rush University Medical Center, Chicago, Illinois.
| | - Phillip A Engen
- Department of Internal Medicine, Division of Gastroenterology, Rush University Medical Center, Chicago, Illinois
| | - Robin M Voigt
- Department of Internal Medicine, Division of Gastroenterology, Rush University Medical Center, Chicago, Illinois
| | - Garth Swanson
- Department of Internal Medicine, Division of Gastroenterology, Rush University Medical Center, Chicago, Illinois
| | - Maliha Shaikh
- Department of Internal Medicine, Division of Gastroenterology, Rush University Medical Center, Chicago, Illinois
| | - Sherry Wilber
- Department of Internal Medicine, Division of Gastroenterology, Rush University Medical Center, Chicago, Illinois
| | - Ankur Naqib
- Department of Internal Medicine, Division of Gastroenterology, Rush University Medical Center, Chicago, Illinois; Sequencing Core, Research Resources Center, University of Illinois at Chicago, Chicago, Illinois
| | - Stefan J Green
- Sequencing Core, Research Resources Center, University of Illinois at Chicago, Chicago, Illinois; Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois
| | - Brandon Shetuni
- Northwestern Medicine, Central DuPage Hospital, Winfield, Illinois
| | - Christopher B Forsyth
- Department of Internal Medicine, Division of Gastroenterology, Rush University Medical Center, Chicago, Illinois
| | | | - Abu Osman
- Department of Immunology, Mayo Clinic, Rochester, Minnesota
| | - Bruce R Hamaker
- Whistler Center for Carbohydrate Research, Department of Food Science, Purdue University, West Lafayette, Indiana
| | - Ali Keshavarzian
- Department of Internal Medicine, Division of Gastroenterology, Rush University Medical Center, Chicago, Illinois; Department of Physiology, Rush University Medical Center, Chicago, Illinois; Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | | |
Collapse
|
72
|
Paulose JK, Cassone CV, Graniczkowska KB, Cassone VM. Entrainment of the Circadian Clock of the Enteric Bacterium Klebsiella aerogenes by Temperature Cycles. iScience 2019; 19:1202-1213. [PMID: 31551197 PMCID: PMC6831877 DOI: 10.1016/j.isci.2019.09.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 08/22/2019] [Accepted: 09/04/2019] [Indexed: 01/20/2023] Open
Abstract
The gastrointestinal bacterium Klebsiella (née Enterobacter) aerogenes expresses an endogenously generated, temperature-compensated circadian rhythm in swarming motility. We hypothesized that this rhythm may be synchronized/entrained in vivo by body temperature (TB). To determine entrainment, cultures expressing bioluminescence were exposed to temperature cycles of 1°C (35°C-36°C) or 3°C (34°C-37°C) in amplitude at periods (T-cycles) of T = 22, T = 24, or T = 28 h. Bacteria entrained to all T-cycles at both amplitudes and with stable phase relationships. A high-amplitude phase response curve (PRC) in response to 1-h pulses of 3°C temperature spike (34°C-37°C) at different circadian phases was constructed, revealing a Type-0 phase resetting paradigm. Furthermore, real-time bioluminescence imaging revealed a spatiotemporal pattern to the circadian rhythm. These data are consistent with the hypothesis that the K. aerogenes circadian clock entrains to its host via detection of and phase shifting to the daily pattern of TB.
Collapse
Affiliation(s)
- Jiffin K Paulose
- Department of Biology, University of Kentucky, Lexington, KY 40506, USA
| | - Charles V Cassone
- Department of Biology, University of Kentucky, Lexington, KY 40506, USA
| | | | - Vincent M Cassone
- Department of Biology, University of Kentucky, Lexington, KY 40506, USA.
| |
Collapse
|
73
|
Intestinal Stem Cells Exhibit Conditional Circadian Clock Function. Stem Cell Reports 2019; 11:1287-1301. [PMID: 30428387 PMCID: PMC6235668 DOI: 10.1016/j.stemcr.2018.10.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 10/09/2018] [Accepted: 10/10/2018] [Indexed: 12/12/2022] Open
Abstract
The circadian clock is a molecular pacemaker that produces 24-hr physiological cycles known as circadian rhythms. How the clock regulates stem cells is an emerging area of research with many outstanding questions. We tested clock function in vivo at the single cell resolution in the Drosophila intestine, a tissue that is exquisitely sensitive to environmental cues and has circadian rhythms in regeneration. Our results indicate that circadian clocks function in intestinal stem cells and enterocytes but are downregulated during enteroendocrine cell differentiation. Drosophila intestinal cells are principally synchronized by the photoperiod, but intestinal stem cell clocks are highly responsive to signaling pathways that comprise their niche, and we find that the Wnt and Hippo signaling pathways positively regulate stem cell circadian clock function. These data reveal that intestinal stem cell circadian rhythms are regulated by cellular signaling and provide insight as to how clocks may be altered during physiological changes such as regeneration and aging. Intestinal epithelial cells have circadian clock function but enteroendocrine cells do not Restricted feeding can entrain circadian clocks in the absence of photoperiod Circadian clock communication exists between intestinal stem cells and enterocytes Notch, Wnt, and Hippo signaling regulate stem cell clock function
Collapse
|
74
|
Sussman W, Stevenson M, Mowdawalla C, Mota S, Ragolia L, Pan X. BMAL1 controls glucose uptake through paired-homeodomain transcription factor 4 in differentiated Caco-2 cells. Am J Physiol Cell Physiol 2019; 317:C492-C501. [PMID: 31216190 PMCID: PMC6766619 DOI: 10.1152/ajpcell.00058.2019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 05/30/2019] [Accepted: 05/31/2019] [Indexed: 02/08/2023]
Abstract
The transcription factor aryl hydrocarbon receptor nuclear translocator-like protein-1 (BMAL1) is an essential regulator of the circadian clock, which controls the 24-h cycle of physiological processes such as nutrient absorption. To examine the role of BMAL1 in small intestinal glucose absorption, we used differentiated human colon adenocarcinoma cells (Caco-2 cells). Here, we show that BMAL1 regulates glucose uptake in differentiated Caco-2 cells and that this process is dependent on the glucose transporter sodium-glucose cotransporter 1 (SGLT1). Mechanistic studies show that BMAL1 regulates glucose uptake by controlling the transcription of SGLT1 involving paired-homeodomain transcription factor 4 (PAX4), a transcriptional repressor. This is supported by the observation that clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated endonuclease Cas9 (Cas9) knockdown of PAX4 increases SGLT1 and glucose uptake. Chromatin immunoprecipitation (ChIP) and ChIP-quantitative PCR assays show that the knockdown or overexpression of BMAL1 decreases or increases the binding of PAX4 to the hepatocyte nuclear factor 1-α binding site of the SGLT1 promoter, respectively. These findings identify BMAL1 as a critical mediator of small intestine carbohydrate absorption and SGLT1.
Collapse
Affiliation(s)
- Whitney Sussman
- Department of Foundations of Medicine, New York University Long Island School of Medicine, Mineola, New York
- Diabetes and Obesity Research Center, New York University Winthrop Hospital, Mineola, New York
| | - Matthew Stevenson
- Department of Foundations of Medicine, New York University Long Island School of Medicine, Mineola, New York
- Diabetes and Obesity Research Center, New York University Winthrop Hospital, Mineola, New York
| | - Cyrus Mowdawalla
- Department of Foundations of Medicine, New York University Long Island School of Medicine, Mineola, New York
- Diabetes and Obesity Research Center, New York University Winthrop Hospital, Mineola, New York
| | - Samantha Mota
- Department of Foundations of Medicine, New York University Long Island School of Medicine, Mineola, New York
- Diabetes and Obesity Research Center, New York University Winthrop Hospital, Mineola, New York
| | - Louis Ragolia
- Department of Foundations of Medicine, New York University Long Island School of Medicine, Mineola, New York
- Diabetes and Obesity Research Center, New York University Winthrop Hospital, Mineola, New York
| | - Xiaoyue Pan
- Department of Foundations of Medicine, New York University Long Island School of Medicine, Mineola, New York
- Diabetes and Obesity Research Center, New York University Winthrop Hospital, Mineola, New York
- Department of Cell Biology, State University of New York Downstate Medical Center, Brooklyn, New York
| |
Collapse
|
75
|
Hashimoto A, Uemura R, Sawada A, Nadatani Y, Otani K, Hosomi S, Nagami Y, Tanaka F, Kamata N, Taira K, Yamagami H, Tanigawa T, Watanabe T, Fujiwara Y. Changes in Clock Genes Expression in Esophagus in Rat Reflux Esophagitis. Dig Dis Sci 2019; 64:2132-2139. [PMID: 30815822 DOI: 10.1007/s10620-019-05546-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 02/19/2019] [Indexed: 12/18/2022]
Abstract
BACKGROUND Gastroesophageal reflux disease (GERD) is strongly associated with sleep disturbances. Clock genes harmonize circadian rhythms by their periodic expression and regulate several physiological functions. However, the association between clock genes and GERD is still unknown. AIMS We investigated whether reflux esophagitis affects circadian variability of clock genes in the esophagus and other organs using a rat reflux esophagitis model. METHODS Reflux esophagitis was induced in 7-week-old male Wistar rats. Sham-operated rats were used as controls. Rats were killed at 09:00 (light period) and 21:00 (dark period) 3 days (acute phase) and 21 days (chronic phase) after induction of esophagitis. The expression levels of clock gene mRNAs such as Per1, Per2, Per3, Cry1, Cry2, Arntl, and Clock in the esophagus were investigated by qPCR. Arntl expression was examined in stomach, small intestine, colon, and liver tissues. Serum melatonin and IL-6 levels were measured by ELISA. RESULTS Histological examination of reflux esophagitis mainly revealed epithelial defects with marked inflammatory cell infiltration in the acute phase and mucosal thickening with basal cell hyperplasia in the chronic phase. Circadian variability of clock genes, except Cry1, was present in the normal esophagus and was completely disrupted in reflux esophagitis during the acute phase. The circadian variability of Per2, Per3, and Arntl returned to normal, but disruption of Per1, Cry2, and Clock was present in the chronic phase. Disruption of circadian variability of Arntl was observed in the esophagus, as well as in the stomach, small intestine, and liver tissues in reflux esophagitis during the acute phase. There were no significant differences in serum melatonin and IL-6 levels between control and reflux esophagitis animals in both acute and chronic phases. CONCLUSIONS Disruption to circadian variability of clock genes may play a role in the pathogenesis of GERD.
