51
|
Kim DS, Kim SH, Kee JY, Han YH, Park J, Mun JG, Joo MJ, Jeon YD, Kim SJ, Park SH, Park SJ, Um JY, Hong SH. Eclipta prostrataImproves DSS-Induced Colitis through Regulation of Inflammatory Response in Intestinal Epithelial Cells. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2017; 45:1047-1060. [DOI: 10.1142/s0192415x17500562] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
Eclipta prostrata (EP) and its compounds are known to have several pharmacological effects including anti-inflammatory effects. In the present study, we demonstrated that EP improves the dextran sulfate sodium (DSS)-induced colitis symptoms such as body weight loss, colon length shortening and disease activity index. In DSS-induced colitis tissue, EP controls the protein expressions of cyclooxygenase-2 (COX-2) and hypoxia inducible factor-1[Formula: see text] (HIF-1[Formula: see text]). In addition, the release of prostaglandin E2and vascular endothelial growth factor-A were significantly reduced by EP administration. EP also inhibited COX-2 and HIF-1[Formula: see text] expressions in the tumor necrosis factor-[Formula: see text] stimulated HT-29 cells. These inhibitory effects of EP occurred by reducing the phosphorylation of I[Formula: see text]B and the translocation of the nuclear factor-[Formula: see text]B (NF-[Formula: see text]B). Additionally, we found through HPLC analysis that wedelolactone, which is an inhibitor of NF-[Formula: see text]B transcription, was contained in water extract of EP. These results indicate that EP can improve colitis symptoms through the modulation of immune function in intestinal epithelial cells and suggests that EP has the potential therapeutic effect to intestinal inflammation.
Collapse
Affiliation(s)
- Dae-Seung Kim
- Department of Oriental Pharmacy, College of Pharmacy, Wonkwnag University, Iksan, Jeonbuk 54538, Republic of Korea
| | - Sung-Hee Kim
- Department of Oriental Pharmacy, College of Pharmacy, Wonkwnag University, Iksan, Jeonbuk 54538, Republic of Korea
| | - Ji-Ye Kee
- Department of Oriental Pharmacy, College of Pharmacy, Wonkwnag University, Iksan, Jeonbuk 54538, Republic of Korea
| | - Yo-Han Han
- Department of Oriental Pharmacy, College of Pharmacy, Wonkwnag University, Iksan, Jeonbuk 54538, Republic of Korea
| | - JinBong Park
- Department of Pharmacology, College of Korean Medicine, Kyung Hee University, Dongdaemun-gu, Seoul 02453, Republic of Korea
| | - Jeong-Geon Mun
- Department of Oriental Pharmacy, College of Pharmacy, Wonkwnag University, Iksan, Jeonbuk 54538, Republic of Korea
| | - Moon-Jung Joo
- Department of Oriental Pharmacy, College of Pharmacy, Wonkwnag University, Iksan, Jeonbuk 54538, Republic of Korea
| | - Yong-Deok Jeon
- Department of Herbal Medicine Resources, Chonbuk National University, Iksan, Jeonbuk 54596, Republic of Korea
| | - Su-Jin Kim
- Department of Cosmeceutical Science, DaeguHanny University, Kyungsan, Kyungbuk 38610, Republic of Korea
| | - Sang-Hyun Park
- Isotope Sciences Lab, Korea Atomic Energy Research Institute, 1266 Shinjeong-Dong, Jeongeup, Jeonbuk 56212, Republic of Korea
| | - Sung-Joo Park
- Department of Herbology, College of Oriental Medicine, Wonkwang University, Iksan, Jeonbuk 54538, Republic of Korea
| | - Jae-Young Um
- Department of Pharmacology, College of Korean Medicine, Kyung Hee University, Dongdaemun-gu, Seoul 02453, Republic of Korea
| | - Seung-Heon Hong
- Department of Oriental Pharmacy, College of Pharmacy, Wonkwnag University, Iksan, Jeonbuk 54538, Republic of Korea
| |
Collapse
|
52
|
Zeitouni NE, Chotikatum S, von Köckritz-Blickwede M, Naim HY. The impact of hypoxia on intestinal epithelial cell functions: consequences for invasion by bacterial pathogens. Mol Cell Pediatr 2016; 3:14. [PMID: 27002817 PMCID: PMC4803720 DOI: 10.1186/s40348-016-0041-y] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 03/13/2016] [Indexed: 02/06/2023] Open
Abstract
The maintenance of oxygen homeostasis in human tissues is mediated by several cellular adaptations in response to low-oxygen stress, called hypoxia. A decrease in tissue oxygen levels is initially counteracted by increasing local blood flow to overcome diminished oxygenation and avoid hypoxic stress. However, studies have shown that the physiological oxygen concentrations in several tissues are much lower than atmospheric (normoxic) conditions, and the oxygen supply is finely regulated in individual cell types. The gastrointestinal tract has been described to subsist in a state of physiologically low oxygen level and is thus depicted as a tissue in the state of constant low-grade inflammation. The intestinal epithelial cell layer plays a vital role in the immune response to inflammation and infections that occur within the intestinal tissue and is involved in many of the adaptation responses to hypoxic stress. This is especially relevant in the context of inflammatory disorders, such as inflammatory bowel disease (IBD). Therefore, this review aims to describe the intestinal epithelial cellular response to hypoxia and the consequences for host interactions with invading gastrointestinal bacterial pathogens.
Collapse
Affiliation(s)
- Nathalie E. Zeitouni
- Department of Physiological Chemistry, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Sucheera Chotikatum
- Department of Physiological Chemistry, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Maren von Köckritz-Blickwede
- Department of Physiological Chemistry, University of Veterinary Medicine Hannover, Hannover, Germany
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Hannover, Germany
| | - Hassan Y. Naim
- Department of Physiological Chemistry, University of Veterinary Medicine Hannover, Hannover, Germany
| |
Collapse
|
53
|
Kitzenberg D, Colgan SP, Glover LE. Creatine kinase in ischemic and inflammatory disorders. Clin Transl Med 2016; 5:31. [PMID: 27527620 PMCID: PMC4987751 DOI: 10.1186/s40169-016-0114-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 08/02/2016] [Indexed: 12/20/2022] Open
Abstract
The creatine/phosphocreatine pathway plays a conserved and central role in energy metabolism. Compartmentalization of specific creatine kinase enzymes permits buffering of local high energy phosphates in a thermodynamically favorable manner, enabling both rapid energy storage and energy transfer within the cell. Augmentation of this metabolic pathway by nutritional creatine supplementation has been shown to elicit beneficial effects in a number of diverse pathologies, particularly those that incur tissue ischemia, hypoxia or oxidative stress. In these settings, creatine and phosphocreatine prevent depletion of intracellular ATP and internal acidification, enhance post-ischemic recovery of protein synthesis and promote free radical scavenging and stabilization of cellular membranes. The creatine kinase energy system is itself further regulated by hypoxic signaling, highlighting the existence of endogenous mechanisms in mammals that can enhance creatine metabolism during oxygen deprivation to promote tissue resolution and homeostasis. Here, we review recent insights into the creatine kinase pathway, and provide rationale for dietary creatine supplementation in human ischemic and inflammatory pathologies.
Collapse
Affiliation(s)
- David Kitzenberg
- Mucosal Inflammation Program, University of Colorado, Anschutz Medical Campus, 12700 East 19th Ave. MS B-146, Aurora, CO, 80045, USA.,Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Sean P Colgan
- Mucosal Inflammation Program, University of Colorado, Anschutz Medical Campus, 12700 East 19th Ave. MS B-146, Aurora, CO, 80045, USA.,Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Louise E Glover
- Mucosal Inflammation Program, University of Colorado, Anschutz Medical Campus, 12700 East 19th Ave. MS B-146, Aurora, CO, 80045, USA. .,Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA.
| |
Collapse
|
54
|
Sarnelli G, D’Alessandro A, Iuvone T, Capoccia E, Gigli S, Pesce M, Seguella L, Nobile N, Aprea G, Maione F, de Palma GD, Cuomo R, Steardo L, Esposito G. Palmitoylethanolamide Modulates Inflammation-Associated Vascular Endothelial Growth Factor (VEGF) Signaling via the Akt/mTOR Pathway in a Selective Peroxisome Proliferator-Activated Receptor Alpha (PPAR-α)-Dependent Manner. PLoS One 2016; 11:e0156198. [PMID: 27219328 PMCID: PMC4878779 DOI: 10.1371/journal.pone.0156198] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 05/10/2016] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND AND AIM Angiogenesis is emerging as a pivotal process in chronic inflammatory pathologies, promoting immune infiltration and prompting carcinogenesis. Ulcerative Colitis (UC) and Crohn's Disease (CD) represent paradigmatic examples of intestinal chronic inflammatory conditions in which the process of neovascularization correlates with the severity and progression of the diseases. Molecules able to target the angiogenesis have thus the potential to synergistically affect the disease course. Beyond its anti-inflammatory effect, palmitoylethanolamide (PEA) is able to reduce angiogenesis in several chronic inflammatory conditions, but no data about its anti-angiogenic activity in colitis have been produced, yet. METHODS The effects of PEA on inflammation-associated angiogenesis in mice with dextran sulphate sodium (DSS)-induced colitis and in patients with UC were assessed. The release of Vascular Endothelial Growth Factor (VEGF), the hemoglobin tissue content, the expression of CD31 and of phosphatidylinositol 3-kinase/Akt/mammalian-target-of-rapamycin (mTOR) signaling axis were all evaluated in the presence of different concentrations of PEA and concomitant administration of PPAR-α and -γ antagonists. RESULTS Our results demonstrated that PEA, in a selective peroxisome proliferator activated receptor (PPAR)-α dependent mechanism, inhibits colitis-associated angiogenesis, decreasing VEGF release and new vessels formation. Furthermore, we demonstrated that the mTOR/Akt axis regulates, at least partly, the angiogenic process in IBD and that PEA directly affects this pathway. CONCLUSIONS Our results suggest that PEA may improve inflammation-driven angiogenesis in colonic mucosa, thus reducing the mucosal damage and potentially affecting disease progression and the shift towards the carcinogenesis.
