51
|
Pang B, Hu C, Xing N, Xu L, Zhang S, Yu X. Elevated Notch1 enhances interleukin-22 production by CD4 + T cells via aryl hydrocarbon receptor in patients with lung adenocarcinoma. Biosci Rep 2018; 38:BSR20181922. [PMID: 30473538 PMCID: PMC6294615 DOI: 10.1042/bsr20181922] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 11/19/2018] [Accepted: 11/21/2018] [Indexed: 12/17/2022] Open
Abstract
Notch signaling induced interleukin (IL)-22 secretion by CD4+ T cells via retinoid-related orphan nuclear receptor γt (RORγt) or aryl hydrocarbon receptor (AhR). Previous studies have demonstrated that Notch-AhR-IL-22 axis took part in the pathogenesis of chronic viral infection, however, its role in cancer has not been fully elucidated. Thus, the aim of current study was to investigate the involvement of Notch-AhR-IL-22 axis in the pathogenesis of lung adenocarcinoma. A total of 37 late-stage lung adenocarcinoma patients and 17 healthy individuals were enrolled. CD4+ T cells were purified from peripheral bloods and bronchoalveolar lavage fluids (BALF), and were stimulated with γ-secretase inhibitor (GSI). mRNA corresponding to Notch receptors and transcriptional factors were measured by real-time PCR. IL-22 concentration was investigated by ELISA. The bioactivity (including cellular proliferation, cell cycle, apoptosis, and invasion) of lung adenocarcinoma cell line A549 was also assessed in response to recombinant IL-22 stimulation in vitro. Notch1 mRNA expression was significantly elevated in CD4+ T cells purified from peripheral bloods and tumor site BALF in lung adenocarcinoma patients. IL-22 expression and RORγt/AhR mRNA in BALF was also remarkably increased in tumor site. Inhibition of Notch signaling by GSI did not affect cellular proliferation, but reduced IL-22 production in CD4+ T cells from BALF, along with down-regulation of AhR, but not RORγt. Moreover, IL-22 stimulation promoted A549 cells invasion. The current data indicated that elevated Notch1 induced higher IL-22 secretion by CD4+ T cells in lung adenocarcinoma patients, and Notch-AhR-IL-22 axis took part in the pathogenesis of lung adenocarcinoma.
Collapse
Affiliation(s)
- Bo Pang
- Department of Cardiology, The First Hospital of Jilin University, Changchun 130021, Jilin Province, China
| | - Cong Hu
- Center for Reproductive Medicine, Center for Prenatal Diagnosis, The First Hospital of Jilin University, Changchun 130021, Jilin Province, China
| | - Na Xing
- Department of Pediatrics, The First Hospital of Jilin University, Changchun 130021, Jilin Province, China
| | - Lei Xu
- Department of Thoracic Surgery, China-Japan Union Hospital of Jilin University, Changchun 130000, Jilin Province, China
| | - Songling Zhang
- Department of Oncological Gynecology, The First Hospital of Jilin University, Changchun 130021, Jilin Province, China
| | - Xiaowei Yu
- Center for Reproductive Medicine, Center for Prenatal Diagnosis, The First Hospital of Jilin University, Changchun 130021, Jilin Province, China
| |
Collapse
|
52
|
Ohashi K, Pimienta M, Seki E. Alcoholic liver disease: A current molecular and clinical perspective. LIVER RESEARCH 2018; 2:161-172. [PMID: 31214376 PMCID: PMC6581514 DOI: 10.1016/j.livres.2018.11.002] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Heavy alcohol use is the cause of alcoholic liver disease (ALD). The ALD spectrum ranges from alcoholic steatosis to steatohepatitis, fibrosis, and cirrhosis. In Western countries, approximately 50% of cirrhosis-related deaths are due to alcohol use. While alcoholic cirrhosis is no longer considered a completely irreversible condition, no effective anti-fibrotic therapies are currently available. Another significant clinical aspect of ALD is alcoholic hepatitis (AH). AH is an acute inflammatory condition that is often comorbid with cirrhosis, and severe AH has a high mortality rate. Therapeutic options for ALD are limited. The established treatment for AH is corticosteroids, which improve short-term survival but do not affect long-term survival. Liver transplantation is a curative treatment option for alcoholic cirrhosis and AH, but patients must abstain from alcohol use for 6 months to qualify. Additional effective therapies are needed. The molecular mechanisms underlying ALD are complex and have not been fully elucidated. Various molecules, signaling pathways, and crosstalk between multiple hepatic and extrahepatic cells contribute to ALD progression. This review highlights established and emerging concepts in ALD clinicopathology, their underlying molecular mechanisms, and current and future ALD treatment options.
Collapse
Affiliation(s)
- Koichiro Ohashi
- Division of Digestive and Liver Diseases, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Michael Pimienta
- Division of Digestive and Liver Diseases, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA,University of California San Diego, School of Medicine, La Jolla, CA, USA
| | - Ekihiro Seki
- Division of Digestive and Liver Diseases, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA,University of California San Diego, School of Medicine, La Jolla, CA, USA,Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA,Department of Medicine, University of California Los Angeles, David Geffen School of Medicine, Los Angeles, CA, USA,Corresponding author. Division of Digestive and Liver Diseases, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA., (E. Seki)
| |
Collapse
|
53
|
Zhou H, Xie G, Mao Y, Zhou K, Ren R, Zhao Q, Wang H, Yin S. Enhanced Regeneration and Hepatoprotective Effects of Interleukin 22 Fusion Protein on a Predamaged Liver Undergoing Partial Hepatectomy. J Immunol Res 2018; 2018:5241526. [PMID: 30515423 PMCID: PMC6234454 DOI: 10.1155/2018/5241526] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 08/29/2018] [Indexed: 02/06/2023] Open
Abstract
Liver ischemia-reperfusion injury (IRI) and regeneration deficiency are two major challenges for surgery patients with chronic liver disease. As a survival factor for hepatocytes, interleukin 22 (IL-22) plays an important role in hepatoprotection and the promotion of regeneration after hepatectomy. In this study, we aim to investigate the roles of an interleukin 22 fusion protein (IL-22-FP) in mice with a predamaged liver after a two-third partial hepatectomy (PHx). Predamaged livers in mice were induced by concanavalin A (ConA)/carbon tetrachloride (CCl4) following PHx with or without IL-22-FP treatment. A hepatic IRI mouse model was also used to determine the hepatoprotective effects of IL-22-FP. In the ConA/CCl4 model, IL-22-FP treatment alleviated liver injury and accelerated hepatocyte proliferation. Administration of IL-22-FP activated the hepatic signal transducer and activator of transcription 3 (STAT3) and upregulated the expression of many mitogenic proteins. IL-22-FP treatment prior to IRI effectively reduced liver damage through decreased aminotransferase and improved liver histology. In conclusion, IL-22-FP promotes liver regeneration in mice with predamaged livers following PHx and alleviates IRI-induced liver injury. Our study suggests that IL-22-FP may represent a promising therapeutic drug against regeneration deficiency and liver IRI in patients who have undergone PHx.
Collapse
Affiliation(s)
- Heng Zhou
- Department of Geriatrics, Anhui Provincial Hospital, Anhui Medical University, Hefei 230001, China
- School of Pharmacy, Anhui Medical University, Hefei 230032, China
- Institute for Liver Disease, Anhui Medical University, Hefei 230032, China
| | - Guomin Xie
- School of Pharmacy, Anhui Medical University, Hefei 230032, China
- Institute for Liver Disease, Anhui Medical University, Hefei 230032, China
| | - Yudi Mao
- Department of Geriatrics, Anhui Provincial Hospital, Anhui Medical University, Hefei 230001, China
| | - Ke Zhou
- School of Pharmacy, Anhui Medical University, Hefei 230032, China
- Institute for Liver Disease, Anhui Medical University, Hefei 230032, China
| | - Ruixue Ren
- Institute for Liver Disease, Anhui Medical University, Hefei 230032, China
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei 230032, China
| | - Qihong Zhao
- Department of Food and Nutrition Hygiene, School of Public Health, Anhui Medical University, Hefei 230032, China
| | - Hua Wang
- Institute for Liver Disease, Anhui Medical University, Hefei 230032, China
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei 230032, China
| | - Shi Yin
- Department of Geriatrics, Anhui Provincial Hospital, Anhui Medical University, Hefei 230001, China
| |
Collapse
|
54
|
Yin S, Feng D. WITHDRAWN: IL-22 in liver inflammation, injury and repair. LIVER RESEARCH 2018. [DOI: 10.1016/j.livres.2017.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
55
|
Caparrós E, Francés R. The Interleukin-20 Cytokine Family in Liver Disease. Front Immunol 2018; 9:1155. [PMID: 29892294 PMCID: PMC5985367 DOI: 10.3389/fimmu.2018.01155] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 05/08/2018] [Indexed: 12/11/2022] Open
Abstract
The three main causes of inflammation and chronic injury in the liver are viral hepatitis, alcohol consumption, and non-alcoholic steatohepatitis, all of which can lead to liver fibrosis, cirrhosis, and hepatocellular carcinoma, which in turn may prompt the need for liver transplant. The interleukin (IL)-20 is a subfamily part of the IL-10 family of cytokines that helps the liver respond to damage and disease, they participate in the control of tissue homeostasis, and in the immunological responses developed in this organ. The best-studied member of the family in inflammatory balance of the liver is the IL-22 cytokine, which on the one hand may have a protective role in fibrosis progression but on the other may induce liver tissue susceptibility in hepatocellular carcinoma development. Other members of the family might also carry out this dual function, as some of them share IL receptor subunits and signal through common intracellular pathways. Investigators are starting to consider the potential for targeting IL-20 subfamily members in liver disease. The recently explored role of miRNA in the transcriptional regulation of IL-22 and IL-24 opens the door to promising new approaches for controlling the local immune response and limiting organ injury. The IL-20RA cytokine receptor has also been classified as being under miRNA control in non-alcoholic steatohepatitis. Moreover, researchers have proposed combining anti-inflammatory drugs with IL-22 as a hepatoprotective IL for alcoholic liver disease (ALD) treatment, and clinical trials of ILs for managing severe alcoholic-derived liver degeneration are ongoing. In this review, we focus on exploring the role of the IL-20 subfamily of cytokines in viral hepatitis, ALD, non-alcoholic steatohepatitis, and hepatocellular carcinoma, as well as delineating the main strategies explored so far in terms of therapeutic possibilities of the IL-20 subfamily of cytokines in liver disease.
Collapse
Affiliation(s)
- Esther Caparrós
- Departamento de Medicina Clínica, Universidad Miguel Hernández, San Juan de Alicante, Spain
- Instituto ISABIAL-FISABIO, Hospital General Universitario de Alicante, Alicante, Spain
| | - Rubén Francés
- Departamento de Medicina Clínica, Universidad Miguel Hernández, San Juan de Alicante, Spain
- Instituto ISABIAL-FISABIO, Hospital General Universitario de Alicante, Alicante, Spain
- CIBERehd, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
56
|
Shen Y, Li J, Wang SQ, Jiang W. Ambiguous roles of innate lymphoid cells in chronic development of liver diseases. World J Gastroenterol 2018; 24:1962-1977. [PMID: 29760540 PMCID: PMC5949710 DOI: 10.3748/wjg.v24.i18.1962] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 04/25/2018] [Accepted: 05/06/2018] [Indexed: 02/06/2023] Open
Abstract
Innate lymphoid cells (ILCs) are defined as a distinct arm of innate immunity. According to their profile of secreted cytokines and lineage-specific transcriptional factors, ILCs can be categorized into the following three groups: group 1 ILCs (including natural killer (NK) cells and ILC1s) are dependent on T-bet and can produce interferon-γ; group 2 ILCs (ILC2s) are dependent on GATA3 and can produce type 2 cytokines, including interleukin (IL)-5 and IL-13; and, group 3 ILCs (including lymphoid tissue-like cells and ILC3s) are dependent on RORγt and can produce IL-22 and IL-17. Collaborative with adaptive immunity, ILCs are highly reactive innate effectors that promptly orchestrate immunity, inflammation and tissue repair. Dysregulation of ILCs might result in inflammatory disorders. Evidence regarding the function of intrahepatic ILCs is emerging from longitudinal studies of inflammatory liver diseases wherein they exert both physiological and pathological functions, including immune homeostasis, defenses and surveillance. Their overall effect on the liver depends on the balance of their proinflammatory and antiinflammatory populations, specific microenvironment and stages of immune responses. Here, we review the current data about ILCs in chronic liver disease progression, to reveal their roles in different stages as well as to discuss their therapeutic potency as intervention targets.
Collapse
Affiliation(s)
- Yue Shen
- Department of Gastroenterology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Jing Li
- Department of Gastroenterology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Department of Gastroenterology, Tongji Hospital, Tongji University, Shanghai 200000, China
| | - Si-Qi Wang
- Department of Gastroenterology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Wei Jiang
- Department of Gastroenterology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| |
Collapse
|
57
|
Alabbas SY, Begun J, Florin TH, Oancea I. The role of IL-22 in the resolution of sterile and nonsterile inflammation. Clin Transl Immunology 2018; 7:e1017. [PMID: 29713472 PMCID: PMC5905349 DOI: 10.1002/cti2.1017] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 03/25/2018] [Accepted: 03/26/2018] [Indexed: 12/14/2022] Open
Abstract
In a broad sense, inflammation can be conveniently characterised by two phases: the first phase, which is a pro-inflammatory, has evolved to clear infection and/or injured tissue; and the second phase concerns regeneration of normal tissue and restitution of normal physiology. Innate immune cell-derived pro-inflammatory cytokines and chemokines activate and recruit nonresident immune cells to the site of infection, thereby amplifying the inflammatory responses to clear infection or injury. This phase is followed by a cytokine milieu that promotes tissue regeneration. There is no absolute temporal distinction between these two phases, and cytokines may have dual pleiotropic effects depending on the timing of release, inflammatory microenvironment or concentrations. IL-22 is a cytokine with reported pro- and anti-inflammatory roles; in this review, we contend that this protein has primarily a function in restitution of normal tissue and physiology.
