51
|
Cui F, Zhou Q, Xiao K, Qian H. MicroRNA‑28 promotes the proliferation of non‑small‑cell lung cancer cells by targeting PTEN. Mol Med Rep 2020; 21:2589-2596. [PMID: 32236614 DOI: 10.3892/mmr.2020.11033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 01/03/2020] [Indexed: 11/06/2022] Open
Abstract
Non-small-cell lung cancer (NSCLC) is the fundamental form of lung cancer and the leading cause of cancer‑related mortality in humans. Numerous studies have identified a role for microRNAs (miRs) in cell proliferation, invasion and metastasis in numerous types of cancer, including lung cancer. In the present study, the functional roles and molecular mechanisms of miR‑28 in NSCLC tumorigenesis were investigated. Reverse transcription‑quantitative PCR (RT‑qPCR) was used to measure miR‑28 expression levels in NSCLC tumor tissues and cell lines. A dual‑luciferase assay was performed to observe the direct interaction between miR‑28 and PTEN in A549 cells. Furthermore, the effect of miR‑28 on the mRNA and protein expression levels of PTEN was examined by RT‑qPCR and western blotting, respectively. A Cell Counting kit‑8 assay was performed to identify the relationship between the miR‑28/PTEN axis and tumor cell proliferation using cells infected with lentivirus (LV)‑anti‑miR‑28 or LV‑anti‑miR‑28 + short hairpin RNA‑PTEN. miR‑28 expression was upregulated in NSCLC tumor tissues and cell lines compared with the control groups. PTEN was identified as the downstream gene of miR‑28 in NSCLC and was negatively regulated by miR‑28. In addition, miR‑28 knockdown suppressed the proliferation of A549 and H292 cells. Cells infected with LV‑anti‑miR‑28 + short hairpin RNA‑PTEN promoted tumor cell proliferation in A549 and H292 cells compared with cells infected with LV‑anti‑miR‑28. Taken together, the present study suggested that miR‑28 might serve as the promoter in the development of NSCLC by targeting PTEN. Therefore, the miR‑28/PTEN axis may serve as a potential diagnostic and therapeutic target for NSCLC.
Collapse
Affiliation(s)
- Fenghe Cui
- Department of Cardiothoracic Surgery, Jingzhou Central Hospital, The Second Clinical Medical College, Yangtze University, Jingzhou, Hubei 434000, P.R. China
| | - Qian Zhou
- Department of Cardiothoracic Surgery, Jingzhou Central Hospital, The Second Clinical Medical College, Yangtze University, Jingzhou, Hubei 434000, P.R. China
| | - Kuang Xiao
- Department of Cardiothoracic Surgery, Jingzhou Central Hospital, The Second Clinical Medical College, Yangtze University, Jingzhou, Hubei 434000, P.R. China
| | - Haiyun Qian
- Department of Cardiothoracic Surgery, Jingzhou Central Hospital, The Second Clinical Medical College, Yangtze University, Jingzhou, Hubei 434000, P.R. China
| |
Collapse
|
52
|
Zhu Z, Wen Y, Xuan C, Chen Q, Xiang Q, Wang J, Liu Y, Luo L, Zhao S, Deng Y, Zhao Z. Identifying the key genes and microRNAs in prostate cancer bone metastasis by bioinformatics analysis. FEBS Open Bio 2020; 10:674-688. [PMID: 32027093 PMCID: PMC7137804 DOI: 10.1002/2211-5463.12805] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 01/18/2020] [Accepted: 02/04/2020] [Indexed: 12/14/2022] Open
Abstract
Prostate adenocarcinoma (PCa) is the most common cause of death due to malignancy among men, and bone metastasis is the leading cause of mortality in patients with PCa. Therefore, identifying the causes and molecular mechanism of bone metastasis is important for early detection, diagnosis and personalized therapy. In this study, we systematically analyzed molecular correlates of bone metastasis by bioinformatics analysis. A total of 12 differentially expressed microRNAs (miRNAs) and 102 differentially expressed genes were identified. Five miRNAs had prognostic significance in biochemical recurrence‐free survival (miR‐636, miR‐491‐5p, miR‐199b‐5p, miR‐199b‐3p, miR‐28‐3p). The differentially expressed genes were significantly enriched in extracellular matrix, cell‐substrate adhesion, collagen and integrin. Seven hub genes (VCAN, COL3A1, COL1A1, APOE, COL1A2, SDC1, THY1) with worse biochemical recurrence‐free survival and one hub gene (MMP9) with worse overall survival were detected. miR‐636, a novel oncogene, was found to be up‐regulated in bone metastatic PCa tissues and also predominately up‐regulated in human PCa cell lines. miR‐636 promoted cellular invasion and migration, and may promote bone metastasis via targeting MBNL2, TNS1 and STAB1. In conclusion, we have successfully defined molecular signatures of bone metastasis in PCa.
Collapse
Affiliation(s)
- Zhiguo Zhu
- Department of Urology & Andrology, Minimally Invasive Surgery Center, Guangdong Provincial Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yaoan Wen
- Department of Urology & Andrology, Minimally Invasive Surgery Center, Guangdong Provincial Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Chunxiang Xuan
- Department of Nursing, Taian City Centre Hospital Branch, Taian, China
| | - Qingping Chen
- School of Information Management, Sun Yat-Sen University, Guangzhou, China
| | - Qian Xiang
- Department of Urology & Andrology, Minimally Invasive Surgery Center, Guangdong Provincial Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jiamin Wang
- Department of Urology & Andrology, Minimally Invasive Surgery Center, Guangdong Provincial Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yangzhou Liu
- Department of Urology & Andrology, Minimally Invasive Surgery Center, Guangdong Provincial Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Lianmin Luo
- Department of Urology & Andrology, Minimally Invasive Surgery Center, Guangdong Provincial Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Shankun Zhao
- Department of Urology & Andrology, Minimally Invasive Surgery Center, Guangdong Provincial Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yihan Deng
- Department of Urology & Andrology, Minimally Invasive Surgery Center, Guangdong Provincial Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhigang Zhao
- Department of Urology & Andrology, Minimally Invasive Surgery Center, Guangdong Provincial Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
53
|
Yan C, Wu FX, Wang J, Duan G. PESM: predicting the essentiality of miRNAs based on gradient boosting machines and sequences. BMC Bioinformatics 2020; 21:111. [PMID: 32183740 PMCID: PMC7079416 DOI: 10.1186/s12859-020-3426-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 02/21/2020] [Indexed: 11/16/2022] Open
Abstract
Background MicroRNAs (miRNAs) are a kind of small noncoding RNA molecules that are direct posttranscriptional regulations of mRNA targets. Studies have indicated that miRNAs play key roles in complex diseases by taking part in many biological processes, such as cell growth, cell death and so on. Therefore, in order to improve the effectiveness of disease diagnosis and treatment, it is appealing to develop advanced computational methods for predicting the essentiality of miRNAs. Result In this study, we propose a method (PESM) to predict the miRNA essentiality based on gradient boosting machines and miRNA sequences. First, PESM extracts the sequence and structural features of miRNAs. Then it uses gradient boosting machines to predict the essentiality of miRNAs. We conduct the 5-fold cross-validation to assess the prediction performance of our method. The area under the receiver operating characteristic curve (AUC), F-measure and accuracy (ACC) are used as the metrics to evaluate the prediction performance. We also compare PESM with other three competing methods which include miES, Gaussian Naive Bayes and Support Vector Machine. Conclusion The results of experiments show that PESM achieves the better prediction performance (AUC: 0.9117, F-measure: 0.8572, ACC: 0.8516) than other three computing methods. In addition, the relative importance of all features also further shows that newly added features can be helpful to improve the prediction performance of methods.
Collapse
Affiliation(s)
- Cheng Yan
- Hunan Provincial Key Lab on Bioinformtics, School of Computer Science and Engineering, Central South University, 932 South Lushan Rd, ChangSha, 410083, China.,School of Computer and Information,Qiannan Normal University for Nationalities, Longshan Road, DuYun, 558000, China
| | - Fang-Xiang Wu
- Biomedical Engineering and Department of Mechanical Engineering, University of Saskatchewan, Saskatoon, SKS7N5A9, Canada
| | - Jianxin Wang
- Hunan Provincial Key Lab on Bioinformtics, School of Computer Science and Engineering, Central South University, 932 South Lushan Rd, ChangSha, 410083, China
| | - Guihua Duan
- Hunan Provincial Key Lab on Bioinformtics, School of Computer Science and Engineering, Central South University, 932 South Lushan Rd, ChangSha, 410083, China.
| |
Collapse
|
54
|
Zaporozhchenko IA, Rykova EY, Laktionov PP. The Fundamentals of miRNA Biology: Structure, Biogenesis, and Regulatory Functions. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2020. [DOI: 10.1134/s106816202001015x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
55
|
Tran AM, Chalbatani GM, Berland L, Cruz De Los Santos M, Raj P, Jalali SA, Gharagouzloo E, Ivan C, Dragomir MP, Calin GA. A New World of Biomarkers and Therapeutics for Female Reproductive System and Breast Cancers: Circular RNAs. Front Cell Dev Biol 2020; 8:50. [PMID: 32211400 PMCID: PMC7075436 DOI: 10.3389/fcell.2020.00050] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 01/20/2020] [Indexed: 12/12/2022] Open
Abstract
As one of the most recently (re)discovered types of non-coding RNAs (ncRNA), circular RNAs (circRNAs) differentiate from other ncRNAs by a specific biogenesis, high stability, and distinct functions. The biogenesis of circRNAs can be categorized into three mechanisms that permit the back-splicing reaction: exon-skipping, pairing of neighboring introns, and dimerization of RNA-binding proteins. Regarding their stability, circRNAs have no free ends, specific to linear RNA molecules, prompting a longer half-life and resistance to exonuclease-mediated activity by RNase R, bypassing the common RNA turnover process. Regarding their functions, circular transcripts can be categorized into four broad roles: miRNA sponging, protein binding, regulation of transcription, and coding for proteins and peptides. Female reproductive system (including mainly ovarian, corpus, and cervix uteri cancers) and breast cancers are the primary causes of death in women worldwide, accounting for over 1,212,772 deaths in 2018. We consider that a better understanding of the molecular pathophysiology through the study of coding and non-coding RNA regulators could improve the diagnosis and therapeutics of these cancers. Developments in the field of circRNA in regard to breast or gynecological cancers are recent, with most circRNA-related discoveries having been made in the last 2 years. Therefore, in this review we summarize the newly detected roles of circRNAs in female reproductive system (cervical cancer, ovarian cancer, and endometrial cancer) and breast cancers. We argue that circRNAs can become essential elements of the diagnostic and therapeutic tools for female reproductive system cancers in the future.