Collapse
Affiliation(s)
- Giovanni Sarnelli
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Alessandra D’Alessandro
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Teresa Iuvone
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Elena Capoccia
- Department of Physiology and Pharmacology ‘Vittorio Erspamer’, La Sapienza University of Rome, Rome, Italy
| | - Stefano Gigli
- Department of Physiology and Pharmacology ‘Vittorio Erspamer’, La Sapienza University of Rome, Rome, Italy
| | - Marcella Pesce
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Luisa Seguella
- Department of Physiology and Pharmacology ‘Vittorio Erspamer’, La Sapienza University of Rome, Rome, Italy
| | - Nicola Nobile
- Department of Physiology and Pharmacology ‘Vittorio Erspamer’, La Sapienza University of Rome, Rome, Italy
| | - Giovanni Aprea
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Francesco Maione
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | | | - Rosario Cuomo
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Luca Steardo
- Department of Physiology and Pharmacology ‘Vittorio Erspamer’, La Sapienza University of Rome, Rome, Italy
| | - Giuseppe Esposito
- Department of Physiology and Pharmacology ‘Vittorio Erspamer’, La Sapienza University of Rome, Rome, Italy
| |
Collapse
|
55
|
Ortiz-Masiá D, Cosín-Roger J, Calatayud S, Hernández C, Alós R, Hinojosa J, Esplugues JV, Barrachina MD. M1 Macrophages Activate Notch Signalling in Epithelial Cells: Relevance in Crohn's Disease. J Crohns Colitis 2016; 10:582-92. [PMID: 26802079 PMCID: PMC4957456 DOI: 10.1093/ecco-jcc/jjw009] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 12/03/2015] [Indexed: 12/21/2022]
Abstract
BACKGROUND The Notch signalling pathway plays an essential role in mucosal regeneration, which constitutes a key goal of Crohn's disease (CD) treatment. Macrophages coordinate tissue repair and several phenotypes have been reported which differ in the expression of surface proteins, cytokines and hypoxia-inducible factors (HIFs). We analysed the role of HIFs in the expression of Notch ligands in macrophages and the relevance of this pathway in mucosal regeneration. METHODS Human monocytes and U937-derived macrophages were polarized towards the M1 and M2 phenotypes and the expression levels of HIF-1α, HIF-2α, Jagged 1 (Jag1) and delta-like 4 (Dll4) were evaluated. The effects of macrophages on the expression of hairy and enhancer of split-1 (HES1, the main target of Notch signalling) and intestinal alkaline phosphatase (IAP, enterocyte marker) in epithelial cells in co-culture were also analysed. Phenotype macrophage markers and Notch signalling were evaluated in the mucosa of CD patients. RESULTS M1 macrophages were associated with HIF-1-dependent induction of Jag1 and Dll4, which increased HES1 protein levels and IAP activity in co-cultured epithelial cells. In the mucosa of CD patients a high percentage of M1 macrophages expressed both HIF-1α and Jag1 while M2 macrophages mainly expressed HIF-2α and we detected a good correlation between the ratio of M1/M2 macrophages and both HES1 and IAP protein levels. CONCLUSION M1, but not M2, macrophages are associated with HIF-1-dependent induction of Notch ligands and activation of epithelial Notch signalling pathway. In the mucosa of chronic CD patients, the prevalence of M2 macrophages is associated with diminution of Notch signalling and impaired enterocyte differentiation.
Collapse
Affiliation(s)
- D. Ortiz-Masiá
- Departamento de Medicina, Facultad de Medicina, Universidad de Valencia, Valencia, Spain
| | - J. Cosín-Roger
- Departamento de Farmacología and CIBER, Facultad de Medicina, Universidad de Valencia, Valencia, Spain
| | - S. Calatayud
- Departamento de Farmacología and CIBER, Facultad de Medicina, Universidad de Valencia, Valencia, Spain
| | | | - R. Alós
- Hospital de Manises, Valencia, Spain
| | | | - J. V. Esplugues
- Departamento de Farmacología and CIBER, Facultad de Medicina, Universidad de Valencia, Valencia, Spain,FISABIO, Hospital Dr Peset, Valencia, Spain
| | - M. D. Barrachina
- Departamento de Farmacología and CIBER, Facultad de Medicina, Universidad de Valencia, Valencia, Spain
| |
Collapse
|
56
|
Bakirtzi K, Law IKM, Xue X, Iliopoulos D, Shah YM, Pothoulakis C. Neurotensin Promotes the Development of Colitis and Intestinal Angiogenesis via Hif-1α-miR-210 Signaling. THE JOURNAL OF IMMUNOLOGY 2016; 196:4311-21. [PMID: 27076683 DOI: 10.4049/jimmunol.1501443] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 03/04/2016] [Indexed: 12/15/2022]
Abstract
Neurotensin (NT) via its receptor 1 (NTR1) modulates the development of colitis, decreases HIF-1α/PHD2 interaction, stabilizes and increases HIF-1α transcriptional activity, and promotes intestinal angiogenesis. HIF-1α induces miR-210 expression, whereas miR-210 is strongly upregulated in response to NT in NCM460 human colonic epithelial cells overexpressing NTR1 (NCM460-NTR1). In this study, we examined whether NT activates a NTR1-HIF-1α-miR-210 cascade using in vitro (NCM460-NTR1 cells) and in vivo (transgenic mice overexpressing [HIF-1α-OE] or lacking HIF-1α [HIF-1α-knockout (KO)] in intestinal epithelial cells and mice lacking NTR1 [NTR1-KO]) models. Pretreatment of NCM460-NTR1 cells with the HIF-1α inhibitor PX-478 or silencing of HIF-1α (small interfering HIF-1α) attenuated miR-210 expression in response to NT. Intracolonic 2,4,6-trinitrobenzenesulfonic acid (TNBS) administration (2-d model) increased colonic miR-210 expression that was significantly reduced in NTR1-KO, HIF-1α-KO mice, and wild-type mice pretreated intracolonically with locked nucleic acid anti-miR-210. In contrast, HIF-1α-OE mice showed increased miR-210 expression at baseline that was further increased following TNBS administration. HIF-1α-OE mice had also exacerbated TNBS-induced neovascularization compared with TNBS-exposed wild-type mice. TNBS-induced neovascularization was attenuated in HIF-1α-KO mice, or mice pretreated intracolonically with anti-miR-210. Intracolonic anti-miR-210 also reduced colitis in response to TNBS (2 d). Importantly, miR-210 expression was increased in tissue samples from ulcerative colitis patients. We conclude that NT exerts its proinflammatory and proangiogenic effects during acute colitis via a NTR1-prolyl hydroxylase 2/HIF-1α-miR-210 signaling pathway. Our results also demonstrate that miR-210 plays a proinflammatory role in the development of colitis.
Collapse
Affiliation(s)
- Kyriaki Bakirtzi
- Inflammatory Bowel Disease Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095
| | - Ivy Ka Man Law
- Inflammatory Bowel Disease Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095
| | - Xiang Xue
- Division of Gastroenterology, Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Dimitrios Iliopoulos
- Division of Digestive Diseases, Center for Systems Biomedicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095; and
| | - Yatrik M Shah
- Division of Gastroenterology, Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109; Division of Gastroenterology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Charalabos Pothoulakis
- Inflammatory Bowel Disease Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095;
| |
Collapse
|
57
|
Granger DN, Holm L, Kvietys P. The Gastrointestinal Circulation: Physiology and Pathophysiology. Compr Physiol 2016; 5:1541-83. [PMID: 26140727 DOI: 10.1002/cphy.c150007] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The gastrointestinal (GI) circulation receives a large fraction of cardiac output and this increases following ingestion of a meal. While blood flow regulation is not the intense phenomenon noted in other vascular beds, the combined responses of blood flow, and capillary oxygen exchange help ensure a level of tissue oxygenation that is commensurate with organ metabolism and function. This is evidenced in the vascular responses of the stomach to increased acid production and in intestine during periods of enhanced nutrient absorption. Complimenting the metabolic vasoregulation is a strong myogenic response that contributes to basal vascular tone and to the responses elicited by changes in intravascular pressure. The GI circulation also contributes to a mucosal defense mechanism that protects against excessive damage to the epithelial lining following ingestion of toxins and/or noxious agents. Profound reductions in GI blood flow are evidenced in certain physiological (strenuous exercise) and pathological (hemorrhage) conditions, while some disease states (e.g., chronic portal hypertension) are associated with a hyperdynamic circulation. The sacrificial nature of GI blood flow is essential for ensuring adequate perfusion of vital organs during periods of whole body stress. The restoration of blood flow (reperfusion) to GI organs following ischemia elicits an exaggerated tissue injury response that reflects the potential of this organ system to generate reactive oxygen species and to mount an inflammatory response. Human and animal studies of inflammatory bowel disease have also revealed a contribution of the vasculature to the initiation and perpetuation of the tissue inflammation and associated injury response.
Collapse
Affiliation(s)
- D Neil Granger
- Department of Molecular and Cellular Physiology, LSU Health Science Center-Shreveport, Shreveport, Louisiana, USA
| | - Lena Holm
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Peter Kvietys
- Department of Physiological Sciences, College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| |
Collapse
|
58
|
Griffin AS, Crawford MD, Gupta RT. Massive gas gangrene secondary to occult colon carcinoma. Radiol Case Rep 2016; 11:67-9. [PMID: 27257452 PMCID: PMC4878939 DOI: 10.1016/j.radcr.2016.02.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Accepted: 02/04/2016] [Indexed: 11/17/2022] Open
Abstract
Gas gangrene is a rare but often fatal soft-tissue infection. Because it is uncommon and the classic symptom of crepitus does not appear until the infection is advanced, prompt diagnosis requires a high index of suspicion. We present a case report of a middle-aged man who presented with acute onset lower-extremity pain that was initially thought to be due to deep vein thrombosis. After undergoing workup for pulmonary embolism, he was found to have massive gas gangrene of the lower extremity secondary to an occult colon adenocarcinoma and died within hours of presentation from multisystem organ failure.