Collapse
Affiliation(s)
- Saleh Y Alabbas
- Faculty of MedicineSchool of Clinical MedicineThe University of QueenslandBrisbaneQLDAustralia
- Chronic Disease Biology and Care Group at Mater Research InstituteTranslational Research InstituteThe University of QueenslandBrisbaneQLDAustralia
| | - Jakob Begun
- Chronic Disease Biology and Care Group at Mater Research InstituteTranslational Research InstituteThe University of QueenslandBrisbaneQLDAustralia
| | - Timothy H Florin
- Chronic Disease Biology and Care Group at Mater Research InstituteTranslational Research InstituteThe University of QueenslandBrisbaneQLDAustralia
| | - Iulia Oancea
- Faculty of MedicineSchool of Clinical MedicineThe University of QueenslandBrisbaneQLDAustralia
- Chronic Disease Biology and Care Group at Mater Research InstituteTranslational Research InstituteThe University of QueenslandBrisbaneQLDAustralia
| |
Collapse
|
58
|
Kleinschmidt D, Giannou AD, McGee HM, Kempski J, Steglich B, Huber FJ, Ernst TM, Shiri AM, Wegscheid C, Tasika E, Hübener P, Huber P, Bedke T, Steffens N, Agalioti T, Fuchs T, Noll J, Lotter H, Tiegs G, Lohse AW, Axelrod JH, Galun E, Flavell RA, Gagliani N, Huber S. A Protective Function of IL-22BP in Ischemia Reperfusion and Acetaminophen-Induced Liver Injury. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2017; 199:4078-4090. [PMID: 29109123 DOI: 10.4049/jimmunol.1700587] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 10/07/2017] [Indexed: 12/13/2022]
Abstract
Acute liver injury can be secondary to a variety of causes, including infections, intoxication, and ischemia. All of these insults induce hepatocyte death and subsequent inflammation, which can make acute liver injury a life-threatening event. IL-22 is a dual natured cytokine which has context-dependent protective and pathogenic properties during tissue damage. Accordingly, IL-22 was shown to promote liver regeneration upon acute liver damage. However, other studies suggest pathogenic properties of IL-22 during chronic liver injury. IL-22 binding protein (IL-22BP, IL-22Ra2) is a soluble inhibitor of IL-22 that regulates IL-22 activity. However, the significance of endogenous IL-22BP in acute liver injury is unknown. We hypothesized that IL-22BP may play a role in acute liver injury. To test this hypothesis, we used Il22bp-deficient mice and murine models of acute liver damage induced by ischemia reperfusion and N-acetyl-p-aminophenol (acetaminophen) administration. We found that Il22bp-deficient mice were more susceptible to acute liver damage in both models. We used Il22 × Il22bp double-deficient mice to show that this effect is indeed due to uncontrolled IL-22 activity. We could demonstrate mechanistically increased expression of Cxcl10 by hepatocytes, and consequently increased infiltration of inflammatory CD11b+Ly6C+ monocytes into the liver in Il22bp-deficient mice upon liver damage. Accordingly, neutralization of CXCL10 reversed the increased disease susceptibility of Il22bp-deficient mice. In conclusion, our data indicate that IL-22BP plays a protective role in acute liver damage, via controlling IL-22-induced Cxcl10 expression.
Collapse
Affiliation(s)
- Dörte Kleinschmidt
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Anastasios D Giannou
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Heather M McGee
- Department of Radiation Oncology, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Jan Kempski
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Babett Steglich
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Francis Jessica Huber
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Thomas Michael Ernst
- Department and Clinic for Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Ahmad Mustafa Shiri
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Claudia Wegscheid
- Institute of Experimental Immunology and Hepatology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Elena Tasika
- Institute of Experimental Immunology and Hepatology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Peter Hübener
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Philipp Huber
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Tanja Bedke
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Niklas Steffens
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Theodora Agalioti
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Tobias Fuchs
- Institute of Clinical Chemistry and Central Laboratories, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Jill Noll
- Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany
| | - Hannelore Lotter
- Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany
| | - Gisa Tiegs
- Institute of Experimental Immunology and Hepatology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Ansgar W Lohse
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Jonathan H Axelrod
- Goldyne Savad Institute of Gene Therapy, Hadassah Hebrew University Hospital, Jerusalem 91120, Israel
| | - Eithan Galun
- Goldyne Savad Institute of Gene Therapy, Hadassah Hebrew University Hospital, Jerusalem 91120, Israel
| | - Richard A Flavell
- Department of Immunobiology, School of Medicine, Yale University, New Haven, CT 06520
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06520; and
| | - Nicola Gagliani
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
- Immunology and Allergy Unit, Department of Medicine Solna, Karolinska Institute, 17176 Stockholm, Sweden
| | - Samuel Huber
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany;
| |
Collapse
|
59
|
Huang Q, Wang Y, Si C, Zhao D, Wang Y, Duan Y. Interleukin-35 Modulates the Imbalance Between Regulatory T Cells and T Helper 17 Cells in Enterovirus 71-Induced Hand, Foot, and Mouth Disease. J Interferon Cytokine Res 2017; 37:522-530. [PMID: 29172969 DOI: 10.1089/jir.2017.0080] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Interleukin (IL)-35 modulates the imbalance between regulatory T cells (Tregs) and T helper (Th) 17 cells, which played vital roles in the pathogenesis of autoimmune and infectious diseases. However, the role of Tregs/Th17 cell imbalance and the regulatory functions of IL-35 have remained largely unknown in enterovirus 71 (EV71)-induced hand, foot, and mouth disease (HFMD). In this study, a total of 47 HFMD patients (30 with mild HFMD and 17 with severe HFMD) and 13 healthy individuals were enrolled. The frequencies of CD4+CD25+CD127dim/- Tregs and CD4+IL-17+ Th17 cells, as well as IL-35 expression levels, were measured. Cellular proliferation and cytokine production was also determined in purified Tregs following recombinant IL-35 stimulation. An imbalance between Tregs and Th17 cells was observed in children with severe HFMD, which manifested as a reduction in the Tregs population and an elevation in the Th17 population. Serum IL-35 concentrations were also decreased in case of severe HFMD, which correlated with the Tregs:Th17 cell ratios. Recombinant IL-35 stimulation increased the proportion of Tregs, but downregulated that of Th17 cells. Treatment with IL-35 enhanced Tregs suppressive function and IL-35 and IL-10 expression, but reduced IL-22 secretion in both healthy individuals and those with severe HFMD. The Tregs:Th17 cell ratio was increased in the convalescent patients, however, a significant reduction in serum IL-35 was not observed. Our findings indicated that EV71 infection shifted the Tregs:Th17 cell ratio through IL-35 by downregulating inhibitory cytokine production and reducing the cell-to-cell contact inhibition of effector T cells. Regulation of IL-35 as it relates to the Tregs/Th17 balance may play a critical role in the pathogenesis of EV71-associated HFMD.
Collapse
Affiliation(s)
- Qian Huang
- 1 Department of Pediatrics, The First Affiliated Hospital of Xinxiang Medical University , Weihui, China
| | - Yanhua Wang
- 1 Department of Pediatrics, The First Affiliated Hospital of Xinxiang Medical University , Weihui, China
| | - Changyun Si
- 2 Department of Infectious Diseases, The First Affiliated Hospital of Xinxiang Medical University , Weihui, China
| | - De'an Zhao
- 1 Department of Pediatrics, The First Affiliated Hospital of Xinxiang Medical University , Weihui, China
| | - Yanping Wang
- 2 Department of Infectious Diseases, The First Affiliated Hospital of Xinxiang Medical University , Weihui, China
| | - Yuxiu Duan
- 2 Department of Infectious Diseases, The First Affiliated Hospital of Xinxiang Medical University , Weihui, China
| |
Collapse
|
60
|
Carmo RF, Cavalcanti MSM, Moura P. Role of Interleukin-22 in chronic liver injury. Cytokine 2017; 98:107-114. [PMID: 27816383 DOI: 10.1016/j.cyto.2016.08.023] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 08/05/2016] [Accepted: 08/23/2016] [Indexed: 12/12/2022]
Abstract
Liver fibrosis is the result of an exacerbated wound-healing response associated with chronic liver injury. Advanced liver fibrosis results in cirrhosis, liver failure, and portal hypertension and frequently requires liver transplantation. The host immune response has an important role driving fibrosis deposition by activating hepatic stellate cells (HSCs). Interleukin-22 (IL-22) is a cytokine that plays a key role in promoting antimicrobial immunity and tissue repair at barrier surfaces. Data from literature suggest that IL-22 has a protective role in the liver by reducing fibrosis in some pathological conditions, however the results are contradictory. This review highlights current knowledge of IL-22' role in chronic liver injury, as well as its therapeutic potential for the treatment of chronic liver injury.
Collapse
Affiliation(s)
- Rodrigo F Carmo
- Colegiado de Farmácia, Universidade Federal do Vale do São Francisco (UNIVASF), Petrolina, Brazil.
| | - Maria S M Cavalcanti
- Instituto de Ciências Biológicas, Universidade de Pernambuco (UPE), Recife, Brazil
| | - Patrícia Moura
- Instituto de Ciências Biológicas, Universidade de Pernambuco (UPE), Recife, Brazil
| |
Collapse
|
61
|
Yin S, Feng D. Interleukin-22 in the pathogenesis and potential treatment of liver diseases. LIVER RESEARCH 2017. [DOI: 10.1016/j.livres.2017.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|
62
|
Su SB, Zhang JF, Huang FF, Cen Y, Jiang HX. Large numbers of interleukins-22- and -17A-producing T helper cells in cholangiocarcinoma related to liver fluke infection. Microbiol Immunol 2017; 61:345-354. [PMID: 28718957 DOI: 10.1111/1348-0421.12500] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 06/20/2017] [Accepted: 07/03/2017] [Indexed: 12/19/2022]
Abstract
Cholangiocarcinoma (CCA) associated with liver fluke infection involves inflammatory and immune processes; however, whether these involve the proinflammatory cytokine IL-17A and proliferative cytokine IL-22 remains unclear. Here, numbers of IL-22- and IL-17A-producing Th cells and cytokine concentrations in 30 patients with CCA and long-term liver fluke infection, 40 patients with liver-fluke infection but not CCA, and 16 healthy controls were compared. Analyses were performed using immunohistochemistry, flow cytometry, ELISA and RT-PCR. Immunohistochemical staining showed weaker expression of IL-22 and IL-17A in patients with CCA with than in those without liver fluke infection (P < 0.01). Flow cytometry revealed significantly greater median proportions of IL-22-producing T helper cells in patients with CCA (2.2%) than in those without it (0.69%) or controls (0.4%, P < 0.001). Similar results were obtained for IL-17A-producing T helper cells. ELISA revealed plasma concentrations of IL-22 were 1.3-fold higher in patients with CCA than in those without it and 4.6-fold higher than in controls (P < 0.001). Plasma concentrations of IL-17A were 2.5-fold higher in patients with CCA than in those without it, and 21-fold higher than in controls (P < 0.001). Amounts of IL-22 and IL-17A mRNAs in blood were significantly higher in patients with CCA than in the other two groups. Proportions of CD4+ CD45RO+ T cells producing IL-22 correlated with proportions producing IL-17A (r = 0.759; P < 0.001), and plasma concentrations of IL-22 correlated with those of IL-17A (r = 0.726; P < 0.001). These results suggest that both IL-17A and IL-22 affect development of CCA related to liver fluke infection.
Collapse
Affiliation(s)
- Si-Biao Su
- Department of Gastroenterology, First Affiliated Hospital of Guangxi Medical University, Nanning 530007, Guangxi Zhuang Autonomous Region, China
| | - Jian-Feng Zhang
- Department of Emergency Medicine, Second Affiliated Hospital of Guangxi Medical University, Nanning 530007, Guangxi Zhuang Autonomous Region, China
| | - Fei-Fei Huang
- Department of Gastroenterology, First Affiliated Hospital of Guangxi Medical University, Nanning 530007, Guangxi Zhuang Autonomous Region, China
| | - Yu Cen
- Department of Gastroenterology, First Affiliated Hospital of Guangxi Medical University, Nanning 530007, Guangxi Zhuang Autonomous Region, China
| | - Hai-Xing Jiang
- Department of Gastroenterology, First Affiliated Hospital of Guangxi Medical University, Nanning 530007, Guangxi Zhuang Autonomous Region, China
| |
Collapse
|
63
|
Zhou C, Li C, Gong GZ, Wang S, Zhang JM, Xu DZ, Guo LM, Ren H, Xu M, Xie Q, Pan C, Xu J, Hu Z, Geng S, Zhou X, Wang X, Zhou X, Mi H, Zhao G, Yu W, Wen YM, Huang L, Wang XY, Wang B. Analysis of immunological mechanisms exerted by HBsAg-HBIG therapeutic vaccine combined with Adefovir in chronic hepatitis B patients. Hum Vaccin Immunother 2017; 13:1989-1996. [PMID: 28665747 DOI: 10.1080/21645515.2017.1335840] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
An HBsAg-HBIG therapeutic vaccine (Yeast-derived Immune Complexes, YIC) for chronic hepatitis B (CHB) patients has undergone a series of clinical trials. The HBeAg sero-conversion rate of YIC varied from 21.9% to 14% depending on the immunization protocols from 6 to 12 injections. To analyze the immunological mechanisms exerted by 6 injections of YIC, 44 CHB patients were separately immunized with YIC, alum as adjuvant control or normal saline as blank control, with add on of antiviral drug Adefovir in all groups. Kinetic increase in Th1 and Th2 cells CD4+ T cell sub-populations with association in decrease in Treg cells and increase of Tc1 and Tc17 cells in CD8+ T cells were observed in YIC immunized group. No such changes were found in the other groups. By multifunctional analysis of cytokine profiles, significant increase of IL-2 levels was observed, both in CD4+ and CD8+ T cells in the YIC immunized group, accompanied by increase in IFN-gamma and decrease of inhibitory factors (IL-10, TGF-β and Foxp3) in CD4+ T cells. In the alum immunized group, slight increase of IL-10, TGF-β and Foxp3 in CD4+ T cells was found after the second injection, but decreased after more injections, suggesting that alum induced early inflammatory responses to a certain extent. Similar patterns of responses of IL-17A and TNF-α in CD8+T cells were shown between YIC and the saline group. Results indicate that add on of Adefovir, did not affect host specific immune responses.
