51
|
Wada K, Usuda H. [Therapeutic strategies for intractable digestive diseases: importance of disease models for evaluation of drug efficacy]. Nihon Yakurigaku Zasshi 2017; 150:183-187. [PMID: 28966216 DOI: 10.1254/fpj.150.183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
|
52
|
Keihanian S, Moss AC. Crohn’s disease stricture evaluation and management. TECHNIQUES IN GASTROINTESTINAL ENDOSCOPY 2016; 18:136-144. [DOI: 10.1016/j.tgie.2016.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
53
|
Jacob N, Targan SR, Shih DQ. Cytokine and anti-cytokine therapies in prevention or treatment of fibrosis in IBD. United European Gastroenterol J 2016; 4:531-40. [PMID: 27536363 DOI: 10.1177/2050640616649356] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 04/19/2016] [Indexed: 12/18/2022] Open
Abstract
The frequency of fibrosing Crohn's disease (CD) is significant, with approximately 40% of CD patients with ileal disease developing clinically apparent strictures throughout their lifetime. Although strictures may be subdivided into fibrotic, inflammatory, or mixed forms, despite immunosuppressive therapy in CD patients in the form of steroids or immunomodulators, the frequency of fibrostenosing complications has still remained significant. A vast number of genetic and epigenetic variables are thought to contribute to fibrostenosing disease, including those that affect cytokine biology, and therefore highlight the complexity of disease, but also shed light on targetable pathways. Exclusively targeting fibrosis may be difficult, however, because of the relatively slow evolution of fibrosis in CD, and the potential adverse effects of inhibiting pathways involved in tissue repair and mucosal healing. Acknowledging these caveats, cytokine-targeted therapy has become the mainstay of treatment for many inflammatory conditions and is being evaluated for fibrotic disorders. The question of whether anti-cytokine therapy will prove useful for intestinal fibrosis is, therefore, acutely relevant. This review will highlight some of the current therapeutics targeting cytokines involved in fibrosis.
Collapse
Affiliation(s)
- Noam Jacob
- F. Widjaja Foundation, Inflammatory Bowel & Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Division of Digestive Diseases, Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Stephan R Targan
- F. Widjaja Foundation, Inflammatory Bowel & Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - David Q Shih
- F. Widjaja Foundation, Inflammatory Bowel & Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| |
Collapse
|
54
|
Rieder F, Bettenworth D, Imai J, Inagaki Y. Intestinal Fibrosis and Liver Fibrosis: Consequences of Chronic Inflammation or Independent Pathophysiology? Inflamm Intest Dis 2016; 1:41-49. [PMID: 29922656 DOI: 10.1159/000445135] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 03/02/2016] [Indexed: 02/06/2023] Open
Abstract
Background Intestinal fibrosis and liver fibrosis represent a significant burden for our patients and health-care systems. Despite the severe clinical problem and the observation that fibrosis is reversible, no specific antifibrotic therapies exist. Summary In this review, using an 'East-West' scientific collaboration, we summarize the current knowledge on principal mechanisms shared by intestinal fibrosis and liver fibrosis. We furthermore discuss inflammation as the cause of fibrogenesis in both entities, depict unique features of intestinal and hepatic fibrosis, and provide a future outlook on the development of antifibrotic therapies. Key Messages A collaborative effort in the field of fibrosis, covering multiple organ systems, will have the highest chance of leading to the development of a successful antifibrotic intervention.
Collapse
Affiliation(s)
- Florian Rieder
- Department of Gastroenterology and Hepatology, Digestive Disease Institute, Cleveland, Ohio, USA.,Department of Pathobiology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | | | - Jin Imai
- Center for Matrix Biology and Medicine, Graduate School of Medicine, Tokai University, Isehara, Japan.,Department of Gastroenterology, Tokai University School of Medicine, Isehara, Japan
| | - Yutaka Inagaki
- Center for Matrix Biology and Medicine, Graduate School of Medicine, Tokai University, Isehara, Japan.,Department of Regenerative Medicine, Tokai University School of Medicine, Isehara, Japan
| |
Collapse
|
55
|
Egr-1 deficiency protects from renal inflammation and fibrosis. J Mol Med (Berl) 2016; 94:933-42. [DOI: 10.1007/s00109-016-1403-6] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 02/04/2016] [Accepted: 02/29/2016] [Indexed: 10/22/2022]
|
56
|
Monteleone I, Zorzi F, Marafini I, Di Fusco D, Dinallo V, Caruso R, Izzo R, Franzè E, Colantoni A, Pallone F, Monteleone G. Aryl hydrocarbon receptor-driven signals inhibit collagen synthesis in the gut. Eur J Immunol 2016; 46:1047-57. [PMID: 26786786 DOI: 10.1002/eji.201445228] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 12/10/2015] [Accepted: 01/14/2016] [Indexed: 12/11/2022]
Abstract
Fibrostrictures (FS) are a major complication of Crohn's disease (CD). Pathogenesis of FS is not fully understood, but activation of fibroblasts and excessive collagen deposition are crucial in the development of FS. Here, we investigated the role of aryl hydrocarbon receptor (AhR) in intestinal fibrosis. AhR RNA and protein expression were evaluated in intestinal fibroblasts of CD patients and controls. CD fibroblasts were stimulated with TGF-β1 or TNF-α in the presence or absence of the AhR activator Ficz, an AhR antagonist CH223191, or a specific AhR-silencing RNA. In CD fibroblasts, TGF-β1 and TNF-α increased Col1A1, Col3A1 and α-SMA transcripts and collagen secretion and this effect was reduced by Ficz and upregulated by CH22319. TGF-β1 or TNF-α induced activation of p38 and ERK1/2 MAP kinases was decreased by Ficz and increased by CH223191. The inhibitory effect of Ficz on Map kinase activation and collagen induction was abolished by AhR silencing. To assess the role of AhR in vivo, mice with trinitrobenzene-sulfonic-acid induced colonic fibrosis were given Ficz or CH223191. Mice given either Ficz or CH223191 produced less or more collagen respectively as compared with control mice. Our results indicate that AhR is a negative regulator of profibrotic signals in the gut.
Collapse
Affiliation(s)
- Ivan Monteleone
- Dipartimento di Medicina dei Sistemi, Università Tor Vergata, Rome, Italy
| | - Francesca Zorzi
- Dipartimento di Medicina dei Sistemi, Università Tor Vergata, Rome, Italy
| | - Irene Marafini
- Dipartimento di Medicina dei Sistemi, Università Tor Vergata, Rome, Italy
| | - Davide Di Fusco
- Dipartimento di Medicina dei Sistemi, Università Tor Vergata, Rome, Italy
| | - Vincenzo Dinallo
- Dipartimento di Medicina dei Sistemi, Università Tor Vergata, Rome, Italy
| | - Roberta Caruso
- Dipartimento di Medicina dei Sistemi, Università Tor Vergata, Rome, Italy
| | - Roberta Izzo
- Dipartimento di Medicina dei Sistemi, Università Tor Vergata, Rome, Italy
| | - Eleonora Franzè
- Dipartimento di Medicina dei Sistemi, Università Tor Vergata, Rome, Italy
| | - Alfredo Colantoni
- Dipartimento di Medicina dei Sistemi, Università Tor Vergata, Rome, Italy
| | - Francesco Pallone
- Dipartimento di Medicina dei Sistemi, Università Tor Vergata, Rome, Italy
| | | |
Collapse
|
57
|
Karo-Atar D, Bordowitz A, Wand O, Pasmanik-Chor M, Fernandez IE, Itan M, Frenkel R, Herbert DR, Finkelman FD, Eickelberg O, Munitz A. A protective role for IL-13 receptor α 1 in bleomycin-induced pulmonary injury and repair. Mucosal Immunol 2016; 9:240-53. [PMID: 26153764 PMCID: PMC4703942 DOI: 10.1038/mi.2015.56] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 05/14/2015] [Indexed: 02/04/2023]
Abstract
Molecular mechanisms that regulate lung repair vs. progressive scarring in pulmonary fibrosis remain elusive. Interleukin (IL)-4 and IL-13 are pro-fibrotic cytokines that share common receptor chains including IL-13 receptor (R) α1 and are key pharmacological targets in fibrotic diseases. However, the roles of IL-13Rα1 in mediating lung injury/repair are unclear. We report dysregulated levels of IL-13 receptors in the lungs of bleomycin-treated mice and to some extent in idiopathic pulmonary fibrosis patients. Transcriptional profiling demonstrated an epithelial cell-associated gene signature that was homeostatically dependent on IL-13Rα1 expression. IL-13Rα1 regulated a striking array of genes in the lung following bleomycin administration and Il13ra1 deficiency resulted in exacerbated bleomycin-induced disease. Increased pathology in bleomycin-treated Il13ra1(-/-) mice was due to IL-13Rα1 expression in structural and hematopoietic cells but not due to increased responsiveness to IL-17, IL-4, IL-13, increased IL-13Rα2 or type 1 IL-4R signaling. These data highlight underappreciated protective roles for IL-13Rα1 in lung injury and homeostasis.
Collapse
Affiliation(s)
- D Karo-Atar
- Department of Clinical Microbiology and Immunology, The Sackler School of Medicine, The Tel-Aviv University, Ramat Aviv, Israel
| | - A Bordowitz
- Department of Clinical Microbiology and Immunology, The Sackler School of Medicine, The Tel-Aviv University, Ramat Aviv, Israel
| | - O Wand
- Department of Clinical Microbiology and Immunology, The Sackler School of Medicine, The Tel-Aviv University, Ramat Aviv, Israel
| | - M Pasmanik-Chor
- Bioinformatics Unit, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - I E Fernandez
- Comprehensive Pneumology Center, Ludwig Maximilians University, University Hospital Grosshadern, and Helmholtz Zentrum München, Member of the German Center for Lung Research, Munich, Germany
| | - M Itan
- Department of Clinical Microbiology and Immunology, The Sackler School of Medicine, The Tel-Aviv University, Ramat Aviv, Israel
| | - R Frenkel
- Department of Math, Physics and Computer Science, University of Cincinnati, Cincinnati, Ohio, USA
| | - D R Herbert
- Division of Experimental Medicine, University of California, San Francisco, California, USA
| | - F D Finkelman
- Division of Allergy, Immunology and Rheumatology, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA,Department of Medicine, Cincinnati Veterans Affairs Medical Center, Cincinnati, Ohio, USA,Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - O Eickelberg
- Comprehensive Pneumology Center, Ludwig Maximilians University, University Hospital Grosshadern, and Helmholtz Zentrum München, Member of the German Center for Lung Research, Munich, Germany
| | - A Munitz
- Department of Clinical Microbiology and Immunology, The Sackler School of Medicine, The Tel-Aviv University, Ramat Aviv, Israel,()
| |
Collapse
|
58
|
Abstract
Inflammatory Bowel Diseases, Crohn's disease and ulcerative colitis, result from the uncontrolled inflammation that occurs in genetically susceptible individuals and the dysregulation of the innate and adaptive immune systems. The response of these immune systems to luminal gut microbiota and their products results in altered intestinal permeability, loss of barrier function, and mucosal inflammation and ulceration. Animal models of experiment intestinal inflammation have been developed that leverage the development of spontaneous inflammation in certain mouse strains, e.g. Samp1/Yit mice, or induction of inflammation using gene-targeting e.g. IL-10 null mice, administration of exogenous agents e.g. DSS, or adoptive transfer of T-cells into immunodeficient mice, e.g. CD4(+) CD45Rb(Hi) T-cell transfer. Colitis induced by rectal instillation of the haptenizing agent, 2,4,6 trinitrobenzene sulfonic acid, is one of the most commonly used and well-characterized models of Crohn's disease in humans.