Collapse
Affiliation(s)
- Andrew S Griffin
- Department of Radiology, Duke University Medical Center, DUMC Box 3808, Durham, NC 27710, USA
| | - Matthew D Crawford
- Department of Orthopaedic Surgery, Duke University Medical Center, Box 3956, Durham, NC 27710, USA
| | - Rajan T Gupta
- Department of Radiology, Duke University Medical Center, DUMC Box 3808, Durham, NC 27710, USA
| |
Collapse
|
59
|
Zeitouni NE, Dersch P, Naim HY, von Köckritz-Blickwede M. Hypoxia Decreases Invasin-Mediated Yersinia enterocolitica Internalization into Caco-2 Cells. PLoS One 2016; 11:e0146103. [PMID: 26731748 PMCID: PMC4701670 DOI: 10.1371/journal.pone.0146103] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 12/14/2015] [Indexed: 12/20/2022] Open
Abstract
Yersinia enterocolitica is a major cause of human yersiniosis, with enterocolitis being a typical manifestation. These bacteria can cross the intestinal mucosa, and invade eukaryotic cells by binding to host β1 integrins, a process mediated by the bacterial effector protein invasin. This study examines the role of hypoxia on the internalization of Y. enterocolitica into intestinal epithelial cells, since the gastrointestinal tract has been shown to be physiologically deficient in oxygen levels (hypoxic), especially in cases of infection and inflammation. We show that hypoxic pre-incubation of Caco-2 cells resulted in significantly decreased bacterial internalization compared to cells grown under normoxia. This phenotype was absent after functionally blocking host β1 integrins as well as upon infection with an invasin-deficient Y. enterocolitica strain. Furthermore, downstream phosphorylation of the focal adhesion kinase was also reduced under hypoxia after infection. In good correlation to these data, cells grown under hypoxia showed decreased protein levels of β1 integrins at the apical cell surface whereas the total protein level of the hypoxia inducible factor (HIF-1) alpha was elevated. Furthermore, treatment of cells with the HIF-1 α stabilizer dimethyloxalylglycine (DMOG) also reduced invasion and decreased β1 integrin protein levels compared to control cells, indicating a potential role for HIF-1α in this process. These results suggest that hypoxia decreases invasin-integrin-mediated internalization of Y. enterocolitica into intestinal epithelial cells by reducing cell surface localization of host β1 integrins.
Collapse
Affiliation(s)
- Nathalie E. Zeitouni
- Department of Physiological Chemistry, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Petra Dersch
- Helmholtz Center for Infection Research, Braunschweig, Germany
| | - Hassan Y. Naim
- Department of Physiological Chemistry, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Maren von Köckritz-Blickwede
- Department of Physiological Chemistry, University of Veterinary Medicine Hannover, Hannover, Germany
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Hannover, Germany
- * E-mail:
| |
Collapse
|
60
|
Abstract
Crohn's disease and ulcerative colitis, the two major forms of idiopathic inflammatory bowel disease (IBD), are thought to occur through a loss of intestinal barrier leading to an inappropriate immune response toward intestinal microbiota. While genome-wide association studies (GWAS) have provided much information about susceptibility loci associated with these diseases, the etiology of IBD is still unknown. Metabolomic analysis allows for the comprehensive measurement of multiple small molecule metabolites in biological samples. During the past decade, metabolomic techniques have yielded novel and potentially important findings, revealing insight into metabolic perturbations associated with these diseases. This chapter provides metabolomic methodologies describing a nuclear magnetic resonance (NMR)-based non-targeted approach that has been utilized to make important contributions toward a better understanding of IBD.
Collapse
Affiliation(s)
- Daniel J Kao
- Department of Medicine, The University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Mucosal Inflammation Program, The University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Jordi M Lanis
- Department of Medicine, The University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Mucosal Inflammation Program, The University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Erica Alexeev
- Department of Medicine, The University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Mucosal Inflammation Program, The University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Douglas J Kominsky
- Department of Microbiology and Immunology, Montana State University, 109 Lewis Hall, Bozeman, MT, 59717, USA.
| |
Collapse
|
61
|
Abstract
The intestine is supported by a complex vascular system that undergoes dynamic and transient daily shifts in blood perfusion, depending on the metabolic state. Moreover, the intestinal villi have a steep oxygen gradient from the hypoxic epithelium adjacent to the anoxic lumen to the relative higher tissue oxygenation at the base of villi. Due to the daily changes in tissue oxygen levels in the intestine, the hypoxic transcription factors hypoxia-inducible factor (HIF)-1α and HIF-2α are essential in maintaining intestinal homeostasis. HIF-2α is essential in maintaining proper micronutrient balance, the inflammatory response, and the regenerative and proliferative capacity of the intestine following an acute injury. However, chronic activation of HIF-2α leads to enhanced proinflammatory response, intestinal injury, and colorectal cancer. In this review, we detail the major mechanisms by which HIF-2α contributes to health and disease of the intestine and the therapeutic implications of targeting HIF-2α in intestinal diseases.
Collapse
Affiliation(s)
| | - Yatrik M Shah
- Department of Molecular & Integrative Physiology and.,Division of Gastroenterology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan 48109;
| |
Collapse
|
62
|
Baxt LA, Xavier RJ. Role of Autophagy in the Maintenance of Intestinal Homeostasis. Gastroenterology 2015; 149:553-62. [PMID: 26170139 PMCID: PMC4550567 DOI: 10.1053/j.gastro.2015.06.046] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 06/16/2015] [Accepted: 06/29/2015] [Indexed: 02/08/2023]
Abstract
Genome-wide association studies of inflammatory bowel disease have identified several risk loci in genes that regulate autophagy, and studies have provided insight into the functional effects of these polymorphisms. We review the mechanisms by which autophagy contributes to intestinal homeostasis, focusing on its cell type-specific roles in regulating gut ecology, restricting pathogenic bacteria, and controlling inflammation. Based on this information, we are beginning to understand how alterations in autophagy can contribute to intestinal inflammation.
Collapse
Affiliation(s)
- Leigh A. Baxt
- Center for Computational and Integrative Biology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts,Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts
| | - Ramnik J. Xavier
- Center for Computational and Integrative Biology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts,Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts,Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
63
|
Saeedi BJ, Kao DJ, Kitzenberg DA, Dobrinskikh E, Schwisow KD, Masterson JC, Kendrick AA, Kelly CJ, Bayless AJ, Kominsky DJ, Campbell EL, Kuhn KA, Furuta GT, Colgan SP, Glover LE. HIF-dependent regulation of claudin-1 is central to intestinal epithelial tight junction integrity. Mol Biol Cell 2015; 26:2252-62. [PMID: 25904334 PMCID: PMC4462943 DOI: 10.1091/mbc.e14-07-1194] [Citation(s) in RCA: 141] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 04/15/2015] [Indexed: 01/30/2023] Open
Abstract
This study demonstrates a critical link between hypoxia-inducible factor (HIF) and claudin-1 (CLDN1). HIF1β-deficient intestinal epithelial cells develop abnormal tight junction (TJ) structure and have striking barrier defects. CLDN1 is an HIF target gene, and overexpression of CLDN1 in HIF1β-deficient cells restores TJ structure and function. Intestinal epithelial cells (IECs) are exposed to profound fluctuations in oxygen tension and have evolved adaptive transcriptional responses to a low-oxygen environment. These adaptations are mediated primarily through the hypoxia-inducible factor (HIF) complex. Given the central role of the IEC in barrier function, we sought to determine whether HIF influenced epithelial tight junction (TJ) structure and function. Initial studies revealed that short hairpin RNA–mediated depletion of the HIF1β in T84 cells resulted in profound defects in barrier and nonuniform, undulating TJ morphology. Global HIF1α chromatin immunoprecipitation (ChIP) analysis identified claudin-1 (CLDN1) as a prominent HIF target gene. Analysis of HIF1β-deficient IEC revealed significantly reduced levels of CLDN1. Overexpression of CLDN1 in HIF1β-deficient cells resulted in resolution of morphological abnormalities and restoration of barrier function. ChIP and site-directed mutagenesis revealed prominent hypoxia response elements in the CLDN1 promoter region. Subsequent in vivo analysis revealed the importance of HIF-mediated CLDN1 expression during experimental colitis. These results identify a critical link between HIF and specific tight junction function, providing important insight into mechanisms of HIF-regulated epithelial homeostasis.
Collapse
Affiliation(s)
- Bejan J Saeedi
- Mucosal Inflammation Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045 Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Daniel J Kao
- Mucosal Inflammation Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045 Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - David A Kitzenberg
- Mucosal Inflammation Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045 Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Evgenia Dobrinskikh
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045 Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Kayla D Schwisow
- Mucosal Inflammation Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045 Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Joanne C Masterson
- Mucosal Inflammation Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045 Section of Pediatric Gastroenterology, Hepatology and Nutrition, Gastrointestinal Eosinophilic Diseases Program, Department of Pediatrics, Digestive Health Institute, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Agnieszka A Kendrick
- Mucosal Inflammation Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045 Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Caleb J Kelly
- Mucosal Inflammation Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045 Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Amanda J Bayless
- Mucosal Inflammation Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045 Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Douglas J Kominsky
- Mucosal Inflammation Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045 Department of Anesthesiology and Perioperative Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Eric L Campbell
- Mucosal Inflammation Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045 Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Kristine A Kuhn
- Mucosal Inflammation Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045 Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Glenn T Furuta
- Mucosal Inflammation Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045 Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Sean P Colgan
- Mucosal Inflammation Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045 Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Louise E Glover
- Mucosal Inflammation Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045 Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| |
Collapse
|
64
|
Kelly CJ, Zheng L, Campbell EL, Saeedi B, Scholz CC, Bayless AJ, Wilson KE, Glover LE, Kominsky DJ, Magnuson A, Weir TL, Ehrentraut SF, Pickel C, Kuhn KA, Lanis JM, Nguyen V, Taylor CT, Colgan SP. Crosstalk between Microbiota-Derived Short-Chain Fatty Acids and Intestinal Epithelial HIF Augments Tissue Barrier Function. Cell Host Microbe 2015; 17:662-71. [PMID: 25865369 DOI: 10.1016/j.chom.2015.03.005] [Citation(s) in RCA: 1077] [Impact Index Per Article: 119.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 11/21/2014] [Accepted: 01/22/2015] [Indexed: 02/07/2023]
Abstract
Interactions between the microbiota and distal gut are fundamental determinants of human health. Such interactions are concentrated at the colonic mucosa and provide energy for the host epithelium through the production of the short-chain fatty acid butyrate. We sought to determine the role of epithelial butyrate metabolism in establishing the austere oxygenation profile of the distal gut. Bacteria-derived butyrate affects epithelial O2 consumption and results in stabilization of hypoxia-inducible factor (HIF), a transcription factor coordinating barrier protection. Antibiotic-mediated depletion of the microbiota reduces colonic butyrate and HIF expression, both of which are restored by butyrate supplementation. Additionally, germ-free mice exhibit diminished retention of O2-sensitive dyes and decreased stabilized HIF. Furthermore, the influences of butyrate are lost in cells lacking HIF, thus linking butyrate metabolism to stabilized HIF and barrier function. This work highlights a mechanism where host-microbe interactions augment barrier function in the distal gut.