Collapse
Affiliation(s)
- Atsushi Hashimoto
- Department of Gastroenterology, Osaka City University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka, 545-8585, Japan
| | - Risa Uemura
- Department of Gastroenterology, Osaka City University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka, 545-8585, Japan
| | - Akinari Sawada
- Department of Gastroenterology, Osaka City University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka, 545-8585, Japan
| | - Yuji Nadatani
- Department of Gastroenterology, Osaka City University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka, 545-8585, Japan
| | - Koji Otani
- Department of Gastroenterology, Osaka City University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka, 545-8585, Japan
| | - Shuhei Hosomi
- Department of Gastroenterology, Osaka City University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka, 545-8585, Japan
| | - Yasuaki Nagami
- Department of Gastroenterology, Osaka City University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka, 545-8585, Japan
| | - Fumio Tanaka
- Department of Gastroenterology, Osaka City University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka, 545-8585, Japan
| | - Noriko Kamata
- Department of Gastroenterology, Osaka City University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka, 545-8585, Japan
| | - Koichi Taira
- Department of Gastroenterology, Osaka City University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka, 545-8585, Japan
| | - Hirokazu Yamagami
- Department of Gastroenterology, Osaka City University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka, 545-8585, Japan
| | - Tetsuya Tanigawa
- Department of Gastroenterology, Osaka City University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka, 545-8585, Japan
| | - Toshio Watanabe
- Department of Gastroenterology, Osaka City University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka, 545-8585, Japan
| | - Yasuhiro Fujiwara
- Department of Gastroenterology, Osaka City University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka, 545-8585, Japan.
| |
Collapse
|
76
|
Föh B, Schröder T, Oster H, Derer S, Sina C. Seasonal Clock Changes Are Underappreciated Health Risks-Also in IBD? Front Med (Lausanne) 2019; 6:103. [PMID: 31143764 PMCID: PMC6521728 DOI: 10.3389/fmed.2019.00103] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 04/26/2019] [Indexed: 12/19/2022] Open
Abstract
Today, daylight saving time is observed in nearly 80 countries around the world, including the European Union, the USA, Canada, and Russia. The benefits of daylight saving time in energy management have been questioned since it was first introduced during World War I and the latest research has led to varying results. Meanwhile, adverse effects of seasonal time shifts on human biology have been postulated and the European Union is planning to abandon the biannual clock change completely. Medical studies have revealed a correlation of seasonal time shifts with increased incidences of several diseases including stroke, myocardial infarction, and unipolar depressive episodes. Moreover, studies in mice have provided convincing evidence, that circadian rhythm disruption may be involved in the pathogenesis of inflammatory bowel diseases, mainly by disturbing the intestinal barrier integrity. Here, we present previously unpublished data from a large German cohort indicating a correlation of seasonal clock changes and medical leaves due to ulcerative colitis and Crohn's disease. Furthermore, we discuss the health risks of clock changes and the current attempts on reforming daylight saving time from a medical perspective.
Collapse
Affiliation(s)
- Bandik Föh
- Institute of Nutritional Medicine, University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Torsten Schröder
- Institute of Nutritional Medicine, University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Henrik Oster
- Institute of Neurobiology, University of Lübeck, Lübeck, Germany
| | - Stefanie Derer
- Institute of Nutritional Medicine, University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Christian Sina
- Institute of Nutritional Medicine, University Hospital Schleswig-Holstein, Lübeck, Germany
| |
Collapse
|
77
|
Voigt RM, Forsyth CB, Keshavarzian A. Circadian rhythms: a regulator of gastrointestinal health and dysfunction. Expert Rev Gastroenterol Hepatol 2019; 13:411-424. [PMID: 30874451 PMCID: PMC6533073 DOI: 10.1080/17474124.2019.1595588] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Circadian rhythms regulate much of gastrointestinal physiology including cell proliferation, motility, digestion, absorption, and electrolyte balance. Disruption of circadian rhythms can have adverse consequences including the promotion of and/or exacerbation of a wide variety of gastrointestinal disorders and diseases. Areas covered: In this review, we evaluate some of the many gastrointestinal functions that are regulated by circadian rhythms and how dysregulation of these functions may contribute to disease. This review also discusses some common gastrointestinal disorders that are known to be influenced by circadian rhythms as well as speculation about the mechanisms by which circadian rhythm disruption promotes dysfunction and disease pathogenesis. We discuss how knowledge of circadian rhythms and the advent of chrono-nutrition, chrono-pharmacology, and chrono-therapeutics might influence clinical practice. Expert opinion: As our knowledge of circadian biology increases, it may be possible to incorporate strategies that take advantage of circadian rhythms and chronotherapy to prevent and/or treat disease.
Collapse
Affiliation(s)
- Robin M Voigt
- Rush Department of Medicine, Division of Digestive Diseases and Nutrition, Rush University Medical Center, Chicago, IL, USA
| | - Christopher B Forsyth
- Rush Department of Medicine, Division of Digestive Diseases and Nutrition, Rush University Medical Center, Chicago, IL, USA
| | - Ali Keshavarzian
- Rush Department of Medicine, Division of Digestive Diseases and Nutrition, Rush University Medical Center, Chicago, IL, USA
| |
Collapse
|
78
|
Yu F, Zhang T, Zhou C, Xu H, Guo L, Chen M, Wu B. The Circadian Clock Gene Bmal1 Controls Intestinal Exporter MRP2 and Drug Disposition. Theranostics 2019; 9:2754-2767. [PMID: 31244920 PMCID: PMC6568180 DOI: 10.7150/thno.33395] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 03/31/2019] [Indexed: 12/14/2022] Open
Abstract
The intestinal exporter MRP2 plays an important role in disposition and elimination of a wide range of drugs. Here, we aimed to clarify the impact of circadian clock on intestinal MRP2, and to determine the molecular mechanisms for generation of diurnal MRP2 expression. Methods: The regulatory effects of Bmal1 on intestinal MRP2 expression were assessed using intestine-specific Bmal1 knockout (Bmal1iKO ) mice and colon cancer cells. The relative mRNA and protein levels were determined by qPCR and Western blotting, respectively. Everted gut sac, cell viability and in situ intestinal perfusion experiments were performed to evaluate intestinal efflux of the MRP2 substrate methotrexate (MTX). Toxicity and pharmacokinetic experiments were performed with Bmal1iKO mice and control littermates (Bmal1fl/fl mice) after oral gavage of MTX. Transcriptional gene regulation was investigated using luciferase reporter, mobility shift and chromatin immunoprecipitation (ChIP) assays. Results: Bmal1iKO mice were generated by inter-crossing the mice carrying a Bmal1 exon 8 floxed allele (Bmal1fl/fl ) with Villin-Cre mice. Intestinal MRP2 expression exhibited a diurnal oscillation in Bmal1fl/fl mice with a zenith value at ZT6. Bmal1 ablation caused reductions in Mrp2 mRNA and protein levels [as well as in transport activity (measured by MTX)], and blunted their diurnal rhythms. Intestinal ablation of Bmal1 abrogated circadian time-dependency of MTX pharmacokinetics and toxicity. Bmal1/BMAL1 regulation of rhythmic Mrp2/MRP2 expression was also confirmed in the colon cancer CT26 and Caco-2 cells. Based on a combination of luciferase reporter, mobility shift and ChIP assays, we found that Dbp activated and E4bp4 repressed Mrp2 transcription via specific binding to a same D-box (-100/-89 bp) element in promoter region. Further, Bmal1 directly activated the transcription of Dbp and Rev-erbα through the E-boxes, whereas it negatively regulated E4bp4 via the transcriptional repressor Rev-erbα. Positive regulation of Mrp2 by Rev-erbα was also observed, and attained through modulation of E4bp4. Conclusion: Bmal1 coordinates temporal expressions of DBP (a MRP2 activator), REV-ERBα (an E4BP4 repressor) and E4BP4 (a MRP2 repressor), generating diurnal MRP2 expression.