Collapse
Affiliation(s)
- John F Kuemmerle
- Division of Gastroenterology, Hepatology and Nutrition, Medical College of Virginia Campus, Virginia Commonwealth University, Molecular Medicine Research Building 5-031, P.O. Box 980341, Richmond, VA, 23298-0341, USA.
| |
Collapse
|
59
|
Barnes JC, Lumsden RV, Worrell J, Counihan IP, O'Beirne SL, Belperio JA, Fabre A, Donnelly SC, Boylan D, Kane R, Keane MP. CXCR3 Requirement for the Interleukin-13-Mediated Up-Regulation of Interleukin-13Rα2 in Pulmonary Fibroblasts. Am J Respir Cell Mol Biol 2015; 53:217-25. [PMID: 25514189 DOI: 10.1165/rcmb.2013-0433oc] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive disease characterized by fibrosis and abnormal vascularity. IL-13, a profibrotic cytokine that plays a role in IPF, functions through the Jak/STAT pathway after binding to the IL-13 receptor α1 (IL-13Rα1)/IL-4Rα complex. IL-13 also binds to IL-13Rα2, which has been thought to function as a nonsignaling decoy receptor, although possible signaling roles of this receptor have been proposed. CXCR3 and its IFN-inducible ligands-CXCL9, CXCL10, and CXCL11-have been implicated in vascular remodeling and fibroblast motility during the development of IPF. In this study, CXCR3 expression was demonstrated in cultured pulmonary fibroblasts from wild-type BALB/c mice and was found to be necessary for the IL-13-mediated gene and protein up-regulation of IL-13Rα2. In fibroblasts from CXCR3-deficient mice, STAT6 activation was prolonged. This study is the first to demonstrate the expression of CXCR3 in fibroblasts and its association with the expression of IL-13Rα2. Taken together, the results from this study point strongly to a requirement for CXCR3 for IL-13-mediated IL-13Rα2 gene expression. Understanding the function of CXCR3 in IL-13-mediated lung injury may lead to novel approaches to combat the development of pulmonary fibrosis, whether by limiting the effects of IL-13 or by manipulation of angiostatic pathways. The elucidation of the complex relationship between these antifibrotic receptors and manipulation of the CXCR3-mediated regulation of IL-13Rα2 may represent a novel therapeutic modality in cases of acute lung injury or chronic inflammation that may progress to fibrosis.
Collapse
Affiliation(s)
- Jennifer C Barnes
- 1 UCD Conway Institute of Biomolecular and Biomedical Research and School of Medicine and Medical Science, University College Dublin, Belfield, Dublin, Ireland
| | - Robert V Lumsden
- 1 UCD Conway Institute of Biomolecular and Biomedical Research and School of Medicine and Medical Science, University College Dublin, Belfield, Dublin, Ireland
| | - Julie Worrell
- 1 UCD Conway Institute of Biomolecular and Biomedical Research and School of Medicine and Medical Science, University College Dublin, Belfield, Dublin, Ireland
| | - Ian P Counihan
- 1 UCD Conway Institute of Biomolecular and Biomedical Research and School of Medicine and Medical Science, University College Dublin, Belfield, Dublin, Ireland
| | - Sarah L O'Beirne
- 1 UCD Conway Institute of Biomolecular and Biomedical Research and School of Medicine and Medical Science, University College Dublin, Belfield, Dublin, Ireland
| | - John A Belperio
- 2 Division of Pulmonary and Critical Care Medicine, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California; and
| | | | - Seamas C Donnelly
- 1 UCD Conway Institute of Biomolecular and Biomedical Research and School of Medicine and Medical Science, University College Dublin, Belfield, Dublin, Ireland.,4 Respiratory Medicine, St. Vincent's University Hospital, Elm Park, Dublin, Ireland
| | - Denise Boylan
- 1 UCD Conway Institute of Biomolecular and Biomedical Research and School of Medicine and Medical Science, University College Dublin, Belfield, Dublin, Ireland
| | - Rosemary Kane
- 1 UCD Conway Institute of Biomolecular and Biomedical Research and School of Medicine and Medical Science, University College Dublin, Belfield, Dublin, Ireland
| | - Michael P Keane
- 1 UCD Conway Institute of Biomolecular and Biomedical Research and School of Medicine and Medical Science, University College Dublin, Belfield, Dublin, Ireland.,4 Respiratory Medicine, St. Vincent's University Hospital, Elm Park, Dublin, Ireland
| |
Collapse
|
60
|
MESOS: considerations in designing a mechanistic study for a biologic used to treat asthma. ACTA ACUST UNITED AC 2015. [DOI: 10.4155/cli.15.36] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
61
|
Abstract
Introduction The present review serves to provide a concise overview of the current knowledge on therapeutic strategies with regard to fibrostenotic lesions in Crohn's disease. Methods A literature search was performed focusing on the last 5 years, and current concepts of pathophysiology, epidemiology, and treatment have been summarized. Results Fibrostenotic lesions in Crohn's disease are currently considered to be a consequence of the chronic inflammatory nature of the disease. Hence, therapeutic strategies are limited to the concept that early treatment of the inflammatory lesions can prevent structural changes, and to various endoscopic and surgical approaches. Direct targeting of the fibrostenotic lesion itself has not been the focus until now. This review will provide an overview of the pathophysiology and epidemiology of fibrostenotic lesions including current therapeutic approaches. Since research with regard to other organ systems and fibrosis is far more advanced, current strategies from available studies in these areas will be discussed. The results and the potential impact for Crohn's disease will be considered. Conclusion The vision of these approaches is to reverse structural changes and restore normal function.
Collapse
Affiliation(s)
- Britta Siegmund
- Medical Department (Gastroenterology, Infectious Diseases, Rheumatology), Charité - University Medicine Berlin, Campus Benjamin Franklin, Berlin, Germany
| |
Collapse
|
62
|
Abstract
Importance of chronic fibroproliferative diseases (FDs) including pulmonary fibrosis, chronic kidney diseases, inflammatory bowel disease, and cardiovascular or liver fibrosis is rapidly increasing and they have become a major public health problem. According to some estimates about 45% of all deaths are attributed to FDs in the developed world. Independently of their etiology the common hallmark of FDs is chronic inflammation. Infiltrating immune cells, endothelial, epithelial, and other resident cells of the injured organ release an orchestra of inflammatory mediators, which stimulate the proliferation and excessive extracellular matrix (ECM) production of myofibroblasts, the effector cells of organ fibrosis. Abnormal amount of ECM disturbs the original organ architecture leading to the decline of function. Although our knowledge is rapidly expanding, we still have neither a diagnostic tool to detect nor a drug to specifically target fibrosis. Therefore, there is an urgent need for the more comprehensive understanding of the pathomechanism of fibrosis and development of novel diagnostic and therapeutic strategies. In the present review we provide an overview of the common key mediators of organ fibrosis highlighting the role of interleukin-10 (IL-10) cytokine family members (IL-10, IL-19, IL-20, IL-22, IL-24, and IL-26), which recently came into focus as tissue remodeling-related inflammatory cytokines.
Collapse
|
63
|
Li C, Iness A, Yoon J, Grider JR, Murthy KS, Kellum JM, Kuemmerle JF. Noncanonical STAT3 activation regulates excess TGF-β1 and collagen I expression in muscle of stricturing Crohn's disease. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2015; 194:3422-31. [PMID: 25740948 PMCID: PMC4369432 DOI: 10.4049/jimmunol.1401779] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Increased TGF-β1 and TGF-β1-dependent Collagen I production in intestinal mesenchymal cells result in fibrosis in patients with Montreal B2 fibrostenotic Crohn's disease. Numerous cytokines, including IL-6, are produced by activated mesenchymal cells themselves and activate STAT3. The aim of the current study was to determine the mechanisms by which STAT-3 activation might result in intestinal fibrosis. Cytokine levels were measured by ELISA. STAT3 and suppressor of cytokine signaling 3 protein levels were measured by immunoblot, STAT3-TGFB1 DNA-binding activity by chromatin immunoprecipitation, and TGFB1 transcriptional activity by luciferase reporter assay. TGF-β1 (TGFB1), Collagen1α1, and connective tissue growth factor (CTGF) gene expression was measured by quantitative RT-PCR. The role of STAT3 activation was determined using STAT3 inhibitor, Stattic, and by transfection of STAT3 mutants. Autocrine production of cytokines was increased in muscle cells of B2 phenotype patients from strictures and normal intestine in the same patient and compared with other Crohn's phenotypes, ulcerative colitis, and non-Crohn's patients. A unique pattern of STAT3 phosphorylation emerged: high STAT3(S727) and low STAT3(Y705) in strictures and the opposite in unaffected intestine. TGFB1 transcriptional activity was regulated by phospho-STAT3(S727) and was decreased by Stattic or dominant-negative STAT3(S727A). TGF-β1, COL1A1, and CTGF expression was inhibited by Stattic or dominant-negative STAT3(S727A). Treatment of normal muscle cells with IL-6 or expression of constitutively active STAT3(S727E) phenocopied muscle cells from strictured intestine. Neutralization of autocrine IL-6 reversed STAT3 phosphorylation and normalized expression of TGF-β1 in strictured intestinal muscle. The ability of Stattic to improve development of fibrosis was confirmed in mice with 2,4,6-trinitrobenzenesulfonic acid-induced colitis. We observed a unique phospho-STAT3(S727) response in patients with Montreal B2 Crohn's disease, particularly in response to IL-6 leading to increased TGF-β1, collagen, and CTGF production in ileal strictures.
Collapse
Affiliation(s)
- Chao Li
- Department of Medicine, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA 23298
| | - Audra Iness
- Department of Medicine, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA 23298
| | - Jennifer Yoon
- Department of Medicine, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA 23298
| | - John R Grider
- Department of Medicine, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA 23298; VCU Program in Enteric Neuromuscular Sciences, Department of Physiology and Biophysics, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA 23298; and
| | - Karnam S Murthy
- Department of Medicine, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA 23298; VCU Program in Enteric Neuromuscular Sciences, Department of Physiology and Biophysics, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA 23298; and
| | - John M Kellum
- Department of Surgery, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA 23298
| | - John F Kuemmerle
- Department of Medicine, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA 23298; VCU Program in Enteric Neuromuscular Sciences, Department of Physiology and Biophysics, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA 23298; and
| |
Collapse
|
64
|
Lumsden RV, Worrell JC, Boylan D, Walsh SM, Cramton J, Counihan I, O'Beirne S, Medina MF, Gauldie J, Fabre A, Donnelly SC, Kane R, Keane MP. Modulation of pulmonary fibrosis by IL-13Rα2. Am J Physiol Lung Cell Mol Physiol 2015; 308:L710-8. [DOI: 10.1152/ajplung.00120.2014] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Accepted: 02/01/2015] [Indexed: 11/22/2022] Open
Abstract
Pulmonary fibrosis is a progressive and fatal disease that involves the remodeling of the distal airspace and the lung parenchyma, which results in compromised gas exchange. The median survival time once diagnosed is less than three years. Interleukin (IL)-13 has been shown to play a role in a number of inflammatory and fibrotic diseases. IL-13 modulates its effector functions via a complex receptor system that includes the IL-4 receptor (R) α, IL-13Rα1, and the IL-13Rα2. IL-13Rα1 binds IL-13 with low affinity, yet, when it forms a complex with IL-4α, it binds with much higher affinity, inducing the effector functions of IL-13. IL-13Rα2 binds IL-13 with high affinity but has a short cytoplasmic tail and has been shown to act as a nonsignaling decoy receptor. Transfection of fibroblasts and epithelial cells with IL-13Rα2 inhibited the IL-13 induction of soluble collagen, TGF-β, and CCL17. Adenoviral overexpression of IL-13Rα2 in the lung reduced bleomycin-induced fibrosis. Our work shows that overexpression of IL-13Rα2 inhibits the IL-13 induction of fibrotic markers in vitro and inhibits bleomycin-induced pulmonary fibrosis. In summary our study highlights the antifibrotic nature of IL-13Ra2.