Collapse
Affiliation(s)
- Caleb J Kelly
- Mucosal Inflammation Program, University of Colorado, Aurora, CO 80045, USA; Department of Medicine, University of Colorado, Aurora, CO 80045, USA
| | - Leon Zheng
- Mucosal Inflammation Program, University of Colorado, Aurora, CO 80045, USA; Department of Medicine, University of Colorado, Aurora, CO 80045, USA
| | - Eric L Campbell
- Mucosal Inflammation Program, University of Colorado, Aurora, CO 80045, USA; Department of Medicine, University of Colorado, Aurora, CO 80045, USA
| | - Bejan Saeedi
- Mucosal Inflammation Program, University of Colorado, Aurora, CO 80045, USA; Department of Medicine, University of Colorado, Aurora, CO 80045, USA
| | - Carsten C Scholz
- School of Medicine and Medical Science, Conway Institute, University College Dublin, Ireland
| | - Amanda J Bayless
- Mucosal Inflammation Program, University of Colorado, Aurora, CO 80045, USA; Department of Medicine, University of Colorado, Aurora, CO 80045, USA
| | - Kelly E Wilson
- Mucosal Inflammation Program, University of Colorado, Aurora, CO 80045, USA; Department of Medicine, University of Colorado, Aurora, CO 80045, USA
| | - Louise E Glover
- Mucosal Inflammation Program, University of Colorado, Aurora, CO 80045, USA; Department of Medicine, University of Colorado, Aurora, CO 80045, USA
| | - Douglas J Kominsky
- Mucosal Inflammation Program, University of Colorado, Aurora, CO 80045, USA; Department of Anesthesiology, University of Colorado, Aurora, CO 80045, USA
| | - Aaron Magnuson
- Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, CO 80523, USA
| | - Tiffany L Weir
- Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, CO 80523, USA
| | - Stefan F Ehrentraut
- Mucosal Inflammation Program, University of Colorado, Aurora, CO 80045, USA; Department of Medicine, University of Colorado, Aurora, CO 80045, USA; Department of Anesthesiology, University of Bonn, Bonn 53113, Germany
| | - Christina Pickel
- School of Medicine and Medical Science, Conway Institute, University College Dublin, Ireland
| | - Kristine A Kuhn
- Mucosal Inflammation Program, University of Colorado, Aurora, CO 80045, USA; Department of Medicine, University of Colorado, Aurora, CO 80045, USA
| | - Jordi M Lanis
- Mucosal Inflammation Program, University of Colorado, Aurora, CO 80045, USA; Department of Medicine, University of Colorado, Aurora, CO 80045, USA
| | - Vu Nguyen
- Department of Medicine, University of Colorado, Aurora, CO 80045, USA
| | - Cormac T Taylor
- School of Medicine and Medical Science, Conway Institute, University College Dublin, Ireland
| | - Sean P Colgan
- Mucosal Inflammation Program, University of Colorado, Aurora, CO 80045, USA; Department of Medicine, University of Colorado, Aurora, CO 80045, USA.
| |
Collapse
|
65
|
Abstract
Significant progress in our understanding of Crohn's disease (CD), an archetypal common, complex disease, has now been achieved. Our ability to interrogate the deep complexities of the biological processes involved in maintaining gut mucosal homeostasis is a major over-riding factor underpinning this rapid progress. Key studies now offer many novel and expansive insights into the interacting roles of genetic susceptibility, immune function, and the gut microbiota in CD. Here, we provide overviews of these recent advances and new mechanistic themes, and address the challenges and prospects for translation from concept to clinic.
Collapse
Affiliation(s)
- Ray Boyapati
- Centre for Inflammation Research, Queens Medical Research Institute, University of EdinburghEdinburgh, EH16 4TJUK
- Gastrointestinal Unit, Institute of Genetics and Molecular Medicine, Western General HospitalEdinburgh, EH4 2XUUK
| | - Jack Satsangi
- Centre for Inflammation Research, Queens Medical Research Institute, University of EdinburghEdinburgh, EH16 4TJUK
- Gastrointestinal Unit, Institute of Genetics and Molecular Medicine, Western General HospitalEdinburgh, EH4 2XUUK
| | - Gwo-Tzer Ho
- Centre for Inflammation Research, Queens Medical Research Institute, University of EdinburghEdinburgh, EH16 4TJUK
- Gastrointestinal Unit, Institute of Genetics and Molecular Medicine, Western General HospitalEdinburgh, EH4 2XUUK
| |
Collapse
|
66
|
Fung TC, Artis D, Sonnenberg GF. Anatomical localization of commensal bacteria in immune cell homeostasis and disease. Immunol Rev 2015; 260:35-49. [PMID: 24942680 DOI: 10.1111/imr.12186] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The mammalian gastrointestinal (GI) tract is colonized by trillions of beneficial commensal bacteria that are essential for promoting normal intestinal physiology. While the majority of commensal bacteria are found in the intestinal lumen, many species have also adapted to colonize different anatomical locations in the intestine, including the surface of intestinal epithelial cells (IECs) and the interior of gut-associated lymphoid tissues. These distinct tissue localization patterns permit unique interactions with the mammalian immune system and collectively influence intestinal immune cell homeostasis. Conversely, dysregulated localization of commensal bacteria can lead to inappropriate activation of the immune system and is associated with numerous chronic infectious, inflammatory, and metabolic diseases. Therefore, regulatory mechanisms that control proper anatomical containment of commensal bacteria are essential to maintain tissue homeostasis and limit pathology. In this review, we propose that commensal bacteria associated with the mammalian GI tract can be anatomically defined as (i) luminal, (ii) epithelial-associated, or (iii) lymphoid tissue-resident, and we discuss the role and regulation of these microbial populations in health and disease.
Collapse
Affiliation(s)
- Thomas C Fung
- Division of Gastroenterology, Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Microbiology, University of Pennsylvania, Philadelphia, PA, USA; Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | | |
Collapse
|
67
|
Abstract
The single-cell thick intestinal epithelial cell (IEC) lining with its protective layer of mucus is the primary barrier protecting the organism from the harsh environment of the intestinal lumen. Today it is clear that the balancing act necessary to maintain intestinal homeostasis is dependent on the coordinated action of all cell types of the IEC, and that there are no passive bystanders to gut immunity solely acting as absorptive or regenerative cells: Mucin and antimicrobial peptides on the epithelial surface are continually being replenished by goblet and Paneth's cells. Luminal antigens are being sensed by pattern recognition receptors on the enterocytes. The enteroendocrine cells sense the environment and coordinate the intestinal function by releasing neuropeptides acting both on IEC and inflammatory cells. All this while cells are continuously and rapidly being regenerated from a limited number of stem cells close to the intestinal crypt base. This review seeks to describe the cell types and structures of the intestinal epithelial barrier supporting intestinal homeostasis, and how disturbance in these systems might relate to inflammatory bowel disease.
Collapse
Affiliation(s)
- Rasmus Goll
- Medical Clinic, Section of Gastroenterology, University Hospital of North Norway , Tromsø , Norway
| | | |
Collapse
|
68
|
Flannigan KL, Agbor TA, Motta JP, Ferraz JGP, Wang R, Buret AG, Wallace JL. Proresolution effects of hydrogen sulfide during colitis are mediated through hypoxia-inducible factor-1α. FASEB J 2014; 29:1591-602. [PMID: 25550470 DOI: 10.1096/fj.14-266015] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 12/10/2014] [Indexed: 02/07/2023]
Abstract
During a course of colitis, production of the gaseous mediator hydrogen sulfide (H2S) is markedly up-regulated at sites of mucosal damage and contributes significantly to healing and resolution of inflammation. The signaling mechanisms through which H2S promotes resolution of colitis are unknown. We hypothesized that the beneficial effects of H2S in experimental colitis are mediated via stabilization of hypoxia-inducible factor (HIF)-1α. The hapten dinitrobenzene sulfonic acid was used to induce colitis in rats and mice. This resulted in an elevated expression of the H2S-producing enzyme, cystathionine γ-lyase (CSE), and HIF-1α at sites of mucosal ulceration, and the expression of these 2 enzymes followed a similar pattern throughout the course of colitis. This represented a functionally important relationship because the loss of CSE-derived H2S production led to decreased HIF-1α stabilization and exacerbation of colitis. Furthermore, application of an H2S-releasing molecule, diallyl disulfide (DADS), stabilized colonic HIF-1α expression, up-regulated hypoxia-responsive genes, and reduced the severity of disease during peak inflammation. Importantly, the ability of DADS to promote the resolution of colitis was abolished when coadministered with an inhibitor of HIF-1α in vivo (PX-478). DADS was also able to maintain HIF-1α expression at a later point in colitis, when HIF-1α levels would have normally returned to control levels, and to enhance resolution. Finally, we found that HIF-1α stabilization inhibited colonic H2S production and may represent a negative feedback mechanism to prevent prolonged HIF-1α stabilization. Our findings demonstrate an important link between H2S and HIF-1α in the resolution of inflammation and injury during colitis and provide mechanistic insights into the therapeutic value of H2S donors.