Collapse
Affiliation(s)
- Anh M Tran
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Ghanbar Mahmoodi Chalbatani
- Cancer Research Center, Cancer Institute of Iran, Tehran University of Medical Sciences, Tehran, Iran.,Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Lea Berland
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Mireia Cruz De Los Santos
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Priyank Raj
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Seyed Amir Jalali
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Elahe Gharagouzloo
- Cancer Research Center, Cancer Institute of Iran, Tehran University of Medical Sciences, Tehran, Iran.,Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Cristina Ivan
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States.,Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Mihnea P Dragomir
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States.,Department of Surgery, Fundeni Clinical Hospital, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - George A Calin
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States.,Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
56
|
Mitra R, Adams CM, Jiang W, Greenawalt E, Eischen CM. Pan-cancer analysis reveals cooperativity of both strands of microRNA that regulate tumorigenesis and patient survival. Nat Commun 2020; 11:968. [PMID: 32080184 PMCID: PMC7033124 DOI: 10.1038/s41467-020-14713-2] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 01/20/2020] [Indexed: 12/24/2022] Open
Abstract
Recently, both 5p and 3p miRNA strands are being recognized as functional instead of only one, leaving many miRNA strands uninvestigated. To determine whether both miRNA strands, which have different mRNA-targeting sequences, cooperate to regulate pathways/functions across cancer types, we evaluate genomic, epigenetic, and molecular profiles of >5200 patient samples from 14 different cancers, and RNA interference and CRISPR screens in 290 cancer cell lines. We identify concordantly dysregulated miRNA 5p/3p pairs that coordinately modulate oncogenic pathways and/or cell survival/growth across cancers. Down-regulation of both strands of miR-30a and miR-145 recurrently increased cell cycle pathway genes and significantly reduced patient survival in multiple cancers. Forced expression of all four strands show cooperativity, reducing cell cycle pathways and inhibiting lung cancer cell proliferation and migration. Therefore, we identify miRNA whose 5p/3p strands function together to regulate core tumorigenic processes/pathways and reveal a previously unknown pan-cancer miRNA signature with patient prognostic power. 5p and 3p miRNA strands have different mRNA-targeting sequences and may both functionally impact gene expression in cancer. Here, the authors undertake a pan-cancer analysis that indicates 5p/3p miRNA strands function together to regulate tumorigenic processes.
Collapse
Affiliation(s)
- Ramkrishna Mitra
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Clare M Adams
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Wei Jiang
- Department of Biomedical Engineering, College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, China
| | - Evan Greenawalt
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Christine M Eischen
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA.
| |
Collapse
|
57
|
Fazio S, Berti G, Russo F, Evangelista M, D’Aurizio R, Mercatanti A, Pellegrini M, Rizzo M. The miR-28-5p Targetome Discovery Identified SREBF2 as One of the Mediators of the miR-28-5p Tumor Suppressor Activity in Prostate Cancer Cells. Cells 2020; 9:cells9020354. [PMID: 32028704 PMCID: PMC7072282 DOI: 10.3390/cells9020354] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 01/22/2020] [Accepted: 01/31/2020] [Indexed: 01/01/2023] Open
Abstract
miR-28-5p is downregulated in some tumor tissues in which it has been demonstrated to have tumor suppressor (TS) activity. Here, we demonstrate that miR-28-5p acts as a TS in prostate cancer (PCa) cells affecting cell proliferation/survival, as well as migration and invasion. Using the miRNA pull out assay and next generation sequencing, we collected the complete repertoire of miR-28-5p targets, obtaining a data set (miR-28-5p targetome) of 191 mRNAs. Filtering the targetome with TargetScan 7, PITA and RNA22, we found that 61% of the transcripts had miR-28-5p binding sites. To assign a functional value to the captured transcripts, we grouped the miR-28-5p targets into gene families with annotated function and showed that six transcripts belong to the transcription factor category. Among them we selected SREBF2, a gene with an important role in PCa. We validated miR-28-5p/SREBF2 interaction, demonstrating that SREBF2 inhibition affects almost all the tumor processes altered by miR-28-5p re-expression, suggesting that SREBF2 is an important mediator of miR-28-5p TS activity. Our findings support the identification of the targetome of cancer-related miRNAs as a tool to discover genes and pathways fundamental for tumor development, and potential new targets for anti-tumor therapy.
Collapse
Affiliation(s)
- Sofia Fazio
- Non-coding RNA Laboratory, Institute of Clinical Physiology (IFC), CNR, 56124 Pisa, Italy; (S.F.); (G.B.); (M.E.); (A.M.)
- Centre Méditerranéen de Médecin Moléculaire INSERM U1065, Université Côte d’Azur, 06204 Nice, France
| | - Gabriele Berti
- Non-coding RNA Laboratory, Institute of Clinical Physiology (IFC), CNR, 56124 Pisa, Italy; (S.F.); (G.B.); (M.E.); (A.M.)
| | - Francesco Russo
- Institute of Informatics and Telematics (IIT), CNR, 56124 Pisa, Italy; (F.R.); (R.D.); (M.P.)
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Monica Evangelista
- Non-coding RNA Laboratory, Institute of Clinical Physiology (IFC), CNR, 56124 Pisa, Italy; (S.F.); (G.B.); (M.E.); (A.M.)
| | - Romina D’Aurizio
- Institute of Informatics and Telematics (IIT), CNR, 56124 Pisa, Italy; (F.R.); (R.D.); (M.P.)
| | - Alberto Mercatanti
- Non-coding RNA Laboratory, Institute of Clinical Physiology (IFC), CNR, 56124 Pisa, Italy; (S.F.); (G.B.); (M.E.); (A.M.)
| | - Marco Pellegrini
- Institute of Informatics and Telematics (IIT), CNR, 56124 Pisa, Italy; (F.R.); (R.D.); (M.P.)
| | - Milena Rizzo
- Non-coding RNA Laboratory, Institute of Clinical Physiology (IFC), CNR, 56124 Pisa, Italy; (S.F.); (G.B.); (M.E.); (A.M.)
- Tuscan Tumor Institute (ITT), 50139 Firenze, Italy
- Correspondence: ; Tel.: +39-050-315-3107; Fax: +39-050-315-3327
| |
Collapse
|
58
|
Mátyási B, Farkas Z, Kopper L, Sebestyén A, Boissan M, Mehta A, Takács-Vellai K. The Function of NM23-H1/NME1 and Its Homologs in Major Processes Linked to Metastasis. Pathol Oncol Res 2020; 26:49-61. [PMID: 31993913 PMCID: PMC7109179 DOI: 10.1007/s12253-020-00797-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 01/14/2020] [Indexed: 12/12/2022]
Abstract
Metastasis suppressor genes (MSGs) inhibit different biological processes during metastatic progression without globally influencing development of the primary tumor. The first MSG, NM23 (non-metastatic clone 23, isoform H1) or now called NME1 (stands for non-metastatic) was identified some decades ago. Since then, ten human NM23 paralogs forming two groups have been discovered. Group I NM23 genes encode enzymes with evolutionarily highly conserved nucleoside diphosphate kinase (NDPK) activity. In this review we summarize how results from NDPKs in model organisms converged on human NM23 studies. Next, we examine the role of NM23-H1 and its homologs within the metastatic cascade, e.g. cell migration and invasion, proliferation and apoptosis. NM23-H1 homologs are well known inhibitors of cell migration. Drosophila studies revealed that AWD, the fly counterpart of NM23-H1 is a negative regulator of cell motility by modulating endocytosis of chemotactic receptors on the surface of migrating cells in cooperation with Shibire/Dynamin; this mechanism has been recently confirmed by human studies. NM23-H1 inhibits proliferation of tumor cells by phosphorylating the MAPK scaffold, kinase suppressor of Ras (KSR), resulting in suppression of MAPK signalling. This mechanism was also observed with the C. elegans homolog, NDK-1, albeit with an inverse effect on MAPK activation. Both NM23-H1 and NDK-1 promote apoptotic cell death. In addition, NDK-1, NM23-H1 and their mouse counterpart NM23-M1 were shown to promote phagocytosis in an evolutionarily conserved manner. In summary, inhibition of cell migration and proliferation, alongside actions in apoptosis and phagocytosis are all mechanisms through which NM23-H1 acts against metastatic progression.
Collapse
Affiliation(s)
- Barbara Mátyási
- Department of Biological Anthropology, Eötvös Loránd University, Pázmány Péter stny. 1/C, H-1117, Budapest, Hungary
| | - Zsolt Farkas
- Department of Biological Anthropology, Eötvös Loránd University, Pázmány Péter stny. 1/C, H-1117, Budapest, Hungary
| | - László Kopper
- Department of Pathology and Experimental Cancer Research, Semmelweis University, 1st, Budapest, Hungary
| | - Anna Sebestyén
- Department of Pathology and Experimental Cancer Research, Semmelweis University, 1st, Budapest, Hungary
| | - Mathieu Boissan
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, CRSA, F-75012, Paris, France
- Service de Biochimie et Hormonologie, AP- HP, Hôpital Tenon, Paris, France
| | - Anil Mehta
- Division of Medical Sciences, Centre for CVS and Lung Biology, Ninewells Hospital Medical School, DD19SY, Dundee, UK
| | - Krisztina Takács-Vellai
- Department of Biological Anthropology, Eötvös Loránd University, Pázmány Péter stny. 1/C, H-1117, Budapest, Hungary.
| |
Collapse
|
59
|
Wan J, Guo AA, Chowdhury I, Guo S, Hibbert J, Wang G, Liu M. TRPM7 Induces Mechanistic Target of Rap1b Through the Downregulation of miR-28-5p in Glioma Proliferation and Invasion. Front Oncol 2019; 9:1413. [PMID: 31921670 PMCID: PMC6928690 DOI: 10.3389/fonc.2019.01413] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 11/28/2019] [Indexed: 01/29/2023] Open
Abstract
Objectives: Our previous findings demonstrate that channel-kinase transient receptor potential (TRP) ion channel subfamily M, member 7 (TRPM7) is critical in regulating human glioma cell migration and invasion. Since microRNAs (miRNAs) participate in complex regulatory networks that may affect almost every cellular and molecular process during glioma formation and progression, we explored the role of miRNAs in human glioma progression by comparing miRNA expression profiles due to differentially expressed TRPM7. Methods: First, we performed miRNA microarray analysis to determine TRPM7's miRNA targets upon TRPM7 silencing in A172 cells and validated the miRNA microarray data using A172, U87MG, U373MG, and SNB19 cell lines by stem-loop RT-qPCRs. We next determined whether TRPM7 regulates glioma cell proliferation and migration/invasion through different functional domains by overexpressing wild-type human TRPM7 (wtTRPM7), two mutants with TRPM7's α-kinase domain deleted (Δkinase-DK), or a point mutation in the ATP binding site of the α-kinase domain (K1648R-KR). In addition, we determined the roles of miR-28-5p in glioma cell proliferation and invasion by overexpressing or under expressing miR-28-5p in vitro. Lastly, we determined whether a Ras-related small GTP-binding protein (Rap1b) is a target of miR-28-5p in glioma tumorigenesis. Results: The miRNA microarray data revealed a list of 16 downregulated and 10 upregulated miRNAs whose transcripts are significantly changed by TRPM7 knock-down. Cell invasion was significantly reduced in two TRPM7 mutants with inactive kinase domain, Δkinase, and K1648R transfected glioma cells. miR-28-5p overexpression suppressed glioma cells' proliferation and invasion, and miR-28-5p under expression led to a significant increase in glioma cell proliferation and migration/invasion compared to that of the controls. miR-28-5p suppressed glioma cell proliferation and migration by targeting Rap1b. Co-transfection of siRap1b with miR28-5p inhibitor reduced the glioma cell proliferation and invasion, caused by the latter. Conclusions: These results indicate that TRPM7's channel activity is required for glioma cell growth while the kinase domain is required for cell migration/invasion. TRPM7 regulates miR-28-5p expression, which suppresses cell proliferation and invasion in glioma cells by targeting Rap1b signaling.