Collapse
Affiliation(s)
- Robert V. Lumsden
- Conway Institute of Biomedical and Biomolecular Science, University College Dublin, Dublin, Ireland
| | - Julie C. Worrell
- Conway Institute of Biomedical and Biomolecular Science, University College Dublin, Dublin, Ireland
| | - Denise Boylan
- Conway Institute of Biomedical and Biomolecular Science, University College Dublin, Dublin, Ireland
| | - Sinead M. Walsh
- Conway Institute of Biomedical and Biomolecular Science, University College Dublin, Dublin, Ireland
- Department of Respiratory Medicine, St. Vincent's University Hospital, Dublin, Ireland
| | - Jennifer Cramton
- Conway Institute of Biomedical and Biomolecular Science, University College Dublin, Dublin, Ireland
| | - Ian Counihan
- Conway Institute of Biomedical and Biomolecular Science, University College Dublin, Dublin, Ireland
- Department of Respiratory Medicine, St. Vincent's University Hospital, Dublin, Ireland
| | - Sarah O'Beirne
- Conway Institute of Biomedical and Biomolecular Science, University College Dublin, Dublin, Ireland
- Department of Respiratory Medicine, St. Vincent's University Hospital, Dublin, Ireland
| | - Maria Fe Medina
- Fitzhenry Laboratory, Department of Pathology, McMaster University, Hamilton, Ontario, Canada; and
| | - Jack Gauldie
- Fitzhenry Laboratory, Department of Pathology, McMaster University, Hamilton, Ontario, Canada; and
| | - Aurelie Fabre
- Department of Pathology, St. Vincent's University Hospital, Dublin, Ireland
| | - Seamas C. Donnelly
- Conway Institute of Biomedical and Biomolecular Science, University College Dublin, Dublin, Ireland
- Department of Respiratory Medicine, St. Vincent's University Hospital, Dublin, Ireland
| | - Rosemary Kane
- Conway Institute of Biomedical and Biomolecular Science, University College Dublin, Dublin, Ireland
| | - Michael P. Keane
- Conway Institute of Biomedical and Biomolecular Science, University College Dublin, Dublin, Ireland
- Department of Respiratory Medicine, St. Vincent's University Hospital, Dublin, Ireland
| |
Collapse
|
65
|
Guo J, Yao H, Lin X, Xu H, Dean D, Zhu Z, Liu G, Sime P. IL-13 induces YY1 through the AKT pathway in lung fibroblasts. PLoS One 2015; 10:e0119039. [PMID: 25775215 PMCID: PMC4361578 DOI: 10.1371/journal.pone.0119039] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2014] [Accepted: 01/20/2015] [Indexed: 01/18/2023] Open
Abstract
A key feature of lung fibrosis is the accumulation of myofibroblasts. Interleukin 13 (IL-13) is a pro-fibrotic mediator that directly and indirectly influences the activation of myofibroblasts. Transforming growth factor beta (TGF-β) promotes the differentiation of fibroblasts into myofibroblasts, and can be regulated by IL-13. However, IL-13’s downstream signaling pathways are not completely understood. We previously reported that the transcription factor Yin Yang 1 (YY1) is upregulated in fibroblasts treated with TGF-β and in the lungs of mice and patients with pulmonary fibrosis. Moreover, YY1 directly regulates collagen and alpha smooth muscle actin (α-SMA) expression in fibroblasts. However, it is not known if IL-13 regulates fibroblast activation through YY1 expression. We hypothesize that IL-13 up-regulates YY1 expression through regulation of AKT activation, leading to fibroblast activation. In this study we found that YY1 was upregulated by IL-13 in lung fibroblasts in a dose- and time-dependent manner, resulting in increased α-SMA. Conversely, knockdown of YY1 blocked IL-13-induced α-SMA expression in fibroblasts. Furthermore, AKT phosphorylation was increased in fibroblasts treated with IL-13, and AKT overexpression upregulated YY1, whereas blockade of AKT phosphorylation suppressed the induction of YY1 by IL-13 in vitro. In vivo YY1 was upregulated in fibrotic lungs from CC10-IL-13 transgenic mice compared to that from wild-type littermates, which was associated with increased AKT phosphorylation. Taken together, these findings demonstrate that IL-13 is a potent stimulator and activator of fibroblasts, at least in part, through AKT-mediated YY1 activation.
Collapse
Affiliation(s)
- Jia Guo
- Department of Medicine, University of Rochester Medical School, Rochester, New York, United States of America
- * E-mail:
| | - Hongwei Yao
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Xin Lin
- Department of Pediatrics, University of Rochester; Rochester, New York, United States of America
| | - Haodong Xu
- Pathology and Laboratory Medicine, David Geffen School of Medicine, UCLA, Los Angeles, California, United States of America
| | - David Dean
- Department of Pediatrics, University of Rochester; Rochester, New York, United States of America
| | - Zhou Zhu
- Department of Allergy and Clinic Immunology, Yale University, New Haven, Connecticut, United States of America
| | - Gang Liu
- Department of medicine, Pulmonary and critical care, University of Alabama, Birmingham, Alabama, United States of America
| | - Patricia Sime
- Department of Medicine, University of Rochester Medical School, Rochester, New York, United States of America
- Department of Pediatrics, University of Rochester; Rochester, New York, United States of America
| |
Collapse
|
66
|
Di Maggio FM, Minafra L, Forte GI, Cammarata FP, Lio D, Messa C, Gilardi MC, Bravatà V. Portrait of inflammatory response to ionizing radiation treatment. J Inflamm (Lond) 2015; 12:14. [PMID: 25705130 PMCID: PMC4336767 DOI: 10.1186/s12950-015-0058-3] [Citation(s) in RCA: 186] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Accepted: 01/29/2015] [Indexed: 01/05/2023] Open
Abstract
Ionizing radiation (IR) activates both pro-and anti-proliferative signal pathways producing an imbalance in cell fate decision. IR is able to regulate several genes and factors involved in cell-cycle progression, survival and/or cell death, DNA repair and inflammation modulating an intracellular radiation-dependent response. Radiation therapy can modulate anti-tumour immune responses, modifying tumour and its microenvironment. In this review, we report how IR could stimulate inflammatory factors to affect cell fate via multiple pathways, describing their roles on gene expression regulation, fibrosis and invasive processes. Understanding the complex relationship between IR, inflammation and immune responses in cancer, opens up new avenues for radiation research and therapy in order to optimize and personalize radiation therapy treatment for each patient.
Collapse
Affiliation(s)
- Federica Maria Di Maggio
- />Department of Pathobiology and Medical and Forensic Biotechnologies, University of Palermo, Palermo, Italy
- />IBFM CNR – LATO, Contrada Pietrapollastra Pisciotto, Cefalù, PA Italy
| | - Luigi Minafra
- />IBFM CNR – LATO, Contrada Pietrapollastra Pisciotto, Cefalù, PA Italy
| | - Giusi Irma Forte
- />IBFM CNR – LATO, Contrada Pietrapollastra Pisciotto, Cefalù, PA Italy
| | | | - Domenico Lio
- />Department of Pathobiology and Medical and Forensic Biotechnologies, University of Palermo, Palermo, Italy
| | - Cristina Messa
- />IBFM CNR – LATO, Contrada Pietrapollastra Pisciotto, Cefalù, PA Italy
- />Department of Health Sciences, Tecnomed Foundation, University of Milano-Bicocca, Milan, Italy
- />Nuclear Medicine Center, San Gerardo Hospital, Monza, Italy
| | - Maria Carla Gilardi
- />IBFM CNR – LATO, Contrada Pietrapollastra Pisciotto, Cefalù, PA Italy
- />Department of Health Sciences, Tecnomed Foundation, University of Milano-Bicocca, Milan, Italy
- />Nuclear Medicine, San Raffaele Scientific Institute, Milan, Italy
| | - Valentina Bravatà
- />IBFM CNR – LATO, Contrada Pietrapollastra Pisciotto, Cefalù, PA Italy
| |
Collapse
|
67
|
Abstract
The understanding of the intestinal inflammation occurring in the inflammatory bowel diseases (IBD) has been immeasurably advanced by the development of the now numerous murine models of intestinal inflammation. The usefulness of this research tool in IBD studies has been enabled by our improved knowledge of mucosal immunity and thus our improved ability to interpret the complex responses of mice with various causes of colitis; in addition, it has been powered by the availability of models in which the mice have specific genetic and/or immunologic defects that can be related to the origin of the inflammation. Finally, and more recently, it has been enhanced by our newly acquired ability to define the intestinal microbiome under various conditions and thus to understand how intestinal microorganisms impact on inflammation. In this brief review of murine models of intestinal inflammation we focus mainly on the most often used models that are, not incidentally, also the models that have yielded major insights into IBD pathogenesis.
Collapse
Affiliation(s)
| | | | - Warren Strober
- Correspondence Address correspondence to: Warren Strober, MD, National Institutes of Health, Mucosal Immunity Section, 10 Center Drive, CRC Bldg. 10 5west-3940, Bethesda, Maryland 20892. fax: (301) 402-2240.
| |
Collapse
|
68
|
Boirivant M. Experimental Models of Gastrointestinal Inflammatory Diseases. Mucosal Immunol 2015. [DOI: 10.1016/b978-0-12-415847-4.00079-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
69
|
|
70
|
Latella G, Di Gregorio J, Flati V, Rieder F, Lawrance IC. Mechanisms of initiation and progression of intestinal fibrosis in IBD. Scand J Gastroenterol 2015; 50:53-65. [PMID: 25523556 DOI: 10.3109/00365521.2014.968863] [Citation(s) in RCA: 131] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Intestinal fibrosis is a common complication of the inflammatory bowel diseases (IBDs). It becomes clinically apparent in >30% of patients with Crohn's disease (CD) and in about 5% with ulcerative colitis (UC). Fibrosis is a consequence of local chronic inflammation and is characterized by excessive extracellular matrix (ECM) protein deposition. ECM is produced by activated myofibroblasts, which are modulated by both, profibrotic and antifibrotic factors. Fibrosis depends on the balance between the production and degradation of ECM proteins. This equilibrium can be impacted by a complex and dynamic interaction between profibrotic and antifibrotic mediators. Despite the major therapeutic advances in the treatment of active inflammation in IBD over the past two decades, the incidence of intestinal strictures in CD has not significantly changed as the current anti-inflammatory therapies neither prevent nor reverse the established fibrosis and strictures. This implies that control of intestinal inflammation does not necessarily affect the associated fibrotic process. The conventional view that intestinal fibrosis is an inevitable and irreversible process in patients with IBD is also gradually changing in light of an improved understanding of the cellular and molecular mechanisms that underline the pathogenesis of fibrosis. Comprehension of the mechanisms of intestinal fibrosis is thus vital and may pave the way for the developments of antifibrotic agents and new therapeutic approaches in IBD.
Collapse
Affiliation(s)
- Giovanni Latella
- Department of Life, Health and Environmental Sciences, Gastroenterology Unit, University of L'Aquila , L'Aquila , Italy
| | | | | | | | | |
Collapse
|
71
|
Rogler G. New therapeutic avenues for treatment of fibrosis: can we learn from other diseases? Dig Dis 2014; 32 Suppl 1:39-49. [PMID: 25531352 DOI: 10.1159/000367825] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Crohn's disease (CD) is characterized by the frequent occurrence of complications, such as fibrotic strictures and subsequently the need for CD-related surgery. Chronic or recurrent inflammation is generally regarded to be a necessary precondition for the initiation of intestinal fibrosis. In this view, fibrosis is a pathologically augmented healing response to inflammation-induced mucosal tissue destruction and injury. At present, there are no approved or effective medical therapies aimed specifically at fibrosis or stricture in IBD. Indirect benefits may occur from anti-inflammatory therapies, although there is no consensus on this. Therapy for fibrosis is complicated by the fact that a wound-healing response is essential in CD and ulcerative colitis. Several pharmaceutical companies are now working on the therapy of fibrosis in other diseases. Strategies interfering with TGF-β expression and activation are promising. Pirfenidone has been studied in several clinical trials. Further therapeutic options are second-generation and wide-spectrum tyrosine kinase inhibitors. These inhibit growth factor receptor signaling, thus reducing fibrosis in animal models and some patients with tumor-associated fibrosis. At present, the development of antifibrotic therapies takes place in other diseases such as lung and liver fibrosis. This is partially due to a lack of experimental models for gut fibrosis and the fact that reliable readouts (MRI, serum markers) in patients are lacking. It will be important to test the above-mentioned newly available treatment strategies in IBD to profit from progress in other fibrotic diseases.