Collapse
Affiliation(s)
- Kyle L Flannigan
- *Department of Medicine, McMaster University, Hamilton, Ontario, Canada; Departments of Biological Sciences, Medicine, and Physiology & Pharmacology, University of Calgary, Calgary, Alberta, Canada; and Department of Biology, Lakehead University, Thunder Bay, Ontario, Canada
| | - Terence A Agbor
- *Department of Medicine, McMaster University, Hamilton, Ontario, Canada; Departments of Biological Sciences, Medicine, and Physiology & Pharmacology, University of Calgary, Calgary, Alberta, Canada; and Department of Biology, Lakehead University, Thunder Bay, Ontario, Canada
| | - Jean-Paul Motta
- *Department of Medicine, McMaster University, Hamilton, Ontario, Canada; Departments of Biological Sciences, Medicine, and Physiology & Pharmacology, University of Calgary, Calgary, Alberta, Canada; and Department of Biology, Lakehead University, Thunder Bay, Ontario, Canada
| | - José G P Ferraz
- *Department of Medicine, McMaster University, Hamilton, Ontario, Canada; Departments of Biological Sciences, Medicine, and Physiology & Pharmacology, University of Calgary, Calgary, Alberta, Canada; and Department of Biology, Lakehead University, Thunder Bay, Ontario, Canada
| | - Rui Wang
- *Department of Medicine, McMaster University, Hamilton, Ontario, Canada; Departments of Biological Sciences, Medicine, and Physiology & Pharmacology, University of Calgary, Calgary, Alberta, Canada; and Department of Biology, Lakehead University, Thunder Bay, Ontario, Canada
| | - Andre G Buret
- *Department of Medicine, McMaster University, Hamilton, Ontario, Canada; Departments of Biological Sciences, Medicine, and Physiology & Pharmacology, University of Calgary, Calgary, Alberta, Canada; and Department of Biology, Lakehead University, Thunder Bay, Ontario, Canada
| | - John L Wallace
- *Department of Medicine, McMaster University, Hamilton, Ontario, Canada; Departments of Biological Sciences, Medicine, and Physiology & Pharmacology, University of Calgary, Calgary, Alberta, Canada; and Department of Biology, Lakehead University, Thunder Bay, Ontario, Canada
| |
Collapse
|
69
|
Curtis VF, Ehrentraut SF, Campbell EL, Glover LE, Bayless A, Kelly CJ, Kominsky DJ, Colgan SP. Stabilization of HIF through inhibition of Cullin-2 neddylation is protective in mucosal inflammatory responses. FASEB J 2014; 29:208-15. [PMID: 25326537 DOI: 10.1096/fj.14-259663] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
There is interest in understanding post-translational modifications of proteins in inflammatory disease. Neddylation is the conjugation of the molecule neural precursor cell expressed, developmentally down-regulated 8 (NEDD8) to promote protein stabilization. Cullins are a family of NEDD8 targets important in the stabilization and degradation of proteins, such as hypoxia-inducible factor (HIF; via Cullin-2). Here, we elucidate the role of human deneddylase-1 (DEN-1, also called SENP8) in inflammatory responses in vitro and in vivo and define conditions for targeting neddylation in models of mucosal inflammation. HIF provides protection in inflammatory models, so we examined the contribution of DEN-1 to HIF stabilization. Pharmacologic targeting of neddylation activity with MLN4924 (IC50, 4.7 nM) stabilized HIF-1α, activated HIF promoter activity by 2.5-fold, and induced HIF-target genes in human epithelial cells up to 5-fold. Knockdown of DEN-1 in human intestinal epithelial cells resulted in increased kinetics in barrier formation, decreased permeability, and enhanced barrier restitution by 2 ± 0.5-fold. Parallel studies in vivo revealed that MLN4924 abrogated disease severity in murine dextran sulfate sodium colitis, including weight loss, colon length, and histologic severity. We conclude that DEN-1 is a regulator of cullin neddylation and fine-tunes the inflammatory response in vitro and in vivo. Pharmacologic inhibition of cullin neddylation may provide a therapeutic opportunity in mucosal inflammatory disease.
Collapse
Affiliation(s)
| | - Stefan F Ehrentraut
- Mucosal Inflammation Program, Department of Anesthesiology, University of Bonn, Bonn, Germany; and
| | | | | | - Amanda Bayless
- Mucosal Inflammation Program, Department of Medicine, and
| | - Caleb J Kelly
- Mucosal Inflammation Program, Department of Medicine, and
| | - Douglas J Kominsky
- Mucosal Inflammation Program, Department of Anesthesiology and Perioperative Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Sean P Colgan
- Mucosal Inflammation Program, Department of Medicine, and
| |
Collapse
|
70
|
Bakirtzi K, West G, Fiocchi C, Law IKM, Iliopoulos D, Pothoulakis C. The neurotensin-HIF-1α-VEGFα axis orchestrates hypoxia, colonic inflammation, and intestinal angiogenesis. THE AMERICAN JOURNAL OF PATHOLOGY 2014; 184:3405-14. [PMID: 25307345 DOI: 10.1016/j.ajpath.2014.08.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 07/25/2014] [Accepted: 08/05/2014] [Indexed: 01/14/2023]
Abstract
The expression of neurotensin (NT) and its receptor (NTR1) is up-regulated in experimental colitis and inflammatory bowel disease; NT/NTR1 interactions regulate gut inflammation. During active inflammation, metabolic shifts toward hypoxia lead to the activation of hypoxia-inducible factor (HIF)-1, which enhances vascular endothelial growth factor (VEGF) expression, promoting angiogenesis. We hypothesized that NT/NTR1 signaling regulates intestinal manifestations of hypoxia and angiogenesis by promoting HIF-1 transcriptional activity and VEGFα expression in experimental colitis. We studied NTR1 signaling in colitis-associated angiogenesis using 2,4,6-trinitrobenzenesulfonic acid-treated wild-type and NTR1-knockout mice. The effects of NT on HIF-1α and VEGFα were assessed on human colonic epithelial cells overexpressing NTR1 (NCM460-NTR1) and human intestinal microvascular-endothelial cells. NTR1-knockout mice had reduced microvascular density and mucosal integrity score compared with wild-type mice after 2,4,6-trinitrobenzenesulfonic acid treatment. VEGFα mRNA levels were increased in NCM460-NTR1 cells treated with 10(-7) mol/L NT, at 1 and 6 hours post-treatment. NT exposure in NCM460-NTR1 cells caused stabilization, nuclear translocation, and transcriptional activity of HIF-1α in a diacylglycerol kinase-dependent manner. NT did not stimulate tube formation in isolated human intestinal macrovascular endothelial cells but did so in human intestinal macrovascular endothelial cells cocultured with NCM460-NTR1 cells. Our results demonstrate the importance of an NTR1-HIF-1α-VEGFα axis in intestinal angiogenic responses and in the pathophysiology of colitis and inflammatory bowel disease.
Collapse
Affiliation(s)
- Kyriaki Bakirtzi
- Inflammatory Bowel Disease Center, Division of Digestive Diseases, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California
| | - Gail West
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio; Department of Gastroenterology and Hepatology, Digestive Disease Institute, Cleveland Clinic Foundation, Cleveland, Ohio
| | - Claudio Fiocchi
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio; Department of Gastroenterology and Hepatology, Digestive Disease Institute, Cleveland Clinic Foundation, Cleveland, Ohio
| | - Ivy Ka Man Law
- Inflammatory Bowel Disease Center, Division of Digestive Diseases, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California
| | - Dimitrios Iliopoulos
- Department of Cancer Immunology & AIDS, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Charalabos Pothoulakis
- Inflammatory Bowel Disease Center, Division of Digestive Diseases, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California.
| |
Collapse
|
71
|
Wojtal KA, Cee A, Lang S, Götze O, Frühauf H, Geier A, Pastor-Anglada M, Torres-Torronteras J, Martí R, Fried M, Lutz TA, Maggiorini M, Gassmann M, Rogler G, Vavricka SR. Downregulation of duodenal SLC transporters and activation of proinflammatory signaling constitute the early response to high altitude in humans. Am J Physiol Gastrointest Liver Physiol 2014; 307:G673-88. [PMID: 24970780 DOI: 10.1152/ajpgi.00353.2013] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Solute carrier (SLC) transporters mediate the uptake of biologically active compounds in the intestine. Reduced oxygenation (hypoxia) is an important factor influencing intestinal homeostasis. The aim of this study was to investigate the pathophysiological consequences of hypoxia on the expression and function of SLCs in human intestine. Hypoxia was induced in human intestinal epithelial cells (IECs) in vitro (0.2; 1% O2 or CoCl2). For human in vivo studies, duodenal biopsies and serum samples were obtained from individuals (n = 16) acutely exposed to 4,554 meters above sea levels. Expression of relevant targets was analyzed by quantitative PCR, Western blotting, or immunofluorescence. Serum levels of inflammatory mediators and nucleosides were determined by ELISA and LC/MS-MS, respectively. In the duodenum of volunteers exposed to high altitude we observed decreased mRNA levels of apical sodium-dependent bile acid transporter (ASBT), concentrative nucleoside transporters 1/2 (CNT1/2), organic anion transporting polypeptide 2B1 (OATP2B1), organic cation transporter 2 (OCTN2), peptide transporter 1 (PEPT1), serotonin transporter (SERT), and higher levels of IFN-γ, IL-6, and IL-17A. Serum levels of IL-10, IFN-γ, matrix metalloproteinase-2 (MMP-2), and serotonin were elevated, whereas the levels of uridine decreased upon exposure to hypoxia. Hypoxic IECs showed reduced levels of equilibrative nucleoside transporter 2 (ENT2), OCTN2, and SERT mRNAs in vitro, which was confirmed on the protein level and was accompanied by activation of ERK1/2, increase of hypoxia-inducible factor (HIF) proteins, and production of IL-8 mRNA. Costimulation with IFN-γ and IL-6 during hypoxia further decreased the expression of SERT, ENT2, and CNT2 in vitro. Reduced oxygen supply affects the expression pattern of duodenal SLCs that is accompanied by changes in serum levels of proinflammatory cytokines and biologically active compounds demonstrating that intestinal transport is affected during systemic exposure to hypoxia in humans.