Collapse
Affiliation(s)
- Jingwei Wan
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA, United States,Department of Neurosurgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Alyssa Aihui Guo
- Department of Obstetrics and Gynecology, Morehouse School of Medicine, Atlanta, GA, United States,University of South Carolina SOM Greenville, Greenville, SC, United States
| | - Indrajit Chowdhury
- Department of Obstetrics and Gynecology, Morehouse School of Medicine, Atlanta, GA, United States
| | - Shanchun Guo
- Department of Chemistry, Xavier University, New Orleans, LA, United States
| | - Jacqueline Hibbert
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA, United States
| | - Guangdi Wang
- Department of Chemistry, Xavier University, New Orleans, LA, United States
| | - Mingli Liu
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA, United States,*Correspondence: Mingli Liu
| |
Collapse
|
60
|
Solly EL, Dimasi CG, Bursill CA, Psaltis PJ, Tan JTM. MicroRNAs as Therapeutic Targets and Clinical Biomarkers in Atherosclerosis. J Clin Med 2019; 8:E2199. [PMID: 31847094 PMCID: PMC6947565 DOI: 10.3390/jcm8122199] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 12/11/2019] [Indexed: 12/21/2022] Open
Abstract
Atherosclerotic cardiovascular disease remains the leading cause of morbidity and mortality worldwide. Atherosclerosis develops over several decades and is mediated by a complex interplay of cellular mechanisms that drive a chronic inflammatory milieu and cell-to-cell interactions between endothelial cells, smooth muscle cells and macrophages that promote plaque development and progression. While there has been significant therapeutic advancement, there remains a gap where novel therapeutic approaches can complement current therapies to provide a holistic approach for treating atherosclerosis to orchestrate the regulation of complex signalling networks across multiple cell types and different stages of disease progression. MicroRNAs (miRNAs) are emerging as important post-transcriptional regulators of a suite of molecular signalling pathways and pathophysiological cellular effects. Furthermore, circulating miRNAs have emerged as a new class of disease biomarkers to better inform clinical diagnosis and provide new avenues for personalised therapies. This review focusses on recent insights into the potential role of miRNAs both as therapeutic targets in the regulation of the most influential processes that govern atherosclerosis and as clinical biomarkers that may be reflective of disease severity, highlighting the potential theranostic (therapeutic and diagnostic) properties of miRNAs in the management of cardiovascular disease.
Collapse
Affiliation(s)
- Emma L. Solly
- Vascular Research Centre, Heart and Vascular Health Program, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide SA 5000, Australia; (E.L.S.); (C.G.D.); (C.A.B.); (P.J.P.)
- Adelaide Medical School, University of Adelaide, Adelaide SA 5005, Australia
| | - Catherine G. Dimasi
- Vascular Research Centre, Heart and Vascular Health Program, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide SA 5000, Australia; (E.L.S.); (C.G.D.); (C.A.B.); (P.J.P.)
| | - Christina A. Bursill
- Vascular Research Centre, Heart and Vascular Health Program, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide SA 5000, Australia; (E.L.S.); (C.G.D.); (C.A.B.); (P.J.P.)
- Adelaide Medical School, University of Adelaide, Adelaide SA 5005, Australia
| | - Peter J. Psaltis
- Vascular Research Centre, Heart and Vascular Health Program, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide SA 5000, Australia; (E.L.S.); (C.G.D.); (C.A.B.); (P.J.P.)
- Adelaide Medical School, University of Adelaide, Adelaide SA 5005, Australia
| | - Joanne T. M. Tan
- Vascular Research Centre, Heart and Vascular Health Program, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide SA 5000, Australia; (E.L.S.); (C.G.D.); (C.A.B.); (P.J.P.)
- Adelaide Medical School, University of Adelaide, Adelaide SA 5005, Australia
| |
Collapse
|
61
|
Li Y, Jiao Y, Li Y, Liu Y. Expression of La Ribonucleoprotein Domain Family Member 4B (LARP4B) in Liver Cancer and Their Clinical and Prognostic Significance. DISEASE MARKERS 2019; 2019:1569049. [PMID: 31772683 PMCID: PMC6854232 DOI: 10.1155/2019/1569049] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 09/17/2019] [Indexed: 12/15/2022]
Abstract
BACKGROUND AND OBJECTIVE Liver cancer is a common malignant tumor with few poor diagnostic and prognostic markers, which greatly shortens the potential life span of patients. The RNA-binding protein la ribonucleoprotein 4B (LARP4B) has a la motif (lam) that is important in the process of cancer. We aimed to explore the role of LARP4B in the diagnosis and prognosis of liver cancer. METHODS The Cancer Genome Atlas (TCGA) database was searched to detect LARP4B gene expression in liver cancer. The clinical relevance and diagnostic ability of LARP4B were evaluated by a chi-squared test and a receiver operating characteristic (ROC) curve, respectively. Survival and risk factors of patients with liver cancer were assessed by survival analysis and univariate/multivariate Cox regression model. Additionally, we carried out gene set enrichment analysis (GSEA) to identify LARP4B-related signaling pathways in liver cancer. RESULTS LARP4B mRNA was highly expressed in liver cancer tissues and was correlated with survival status. The chi-squared test showed that LARP4B had clinical relevance, while ROC curves showed that LARP4B had good diagnostic ability. Survival analysis showed that liver cancer patients with high LARP4B expression had shorter overall/relapse-free survival. The univariate/multivariate Cox regression model indicated that high LARP4B expression may be an independent risk factor for the prognosis of liver cancer patients. Finally, we found that genes involved in the G2M checkpoint, E2F targets, and mitotic spindle were differentially enriched in the high LARP4B-expression phenotype. CONCLUSIONS LARP4B is a potential independent biomarker for diagnosis and prognosis in liver cancer patients.
Collapse
Affiliation(s)
- Yanqing Li
- Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, China
| | - Yan Jiao
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Yang Li
- Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, China
| | - Yanan Liu
- Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, China
| |
Collapse
|
62
|
Zhu G, Wang Z, Mijiti M, Du G, Li Y, Dangmurenjiafu G. MiR-28-5p promotes human glioblastoma cell growth through inactivation of FOXO1. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2019; 12:2972-2980. [PMID: 31934134 PMCID: PMC6949703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 05/24/2019] [Indexed: 06/10/2023]
Abstract
OBJECTIVE Glioblastomais is one of the main universal, primary brain cancers, in adults, that has an extremely poor clinical prognosis and a median living period of 12-15 months, accounting for nearly 3-4% of all cancer-related deaths. MicroRNAs (miRNAs) play key roles in cancer pathogenesis by binding the specific and complementary sequences of the 3'UTR of target mRNAs to regulate protein synthesis. Therefore, recognizing functional miRNAs and the fundamental molecular mechanisms will offer novel evidences for the progress of targeted malignancy interferences. Our current study intended to explore the function of miR-28-5p in the promotion of the glioblastoma. METHODS Human glioblastoma tissues, paired nearby normal/non-tumor tissues were accumulated from our hospital. Human glioblastoma SNB19 cells were infected by miR-28-5p mimics or miR-28-5p siRNA by lentivirus. Tumor spheres formation was used to evaluate the growth ability. MTT examine was applied for measuring viability. BrdU cell proliferation assay was applied to uncover the proliferation ability of SNB19 glioblastoma cells. Real-time PCR was conducted to identify miRNA expression. Western blot analysis was employed to measure protein expression. Dual-luciferase FOXO1-3'UTR reporter was used to determine the ability of miR-28-5p to regulate FOXO1. RESULTS Expression of miR-28-5p was explored to be increased in both human glioblastoma tissues and cell lines. Up-regulated miR-28-5p expression promotes tumor spheres formation, cell viability, and proliferation ability of glioblastoma cells. FOXO1 was found to be the target of miR-28-5p and the activity of FOXO1 was down-regulated by miR-28-5p in glioblastoma cells. CONCLUSIONS MiR-28-5p is an oncogene and promotes the occurrence of glioblastoma by directly targeting the FOXO1.
Collapse
Affiliation(s)
- Guohua Zhu
- Department of Neurosurgery, The First Affiliated Hospital of Xinjiang Medical University Urumqi 830054, Xinjiang, China
| | - Zengliang Wang
- Department of Neurosurgery, The First Affiliated Hospital of Xinjiang Medical University Urumqi 830054, Xinjiang, China
| | - Maimaitili Mijiti
- Department of Neurosurgery, The First Affiliated Hospital of Xinjiang Medical University Urumqi 830054, Xinjiang, China
| | - Guojia Du
- Department of Neurosurgery, The First Affiliated Hospital of Xinjiang Medical University Urumqi 830054, Xinjiang, China
| | - Yandong Li
- Department of Neurosurgery, The First Affiliated Hospital of Xinjiang Medical University Urumqi 830054, Xinjiang, China
| | - Geng Dangmurenjiafu
- Department of Neurosurgery, The First Affiliated Hospital of Xinjiang Medical University Urumqi 830054, Xinjiang, China
| |
Collapse
|
63
|
Lv Y, Yang H, Ma X, Wu G. Strand-specific miR-28-3p and miR-28-5p have differential effects on nasopharyngeal cancer cells proliferation, apoptosis, migration and invasion. Cancer Cell Int 2019; 19:187. [PMID: 31360121 PMCID: PMC6642532 DOI: 10.1186/s12935-019-0915-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 07/16/2019] [Indexed: 12/13/2022] Open
Abstract
Background MicroRNAs (miRNAs) play crucial roles in varieties of cancers, particularly in tumorigenesis, progression, and migration. Dysregulation of miR-28 was reported to occur in various types of human malignancies. In humans, two different mature miRNA sequences are excised from opposite arms of the stem-loop pre-miR-28, hsa-miR-28-3p and hsamiR-28-5p. However, the expression and distinct role of miR-28-3p and miR-28-5p in nasopharyngeal carcinoma (NPC) remain undetermined. Methods The expressions of miR-28-3p/-5p in human NPC tissues were tested by quantitative real-time PCR. miR-28-3p/-5p were overexpressed by mimics and silenced by inhibitors. The roles of miR-28-3p/-5p in NPC development were studied using cultured HONE-1 cells. Results The mRNA expression levels of miR-28-3p and -5p were significantly decreased in NPC tissues in comparison with adjacent normal tissues. Overexpression of miR-28-5p suppressed NPC cell proliferation and induced cell cycle arrest and apoptosis, while miR-28-3p promoted NPC cell migration and invasion. The miRNAs effected on different signal pathways: miR-28-5p altered expression of cyclin D1 and influenced the PI3K/AKT signaling pathway. In contrast, miR-28-3p downregulated Nm23-H1 and accelerated the process of EMT. Conclusion miR-28-3p and -5p were both downregulated in NPC tissues but had distinct biological effects in NPC cells. They may serve as potential prognostic markers and therapeutic targets for NPC.
Collapse
Affiliation(s)
- Yan Lv
- 1Center of Translational Medicine, The Affiliated Zhangjiagang Hospital of Soochow University, No. 68, Jiyang West Road, Suzhou, China
| | - Huijun Yang
- 2Department of Otolaryngology, The Affiliated Zhangjiagang Hospital of Soochow University, No. 68, Jiyang West Road, Suzhou, China
| | - Xingkai Ma
- 2Department of Otolaryngology, The Affiliated Zhangjiagang Hospital of Soochow University, No. 68, Jiyang West Road, Suzhou, China
| | - Geping Wu
- 2Department of Otolaryngology, The Affiliated Zhangjiagang Hospital of Soochow University, No. 68, Jiyang West Road, Suzhou, China
| |
Collapse
|
64
|
Meng L, Yang H, Jin C, Quan S. miR‑28‑5p suppresses cell proliferation and weakens the progression of polycystic ovary syndrome by targeting prokineticin‑1. Mol Med Rep 2019; 20:2468-2475. [PMID: 31322191 DOI: 10.3892/mmr.2019.10446] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Accepted: 04/30/2019] [Indexed: 11/05/2022] Open
Abstract
Prokineticin‑1 (PROK1) serves important roles in the pathogenesis of polycystic ovary syndrome (PCOS); however, the association between microRNA (miR)‑28‑5p and PROK1 remains unclear. In the present study, the roles of miR‑28‑5p and PROK1, and their interaction in PCOS were investigated. Rat ovary granule cells were transfected with miR‑28‑5p mimics, and PROK1 expression levels were measured by reverse transcription‑quantitative PCR and western blotting. A dual‑luciferase reporter assay was performed to determine the association between miR‑28‑5p and PROK1. Additionally, pcDNA‑PROK1 was co‑transfected into rat ovary granule cells with miR‑28‑5p mimics. Cell proliferation, apoptosis, cell cycle and the expression of signaling proteins were investigated using Cell Counting Kit‑8 assays, 5‑ethynyl‑2'‑deoxyuridine staining, flow cytometry and western blotting, respectively. PROK1 expression was suppressed in rat ovary granule cells by miR‑28‑5p mimics, but upregulated following transfection with miR‑28‑5p inhibitors. The dual‑luciferase reporter assay revealed that miR‑28‑5p binds to the 3'‑untranslated region of PROK1. Proliferation activity was increased in PROK1‑overexpressing cells; this effect was eliminated by co‑transfection with miR‑28‑5p mimics. PROK1‑overexpressing rat ovary granule cells exhibited significantly suppressed cell apoptosis and a decreased number of cells in G1; miR‑28‑5p mimics reversed these effects. Western blotting revealed that the PI3K/AKT/mTOR signaling pathway was activated by PROK1. The present results suggested that miR‑28‑5p attenuated the progression of PCOS by targeting PROK1, which may promote the pathogenesis of PCOS via the PI3K/AKT/mTOR pathway, indicating that the miR‑28‑5p/PROK1 axis may be a potential therapeutic target for patients with PCOS.