Collapse
Affiliation(s)
- Chenliang Zhou
- a Key Laboratory of Medical Molecular Virology , MoE/MoH, School of Basic Medical Sciences, Shanghai Medical College, Fudan University , Shanghai , People's Republic of China
| | - Chaofan Li
- a Key Laboratory of Medical Molecular Virology , MoE/MoH, School of Basic Medical Sciences, Shanghai Medical College, Fudan University , Shanghai , People's Republic of China
| | - Guo-Zhong Gong
- b The Second Xiangya Hospital , Central South University , Changsha , People's Republic of China
| | - Shuang Wang
- a Key Laboratory of Medical Molecular Virology , MoE/MoH, School of Basic Medical Sciences, Shanghai Medical College, Fudan University , Shanghai , People's Republic of China
| | - Ji-Ming Zhang
- c Huashan Hospital , Fudan University , Shanghai , People's Republic of China
| | - Dao-Zhen Xu
- d Beijing Ditan Hospital , Capital Medical University , Beijing , People's Republic of China
| | - Li-Min Guo
- d Beijing Ditan Hospital , Capital Medical University , Beijing , People's Republic of China
| | - Hong Ren
- e The Second Affiliated Hospital , Chongqing Medical University , Chongqing , People's Republic of China
| | - Min Xu
- f Guangzhou Eighth People's Hospital , Guangzhou , People's Republic of China
| | - Qing Xie
- g Ruijin Hospital , Jiaotong University , Shanghai , People's Republic of China
| | - Chen Pan
- h Fuzhou Infectious Disease Hospital , Fuzhou , People's Republic of China
| | - Jie Xu
- i The Third People's Hospital , Jiaotong University , Shanghai , People's Republic of China
| | - Zhongyu Hu
- j National Institutes for Food and Drug Control , Beijing , People's Republic of China
| | - Shuang Geng
- a Key Laboratory of Medical Molecular Virology , MoE/MoH, School of Basic Medical Sciences, Shanghai Medical College, Fudan University , Shanghai , People's Republic of China
| | - Xian Zhou
- a Key Laboratory of Medical Molecular Virology , MoE/MoH, School of Basic Medical Sciences, Shanghai Medical College, Fudan University , Shanghai , People's Republic of China
| | - Xianzheng Wang
- a Key Laboratory of Medical Molecular Virology , MoE/MoH, School of Basic Medical Sciences, Shanghai Medical College, Fudan University , Shanghai , People's Republic of China
| | - Xiaoyu Zhou
- a Key Laboratory of Medical Molecular Virology , MoE/MoH, School of Basic Medical Sciences, Shanghai Medical College, Fudan University , Shanghai , People's Republic of China
| | - Haili Mi
- a Key Laboratory of Medical Molecular Virology , MoE/MoH, School of Basic Medical Sciences, Shanghai Medical College, Fudan University , Shanghai , People's Republic of China
| | - Gan Zhao
- a Key Laboratory of Medical Molecular Virology , MoE/MoH, School of Basic Medical Sciences, Shanghai Medical College, Fudan University , Shanghai , People's Republic of China
| | - Wencong Yu
- a Key Laboratory of Medical Molecular Virology , MoE/MoH, School of Basic Medical Sciences, Shanghai Medical College, Fudan University , Shanghai , People's Republic of China
| | - Yu-Mei Wen
- a Key Laboratory of Medical Molecular Virology , MoE/MoH, School of Basic Medical Sciences, Shanghai Medical College, Fudan University , Shanghai , People's Republic of China
| | - Lihua Huang
- k Wuxi Fifth People's Hospital , Wuxi , People's Republic of China
| | - Xuan-Yi Wang
- a Key Laboratory of Medical Molecular Virology , MoE/MoH, School of Basic Medical Sciences, Shanghai Medical College, Fudan University , Shanghai , People's Republic of China
| | - Bin Wang
- a Key Laboratory of Medical Molecular Virology , MoE/MoH, School of Basic Medical Sciences, Shanghai Medical College, Fudan University , Shanghai , People's Republic of China
| |
Collapse
|
64
|
Liu S, Zhang Q, Shao X, Wang W, Zhang C, Jin Z. An immunosuppressive function of interleukin-35 in chronic hepatitis C virus infection. Int Immunopharmacol 2017. [PMID: 28644966 DOI: 10.1016/j.intimp.2017.06.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Interleukin (IL)-35, a newly identified member of the IL-12 cytokine family, has been reported to suppress inflammation and induce immunotolerance. However, little is known regarding the role of IL-35 during chronic hepatitis C virus (HCV) infection. Herein, we measured the serum IL-35 concentration of 73 patients with hepatitis C and 22 healthy individuals, as well as further investigated the modulatory function of IL-35 on CD4+CD25+CD127dim/- regulatory T cells (Tregs) and on hepatocytes infected with HCV in cell culture (HCVcc). IL-35 expression was significantly increased in patients with chronic hepatitis C and was positively correlated with the levels of HCV RNA. Inhibition of viral replication led to decreases in the serum levels of IL-35. IL-35 stimulation not only elevated the percentage of Tregs but also robustly inhibited cellular proliferation and up-regulated the production of anti-inflammatory cytokines (e.g., IL-10 and IL-35) in a HCV-specific and non-specific manner, which indicates enhancement of the suppressive function of Tregs. Although IL-35 did not exert anti-HCV activity in HCVcc-infected Huh7.5 cells, it reduced inflammatory cytokine secretion from Huh7.5 cells. This was probably via inhibition of the STAT1 and STAT3 signaling pathways, which could suppress subsequent liver damage due to chronic hepatitis C. The current data suggested that IL-35 contributes to persistent HCV infection by inhibiting antiviral immune activity. Moreover, IL-35 might also protect against HCV-induced liver injury by down-regulating the expression of proinflammatory cytokines. Thus, the immunosuppressive properties of IL-35 might play contradictory roles in maintaining viral persistence and reducing the inflammatory responses in chronic HCV infection.
Collapse
Affiliation(s)
- Siqi Liu
- Department of Hepatopancreatobiliary Medicine, The Second Hospital, Jilin University, Changchun, Jilin Province 130041, China
| | - Qian Zhang
- Department of Hepatopancreatobiliary Medicine, The Second Hospital, Jilin University, Changchun, Jilin Province 130041, China
| | - Xue Shao
- Department of Hepatopancreatobiliary Medicine, The Second Hospital, Jilin University, Changchun, Jilin Province 130041, China
| | - Wenrui Wang
- Department of Hepatopancreatobiliary Medicine, The Second Hospital, Jilin University, Changchun, Jilin Province 130041, China
| | - Chuanhui Zhang
- Department of Hepatopancreatobiliary Medicine, The Second Hospital, Jilin University, Changchun, Jilin Province 130041, China
| | - Zhenjing Jin
- Department of Hepatopancreatobiliary Medicine, The Second Hospital, Jilin University, Changchun, Jilin Province 130041, China.
| |
Collapse
|
65
|
Yi P, Liang Y, Yuan DMK, Jie Z, Kwota Z, Chen Y, Cong Y, Fan X, Sun J. A tightly regulated IL-22 response maintains immune functions and homeostasis in systemic viral infection. Sci Rep 2017; 7:3857. [PMID: 28634408 PMCID: PMC5478593 DOI: 10.1038/s41598-017-04260-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 05/11/2017] [Indexed: 12/19/2022] Open
Abstract
Interleukin-22 (IL-22) plays an important role in host immunity and tissue homeostasis in infectious and inflammatory diseases. However, the function and regulation of IL-22 in viral infection remain largely unknown. Here, we report that viral infection triggered early IL-22 production from the liver and lymphoid organs. γδ T cells are the main immune cells to produce IL-22 in the liver, a process mediated by the IL-23/phosphoinositide 3-kinase (PI3K)/mammalian target of rapamycin complex 1 (mTORC1) signaling pathway. In the presence of IL-23, IL-22 production is independent of aryl hydrocarbon receptor (AhR) signaling. In acute and persistent viral infections, IL-22 deficiency resulted in thymic and splenic hypertrophy, while excessive IL-22 induced atrophy in these lymphoid organs. Moreover, IL-22 deficiency enhanced T cell responses to promote viral clearance, but increased IL-22 in vivo decreased T cell numbers and functions in the liver and lymphoid tissues. Together, our findings reveal a significant effect of the IL-23/PI3K/mTORC1 axis on regulating IL-22 production and also identify a novel role of IL-22 in controlling antiviral T cell responses in the non-lymphoid and lymphoid organs during acute and persistent viral infections.
Collapse
Affiliation(s)
- Panpan Yi
- Department of Infectious Diseases, Key Laboratory of Viral Hepatitis of Hunan, Xiangya Hospital, Central South University, Hunan, China
- Department of Microbiology and Immunology, University of Texas Medical Branch, Texas, USA
| | - Yuejin Liang
- Department of Microbiology and Immunology, University of Texas Medical Branch, Texas, USA
| | - Denley Ming Kee Yuan
- Department of Microbiology and Immunology, University of Texas Medical Branch, Texas, USA
| | - Zuliang Jie
- Department of Microbiology and Immunology, University of Texas Medical Branch, Texas, USA
| | - Zakari Kwota
- Department of Microbiology and Immunology, University of Texas Medical Branch, Texas, USA
| | - Yan Chen
- Department of Ophthalmology, University of Texas Medical Branch, Texas, USA
| | - Yingzi Cong
- Department of Microbiology and Immunology, University of Texas Medical Branch, Texas, USA
- Department of Pathology, University of Texas Medical Branch, Texas, USA
| | - Xuegong Fan
- Department of Infectious Diseases, Key Laboratory of Viral Hepatitis of Hunan, Xiangya Hospital, Central South University, Hunan, China.
| | - Jiaren Sun
- Department of Microbiology and Immunology, University of Texas Medical Branch, Texas, USA.
- Department of Pathology, University of Texas Medical Branch, Texas, USA.
| |
Collapse
|
66
|
Liu M, Zhang C. The Role of Innate Lymphoid Cells in Immune-Mediated Liver Diseases. Front Immunol 2017; 8:695. [PMID: 28659927 PMCID: PMC5468686 DOI: 10.3389/fimmu.2017.00695] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 05/29/2017] [Indexed: 12/17/2022] Open
Abstract
Innate lymphoid cells (ILCs) are a recently identified group of innate immune cells lacking antigen-specific receptors that can mediate immune responses and regulate tissue homeostasis and inflammation. ILCs comprise group 1 ILCs, group 2 ILCs, and group 3 ILCs. These ILCs usually localize at mucosal surfaces and combat pathogens by the rapid release of certain cytokines. However, the uncontrolled activation of ILCs can also lead to damaging inflammation, especially in the gut, lung, and skin. Although the physiological and pathogenic roles of ILCs in liver diseases have been attracting increasing attention recently, there has been no systematic review regarding the roles of ILCs in immune-mediated liver diseases. Here, we review the relationships between the ILC subsets and their functions in immune-mediated liver diseases, and discuss their therapeutic potential based on current knowledge about the functional roles of these cells in liver diseases.
Collapse
Affiliation(s)
- Meifang Liu
- School of Pharmaceutical Sciences, Institute of Immunopharmacology and Immunotherapy, Shandong University, Jinan, China
| | - Cai Zhang
- School of Pharmaceutical Sciences, Institute of Immunopharmacology and Immunotherapy, Shandong University, Jinan, China
| |
Collapse
|
67
|
Zheng WP, Zhang BY, Shen ZY, Yin ML, Cao Y, Song HL. Biological effects of bone marrow mesenchymal stem cells on hepatitis B virus in vitro. Mol Med Rep 2017; 15:2551-2559. [PMID: 28447750 PMCID: PMC5428401 DOI: 10.3892/mmr.2017.6330] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 12/09/2016] [Indexed: 02/07/2023] Open
Abstract
The aim of the present study was to explore the effects of co‑culturing bone marrow‑derived mesenchymal stem cells (BM-MSCs) cultured with hepatitis B virus (HBV)‑infected lymphocytes in vitro. BM‑MSCs and lymphocytes from Brown Norway rats were obtained from the bone marrow and spleen, respectively. Rats were divided into the following five experimental groups: Group 1, splenic lymphocytes (SLCs); group 2, HepG2.2.15 cells; group 3, BM‑MSCs + HepG2.2.15 cells; group 4, SLCs + HepG2.2.15 cells; and group 5, SLCs + BM‑MSCs + HepG2.2.15 cells. The viability of lymphocytes and HepG2.2.15 cells was assessed using the MTT assay at 24, 48 and 72 h, respectively. Levels of supernatant HBV DNA and intracellular HBV covalently closed circular DNA (cccDNA) were measured using quantitative polymerase chain reaction. Supernatant cytokine levels were measured by enzyme‑linked immunosorbent assay (ELISA). T cell subsets were quantified by flow cytometry using fluorescence‑labeled antibodies. In addition, the HBV genome sequence was analyzed by direct gene sequencing. Levels of HBV DNA and cccDNA in group 5 were lower when compared with those in group 3 or group 4, with a significant difference observed at 48 h. The secretion of interferon‑γ was negatively correlated with the level of HBV DNA, whereas secretion of interleukin (IL)‑10 and IL‑22 were positively correlated with the level of HBV DNA. Flow cytometry demonstrated that the percentage of CD3+CD8+ T cells was positively correlated with the levels of HBV DNA, and the CD3+CD4+/CD3+CD8+ ratio was negatively correlated with the level of HBV DNA. Almost no mutations in the HBV DNA sequence were detected in HepG2.2.15 cells co‑cultured with BM‑MSCs, SLCs, or in the two types of cells combined. BM‑MSCs inhibited the expression of HBV DNA and enhanced the clearance of HBV, which may have been mediated by the regulation of the Tc1/Tc2 cell balance and the mode of cytokine secretion to modulate cytokine expression.