Collapse
Affiliation(s)
- Gerhard Rogler
- Division of Gastroenterology and Hepatology, University Hospital Zurich, and Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
72
|
Ndlovu H, Brombacher F. Role of IL-4Rα during acute schistosomiasis in mice. Parasite Immunol 2014; 36:421-7. [PMID: 24127774 PMCID: PMC4286023 DOI: 10.1111/pim.12080] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 10/08/2013] [Indexed: 12/31/2022]
Abstract
Schistosomiasis is an important parasitic disease that causes major host morbidity and mortality in endemic areas. Research conducted in mouse models of schistosomiasis has provided great insights and understanding of how host protective immunity is orchestrated and key cellular populations involved in this process. Earlier studies using cytokine-deficient mice demonstrated the importance of IL-4 and IL-10 in mediating host survival during acute schistosomiasis. Subsequent studies employing transgenic mice carrying cell-specific deletion of IL-4Rα generated using the Cre/LoxP recombination system have been instrumental in providing more in-depth understanding of the mechanisms conferring host resistance to Schistosoma mansoni infection. In this review, we will summarize the contributions of IL-4/IL-13-responsive cellular populations in host resistance during acute schistosomiasis and their role in limiting tissue pathology.
Collapse
Affiliation(s)
- H Ndlovu
- Division of Immunology, International Center for Genetic Engineering and Biotechnology (ICGEB), Cape Town Component and Institute of Infectious Diseases and Molecular Medicine (IIDMM), University of Cape Town, Cape Town, South Africa
| | | |
Collapse
|
73
|
Fuss IJ, Joshi B, Yang Z, Degheidy H, Fichtner-Feigl S, de Souza H, Rieder F, Scaldaferri F, Schirbel A, Scarpa M, West G, Yi C, Xu L, Leland P, Yao M, Mannon P, Puri RK, Fiocchi C, Strober W. IL-13Rα2-bearing, type II NKT cells reactive to sulfatide self-antigen populate the mucosa of ulcerative colitis. Gut 2014; 63:1728-36. [PMID: 24515806 PMCID: PMC4782805 DOI: 10.1136/gutjnl-2013-305671] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
Abstract
OBJECTIVE Previous studies have shown that ulcerative colitis (UC) is associated with the presence of lamina propria non-invariant (Type II) NKT cells producing IL-13 and mediating epithelial cell cytotoxicity. Here we sought to define the antigen(s) stimulating the NKT cells and to quantitate these cells in the UC lamina propria. DESIGN Detection of Type II NKT cells in UC lamina propria mononuclear cells (LPMC) with lyso-sulfatide loaded tetramer and quantum dot-based flow cytometry and staining. Culture of UC LPMCs with lyso-sulfatide glycolipid to determine sulfatide induction of epithelial cell cytotoxicity, IL-13 production and IL-13Rα2 expression. Blinded quantum dot-based phenotypic analysis to assess UC LPMC expression of IL-13Rα2, CD161 and IL-13. RESULTS Approximately 36% of UC LPMC were lyso-sulfatide tetramer positive, whereas few, if any, control LPMCs were positive. When tested, the positive cells were also CD3 and IL-13Rα2 positive. Culture of UC LPMC with lyso-sulfatide glycolipid showed that sulfatide stimulates UC LPMC production of IL-13 and induces UC CD161 LPMC-mediated cytotoxicity of activated epithelial cells; additionally, lyso-sulfatide induces enhanced expression of IL-13Rα2. Finally, blinded phenotypic analysis of UC LP MC using multicolour quantum dot-staining technology showed that approximately 60% of the LPMC bear both IL-13Rα2 and CD161 and most of these cells also produce IL-13. CONCLUSIONS These studies show that UC lamina propria is replete with Type II NKT cells responsive to lyso-sulfatide glycolipid and bearing IL-13Rα2. Since lyso-sulfatide is a self-antigen, these data suggest that an autoimmune response is involved in UC pathogenesis.
Collapse
Affiliation(s)
- Ivan J. Fuss
- Mucosal Immunity Section, Laboratory of Host Defenses, NIAID NIH, Bethesda Maryland, USA, 20892
| | - Bharat Joshi
- Division of Cellular and Gene Therapies, Center for Biologics Evaluation and Research FDA, Bethesda Maryland, USA, 20892
| | - Zhiqiong Yang
- Mucosal Immunity Section, Laboratory of Host Defenses, NIAID NIH, Bethesda Maryland, USA, 20892
| | - Heba Degheidy
- Division of Cellular and Gene Therapies, Center for Biologics Evaluation and Research FDA, Bethesda Maryland, USA, 20892
| | | | - Heitor de Souza
- Department of Pathobiology, The Cleveland Clinic Foundation, Cleveland Ohio, USA, 44195
| | - Florian Rieder
- Department of Pathobiology, The Cleveland Clinic Foundation, Cleveland Ohio, USA, 44195
| | - Franco Scaldaferri
- Department of Pathobiology, The Cleveland Clinic Foundation, Cleveland Ohio, USA, 44195
| | - Anja Schirbel
- Department of Pathobiology, The Cleveland Clinic Foundation, Cleveland Ohio, USA, 44195
| | - Melania Scarpa
- Department of Pathobiology, The Cleveland Clinic Foundation, Cleveland Ohio, USA, 44195
| | - Gail West
- Department of Pathobiology, The Cleveland Clinic Foundation, Cleveland Ohio, USA, 44195
| | - Chuli Yi
- Mucosal Immunity Section, Laboratory of Host Defenses, NIAID NIH, Bethesda Maryland, USA, 20892
| | - Lili Xu
- Mucosal Immunity Section, Laboratory of Host Defenses, NIAID NIH, Bethesda Maryland, USA, 20892
| | - Pamela Leland
- Division of Cellular and Gene Therapies, Center for Biologics Evaluation and Research FDA, Bethesda Maryland, USA, 20892
| | - Michael Yao
- Mucosal Immunity Section, Laboratory of Host Defenses, NIAID NIH, Bethesda Maryland, USA, 20892
| | - Peter Mannon
- Mucosal Immunity Section, Laboratory of Host Defenses, NIAID NIH, Bethesda Maryland, USA, 20892
| | - Raj K. Puri
- Division of Cellular and Gene Therapies, Center for Biologics Evaluation and Research FDA, Bethesda Maryland, USA, 20892
| | - Claudio Fiocchi
- Department of Pathobiology, The Cleveland Clinic Foundation, Cleveland Ohio, USA, 44195
| | - Warren Strober
- Mucosal Immunity Section, Laboratory of Host Defenses, NIAID NIH, Bethesda Maryland, USA, 20892
| |
Collapse
|
74
|
Latella G, Rogler G, Bamias G, Breynaert C, Florholmen J, Pellino G, Reif S, Speca S, Lawrance IC. Results of the 4th scientific workshop of the ECCO (I): pathophysiology of intestinal fibrosis in IBD. J Crohns Colitis 2014; 8:1147-65. [PMID: 24731838 DOI: 10.1016/j.crohns.2014.03.008] [Citation(s) in RCA: 117] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Revised: 03/10/2014] [Accepted: 03/14/2014] [Indexed: 02/08/2023]
Abstract
The fourth scientific workshop of the European Crohn's and Colitis Organization (ECCO) focused on the relevance of intestinal fibrosis in the disease course of inflammatory bowel disease (IBD). The objective was to better understand the pathophysiological mechanisms of intestinal fibrosis, to identify useful markers and imaging modalities of fibrosis in order to assess its presence and progression, and, finally, to point out possible approaches for the prevention and the treatment of fibrosis. The results of this workshop are presented in three separate manuscripts. This first section describes the most important mechanisms that contribute to the initiation and progression of intestinal fibrosis in IBD including the cellular and molecular mediators, the extracellular matrix molecules and matrix metalloproteinases/tissue inhibitors of metalloproteinases-system, the microbiota products, the role of fat, genetic and epigenetic factors, as well as the currently available experimental models. Furthermore, it identifies unanswered questions in the field of intestinal fibrosis and provides a framework for future research.
Collapse
Affiliation(s)
- Giovanni Latella
- Department of Life, Health and Environmental Sciences, Gastroenterology Unit, University of L'Aquila, L'Aquila, Italy.
| | - Gerhard Rogler
- Division of Gastroenterology and Hepatology, University Hopsital of Zurich, Zurich, Switzerland
| | - Giorgos Bamias
- Academic Department of Gastroenterology, Ethnikon and Kapodistriakon University of Athens, Laikon Hospital, Athens, Greece
| | - Christine Breynaert
- Department of Immunology and Microbiology, Laboratory of Clinical Immunology, KU Leuven, Leuven, Belgium; Department of Clinical and Experimental Medicine, Translational Research in Gastrointestinal Disorders, KU Leuven, Leuven, Belgium
| | - Jon Florholmen
- Research Group of Gastroenterology and Nutrition, Institute of Clinical Medicine, Artic University of Norway and University Hospital of Northern Norway, Tromsø, Norway
| | - Gianluca Pellino
- General Surgery Unit, Second University of Naples, Naples, Italy
| | - Shimon Reif
- Department of Pediatrics, Hadassah Medical Center, Jerusalem, Israel
| | - Silvia Speca
- National Institute of Health and Medical Research-INSERM, Unit U995, Lille, France
| | - Ian C Lawrance
- Centre for Inflammatory Bowel Diseases, Fremantle Hospital, WA, Australia; University Department of Medicine and Pharmacology, University of Western Australia, Fremantle Hospital, WA, Australia
| |
Collapse
|
75
|
Abstract
Crohn's disease is complicated by the development of fibrosis and stricture in approximately 30% to 50% of patients over time. The pathogenesis of fibrostenotic disease is multifactorial involving the activation of mesenchymal cells by cytokines, growth factors, and other mediators released by immune cells, epithelial cells, and mesenchymal cells. Transforming growth factor β, a key activator of mesenchymal cells, is central to the process of fibrosis and regulates numerous genes involved in the disordered wound healing including collagens, and other extracellular matrix proteins, connective tissue growth factor, and insulin-like growth factors. The activated mesenchymal compartment is expanded by recruitment of new mesenchymal cells through epithelial to mesenchymal transition, endothelial to mesenchymal transition, and invasion of circulating fibrocytes. Cellular hyperplasia and increased extracellular matrix production, particularly collagens, from fibroblasts, myofibroblasts, and smooth muscle cells add to the disturbed architecture and scarring on the intestine. Extracellular matrix homeostasis is further disrupted by alterations in the expression of matrix metalloproteinases and tissue inhibitors of metalloproteinase in the gut. Among the 163 susceptibility genes identified that contribute to susceptibility in inflammatory bowel disease mutations in NOD2/CARD15, innate immune system components and autophagy jointly contribute to the activation of mesenchymal cells and pathogenesis of fibrosis in this polygenic disorder. Numerous growth factors cytokines and other mediators also contribute to development of fibrosis in the susceptible patient. This review focuses on the molecular mechanisms that regulate mesenchymal cell function, particularly smooth muscle cells, the largest compartment of mesenchyme in the intestine, that lead to fibrosis in Crohn's disease.