Collapse
Affiliation(s)
- Lyuhe Meng
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510000, P.R. China
| | - Haiyan Yang
- Reproductive Medicine Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Congcong Jin
- Reproductive Medicine Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Song Quan
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510000, P.R. China
| |
Collapse
|
65
|
MiR-195-5p Promotes Cardiomyocyte Hypertrophy by Targeting MFN2 and FBXW7. BIOMED RESEARCH INTERNATIONAL 2019; 2019:1580982. [PMID: 31341888 PMCID: PMC6614993 DOI: 10.1155/2019/1580982] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 06/02/2019] [Indexed: 11/17/2022]
Abstract
Cardiac hypertrophy mainly predicts heart failure and is highly linked with sudden loss of lives. MicroRNAs (miRNAs) play essential roles in the development of cardiac hypertrophy through binding to corresponding mRNA targets. In this study, in order to investigate the roles of two mature forms of miRNA-195, miR-195-3p, and miR-195-5p, in vitro and in vivo models of cardiac hypertrophy were established by applying angiotensin II (Ang II) to H9c2 cardiomyocytes and infusing chronic Ang II to mice, respectively. We found that miR-195-5p was evidently equally upregulated in the in vitro and in vivo studies of cardiac hypertrophy induced by Ang II. High expressed miR-195-5p could adequately promote hypertrophy, whereas the suppression of miR-195-5p prevented hypertrophy of H9c2 cardiomyocytes under Ang II treatment. Furthermore, the luciferase reporter system demonstrated that MFN2 and FBWX7 were target genes of miR-195-5p, which negatively regulated the expression of these two genes in H9c2 cells. By contrast, in both models, expression of miR-195-3p was only slightly changed without statistical significance. In addition, we observed a trend towards decreased expression of hypertrophic markers by overexpressing miR-195-3p in AngII-treated H9c2 cardiomyocytes in vitro. Taken together, our study indicates that miR-195-5p promotes cardiac hypertrophy via targeting MFN2 and FBXW7 and may provide promising therapeutic strategies for interfering cardiac hypertrophy.
Collapse
|
66
|
Jadideslam G, Ansarin K, Sakhinia E, Babaloo Z, Abhari A, Ghahremanzadeh K, Khalili M, Radmehr R, Kabbazi A. Diagnostic biomarker and therapeutic target applications of miR-326 in cancers: A systematic review. J Cell Physiol 2019; 234:21560-21574. [PMID: 31069801 DOI: 10.1002/jcp.28782] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 04/14/2019] [Accepted: 04/17/2019] [Indexed: 12/11/2022]
Abstract
MicroRNAs (miRNAs) are endogenous mediators of RNA interference and have key roles in the modulation of gene expression under healthy, inflamed, stimulated, carcinogenic, or other cells, and tissues of a pathological state. Many studies have proved the association between miRNAs and cancer. The role of miR-326 as a tumor suppressor miRNA in much human cancer confirmed. We will explain the history and the role of miRNAs changes, especially miR-326 in cancers and other pathological conditions. Attuned with these facts, this review highlights recent preclinical and clinical research performed on miRNAs as novel promising diagnostic biomarkers of patients at early stages, prediction of prognosis, and monitoring of the patients in response to treatment. All related publications retrieved from the PubMed database, with keywords such as epigenetic, miRNA, microRNA, miR-326, cancer, diagnostic biomarker, and therapeutic target similar terms from 1899 to 2018 with limitations in the English language. Recently, researchers have focused on the impacts of miRNAs and their association in inflammatory, autoinflammatory, and cancerous conditions. Recent studies have suggested a major pathogenic role in cancers and autoinflammatory diseases. Investigations have explained the role of miRNAs in cancers, autoimmunity, and autoinflammatory diseases, and so on. The miRNA-326 expression has an important role in cancer conditions and other diseases.
Collapse
Affiliation(s)
- Golamreza Jadideslam
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.,Internal Medicine Department, Connective Tissue Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Molecular Medicine, Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Faculty of Medicine, Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Internal Medicine, Tuberculosis and Lung Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Khalil Ansarin
- Department of Internal Medicine, Tuberculosis and Lung Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ebrahim Sakhinia
- Internal Medicine Department, Connective Tissue Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Medical Genetics, Faculty of Medicine and Tabriz Genetic Analysis Centre (TGAC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zohreh Babaloo
- Department of Immunology Medicine Faculty, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alireza Abhari
- Division of Clinical Biochemistry, Department of Biochemistry and Clinical Laboratory, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Kazem Ghahremanzadeh
- Labratory Medicine, Central laboratory of East Azerbaijan, Tabriz University of Medical Science, Tabriz, Iran
| | - Mohamadreza Khalili
- Labratory Medicine, Central laboratory of East Azerbaijan, Tabriz University of Medical Science, Tabriz, Iran
| | - Rahman Radmehr
- Labratory Medicine, Central laboratory of East Azerbaijan, Tabriz University of Medical Science, Tabriz, Iran
| | - Alireza Kabbazi
- Internal Medicine Department, Connective Tissue Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
67
|
Cui M, Chen M, Shen Z, Wang R, Fang X, Song B. LncRNA-UCA1 modulates progression of colon cancer through regulating the miR-28-5p/HOXB3 axis. J Cell Biochem 2019; 120:6926-6936. [PMID: 30652355 DOI: 10.1002/jcb.27630] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Accepted: 08/14/2018] [Indexed: 01/24/2023]
Abstract
Emerging evidence has shown that the long noncoding RNA urothelial carcinoma-associated 1 (UCA1) plays a tumor-promoting role in colorectal cancer, while miR-28-5p shows tumor-inhibitory activity in several tumor types. However, the mechanisms both of these in colon cancer progression are still unknown. In this work, the detailed roles and mechanisms of UCA1 and its target genes in colon cancer were studied. The results showed that UCA1 was upregulated in colon cancer tissues when compared with the adjacent nonhumorous tissues, as well as in the various colon cancer cell lines, but the expression of miR-28-5p showed an opposite trend. Furthermore, a high UCA1 level in colon cancer tissues is positively associated with the tumor size and advanced tumor stages. Functional assays revealed that both UCA1 knockdown and miR-28-5p overexpression could inhibit colon cancer cell growth and migration. Further mechanistic studies indicated that UCA1 knockdown played tumor suppressive roles in SW480 and HT116 cells through binding with miR-28-5p. We also, for the first time, identified HOXB3 as the target gene of miR-28-5p and that HOXB3 overexpression could mediate the functions of UCA1 in cell proliferation and migration of colon cancer cells. In conclusion, our data provided evidence for the regulatory network of UCA1/miR-28-5p/HOXB3 in colon cancer, suggesting that UCA1, miR-28-5p, and HOXB3 are the potential targets for colon cancer therapy.
Collapse
Affiliation(s)
- Mingfu Cui
- Department of Gastrointestinal and Colorectal Surgery, China-Japan Union Hospital, Jilin University, Changchun, China
| | - Mingyan Chen
- Department of General Surgery, General Hospital of FAW (The Fourth Hospital of Jilin University), Changchun, China
| | - Zhaoming Shen
- Department of General Surgery, Changchun People's Hospital, Changchun, China
| | - Ruijie Wang
- Department of Gastrointestinal Surgery, Shengli Oilfield Central Hospital, Dongying, China
| | - Xuedong Fang
- Department of Gastrointestinal and Colorectal Surgery, China-Japan Union Hospital, Jilin University, Changchun, China
| | - Bin Song
- Department of Gastrointestinal and Colorectal Surgery, China-Japan Union Hospital, Jilin University, Changchun, China
| |
Collapse
|
68
|
Wu W, He K, Guo Q, Chen J, Zhang M, Huang K, Yang D, Wu L, Deng Y, Luo X, Yu H, Ding Q, Xiang G. SSRP1 promotes colorectal cancer progression and is negatively regulated by miR-28-5p. J Cell Mol Med 2019; 23:3118-3129. [PMID: 30762286 PMCID: PMC6484412 DOI: 10.1111/jcmm.14134] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 10/13/2018] [Accepted: 12/12/2018] [Indexed: 12/15/2022] Open
Abstract
In this study, microarray data analysis, real-time quantitative PCR and immunohistochemistry were used to detect the expression levels of SSRP1 in colorectal cancer (CRC) tissue and in corresponding normal tissue. The association between structure-specific recognition protein 1 (SSRP1) expression and patient prognosis was examined by Kaplan-Meier analysis. SSRP1 was knocked down and overexpressed in CRC cell lines, and its effects on proliferation, cell cycling, migration, invasion, cellular energy metabolism, apoptosis, chemotherapeutic drug sensitivity and cell phenotype-related molecules were assessed. The growth of xenograft tumours in nude mice was also assessed. MiRNAs that potentially targeted SSRP1 were determined by bioinformatic analysis, Western blotting and luciferase reporter assays. We showed that SSRP1 mRNA levels were significantly increased in CRC tissue. We also confirmed that this upregulation was related to the terminal tumour stage in CRC patients, and high expression levels of SSRP1 predicted shorter disease-free survival and faster relapse. We also found that SSRP1 modulated proliferation, metastasis, cellular energy metabolism and the epithelial-mesenchymal transition in CRC. Furthermore, SSRP1 induced apoptosis and SSRP1 knockdown augmented the sensitivity of CRC cells to 5-fluorouracil and cisplatin. Moreover, we explored the molecular mechanisms accounting for the dysregulation of SSRP1 in CRC and identified microRNA-28-5p (miR-28-5p) as a direct upstream regulator of SSRP1. We concluded that SSRP1 promotes CRC progression and is negatively regulated by miR-28-5p.