Collapse
Affiliation(s)
- Wei-Ping Zheng
- Department of Organ Transplantation, Tianjin First Central Hospital, Tianjin 300192, P.R. China
| | - Bo-Ya Zhang
- Tianjin First Central Hospital Clinic Institute, Tianjin Medical University, Tianjin 300070, P.R. China
| | - Zhong-Yang Shen
- Department of Organ Transplantation, Tianjin First Central Hospital, Tianjin 300192, P.R. China
| | - Ming-Li Yin
- Tianjin First Central Hospital Clinic Institute, Tianjin Medical University, Tianjin 300070, P.R. China
| | - Yi Cao
- Tianjin First Central Hospital Clinic Institute, Tianjin Medical University, Tianjin 300070, P.R. China
| | - Hong-Li Song
- Department of Organ Transplantation, Tianjin First Central Hospital, Tianjin 300192, P.R. China
- Tianjin Key Laboratory of Organ Transplantation, Tianjin 300192, P.R. China
| |
Collapse
|
68
|
Jie Z, Liang Y, Yi P, Tang H, Soong L, Cong Y, Zhang K, Sun J. Retinoic Acid Regulates Immune Responses by Promoting IL-22 and Modulating S100 Proteins in Viral Hepatitis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2017; 198:3448-3460. [PMID: 28363907 PMCID: PMC5436614 DOI: 10.4049/jimmunol.1601891] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 03/02/2017] [Indexed: 12/21/2022]
Abstract
Although large amounts of vitamin A and its metabolite all-trans retinoic acid (RA) are stored in the liver, how RA regulates liver immune responses during viral infection remains unclear. In this study, we demonstrated that IL-22, mainly produced by hepatic γδ T cells, attenuated liver injury in adenovirus-infected mice. RA can promote γδ T cells to produce mTORC1-dependent IL-22 in the liver, but inhibits IFN-γ and IL-17. RA also affected the aptitude of T cell responses by modulating dendritic cell (DC) migration and costimulatory molecule expression. These results suggested that RA plays an immunomodulatory role in viral infection. Proteomics data revealed that RA downregulated S100 family protein expression in DCs, as well as NF-κB/ERK pathway activation in these cells. Furthermore, adoptive transfer of S100A4-repressed, virus-pulsed DCs into the hind foot of naive mice failed to prime T cell responses in draining lymph nodes. Our study has demonstrated a crucial role for RA in promoting IL-22 production and tempering DC function through downregulating S100 family proteins during viral hepatitis.
Collapse
Affiliation(s)
- Zuliang Jie
- Department of Microbiology and Immunology, Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX 77555-1070
| | - Yuejin Liang
- Department of Microbiology and Immunology, Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX 77555-1070
| | - Panpan Yi
- Department of Microbiology and Immunology, Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX 77555-1070
- Department of Infectious Diseases, Key Laboratory of Viral Hepatitis of Hunan, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Hui Tang
- Department of Pharmacology and Toxicology, Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX 77555-1070; and
| | - Lynn Soong
- Department of Microbiology and Immunology, Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX 77555-1070
- Department of Pathology, Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX 77555-1070
| | - Yingzi Cong
- Department of Microbiology and Immunology, Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX 77555-1070
- Department of Pathology, Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX 77555-1070
| | - Kangling Zhang
- Department of Pharmacology and Toxicology, Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX 77555-1070; and
| | - Jiaren Sun
- Department of Microbiology and Immunology, Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX 77555-1070;
- Department of Pathology, Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX 77555-1070
| |
Collapse
|
69
|
Jiang BC, Liu X, Liu XH, Li ZSN, Zhu GZ. Notch Signaling Regulates Circulating T Helper 22 Cells in Patients with Chronic Hepatitis C. Viral Immunol 2017; 30:522-532. [PMID: 28410452 DOI: 10.1089/vim.2017.0007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Notch signaling enhanced the response of interleukin (IL)-22-producing CD4+ T cells that were defined as T helper 22 (Th22) cells, and Notch-aryl hydrocarbon receptor (AhR)-IL-22 axis fine-tuned inflammatory response. Previous studies have demonstrated that both Notch signaling and Th22 cells took part in the pathogenesis of chronic hepatitis C virus (HCV) infection. Thus, in this study, we aimed at examining the regulatory role of Notch signaling in Th22 cells in HCV infection. A total of 59 patients with chronic hepatitis C and 22 normal controls (NCs) were enrolled in this study. The percentage of Th22 cells and mRNA expression of related transcriptional factors and cytokines were analyzed in response to γ-secretase inhibitor. Th22 cell frequency was significantly elevated in chronic hepatitis C in comparison with that in NCs. Inhibition of Notch signaling downregulated HCV-specific Th22 cells and IL-22 production, which was accompanied by the reduction of AhR and modulatory cytokines (IL-6 and tumor necrosis factor-α). Moreover, the suppression of Notch signaling also decreased the IL-22-mediated antimicrobial response in both normal and HCV-infected HepG2 cells/Huh7.5 cells. This process was also accompanied by the depression of signal transducers and activators of transcription 3 signaling. In conclusion, the current results suggested that Notch signaling acted as a critical pathway in determining the response to IL-22 in chronic hepatitis C. Thus, Notch-Th22 axis might be considered a new therapeutic target for HCV-infected patients.
Collapse
Affiliation(s)
- Ben-Chun Jiang
- 1 Department of Clinical Laboratory Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine , Changchun, China
| | - Xin Liu
- 1 Department of Clinical Laboratory Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine , Changchun, China
| | - Xiao-Hong Liu
- 2 The Geriatric Department, The First Bethune Hospital of Jilin University , Changchun, China
| | | | - Guang-Ze Zhu
- 1 Department of Clinical Laboratory Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine , Changchun, China
| |
Collapse
|
70
|
Budda SA, Bhattarai K, Alexander JL, Zenewicz LA. Hypoxic modulation of hepatocyte responses to the cytokine interleukin-22. Immunol Cell Biol 2017; 95:380-387. [PMID: 27796296 DOI: 10.1038/icb.2016.107] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 10/22/2016] [Accepted: 10/23/2016] [Indexed: 12/16/2022]
Abstract
The cytokine interleukin-22 (IL-22) is a potent regulator of tissue responses during inflammation. Depending on the context of inflammation, IL-22 can have protective or inflammatory effects on epithelial cells. This dual nature of IL-22 leads us to hypothesize that its activity must be exquisitely regulated to prevent host tissue damage. Environmental factors may act as a cellular cue as to how cells respond to IL-22. Inflammatory environments are characterized by low oxygen and thus we examined whether cells respond differently to IL-22 hypoxia compared with normoxia. In this study, we show that hepatocyte responses to IL-22 stimulation are reduced in hypoxic environments. IL-22 stimulation of hepatocytes incubated in low oxygen led to reduced levels of activated signal transducer and activator of transcription 3 and further downstream effects such as reduced induction of the anti-microbial protein, lipocalin-2. This modulation appears to be independent of the hypoxia-inducible factor-1α signaling pathway. Thus, hypoxia that accompanies chronic inflammation may be a mechanism to regulate the bioactivity of the dual-natured IL-22 cytokine.
Collapse
Affiliation(s)
- Scott A Budda
- Department of Microbiology and Immunology, College of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma, OK, USA
| | - Krishna Bhattarai
- Department of Microbiology and Immunology, College of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma, OK, USA
| | - Justine L Alexander
- Department of Microbiology and Immunology, College of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma, OK, USA
| | - Lauren A Zenewicz
- Department of Microbiology and Immunology, College of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma, OK, USA
| |
Collapse
|
71
|
Bao S, Zhao Q, Zheng J, Li N, Huang C, Chen M, Cheng Q, Zhu M, Yu K, Liu C, Shi G. Interleukin-23 mediates the pathogenesis of LPS/GalN-induced liver injury in mice. Int Immunopharmacol 2017; 46:97-104. [PMID: 28282579 DOI: 10.1016/j.intimp.2017.03.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 02/26/2017] [Accepted: 03/01/2017] [Indexed: 12/28/2022]
Abstract
BACKGROUND Interleukin-23 (IL-23) is required for T helper 17 (Th17) cell responses and IL-17 production in hepatitis B virus infection. A previous study showed that the IL-23/IL-17 axis aggravates immune injury in patients with chronic hepatitis B virus infection. However, the role of IL-23 in acute liver injury remains unclear. OBJECTIVE The purpose of this study was to determine the role of the inflammatory cytokine IL-23 in lipopolysaccharide/d-galactosamine (LPS/GalN)-induced acute liver injury in mice. METHODS Serum IL-23 from patients with chronic hepatitis B virus (CHB), acute-on-chronic liver failure (ACLF) and healthy individuals who served as healthy controls (HCs) was measured by ELISA. An IL-23p19 neutralizing antibody or an IL-23p40 neutralizing antibody was administered intravenously at the time of challenge with LPS (10μg/kg) and GalN (400mg/kg) in C57BL/6 mice. Hepatic pathology and the expression of Th17-related cytokines, including IL-17 and TNF-α; neutrophil chemoattractants, including Cxcl1, Cxcl2, Cxcl9, and Cxcl10; and the stabilization factor Csf3 were assessed in liver tissue. RESULTS Serum IL-23 was significantly upregulated in ACLF patients compared with CHB patients and HCs (P<0.05 for both). Serum IL-23 was significantly upregulated in the non-survival group compared with the survival group of ACLF patients, which was consistent with LPS/GalN-induced acute hepatic injury in mice (P<0.05 for both). Moreover, after treatment, serum IL-23 was downregulated in the survival group of ACLF patients (P<0.001). Compared with LPS/GalN mice, mice treated with either an IL-23p19 neutralizing antibody or an IL-23p40 neutralizing antibody showed less severe liver tissue histopathology and significant reductions in the expression of Th17-related inflammatory cytokine, including IL-17 and TNF-α; neutrophil chemoattractants, including Cxcl1, Cxcl2, Cxcl9, and Cxcl10; and stabilization factors Csf3 within the liver tissue compared with LPS/GalN mice (P<0.05 for all). CONCLUSION High serum IL-23 was associated with mortality in ACLF patients and LPS/GalN-induced acute liver injury in mice. IL-23 neutralizing antibodies attenuated liver injury by reducing the expression of Th17-related inflammatory cytokines, neutrophil chemoattractants and stabilization factors within the liver tissue, which indicated that IL-23 likely functions upstream of Th17-related cytokine and chemokine expression to recruit inflammatory cells into the liver.
Collapse
Affiliation(s)
- Suxia Bao
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Qiang Zhao
- Institute of Liver Diseases, Dawn Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200040, China
| | - Jianming Zheng
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Ning Li
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Chong Huang
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Mingquan Chen
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Qi Cheng
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Mengqi Zhu
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Kangkang Yu
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Chenghai Liu
- Institute of Liver Diseases, Dawn Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200040, China
| | - Guangfeng Shi
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai 200040, China.
| |
Collapse
|
72
|
Mo R, Wang P, Lai R, Li F, Liu Y, Jiang S, Zhao G, Guo S, Zhou H, Lin L, Lu J, Cai W, Wang H, Yu H, Bao S, Xiang X, Xie Q. Persistently elevated circulating Th22 reversely correlates with prognosis in HBV-related acute-on-chronic liver failure. J Gastroenterol Hepatol 2017; 32:677-686. [PMID: 27548078 DOI: 10.1111/jgh.13537] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/14/2016] [Indexed: 12/20/2022]
Abstract
BACKGROUND AND AIM Hepatitis B virus-related acute-on-chronic liver failure (HBV-ACLF) is an acute deterioration of liver function on chronic liver disease with immune disorder. Th22 cells and IL-22 were correlated with inflammatory and autoimmune diseases. However, Th22 cells and IL-22 in the pathogenesis of HBV-ACLF remains to be elucidated. It was investigated the correlation between Th22 and prognosis in HBV-ACLF. METHODS Seventy-one HBV-ACLF and 65 chronic hepatitis B patients were recruited. The peripheral frequencies of Th22, Th17 and Th1, or IL-22 and IL-17 were determined, using flow cytometry or ELISA, respectively. It was further analyzed the correlation between Th22 mediated circulating IL-22 and survival rate of HBV-ACLF patients. RESULTS It was upregulated that the peripheral frequencies of Th22/Th17 cells as well as plasma IL-22 and IL-17 in HBV-ACLF patients, but the frequency of Th1 cells was decreased, compared with health controls. Elevated Th22 cells and IL-22 were correlated with HBV-ACLF disease severity. Elevated plasma IL-22 level (>29.5 pg/ml) was correlated with poor survival rate of HBV-ACLF patients at baseline, using Kaplan-Meier analysis. CONCLUSIONS Persistently elevated circulating Th22 reversely correlates with prognosis in HBV-ACLF. Th22 cells/IL-22 might be served as biomarkers for evaluating the prognosis of HBV-ACLF.
Collapse
Affiliation(s)
- Ruidong Mo
- Department of Infectious Diseases, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Translational Lab of Liver Diseases, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Peng Wang
- Department of Infectious Diseases, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Translational Lab of Liver Diseases, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Rongtao Lai
- Department of Infectious Diseases, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Translational Lab of Liver Diseases, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Fanlu Li
- Department of Infectious Diseases, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yuhan Liu
- Department of Infectious Diseases, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Translational Lab of Liver Diseases, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Shaowen Jiang
- Department of Infectious Diseases, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Translational Lab of Liver Diseases, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Gangde Zhao
- Department of Infectious Diseases, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Simin Guo
- Department of Infectious Diseases, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Huijuan Zhou
- Department of Infectious Diseases, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Lanyi Lin
- Department of Infectious Diseases, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jie Lu
- Department of Infectious Diseases, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Translational Lab of Liver Diseases, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wei Cai
- Department of Infectious Diseases, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Hui Wang
- Department of Infectious Diseases, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Hong Yu
- Department of Infectious Diseases, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Shisan Bao
- Department of Infectious Diseases, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Discipline of Pathology, The University of Sydney, New South Wales, Australia
| | - Xiaogang Xiang
- Department of Infectious Diseases, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Translational Lab of Liver Diseases, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qing Xie
- Department of Infectious Diseases, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Translational Lab of Liver Diseases, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
73
|
Khawar MB, Azam F, Sheikh N, Abdul Mujeeb K. How Does Interleukin-22 Mediate Liver Regeneration and Prevent Injury and Fibrosis? J Immunol Res 2016; 2016:2148129. [PMID: 28050571 PMCID: PMC5168458 DOI: 10.1155/2016/2148129] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 10/13/2016] [Accepted: 10/25/2016] [Indexed: 12/20/2022] Open
Abstract
Interleukin-22 (IL-22) is a pluripotent T cell-derived cytokine which is a member of IL-10 cytokine family. It is the only interleukin produced by immune cells but does not target immune system components. IL-22 is mainly produced by dendritic cells (DCs) and TH17, TH22, NK, and NKT cells and targets a number of body tissues including liver, pancreas, and other epithelial tissues. It provokes a series of downstream signaling pathways upon binding with IL-22R complex which protects liver damage through STAT3 activation. IL-22BP is an inhibitor of IL-22 which has 20-1000x more affinity to bind with IL-22 compared to IL-22R1 that inhibits IL-22 activity. Its level was found to be positively correlated with the severity of liver damage and fibrosis. So, the present review is an effort to reveal the exact mechanism lying in the hepatoprotective activity of IL-22 and some of its future therapeutic implications.