Collapse
Affiliation(s)
- Kacper A Wojtal
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University Hospital Zurich, Zurich, Switzerland;
| | - Alexandra Cee
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University Hospital Zurich, Zurich, Switzerland
| | - Silvia Lang
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University Hospital Zurich, Zurich, Switzerland
| | - Oliver Götze
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University Hospital Zurich, Zurich, Switzerland; Department of Gastroenterology and Hepatology, University Clinic Würzburg, Würzburg, Germany
| | - Heiko Frühauf
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University Hospital Zurich, Zurich, Switzerland; Division of Gastroenterology and Hepatology, Hospital Triemli, Zurich, Switzerland
| | - Andreas Geier
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University Hospital Zurich, Zurich, Switzerland; Department of Gastroenterology and Hepatology, University Clinic Würzburg, Würzburg, Germany
| | - Marçal Pastor-Anglada
- Pharmacology and Experimental Therapeutics, Department of Biochemistry and Molecular Biology, Institute of Biomedicine and Oncology Programme, National Biomedical Research Institute of Liver and Gastrointestinal Disease (CIBER EHD), University of Barcelona, Barcelona, Spain
| | - Javier Torres-Torronteras
- Neuromuscular and Mitochondrial Disorders Unit, and Biomedical Network Research Centre on Rare Diseases (CIBERER), Vall d'Hebron Institut de Recerca, Autonomous University of Barcelona, Barcelona, Spain
| | - Ramon Martí
- Neuromuscular and Mitochondrial Disorders Unit, and Biomedical Network Research Centre on Rare Diseases (CIBERER), Vall d'Hebron Institut de Recerca, Autonomous University of Barcelona, Barcelona, Spain
| | - Michael Fried
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University Hospital Zurich, Zurich, Switzerland
| | - Thomas A Lutz
- Institute of Veterinary Physiology, University of Zurich, Zurich, Switzerland; Institute of Laboratory Animal Science, University of Zurich, Zurich, Switzerland; Zurich Center for Integrative Human Physiology (ZIHP), Zurich, Switzerland
| | - Marco Maggiorini
- Intensive Care Unit, Department of Internal Medicine, University of Zurich, Zurich, Switzerland
| | - Max Gassmann
- Institute of Veterinary Physiology, University of Zurich, Zurich, Switzerland; Cayetano Heredia University (UPCH), Lima, Peru; and Zurich Center for Integrative Human Physiology (ZIHP), Zurich, Switzerland
| | - Gerhard Rogler
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University Hospital Zurich, Zurich, Switzerland; Zurich Center for Integrative Human Physiology (ZIHP), Zurich, Switzerland
| | - Stephan R Vavricka
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University Hospital Zurich, Zurich, Switzerland; Division of Gastroenterology and Hepatology, Hospital Triemli, Zurich, Switzerland; Zurich Center for Integrative Human Physiology (ZIHP), Zurich, Switzerland
| |
Collapse
|
72
|
Ortiz-Masiá D, Cosín-Roger J, Calatayud S, Hernández C, Alós R, Hinojosa J, Apostolova N, Alvarez A, Barrachina MD. Hypoxic macrophages impair autophagy in epithelial cells through Wnt1: relevance in IBD. Mucosal Immunol 2014; 7:929-38. [PMID: 24301659 DOI: 10.1038/mi.2013.108] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Revised: 10/16/2013] [Accepted: 11/05/2013] [Indexed: 02/04/2023]
Abstract
A defective induction of epithelial autophagy may have a role in the pathogenesis of inflammatory bowel diseases. This process is regulated mainly by extracellular factors such as nutrients and growth factors and is highly induced by diverse situations of stress. We hypothesized that epithelial autophagy is regulated by the immune response that in turn is modulated by local hypoxia and inflammatory signals present in the inflamed mucosa. Our results reveal that HIF-1α and Wnt1 were co-localized with CD68 in cells of the mucosa of IBD patients. We have observed increased protein levels of β-catenin, phosphorylated mTOR, and p62 and decreased expression of LC3II in colonic epithelial crypts from damaged mucosa in which β-catenin positively correlated with phosphorylated mTOR and negatively correlated with autophagic protein markers. In cultured macrophages, HIF-1 mediated the increase in Wnt1 expression induced by hypoxia, which enhanced protein levels of β-catenin, activated mTOR, and decreased autophagy in epithelial cells in co-culture. Our results demonstrate a HIF-1-dependent induction of Wnt1 in hypoxic macrophages that undermines autophagy in epithelial cells and suggest a role for Wnt signaling and mTOR pathways in the impaired epithelial autophagy observed in the mucosa of IBD patients.
Collapse
Affiliation(s)
- D Ortiz-Masiá
- Departamento de Farmacología and CIBERehd, Facultad de Medicina, Universidad de Valencia, Valencia, Spain
| | - J Cosín-Roger
- Departamento de Farmacología and CIBERehd, Facultad de Medicina, Universidad de Valencia, Valencia, Spain
| | - S Calatayud
- Departamento de Farmacología and CIBERehd, Facultad de Medicina, Universidad de Valencia, Valencia, Spain
| | | | - R Alós
- Hospital de Manises, Valencia, Spain
| | | | | | - A Alvarez
- Departamento de Farmacología and CIBERehd, Facultad de Medicina, Universidad de Valencia, Valencia, Spain
| | - M D Barrachina
- Departamento de Farmacología and CIBERehd, Facultad de Medicina, Universidad de Valencia, Valencia, Spain
| |
Collapse
|
73
|
Effects of atorvastatin on the inflammation regulation and elimination of subdural hematoma in rats. J Neurol Sci 2014; 341:88-96. [DOI: 10.1016/j.jns.2014.04.009] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Revised: 04/01/2014] [Accepted: 04/03/2014] [Indexed: 11/18/2022]
|
74
|
Dulai PS, Gleeson MW, Taylor D, Holubar SD, Buckey JC, Siegel CA. Systematic review: The safety and efficacy of hyperbaric oxygen therapy for inflammatory bowel disease. Aliment Pharmacol Ther 2014; 39:1266-75. [PMID: 24738651 DOI: 10.1111/apt.12753] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Revised: 12/02/2013] [Accepted: 03/25/2014] [Indexed: 12/23/2022]
Abstract
BACKGROUND Hyperbaric oxygen therapy (HBOT) provides 100% oxygen under pressure, which increases tissue oxygen levels, relieves hypoxia and alters inflammatory pathways. Although there is experience using HBOT in Crohn's disease and ulcerative colitis, the safety and overall efficacy of HBOT in inflammatory bowel disease (IBD) is unknown. AIM To quantify the safety and efficacy of HBOT for Crohn's disease (CD) and ulcerative colitis (UC). The rate of adverse events with HBOT for IBD was compared to the expected rate of adverse events with HBOT. METHODS MEDLINE, EMBASE, Cochrane Collaboration and Web of Knowledge were systematically searched using the PRISMA standards for systematic reviews. Seventeen studies involving 613 patients (286 CD, 327 UC) were included. RESULTS The overall response rate was 86% (85% CD, 88% UC). The overall response rate for perineal CD was 88% (18/40 complete healing, 17/40 partial healing). Of the 40 UC patients with endoscopic follow-up reported, the overall response rate to HBOT was 100%. During the 8924 treatments, there were a total of nine adverse events, six of which were serious. The rate of adverse events with HBOT in IBD is lower than that seen when utilising HBOT for other indications (P < 0.01). The risk of bias across studies was high. CONCLUSIONS Hyperbaric oxygen therapy is a relatively safe and potentially efficacious treatment option for IBD patients. To understand the true benefit of HBOT in IBD, well-controlled, blinded, randomised trials are needed for both Crohn's disease and ulcerative colitis.
Collapse
Affiliation(s)
- P S Dulai
- Inflammatory Bowel Disease Center, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA; Center for Hyperbaric Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA
| | | | | | | | | | | |
Collapse
|
75
|
Rutten EPA, Lenaerts K, Buurman WA, Wouters EFM. Disturbed intestinal integrity in patients with COPD: effects of activities of daily living. Chest 2014; 145:245-252. [PMID: 23928850 DOI: 10.1378/chest.13-0584] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND COPD is accepted to be a multicomponent disease with various comorbidities. To our knowledge, the contribution of the GI tract to the systemic manifestation of COPD has never been investigated. This metabolically active organ may experience recurring local oxygen deficits during daily life, leading to disturbed intestinal integrity in patients with COPD. METHODS Eighteen patients with moderate COPD (mean FEV₁, 55 ± 3% predicted) and 14 matched healthy control subjects were tested on two occasions: a baseline measurement at rest and, on another day, during the performance of activities of daily living (ADLs). To assess enterocyte damage, plasma intestinal fatty acid binding protein (IFABP) levels were determined, whereas urinary excretion of orally ingested sugar probes was measured using liquid chromatography and mass spectrometry to assess GI permeability. RESULTS Plasma IFABP concentrations were not different between patients with COPD and healthy control subjects at rest. In contrast, 0- to 3-h urinary lactulose to rhamnose and sucralose to erythritol ratios and 5- to 24-h urinary sucralose to erythritol ratios were significantly higher in patients with COPD compared with control subjects, indicating increased permeability of the small intestine and colon. Furthermore, the performance of ADLs led to significantly increased plasma IFABP concentrations in patients with COPD but not in control subjects. Similarly, the intestinal permeability difference between patients and control subjects was intensified. CONCLUSIONS Besides an altered intestinal permeability in patients with COPD when at rest, performing ADLs led to enterocyte damage in addition to intestinal hyperpermeability in patients with COPD but not in control subjects, indicating functional alteration in the GI tract. Hence, intestinal compromise should be considered as a new component of the multisystem disorder COPD. TRIAL REGISTRY ISRCTN Register; No.: ISRCTN33686980; URL: www.controlled-trials.com.