Collapse
Affiliation(s)
- Wei Wu
- Department of Critical Care MedicineRenmin Hospital of Wuhan UniversityWuhanHubeiP.R. China
- Department of GastroenterologyRenmin Hospital of Wuhan UniversityWuhanHubeiP.R. China
- Hubei Key laboratory of Digestive SystemRenmin Hospital of Wuhan UniversityWuhanHubeiP.R. China
| | - Ke He
- Department of General SurgeryThe Second People's Hospital of Guangdong Province, Southern Medical UniversityGuangzhouGuangdongP.R.China
| | - Qian Guo
- Hepatic Disease Institute, Hubei Provincial Hospital of Traditional Chinese MedicineWuhanHubeiP.R. China
| | - Jingdi Chen
- Department of orthopedicsThe Airborne Military HospitalWuhanHubeiP.R. China
| | - Mengjiao Zhang
- Department of GastroenterologyRenmin Hospital of Wuhan UniversityWuhanHubeiP.R. China
- Hubei Key laboratory of Digestive SystemRenmin Hospital of Wuhan UniversityWuhanHubeiP.R. China
| | - Kai Huang
- Eppley Institute for Research in Cancer and Allied DiseasesFred and Pamela Buffett Cancer CenterUniversity of Nebraska Medical CenterOmahaNebraska
| | - Dongmei Yang
- Department of GastroenterologyRenmin Hospital of Wuhan UniversityWuhanHubeiP.R. China
- Hubei Key laboratory of Digestive SystemRenmin Hospital of Wuhan UniversityWuhanHubeiP.R. China
| | - Lu Wu
- Department of GastroenterologyRenmin Hospital of Wuhan UniversityWuhanHubeiP.R. China
- Hubei Key laboratory of Digestive SystemRenmin Hospital of Wuhan UniversityWuhanHubeiP.R. China
| | - Yunchao Deng
- Department of GastroenterologyRenmin Hospital of Wuhan UniversityWuhanHubeiP.R. China
- Hubei Key laboratory of Digestive SystemRenmin Hospital of Wuhan UniversityWuhanHubeiP.R. China
| | - Xu Luo
- Eppley Institute for Research in Cancer and Allied DiseasesFred and Pamela Buffett Cancer CenterUniversity of Nebraska Medical CenterOmahaNebraska
| | - Honggang Yu
- Department of GastroenterologyRenmin Hospital of Wuhan UniversityWuhanHubeiP.R. China
- Hubei Key laboratory of Digestive SystemRenmin Hospital of Wuhan UniversityWuhanHubeiP.R. China
| | - Qianshan Ding
- Department of GastroenterologyRenmin Hospital of Wuhan UniversityWuhanHubeiP.R. China
- Hubei Key laboratory of Digestive SystemRenmin Hospital of Wuhan UniversityWuhanHubeiP.R. China
- School of Electrical and Electronic EngineeringNanyang Technological UniversitySingapore
| | - Guoan Xiang
- Department of General SurgeryThe Second People's Hospital of Guangdong Province, Southern Medical UniversityGuangzhouGuangdongP.R.China
| |
Collapse
|
69
|
Tsiakanikas P, Kontos CK, Kerimis D, Papadopoulos IN, Scorilas A. High microRNA-28-5p expression in colorectal adenocarcinoma predicts short-term relapse of node-negative patients and poor overall survival of patients with non-metastatic disease. Clin Chem Lab Med 2019; 56:990-1000. [PMID: 29688883 DOI: 10.1515/cclm-2017-0430] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 12/17/2017] [Indexed: 01/18/2023]
Abstract
BACKGROUND MicroRNAs (miRNAs) may function either as oncogenes or tumor suppressors and are heavily involved in the initiation and progression of cancer, and in metastasis of tumor cells. MicroRNA-28-5p (miR-28-5p) targets several cancer-related genes and is hence involved in cell proliferation, migration, invasion and epithelial-mesenchymal transition. In this study, we investigated the potential diagnostic and prognostic significance of miR-28-5p expression in colorectal adenocarcinoma, the most frequent type of colorectal cancer (CRC). METHODS Therefore, we isolated total RNA from 182 colorectal adenocarcinoma specimens and 86 paired non-cancerous colorectal mucosae. After polyadenylation of 2 μg total RNA and its reverse transcription using an oligo-dT-adapter primer, we quantified miR-28-5p levels using an in-house-developed reverse-transcription real-time quantitative polymerase chain reaction (RT-qPCR) method, based on the SYBR Green chemistry. RESULTS Comparison of miR-28-5p levels among 86 pairs of colorectal tumors and their adjacent non-cancerous mucosae uncovered the downregulation of miR-28-5p expression in the majority of malignant colorectal tumors. More importantly, high miR-28-5p expression predicts poor disease-free survival (DFS) and overall survival (OS) of colorectal adenocarcinoma patients. Multivariate Cox regression analysis revealed that miR-28-5p overexpression is a significant predictor of poor prognosis in colorectal adenocarcinoma, independent of tumor size, histological grade, TNM staging, radiotherapy and chemotherapy. Interestingly, strong miR-28-5p expression retains its predictive potential regarding relapse among patients with negative regional lymph nodes, and predicts poor OS in patients diagnosed with non-metastatic colorectal adenocarcinoma. CONCLUSIONS High miR-28-5p expression predicts poor DFS and OS of colorectal adenocarcinoma patients, independently of clinicopathological prognosticators and standard patient treatment, including radiotherapy and chemotherapy.
Collapse
Affiliation(s)
- Panagiotis Tsiakanikas
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Christos K Kontos
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Dimitrios Kerimis
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Andreas Scorilas
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, Athens, Greece, Phone: +30 2107274306, Fax: +30 2107274158
| |
Collapse
|
70
|
Knockdown of lncRNA-UCA1 inhibits the proliferation and migration of melanoma cells through modulating the miR-28-5p/HOXB3 axis. Exp Ther Med 2019; 17:4294-4302. [PMID: 30988802 DOI: 10.3892/etm.2019.7421] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 12/28/2019] [Indexed: 12/13/2022] Open
Abstract
Long non-coding RNA urothelial carcinoma-associated 1 (UCA1) functions as an oncogene in different human cancers, including melanoma. However, the molecular mechanism of UCA1 underlying melanoma progression still remains largely unknown. In the present study, reverse transcription quantitative polymerase chain reaction and western blot analyses were used to examine the mRNA and protein expression levels, respectively. Cell Counting Kit-8 and wound healing assays were conducted to study cell proliferation and migration, respectively. A luciferase reporter assay was used to confirm the targeting relationship. It was demonstrated that UCA1 expression was increased in melanoma tissues and cell lines. In addition, UCA1 expression was higher in melanoma tissues at stage III-IV than in tissues at stage I-II. Inhibition of UCA1 expression markedly reduced melanoma cell proliferation and migration. Further investigation revealed that UCA1 functioned in melanoma cells through directly binding with microRNA (miR)-28-5p. The expression of miR-28-5p was significantly reduced in melanoma tissues and had an inverse correlation with UCA1 expression. In addition, miR-28-5p expression was higher in melanoma tissues at advanced stages than in stage I-II tissues. Furthermore, homeobox (HOX)B3 was identified as a target gene of miR-28-5p in melanoma cells, and HOXB3 overexpression reversed the suppressive effects of UCA1 downregulation on melanoma cell proliferation and migration. Finally, HOXB3 was upregulated in melanoma tissues compared with its expression in adjacent tissues, and HOXB3 expression was increased in melanoma tissues at advanced stages. Taken together, the regulatory network of the UCA1/miR-28-5p/HOXB3 axis in melanoma was demonstrated for the first time in the present study, expanding the understanding of the molecular mechanism underlying melanoma progression. Future studies may further confirm the function of this signaling pathway in vivo.
Collapse
|
71
|
Schwarzenbacher D, Klec C, Pasculli B, Cerk S, Rinner B, Karbiener M, Ivan C, Barbano R, Ling H, Wulf-Goldenberg A, Stanzer S, Rinnerthaler G, Stoeger H, Bauernhofer T, Haybaeck J, Hoefler G, Jahn SW, Parrella P, Calin GA, Pichler M. MiR-1287-5p inhibits triple negative breast cancer growth by interaction with phosphoinositide 3-kinase CB, thereby sensitizing cells for PI3Kinase inhibitors. Breast Cancer Res 2019; 21:20. [PMID: 30709367 PMCID: PMC6359814 DOI: 10.1186/s13058-019-1104-5] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 01/18/2019] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Non-coding RNAs and especially microRNAs have been discovered to act as master regulators of cancer initiation and progression. The aim of our study was to discover and characterize the function of yet functionally uncharacterized microRNAs in human breast carcinogenesis. METHODS In an unbiased approach, we utilized an established model system for breast cancer (BC) stem cell formation ("mammosphere assay") to identify whole miRNome alterations in breast carcinogenesis. Clinical samples of BC patients were used to evaluate the human relevance of the newly identified miRNA candidates. One promising candidate, miR-1287-5p, was further explored on its impact on several hallmarks of cancer. The molecular mode of action was characterized by whole transcriptome analysis, in silico prediction tools, miRNA-interaction assays, pheno-copy assays, and drug sensitivity assays. RESULTS Among several other microRNAs, miR-1287-5p was significantly downregulated in mammospheres and human BC tissue compared to normal breast tissue (p < 0.0001). Low expression levels were significantly associated with poor prognosis in BC patients. MiR-1287-5p significantly decreased cellular growth, cells in S phase of cell cycle, anchorage-independent growth, and tumor formation in vivo. In addition, we identified PIK3CB as a direct molecular interactor of miR-1287-5p and a novel prognostic factor in BC. Finally, PI3Kinase pathway chemical inhibitors combined with miR-1287-5p mimic increased the pharmacological growth inhibitory potential in triple negative BC cells. CONCLUSION Our data identified for the first time the involvement of miR-1287-5p in human BC and suggest a potential for therapeutic interventions in difficult to treat triple negative BC.
Collapse
Affiliation(s)
- Daniela Schwarzenbacher
- Division of Oncology, Department of Internal Medicine, Medical University of Graz (MUG), Graz, Austria
- Research Unit for Non-coding RNAs and Genome Editing, Medical University of Graz (MUG), Graz, Austria
| | - Christiane Klec
- Division of Oncology, Department of Internal Medicine, Medical University of Graz (MUG), Graz, Austria
- Research Unit for Non-coding RNAs and Genome Editing, Medical University of Graz (MUG), Graz, Austria
| | - Barbara Pasculli
- Fondazione IRCCS Casa Sollievo della Sofferenza Laboratorio di Oncologia, San Giovanni Rotundo, FG, Italy
| | - Stefanie Cerk
- Division of Oncology, Department of Internal Medicine, Medical University of Graz (MUG), Graz, Austria
- Research Unit for Non-coding RNAs and Genome Editing, Medical University of Graz (MUG), Graz, Austria
| | - Beate Rinner
- Biomedical Research, Medical University of Graz, Graz, Austria
| | - Michael Karbiener
- Department of Phoniatrics, ENT University Hospital, Medical University of Graz, Graz, Austria
| | - Cristina Ivan
- Department of Experimental Therapeutics -- Unit 1950, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- The Center for RNA Interference and Non-coding RNAs, The University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Raffaela Barbano
- Fondazione IRCCS Casa Sollievo della Sofferenza Laboratorio di Oncologia, San Giovanni Rotundo, FG, Italy
| | - Hui Ling
- Department of Experimental Therapeutics -- Unit 1950, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Stefanie Stanzer
- Division of Oncology, Department of Internal Medicine, Medical University of Graz (MUG), Graz, Austria
- Research Unit for Non-coding RNAs and Genome Editing, Medical University of Graz (MUG), Graz, Austria
| | - Gabriel Rinnerthaler
- IIIrd Medical Department with Hematology and Medical Oncology, Hemostaseology, Rheumatology and Infectious Diseases, Oncologic Center, Paracelsus Medical University, Salzburg, Austria
| | - Herbert Stoeger
- Division of Oncology, Department of Internal Medicine, Medical University of Graz (MUG), Graz, Austria
| | - Thomas Bauernhofer
- Division of Oncology, Department of Internal Medicine, Medical University of Graz (MUG), Graz, Austria
| | - Johannes Haybaeck
- Institute of Pathology, Medical University of Graz, Graz, Austria
- Department of Pathology, Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Gerald Hoefler
- Institute of Pathology, Medical University of Graz, Graz, Austria
| | | | - Paola Parrella
- Fondazione IRCCS Casa Sollievo della Sofferenza Laboratorio di Oncologia, San Giovanni Rotundo, FG, Italy
| | - George Adrian Calin
- Department of Experimental Therapeutics -- Unit 1950, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- The Center for RNA Interference and Non-coding RNAs, The University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Martin Pichler
- Division of Oncology, Department of Internal Medicine, Medical University of Graz (MUG), Graz, Austria.