Collapse
Affiliation(s)
- Muhammad Babar Khawar
- Cell & Molecular Biology Lab, Department of Zoology, University of the Punjab, Lahore, Pakistan
| | - Fareeha Azam
- Cell & Molecular Biology Lab, Department of Zoology, University of the Punjab, Lahore, Pakistan
| | - Nadeem Sheikh
- Cell & Molecular Biology Lab, Department of Zoology, University of the Punjab, Lahore, Pakistan
| | | |
Collapse
|
74
|
Abstract
Hepatitis B virus (HBV) infection is a worldwide health problem, with approximately one third of populations have been infected, among which 3-5% of adults and more than 90% of children developed to chronic HBV infection. Host immune factors play essential roles in the outcome of HBV infection. Thus, ineffective immune response against HBV may result in persistent virus replications and liver necroinflammations, then lead to chronic HBV infection, liver cirrhosis, and even hepatocellular carcinoma. Cytokine balance was shown to be an important immune characteristic in the development and progression of hepatitis B, as well as in an effective antiviral immunity. Large numbers of cytokines are not only involved in the initiation and regulation of immune responses but also contributing directly or indirectly to the inhibition of virus replication. Besides, cytokines initiate downstream signaling pathway activities by binding to specific receptors expressed on the target cells and play important roles in the responses against viral infections and, therefore, might affect susceptibility to HBV and/or the natural course of the infection. Since cytokines are the primary causes of inflammation and mediates liver injury after HBV infection, we have discussed recent advances on the roles of various cytokines [including T helper type 1 cells (Th1), Th2, Th17, regulatory T cells (Treg)-related cytokines] in different phases of HBV infection and cytokine-related mechanisms for impaired viral control and liver damage during HBV infection. We then focus on experimental therapeutic applications of cytokines to gain a better understanding of this newly emerging aspect of disease pathogenesis.
Collapse
|
75
|
Wei X, Wang JP, Hao CQ, Yang XF, Wang LX, Huang CX, Bai XF, Lian JQ, Zhang Y. Notch Signaling Contributes to Liver Inflammation by Regulation of Interleukin-22-Producing Cells in Hepatitis B Virus Infection. Front Cell Infect Microbiol 2016; 6:132. [PMID: 27800305 PMCID: PMC5065963 DOI: 10.3389/fcimb.2016.00132] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 09/29/2016] [Indexed: 12/28/2022] Open
Abstract
The mechanism of hepatitis B virus (HBV) induced liver inflammation is not fully elucidated. Notch signaling augmented interleukin (IL)-22 secretion in CD4+ T cells, and Notch-IL-22 axis fine-tuned inflammatory response. We previously demonstrated a proinflammatory role of IL-22 in HBV infection. Thus, in this study, we analyzed the role of Notch in development of IL-22-producing cells in HBV infection by inhibition of Notch signaling using γ-secretase inhibitor DAPT in both hydrodynamic induced HBV-infected mouse model and in peripheral blood cells isolated from patients with HBV infection. mRNA expressions of Notch1 and Notch2 were significantly increased in livers and CD4+ T cells upon HBV infection. Inhibition of Notch signaling in vivo leaded to the reduction in NKp46+ innate lymphoid cells 22 (ILC22) and lymphoid tissue inducer 4 (LTi4) cells in the liver. This process was accompanied by downregulating the expressions of IL-22 and related proinflammatory cytokines and chemokines in the liver, as well as blocking the recruitment of antigen-non-specific inflammatory cells into the liver and subsequent liver injury, but did not affect HBV antigens production and IL-22 secretion in the serum. Furthermore, IL-22 production in HBV non-specific cultured CD4+ T cells, but not HBV-specific CD4+ T cells, was reduced in response to in vitro inhibition of Notch signaling. In conclusion, Notch siganling appears to be an important mediator of the liver inflammation by modulating hepatic ILC22. The potential proinflammatory effect of Notch-mediated ILC22 may be significant for the development of new therapeutic approaches for treatment of hepatitis B.
Collapse
Affiliation(s)
- Xin Wei
- Center for Infectious Diseases, Tangdu Hospital, Fourth Military Medical UniversityXi'an, China
| | - Jiu-Ping Wang
- Department of Infectious Diseases, Xijing Hospital, Fourth Military Medical UniversityXi'an, China
| | - Chun-Qiu Hao
- Center for Infectious Diseases, Tangdu Hospital, Fourth Military Medical UniversityXi'an, China
| | - Xiao-Fei Yang
- Center for Infectious Diseases, Tangdu Hospital, Fourth Military Medical UniversityXi'an, China
| | - Lin-Xu Wang
- Center for Infectious Diseases, Tangdu Hospital, Fourth Military Medical UniversityXi'an, China
| | - Chang-Xing Huang
- Center for Infectious Diseases, Tangdu Hospital, Fourth Military Medical UniversityXi'an, China
| | - Xue-Fan Bai
- Center for Infectious Diseases, Tangdu Hospital, Fourth Military Medical UniversityXi'an, China
| | - Jian-Qi Lian
- Center for Infectious Diseases, Tangdu Hospital, Fourth Military Medical UniversityXi'an, China
| | - Ye Zhang
- Center for Infectious Diseases, Tangdu Hospital, Fourth Military Medical UniversityXi'an, China
| |
Collapse
|
76
|
Abstract
Hepatitis A virus (HAV), hepatitis B virus (HBV) and hepatitis C virus (HCV) are responsible for most cases of viral hepatitis. Infection by each type of virus results in a different typical natural disease course and clinical outcome that are determined by virological and immunological factors. HCV tends to establish a chronic persistent infection, whereas HAV does not. HBV is effectively controlled in adults, although it persists for a lifetime after neonatal infection. In this Review, we discuss the similarities and differences in immune responses to and immunopathogenesis of HAV, HBV and HCV infections, which may explain the distinct courses and outcomes of each hepatitis virus infection.
Collapse
|
77
|
Gimeno Brias S, Stack G, Stacey MA, Redwood AJ, Humphreys IR. The Role of IL-22 in Viral Infections: Paradigms and Paradoxes. Front Immunol 2016; 7:211. [PMID: 27303405 PMCID: PMC4885595 DOI: 10.3389/fimmu.2016.00211] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 05/17/2016] [Indexed: 12/12/2022] Open
Abstract
Interleukin-22 (IL-22) is a member of the IL-10 family of cytokines. Hematopoietic cells express IL-22, and this cytokine signals through the heterodimeric IL-22 receptor expressed by non-hematopoietic cells. A growing body of evidence points toward a role for IL-22 in a diverse array of biological functions ranging from cellular proliferation, tissue protection and regeneration, and inflammation. In recent years, the role that IL-22 plays in antiviral immune responses has been examined in a number of infection models. Herein, we assess our current understanding of how IL-22 determines the outcome of viral infections and define common mechanisms that are evident from, sometimes paradoxical, findings derived from these studies. Finally, we discuss the potential therapeutic utility of IL-22 manipulation in the treatment and prevention of viral infections and associated pathologies.
Collapse
Affiliation(s)
- Silvia Gimeno Brias
- Institute of Infection and Immunity, Cardiff University, Cardiff, UK; Systems Immunity University Research Institute, Cardiff University, Cardiff, UK
| | - Gabrielle Stack
- Institute of Infection and Immunity, Cardiff University, Cardiff, UK; Systems Immunity University Research Institute, Cardiff University, Cardiff, UK
| | - Maria A Stacey
- Institute of Infection and Immunity, Cardiff University, Cardiff, UK; Systems Immunity University Research Institute, Cardiff University, Cardiff, UK
| | - Alec J Redwood
- The Institute for Immunology and Infectious Diseases, Murdoch University , Murdoch, WA , Australia
| | - Ian R Humphreys
- Institute of Infection and Immunity, Cardiff University, Cardiff, UK; Systems Immunity University Research Institute, Cardiff University, Cardiff, UK
| |
Collapse
|
78
|
Perusina Lanfranca M, Lin Y, Fang J, Zou W, Frankel T. Biological and pathological activities of interleukin-22. J Mol Med (Berl) 2016; 94:523-34. [PMID: 26923718 PMCID: PMC4860114 DOI: 10.1007/s00109-016-1391-6] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 12/17/2015] [Accepted: 01/21/2016] [Indexed: 12/16/2022]
Abstract
Interleukin (IL)-22, a member of the IL-10 family, is a cytokine secreted by several types of immune cells including IL-22(+)CD4(+) T cells (Th22) and IL-22 expressing innate leukocytes (ILC22). Recent studies have demonstrated that IL-22 is a key component in mucosal barrier defense, tissue repair, epithelial cell survival, and proliferation. Furthermore, accumulating evidence has defined both protective and pathogenic properties of IL-22 in a number of conditions including autoimmune disease, infection, and malignancy. In this review, we summarize the expression and signaling pathway and functional characteristics of the IL-22 and IL-22 receptor axis in physiological and pathological scenarios and discuss the potential to target IL-22 signaling to treat human diseases.
Collapse
Affiliation(s)
- Mirna Perusina Lanfranca
- Department of Surgery, University of Michigan School of Medicine, 109 Zina Pitcher Place, Ann Arbor, MI, 48109, USA
| | - Yanwei Lin
- Department of Surgery, University of Michigan School of Medicine, 109 Zina Pitcher Place, Ann Arbor, MI, 48109, USA
- Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao-Tong University, Shanghai, 200001, China
| | - Jingyuan Fang
- Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao-Tong University, Shanghai, 200001, China
| | - Weiping Zou
- Department of Surgery, University of Michigan School of Medicine, 109 Zina Pitcher Place, Ann Arbor, MI, 48109, USA.
- The University of Michigan Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI, 48109, USA.
- Graduate Programs in Immunology and Tumor Biology, University of Michigan, Ann Arbor, MI, 48109, USA.
| | - Timothy Frankel
- Department of Surgery, University of Michigan School of Medicine, 109 Zina Pitcher Place, Ann Arbor, MI, 48109, USA.
- The University of Michigan Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
79
|
Gao Y, Ren H, Meng F, Li J, Cheung E, Li H, Zhao J, Liu H, Liu Z, Zhang M. Pathological Roles of Interleukin-22 in the Development of Recurrent Hepatitis C after Liver Transplantation. PLoS One 2016; 11:e0154419. [PMID: 27123854 PMCID: PMC4849629 DOI: 10.1371/journal.pone.0154419] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 04/13/2016] [Indexed: 12/23/2022] Open
Abstract
OBJECTIVE The aim of this study was to longitudinally evaluate and analyze the role of interleukin-22-producing CD4 positive cells (IL-22) in the pathogenesis of Hepatitis C Virus recurrence after Orthotopic Liver Transplantation (HCV-OLT). METHODS 15 HCV-OLT, 15 age- and gender- matched non-HCV post-OLT (OLT) and 15 hepatitis C virus infected (HCV) patients were enrolled into our study from the liver transplantation and research center at Beijing 302 Hospital. We determined the frequencies of IL-22 using flow cytometry and expression of IL-22 mRNA using PCR in peripheral blood and liver tissue. We also divided HCV-OLT patients into rapid fibrosis progression (RFP) and slow fibrosis progression (SFP), examined IL-22 cells and analyzed the correlations between IL-22 frequencies and liver injury, fibrosis and clinical parameters. Moreover, we investigated the role of IL-22 in Human Hepatic Stellate Cells (HSCs). RESULTS The levels of serum IL-22, frequencies of IL-22 producing cells in peripheral blood mononuclear cells, and expression of IL-22 mRNA and protein in the liver in the HCV-OLT group were significantly higher than that in the HCV and OLT groups. Furthermore, eight (53.3%) patients developed RFP after two years; another three patients were diagnosed liver cirrhosis. The frequencies of IL-22 were much higher in RFP compared with SFP, while no significant difference existed between OLT and SFP. Intrahepatic IL-22 positive cells were located in fibrotic areas and significantly correlated with α-smooth muscle actin (α-SMA) and fibrosis staging scores, not with grading scores and HCRVNA. In vitro, IL-22 administration prevented HSCs apoptosis, promoted HSCs proliferation and activation, up-regulated the expression of HSC-sourced growth factors including α-SMA, TGF-β and TIMP-1, and increased the production of liver fibrosis markers including laminin, hyaluronic acid and collagen type IV. CONCLUSION Peripheral and intrahepatic IL-22 is up-regulated and plays a pathological role in exacerbating liver fibrosis by activating HSCs in HCV-OLT patients, which may predict RFP and serve as an attractive target for anti-fibrotic therapy.