Collapse
Affiliation(s)
- Fangjun Yu
- Research Center for Biopharmaceutics and Pharmacokinetics, College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou, China
| | - Tianpeng Zhang
- Research Center for Biopharmaceutics and Pharmacokinetics, College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou, China
- Integrated Chinese and Western Medicine Postdoctoral research station, Jinan University, 601 Huangpu Avenue West, Guangzhou, China
| | - Cui Zhou
- Research Center for Biopharmaceutics and Pharmacokinetics, College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou, China
| | - Haiman Xu
- Research Center for Biopharmaceutics and Pharmacokinetics, College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou, China
| | - Lianxia Guo
- Research Center for Biopharmaceutics and Pharmacokinetics, College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou, China
| | - Min Chen
- Research Center for Biopharmaceutics and Pharmacokinetics, College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou, China
| | - Baojian Wu
- Research Center for Biopharmaceutics and Pharmacokinetics, College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou, China
| |
Collapse
|
79
|
Kawai M, Kinoshita S, Yamazaki M, Yamamoto K, Rosen CJ, Shimba S, Ozono K, Michigami T. Intestinal clock system regulates skeletal homeostasis. JCI Insight 2019; 4:121798. [PMID: 30730853 PMCID: PMC6483519 DOI: 10.1172/jci.insight.121798] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 01/30/2019] [Indexed: 12/14/2022] Open
Abstract
The circadian clock network is an evolutionarily conserved system involved in the regulation of metabolic homeostasis; however, its impacts on skeletal metabolism remain largely unknown. We herein demonstrated that the circadian clock network in the intestines plays pivotal roles in skeletal metabolism such that the lack of the Bmal1 gene in the intestines (Bmal1Int-/- mice) caused bone loss, with bone resorption being activated and bone formation suppressed. Mechanistically, Clock protein interaction with the vitamin D receptor (VDR) accelerated its binding to the VDR response element by enhancing histone acetylation in a circadian-dependent manner, and this was lost in Bmal1Int-/- mice because nuclear translocation of Clock required the presence of Bmal1. Accordingly, the rhythmic expression of VDR target genes involved in transcellular calcium (Ca) absorption was created, and this was not observed in Bmal1Int-/- mice. As a result, transcellular Ca absorption was impaired and bone resorption was activated in Bmal1Int-/- mice. Additionally, sympathetic tone, the activation of which suppresses bone formation, was elevated through afferent vagal nerves in Bmal1Int-/- mice, the blockade of which partially recovered bone loss by increasing bone formation and suppressing bone resorption in Bmal1Int-/- mice. These results demonstrate that the intestinal circadian system regulates skeletal bone homeostasis.
Collapse
Affiliation(s)
- Masanobu Kawai
- Department of Bone and Mineral Research, Research Institute, Osaka Women’s and Children’s Hospital, Izumi, Osaka, Japan
| | - Saori Kinoshita
- Department of Bone and Mineral Research, Research Institute, Osaka Women’s and Children’s Hospital, Izumi, Osaka, Japan
| | - Miwa Yamazaki
- Department of Bone and Mineral Research, Research Institute, Osaka Women’s and Children’s Hospital, Izumi, Osaka, Japan
| | - Keiko Yamamoto
- Department of Bone and Mineral Research, Research Institute, Osaka Women’s and Children’s Hospital, Izumi, Osaka, Japan
| | | | - Shigeki Shimba
- Department of Health Science, School of Pharmacy, Nihon University, Funabashi, Chiba, Japan
| | - Keiichi Ozono
- Department of Pediatrics, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Toshimi Michigami
- Department of Bone and Mineral Research, Research Institute, Osaka Women’s and Children’s Hospital, Izumi, Osaka, Japan
| |
Collapse
|
80
|
Xu J, Gao B, Shi MR, Yu H, Huang LY, Chen P, Li YH. Copulation Exerts Significant Effects on mRNA Expression of Cryptochrome Genes in a Moth. JOURNAL OF INSECT SCIENCE (ONLINE) 2019; 19:3. [PMID: 30817821 PMCID: PMC6394973 DOI: 10.1093/jisesa/iez016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 01/23/2019] [Accepted: 01/31/2019] [Indexed: 05/12/2023]
Abstract
It is recognized that the behavioral rhythms of organisms are controlled by the circadian clock, while the reverse direction, i.e., whether changes in physiology and behavior react to the internal rhythms, is unclear. Cryptochromes (CRYs) are photolyase-like flavoproteins with blue-light receptor function and other functions on circadian clock and migration in animals. Here, we cloned the full-length cDNA of CRY1 and CRY2 in Spodoptera litura (Fabricius, 1775) (Lepidoptera: Noctuidae). Sl-CRYs show high similarity to orthologs from other insects, and their conserved regions contain a DNA photolyase domain and a FAD-binding seven domain. The expression levels of both genes were relatively low during the larval stage, which increased during the pupal stage and then peaked at the adult stage. The expression of Sl-CRY1 and Sl-CRY2 showed differences between males and females and between scotophase and photophase. Further, our study demonstrated that copulation has a significant effect on the expression of Sl-CRYs. More interestingly, the changes in the expression of Sl-CRY1 and Sl-CRY2 due to copulation showed the same trend in both sexes, in which the expression levels of both genes in copulated males and females decreased in the subsequent scotophase after copulation and then increased significantly in the following photophase. Considering the nature of the dramatic changes in reproductive behavior and physiology after copulation in S. litura, we propose that the changes in the expression of Sl-CRYs after copulation could have some function in the reproductive process.
Collapse
Affiliation(s)
- Jin Xu
- Yunnan Academy of Biodiversity, Southwest Forestry University, Kunming, China
| | - Bo Gao
- School of Life Sciences, Yunnan University, Kunming, China
| | - Min-Rui Shi
- Yunnan Academy of Biodiversity, Southwest Forestry University, Kunming, China
| | - Hong Yu
- Yunnan Academy of Biodiversity, Southwest Forestry University, Kunming, China
| | - Ling-Yan Huang
- School of Life Sciences, Yunnan University, Kunming, China
| | - Peng Chen
- Yunnan Academy of Forestry, Kunming, China
| | - Yong-He Li
- Yunnan Academy of Biodiversity, Southwest Forestry University, Kunming, China
| |
Collapse
|
81
|
Koritala BSC, Çakmaklı S. The human circadian clock from health to economics. Psych J 2018; 7:176-196. [DOI: 10.1002/pchj.252] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 09/13/2018] [Accepted: 09/19/2018] [Indexed: 12/18/2022]
Affiliation(s)
- Bala S. C. Koritala
- Department of Biology; Rutgers, The State University of New Jersey; Camden New Jersey USA
- Center for Computational and Integrative Biology; Rutgers, The State University of New Jersey; Camden New Jersey USA
| | - Selim Çakmaklı
- Department of Economics; Rutgers, The State University of New Jersey; Camden New Jersey USA
| |
Collapse
|
82
|
Paulose JK, Cassone CV, Cassone VM. Aging, melatonin biosynthesis, and circadian clockworks in the gastrointestinal system of the laboratory mouse. Physiol Genomics 2018; 51:1-9. [PMID: 30444453 DOI: 10.1152/physiolgenomics.00095.2018] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The gastrointestinal (GI) system is vital in its capacities for nutrient and water uptake, immune function, metabolism and detoxification, and stem-cell derived regeneration. Of significance to human health are a myriad of GI disorders associated with aging that integrate with the circadian clock. Here we present data from three groups of mice: young (3 mo old), middle aged (12 mo old), and old aged (24 mo old). Small intestine and colon samples taken every 4 h under light-dark (LD) conditions were assayed for gene expression related to molecular circadian rhythmicity, transcription, cell signaling, and immune function. Transcripts related to melatonin biosynthesis and signaling, as well as melatonin content from stool, were also included, as GI melatonin and aging have been associated in contexts outside of the circadian clock. With respect to circadian genes, the data here are congruent with data from other peripheral tissues: age does not affect the rhythmic expression of core clock genes in the gut. The same can be said for several clock-controlled transcripts. In contrast, diurnal patterns in the expression of nitric oxide synthase 1 and of immune factors irak4 and interleukin-8 were observed in the colon of young mice that were lost in middle-aged and aged animals. Furthermore, the diurnal pattern of melatonin synthesis genes was altered by age, and stool melatonin levels showed significant decline between young mice and aged cohorts. These data expand the evidence for the persistence of the circadian clock throughout the aging process and highlight its importance to health.