- Research Unit for Non-coding RNAs and Genome Editing, Medical University of Graz (MUG), Graz, Austria.
- Department of Experimental Therapeutics -- Unit 1950, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
72
|
Jeddi F, Alipour S, Najafzadeh N, Dadashpour M, Pouremamali F, Sadeghi MR, Samadi N, Soozangar N, Khamaneh AM. Reduced Levels of miR-28 and miR-200a Act as Predictor Biomarkers of Aggressive Clinicopathological Characteristics in Gastric Cancer Patients. Galen Med J 2019; 8:e1329. [PMID: 34466494 PMCID: PMC8344053 DOI: 10.31661/gmj.v8i0.1329] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 09/11/2018] [Accepted: 10/25/2018] [Indexed: 12/27/2022] Open
Abstract
Background: MicroRNAs (miRNAs) play critical roles in different pathological processes including cancer development and progression. To find novel molecular diagnostic and prognostic markers and promising therapeutic tools for gastric cancer (GC), we aimed to investigate the relationship of the expression levels of miR–28–5p or miR–200a–3p with the clinicopathological criteria and to explore their impacts on the progression of human GC. Materials and Methods: Quantitative RT–PCR was performed to analyze miR–28 and miR–200a expression in 60 GC and 60 non–GC tissue samples. Result: Our results revealed that the expressions of miR–200a and miR–28 were significantly downregulated in GC in comparison with non– GC tissues. Tumors with low miR–28 expression had larger tumor size, more advanced histological grade, and a higher incidence of lymph node and distal metastasis than the tumors with high miR–28 expressions. Furthermore, receiver operating characteristic (ROC) analyses demonstrate that the expression of miR–28 is a predictive biomarker allows predicting the histological grade, tumor size, and occurrence of nodal and distal metastases. We also found a significant inverse association between miR–200a expression and the rate of lymph node metastasis (p = 0.010, r = –0.334). Conclusion: Our findings suggest that the miR–28 and miR–200a have tumor–suppressor functions and may be considered as potential biomarkers for gastric cancer diagnosis and prognosis.
Collapse
Affiliation(s)
- Farhad Jeddi
- Research Laboratory for Embryology and Stem Cells, Department of Anatomical Sciences and Pathology, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Shahriar Alipour
- Department of Biochemistry, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Nowruz Najafzadeh
- Research Laboratory for Embryology and Stem Cells, Department of Anatomical Sciences and Pathology, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Mehdi Dadashpour
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farhad Pouremamali
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Reza Sadeghi
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nasser Samadi
- Department of Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Narges Soozangar
- Research Laboratory for Embryology and Stem Cells, Department of Anatomical Sciences and Pathology, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
- Correspondence to: Narges Soozangar, Research Laboratory for Embryology and Stem Cells, Department of Anatomical Sciences and Pathology, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran Telephone Number: +989166910356 Email Address :
| | - Amir Mahdi Khamaneh
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
73
|
Bastami M, Choupani J, Saadatian Z, Zununi Vahed S, Mansoori Y, Daraei A, Samadi Kafil H, Masotti A, Nariman-Saleh-Fam Z. miRNA Polymorphisms and Risk of Cardio-Cerebrovascular Diseases: A Systematic Review and Meta-Analysis. Int J Mol Sci 2019; 20:ijms20020293. [PMID: 30642078 PMCID: PMC6359604 DOI: 10.3390/ijms20020293] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 12/31/2018] [Accepted: 01/08/2019] [Indexed: 02/07/2023] Open
Abstract
Recently extensive focus has been concentrated on the role of miRNAs in the initiation and progression of cardio-cerebrovascular diseases (CCDs) which constitute a range of conditions including cardiovascular diseases (CVDs, especially coronary artery disease (CAD)), congenital heart disease (CHD) and cerebrovascular diseases (CBVDs, especially the ischemic stroke (IS)). An increasing number of studies are evaluating the association between different miRNA polymorphisms and risk of CCDs, but results have been inconclusive. This study represents a comprehensive systematic review and meta-analysis of the association between miRNA polymorphisms and risk of CCDs. PubMed, Embase, Scopus, and Web of Science were queried to identify eligible articles. Odds ratios and 95% confidence intervals were used to assess the association of miRNA polymorphisms with CCD susceptibility. A total of 51 eligible articles evaluating the association of 31 miRNA polymorphisms were identified. Meta-analysis was performed for six miRNA polymorphisms. miR-146a rs2910164 (30 studies: 13,186 cases/14,497 controls), miR-149 rs2292832 (Nine studies: 4116 cases/3511 controls), miR-149 rs71428439 (Three studies: 1556 cases/1567 controls), miR-196a2 rs11614913 (20 studies: 10,144 cases/10,433 controls), miR-218 rs11134527 (Three studies: 2,322 cases/2,754 controls) were not associated with overall CCD. miR-499 rs3746444 was associated with CCD (20 studies: 9564 cases/8876 controls). In the subgroups, rs2910164 and rs3746444 were only associated with CVDs, especially CAD. In conclusion, the results support the existence of a role for miR-146a rs2910164 and miR-499 rs3746444 in determining susceptibility to CCDs, especially CAD.
Collapse
Affiliation(s)
- Milad Bastami
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz 5166614766, Iran.
| | - Jalal Choupani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5166614766, Iran.
| | - Zahra Saadatian
- Student Research Committee, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran 1985717443, Iran.
| | - Sepideh Zununi Vahed
- Kidney Research Center, Tabriz University of Medical Sciences, Tabriz 5166614756, Iran.
| | - Yaser Mansoori
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa 7461686688, Iran.
| | - Abdolreza Daraei
- Department of Genetics, Faculty of Medicine, Babol University of Medical Sciences, Babol 4617647745, Iran.
| | - Hossein Samadi Kafil
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz 5165665811, Iran.
| | - Andrea Masotti
- Bambino Gesù Children's Hospital-IRCCS, Research Laboratories, Viale di San Paolo 15, 00146 Rome, Italy.
| | - Ziba Nariman-Saleh-Fam
- Women's Reproductive Health Research Center, Tabriz University of Medical Sciences, Tabriz 5138663134, Iran.
| |
Collapse
|
74
|
De Los Santos MC, Dragomir MP, Calin GA. The role of exosomal long non-coding RNAs in cancer drug resistance. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2019; 2:1178-1192. [PMID: 31867576 PMCID: PMC6924635 DOI: 10.20517/cdr.2019.74] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
One of the major challenges in oncology is drug resistance, which triggers relapse and shortens patients’ survival. In order to promote drug desensitization, cancer cells require the establishment of an ideal tumor microenvironment that accomplishes specific conditions. To achieve this objective, cellular communication is a key factor. Classically, cells were believed to restrictively communicate by ligand-receptor binding, physical cell-to-cell interactions and synapses. Nevertheless, the crosstalk between tumor cells and stroma cells has also been recently reported to be mediated through exosomes, the smallest extracellular vesicles, which transport a plethora of functionally active molecules, such as: proteins, lipids, messenger RNA, DNA, microRNA or long non-coding RNA (lncRNAs). LncRNAs are RNA molecules greater than 200 base pairs that are deregulated in cancer and other diseases. Exosomal lncRNAs are highly stable and can be found in several body fluids, being considered potential biomarkers for tumor liquid biopsy. Exosomal lncRNAs promote angiogenesis, cell proliferation and drug resistance. The role of exosomal lncRNAs in drug resistance affects the main treatment strategies in oncology: chemotherapy, targeted therapy, hormone therapy and immunotherapy. Overall, knowing the molecular mechanisms by which exosomal lncRNA induce pharmacologic resistance could improve further drug development and identify drug resistance biomarkers.
Collapse
Affiliation(s)
- Mireia Cruz De Los Santos
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Mihnea P Dragomir
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA.,Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca 40015, Romania.,Department of Surgery, Fundeni Clinical Hospital, Carol Davila University of Medicine and Pharmacy, Bucharest 022328, Romania
| | - George A Calin
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA.,Center for RNA Interference and Non-coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| |
Collapse
|
75
|
Proença MA, Biselli JM, Succi M, Severino FE, Berardinelli GN, Caetano A, Reis RM, Hughes DJ, Silva AE. Relationship between Fusobacterium nucleatum, inflammatory mediators and microRNAs in colorectal carcinogenesis. World J Gastroenterol 2018; 24:5351-5365. [PMID: 30598580 PMCID: PMC6305535 DOI: 10.3748/wjg.v24.i47.5351] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 11/29/2018] [Accepted: 12/13/2018] [Indexed: 02/06/2023] Open
Abstract
AIM To examine the effect of Fusobacterium nucleatum (F. nucleatum) on the microenvironment of colonic neoplasms and the expression of inflammatory mediators and microRNAs (miRNAs).
METHODS Levels of F. nucleatum DNA, cytokine gene mRNA (TLR2, TLR4, NFKB1, TNF, IL1B, IL6 and IL8), and potentially interacting miRNAs (miR-21-3p, miR-22-3p, miR-28-5p, miR-34a-5p, miR-135b-5p) were measured by quantitative polymerase chain reaction (qPCR) TaqMan® assays in DNA and/or RNA extracted from the disease and adjacent normal fresh tissues of 27 colorectal adenoma (CRA) and 43 colorectal cancer (CRC) patients. KRAS mutations were detected by direct sequencing and microsatellite instability (MSI) status by multiplex PCR. Cytoscape v3.1.1 was used to construct the postulated miRNA:mRNA interaction network.
RESULTS Overabundance of F. nucleatum in neoplastic tissue compared to matched normal tissue was detected in CRA (51.8%) and more markedly in CRC (72.1%). We observed significantly greater expression of TLR4, IL1B, IL8, and miR-135b in CRA lesions and TLR2, IL1B, IL6, IL8, miR-34a and miR-135b in CRC tumours compared to their respective normal tissues. Only two transcripts for miR-22 and miR-28 were exclusively downregulated in CRC tumour samples. The mRNA expression of IL1B, IL6, IL8 and miR-22 was positively correlated with F. nucleatum quantification in CRC tumours. The mRNA expression of miR-135b and TNF was inversely correlated. The miRNA:mRNA interaction network suggested that the upregulation of miR-34a in CRC proceeds via a TLR2/TLR4-dependent response to F. nucleatum. Finally, KRAS mutations were more frequently observed in CRC samples infected with F. nucleatum and were associated with greater expression of miR-21 in CRA, while IL8 was upregulated in MSI-high CRC.
CONCLUSION Our findings indicate that F. nucleatum is a risk factor for CRC by increasing the expression of inflammatory mediators through a possible miRNA-mediated activation of TLR2/TLR4.