Collapse
Affiliation(s)
- Yinjie Gao
- Liver Transplantation and Research Center, 302 Military Hospital, Beijing, China
- Department of Infectious Diseases, Medical School of Chinese PLA, Beijing, China
| | - Hui Ren
- Liver Transplantation and Research Center, 302 Military Hospital, Beijing, China
| | - Fanping Meng
- Liver Cirrhosis and Research Center, 302 Military Hospital, Beijing, China
| | - Jin Li
- Liver Transplantation and Research Center, 302 Military Hospital, Beijing, China
| | - Eddie Cheung
- California Pacific Medical Center, San Francisco, California, United States of America
- University of California at Davis school of medicine, Sacramento, California, United States of America
| | - Hanwei Li
- Liver Cirrhosis and Research Center, 302 Military Hospital, Beijing, China
| | - Jingmin Zhao
- Department of Pathology and Hepatology, 302 Military Hospital, Beijing, China
| | - Hongling Liu
- Liver Transplantation and Research Center, 302 Military Hospital, Beijing, China
| | - Zhenwen Liu
- Liver Transplantation and Research Center, 302 Military Hospital, Beijing, China
| | - Min Zhang
- Liver Transplantation and Research Center, 302 Military Hospital, Beijing, China
| |
Collapse
|
80
|
Liu X, Guan JH, Jiang BC, Li ZSN, Zhu GZ. Toll-Like Receptor 2 Modulates the Balance of Regulatory T Cells and T Helper 17 Cells in Chronic Hepatitis C. Viral Immunol 2016; 29:322-31. [PMID: 27082819 DOI: 10.1089/vim.2016.0013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Regulatory T cells (Tregs) and interleukin-17-producing T helper (Th17) cells were mutually antagonistic in the pathogenesis of chronic hepatitis C virus (HCV) infection. However, the regulation of imbalance between Tregs and Th17 cells was poorly understood in HCV infection. A recent report revealed the immunomodulatory role of Toll-like receptor (TLR) 2 in regulating the balance of Tregs/Th17 functions in multiple sclerosis. Thus, the aim of the current study was to assess the effect of TLR2 stimulation on the suppressive function of Tregs and Th17 differentiation in chronic hepatitis C. A total of 65 patients with chronic hepatitis C receiving pegylated interferon-a2a and ribavirin therapy for 48 weeks, as well as 20 of normal controls (NCs) were enrolled. Cellular proliferation and cytokine production was tested in purified CD4(+)CD25(+)CD127(dim/-) Tregs in response to the stimulation of Pam3Csk4, an agonist of TLR2. In treatment-naive patients, Tregs, but not Th17 cells, from chronic hepatitis C patients expressed higher levels of TLR2 compared with NCs. Stimulation with Pam3Csk4 enhanced the suppressive function of Tregs and production of IL-10 in chronic hepatitis C more than in NCs. However, TLR2 stimulation did not promote Th17 differentiation of Tregs in chronic hepatitis C patients. Moreover, effective anti-HCV therapy resulted in the induction of IL-17-secreting phenotypic shift of Tregs without loss of inhibitive function upon TLR2 stimulation. These data provided a novel mechanism underlying modulating the balance of Tregs/Th17 cells in chronic hepatitis C. HCV infection shifted Tregs/Th17 cells through TLR2 stimulation by inducing Tregs to produce IL-10 and enhancing inhibitive function of effector T cells, resulting in viral persistence.
Collapse
Affiliation(s)
- Xin Liu
- 1 Department of Clinical Laboratory Medicine, the Affiliated Hospital to Changchun University of Chinese Medicine , Changchun, China
| | - Jing-Hui Guan
- 2 Department of Blood Transfusion, the Affiliated Hospital to Changchun University of Chinese Medicine , Changchun, China
| | - Ben-Chun Jiang
- 1 Department of Clinical Laboratory Medicine, the Affiliated Hospital to Changchun University of Chinese Medicine , Changchun, China
| | - Zhen-Sheng-Nan Li
- 3 Class of Undergraduation, College of Medicine, Jilin University , Changchun, China
| | - Guang-Ze Zhu
- 1 Department of Clinical Laboratory Medicine, the Affiliated Hospital to Changchun University of Chinese Medicine , Changchun, China
| |
Collapse
|
81
|
Reyes JL, Fernando MR, Lopes F, Leung G, Mancini NL, Matisz CE, Wang A, McKay DM. IL-22 Restrains Tapeworm-Mediated Protection against Experimental Colitis via Regulation of IL-25 Expression. PLoS Pathog 2016; 12:e1005481. [PMID: 27055194 PMCID: PMC4824453 DOI: 10.1371/journal.ppat.1005481] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 02/09/2016] [Indexed: 12/27/2022] Open
Abstract
Interleukin (IL)-22, an immune cell-derived cytokine whose receptor expression is restricted to non-immune cells (e.g. epithelial cells), can be anti-inflammatory and pro-inflammatory. Mice infected with the tapeworm Hymenolepis diminuta are protected from dinitrobenzene sulphonic acid (DNBS)-induced colitis. Here we assessed expulsion of H. diminuta, the concomitant immune response and the outcome of DNBS-induced colitis in wild-type (WT) and IL-22 deficient mice (IL-22-/-) ± infection. Interleukin-22-/- mice had a mildly impaired ability to expel the worm and this correlated with reduced or delayed induction of TH2 immunity as measured by splenic and mesenteric lymph node production of IL-4, IL-5 and IL-13 and intestinal Muc-2 mRNA and goblet cell hyperplasia; in contrast, IL-25 increased in the small intestine of IL-22-/- mice 8 and 12 days post-infection compared to WT mice. In vitro experiments revealed that H. diminuta directly evoked epithelial production of IL-25 that was inhibited by recombinant IL-22. Also, IL-10 and markers of regulatory T cells were increased in IL-22-/- mice that displayed less DNBS (3 mg, ir. 72h)-induced colitis. Wild-type mice infected with H. diminuta were protected from colitis, as were infected IL-22-/- mice and the latter to a degree that they were almost indistinguishable from control, non-DNBS treated mice. Finally, treatment with anti-IL-25 antibodies exaggerated DNBS-induced colitis in IL-22-/- mice and blocked the anti-colitic effect of infection with H. diminuta. Thus, IL-22 is identified as an endogenous brake on helminth-elicited TH2 immunity, reducing the efficacy of expulsion of H. diminuta and limiting the effectiveness of the anti-colitic events mobilized following infection with H. diminuta in a non-permissive host.
Collapse
Affiliation(s)
- José L. Reyes
- Gastrointestinal Research Group, Department of Physiology and Pharmacology, Calvin, Joan and Phoebe Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Maria R. Fernando
- Gastrointestinal Research Group, Department of Physiology and Pharmacology, Calvin, Joan and Phoebe Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Fernando Lopes
- Gastrointestinal Research Group, Department of Physiology and Pharmacology, Calvin, Joan and Phoebe Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Gabriella Leung
- Gastrointestinal Research Group, Department of Physiology and Pharmacology, Calvin, Joan and Phoebe Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Nicole L. Mancini
- Gastrointestinal Research Group, Department of Physiology and Pharmacology, Calvin, Joan and Phoebe Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Chelsea E. Matisz
- Gastrointestinal Research Group, Department of Physiology and Pharmacology, Calvin, Joan and Phoebe Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Arthur Wang
- Gastrointestinal Research Group, Department of Physiology and Pharmacology, Calvin, Joan and Phoebe Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Derek M. McKay
- Gastrointestinal Research Group, Department of Physiology and Pharmacology, Calvin, Joan and Phoebe Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
82
|
Adaptive immunity in the liver. Cell Mol Immunol 2016; 13:354-68. [PMID: 26996069 PMCID: PMC4856810 DOI: 10.1038/cmi.2016.4] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 01/06/2016] [Accepted: 01/09/2016] [Indexed: 02/06/2023] Open
Abstract
The anatomical architecture of the human liver and the diversity of its immune components endow the liver with its physiological function of immune competence. Adaptive immunity is a major arm of the immune system that is organized in a highly specialized and systematic manner, thus providing long-lasting protection with immunological memory. Adaptive immunity consists of humoral immunity and cellular immunity. Cellular immunity is known to have a crucial role in controlling infection, cancer and autoimmune disorders in the liver. In this article, we will focus on hepatic virus infections, hepatocellular carcinoma and autoimmune disorders as examples to illustrate the current understanding of the contribution of T cells to cellular immunity in these maladies. Cellular immune suppression is primarily responsible for chronic viral infections and cancer. However, an uncontrolled auto-reactive immune response accounts for autoimmunity. Consequently, these immune abnormalities are ascribed to the quantitative and functional changes in adaptive immune cells and their subsets, innate immunocytes, chemokines, cytokines and various surface receptors on immune cells. A greater understanding of the complex orchestration of the hepatic adaptive immune regulators during homeostasis and immune competence are much needed to identify relevant targets for clinical intervention to treat immunological disorders in the liver.
Collapse
|
83
|
Borzooy Z, Streinu-Cercel A, Mirshafiey A, Khamseh A, Mahmoudie MK, Navabi SS, Nosrati M, Najafi Z, Hosseini M, Jazayeri SM. IL-17 and IL-22 genetic polymorphisms in HBV vaccine non- and low-responders among healthcare workers. Germs 2016; 6:14-20. [PMID: 27019828 DOI: 10.11599/germs.2016.1084] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 12/25/2015] [Accepted: 12/30/2015] [Indexed: 11/23/2022]
Abstract
BACKGROUND Healthcare workers constitute a population at high risk for HBV infection. Efficient vaccination options are available; however, the individual response to HBV vaccination may vary widely between subjects, potentially due to cytokine profiles and genetic variations. In the present study, we investigated the relationship between IL-17 and IL-22 gene polymorphisms versus non- and low-responsiveness to HBV vaccination in healthcare workers. METHODS We selected the following IL-17 and IL-22 polymorphisms: rs4711998 (A/G) from IL-17 and rs2227501 (A/T), rs2227503 (A/G), rs1026786 (A/G) from IL-22 sequences genes. These were determined by polymerase chain reaction restriction fragment length polymorphisms. RESULTS The IL-17 rs4711998 GG genotype had a significantly lower frequency in non-responders compared to low-responders (p=0.025). However, we did not identify a relationship between IL-22 rs1026780, rs2227501 and rs2227503 genotypes and the anti-HBs response following HBV vaccination. CONCLUSION These data suggest that genetic variation in rs4711998 polymorphisms in the IL-17 cytokine may influence vaccine-induced immune responses to HBV vaccine in healthcare workers.
Collapse
Affiliation(s)
- Zohreh Borzooy
- PhD student, Department of Infectious Diseases, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania; Department of Immunology and Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Adrian Streinu-Cercel
- MD, PhD, Department of Infectious Diseases, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania; National Institute of Infectious Diseases, "Prof. Dr. Matei Balş", Bucharest, Romania
| | - Abbass Mirshafiey
- Ms, PhD, Head of the department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Azam Khamseh
- Bs, Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Masoud Karkhaneh Mahmoudie
- Bs, Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Shadi Sadat Navabi
- Ms, Department of Immunology, Tehran University of Medical Sciences, Tehran, Iran
| | - Marjan Nosrati
- Bs, Department of Infection Control, Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Najafi
- Ms, Bahrami Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Mostafa Hosseini
- Ms, PhD, Department of Epidemiology and Biostatistics School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Mohammad Jazayeri
- MD, PhD, Clinical Virologist, Hepatitis B Molecular Laboratory, Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
84
|
Saalim M, Resham S, Manzoor S, Ahmad H, Jaleel S, Ashraf J, Imran M, Naseem S. IL-22: a promising candidate to inhibit viral-induced liver disease progression and hepatocellular carcinoma. Tumour Biol 2016; 37:105-14. [PMID: 26541758 DOI: 10.1007/s13277-015-4294-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 10/20/2015] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a growing concern all over the world. With the number of patients rising exponentially with each passing day, HCC is a problem that needs immediate attention. Currently, available treatment strategies focus on controlling the damage after the development of HCC. The options available from chemo- and radio-embolization to surgical resection and transplantation are not efficacious as required due to the complex nature of the disease. Liver regeneration and tissue healing are the subject of great interest today. Interleukin-22 (IL-22) is a cytokine with the ability to regenerate and therefore reverse the injuries caused by a wide range of agents. IL-22 acts via STAT molecule and controls the activity of a wide variety of cell survival and proliferation genes. Experimental data has given a positive insight into the role of IL-22 in inhibition of viral and alcohol-induced hepatocellular carcinoma. A further insight into the nature of IL-22 and the factors that can be manipulated in controlling the activity of IL-22 can help to counter the menace caused by the devastating effects of HCC.
Collapse
Affiliation(s)
- Muhammad Saalim
- Atta-ur-Rahman School of Applied Bio-Sciences, Department of Healthcare Biotechnology, National University of Sciences and Technology, Islamabad, 44000, Pakistan
| | - Saleha Resham
- Atta-ur-Rahman School of Applied Bio-Sciences, Department of Healthcare Biotechnology, National University of Sciences and Technology, Islamabad, 44000, Pakistan
| | - Sobia Manzoor
- Atta-ur-Rahman School of Applied Bio-Sciences, Department of Healthcare Biotechnology, National University of Sciences and Technology, Islamabad, 44000, Pakistan.
| | - Hassam Ahmad
- Hepatopancreatobiliary Liver Transplant Unit, Shaikh Zayd Hospital, Lahore, 54000, Punjab, Pakistan
| | - Shahla Jaleel
- Department of Histopathology, Shaikh Zayd Hospital, Lahore, 54000, Punjab, Pakistan
| | - Javed Ashraf
- Islam Dental College, Sialkot, 51310, Punjab, Pakistan
| | - Muhammad Imran
- Atta-ur-Rahman School of Applied Bio-Sciences, Department of Healthcare Biotechnology, National University of Sciences and Technology, Islamabad, 44000, Pakistan
| | - Sidrah Naseem
- Atta-ur-Rahman School of Applied Bio-Sciences, Department of Healthcare Biotechnology, National University of Sciences and Technology, Islamabad, 44000, Pakistan
| |
Collapse
|
85
|
Hsueh YH, Chang YN, Loh CE, Gershwin ME, Chuang YH. AAV-IL-22 modifies liver chemokine activity and ameliorates portal inflammation in murine autoimmune cholangitis. J Autoimmun 2016; 66:89-97. [PMID: 26537567 PMCID: PMC4718765 DOI: 10.1016/j.jaut.2015.10.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 10/17/2015] [Accepted: 10/22/2015] [Indexed: 12/16/2022]
Abstract
There remain significant obstacles in developing biologics to treat primary biliary cholangitis (PBC). Although a number of agents have been studied both in murine models and human patients, the results have been relatively disappointing. IL-22 is a member of the IL-10 family and has multiple theoretical reasons for predicting successful usage in PBC. We have taken advantage of an IL-22 expressing adeno-associated virus (AAV-IL-22) to address the potential role of IL-22 in not only protecting mice from autoimmune cholangitis, but also in treating animals with established portal inflammation. Using our established mouse model of 2-OA-OVA immunization, including α-galactosylceramide (α-GalCer) stimulation, we treated mice both before and after the onset of clinical disease with AAV-IL-22. Firstly, AAV-IL-22 treatment given prior to 2-OA-OVA and α-GalCer exposure, i.e. before the onset of disease, significantly reduces the portal inflammatory response, production of Th1 cytokines and appearance of liver fibrosis. It also reduced the liver lymphotropic chemokines CCL5, CCL19, CXCL9, and CXCL10. Secondly, and more importantly, therapeutic use of AAV-IL-22, administered after the onset of disease, achieved a greater hurdle and significantly improved portal pathology. Further the improvements in inflammation were negatively correlated with levels of CCL5 and CXCL10 and positively correlated with levels of IL-22. In conclusion, we submit that the clinical use of IL-22 has a potential role in modulating the inflammatory portal process in patients with PBC.