Collapse
Affiliation(s)
- Jiffin K Paulose
- Department of Biology, University of Kentucky , Lexington, Kentucky
| | | | | |
Collapse
|
83
|
Chakradeo PS, Keshavarzian A, Singh S, Dera AE, Esteban JPG, Lee AA, Burgess HJ, Fogg L, Swanson GR. Chronotype, social jet lag, sleep debt and food timing in inflammatory bowel disease. Sleep Med 2018; 52:188-195. [PMID: 30243610 DOI: 10.1016/j.sleep.2018.08.002] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 08/01/2018] [Accepted: 08/02/2018] [Indexed: 12/29/2022]
Abstract
The preference of the sleep/wake cycle can be grouped into categories or chronotypes. Inflammatory bowel disease (IBD) has been linked to poor sleep quality which correlates with disease severity. Social jet lag (SJL) is the difference between sleep timing on work and free days and is a marker for circadian misalignment which has been linked to increased inflammation. We investigated whether chronotype, SJL, sleep debt (SD), and food timing were associated with an IBD specific complications and a lower quality of life. Overall, 191 subjects (115 IBD subjects and 76 healthy controls (HC)) completed the Pittsburgh Sleep Quality Index (PSQI), Morningness-Eveningness Questionnaire (MEQ), Munich ChronoType Questionnaire (MCTQ), Short Inflammatory Bowel Disease Questionnaire (SIBDQ), and a structured Food Timing Questionnaire. Later chronotype (by MEQ) was associated with a worse SIBDQ (r = -0.209; P < 0.05). SJL was increased in IBD at 1.32 h ± 1.03 vs. 1.05 h ± 0.97 in HC, P < 0.05, when adjusted for age. SJL (>2 h) was present in 40% of severe/complicated Crohn's patients (fistulizing or structuring Crohn's or history of Crohn's related surgery) compared to only 16% of uncomplicated Crohn's patients (P < 0.05). Sleep debt was increased in IBD subjects compared to HC at 21.90 m ± 25.37 vs. 11.49 m ± 13.58, P < 0.05. IBD subjects with inconsistent breakfast or dinner times had lower SIBDQ scores (4.78 ± 1.28 vs. 5.49 ± 1.02, P < 0.05; 4.95 ± 0.31 vs. 5.42 ± 0.32, P < 0.05 respectively). In summary, later chronotype, and markers of circadian misalignment (social jet lag, sleep debt, and inconsistent meal timing) were associated with IBD disease specific complications and/or lower quality of life.
Collapse
Affiliation(s)
- Prachi S Chakradeo
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, Rush University Medical Center, 1725 W. Harrison, Suite 206, Chicago, IL, 60612, United States.
| | - Ali Keshavarzian
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, Rush University Medical Center, 1725 W. Harrison, Suite 206, Chicago, IL, 60612, United States.
| | - Shubha Singh
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, Rush University Medical Center, 1725 W. Harrison, Suite 206, Chicago, IL, 60612, United States.
| | - Akram E Dera
- Internal Medicine, Greater Baltimore Medical Center, Towson, MD, United States.
| | | | - Alice A Lee
- Rush University Medical Center, Chicago, IL, 60612, United States.
| | - Helen J Burgess
- Biological Rhythms Research Laboratory, Rush University Medical Center, Chicago, IL, 60612, United States.
| | - Louis Fogg
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, Rush University Medical Center, 1725 W. Harrison, Suite 206, Chicago, IL, 60612, United States.
| | - Garth R Swanson
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, Rush University Medical Center, 1725 W. Harrison, Suite 206, Chicago, IL, 60612, United States.
| |
Collapse
|
84
|
Duszka K, Wahli W. Enteric Microbiota⁻Gut⁻Brain Axis from the Perspective of Nuclear Receptors. Int J Mol Sci 2018; 19:ijms19082210. [PMID: 30060580 PMCID: PMC6121494 DOI: 10.3390/ijms19082210] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 07/18/2018] [Accepted: 07/23/2018] [Indexed: 12/12/2022] Open
Abstract
Nuclear receptors (NRs) play a key role in regulating virtually all body functions, thus maintaining a healthy operating body with all its complex systems. Recently, gut microbiota emerged as major factor contributing to the health of the whole organism. Enteric bacteria have multiple ways to influence their host and several of them involve communication with the brain. Mounting evidence of cooperation between gut flora and NRs is already available. However, the full potential of the microbiota interconnection with NRs remains to be uncovered. Herewith, we present the current state of knowledge on the multifaceted roles of NRs in the enteric microbiota–gut–brain axis.
Collapse
Affiliation(s)
- Kalina Duszka
- Department of Nutritional Sciences, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria.
| | - Walter Wahli
- Lee Kong Chian School of Medicine, Nanyang Technological, 11 Mandalay Road, Singapore 308232, Singapore.
- Center for Integrative Genomics, University of Lausanne, Génopode, CH-1015 Lausanne, Switzerland.
| |
Collapse
|
85
|
van der Veen DR, Riede SJ, Heideman PD, Hau M, van der Vinne V, Hut RA. Flexible clock systems: adjusting the temporal programme. Philos Trans R Soc Lond B Biol Sci 2018; 372:rstb.2016.0254. [PMID: 28993498 DOI: 10.1098/rstb.2016.0254] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/24/2017] [Indexed: 12/20/2022] Open
Abstract
Under natural conditions, many aspects of the abiotic and biotic environment vary with time of day, season or even era, while these conditions are typically kept constant in laboratory settings. The timing information contained within the environment serves as critical timing cues for the internal biological timing system, but how this system drives daily rhythms in behaviour and physiology may also depend on the internal state of the animal. The disparity between timing of these cues in natural and laboratory conditions can result in substantial differences in the scheduling of behaviour and physiology under these conditions. In nature, temporal coordination of biological processes is critical to maximize fitness because they optimize the balance between reproduction, foraging and predation risk. Here we focus on the role of peripheral circadian clocks, and the rhythms that they drive, in enabling adaptive phenotypes. We discuss how reproduction, endocrine activity and metabolism interact with peripheral clocks, and outline the complex phenotypes arising from changes in this system. We conclude that peripheral timing is critical to adaptive plasticity of circadian organization in the field, and that we must abandon standard laboratory conditions to understand the mechanisms that underlie this plasticity which maximizes fitness under natural conditions.This article is part of the themed issue 'Wild clocks: integrating chronobiology and ecology to understand timekeeping in free-living animals'.
Collapse
Affiliation(s)
- Daan R van der Veen
- School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| | - Sjaak J Riede
- Chronobiology Unit, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - Paul D Heideman
- Department of Biology, College of William and Mary, Williamsburg, VA, USA
| | - Michaela Hau
- Max-Planck-Institute for Ornithology, Seewiesen, Germany and University of Konstanz, Konstanz, Germany
| | - Vincent van der Vinne
- Neurobiology Department, University of Massachusetts Medical School, Worcester, MA, USA
| | - Roelof A Hut
- Chronobiology Unit, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
86
|
Abstract
In recent years, there has been an increased prevalence of type 2 diabetes mellitus (T2DM) and depression across the world. This growing public health problem has produced an increasing socioeconomic burden to the populations of all affected countries. Despite an awareness by public health officials and medical researchers of the costs associated with these diseases, there still remain many aspects of how they develop that are not understood. In this article, we propose that the circadian clock could be a factor that coordinates both the neurobehavioral and metabolic processes that underlie depression and T2DM. We propose further that this perspective, one which emphasizes the regulatory effects of clock gene activity, may provide insights into how T2DM and depression interact with one another, and may thus open a new pathway for managing and treating these disorders.
Collapse
|
87
|
Aten S, Hansen KF, Snider K, Wheaton K, Kalidindi A, Garcia A, Alzate-Correa D, Hoyt KR, Obrietan K. miR-132 couples the circadian clock to daily rhythms of neuronal plasticity and cognition. ACTA ACUST UNITED AC 2018; 25:214-229. [PMID: 29661834 PMCID: PMC5903403 DOI: 10.1101/lm.047191.117] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 02/05/2018] [Indexed: 12/16/2022]
Abstract
The microRNA miR-132 serves as a key regulator of a wide range of plasticity-associated processes in the central nervous system. Interestingly, miR-132 expression has also been shown to be under the control of the circadian timing system. This finding, coupled with work showing that miR-132 is expressed in the hippocampus, where it influences neuronal morphology and memory, led us to test the idea that daily rhythms in miR-132 within the forebrain modulate cognition as a function of circadian time. Here, we show that hippocampal miR-132 expression is gated by the time-of-day, with peak levels occurring during the circadian night. Further, in miR-132 knockout mice and in transgenic mice, where miR-132 is constitutively expressed under the control of the tetracycline regulator system, we found that time-of-day dependent memory recall (as assessed via novel object location and contextual fear conditioning paradigms) was suppressed. Given that miRNAs exert their functional effects via the suppression of target gene expression, we examined the effects that transgenic miR-132 manipulations have on MeCP2 and Sirt1-two miR-132 targets that are associated with neuronal plasticity and cognition. In mice where miR-132 was either knocked out, or transgenically expressed, rhythmic expression of MeCP2 and Sirt1 was suppressed. Taken together, these results raise the prospect that miR-132 serves as a key route through which the circadian timing system imparts a daily rhythm on cognitive capacity.