Collapse
Affiliation(s)
- Marcela Alcântara Proença
- Department of Biology, UNESP, Univ. Estadual Paulista, Campus of São José do Rio Preto, São José do Rio Preto, São Paulo 15054-000, Brazil
| | - Joice Matos Biselli
- Department of Biology, UNESP, Univ. Estadual Paulista, Campus of São José do Rio Preto, São José do Rio Preto, São Paulo 15054-000, Brazil
| | - Maysa Succi
- Department of Biology, UNESP, Univ. Estadual Paulista, Campus of São José do Rio Preto, São José do Rio Preto, São Paulo 15054-000, Brazil
| | - Fábio Eduardo Severino
- Department of Surgery and Orthopedics, Faculty of Medicine, UNESP, Univ. Estadual Paulista, Campus of Botucatu, Botucatu, São Paulo 18618-687, Brazil
| | | | - Alaor Caetano
- Endoscopy Center of Rio Preto, São José do Rio Preto, São Paulo 15015-700, Brazil
| | - Rui Manuel Reis
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, São Paulo 14784-400, Brazil
- Life and Health Sciences Research Institute, University of Minho, Campus Gualtar, Braga 4710-057, Portugal
- ICVS/3B’s-PT Government Associate Laboratory, Campus Gualtar, Braga 4710-057, Portugal
| | - David J Hughes
- Cancer Biology and Therapeutics Group, UCD Conway Institute, University College Dublin, Dublin D04 V1W8, Ireland
| | - Ana Elizabete Silva
- Department of Biology, UNESP, Univ. Estadual Paulista, Campus of São José do Rio Preto, São José do Rio Preto, São Paulo 15054-000, Brazil
| |
Collapse
|
76
|
Yang YQ, Tian T, Zhu HY, Liang JH, Wu W, Wu JZ, Xia Y, Wang L, Fan L, Li JY, Xu W. NDRG2 mRNA levels and miR-28-5p and miR-650 activity in chronic lymphocytic leukemia. BMC Cancer 2018; 18:1009. [PMID: 30348117 PMCID: PMC6196416 DOI: 10.1186/s12885-018-4915-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Accepted: 10/08/2018] [Indexed: 12/18/2022] Open
Abstract
Background NDRG2 is identified as a tumor suppressor gene in many tumors, and functions in cell proliferation, differentiation and apoptosis. Recent data indicate that NDRG2 expression is up-regulated by TP53. Moreover, proposed mechanisms of NDRG2 inactivation include epigenetic silencing of the NDRG2 promoter and down-regulation by microRNAs (miRNAs). However, few studies have ever been done on the role of NDRG2 and the NDRG2-regulating miRNAs interference in chronic lymphocytic leukemia (CLL). Methods NDRG2 and microRNAs mRNA levels in CLL subjects were assessed by quantitative real-time polymerase chain reaction (qRT-PCR). The dual-luciferase reporter assay was performed to determine NDRG2-related miRNAs. Low expression of mature exogenous miRNAs in CLL cells was established by transient transfection. NDRG2 protein levels in CLL cells were detected by western blot. In addition, flow cytometry was conducted to examine the apoptosis of CLL cells. Results Lower expression of NDRG2 was found in the B-cells from 102 CLL patients compared the 40 normal subjects (P < 0.001). Patients with advanced Binet stage (P = 0.001), high lactate dehydrogenase (LDH) level (P = 0.036), un-mutated immunoglobulin heavy chain variable region gene (IGHV) (P = 0.004) and those with p53 aberrations (P < 0.001) had a markedly lower levels of NDRG2 mRNA. This decrease was associated with briefer time-to-treatment (P = 0.001) and poorer survival (P < 0.001). High expression of miR-28-5p and miR-650 was associated with Binet B/C stage (P = 0.044) and IGHV un-mutated (P = 0.011), as well as Binet B/C stage (P = 0.013) and p53 aberrations (P = 0.037), respectively. Inhibition of miR-28-5p or miR-650 could induce more apoptosis in CLL cells with germline TP53. Conclusions NDRG2 mRNA levels might be a useful prognostic variable for patients of CLL and up-regulating NDRG2 transcription may be a therapy approach in CLL without p53 aberrations. Electronic supplementary material The online version of this article (10.1186/s12885-018-4915-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yu-Qiong Yang
- Department of Hematology, the First Affiliated Hospital of Nanjing Medical University, Province Hospital, Nanjing, 210029, Jiangsu, China.,Key Laboratory of Hematology of Nanjing Medical University, Nanjing, 210029, China.,Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, 210029, China
| | - Tian Tian
- Department of Hematology, the First Affiliated Hospital of Nanjing Medical University, Province Hospital, Nanjing, 210029, Jiangsu, China.,Key Laboratory of Hematology of Nanjing Medical University, Nanjing, 210029, China.,Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, 210029, China
| | - Hua-Yuan Zhu
- Department of Hematology, the First Affiliated Hospital of Nanjing Medical University, Province Hospital, Nanjing, 210029, Jiangsu, China.,Key Laboratory of Hematology of Nanjing Medical University, Nanjing, 210029, China.,Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, 210029, China
| | - Jin-Hua Liang
- Department of Hematology, the First Affiliated Hospital of Nanjing Medical University, Province Hospital, Nanjing, 210029, Jiangsu, China.,Key Laboratory of Hematology of Nanjing Medical University, Nanjing, 210029, China.,Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, 210029, China
| | - Wei Wu
- Department of Hematology, the First Affiliated Hospital of Nanjing Medical University, Province Hospital, Nanjing, 210029, Jiangsu, China.,Key Laboratory of Hematology of Nanjing Medical University, Nanjing, 210029, China.,Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, 210029, China
| | - Jia-Zhu Wu
- Department of Hematology, the First Affiliated Hospital of Nanjing Medical University, Province Hospital, Nanjing, 210029, Jiangsu, China.,Key Laboratory of Hematology of Nanjing Medical University, Nanjing, 210029, China.,Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, 210029, China
| | - Yi Xia
- Department of Hematology, the First Affiliated Hospital of Nanjing Medical University, Province Hospital, Nanjing, 210029, Jiangsu, China.,Key Laboratory of Hematology of Nanjing Medical University, Nanjing, 210029, China.,Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, 210029, China
| | - Li Wang
- Department of Hematology, the First Affiliated Hospital of Nanjing Medical University, Province Hospital, Nanjing, 210029, Jiangsu, China.,Key Laboratory of Hematology of Nanjing Medical University, Nanjing, 210029, China.,Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, 210029, China
| | - Lei Fan
- Department of Hematology, the First Affiliated Hospital of Nanjing Medical University, Province Hospital, Nanjing, 210029, Jiangsu, China.,Key Laboratory of Hematology of Nanjing Medical University, Nanjing, 210029, China.,Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, 210029, China
| | - Jian-Yong Li
- Department of Hematology, the First Affiliated Hospital of Nanjing Medical University, Province Hospital, Nanjing, 210029, Jiangsu, China.,Key Laboratory of Hematology of Nanjing Medical University, Nanjing, 210029, China.,Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, 210029, China
| | - Wei Xu
- Department of Hematology, the First Affiliated Hospital of Nanjing Medical University, Province Hospital, Nanjing, 210029, Jiangsu, China. .,Key Laboratory of Hematology of Nanjing Medical University, Nanjing, 210029, China. .,Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, 210029, China.
| |
Collapse
|
77
|
Sun Y, Kuek V, Liu Y, Tickner J, Yuan Y, Chen L, Zeng Z, Shao M, He W, Xu J. MiR-214 is an important regulator of the musculoskeletal metabolism and disease. J Cell Physiol 2018; 234:231-245. [PMID: 30076721 DOI: 10.1002/jcp.26856] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 05/10/2018] [Indexed: 12/21/2022]
Abstract
MiR-214 belongs to a family of microRNA (small, highly conserved noncoding RNA molecules) precursors that play a pivotal role in biological functions, such as cellular function, tissue development, tissue homeostasis, and pathogenesis of diseases. Recently, miR-214 emerged as a critical regulator of musculoskeletal metabolism. Specifically, miR-214 can mediate skeletal muscle myogenesis and vascular smooth muscle cell proliferation, migration, and differentiation. MiR-214 also modulates osteoblast function by targeting specific molecular pathways and the expression of various osteoblast-related genes; promotes osteoclast activity by targeting phosphatase and tensin homolog (Pten); and mediates osteoclast-osteoblast intercellular crosstalk via an exosomal miRNA paracrine mechanism. Importantly, dysregulation in miR-214 expression is associated with pathological bone conditions such as osteoporosis, osteosarcoma, multiple myeloma, and osteolytic bone metastasis of breast cancer. This review discusses the cellular targets of miR-214 in bone, the molecular mechanisms governing the activities of miR-214 in the musculoskeletal system, and the putative role of miR-214 in skeletal diseases. Understanding the biology of miR-214 could potentially lead to the development of miR-214 as a possible biomarker and a therapeutic target for musculoskeletal diseases.
Collapse
Affiliation(s)
- Youqiang Sun
- The Department of Orthopedics, First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.,Division of Pathology and Laboratory Medicine, School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia.,The Laboratory of Orthopaedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Vincent Kuek
- Division of Pathology and Laboratory Medicine, School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia
| | - Yuhao Liu
- The Department of Orthopedics, First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.,Division of Pathology and Laboratory Medicine, School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia.,The Laboratory of Orthopaedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Jennifer Tickner
- Division of Pathology and Laboratory Medicine, School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia
| | - Yu Yuan
- School of Physical Education and Sports Science, South China Normal University, Guangzhou, Guangdong, China
| | - Leilei Chen
- The Department of Orthopedics, First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.,The Laboratory of Orthopaedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Zhikui Zeng
- The Department of Orthopedics, First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.,The Laboratory of Orthopaedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Min Shao
- The Laboratory of Orthopaedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.,Department of Orthopedics, Third Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Wei He
- The Department of Orthopedics, First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.,The Laboratory of Orthopaedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Jiake Xu
- Division of Pathology and Laboratory Medicine, School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia.,The Laboratory of Orthopaedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| |
Collapse
|
78
|
Sun Y, Li L, Xing S, Pan Y, Shi Y, Zhang L, Shen Q. miR-503-3p induces apoptosis of lung cancer cells by regulating p21 and CDK4 expression. Cancer Biomark 2018; 20:597-608. [PMID: 28800319 DOI: 10.3233/cbm-170585] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Studies have shown that microRNAs (miRNAs) can promote or suppress tumor growth and therefore act as targets for cancer therapy. Hsa-miR-503-5p, a mature miRNA derived from 5' ends of pre-miR-503, has been proved to regulate cell proliferation, transformation, migration and invasion. However, the biological function of miR-503-3p derived from 3' ends of pre-miR-503 has never been reported. In current study, we found that miR-503-3p inhibits lung cancer cell viability and induces cell apoptosis. To better understand the molecular mechanism underlying the miR-503-3p participating in this process, PCR array and RNA-sequencing (RNA-seq) were performed and some differential expression genes were discovered between NC and miR-503-3p treated groups. Biological interaction network showed that p21 and CDK4 are the most important proteins involving miR-503-3p signal pathway. Dual-luciferase assay results shown miR-503-3p directly regulates the expression of p21 by targeting 3'-UTR of its mRNA. These results shed light on the potential roles of miR-503-3p, indicating that it may act as an anti-oncogene factor to inhibit lung cancer cell viability.
Collapse
Affiliation(s)
- Yi Sun
- Department of Chest Surgery, the Central Hospital of Linyi, Yishui, Shandong, China
| | - Li Li
- Department of Health, Linyi University Yishui, Yishui, Shandong, China
| | - Shigang Xing
- Department of Chest Surgery, the Central Hospital of Linyi, Yishui, Shandong, China
| | - Yinghua Pan
- Department of Radiotherapy, the Second Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Yunxiang Shi
- Department of Chest Surgery, the Central Hospital of Linyi, Yishui, Shandong, China
| | - Linghua Zhang
- Department of Clinical Laboratory, Yantaishan Hospital, Yantai, Shandong, China
| | - Qiang Shen
- Department of Clinical Laboratory, Yantaishan Hospital, Yantai, Shandong, China.,Department of Emergency Surgery, Qingdao Medical Center, Qingdao, Shandong, China
| |
Collapse
|
79
|
Xiao F, Cheng Z, Wang P, Gong B, Huang H, Xing Y, Liu F. MicroRNA-28-5p inhibits the migration and invasion of gastric cancer cells by suppressing AKT phosphorylation. Oncol Lett 2018; 15:9777-9785. [PMID: 29928352 PMCID: PMC6004724 DOI: 10.3892/ol.2018.8603] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2016] [Accepted: 09/13/2017] [Indexed: 12/17/2022] Open
Abstract
Gastric cancer is a polygenic disease with a high mortality rate worldwide. Although a number of dysregulated genes have been confirmed to be involved in development and progression of gastric cancer, the molecular mechanisms by which this occurs remain unclear. The present study identified that microRNA (miR-28-5p) was involved in the migration and invasion of gastric cancer cells, and was able to affect the prognosis of patients with gastric cancer. Reverse transcription-quantitative polymerase chain reaction analysis indicated that the expression of miR-28-5p was significantly downregulated in gastric cancer tissues, and that patients with higher expression had a good prognosis. miR-28-5p expression was significantly associated with depth of invasion, lymph node metastasis and pathological stage. Gastric cancer cells overexpressing miR-28-5p exhibited a marked reduction of migration and invasion by Transwell and wound scratch assay. The phosphorylation of RAC serine/threonine-protein kinase (AKT), which affected cellular invasion and metastasis, was significantly inhibited by overexpression of miR-28-5p. In conclusion, miR-28-5p is a tumor suppressor that inhibits gastric cancer cell migration and invasion through repressing AKT phosphorylation. miR-28-5p may therefore represent a potential biomarker for the prognosis of gastric cancer and a novel therapeutic target in advanced gastric cancer.