Collapse
Affiliation(s)
- Erica P A Rutten
- Centre of expertise for chronic organ failure (Ciro), Horn, The Netherlands
| | - Kaatje Lenaerts
- Centre of expertise for chronic organ failure (Ciro), Horn, The Netherlands; Department of Surgery, NUTRIM School for Nutrition, Toxicology and Metabolism, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Wim A Buurman
- Centre of expertise for chronic organ failure (Ciro), Horn, The Netherlands; Department of Surgery, NUTRIM School for Nutrition, Toxicology and Metabolism, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Emiel F M Wouters
- Centre of expertise for chronic organ failure (Ciro), Horn, The Netherlands; Department of Respiratory Medicine, NUTRIM School for Nutrition, Toxicology and Metabolism, Maastricht University Medical Centre, Maastricht, The Netherlands.
| |
Collapse
|
76
|
Ward JBJ, Keely SJ, Keely SJ. Oxygen in the regulation of intestinal epithelial transport. J Physiol 2014; 592:2473-89. [PMID: 24710059 DOI: 10.1113/jphysiol.2013.270249] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The transport of fluid, nutrients and electrolytes to and from the intestinal lumen is a primary function of epithelial cells. Normally, the intestine absorbs approximately 9 l of fluid and 1 kg of nutrients daily, driven by epithelial transport processes that consume large amounts of cellular energy and O2. The epithelium exists at the interface of the richly vascularised mucosa, and the anoxic luminal environment and this steep O2 gradient play a key role in determining the expression pattern of proteins involved in fluid, nutrient and electrolyte transport. However, the dynamic nature of the splanchnic circulation necessitates that the epithelium can evoke co-ordinated responses to fluctuations in O2 availability, which occur either as a part of the normal digestive process or as a consequence of several pathophysiological conditions. While it is known that hypoxia-responsive signals, such as reactive oxygen species, AMP-activated kinase, hypoxia-inducible factors, and prolyl hydroxylases are all important in regulating epithelial responses to altered O2 supply, our understanding of the molecular mechanisms involved is still limited. Here, we aim to review the current literature regarding the role that O2 plays in regulating intestinal transport processes and to highlight areas of research that still need to be addressed.
Collapse
Affiliation(s)
- Joseph B J Ward
- Department of Molecular Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Simon J Keely
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle NSW, Australia
| | - Stephen J Keely
- Department of Molecular Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| |
Collapse
|
77
|
Aherne CM, Collins CB, Eltzschig HK. Netrin-1 guides inflammatory cell migration to control mucosal immune responses during intestinal inflammation. Tissue Barriers 2014; 1:e24957. [PMID: 24665394 PMCID: PMC3879190 DOI: 10.4161/tisb.24957] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Revised: 04/26/2013] [Accepted: 05/06/2013] [Indexed: 12/26/2022] Open
Abstract
The intestinal epithelium is a dynamic barrier playing an active role in intestinal homeostasis and inflammation. Intestinal barrier function is dysregulated during inflammatory bowel disease (IBD), with epithelial cells playing a significant part in generating an inflammatory milieu through the release of signals that attract leukocytes to the intestinal lamina propria. However, it is increasingly appreciated that the intestinal epithelium mediates a counterbalancing response to drive resolution. Drawing analogies with neuronal development, where the balance of chemoattractive and chemorepellent signals is key to directed neuronal movement it has been postulated that such secreted cues play a role in leukocyte migration. Netrin-1 is one of the best-described neuronal guidance molecules, which has been shown to play a significant role in directed migration of leukocytes. Prior to our study the potential role of netrin-1 in IBD was poorly characterized. We defined netrin-1 as an intestinal epithelial-derived protein capable of limiting neutrophil recruitment to attenuate acute colitis. Our study highlights that the intestinal epithelium releases factors during acute inflammation that are responsible for fine-tuning the immune response. Exploration of these epithelial-mediated protective mechanisms will shed light on the complexity of the intestinal epithelial barrier in health and disease.
Collapse
Affiliation(s)
- Carol M Aherne
- Mucosal Inflammation Program; Department of Anesthesiology and Perioperative Medicine; University of Colorado Anschutz Medical Campus; Aurora, CO USA
| | - Colm B Collins
- Department of Pediatrics; Children's Hospital Colorado; Aurora, CO USA
| | - Holger K Eltzschig
- Mucosal Inflammation Program; Department of Anesthesiology and Perioperative Medicine; University of Colorado Anschutz Medical Campus; Aurora, CO USA
| |
Collapse
|
78
|
Gupta R, Chaudhary AR, Shah BN, Jadhav AV, Zambad SP, Gupta RC, Deshpande S, Chauthaiwale V, Dutt C. Therapeutic treatment with a novel hypoxia-inducible factor hydroxylase inhibitor (TRC160334) ameliorates murine colitis. Clin Exp Gastroenterol 2014; 7:13-23. [PMID: 24493931 PMCID: PMC3908906 DOI: 10.2147/ceg.s51923] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND AND AIM Mucosal healing in inflammatory bowel disease (IBD) can be achieved by improvement of intestinal barrier protection. Activation of hypoxia-inducible factor (HIF) has been identified as a critical factor for barrier protection during mucosal insult and is linked with improvement in symptoms of colitis. Although prophylactic efficacy of HIF hydroxylase inhibitors in murine colitis have been established, its therapeutic efficacy in clinically relevant therapeutic settings have not been established. In the present study we aim to establish therapeutic efficacy of TRC160334, a novel HIF hydroxylase inhibitor, in animal models of colitis. METHODS The efficacy of TRC160334 was evaluated in two different mouse models of colitis by oral route. A prophylactic efficacy study was performed in a 2,4,6-trinitrobenzene sulfonic acid-induced mouse model of colitis representing human Crohn's disease pathology. Additionally, a therapeutic efficacy study was performed in a dextran sulfate sodium-induced mouse model of colitis, a model simulating human ulcerative colitis. RESULTS TRC160334 treatment resulted in significant improvement in disease end points in both models of colitis. TRC160334 treatment resulted into cytoprotective heatshock protein 70 induction in inflamed colon. TRC160334 successfully attenuated the rate of fall in body weight, disease activity index, and macroscopic and microscopic scores of colonic damage leading to overall improvement in study outcome. CONCLUSION Our findings are the first to demonstrate that therapeutic intervention with a HIF hydroxylase inhibitor ameliorates IBD in disease models. These findings highlight the potential of TRC160334 for its clinical application in the treatment of IBD.
Collapse
Affiliation(s)
- Ram Gupta
- Department of Pharmacology, Torrent Pharmaceuticals Ltd, Gandhinagar, Gujarat, India
| | - Anita R Chaudhary
- Cellular and Molecular Biology, Torrent Pharmaceuticals Ltd, Gandhinagar, Gujarat, India
| | - Binita N Shah
- Department of Pharmacology, Torrent Pharmaceuticals Ltd, Gandhinagar, Gujarat, India
| | - Avinash V Jadhav
- Preclinical Safety Evaluation, Torrent Pharmaceuticals Ltd, Gandhinagar, Gujarat, India
| | - Shitalkumar P Zambad
- Department of Pharmacology, Torrent Pharmaceuticals Ltd, Gandhinagar, Gujarat, India
| | - Ramesh Chandra Gupta
- Discovery, Torrent Research Centre, Torrent Pharmaceuticals Ltd, Gandhinagar, Gujarat, India
| | - Shailesh Deshpande
- Discovery, Torrent Research Centre, Torrent Pharmaceuticals Ltd, Gandhinagar, Gujarat, India
| | - Vijay Chauthaiwale
- Discovery, Torrent Research Centre, Torrent Pharmaceuticals Ltd, Gandhinagar, Gujarat, India
| | - Chaitanya Dutt
- Discovery, Torrent Research Centre, Torrent Pharmaceuticals Ltd, Gandhinagar, Gujarat, India
| |
Collapse
|
79
|
Control of creatine metabolism by HIF is an endogenous mechanism of barrier regulation in colitis. Proc Natl Acad Sci U S A 2013; 110:19820-5. [PMID: 24248342 DOI: 10.1073/pnas.1302840110] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Mucosal surfaces of the lower gastrointestinal tract are subject to frequent, pronounced fluctuations in oxygen tension, particularly during inflammation. Adaptive responses to hypoxia are orchestrated largely by the hypoxia-inducible transcription factors (HIFs). As HIF-1α and HIF-2α are coexpressed in mucosal epithelia that constitute the barrier between the lumen and the underlying immune milieu, we sought to define the discrete contribution of HIF-1 and HIF-2 transactivation pathways to intestinal epithelial cell homeostasis. The present study identifies creatine kinases (CKs), key metabolic enzymes for rapid ATP generation via the phosphocreatine-creatine kinase (PCr/CK) system, as a unique gene family that is coordinately regulated by HIF. Cytosolic CKs are expressed in a HIF-2-dependent manner in vitro and localize to apical intestinal epithelial cell adherens junctions, where they are critical for junction assembly and epithelial integrity. Supplementation with dietary creatine markedly ameliorated both disease severity and inflammatory responses in colitis models. Further, enzymes of the PCr/CK metabolic shuttle demonstrate dysregulated mucosal expression in a subset of ulcerative colitis and Crohn disease patients. These findings establish a role for HIF-regulated CK in epithelial homeostasis and reveal a fundamental link between cellular bioenergetics and mucosal barrier.
Collapse
|
80
|
Cell-mediated reduction of human β-defensin 1: a major role for mucosal thioredoxin. Mucosal Immunol 2013; 6:1179-90. [PMID: 23571504 PMCID: PMC3806438 DOI: 10.1038/mi.2013.17] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Accepted: 02/19/2013] [Indexed: 02/04/2023]
Abstract
Human β-defensin 1 (hBD-1) is an antimicrobial peptide expressed by epithelia and hematopoietic cells. We demonstrated recently that hBD-1 shows activity against enteric commensals and Candida species only after its disulfide bonds have been reduced by thioredoxin (TRX) or a reducing environment. Here we show that besides TRX, glutaredoxin (GRX) is also able to reduce hBD-1, although with far less efficacy. Moreover, living intestinal and lymphoid cells can effectively catalyze reduction of extracellular hBD-1. By chemical inhibition of the TRX system or specific knockdown of TRX, we demonstrate that cell-mediated reduction is largely dependent on TRX. Quantitative PCR in intestinal tissues of healthy controls and inflammatory bowel disease patients revealed altered expression of some, although not all, redox enzymes, especially in ulcerative colitis. Reduced hBD-1 and TRX localize to extracellular colonic mucus, suggesting that secreted or membrane-bound TRX converts hBD-1 to a potent antimicrobial peptide in vivo.