Collapse
Affiliation(s)
- Yu-Hsin Hsueh
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan.
| | - Yun-Ning Chang
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan.
| | - Chia-En Loh
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan.
| | - M Eric Gershwin
- Division of Rheumatology, Allergy and Clinical Immunology, University of California at Davis School of Medicine, Davis, CA 95616, USA.
| | - Ya-Hui Chuang
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
86
|
Wang L, Wang K, Zou ZQ. Crosstalk between innate and adaptive immunity in hepatitis B virus infection. World J Hepatol 2015; 7:2980-2991. [PMID: 26730277 PMCID: PMC4691701 DOI: 10.4254/wjh.v7.i30.2980] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 11/11/2015] [Accepted: 12/11/2015] [Indexed: 02/06/2023] Open
Abstract
Hepatitis B virus (HBV) infection is a major public health problem worldwide. HBV is not directly cytotoxic to infected hepatocytes; the clinical outcome of infection results from complicated interactions between the virus and the host immune system. In acute HBV infection, initiation of a broad, vigorous immune response is responsible for viral clearance and self-limited inflammatory liver disease. Effective and coordinated innate and adaptive immune responses are critical for viral clearance and the development of long-lasting immunity. Chronic hepatitis B patients fail to mount efficient innate and adaptive immune responses to the virus. In particular, HBV-specific cytotoxic T cells, which are crucial for HBV clearance, are hyporesponsiveness to HBV infection. Accumulating experimental evidence obtained from the development of animal and cell line models has highlighted the importance of innate immunity in the early control of HBV spread. The virus has evolved immune escape strategies, with higher HBV loads and HBV protein concentrations associated with increasing impairment of immune function. Therefore, treatment of HBV infection requires inhibition of HBV replication and protein expression to restore the suppressed host immunity. Complicated interactions exist not only between innate and adaptive responses, but also among innate immune cells and different components of adaptive responses. Improved insight into these complex interactions are important in designing new therapeutic strategies for the treatment HBV infection. In this review, we summarize the current knowledge regarding the cross-talk between the innate and adaptive immune responses and among different immunocytes in HBV infection.
Collapse
|
87
|
Physiological and Pathological Properties of Interleukin-22 in Liver Diseases. CURRENT PATHOBIOLOGY REPORTS 2015. [DOI: 10.1007/s40139-015-0088-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
88
|
Han ZQ, Huang T, Deng YZ, Zhu GZ. Expression profile and kinetics of cytokines and chemokines in patients with chronic hepatitis C. Int J Clin Exp Med 2015; 8:17995-18003. [PMID: 26770394 PMCID: PMC4694294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Accepted: 10/03/2015] [Indexed: 06/05/2023]
Abstract
Cytokines and chemokines play an important role in defense against viral infection and modulating immune response. However, expression prolife of serum cytokines and chemokines, which were associated with the outcome of patients in response to anti-HCV treatment have not been fully elucidated. The current study aimed to determine the expression pattern of cytokines and chemokines in chronic HCV infection and their association with outcome in response to therapy. Seventy-two patients with HCV infection were enrolled, and fifty-one received peg-interferon α-2a and ribavirin therapy for 48 weeks. Thirty-nine cytokines and chemokines were analyzed by Luminex 200 and ELISA. In comparison to healthy individuals, production of IL-8 and IL-10 were increased in chronic hepatitis C patients. In contrast, IFN-γ, IL-7, and IL-15 were remarkably decreased, especially in HCV genotype 1b infection. HCV RNA load is closely associated with IL-10 and IL-15 expressions, and inhibition of HCV replication was accompanied by reduction in IL-10 and elevation in IL-7 and IL-15. Skewed cytokines and chemokines expression existed in chronic HCV infection, and might play an important role in persistent HCV infection. Exploiting the expression pattern of cytokines and chemokines may help to develop a better understanding of the pathogenesis of chronic HCV infection.
Collapse
Affiliation(s)
- Zhen-Qi Han
- Department of Clinical Laboratory Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine Changchun 130103, Jilin Province, China
| | - Tao Huang
- Department of Clinical Laboratory Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine Changchun 130103, Jilin Province, China
| | - Yong-Zhi Deng
- Department of Clinical Laboratory Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine Changchun 130103, Jilin Province, China
| | - Guang-Ze Zhu
- Department of Clinical Laboratory Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine Changchun 130103, Jilin Province, China
| |
Collapse
|
89
|
Cheng LS, Liu Y, Jiang W. Restoring homeostasis of CD4 + T cells in hepatitis-B-virus-related liver fibrosis. World J Gastroenterol 2015; 21:10721-10731. [PMID: 26478664 PMCID: PMC4600574 DOI: 10.3748/wjg.v21.i38.10721] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2015] [Revised: 06/19/2015] [Accepted: 09/02/2015] [Indexed: 02/06/2023] Open
Abstract
Immune-mediated liver injury is widely seen during hepatitis B virus (HBV) infection. Unsuccessful immune clearance of HBV results in chronic hepatitis and increases the risk of liver cirrhosis and hepatocellular carcinoma. HBV-related liver fibrosis (HBVLF), occurring as a result of HBV-induced chronic hepatitis, is a reversible, intermediate stage of chronic hepatitis B (CHB) and liver cirrhosis. Therefore, defining the pathogenesis of HBVLF is of practical significance for achieving better clinical outcomes. Recently, the homeostasis of CD4+ T cells was considered to be pivotal in the process of HBVLF. To better uncover the underlying mechanisms, in this review, we systematically retrospect the impacts of different CD4+ T-cell subsets on CHB and HBVLF. We emphasize CD4+ T-cell homeostasis and the important balance between regulatory T (Treg) and T helper 17 (Th17) cells. We discuss some cytokines associated with Treg and Th17 cells such as interleukin (IL)-17, IL-22, IL-21, IL-23, IL-10, IL-35 and IL-33, as well as surface molecules such as programmed cell death protein 1, cytotoxic T lymphocyte-associated antigen 4, T cell immunoglobulin domain and mucin domain-containing molecule 3 and cannabinoid receptor 2 that have potential therapeutic implications for the homeostasis of CD4+ T cells in CHB and HBVLF.
Collapse
|
90
|
Gao B, Shah VH. Combination therapy: New hope for alcoholic hepatitis? Clin Res Hepatol Gastroenterol 2015; 39 Suppl 1:S7-S11. [PMID: 26193867 PMCID: PMC5451267 DOI: 10.1016/j.clinre.2015.05.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 05/03/2015] [Indexed: 02/04/2023]
Abstract
Alcoholic hepatitis (AH) is a severe form of alcoholic liver disease with high mortality. The pathogenesis of AH is not fully understood, but it is generally believed that inflammation is a key factor leading to liver failure in AH. Steroids, which have broad immunosuppressive effects, have been used for the treatment of AH over the last forty years. Steroids elicit modest improvement in short-term survival rate in patients with severe AH, but also cause severe side effects. Several specific inflammatory targets (e.g., IL-1, LPS, and gut microbiota) are currently under investigation for the treatment of AH with the goal to obviate or reduce steroid administration. In addition to inflammation, impaired liver regeneration is another major cause of liver failure in AH, which deteriorates further after steroid treatment because inflammation plays a key role in promoting liver repair. Interleukin-22 (IL-22) is a promising drug for the treatment of AH because of its hepatoprotective and anti-fibrotic functions and relatively few known side effects. In addition, IL-22 treatment also ameliorates bacterial infection and kidney injury, two major complications associated with severe AH. IL-22 is currently under investigation in preclinical and clinical studies and may hold great promise for AH by providing more beneficial effects and fewer side effects than current therapies.
Collapse
Affiliation(s)
- Bin Gao
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA.
| | - Vijay H Shah
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
91
|
Zhuang Y, Cheng P, Liu XF, Peng LS, Li BS, Wang TT, Chen N, Li WH, Shi Y, Chen W, Pang KC, Zeng M, Mao XH, Yang SM, Guo H, Guo G, Liu T, Zuo QF, Yang HJ, Yang LY, Mao FY, Lv YP, Zou QM. A pro-inflammatory role for Th22 cells in Helicobacter pylori-associated gastritis. Gut 2015; 64:1368-78. [PMID: 25134787 PMCID: PMC4552937 DOI: 10.1136/gutjnl-2014-307020] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Revised: 07/17/2014] [Accepted: 08/02/2014] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Helper T (Th) cell responses are critical for the pathogenesis of Helicobacter pylori-induced gastritis. Th22 cells represent a newly discovered Th cell subset, but their relevance to H. pylori-induced gastritis is unknown. DESIGN Flow cytometry, real-time PCR and ELISA analyses were performed to examine cell, protein and transcript levels in gastric samples from patients and mice infected with H. pylori. Gastric tissues from interleukin (IL)-22-deficient and wild-type (control) mice were also examined. Tissue inflammation was determined for pro-inflammatory cell infiltration and pro-inflammatory protein production. Gastric epithelial cells and myeloid-derived suppressor cells (MDSC) were isolated, stimulated and/or cultured for Th22 cell function assays. RESULTS Th22 cells accumulated in gastric mucosa of both patients and mice infected with H. pylori. Th22 cell polarisation was promoted via the production of IL-23 by dendritic cells (DC) during H. pylori infection, and resulted in increased inflammation within the gastric mucosa. This inflammation was characterised by the CXCR2-dependent influx of MDSCs, whose migration was induced via the IL-22-dependent production of CXCL2 by gastric epithelial cells. Under the influence of IL-22, MDSCs, in turn, produced pro-inflammatory proteins, such as S100A8 and S100A9, and suppressed Th1 cell responses, thereby contributing to the development of H. pylori-associated gastritis. CONCLUSIONS This study, therefore, identifies a novel regulatory network involving H. pylori, DCs, Th22 cells, gastric epithelial cells and MDSCs, which collectively exert a pro-inflammatory effect within the gastric microenvironment. Efforts to inhibit this Th22-dependent pathway may therefore prove a valuable strategy in the therapy of H. pylori-associated gastritis.
Collapse
Affiliation(s)
- Yuan Zhuang
- Department of Microbiology and Biochemical Pharmacy, National Engineering Research Centre of Immunological Products, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Ping Cheng
- Department of Microbiology and Biochemical Pharmacy, National Engineering Research Centre of Immunological Products, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Xiao-fei Liu
- Department of Microbiology and Biochemical Pharmacy, National Engineering Research Centre of Immunological Products, College of Pharmacy, Third Military Medical University, Chongqing, China
- Department of Laboratory Medicine, General Hospital of Ji'nan Military Region of PLA, Ji'nan, Shandong, China
| | - Liu-sheng Peng
- Department of Microbiology and Biochemical Pharmacy, National Engineering Research Centre of Immunological Products, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Bo-sheng Li
- Department of Microbiology and Biochemical Pharmacy, National Engineering Research Centre of Immunological Products, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Ting-ting Wang
- Department of Microbiology and Biochemical Pharmacy, National Engineering Research Centre of Immunological Products, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Na Chen
- Department of Microbiology and Biochemical Pharmacy, National Engineering Research Centre of Immunological Products, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Wen-hua Li
- Department of Microbiology and Biochemical Pharmacy, National Engineering Research Centre of Immunological Products, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Yun Shi
- Department of Microbiology and Biochemical Pharmacy, National Engineering Research Centre of Immunological Products, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Weisan Chen
- School of Molecular Science, La Trobe University, Bundoora, Victoria, Australia
| | - Ken C Pang
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Paediatrics, The University of Melbourne, Parkville, Victoria, Australia
| | - Ming Zeng
- National Institutes for Food and Drug Control, Beijing, China
| | - Xu-hu Mao
- Department of Microbiology and Biochemical Pharmacy, National Engineering Research Centre of Immunological Products, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Shi-ming Yang
- Department of Gastroenterology, XinQiao Hospital, Third Military Medical University, Chongqing, China
| | - Hong Guo
- Department of Gastroenterology, XinQiao Hospital, Third Military Medical University, Chongqing, China
| | - Gang Guo
- Department of Microbiology and Biochemical Pharmacy, National Engineering Research Centre of Immunological Products, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Tao Liu
- Department of Microbiology and Biochemical Pharmacy, National Engineering Research Centre of Immunological Products, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Qian-fei Zuo
- Department of Microbiology and Biochemical Pharmacy, National Engineering Research Centre of Immunological Products, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Hui-jie Yang
- Department of Microbiology and Biochemical Pharmacy, National Engineering Research Centre of Immunological Products, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Liu-yang Yang
- Department of Microbiology and Biochemical Pharmacy, National Engineering Research Centre of Immunological Products, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Fang-yuan Mao
- Department of Microbiology and Biochemical Pharmacy, National Engineering Research Centre of Immunological Products, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Yi-pin Lv
- Department of Microbiology and Biochemical Pharmacy, National Engineering Research Centre of Immunological Products, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Quan-ming Zou
- Department of Microbiology and Biochemical Pharmacy, National Engineering Research Centre of Immunological Products, College of Pharmacy, Third Military Medical University, Chongqing, China
| |
Collapse
|
92
|
Lai R, Xiang X, Mo R, Bao R, Wang P, Guo S, Zhao G, Gui H, Wang H, Bao S, Xie Q. Protective effect of Th22 cells and intrahepatic IL-22 in drug induced hepatocellular injury. J Hepatol 2015; 63:148-55. [PMID: 25681556 DOI: 10.1016/j.jhep.2015.02.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 02/02/2015] [Accepted: 02/03/2015] [Indexed: 12/19/2022]
Abstract
BACKGROUND & AIMS Th22 cells regulate host immunity against pathogenic invasion, including protecting host against chronic hepatitis B; however, the relationship between drug induced liver injury (DILI) and Th22/Th17 cells is still unclear. We investigated the role of Th22 cells in DILI development. METHODS The frequencies of peripheral Th22/Th17/Th1 cells and intrahepatic IL-22/IL-17 production from DILI, non-DILI liver diseases, and healthy controls were examined. Plasma IL-22/IL-17 and the related cytokines were determined in DILI patients at week 0 (defined as the occurrence of liver injury within 7days), 4 and 24. Multivariable stepwise logistic regression was applied to explore the associations between various factors and recovery of DILI. RESULTS The frequencies of Th22/Th17 cells were significantly higher in DILI onset patients than HC. Significant increase of Th22 cells and the related cytokines levels was observed in DILI with hepatocellular injury type. There was a positive correlation between intrahepatic IL-22 level and liver regeneration. Plasma IL-22 level was higher in DILI patients with improved liver function than unimproved function. Multivariable analysis showed that the odds ratio (OR) of plasma IL-22 at 4weeks was 1.054 [95% confidence interval (CI), 1.012, 1.124]. CONCLUSIONS Increased peripheral and intrahepatic IL-22-secreting cells are detected in DILI. Th22 and its related cytokines might be hepato-protective, which might provide new perspective for understanding the immunopathogenesis of DILI. Plasma IL-22 might be a reliable indicator to evaluate the prognosis of DILI and provide a novel therapeutic target for DILI treatment.