Collapse
Affiliation(s)
- Sydney Aten
- Department of Neuroscience, Ohio State University, Columbus, Ohio 43210, USA
| | - Katelin F Hansen
- Department of Neuroscience, Ohio State University, Columbus, Ohio 43210, USA
| | - Kaitlin Snider
- Department of Neuroscience, Ohio State University, Columbus, Ohio 43210, USA
| | - Kelin Wheaton
- Division of Pharmacology, Ohio State University, Columbus, Ohio 43210, USA
| | - Anisha Kalidindi
- Department of Neuroscience, Ohio State University, Columbus, Ohio 43210, USA
| | - Ashley Garcia
- Department of Neuroscience, Ohio State University, Columbus, Ohio 43210, USA
| | | | - Kari R Hoyt
- Division of Pharmacology, Ohio State University, Columbus, Ohio 43210, USA
| | - Karl Obrietan
- Department of Neuroscience, Ohio State University, Columbus, Ohio 43210, USA
| |
Collapse
|
88
|
Martchenko A, Oh RH, Wheeler SE, Gurges P, Chalmers JA, Brubaker PL. Suppression of circadian secretion of glucagon-like peptide-1 by the saturated fatty acid, palmitate. Acta Physiol (Oxf) 2018; 222:e13007. [PMID: 29193800 DOI: 10.1111/apha.13007] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 11/22/2017] [Accepted: 11/23/2017] [Indexed: 12/12/2022]
Abstract
AIM Glucagon-like peptide-1 is an incretin hormone secreted by the intestinal L-cell with a circadian rhythm that parallels expression of the core clock gene, Bmal1. Although feeding rats a high-fat/high-sucrose Western diet impairs rhythmic glucagon-like peptide-1 release, the mechanisms underlying this effect remain unclear. Therefore, the aim of this study was to determine the pathway(s) by which the saturated fat, palmitate, a major component of the Western diet, impairs circadian glucagon-like peptide-1 secretion. METHODS Murine mGLUTag L-cells were synchronized, and the effects of palmitate pre-treatment on gene expression and glucagon-like peptide-1 secretion were determined, in addition to metabolite quantification, mitochondrial function analysis and enzyme inhibition and activation assays. Glucagon-like peptide-1 secretion was also analysed in ileal crypt cultures from control and Bmal1 knockout mice. RESULTS Pre-treatment with palmitate dampened Bmal1 mRNA and protein expression and glucagon-like peptide-1 secretion at 8 but not 20 hours after cell synchronization (P < .05-.001). Glucagon-like peptide-1 release was also impaired in Bmal1 knockout cultures as compared to wild-type controls (P < .001). Palmitate pre-treatment reduced expression of the Bmal1 downstream target, nicotinamide phosphoribosyltransferase, the rate-limiting enzyme in the synthesis of NAD+ . This was paralleled by dampening of total NAD+ levels, as well as impaired mitochondrial function and ATP production (P < .05-.001). Whereas direct inhibition of nicotinamide phosphoribosyltransferase also decreased glucagon-like peptide-1 release, activation of this enzyme restored glucagon-like peptide-1 secretion in the presence of palmitate. CONCLUSION Palmitate impairs L-cell clock function at the peak of Bmal1 gene expression, thereby impairing mitochondrial function and ultimately rhythmic glucagon-like peptide-1 secretion.
Collapse
Affiliation(s)
- A Martchenko
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - R H Oh
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - S E Wheeler
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - P Gurges
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - J A Chalmers
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - P L Brubaker
- Department of Physiology, University of Toronto, Toronto, ON, Canada
- Department of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
89
|
An J, Wang L, Patnode ML, Ridaura VK, Haldeman JM, Stevens RD, Ilkayeva O, Bain JR, Muehlbauer MJ, Glynn EL, Thomas S, Muoio D, Summers SA, Vath JE, Hughes TE, Gordon JI, Newgard CB. Physiological mechanisms of sustained fumagillin-induced weight loss. JCI Insight 2018; 3:99453. [PMID: 29515039 PMCID: PMC5922281 DOI: 10.1172/jci.insight.99453] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 01/30/2018] [Indexed: 02/06/2023] Open
Abstract
Current obesity interventions suffer from lack of durable effects and undesirable complications. Fumagillin, an inhibitor of methionine aminopeptidase-2, causes weight loss by reducing food intake, but with effects on weight that are superior to pair-feeding. Here, we show that feeding of rats on a high-fat diet supplemented with fumagillin (HF/FG) suppresses the aggressive feeding observed in pair-fed controls (HF/PF) and alters expression of circadian genes relative to the HF/PF group. Multiple indices of reduced energy expenditure are observed in HF/FG but not HF/PF rats. HF/FG rats also exhibit changes in gut hormones linked to food intake, increased energy harvest by gut microbiota, and caloric spilling in the urine. Studies in gnotobiotic mice reveal that effects of fumagillin on energy expenditure but not feeding behavior may be mediated by the gut microbiota. In sum, fumagillin engages weight loss-inducing behavioral and physiologic circuits distinct from those activated by simple caloric restriction.
Collapse
Affiliation(s)
- Jie An
- Sarah W. Stedman Nutrition and Metabolism Center, Duke Molecular Physiology Institute, Departments of Pharmacology and Cancer Biology and Medicine, Duke University Medical Center, Durham, North Carolina, USA
| | - Liping Wang
- Sarah W. Stedman Nutrition and Metabolism Center, Duke Molecular Physiology Institute, Departments of Pharmacology and Cancer Biology and Medicine, Duke University Medical Center, Durham, North Carolina, USA
| | - Michael L. Patnode
- Center for Genome Sciences and Systems Biology and
- Center for Gut Microbiome and Nutrition Research, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Vanessa K. Ridaura
- Center for Genome Sciences and Systems Biology and
- Center for Gut Microbiome and Nutrition Research, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Jonathan M. Haldeman
- Sarah W. Stedman Nutrition and Metabolism Center, Duke Molecular Physiology Institute, Departments of Pharmacology and Cancer Biology and Medicine, Duke University Medical Center, Durham, North Carolina, USA
| | - Robert D. Stevens
- Sarah W. Stedman Nutrition and Metabolism Center, Duke Molecular Physiology Institute, Departments of Pharmacology and Cancer Biology and Medicine, Duke University Medical Center, Durham, North Carolina, USA
| | - Olga Ilkayeva
- Sarah W. Stedman Nutrition and Metabolism Center, Duke Molecular Physiology Institute, Departments of Pharmacology and Cancer Biology and Medicine, Duke University Medical Center, Durham, North Carolina, USA
| | - James R. Bain
- Sarah W. Stedman Nutrition and Metabolism Center, Duke Molecular Physiology Institute, Departments of Pharmacology and Cancer Biology and Medicine, Duke University Medical Center, Durham, North Carolina, USA
| | - Michael J. Muehlbauer
- Sarah W. Stedman Nutrition and Metabolism Center, Duke Molecular Physiology Institute, Departments of Pharmacology and Cancer Biology and Medicine, Duke University Medical Center, Durham, North Carolina, USA
| | - Erin L. Glynn
- Sarah W. Stedman Nutrition and Metabolism Center, Duke Molecular Physiology Institute, Departments of Pharmacology and Cancer Biology and Medicine, Duke University Medical Center, Durham, North Carolina, USA
| | - Steven Thomas
- Sarah W. Stedman Nutrition and Metabolism Center, Duke Molecular Physiology Institute, Departments of Pharmacology and Cancer Biology and Medicine, Duke University Medical Center, Durham, North Carolina, USA
| | - Deborah Muoio
- Sarah W. Stedman Nutrition and Metabolism Center, Duke Molecular Physiology Institute, Departments of Pharmacology and Cancer Biology and Medicine, Duke University Medical Center, Durham, North Carolina, USA
| | - Scott A. Summers
- Sarah W. Stedman Nutrition and Metabolism Center, Duke Molecular Physiology Institute, Departments of Pharmacology and Cancer Biology and Medicine, Duke University Medical Center, Durham, North Carolina, USA
| | | | | | - Jeffrey I. Gordon
- Center for Genome Sciences and Systems Biology and
- Center for Gut Microbiome and Nutrition Research, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Christopher B. Newgard
- Sarah W. Stedman Nutrition and Metabolism Center, Duke Molecular Physiology Institute, Departments of Pharmacology and Cancer Biology and Medicine, Duke University Medical Center, Durham, North Carolina, USA
| |
Collapse
|
90
|
Yi-lin L, Ke Z, Dan W, Xi-hong Z, Zheng R, Xin W, Yu-long Y. Dynamic feeding low and high methionine diets affect the diurnal rhythm of amino acid transporters and clock related genes in jejunum of laying hens. BIOL RHYTHM RES 2017. [DOI: 10.1080/09291016.2017.1395531] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Liu Yi-lin
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha, China
- Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha, China
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha, China
- State Laboratory of Food Science and Technology, School of Food Science and Technology, Nanchang University, Nanchang, China
| | - Zhang Ke
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha, China
- Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha, China
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha, China
| | - Wan Dan
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha, China
- Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha, China
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha, China
| | - Zhou Xi-hong
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha, China
- Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha, China
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha, China
| | - Ruan Zheng
- State Laboratory of Food Science and Technology, School of Food Science and Technology, Nanchang University, Nanchang, China
| | - Wu Xin
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha, China
- Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha, China
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha, China
- State Laboratory of Food Science and Technology, School of Food Science and Technology, Nanchang University, Nanchang, China
| | - Yin Yu-long
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha, China
- Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha, China
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha, China
- State Laboratory of Food Science and Technology, School of Food Science and Technology, Nanchang University, Nanchang, China
| |
Collapse
|
91
|
Yamaguchi M, Kotani K, Tsuzaki K, Motokubota N, Komai N, Sakane N, Moritani T, Nagai N. The CLOCK 3111T/C single nucleotide polymorphism and daytime fluctuations of gastric motility in healthy young women: A preliminary study. Chronobiol Int 2017; 34:1478-1482. [PMID: 29064730 DOI: 10.1080/07420528.2017.1373660] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The 3111T/C single nucleotide polymorphism (SNP) of Circadian Locomotor Output Cycles Kaput (CLOCK) gene reportedly affects gastric motility before breakfast. It is of interest to know whether this SNP can affect the motility during the daytime. We investigated the association between the CLOCK 3111T/C SNP and several gastric motility parameters during the time period from 8:00 to 20:00 in 34 young women with scheduled meals. There were similar daytime fluctuations in gastric motility before and after the meals between the major (T/T) and minor (T/C) allele carriers. The CLOCK SNP may affect daytime gastric motility less than food stimulation.