Collapse
|
81
|
Weissmüller T, Glover LE, Fennimore B, Curtis VF, MacManus CF, Ehrentraut SF, Campbell EL, Scully M, Grove BD, Colgan SP. HIF-dependent regulation of AKAP12 (gravin) in the control of human vascular endothelial function. FASEB J 2013; 28:256-64. [PMID: 24029533 DOI: 10.1096/fj.13-238741] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Hypoxia has been widely implicated in many pathological conditions, including those associated with inflammation and tumorigenesis. A number of recent studies have implicated hypoxia in the control of vasculogenesis and permeability, the basis for which is not fully understood. Here we examine the transcriptional regulation of angiogenesis and permeability by hypoxia in endothelial cells. Guided by a global profiling approach in cultured endothelial cells, these studies revealed the selective induction of human gravin (protein kinase A anchoring protein 12) by hypoxia. Analysis of the cloned gravin promoter identified a functional hypoxia-responsive region including 2 binding sites for hypoxia-inducible factor (HIF). Site-directed mutagenesis identified the most distal HIF-binding site as essential for the induction of gravin by hypoxia. Further studies examining gravin gain and loss of function confirmed strong dependence of gravin in control of microvascular endothelial tube formation, wherein gravin functions as a "braking" system for angiogenesis. Additional studies in confluent endothelia revealed that gravin functionally couples to control endothelial barrier function in response to protein kinase A (PKA) agonists. Taken together, these results demonstrate transcriptional coordination of gravin by HIF-1α and amplified PKA-dependent endothelial responses. These findings provide an important link between hypoxia and metabolic conditions associated with inflammation and angiogenesis.
Collapse
Affiliation(s)
- Thomas Weissmüller
- 1Mucosal Inflammation Program, University of Colorado, 12700 E. 19th Ave, Aurora, CO 80045, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
82
|
Goggins BJ, Chaney C, Radford-Smith GL, Horvat JC, Keely S. Hypoxia and Integrin-Mediated Epithelial Restitution during Mucosal Inflammation. Front Immunol 2013; 4:272. [PMID: 24062740 PMCID: PMC3769679 DOI: 10.3389/fimmu.2013.00272] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Accepted: 08/27/2013] [Indexed: 12/27/2022] Open
Abstract
Epithelial damage and loss of intestinal barrier function are hallmark pathologies of the mucosal inflammation associated with conditions such as inflammatory bowel disease. In order to resolve inflammation and restore intestinal integrity the mucosa must rapidly and effectively repair the epithelial barrier. Epithelial wound healing is a highly complex and co-ordinated process and the factors involved in initiating intestinal epithelial healing are poorly defined. In order for restitution to be successful there must be a balance between epithelial cell migration, proliferation, and differentiation within and adjacent to the inflamed area. Endogenous, compensatory epithelial signaling pathways are activated by the changes in oxygen tensions that accompany inflammation. These signaling pathways induce the activation of key transcription factors, governing anti-apoptotic, and proliferative processes resulting in epithelial cell survival, proliferation, and differentiation at the site of mucosal inflammation. In this review, we will discuss the primary processes involved in epithelial restitution with a focus on the role of hypoxia-inducible factor and epithelial integrins as mediators of epithelial repair following inflammatory injury at the mucosal surface.
Collapse
Affiliation(s)
- Bridie J Goggins
- School of Biomedical Sciences and Pharmacy, University of Newcastle , Newcastle, NSW , Australia ; Hunter Medical Research Institute , New Lambton, NSW , Australia
| | | | | | | | | |
Collapse
|
83
|
Abstract
A current view of the inflammatory bowel diseases (IBDs) includes the luminal triggering of innate immune disease in a genetically susceptible host. Given the unique anatomy and complex environment of the intestine, local microenvironmental cues likely contribute significantly to both disease progression and resolution in IBD. Compartmentalized tissue and microbe populations within the intestine result in significant metabolic shifts within these tissue microenvironments. During active inflammatory disease, metabolic demands often exceed supply, resulting in localized areas of metabolic stress and diminished oxygen delivery (hypoxia). There is much recent interest in harnessing these microenvironmental changes to the benefit of the tissue, including targeting these pathways for therapy of IBD. Here, we review the current understanding of metabolic microenvironments within the intestine in IBD, with discussion of the advantages and disadvantages of targeting these pathways to treat patients with IBD.
Collapse
|
84
|
Abstract
Inflammatory bowel disease (IBD) is a common and debilitating clinical disorder comprising ulcerative colitis and Crohn's disease. IBD occurs when inappropriate immunological activity in the intestinal mucosa results in epithelial barrier dysfunction leading to exposure of the mucosal immune system to luminal antigenic material. This in turn results in the cycles of inflammation and further barrier dysfunction which underlie disease progression. Although significant therapeutic advances have been made over the last decade, current immunosuppressive and anti-inflammatory treatments for IBD have significant limitations due to lack of treatment response in some patients and adverse effects, including increased risk of infection and malignancy. Recent studies using experimental models of IBD have identified that intracellular hydroxylases, a group of enzymes responsible for oxygen sensing and activation of adaptive transcriptional responses to hypoxia may represent a new class of therapeutic targets in IBD. Hydroxylase inhibitors are effective in ameliorating symptoms of colitis at least in part through the promotion of intestinal epithelial barrier function. The mechanism of this protection is due to activation of hypoxia-sensitive transcription factors, including the hypoxia-inducible factor (HIF) and nuclear factor kappa-B (NF-κB), which activate specific epithelial barrier-protective transcriptional programs. In this review, the mechanism(s) of action and the therapeutic potential of small molecule hydroxylase inhibitors for the treatment of IBD will be discussed.
Collapse
|
85
|
Espey MG. Role of oxygen gradients in shaping redox relationships between the human intestine and its microbiota. Free Radic Biol Med 2013; 55:130-40. [PMID: 23127782 DOI: 10.1016/j.freeradbiomed.2012.10.554] [Citation(s) in RCA: 260] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Revised: 10/19/2012] [Accepted: 10/24/2012] [Indexed: 01/01/2023]
Abstract
The unique anatomy and physiology of the intestine in conjunction with its microbial content create the steepest oxygen gradients in the body, which plunge to near anoxia at the luminal midpoint. Far from static, intestinal oxygen gradients ebb and flow with every meal. This in turn governs the redox effectors nitric oxide, hydrogen sulfide, and reactive oxygen species of both host and bacterial origin. This review illustrates how the intestine and microbes utilize oxygen gradients as a backdrop for mechanistically shaping redox relationships and a functional coexistence.
Collapse
Affiliation(s)
- Michael Graham Espey
- Office of the Scientific Director, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
86
|
Abstract
Trillions of microbes inhabit the human intestine, forming a complex ecological community that influences normal physiology and susceptibility to disease through its collective metabolic activities and host interactions. Understanding the factors that underlie changes in the composition and function of the gut microbiota will aid in the design of therapies that target it. This goal is formidable. The gut microbiota is immensely diverse, varies between individuals and can fluctuate over time - especially during disease and early development. Viewing the microbiota from an ecological perspective could provide insight into how to promote health by targeting this microbial community in clinical treatments.
Collapse
|
87
|
Ortiz-Masià D, Díez I, Calatayud S, Hernández C, Cosín-Roger J, Hinojosa J, Esplugues JV, Barrachina MD. Induction of CD36 and thrombospondin-1 in macrophages by hypoxia-inducible factor 1 and its relevance in the inflammatory process. PLoS One 2012; 7:e48535. [PMID: 23119050 PMCID: PMC3485304 DOI: 10.1371/journal.pone.0048535] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Accepted: 09/26/2012] [Indexed: 12/18/2022] Open
Abstract
Inflammation is part of a complex biological response of vascular tissue to pathogens or damaged cells. First inflammatory cells attempt to remove the injurious stimuli and this is followed by a healing process mediated principally by phagocytosis of senescent cells. Hypoxia and p38-MAPK are associated with inflammation, and hypoxia inducible factor 1 (HIF-1) has been detected in inflamed tissues. We aimed to analyse the role of p38-MAPK and HIF-1 in the transcriptional regulation of CD36, a class B scavenger receptor, and its ligand thrombospondin (TSP-1) in macrophages and to evaluate the involvement of this pathway in phagocytosis of apoptotic neutrophils. We have also assessed HIF-1α, p38-MAPK and CD36 immunostaining in the mucosa of patients with inflammatory bowel disease. Results show that hypoxia increases neutrophil phagocytosis by macrophages and induces the expression of CD36 and TSP-1. Addition of a p38-MAPK inhibitor significantly reduced the increase in CD36 and TSP-1 expression provoked by hypoxia and decreased HIF-1α stabilization in macrophages. Transient transfection of macrophages with a miHIF-1α-targeting vector blocked the increase in mRNA expression of CD36 and TSP-1 during hypoxia and reduced phagocytosis, thus highlighting a role for the transcriptional activity of HIF-1. CD36 and TSP-1 were necessary for the phagocytosis of neutrophils induced by hypoxic macrophages, since functional blockade of these proteins undermined this process. Immunohistochemical studies revealed CD36, HIF-1α and p38-MAPK expression in the mucosa of patients with inflammatory bowel disease. A positive and significant correlation between HIF-1α and CD36 expression and CD36 and p38-MAPK expression was observed in cells of the lamina propria of the damaged mucosa. Our results demonstrate a HIF-1-dependent up-regulation of CD36 and TSP-1 that mediates the increased phagocytosis of neutrophils by macrophages during hypoxia. Moreover, they suggest that CD36 expression in the damaged mucosa of patients with inflammatory bowel disease depends on p38-MAPK and HIF-1 activity.
Collapse
Affiliation(s)
- Dolores Ortiz-Masià
- Departamento de Farmacología and CIBERehd, Facultad de Medicina, Universidad de Valencia, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
88
|
Lozupone CA, Stombaugh JI, Gordon JI, Jansson JK, Knight R. Diversity, stability and resilience of the human gut microbiota. Nature 2012. [PMID: 22972295 DOI: 10.1038/nature11550.diversity] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Trillions of microbes inhabit the human intestine, forming a complex ecological community that influences normal physiology and susceptibility to disease through its collective metabolic activities and host interactions. Understanding the factors that underlie changes in the composition and function of the gut microbiota will aid in the design of therapies that target it. This goal is formidable. The gut microbiota is immensely diverse, varies between individuals and can fluctuate over time - especially during disease and early development. Viewing the microbiota from an ecological perspective could provide insight into how to promote health by targeting this microbial community in clinical treatments.
Collapse
Affiliation(s)
- Catherine A Lozupone
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado, USA
| | | | | | | | | |
Collapse
|