Collapse
Affiliation(s)
- Rongtao Lai
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xiaogang Xiang
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Ruidong Mo
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Rebecca Bao
- Discipline of Pathology, Bosch Institute and School of Medical Sciences, University of Sydney, Sydney, NSW, Australia
| | - Peng Wang
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Simin Guo
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Gangde Zhao
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Honglian Gui
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Hui Wang
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Shisan Bao
- Discipline of Pathology, Bosch Institute and School of Medical Sciences, University of Sydney, Sydney, NSW, Australia.
| | - Qing Xie
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| |
Collapse
|
93
|
Tan A, Koh S, Bertoletti A. Immune Response in Hepatitis B Virus Infection. Cold Spring Harb Perspect Med 2015; 5:a021428. [PMID: 26134480 DOI: 10.1101/cshperspect.a021428] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Hepatitis B virus (HBV) can replicate within hepatocytes without causing direct cell damage. The host immune response is, therefore, not only essential to control the spread of virus infection, but it is also responsible for the inflammatory events causing liver pathologies. In this review, we discuss how HBV deals with host immunity and how we can harness it to achieve virus control and suppress liver damage.
Collapse
Affiliation(s)
- Anthony Tan
- Program Emerging Infectious Diseases, Duke-NUS Graduate Medical School, Singapore 169857
| | - Sarene Koh
- Viral Hepatitis Laboratory, Singapore Institute for Clinical Sciences, A*STAR, Singapore 117609
| | - Antonio Bertoletti
- Program Emerging Infectious Diseases, Duke-NUS Graduate Medical School, Singapore 169857 Viral Hepatitis Laboratory, Singapore Institute for Clinical Sciences, A*STAR, Singapore 117609 School of Immunity and Infection, College of Medical and Dental Science, University of Birmingham, Edgbaston, Birmingham B16 2TT, United Kingdom
| |
Collapse
|
94
|
Wu SF, Wang WJ, Gao YQ. Natural killer cells in hepatitis B virus infection. Braz J Infect Dis 2015; 19:417-25. [PMID: 26119852 PMCID: PMC9427491 DOI: 10.1016/j.bjid.2015.05.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 05/02/2015] [Accepted: 05/05/2015] [Indexed: 12/21/2022] Open
Abstract
Natural killer cells are a unique type of lymphocytes with cytotoxic capacity, and play important roles against tumors and infections. Recently, natural killer cells have been increasingly valued in their effects in hepatitis B virus infection. Since hepatitis B virus is not cytopathic, the subsequent antiviral immune responses of the host are responsible for sustaining the liver injury, which may result in cirrhosis and even hepatocellular carcinoma. Many studies have confirmed that natural killer cells participate in anti-hepatitis B virus responses both in the early phase after infection and in the chronic phase via cytolysis, degranulation, and cytokine secretion. However, natural killer cells play dichotomic roles: they exert antiviral and immunoregulatory functions whilst contribute to the pathogenesis of liver injury. Here, we review the roles of natural killer cells in hepatitis B virus infection, introducing novel therapeutic strategies for controlling hepatitis B virus infection via the modulation of natural killer cells.
Collapse
Affiliation(s)
- Shao-fei Wu
- Department of Hepatopathy, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wen-jing Wang
- Department of Gynecology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yue-qiu Gao
- Department of Hepatopathy, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
95
|
Feng H, Yin J, Han YP, Zhou XY, Chen S, Yang L, Yan JR, Zhang GX. Regulatory T cells and IL-17(+) T helper cells enhanced in patients with chronic hepatitis B virus infection. Int J Clin Exp Med 2015; 8:8674-8685. [PMID: 26309519 PMCID: PMC4538083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 06/04/2015] [Indexed: 06/04/2023]
Abstract
Hepatitis B is a worldwide infectious disease caused by hepatitis B virus (HBV), it leaded to millions of deaths every year, HBV mainly through immune response to damage liver cells. The purpose of this study was to judge the value of Regulatory T cells (Treg) and IL-17(+) T helper cells (Th17) in different chronic HBV infection stages. 96 patients with chronic HBV infection were enrolled and selected 33 healthy adults as control. Detected the expression of Treg and Th17 cells in peripheral blood by flow cytometry and assayed liver function simultaneously. Compared to the control group, the expression of Treg (6.80±1.92 vs. 4.42±0.97; P<0.0001) and Th17 (6.15±4.20 vs. 2.66±1.79; P<0.0001) cells were both increased and the ratio of Treg/Th17 was significantly decreased (1.48±0.89 vs. 2.29±1.31; P=0.0001) in patients with HBV infection. Spearman correlation analysis demonstrated that the level of Treg and Th17 cells were associated with liver function. ROC curve analysis found that Treg and Th17 cells were suitable for as a screening test for early detection of the disease. In conclusion, the expression of Treg and Th17 cells were increased in chronic hepatitis B patients and these indicators were independent risk factors to hepatitis.
Collapse
Affiliation(s)
- Hao Feng
- Department of Gastroenterology, First Affiliated Hospital of Nanjing Medical University, First Clinical Medical College of Nanjing Medical UniversityNo. 300 Guangzhou Road, Nanjing 210029, China
- Nanjing Jiangbei People’s HospitalNo. 552, Geguan Road, Nanjing 210048, China
| | - Jie Yin
- Nanjing Jiangbei People’s HospitalNo. 552, Geguan Road, Nanjing 210048, China
| | - Ya-Ping Han
- Department of Gastroenterology, First Affiliated Hospital of Nanjing Medical University, First Clinical Medical College of Nanjing Medical UniversityNo. 300 Guangzhou Road, Nanjing 210029, China
| | - Xiao-Ying Zhou
- Department of Gastroenterology, First Affiliated Hospital of Nanjing Medical University, First Clinical Medical College of Nanjing Medical UniversityNo. 300 Guangzhou Road, Nanjing 210029, China
| | - Su Chen
- Nanjing Jiangbei People’s HospitalNo. 552, Geguan Road, Nanjing 210048, China
| | - Li Yang
- Nanjing Jiangbei People’s HospitalNo. 552, Geguan Road, Nanjing 210048, China
| | - Jin-Rui Yan
- Nanjing Jiangbei People’s HospitalNo. 552, Geguan Road, Nanjing 210048, China
| | - Guo-Xin Zhang
- Department of Gastroenterology, First Affiliated Hospital of Nanjing Medical University, First Clinical Medical College of Nanjing Medical UniversityNo. 300 Guangzhou Road, Nanjing 210029, China
| |
Collapse
|
96
|
Wu LY, Liu S, Liu Y, Guo C, Li H, Li W, Jin X, Zhang K, Zhao P, Wei L, Zhao J. Up-regulation of interleukin-22 mediates liver fibrosis via activating hepatic stellate cells in patients with hepatitis C. Clin Immunol 2015; 158:77-87. [PMID: 25771172 DOI: 10.1016/j.clim.2015.03.003] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2014] [Revised: 12/22/2014] [Accepted: 03/03/2015] [Indexed: 12/18/2022]
Abstract
Interleukin-22 (IL-22) is known to play a critical role in liver immunity. However, the role of IL-22 in HCV-associated liver fibrosis is poorly understood. In this study, patients with HCV infection disclosed significant increases in peripheral numbers of IL-22-producing cells as well as in IL-22 plasma levels. In the liver, the increased intrahepatic IL-22(+) cells were positively correlated with fibrotic staging scores and clinical progression from CHC to cirrhosis. Moreover, the majority of IL-22(+) cells were located in fibrotic areas in the liver of patients with cirrhosis and co-localized with α-smooth muscle actin (α-SMA) positive hepatic stellate cells (HSCs). In vitro, administration of IL-22 was accompanied with inhibited LX-2 cell apoptosis, promoted LX-2 cell proliferation, increased expression of α-SMA, and up-regulated collagen production by LX-2 cells. Collectively, our data provide evidence that IL-22 may contribute to the fibrogenesis of HCV-associated liver fibrosis by activating HSCs.
Collapse
Affiliation(s)
- Li-Yuan Wu
- Department of Pathology and Hepatology, Beijing 302 Hospital, Beijing, China
| | - Shuhong Liu
- Department of Pathology and Hepatology, Beijing 302 Hospital, Beijing, China
| | - Yuan Liu
- Department of Pathology and Hepatology, Beijing 302 Hospital, Beijing, China
| | - Chaonan Guo
- Department of Pathology and Hepatology, Beijing 302 Hospital, Beijing, China
| | - Hanwei Li
- Liver Cirrhosis Diagnosis and Treatment Center, Beijing 302 Hospital, Beijing, China
| | - Wenshu Li
- Center for Clinical Trial, Beijing 302 Hospital, Beijing, China
| | - Xueyuan Jin
- International Center for Liver Disease Diagnosis and Treatment, Beijing 302 Hospital, Beijing, China
| | - Keming Zhang
- Department of Hepatobiliary Surgery, Beijing 302 Hospital, Beijing, China
| | - Ping Zhao
- International Center for Liver Disease Diagnosis and Treatment, Beijing 302 Hospital, Beijing, China
| | - Lai Wei
- Liver Disease Research Center, Peking University People's Hospital, Beijing, China
| | - Jingmin Zhao
- Department of Pathology and Hepatology, Beijing 302 Hospital, Beijing, China.
| |
Collapse
|
97
|
Cheng TT, Wang FM, Lv HM. Role of interleukin-22 in liver diseases. Shijie Huaren Xiaohua Zazhi 2015; 23:1770-1175. [DOI: 10.11569/wcjd.v23.i11.1770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Interleukin (IL)-22, which is discovered by the Dumoutier team during the stimulation of murine BW5147 T lymphoma cells with IL-9, is a member of the IL-10 cytokine family because of the similarity of structure and encoding genes. IL-22 is involved in many inflammatory diseases and autoimmune diseases, such as psoriasis, ulcerative colitis, and systemic lupus erythematosus. Recently it has been found that IL-22 can protect against liver injury and promote hepatocytes proliferation. This paper will make a brief introduction of the role of IL-22 in liver diseases.
Collapse
|
98
|
Seki E, Brenner DA. Recent advancement of molecular mechanisms of liver fibrosis. JOURNAL OF HEPATO-BILIARY-PANCREATIC SCIENCES 2015; 22:512-8. [PMID: 25869468 DOI: 10.1002/jhbp.245] [Citation(s) in RCA: 227] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 03/12/2015] [Indexed: 12/17/2022]
Abstract
Liver fibrosis occurs in response to any etiology of chronic liver injury including hepatitis B and C, alcohol consumption, fatty liver disease, cholestasis, and autoimmune hepatitis. Hepatic stellate cells (HSCs) are the primary source of activated myofibroblasts that produce extracellular matrix (ECM) in the liver. Various inflammatory and fibrogenic pathways contribute to the activation of HSCs. Recent studies also discovered that liver fibrosis is reversible and activated HSCs can revert to quiescent HSCs when causative agents are removed. Although the basic research for liver fibrosis has progressed remarkably, sensitive and specific biomarkers as non-invasive diagnostic tools, and effective anti-fibrotic agents have not been developed yet. This review highlights the recent advances in cellular and molecular mechanisms of liver fibrosis, especially focusing on origin of myofibroblasts, inflammatory signaling, autophagy, cellular senescence, HSC inactivation, angiogenesis, and reversibility of liver fibrosis.
Collapse
Affiliation(s)
- Ekihiro Seki
- Division of Gastroenterology, Department of Medicine, Cedars-Sinai Medical Center, 8700 Beverly Blvd, DAVIS, Suite D2099, Los Angeles, CA, 90048, USA.
| | - David A Brenner
- School of Medicine, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
99
|
Gao B. Interplay of interleukin-22 and its binding protein in controlling liver scarring. Hepatology 2015; 61:1121-3. [PMID: 25580805 PMCID: PMC11292602 DOI: 10.1002/hep.27688] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Accepted: 01/03/2015] [Indexed: 12/15/2022]
Affiliation(s)
- Bin Gao
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD
| |
Collapse
|
100
|
Abstract
Interleukin-22 (IL-22) is a recently described IL-10 family cytokine that is produced by T helper (Th) 17 cells, γδ T cells, NKT cells, and newly described innate lymphoid cells (ILCs). Knowledge of IL-22 biology has evolved rapidly since its discovery in 2000, and a role for IL-22 has been identified in numerous tissues, including the intestines, lung, liver, kidney, thymus, pancreas, and skin. IL-22 primarily targets nonhematopoietic epithelial and stromal cells, where it can promote proliferation and play a role in tissue regeneration. In addition, IL-22 regulates host defense at barrier surfaces. However, IL-22 has also been linked to several conditions involving inflammatory tissue pathology. In this review, we assess the current understanding of this cytokine, including its physiologic and pathologic effects on epithelial cell function.
Collapse
|