Collapse
Affiliation(s)
- Mitsue Yamaguchi
- a Laboratory of Nutritional Physiology, Graduate School of Human Science and Environment , University of Hyogo , Hyogo , Japan.,b Faculty of Health and Nutrition , Yamagata Prefectural Yonezawa University of Nutrition Sciences , Yamagata , Japan
| | - Kazuhiko Kotani
- c Division of Community and Family Medicine , Jichi Medical University , Tochigi , Japan.,d Division of Preventive Medicine , Clinical Research Institute for Endocrine and Metabolic Disease, National Hospital Organization Kyoto Medical Center , Kyoto , Japan
| | - Kokoro Tsuzaki
- d Division of Preventive Medicine , Clinical Research Institute for Endocrine and Metabolic Disease, National Hospital Organization Kyoto Medical Center , Kyoto , Japan
| | - Naoko Motokubota
- a Laboratory of Nutritional Physiology, Graduate School of Human Science and Environment , University of Hyogo , Hyogo , Japan
| | - Naho Komai
- a Laboratory of Nutritional Physiology, Graduate School of Human Science and Environment , University of Hyogo , Hyogo , Japan
| | - Naoki Sakane
- d Division of Preventive Medicine , Clinical Research Institute for Endocrine and Metabolic Disease, National Hospital Organization Kyoto Medical Center , Kyoto , Japan
| | | | - Narumi Nagai
- a Laboratory of Nutritional Physiology, Graduate School of Human Science and Environment , University of Hyogo , Hyogo , Japan
| |
Collapse
|
92
|
Liang X, FitzGerald GA. Timing the Microbes: The Circadian Rhythm of the Gut Microbiome. J Biol Rhythms 2017; 32:505-515. [DOI: 10.1177/0748730417729066] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Xue Liang
- Merck Research Laboratories Cambridge Exploratory Science Center, Cambridge, Massachusetts
| | - Garret A. FitzGerald
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Pennsylvania
| |
Collapse
|
93
|
Liu Y, Lin X, Zhou X, Wan D, Wang Z, Wu X, Yin Y. Effects of dynamic feeding low and high methionine diets on egg quality traits in laying hens. Poult Sci 2017; 96:1459-1465. [DOI: 10.3382/ps/pew398] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 10/10/2016] [Indexed: 12/20/2022] Open
|
94
|
Stokes K, Cooke A, Chang H, Weaver DR, Breault DT, Karpowicz P. The Circadian Clock Gene BMAL1 Coordinates Intestinal Regeneration. Cell Mol Gastroenterol Hepatol 2017; 4:95-114. [PMID: 28593182 PMCID: PMC5453906 DOI: 10.1016/j.jcmgh.2017.03.011] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 03/24/2017] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIMS The gastrointestinal syndrome is an illness of the intestine caused by high levels of radiation. It is characterized by extensive loss of epithelial tissue integrity, which initiates a regenerative response by intestinal stem and precursor cells. The intestine has 24-hour rhythms in many physiological functions that are believed to be outputs of the circadian clock: a molecular system that produces 24-hour rhythms in transcription/translation. Certain gastrointestinal illnesses are worsened when the circadian rhythms are disrupted, but the role of the circadian clock in gastrointestinal regeneration has not been studied. METHODS We tested the timing of regeneration in the mouse intestine during the gastrointestinal syndrome. The role of the circadian clock was tested genetically using the BMAL1 loss of function mouse mutant in vivo, and in vitro using intestinal organoid culture. RESULTS The proliferation of the intestinal epithelium follows a 24-hour rhythm during the gastrointestinal syndrome. The circadian clock runs in the intestinal epithelium during this pathologic state, and the loss of the core clock gene, BMAL1, disrupts both the circadian clock and rhythmic proliferation. Circadian activity in the intestine involves a rhythmic production of inflammatory cytokines and subsequent rhythmic activation of the JNK stress response pathway. CONCLUSIONS Our results show that a circadian rhythm in inflammation and regeneration occurs during the gastrointestinal syndrome. The study and treatment of radiation-induced illnesses, and other gastrointestinal illnesses, should consider 24-hour timing in physiology and pathology.
Collapse
Affiliation(s)
- Kyle Stokes
- Department of Biological Sciences, University of Windsor, Windsor, Ontario, Canada
| | - Abrial Cooke
- Department of Biological Sciences, University of Windsor, Windsor, Ontario, Canada
| | - Hanna Chang
- Department of Biological Sciences, University of Windsor, Windsor, Ontario, Canada
| | - David R. Weaver
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, Massachusetts
| | - David T. Breault
- Harvard Stem Cell Institute, Cambridge, Massachusetts,Division of Endocrinology, Boston Children’s Hospital, Boston, Massachusetts,Department of Pediatrics, Harvard Medical School, Boston, Massachusetts
| | - Phillip Karpowicz
- Department of Biological Sciences, University of Windsor, Windsor, Ontario, Canada,Correspondence Address correspondence to: Phillip Karpowicz, PhD, Department of Biological Sciences, University of Windsor, Windsor, Ontario, Canada N9B 3P4.Department of Biological SciencesUniversity of WindsorWindsorOntarioCanada N9B 3P4
| |
Collapse
|
95
|
Oster H, Challet E, Ott V, Arvat E, de Kloet ER, Dijk DJ, Lightman S, Vgontzas A, Van Cauter E. The Functional and Clinical Significance of the 24-Hour Rhythm of Circulating Glucocorticoids. Endocr Rev 2017; 38:3-45. [PMID: 27749086 PMCID: PMC5563520 DOI: 10.1210/er.2015-1080] [Citation(s) in RCA: 294] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 09/21/2016] [Indexed: 02/07/2023]
Abstract
Adrenal glucocorticoids are major modulators of multiple functions, including energy metabolism, stress responses, immunity, and cognition. The endogenous secretion of glucocorticoids is normally characterized by a prominent and robust circadian (around 24 hours) oscillation, with a daily peak around the time of the habitual sleep-wake transition and minimal levels in the evening and early part of the night. It has long been recognized that this 24-hour rhythm partly reflects the activity of a master circadian pacemaker located in the suprachiasmatic nucleus of the hypothalamus. In the past decade, secondary circadian clocks based on the same molecular machinery as the central master pacemaker were found in other brain areas as well as in most peripheral tissues, including the adrenal glands. Evidence is rapidly accumulating to indicate that misalignment between central and peripheral clocks has a host of adverse effects. The robust rhythm in circulating glucocorticoid levels has been recognized as a major internal synchronizer of the circadian system. The present review examines the scientific foundation of these novel advances and their implications for health and disease prevention and treatment.