Collapse
|
76
|
Chandriani S, DePianto DJ, N’Diaye EN, Abbas AR, Jackman J, Bevers J, Ramirez-Carrozzi V, Pappu R, Kauder SE, Toy K, Ha C, Modrusan Z, Wu LC, Collard HR, Wolters PJ, Egen JG, Arron JR. Endogenously Expressed IL-13Rα2 Attenuates IL-13–Mediated Responses but Does Not Activate Signaling in Human Lung Fibroblasts. THE JOURNAL OF IMMUNOLOGY 2014; 193:111-9. [DOI: 10.4049/jimmunol.1301761] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
77
|
Mahadev V, Starr R, Wright SL, Martinez C, Jensen MC, Barish ME, Forman SJ, Brown CE. Cytokine induction of VCAM-1 but not IL13Rα2 on glioma cells: a tale of two antibodies. PLoS One 2014; 9:e95123. [PMID: 24787244 PMCID: PMC4008428 DOI: 10.1371/journal.pone.0095123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Accepted: 03/24/2014] [Indexed: 01/01/2023] Open
Abstract
The interleukin-13 receptor alpha2 (IL13Rα2) is a cell surface receptor that is over-expressed by a subset of high-grade gliomas, but not expressed at significant levels by normal brain tissue. For both malignant and non-malignant cells, IL13Rα2 surface expression is reported to be induced by various cytokines such as IL-4 or IL-13 and tumor necrosis factor (TNF). Our group has developed a therapeutic platform to target IL13Rα2-positive brain tumors by engineering human cytotoxic T lymphocytes (CTLs) to express the IL13-zetakine chimeric antigen receptor. We therefore sought to investigate the potential of cytokine stimulation to induce IL13Rα2 cell surface expression, and thereby increase susceptibility to IL13Rα2-specific T cell killing. In the course of these experiments, we unexpectedly found that the commercially available putative IL13Rα2-specific monoclonal antibody B-D13 recognizes cytokine-induced VCAM-1 on glioblastoma. We provide evidence that the induced receptor is not IL13Rα2, because its expression does not consistently correlate with IL13Rα2 mRNA levels, it does not bind IL-13, and it is not recognized by IL13-zetakine CTL. Instead we demonstrate by immunoprecipitation experiments and mass spectrometry that the antigen recognized by the B-D13 antibody following cytokine stimulation is VCAM-1, and that VCAM-1, but not IL13Rα2, is induced on glioma cells by TNF alone or in combination with IL-13 or IL-4. Further evaluation of several commercial B-D13 antibodies revealed that B-D13 is bi-specific, recognizing both IL13Rα2 and VCAM-1. This binding is non-overlapping based on soluble receptor competition experiments, and mass spectrometry identifies two distinct heavy and light chain species, providing evidence that the B-D13 reagent is di-clonal. PE-conjugation of the B-D13 antibody appears to disrupt IL13Rα2 recognition, while maintaining VCAM-1 specificity. While this work calls into question previous studies that have used the B-D13 antibody to assess IL13Rα2 expression, it also suggests that TNF may have significant effects on glioma biology by up-regulating VCAM-1.
Collapse
Affiliation(s)
- Vaidehi Mahadev
- Departments of Hematology and Hematopoietic Cell Transplantation, Cancer Immunotherapy & Tumor Immunology, Beckman Research Institute at the City of Hope National Medical Center, Duarte, California, United States of America
| | - Renate Starr
- Departments of Hematology and Hematopoietic Cell Transplantation, Cancer Immunotherapy & Tumor Immunology, Beckman Research Institute at the City of Hope National Medical Center, Duarte, California, United States of America
| | - Sarah L. Wright
- Departments of Hematology and Hematopoietic Cell Transplantation, Cancer Immunotherapy & Tumor Immunology, Beckman Research Institute at the City of Hope National Medical Center, Duarte, California, United States of America
| | - Catalina Martinez
- Departments of Hematology and Hematopoietic Cell Transplantation, Cancer Immunotherapy & Tumor Immunology, Beckman Research Institute at the City of Hope National Medical Center, Duarte, California, United States of America
| | - Michael C. Jensen
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, Washington, United States of America
| | - Michael E. Barish
- Department of Neurosciences, Beckman Research Institute at the City of Hope National Medical Center, Duarte, California, United States of America
| | - Stephen J. Forman
- Departments of Hematology and Hematopoietic Cell Transplantation, Cancer Immunotherapy & Tumor Immunology, Beckman Research Institute at the City of Hope National Medical Center, Duarte, California, United States of America
| | - Christine E. Brown
- Departments of Hematology and Hematopoietic Cell Transplantation, Cancer Immunotherapy & Tumor Immunology, Beckman Research Institute at the City of Hope National Medical Center, Duarte, California, United States of America
- * E-mail:
| |
Collapse
|
78
|
Bettenworth D, Rieder F. Medical therapy of stricturing Crohn's disease: what the gut can learn from other organs - a systematic review. FIBROGENESIS & TISSUE REPAIR 2014; 7:5. [PMID: 24678903 PMCID: PMC4230721 DOI: 10.1186/1755-1536-7-5] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Accepted: 03/06/2014] [Indexed: 12/11/2022]
Abstract
Crohn’s disease (CD) is a chronic remitting and relapsing disease. Fibrostenosing complications such as intestinal strictures, stenosis and ultimately obstruction are some of its most common long-term complications. Despite recent advances in the pathophysiological understanding of CD and a significant improvement of anti-inflammatory therapeutics, medical therapy for stricturing CD is still inadequate. No specific anti-fibrotic therapy exists and the incidence rate of strictures has essentially remained unchanged. Therefore, the current therapy of established fibrotic strictures comprises mainly endoscopic dilation as well as surgical approaches. However, these treatment options are associated with major complications as well as high recurrence rates. Thus, a specific anti-fibrotic therapy for CD is urgently needed. Importantly, there is now a growing body of evidence for prevention as well as effective medical treatment of fibrotic diseases of other organs such as the skin, lung, kidney and liver. In face of the similarity of molecular mechanisms of fibrogenesis across these organs, translation of therapeutic approaches from other fibrotic diseases to the intestine appears to be a promising treatment strategy. In particular transforming growth factor beta (TGF-β) neutralization, selective tyrosine kinase inhibitors, blockade of components of the renin-angiotensin system, IL-13 inhibitors and mammalian target of rapamycin (mTOR) inhibitors have emerged as potential drug candidates for anti-fibrotic therapy and may retard progression or even reverse established intestinal fibrosis. However, major challenges have to be overcome in the translation of novel anti-fibrotics into intestinal fibrosis therapy, such as the development of appropriate biomarkers that predict the development and accurately monitor therapeutic responses. Future clinical studies are a prerequisite to evaluate the optimal timing for anti-fibrotic treatment approaches, to elucidate the best routes of application, and to evaluate the potential of drug candidates to reach the ultimate goal: the prevention or reversal of established fibrosis and strictures in CD patients.
Collapse
Affiliation(s)
| | - Florian Rieder
- Department of Gastroenterology and Hepatology, Digestive Disease Institute, Cleveland Clinic Foundation, Cleveland, OH, USA.,Department of Pathobiology, Lerner Research Institute, NC22, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| |
Collapse
|
79
|
Fichtner-Feigl S, Kesselring R, Martin M, Obermeier F, Ruemmele P, Kitani A, Brunner SM, Haimerl M, Geissler EK, Strober W, Schlitt HJ. IL-13 orchestrates resolution of chronic intestinal inflammation via phosphorylation of glycogen synthase kinase-3β. THE JOURNAL OF IMMUNOLOGY 2014; 192:3969-80. [PMID: 24634488 DOI: 10.4049/jimmunol.1301072] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Spontaneous amelioration of inflammation (often accompanied by fibrosis) is a well-known, but poorly understood, outcome of many chronic inflammatory processes. We studied this phenomenon in a chronic trinitrobenzene sulfonic acid-induced colitis model, an experimental colitis in mice that we showed to ultimately undergo spontaneous resolution, despite continued trinitrobenzene sulfonic acid stimulation. Analysis of the mechanism of this resolution revealed that it was critically dependent on IL-13 activation of STAT6, followed by phosphorylation (inactivation) of glycogen synthase kinase-3β, at least in part via STAT6 induction of p38 MAPK. Such glycogen synthase kinase-3β inactivation causes changes in CREB and p65 DNA-binding activity that favors decreased proinflammatory IL-17 production and increased anti-inflammatory IL-10 production. Thus, in this case, IL-13 acts as a molecular switch that leads to resolution of inflammation.
Collapse
Affiliation(s)
- Stefan Fichtner-Feigl
- Department of Surgery, University Medical Center Regensburg, 93053 Regensburg, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
80
|
Biancheri P, Di Sabatino A, Ammoscato F, Facciotti F, Caprioli F, Curciarello R, Hoque SS, Ghanbari A, Joe‐Njoku I, Giuffrida P, Rovedatti L, Geginat J, Corazza GR, MacDonald TT. Absence of a role for interleukin‐13 in inflammatory bowel disease. Eur J Immunol 2014; 44:370-85. [DOI: 10.1002/eji.201343524] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Revised: 11/23/2013] [Accepted: 12/10/2013] [Indexed: 12/20/2022]
Affiliation(s)
- Paolo Biancheri
- Centre for Immunology and Infectious DiseaseBlizard InstituteBarts and the London School of Medicine and Dentistry London UK
- Department of Internal MedicineS. Matteo HospitalCentro per lo Studio e la Cura delle Malattie Infiammatorie Croniche IntestinaliUniversity of Pavia Pavia Italy
| | - Antonio Di Sabatino
- Department of Internal MedicineS. Matteo HospitalCentro per lo Studio e la Cura delle Malattie Infiammatorie Croniche IntestinaliUniversity of Pavia Pavia Italy
| | - Francesca Ammoscato
- Centre for Immunology and Infectious DiseaseBlizard InstituteBarts and the London School of Medicine and Dentistry London UK
| | | | - Flavio Caprioli
- Unit of Gastroenterology 2Fondazione IRCCS Ca’ Granda – Ospedale Maggiore Policlinico Milan Italy
- Dipartimento di Fisiopatologia Medico‐Chirurgica e dei TrapiantiUniversità degli Studi di Milano Milan Italy
| | - Renata Curciarello
- Centre for Immunology and Infectious DiseaseBlizard InstituteBarts and the London School of Medicine and Dentistry London UK
| | - Syed S. Hoque
- Centre for Immunology and Infectious DiseaseBlizard InstituteBarts and the London School of Medicine and Dentistry London UK
| | - Amir Ghanbari
- Centre for Immunology and Infectious DiseaseBlizard InstituteBarts and the London School of Medicine and Dentistry London UK
| | - Ijeoma Joe‐Njoku
- Centre for Immunology and Infectious DiseaseBlizard InstituteBarts and the London School of Medicine and Dentistry London UK
| | - Paolo Giuffrida
- Centre for Immunology and Infectious DiseaseBlizard InstituteBarts and the London School of Medicine and Dentistry London UK
| | - Laura Rovedatti
- Department of Internal MedicineS. Matteo HospitalCentro per lo Studio e la Cura delle Malattie Infiammatorie Croniche IntestinaliUniversity of Pavia Pavia Italy
| | - Jens Geginat
- Istituto Nazionale di Genetica Molecolare Milan Italy
| | - Gino R. Corazza
- Department of Internal MedicineS. Matteo HospitalCentro per lo Studio e la Cura delle Malattie Infiammatorie Croniche IntestinaliUniversity of Pavia Pavia Italy
| | - Thomas T. MacDonald
- Centre for Immunology and Infectious DiseaseBlizard InstituteBarts and the London School of Medicine and Dentistry London UK
| |
Collapse
|
81
|
IL-13 signaling via IL-13Rα2 triggers TGF-β1-dependent allograft fibrosis. Transplant Res 2013; 2:16. [PMID: 24143891 PMCID: PMC4016099 DOI: 10.1186/2047-1440-2-16] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Accepted: 10/10/2013] [Indexed: 11/25/2022] Open
Abstract
Background Allograft fibrosis still remains a critical problem in transplantation, including heart transplantation. The IL-13/TGF-β1 interaction has previously been identified as a key pathway orchestrating fibrosis in different inflammatory immune disorders. Here we investigate if this pathway is also responsible for allograft fibrosis and if interference with the IL-13/TGF-β1 interaction prevents allograft fibrosis. Methods FVB or control DBA/1 donor hearts were transplanted heterotopically into DBA/1 recipient mice and hearts were explanted at day 60 and 100 post-transplantation. Cardiac tissue was examined by Masson’s trichrome staining and immunohistochemistry for CD4, CD8, CD11b, IL-13, Fas ligand, matrix metalloproteinase (MMP)-1, MMP-13, β2-microglobulin, and Gremlin-1. Graft-infiltrating cells were isolated and analyzed by flow cytometry. IL-13 and TGF-β1 levels were determined by enzyme-linked immunosorbent assay (ELISA) and the amount of collagen was quantified using a Sircol assay; IL-13Rα2 expression was detected by Western blotting. In some experiments IL-13/ TGF-β1 signaling was blocked with specific IL-13Rα2 siRNA. Additionally, a PCR array of RNA isolated from the allografts was performed to analyze expression of multiple genes involved in fibrosis. Results Both groups survived long-term (>100 days). The allogeneic grafts were infiltrated by significantly increased numbers of CD4+ (P <0.0001), CD8+ (P <0.0001), and CD11b+ cells (P = 0.0065) by day 100. Furthermore, elevated IL-13 levels (P = 0.0003) and numbers of infiltrating IL-13+ cells (P = 0.0037), together with an expression of IL-13Rα2, were detected only within allografts. The expression of IL-13 and IL-13Rα2 resulted in significantly increased TGF-β1 levels (P <0.0001), higher numbers of CD11bhighGr1intermediateTGF-β1+ cells, and elevated cardiac collagen deposition (P = 0.0094). The allograft fibrosis found in these experiments was accompanied by upregulation of multiple profibrotic genes, which was confirmed by immunohistochemical stainings of allograft tissue. Blockage of the IL-13/TGF-β1 interaction by IL-13Rα2 siRNA led to lower numbers of CD11bhighGr1intermediateTGF-β1+, CD4+, CD8+, and CD11b+ cells, and prevented collagen deposition (P = 0.0018) within these allografts. Conclusions IL-13 signaling via IL-13Rα2 induces TGF-β1 and causes allograft fibrosis in a murine model of chronic transplant rejection. Blockage of this IL-13/TGF-β1 interaction by IL-13Rα2 siRNA prevents cardiac allograft fibrosis. Thus, IL-13Rα2 may be exploitable as a future target to reduce allograft fibrosis in organ transplantation.