Collapse
Affiliation(s)
- Henrik Oster
- Medical Department I (H.O., V.O.), University of Lübeck, 23562 Lübeck, Germany; Institute for Cellular and Integrative Neuroscience (E.C.), Centre National de la Recherche Scientifique (CNRS) UPR 3212, University of Strasbourg, 67084 Strasbourg, France; Division of Endocrinology, Diabetology and Metabolism (E.A.), Department of Internal Medicine, University of Turin, 10043 Turin, Italy; Department of Endocrinology and Metabolic Disease (E.R.d.K.), Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; Surrey Sleep Research Center (D.-J.D.), Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XP, United Kingdom; Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology (S.L.), University of Bristol, Bristol BS8 1TH, United Kingdom; Sleep Research and Treatment Center (A.V.), Department of Psychiatry, Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033; and Sleep, Metabolism, and Health Center (E.V.C.), Department of Medicine, University of Chicago, Chicago, Illinois 60637
| | - Etienne Challet
- Medical Department I (H.O., V.O.), University of Lübeck, 23562 Lübeck, Germany; Institute for Cellular and Integrative Neuroscience (E.C.), Centre National de la Recherche Scientifique (CNRS) UPR 3212, University of Strasbourg, 67084 Strasbourg, France; Division of Endocrinology, Diabetology and Metabolism (E.A.), Department of Internal Medicine, University of Turin, 10043 Turin, Italy; Department of Endocrinology and Metabolic Disease (E.R.d.K.), Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; Surrey Sleep Research Center (D.-J.D.), Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XP, United Kingdom; Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology (S.L.), University of Bristol, Bristol BS8 1TH, United Kingdom; Sleep Research and Treatment Center (A.V.), Department of Psychiatry, Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033; and Sleep, Metabolism, and Health Center (E.V.C.), Department of Medicine, University of Chicago, Chicago, Illinois 60637
| | - Volker Ott
- Medical Department I (H.O., V.O.), University of Lübeck, 23562 Lübeck, Germany; Institute for Cellular and Integrative Neuroscience (E.C.), Centre National de la Recherche Scientifique (CNRS) UPR 3212, University of Strasbourg, 67084 Strasbourg, France; Division of Endocrinology, Diabetology and Metabolism (E.A.), Department of Internal Medicine, University of Turin, 10043 Turin, Italy; Department of Endocrinology and Metabolic Disease (E.R.d.K.), Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; Surrey Sleep Research Center (D.-J.D.), Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XP, United Kingdom; Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology (S.L.), University of Bristol, Bristol BS8 1TH, United Kingdom; Sleep Research and Treatment Center (A.V.), Department of Psychiatry, Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033; and Sleep, Metabolism, and Health Center (E.V.C.), Department of Medicine, University of Chicago, Chicago, Illinois 60637
| | - Emanuela Arvat
- Medical Department I (H.O., V.O.), University of Lübeck, 23562 Lübeck, Germany; Institute for Cellular and Integrative Neuroscience (E.C.), Centre National de la Recherche Scientifique (CNRS) UPR 3212, University of Strasbourg, 67084 Strasbourg, France; Division of Endocrinology, Diabetology and Metabolism (E.A.), Department of Internal Medicine, University of Turin, 10043 Turin, Italy; Department of Endocrinology and Metabolic Disease (E.R.d.K.), Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; Surrey Sleep Research Center (D.-J.D.), Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XP, United Kingdom; Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology (S.L.), University of Bristol, Bristol BS8 1TH, United Kingdom; Sleep Research and Treatment Center (A.V.), Department of Psychiatry, Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033; and Sleep, Metabolism, and Health Center (E.V.C.), Department of Medicine, University of Chicago, Chicago, Illinois 60637
| | - E Ronald de Kloet
- Medical Department I (H.O., V.O.), University of Lübeck, 23562 Lübeck, Germany; Institute for Cellular and Integrative Neuroscience (E.C.), Centre National de la Recherche Scientifique (CNRS) UPR 3212, University of Strasbourg, 67084 Strasbourg, France; Division of Endocrinology, Diabetology and Metabolism (E.A.), Department of Internal Medicine, University of Turin, 10043 Turin, Italy; Department of Endocrinology and Metabolic Disease (E.R.d.K.), Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; Surrey Sleep Research Center (D.-J.D.), Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XP, United Kingdom; Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology (S.L.), University of Bristol, Bristol BS8 1TH, United Kingdom; Sleep Research and Treatment Center (A.V.), Department of Psychiatry, Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033; and Sleep, Metabolism, and Health Center (E.V.C.), Department of Medicine, University of Chicago, Chicago, Illinois 60637
| | - Derk-Jan Dijk
- Medical Department I (H.O., V.O.), University of Lübeck, 23562 Lübeck, Germany; Institute for Cellular and Integrative Neuroscience (E.C.), Centre National de la Recherche Scientifique (CNRS) UPR 3212, University of Strasbourg, 67084 Strasbourg, France; Division of Endocrinology, Diabetology and Metabolism (E.A.), Department of Internal Medicine, University of Turin, 10043 Turin, Italy; Department of Endocrinology and Metabolic Disease (E.R.d.K.), Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; Surrey Sleep Research Center (D.-J.D.), Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XP, United Kingdom; Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology (S.L.), University of Bristol, Bristol BS8 1TH, United Kingdom; Sleep Research and Treatment Center (A.V.), Department of Psychiatry, Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033; and Sleep, Metabolism, and Health Center (E.V.C.), Department of Medicine, University of Chicago, Chicago, Illinois 60637
| | - Stafford Lightman
- Medical Department I (H.O., V.O.), University of Lübeck, 23562 Lübeck, Germany; Institute for Cellular and Integrative Neuroscience (E.C.), Centre National de la Recherche Scientifique (CNRS) UPR 3212, University of Strasbourg, 67084 Strasbourg, France; Division of Endocrinology, Diabetology and Metabolism (E.A.), Department of Internal Medicine, University of Turin, 10043 Turin, Italy; Department of Endocrinology and Metabolic Disease (E.R.d.K.), Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; Surrey Sleep Research Center (D.-J.D.), Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XP, United Kingdom; Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology (S.L.), University of Bristol, Bristol BS8 1TH, United Kingdom; Sleep Research and Treatment Center (A.V.), Department of Psychiatry, Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033; and Sleep, Metabolism, and Health Center (E.V.C.), Department of Medicine, University of Chicago, Chicago, Illinois 60637
| | - Alexandros Vgontzas
- Medical Department I (H.O., V.O.), University of Lübeck, 23562 Lübeck, Germany; Institute for Cellular and Integrative Neuroscience (E.C.), Centre National de la Recherche Scientifique (CNRS) UPR 3212, University of Strasbourg, 67084 Strasbourg, France; Division of Endocrinology, Diabetology and Metabolism (E.A.), Department of Internal Medicine, University of Turin, 10043 Turin, Italy; Department of Endocrinology and Metabolic Disease (E.R.d.K.), Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; Surrey Sleep Research Center (D.-J.D.), Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XP, United Kingdom; Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology (S.L.), University of Bristol, Bristol BS8 1TH, United Kingdom; Sleep Research and Treatment Center (A.V.), Department of Psychiatry, Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033; and Sleep, Metabolism, and Health Center (E.V.C.), Department of Medicine, University of Chicago, Chicago, Illinois 60637
| | - Eve Van Cauter
- Medical Department I (H.O., V.O.), University of Lübeck, 23562 Lübeck, Germany; Institute for Cellular and Integrative Neuroscience (E.C.), Centre National de la Recherche Scientifique (CNRS) UPR 3212, University of Strasbourg, 67084 Strasbourg, France; Division of Endocrinology, Diabetology and Metabolism (E.A.), Department of Internal Medicine, University of Turin, 10043 Turin, Italy; Department of Endocrinology and Metabolic Disease (E.R.d.K.), Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; Surrey Sleep Research Center (D.-J.D.), Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XP, United Kingdom; Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology (S.L.), University of Bristol, Bristol BS8 1TH, United Kingdom; Sleep Research and Treatment Center (A.V.), Department of Psychiatry, Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033; and Sleep, Metabolism, and Health Center (E.V.C.), Department of Medicine, University of Chicago, Chicago, Illinois 60637
| |
Collapse
|
96
|
Abstract
The biological clocks of the circadian timing system coordinate cellular and physiological processes and synchronizes these with daily cycles, feeding patterns also regulates circadian clocks. The clock genes and adipocytokines show circadian rhythmicity. Dysfunction of these genes are involved in the alteration of these adipokines during the development of obesity. Food availability promotes the stimuli associated with food intake which is a circadian oscillator outside of the suprachiasmatic nucleus (SCN). Its circadian rhythm is arranged with the predictable daily mealtimes. Food anticipatory activity is mediated by a self-sustained circadian timing and its principal component is food entrained oscillator. However, the hypothalamus has a crucial role in the regulation of energy balance rather than food intake. Fatty acids or their metabolites can modulate neuronal activity by brain nutrient-sensing neurons involved in the regulation of energy and glucose homeostasis. The timing of three-meal schedules indicates close association with the plasma levels of insulin and preceding food availability. Desynchronization between the central and peripheral clocks by altered timing of food intake and diet composition can lead to uncoupling of peripheral clocks from the central pacemaker and to the development of metabolic disorders. Metabolic dysfunction is associated with circadian disturbances at both central and peripheral levels and, eventual disruption of circadian clock functioning can lead to obesity. While CLOCK expression levels are increased with high fat diet-induced obesity, peroxisome proliferator-activated receptor (PPAR) alpha increases the transcriptional level of brain and muscle ARNT-like 1 (BMAL1) in obese subjects. Consequently, disruption of clock genes results in dyslipidemia, insulin resistance and obesity. Modifying the time of feeding alone can greatly affect body weight. Changes in the circadian clock are associated with temporal alterations in feeding behavior and increased weight gain. Thus, shift work is associated with increased risk for obesity, diabetes and cardio-vascular diseases as a result of unusual eating time and disruption of circadian rhythm.