Collapse
|
82
|
Bailey JR, Whiting CV, Tarlton JF, Bland PW, Probert CSJ. New insights on fibrosis in Crohn's disease. Expert Rev Gastroenterol Hepatol 2013; 7:497-9. [PMID: 23984996 DOI: 10.1586/17474124.2013.814931] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
83
|
Abstract
The occurrence of strictures as a complication of Crohn's disease is a significant clinical problem. No specific antifibrotic therapies are available. This systematic review comprehensively addresses the pathogenesis, epidemiology, prediction, diagnosis and therapy of this disease complication. We also provide specific recommendations for clinical practice and summarise areas that require future investigation.
Collapse
Affiliation(s)
- Florian Rieder
- Department of Pathobiology, Lerner Research Institute, NC22, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH 44195, USA.
| | - Ellen M Zimmermann
- Division of Gastroenterology, Department of Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Feza H Remzi
- Department of Colorectal Surgery, Digestive Disease Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - William J Sandborn
- Division of Gastroenterology, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
84
|
Chen W, Sivaprasad U, Gibson AM, Ericksen MB, Cunningham CM, Bass SA, Kinker KG, Finkelman FD, Wills-Karp M, Khurana Hershey GK. IL-13 receptor α2 contributes to development of experimental allergic asthma. J Allergy Clin Immunol 2013; 132:951-8.e1-6. [PMID: 23763980 DOI: 10.1016/j.jaci.2013.04.016] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Revised: 03/21/2013] [Accepted: 04/05/2013] [Indexed: 01/06/2023]
Abstract
BACKGROUND IL-13 receptor α2 (IL-13Rα2) binds IL-13 with high affinity and modulates IL-13 responses. There are soluble and membrane forms of IL-13Rα2 generated by alternative splicing in mice, but human subjects express only the membrane form of IL-13Rα2 (memIL-13Rα2). OBJECTIVE We determined the role of memIL-13Rα2 in the development of allergic inflammation in mouse models of asthma. METHODS IL-13Rα2-deficient and memIL-13Rα2 lung epithelium-specific transgenic mice were challenged with house dust mite (HDM). Airway hyperresponsiveness (AHR) and inflammation were assessed based on the airway pressure-time index, bronchoalveolar lavage (BAL) cell counts, and lung histology. Mucus production was determined by means of periodic acid-Schiff staining of lung sections, Western blot analysis of chloride channel calcium activated 3 (CLCA3) expression in lung homogenates, and ELISA of Muc5ac in BAL fluid. The expression of cytokines and chemokines was determined by using RT-quantitative PCR. RESULTS In IL-13Rα2-deficient mice AHR and airway inflammation were attenuated compared with levels seen in wild-type mice after HDM challenge. Lung epithelial overexpression of memIL-13Rα2 in the IL-13Rα2-deficient mice reconstituted AHR and inflammation to levels similar to those observed in HDM-challenged wild-type mice. Mucus production was attenuated in lungs from HDM-treated IL-13Rα2-deficient mice, whereas lung epithelial overexpression of memIL-13Rα2 increased mucus production. Lung epithelial overexpression of memIL-13Rα2 had no effect on levels of the soluble form of IL-13Rα2 in serum or BAL fluid and did not affect IL-13-dependent signal transducer and activator of transcription 6 activation in the lungs. CONCLUSION These data collectively support a distinct role for memIL-13Rα2 in the lung and suggest that memIL-13Rα2 might contribute to allergic inflammation.
Collapse
Affiliation(s)
- Weiguo Chen
- Division of Asthma Research, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | | | | | | | | | | | | | | | | | | |
Collapse
|
85
|
Firszt R, Francisco D, Church TD, Thomas JM, Ingram JL, Kraft M. Interleukin-13 induces collagen type-1 expression through matrix metalloproteinase-2 and transforming growth factor-β1 in airway fibroblasts in asthma. Eur Respir J 2013; 43:464-73. [PMID: 23682108 DOI: 10.1183/09031936.00068712] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Airway remodelling is a feature of asthma that contributes to loss of lung function. One of the central components of airway remodelling is subepithelial fibrosis. Interleukin (IL)-13 is a key T-helper 2 cytokine and is believed to be the central mediator of allergic asthma including remodelling, but the mechanism driving the latter has not been elucidated in human asthma. We hypothesised that IL-13 stimulates collagen type-1 production by the airway fibroblast in a matrix metalloproteinase (MMP)- and transforming growth factor (TGF)-β1-dependent manner in human asthma as compared to healthy controls. Fibroblasts were cultured from endobronchial biopsies in 14 subjects with mild asthma and 13 normal controls that underwent bronchoscopy. Airway fibroblasts were treated with various mediators including IL-13 and specific MMP-inhibitors. IL-13 significantly stimulated collagen type-1 production in asthma compared to normal controls. Inhibitors of MMP-2 significantly attenuated collagen production in asthma but had no effect in normal controls. IL-13 significantly increased total and active forms of TGF-β1, and this activation was blocked using an MMP-2 inhibitor. IL-13 activated endogenous MMP-2 in asthma patients as compared to normal controls. In an ex vivo model, IL-13 potentiates airway remodelling through a mechanism involving TGF-β1 and MMP-2. These effects provide insights into the mechanism involved in IL-13-directed airway remodelling in asthma.
Collapse
Affiliation(s)
- Rafael Firszt
- Division of Allergy, Immunology and Rheumatology, University of Utah, Salt Lake City, UT
| | | | | | | | | | | |
Collapse
|
86
|
Vicetti Miguel RD, Harvey SAK, LaFramboise WA, Reighard SD, Matthews DB, Cherpes TL. Human female genital tract infection by the obligate intracellular bacterium Chlamydia trachomatis elicits robust Type 2 immunity. PLoS One 2013; 8:e58565. [PMID: 23555586 PMCID: PMC3603585 DOI: 10.1371/journal.pone.0058565] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Accepted: 02/05/2013] [Indexed: 11/18/2022] Open
Abstract
While Chlamydia trachomatis infections are frequently
asymptomatic, mechanisms that regulate host response to this intracellular
Gram-negative bacterium remain undefined. This investigation thus used
peripheral blood mononuclear cells and endometrial tissue from women with or
without Chlamydia genital tract infection to better define this
response. Initial genome-wide microarray analysis revealed highly elevated
expression of matrix metalloproteinase 10 and other molecules characteristic of
Type 2 immunity (e.g., fibrosis and wound repair) in
Chlamydia-infected tissue. This result was corroborated in flow
cytometry and immunohistochemistry studies that showed extant upper genital
tract Chlamydia infection was associated with increased
co-expression of CD200 receptor and CD206 (markers of alternative macrophage
activation) by endometrial macrophages as well as increased expression of GATA-3
(the transcription factor regulating TH2 differentiation) by
endometrial CD4+ T cells. Also among women with genital tract
Chlamydia infection, peripheral CD3+
CD4+ and CD3+ CD4- cells that
proliferated in response to ex vivo stimulation with
inactivated chlamydial antigen secreted significantly more interleukin (IL)-4
than tumor necrosis factor, interferon-γ, or IL-17; findings that repeated
in T cells isolated from these same women 1 and 4 months after infection had
been eradicated. Our results thus newly reveal that genital infection by an
obligate intracellular bacterium induces polarization towards Type 2 immunity,
including Chlamydia-specific TH2 development. Based
on these findings, we now speculate that Type 2 immunity was selected by
evolution as the host response to C. trachomatis in the human
female genital tract to control infection and minimize immunopathological damage
to vital reproductive structures.
Collapse
Affiliation(s)
- Rodolfo D. Vicetti Miguel
- Department of Pediatrics, University of
Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of
America
| | - Stephen A. K. Harvey
- Department of Ophthalmology, University of
Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of
America
| | - William A. LaFramboise
- Department of Pathology, University of
Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of
America
| | - Seth D. Reighard
- Department of Pediatrics, University of
Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of
America
| | - Dean B. Matthews
- Department of Pediatrics, University of
Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of
America
| | - Thomas L. Cherpes
- Department of Pediatrics, University of
Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of
America
- * E-mail:
| |
Collapse
|
87
|
Abstract
The fundamental mechanisms that drive the pathogenesis of systemic sclerosis (SSc) remain elusive, despite over 50 years of investigation. Here, we review recent progress in the understanding of the immunopathogenesis of SSc. In particular, we consider interleukin-13 (IL13), and its upstream and downstream pathways, as an example of an immune system-derived mediator involved in fibrotic and vascular pathology. Emerging results linking pattern-recognition receptors and interferon pathways to SSc are also stressed. We discuss genetic data linking the immune system to SSc risk and efforts to apply animal models to subsets of patients recently resolved by gene expression profiling. These developments will help build a context for better understanding of previous observations and design of the next generation of studies that may eventually lead to effective treatment.