Collapse
Affiliation(s)
- Atilla Engin
- Faculty of Medicine, Department of General Surgery, Gazi University, Besevler, Ankara, Turkey.
- , Mustafa Kemal Mah. 2137. Sok. 8/14, 06520, Cankaya, Ankara, Turkey.
| |
Collapse
|
97
|
Effects of Electroacupuncture on the Daily Rhythmicity of Intestinal Movement and Circadian Rhythmicity of Colonic Per2 Expression in Rats with Spinal Cord Injury. BIOMED RESEARCH INTERNATIONAL 2016; 2016:9860281. [PMID: 27999821 PMCID: PMC5143707 DOI: 10.1155/2016/9860281] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 09/28/2016] [Accepted: 11/01/2016] [Indexed: 01/20/2023]
Abstract
Background. Spinal cord injury (SCI) leads to bowel dysfunction. Electroacupuncture (EA) may improve bowel function. Objective. To assess EA on daily rhythmicity of intestinal movement and circadian rhythmicity of colonic Per2 expression in rats with SCI. Methods. Rats were randomized to the sham, SCI, and SCI+EA groups. EA was performed at bilateral Zusanli point (ST36) during daytime (11:00–11:30) for 14 days following SCI. Intestinal transit and daily rhythmicity of intestinal movement were assessed. Circadian rhythmicity of colonic Per2 expression was assessed by real-time RT-PCR. Results. EA shortened the stool efflux time and increased the dry fecal weight within 24 h in SCI rats. Daily rhythmicity of intestinal movements was unaffected by SCI. The expression of colonic Per2 peaked at 20:00 and the nadir was observed at 8:00 in the SCI and sham groups. In the SCI+EA group, colonic Per2 expression peaked at 12:00 and 20:00, and the nadir was observed at 8:00. Conclusion. SCI did not change the circadian rhythmicity of colonic Per2 expression in rats, and daily intestinal movement rhythmicity was retained. EA changed the daily rhythmicity of intestinal movement and the circadian rhythmicity of colonic Per2 expression in rats with SCI, increasing Per2 expression shortly after EA treatment.
Collapse
|
98
|
Polidarová L, Houdek P, Sládek M, Novosadová Z, Pácha J, Sumová A. Mechanisms of hormonal regulation of the peripheral circadian clock in the colon. Chronobiol Int 2016; 34:1-16. [PMID: 27661138 DOI: 10.1080/07420528.2016.1231198] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Colonic function is controlled by an endogenous clock that allows the colon to optimize its function on the daytime basis. For the first time, this study provided evidence that the clock is synchronized by rhythmic hormonal signals. In rat colon, adrenalectomy decreased and repeated applications of dexamethasone selectively rescued circadian rhythm in the expression of the clock gene Per1. Dexamethasone entrained the colonic clock in explants from mPer2Luc mice in vitro. In contrast, pinealectomy had no effect on the rat colonic clock, and repeated melatonin injections were not able to rescue the clock in animals maintained in constant light. Additionally, melatonin did not entrain the clock in colonic explants from mPer2Luc mice in vitro. However, melatonin affected rhythmic regulation of Nr1d1 gene expression in vivo. The findings provide novel insight into possible beneficial effects of glucocorticoids in the treatment of digestive tract-related diseases, greatly exceeding their anti-inflammatory action.
Collapse
Affiliation(s)
| | | | | | | | - Jiří Pácha
- b Department of Epithelial Function, Institute of Physiology , The Czech Academy of Sciences , Videnska , Prague , Czech Republic
| | | |
Collapse
|
99
|
Abstract
Circadian clocks are fundamental properties of all eukaryotic organisms and at least some prokaryotic organisms. Recent studies in our laboratory have shown that the gastrointestinal system contains a circadian clock that controls many, if not all, aspects of gastrointestinal function. We now report that at least one species of intestinal bacteria, Enterobacter aerogenes, responds to the pineal and gastrointestinal hormone melatonin by an increase in swarming activity. This swarming behavior is expressed rhythmically, with a period of approximately 24 hrs. Transformation of E. aerogenes to express luciferase with a MotA promoter reveals circadian patterns of bioluminescence that are synchronized by melatonin and whose periods are temperature compensated from 26°C to 40°C. Bioinformatics suggest similarities between the E. aerogenes and cyanobacterial clocks, suggesting the circadian clock may have evolved very early in the evolution of life. They also point to a coordination of host circadian clocks with those residing in the microbiota themselves.
Collapse
|
100
|
Swanson GR, Gorenz A, Shaikh M, Desai V, Kaminsky T, Van Den Berg J, Murphy T, Raeisi S, Fogg L, Vitaterna MH, Forsyth C, Turek F, Burgess HJ, Keshavarzian A. Night workers with circadian misalignment are susceptible to alcohol-induced intestinal hyperpermeability with social drinking. Am J Physiol Gastrointest Liver Physiol 2016; 311:G192-201. [PMID: 27198191 PMCID: PMC4967173 DOI: 10.1152/ajpgi.00087.2016] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 05/14/2016] [Indexed: 01/31/2023]
Abstract
Alcohol-induced intestinal hyperpermeability (AIHP) is a known risk factor for alcoholic liver disease (ALD), but only 20-30% of heavy alcoholics develop AIHP and ALD. The hypothesis of this study is that circadian misalignment would promote AIHP. We studied two groups of healthy subjects on a stable work schedule for 3 mo [day workers (DW) and night workers (NW)]. Subjects underwent two circadian phase assessments with sugar challenge to access intestinal permeability between which they drank 0.5 g/kg alcohol daily for 7 days. Sleep architecture by actigraphy did not differ at baseline or after alcohol between either group. After alcohol, the dim light melatonin onset (DLMO) in the DW group did not change significantly, but in the NW group there was a significant 2-h phase delay. Both the NW and DW groups had no change in small bowel permeability with alcohol, but only in the NW group was there an increase in colonic and whole gut permeability. A lower area under the curve of melatonin inversely correlated with increased colonic permeability. Alcohol also altered peripheral clock gene amplitude of peripheral blood mononuclear cells in CLOCK, BMAL, PER1, CRY1, and CRY2 in both groups, and inflammatory markers lipopolysaccharide-binding protein, LPS, and IL-6 had an elevated mesor at baseline in NW vs. DW and became arrhythmic with alcohol consumption. Together, our data suggest that central circadian misalignment is a previously unappreciated risk factor for AIHP and that night workers may be at increased risk for developing liver injury with alcohol consumption.
Collapse
Affiliation(s)
- Garth R. Swanson
- 1Department Digestive Diseases, Rush University Medical Center, Chicago, Illinois;
| | - Annika Gorenz
- 1Department Digestive Diseases, Rush University Medical Center, Chicago, Illinois;
| | - Maliha Shaikh
- 1Department Digestive Diseases, Rush University Medical Center, Chicago, Illinois;
| | - Vishal Desai
- 1Department Digestive Diseases, Rush University Medical Center, Chicago, Illinois;
| | - Thomas Kaminsky
- 1Department Digestive Diseases, Rush University Medical Center, Chicago, Illinois;
| | - Jolice Van Den Berg
- 1Department Digestive Diseases, Rush University Medical Center, Chicago, Illinois;
| | - Terrence Murphy
- 1Department Digestive Diseases, Rush University Medical Center, Chicago, Illinois;
| | - Shohreh Raeisi
- 1Department Digestive Diseases, Rush University Medical Center, Chicago, Illinois;
| | - Louis Fogg
- 4ommunity, Systems and Mental Health Nursing, Rush University, Chicago, Illinois;
| | - Martha Hotz Vitaterna
- 2Department of Neurobiology, Center for Sleep and Circadian Biology, Northwestern University, Evanston, Illinois; ,3Northwestern University Feinberg School of Medicine, Chicago, Illinois;
| | - Christopher Forsyth
- 1Department Digestive Diseases, Rush University Medical Center, Chicago, Illinois;
| | - Fred Turek
- 2Department of Neurobiology, Center for Sleep and Circadian Biology, Northwestern University, Evanston, Illinois; ,3Northwestern University Feinberg School of Medicine, Chicago, Illinois;
| | - Helen J. Burgess
- 1Department Digestive Diseases, Rush University Medical Center, Chicago, Illinois; ,5Department of Behavioral Sciences, Rush University Medical Center, Chicago, Illinois; and
| | - Ali Keshavarzian
- 1Department Digestive Diseases, Rush University Medical Center, Chicago, Illinois; ,6Departments of Pharmacology; Molecular Biophysics & Physiology, Rush University Medical Center, Chicago, Illinois
| |
Collapse
|