Collapse
Affiliation(s)
- Matthew B. Greenblatt
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Antonios O. Aliprantis
- Department of Medicine, Division of Rheumatology, Allergy and Immunology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
88
|
Bailey JR, Bland PW, Tarlton JF, Peters I, Moorghen M, Sylvester PA, Probert CSJ, Whiting CV. IL-13 promotes collagen accumulation in Crohn's disease fibrosis by down-regulation of fibroblast MMP synthesis: a role for innate lymphoid cells? PLoS One 2012; 7:e52332. [PMID: 23300643 PMCID: PMC3534115 DOI: 10.1371/journal.pone.0052332] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Accepted: 11/12/2012] [Indexed: 01/20/2023] Open
Abstract
Background Fibrosis is a serious consequence of Crohn’s disease (CD), often necessitating surgical resection. We examined the hypothesis that IL-13 may promote collagen accumulation within the CD muscle microenvironment. Methods Factors potentially modulating collagen deposition were examined in intestinal tissue samples from fibrotic (f) CD and compared with cancer control (C), ulcerative colitis (UC) and uninvolved (u) CD. Mechanisms attributable to IL-13 were analysed using cell lines derived from uninvolved muscle tissue and tissue explants. Results In fCD muscle extracts, collagen synthesis was significantly increased compared to other groups, but MMP-2 was not co-ordinately increased. IL-13 transcripts were highest in fCD muscle compared to muscle from other groups. IL-13 receptor (R) α1 was expressed by intestinal muscle smooth muscle, nerve and KIR+ cells. Fibroblasts from intestinal muscle expressed Rα1, phosphorylated STAT6 in response to IL-13, and subsequently down-regulated MMP-2 and TNF-α-induced MMP-1 and MMP-9 synthesis. Cells with the phenotype KIR+CD45+CD56+/−CD3− were significantly increased in fCD muscle compared to all other groups, expressed Rα1 and membrane IL-13, and transcribed high levels of IL-13. In explanted CD muscle, these cells did not phosphorylate STAT6 in response to exogenous IL-13. Conclusions The data indicate that in fibrotic intestinal muscle of Crohn’s patients, the IL-13 pathway is stimulated, involving a novel population of infiltrating IL-13Rα1+, KIR+ innate lymphoid cells, producing IL-13 which inhibits fibroblast MMP synthesis. Consequently, matrix degradation is down-regulated and this leads to excessive collagen deposition.
Collapse
Affiliation(s)
- Jennifer R. Bailey
- School of Veterinary Science, University of Bristol, Bristol, United Kingdom
| | - Paul W. Bland
- School of Veterinary Science, University of Bristol, Bristol, United Kingdom
- Mucosal Immunobiology and Vaccine Center (MIVAC), Department of Microbiology and Immunology, University of Gothenburg, Gothenburg, Sweden
| | - John F. Tarlton
- School of Veterinary Science, University of Bristol, Bristol, United Kingdom
- * E-mail:
| | - Iain Peters
- Molecular Testing, Innovation Centre, University of Exeter, Exeter, United Kingdom
| | | | - Paul A. Sylvester
- Department of Surgery, Bristol Royal Infirmary, Bristol, United Kingdom
| | | | | |
Collapse
|
89
|
Bhattacharyya S, Fang F, Tourtellotte W, Varga J. Egr-1: new conductor for the tissue repair orchestra directs harmony (regeneration) or cacophony (fibrosis). J Pathol 2012; 229:286-97. [PMID: 23132749 DOI: 10.1002/path.4131] [Citation(s) in RCA: 120] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Revised: 09/24/2012] [Accepted: 10/05/2012] [Indexed: 12/13/2022]
Abstract
Fibroblasts and myofibroblasts are the key effector cells executing physiological tissue repair leading to regeneration on the one hand, and pathological fibrogenesis leading to chronic fibrosing conditions on the other. Recent studies identify the multifunctional transcription factor early growth response-1(Egr-1) as an important mediator of fibroblast activation triggered by diverse stimuli. Egr-1 has potent stimulatory effects on fibrotic gene expression, and aberrant Egr-1 expression or function is associated with animal models of fibrosis and human fibrotic disorders, including emphysema, pulmonary fibrosis, pulmonary hypertension and systemic sclerosis. Pharmacological suppression or genetic targeting of Egr-1 blocks fibrotic responses in vitro and ameliorates experimental fibrosis in the skin and lung. In contrast, Egr-1 appears to act as a negative regulator of hepatic fibrosis in mouse models, suggesting a context-dependent role in fibrosis. The Egr-1-binding protein Nab2 is an endogenous inhibitor of Egr-1-mediated signalling and abrogates the stimulation of fibrotic responses induced by transforming growth factor-β (TGFβ). Moreover, mice deficient in Nab2 show excessive collagen accumulation in the skin. These observations highlight a previously unsuspected fundamental physiological function for the Egr-1-Nab2 signalling axis in regulating fibrogenesis, and suggest that Egr-1 may be a potential novel therapeutic target in human diseases complicated by fibrosis. This review summarizes recent advances in understanding the regulation and complex functional role of Egr-1 and its related proteins and inhibitors in pathological fibrosis.
Collapse
Affiliation(s)
- Swati Bhattacharyya
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | | | | | | |
Collapse
|
90
|
Abstract
Eosinophilic esophagitis (EoE) is a recently recognized, immune-mediated disease characterized clinically by symptoms of esophageal dysfunction and histologically by eosinophil-predominant inflammation. The chronic esophageal eosinophilia of EoE is associated with tissue remodeling that includes epithelial hyperplasia, subepithelial fibrosis, and hypertrophy of esophageal smooth muscle. This remodeling causes the esophageal rings and strictures that frequently complicate EoE and underlies the mucosal fragility that predisposes to painful mucosal tears in the EoE esophagus. The pathogenesis of tissue remodeling in EoE is not completely understood, but emerging studies suggest that secretory products of eosinophils and mast cells, as well as cytokines produced by other inflammatory cells, epithelial cells, and stromal cells in the esophagus, all contribute to the process. Interleukin (IL)-4 and IL-13, Th2 cytokines overproduced in allergic disorders, have direct profibrotic and remodeling effects in EoE. The EoE esophagus exhibits increased expression of transforming growth factor (TGF)-β1, which is a potent activator of fibroblasts and a strong inducer of epithelial-mesenchymal transition. In addition, IL-4, IL-13, and TGF-β all have a role in regulating periostin, an extracellular matrix protein that might influence remodeling by acting as a ligand for integrins, by its effects on eosinophils or by activating fibrogenic genes in the esophagus. Presently, few treatments have been shown to affect the tissue remodeling that causes EoE complications. This report reviews the potential roles of fibroblasts, eosinophils, mast cells, and profibrotic cytokines in esophageal remodeling in EoE and identifies potential targets for future therapies that might prevent EoE complications.
Collapse
Affiliation(s)
| | - Rhonda F. Souza
- 2Internal Medicine, Children's Medical Center and the VA North Texas Health Care System, Harold C. Simmons Comprehensive Cancer Center, and the University of Texas Southwestern Medical Center, Dallas, Texas
| | - Stuart J. Spechler
- 2Internal Medicine, Children's Medical Center and the VA North Texas Health Care System, Harold C. Simmons Comprehensive Cancer Center, and the University of Texas Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
91
|
Cho WK, Lee CM, Kang MJ, Huang Y, Giordano FJ, Lee PJ, Trow TK, Homer RJ, Sessa WC, Elias JA, Lee CG. IL-13 receptor α2-arginase 2 pathway mediates IL-13-induced pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol 2012; 304:L112-24. [PMID: 23125252 DOI: 10.1152/ajplung.00101.2012] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Although previous literature suggests that interleukin (IL)-13, a T-helper type 2 cell effector cytokine, might be involved in the pathogenesis of pulmonary hypertension (PH), direct proof is lacking. Furthermore, a potential mechanism underlying IL-13-induced PH has never been explored. This study's goal was to investigate the role and mechanism of IL-13 in the pathogenesis of PH. Lung-specific IL-13-overexpressing transgenic (Tg) mice were examined for hemodynamic changes and pulmonary vascular remodeling. IL-13 Tg mice spontaneously developed PH phenotype by the age of 2 mo with increased expression and activity of arginase 2 (Arg2). The role of Arg2 in the development of IL-13-stimulated PH was further investigated using Arg2 and IL-13 receptor α2 (Rα2) null mutant mice and the small-interfering RNA (siRNA)-silencing approach in vivo and in vitro, respectively. IL-13-stimulated medial thickening of pulmonary arteries and right ventricle systolic pressure were significantly decreased in the IL-13 Tg mice with Arg2 null mutation. On the other hand, the production of nitric oxide was further increased in the lungs of these mice. In our in vitro evaluations, the recombinant IL-13 treatment significantly enhanced the proliferation of human pulmonary artery smooth muscle cells in an Arg2-dependent manner. The IL-13-stimulated cellular proliferation and the expression of Arg2 in hpaSMC were markedly decreased with IL-13Rα2 siRNA silencing. Our studies demonstrate that IL-13 contributes to the development of PH via an IL-13Rα2-Arg2-dependent pathway. The intervention of this pathway could be a potential therapeutic target in pulmonary arterial hypertension.
Collapse
Affiliation(s)
- Won-Kyung Cho
- Yale University School of Medicine, Dept. of Internal Medicine, New Haven, CT 06520-8057, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
92
|
Rieder F, Kessler S, Sans M, Fiocchi C. Animal models of intestinal fibrosis: new tools for the understanding of pathogenesis and therapy of human disease. Am J Physiol Gastrointest Liver Physiol 2012; 303:G786-801. [PMID: 22878121 PMCID: PMC4073977 DOI: 10.1152/ajpgi.00059.2012] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Fibrosis is a serious condition complicating chronic inflammatory processes affecting the intestinal tract. Advances in this field that rely on human studies have been slow and seriously restricted by practical and logistic reasons. As a consequence, well-characterized animal models of intestinal fibrosis have emerged as logical and essential systems to better define and understand the pathophysiology of fibrosis. In point of fact, animal models allow the execution of mechanistic studies as well as the implementation of clinical trials with novel, pathophysiology-based therapeutic approaches. This review provides an overview of the currently available animal models of intestinal fibrosis, taking into consideration the methods of induction, key characteristics of each model, and underlying mechanisms. Currently available models will be classified into seven categories: spontaneous, gene-targeted, chemical-, immune-, bacteria-, and radiation-induced as well as postoperative fibrosis. Each model will be discussed in regard to its potential to create research opportunities to gain insights into the mechanisms of intestinal fibrosis and stricture formation and assist in the development of effective and specific antifibrotic therapies.
Collapse
Affiliation(s)
- Florian Rieder
- 1Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio; ,2Department of Gastroenterology and Hepatology, Digestive Disease Institute, Cleveland Clinic, Cleveland, Ohio; and
| | - Sean Kessler
- 1Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio;
| | - Miquel Sans
- 3Service of Gastroenterology, Centro Medico Teknon, Barcelona, Spain
| | - Claudio Fiocchi
- 1Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio; ,2Department of Gastroenterology and Hepatology, Digestive Disease Institute, Cleveland Clinic, Cleveland, Ohio; and
| |
Collapse
|
93
|
Abstract
BACKGROUND Inflammation-induced changes in smooth muscle may be the consequence of changes in the properties of smooth muscle itself, in the control by nerves and hormones, in the microenvironment, or in the balance of constitutive or induced mediators. A general concept is that the specific characteristics and effects of inflammation can be linked to the nature of the infiltrate and the associated mediators, which are dictated predominantly by the immune environment. Inflammatory mediators may regulate smooth muscle function by directly acting on smooth muscle cells or, indirectly, through stimulation of the release of mediators from other cells. In addition, smooth muscle is not a passive bystander during inflammation and our knowledge of molecular signaling pathways that control smooth muscle function, and the contribution of the immune mechanisms to smooth muscle homeostasis, has expanded greatly in the last decade. Recent studies also demonstrated the relevance of extracellular proteases, of endogenous or exogenous origin, redox imbalance, or epigenetic mechanisms, to gastrointestinal dismotility and inflammation in the context of functional and organic disorders. PURPOSE In this review we discuss the various types of inflammation and the established and emerging mechansims of inflammation-induced changes in smooth muscle morphology and function.
Collapse
Affiliation(s)
- T Shea-Donohue
- Mucosal Biology Research Center and Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| | | | | | | |
Collapse
|
94
|
Lacy ER. Equilibrium and kinetic analysis of human interleukin-13 and IL-13 receptor alpha-2 complex formation. J Mol Recognit 2012; 25:184-91. [PMID: 22407982 DOI: 10.1002/jmr.2150] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Interleukin 13 (IL-13) is a pleiotropic cytokine secreted by activated T cells. Both IL-13 and its polymorphic variant (IL-13-R110Q) have been shown to be associated with multiple diseases such as asthma and allergy. Two IL-13 receptors have been identified, IL-13R alpha-1 receptor (IL-13Rα1) and IL-13R alpha-2 receptor (IL-13Rα2). It has been well established that IL-13 binds to IL-13Rα1 alone with low nM affinity while binding to the IL-13Rα1/IL-4R receptor complex is significantly tighter (pM). The affinity between IL-13 and IL-13Rα2, however, remains elusive. Several values have been reported in the literature varying from 20 pM to 2.5 nM. The affinities previously reported were obtained using surface plasmon resonance (SPR) or Scatchard analysis of (125) I-IL-13 binding data. This report presents the results for the kinetics and equilibrium binding analysis studies performed using label-free kinetic exclusion assay (KEA) for the interaction of human IL-13 and IL-13Rα2. KEA equilibrium analysis showed that the affinities of IL-13Rα2 are 107 and 56 pM for IL-13 and its variant (IL-13-R110Q), respectively. KEA kinetic analysis showed that a tight and very stable complex is formed between IL-13Rα2 and IL-13, as shown by calculated dissociation rate constants slower than 5 × 10(-5) per second. Kinetic analysis also showed significant differences in the kinetic behavior of wild type (wt) versus IL-13-R110Q. IL-13-R110Q not only associates to IL-13Rα2 slower than wt human IL-13 (wt-IL-13), as previously reported, but IL-13-R110Q also dissociates slower than wt-IL-13. These results show that IL-13Rα2 is a high affinity receptor and provide a new perspective on kinetic behavior that could have significant implications in the understanding of the role of IL-13-R110Q in the disease state.
Collapse
Affiliation(s)
- Eilyn R Lacy
- Biologics Research, Janssen Research & Development, LLC, Radnor, PA 19087, USA.
| |
Collapse
|
95
|
Inoue K, Naito Y, Takagi T, Hayashi N, Hirai Y, Mizushima K, Horie R, Fukumoto K, Yamada S, Harusato A, Hirata I, Omatsu T, Yoshida N, Uchiyama K, Ishikawa T, Handa O, Konishi H, Wakabayashi N, Yagi N, Ichikawa H, Kokura S, Yoshikawa T. Daikenchuto, a Kampo medicine, regulates intestinal fibrosis associated with decreasing expression of heat shock protein 47 and collagen content in a rat colitis model. Biol Pharm Bull 2012; 34:1659-65. [PMID: 22040876 DOI: 10.1248/bpb.34.1659] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Heat shock protein (HSP) 47 may play an important role in the pathogenesis of intestinal fibrosis. Daikenchuto (DKT), a traditional Japanese herbal (Kampo) medicine, has been reported to ameliorate intestinal inflammation. The aims of this study were to determine time-course profiles of several parameters of fibrosis in a rat model, to confirm the HSP47-expressing cells in the colon, and finally to evaluate DKT's effects on intestinal fibrosis. Colitis was induced in male Wistar rats weighing 200 g using an enema of trinitrobenzene sulfonic acid (TNBS). HSP47 localization was determined by immunohistochemistry. Colonic inflammation and fibrosis were assessed by macroscopic, histological, morphometric, and immunohistochemical analyses. Colonic mRNA expression of transforming growth factor β1 (TGF-β1), HSP47, and collagen type I were assessed by real time-polymerase chain reaction (PCR). DKT was administered orally once a day from 8 to 14 d after TNBS administration. The colon was removed on the 15th day. HSP47 immunoreactivity was coexpressed with α-smooth muscle actin-positive cells located in the subepithelial space. Intracolonic administration of TNBS resulted in grossly visible ulcers. Colonic inflammation persisted for 6 weeks, and fibrosis persisted for 4 weeks after cessation of TNBS treatment. The expression levels of mRNA and proteins for TGF-β1, HSP47, and collagen I were elevated in colonic mucosa treated with TNBS. These fibrosis markers indicated that DKT treatment significantly inhibited TNBS-induced fibrosis. These findings suggest that DKT reduces intestinal fibrosis associated with decreasing expression of HSP47 and collagen content in the intestine.
Collapse
Affiliation(s)
- Ken Inoue
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
96
|
Immune responses triggering colitis and colitis-associated carcinoma. Langenbecks Arch Surg 2012; 397:527-33. [PMID: 22382701 DOI: 10.1007/s00423-012-0927-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Accepted: 02/13/2012] [Indexed: 10/28/2022]
Abstract
Inflammatory bowel diseases compromise of two forms of chronic intestinal inflammatory disorders: Crohn's disease and ulcerative colitis. Both forms of inflammatory bowel disease result from inappropriate inflammatory responses to the intestinal microbiota, but have different underlying immune responses. The connection between inflammation and cancer has long been established and longstanding inflammatory bowel diseases are an important risk factor for developing colorectal cancer. Colitis-associated colorectal cancer pathogenesis is highly influenced by specific inflammatory processes during inflammatory bowel disease. This article reviews the immunological responses affecting Crohn's disease and ulcerative colitis as well as the linkage of inflammatory bowel disease to the development of colitis-associated cancer. Finally, we discuss the prospects of using new research efforts to devise new immunotherapeutic approaches.
Collapse
|
97
|
Gambari R. Recent patents on therapeutic applications of the transcription factor decoy approach. Expert Opin Ther Pat 2012; 21:1755-71. [PMID: 22017413 DOI: 10.1517/13543776.2011.629605] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
INTRODUCTION Transcription is considered as an important target of drugs employed in biomedicine. Therefore, novel strategies to inhibit the biological effects of transcription factors (TFs) are of interest, such as targeting promoters with triple-helix-forming oligonucleotides and antisense targeting of mRNAs coding for TFs. AREAS COVERED The objective of this review is to describe studies considering inhibition of TF functions with molecules mimicking TF binding sites (transcription factor decoy approach, TFD) and to summarize the patents on possible clinical applications of this approach. EXPERT OPINION Treatment of cells with TFD molecules leads to inhibition (or activation) of genes regulated by the target transcription factors. The studies and patents on this specific issue have taken in great consideration the delivery strategy, which is a very important parameter. The TFD strategy has been proven effective in vivo. The stability of the TFD molecules in vivo should be carefully considered, as well as the possible toxicity and/or possible effects on innate and adaptive immune response. In order to improve clinical parameters, many patents suggest the use of the TFD molecules in combination with drugs already employed in therapy. We are expecting in the near future relevant clinical trials based on the TFD strategy.
Collapse
Affiliation(s)
- Roberto Gambari
- University of Ferrara, Interdisciplinary Center for the Study of Inflammation, ER-GenTech and BioPharmaNet, Department of Biochemistry and Molecular Biology, Ferrara, Italy.
| |
Collapse
|
98
|
Homer RJ, Elias JA, Lee CG, Herzog E. Modern concepts on the role of inflammation in pulmonary fibrosis. Arch Pathol Lab Med 2011; 135:780-8. [PMID: 21631273 DOI: 10.5858/2010-0296-ra.1] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
CONTEXT Idiopathic pulmonary fibrosis is a uniformly lethal disease with limited biomarkers and no proven therapeutic intervention short of lung transplantation. Pulmonary fibrosis at one time was thought to be a result of inflammation in the lung. Although some forms of pulmonary fibrosis may result from inflammation, idiopathic pulmonary fibrosis is currently thought to result from cell death primarily and inflammation secondarily. OBJECTIVE To determine the role of inflammation in pulmonary fibrosis in light of our laboratory's published and unpublished research and published literature. DATA SOURCES Review based on our laboratory's published and unpublished experimental data with relevant background and clinical context provided. CONCLUSIONS Although cell death is central to pulmonary fibrosis, the proper cytokine environment leading to macrophage polarization is also critical. Evaluation of this environment is promising both for the development of disease biomarkers and for targets for therapeutic intervention.
Collapse
Affiliation(s)
- Robert J Homer
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut 06520-8070, USA.
| | | | | | | |
Collapse
|
99
|
Raleigh DR, Boe DM, Yu D, Weber CR, Marchiando AM, Bradford EM, Wang Y, Wu L, Schneeberger EE, Shen L, Turner JR. Occludin S408 phosphorylation regulates tight junction protein interactions and barrier function. ACTA ACUST UNITED AC 2011; 193:565-82. [PMID: 21536752 PMCID: PMC3087007 DOI: 10.1083/jcb.201010065] [Citation(s) in RCA: 190] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Occludin S408 phosphorylation regulates interactions between occludin, ZO-1, and select claudins to define tight junction molecular structure and barrier function. Although the C-terminal cytoplasmic tail of the tight junction protein occludin is heavily phosphorylated, the functional impact of most individual sites is undefined. Here, we show that inhibition of CK2-mediated occludin S408 phosphorylation elevates transepithelial resistance by reducing paracellular cation flux. This regulation requires occludin, claudin-1, claudin-2, and ZO-1. S408 dephosphorylation reduces occludin exchange, but increases exchange of ZO-1, claudin-1, and claudin-2, thereby causing the mobile fractions of these proteins to converge. Claudin-4 exchange is not affected. ZO-1 domains that mediate interactions with occludin and claudins are required for increases in claudin-2 exchange, suggesting assembly of a phosphorylation-sensitive protein complex. Consistent with this, binding of claudin-1 and claudin-2, but not claudin-4, to S408A occludin tail is increased relative to S408D. Finally, CK2 inhibition reversed IL-13–induced, claudin-2–dependent barrier loss. Thus, occludin S408 dephosphorylation regulates paracellular permeability by remodeling tight junction protein dynamic behavior and intermolecular interactions between occludin, ZO-1, and select claudins, and may have therapeutic potential in inflammation-associated barrier dysfunction.
Collapse
Affiliation(s)
- David R Raleigh
- Department of Pathology, The University of Chicago, Chicago, IL 60637, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
100
|
Akdis M, Burgler S, Crameri R, Eiwegger T, Fujita H, Gomez E, Klunker S, Meyer N, O'Mahony L, Palomares O, Rhyner C, Ouaked N, Quaked N, Schaffartzik A, Van De Veen W, Zeller S, Zimmermann M, Akdis CA. Interleukins, from 1 to 37, and interferon-γ: receptors, functions, and roles in diseases. J Allergy Clin Immunol 2011; 127:701-21.e1-70. [PMID: 21377040 DOI: 10.1016/j.jaci.2010.11.050] [Citation(s) in RCA: 558] [Impact Index Per Article: 39.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2010] [Revised: 11/11/2010] [Accepted: 11/12/2010] [Indexed: 12/17/2022]
Abstract
Advancing our understanding of mechanisms of immune regulation in allergy, asthma, autoimmune diseases, tumor development, organ transplantation, and chronic infections could lead to effective and targeted therapies. Subsets of immune and inflammatory cells interact via ILs and IFNs; reciprocal regulation and counter balance among T(h) and regulatory T cells, as well as subsets of B cells, offer opportunities for immune interventions. Here, we review current knowledge about ILs 1 to 37 and IFN-γ. Our understanding of the effects of ILs has greatly increased since the discoveries of monocyte IL (called IL-1) and lymphocyte IL (called IL-2); more than 40 cytokines are now designated as ILs. Studies of transgenic or knockout mice with altered expression of these cytokines or their receptors and analyses of mutations and polymorphisms in human genes that encode these products have provided important information about IL and IFN functions. We discuss their signaling pathways, cellular sources, targets, roles in immune regulation and cellular networks, roles in allergy and asthma, and roles in defense against infections.
Collapse
Affiliation(s)
- Mübeccel Akdis
- Swiss Institute of Allergy and Asthma Research, University of Zurich, Davos, Switzerland.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|