Collapse
Affiliation(s)
- Fangtao Xiao
- Department of Surgical Oncology and General Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Zhenguo Cheng
- Department of Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Pengliang Wang
- Department of Surgical Oncology and General Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Baoheng Gong
- Department of Surgical Oncology and General Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Hanwei Huang
- Department of Surgical Oncology and General Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Yanan Xing
- Department of Surgical Oncology and General Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Funan Liu
- Department of Surgical Oncology and General Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| |
Collapse
|
80
|
Johansson K, Weidner J, Rådinger M. MicroRNAs in type 2 immunity. Cancer Lett 2018; 425:116-124. [PMID: 29604393 DOI: 10.1016/j.canlet.2018.03.036] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 03/22/2018] [Accepted: 03/23/2018] [Indexed: 12/15/2022]
Abstract
Type 2 immunity drives the pathology of allergic diseases and is necessary for expulsion of parasitic worms as well as having important implications in tumor progression. Over the last decade, a new research field has emerged describing a significant link between type 2 immunity and cancer development, called AllergoOncology. Thus, type 2 immune responses must be carefully regulated to mediate effective protection against damaging environmental factors, yet avoid excessive activation and immunopathology. Regulation of gene expression by microRNAs is required for normal behavior of most mammalian cells and has been studied extensively in the context of cancer. Although microRNA regulation of the immune system in cancer is well established and includes type 2 immune reactions in the tumor microenvironment, the involvement of microRNAs in these responses initiated by allergens, parasites or other environmental factors is just emerging. In this review, we focus on recent advances which increase the understanding of microRNA-mediated regulation of key mechanisms of type 2 immunity.
Collapse
Affiliation(s)
- Kristina Johansson
- Krefting Research Centre, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Julie Weidner
- Krefting Research Centre, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Madeleine Rådinger
- Krefting Research Centre, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
81
|
Wang C, Wu C, Yang Q, Ding M, Zhong J, Zhang CY, Ge J, Wang J, Zhang C. miR-28-5p acts as a tumor suppressor in renal cell carcinoma for multiple antitumor effects by targeting RAP1B. Oncotarget 2018; 7:73888-73902. [PMID: 27729617 PMCID: PMC5342021 DOI: 10.18632/oncotarget.12516] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 10/01/2016] [Indexed: 12/21/2022] Open
Abstract
The incidence and mortality rate of renal cell carcinoma (RCC) have been significantly increasing; however, the mechanisms involved in RCC development and progression are unclear. In this study, we found that miR-28-5p was decreased in RCC tumor specimens and several renal carcinoma cell lines. By using a combination of luciferase reporter assays and western blotting, we identified RAP1B, a Ras-related small GTP-binding oncoprotein implicated in a variety of tumors, as a direct target of miR-28-5p in RCC. The RAP1B protein level was increased in RCC tumor specimens and renal carcinoma cell lines, and this was inversely correlated with miR-28-5p expression. In vitro gain-of-function and loss-of-function studies in human renal carcinoma cell lines, demonstrated that miR-28-5p suppressed cell proliferation and migration by directly inhibiting RAP1B, and this effect was reversed by co-transfection with RAP1B. In addition, the stable overexpression of miR-28-5p inhibited tumor cell proliferation in vivo. This newly identified miR-28-5p/RAP1B axis provides a novel mechanism for the pathogenesis of RCC, and molecules in this axis may serve as potential biomarkers and therapeutic targets for RCC.
Collapse
Affiliation(s)
- Cheng Wang
- Department of Clinical Laboratory, Jinling Hospital, State Key Laboratory of Analytical Chemistry for Life Science, NJU Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University, Nanjing 210002, China.,State Key Laboratory of Pharmaceutical Biotechnology, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Caiyun Wu
- Department of Clinical Laboratory, Jinling Hospital, State Key Laboratory of Analytical Chemistry for Life Science, NJU Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University, Nanjing 210002, China
| | - Qi Yang
- Department of Clinical Laboratory, Jinling Hospital, State Key Laboratory of Analytical Chemistry for Life Science, NJU Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University, Nanjing 210002, China
| | - Meng Ding
- Department of Clinical Laboratory, Jinling Hospital, State Key Laboratory of Analytical Chemistry for Life Science, NJU Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University, Nanjing 210002, China.,State Key Laboratory of Pharmaceutical Biotechnology, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Jinsha Zhong
- Department of Clinical Laboratory, Jinling Hospital, State Key Laboratory of Analytical Chemistry for Life Science, NJU Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University, Nanjing 210002, China
| | - Chen-Yu Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Jingping Ge
- Department of Urology, Jinling Hospital, Nanjing University School of Medicine, Nanjing University, Nanjing 210002, China
| | - Junjun Wang
- Department of Clinical Laboratory, Jinling Hospital, State Key Laboratory of Analytical Chemistry for Life Science, NJU Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University, Nanjing 210002, China
| | - Chunni Zhang
- Department of Clinical Laboratory, Jinling Hospital, State Key Laboratory of Analytical Chemistry for Life Science, NJU Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University, Nanjing 210002, China.,State Key Laboratory of Pharmaceutical Biotechnology, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University, Nanjing 210023, China
| |
Collapse
|
82
|
ElSharawy A, Röder C, Becker T, Habermann JK, Schreiber S, Rosenstiel P, Kalthoff H. Concentration of circulating miRNA-containing particles in serum enhances miRNA detection and reflects CRC tissue-related deregulations. Oncotarget 2018; 7:75353-75365. [PMID: 27683108 PMCID: PMC5342746 DOI: 10.18632/oncotarget.12205] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 09/12/2016] [Indexed: 01/02/2023] Open
Abstract
The emerging potential of miRNAs as biomarkers for cancer detection demands parallel evaluation of strategies for reliable identification of disease-related signatures from easily accessible and pertinent body compartments. Here, we addressed whether efficient concentration of circulating miRNA-carrying particles is a rationale for miRNA biomarker discovery. We systematically compared miRNA signatures in 93 RNA preparations from three serum entities (whole serum, particle-concentrated, and particle-depleted fractions) and corresponding tissue samples from patients with colorectal cancer (CRC) as a model disease. Significant differences between whole sera and particle-concentrated serum fractions of CRC patients emerged for 45 of 742 tested miRNAs. Twenty-eight of these 45 miRNAs were differentially expressed between particle-concentrated serum fractions of metastatic CRC- and healthy individuals. Over half of these candidates (15 of 28) showed deregulations only in concentrated serum fractions, but not in whole sera, compared to the respective controls.Our results also provided evidence of a consistent downregulation of miR-486 and miR-92a, and further showed a possible "strand-specific" deregulation of extracellular miRNAs in CRC. More importantly, most of the identified miRNAs in the enriched sera reflected the patterns of the corresponding tumor tissues and showed links to cancer-related inflammation. Further investigation of seven serum pools revealed a subset of potential extracellular miRNA candidates to be implicated in both neoplastic and inflammatory bowel disease.Our findings demonstrate that enrichment and sensitive detection of miRNA carriers is a promising approach to detect CRC-related pathological changes in liquid biopsies, and has potential for clinical diagnostics.
Collapse
Affiliation(s)
- Abdou ElSharawy
- Institute of Clinical Molecular Biology, Christian-Albrechts-University, Kiel, Germany.,Faculty of Sciences, Division of Biochemistry, Department of Chemistry, Damietta University, New Damietta City, Egypt
| | - Christian Röder
- Institute for Experimental Cancer Research, Christian-Albrechts-University, Kiel, Germany
| | - Thomas Becker
- Department of General Surgery, Visceral, Thoracic, Transplantation and Pediatric Surgery, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Jens K Habermann
- Section for Translational Surgical Oncology and Biobanking, Department of Surgery, University of Lübeck and University Hospital Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Stefan Schreiber
- Institute of Clinical Molecular Biology, Christian-Albrechts-University, Kiel, Germany.,Clinic for Internal Medicine I, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Philip Rosenstiel
- Institute of Clinical Molecular Biology, Christian-Albrechts-University, Kiel, Germany
| | - Holger Kalthoff
- Institute for Experimental Cancer Research, Christian-Albrechts-University, Kiel, Germany
| |
Collapse
|
83
|
Xu K, Qiu C, Pei H, Mehmood MA, Wang H, Li L, Xia Q. Homeobox B3 promotes tumor cell proliferation and invasion in glioblastoma. Oncol Lett 2018; 15:3712-3718. [PMID: 29456734 PMCID: PMC5795893 DOI: 10.3892/ol.2018.7750] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 11/10/2017] [Indexed: 11/08/2022] Open
Abstract
Glioblastoma (GBM) is the most aggressive brain tumor in adults with the highest mortality rate. Despite advances achieved in treatment and research, the median survival for patients with GBM remains <1.5 years. This figure prompted the present study to identify novel genes associated with GBM development and progression to ultimately improve GBM treatment. The current study sought to determine the role of homeobox B3 (HOXB3) in GBM cell invasion and proliferation. HOXB3 was highly expressed in GBM tissues and glioma cell lines. To establish in vitro cell models for investigation, U87-MG and U251-MG, two typical GBM cells, were selected to generate corresponding cells lines that constitutively silenced HOXB3 expression using a lentivirus-mediated RNA interference approach. The results of the knockdown revealed that glioma cells stably expressing HOXB3 short hairpin RNA exhibited significantly decreased proliferation levels when compared with untransfected cells. The effect of HOXB3 on glioma cell invasion was also examined. Silencing of HOXB3 resulted in a marked reduction in invasiveness. Furthermore, HOXB3 silencing led to the upregulation of E-cadherin and downregulation of mesenchymal markers, N-cadherin and vimentin. Taken together, the findings of the present study indicate that HOXB3 promotes cell proliferation and invasion.
Collapse
Affiliation(s)
- Ke Xu
- Department of Immunology, School of Tropical and Laboratory Medicine, Hainan Medical University, Haikou, Hainan 571101, P.R. China
| | - Chun Qiu
- Department of Oncology, Hainan Provincial People's Hospital, Haikou, Hainan 571101, P.R. China
| | - Hua Pei
- Department of Immunology, School of Tropical and Laboratory Medicine, Hainan Medical University, Haikou, Hainan 571101, P.R. China
| | - Muhammad Aamer Mehmood
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, Punjab 38000, Pakistan.,School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, P.R. China
| | - Huamin Wang
- Department of Immunology, School of Tropical and Laboratory Medicine, Hainan Medical University, Haikou, Hainan 571101, P.R. China
| | - Liang Li
- Department of Immunology, School of Tropical and Laboratory Medicine, Hainan Medical University, Haikou, Hainan 571101, P.R. China
| | - Qianfeng Xia
- Key Laboratory of Tropical Biomedicine, and Faculty of Tropical Medicine and Laboratory Medicine, Hainan Medical University, Haikou, Hainan 571101, P.R. China
| |
Collapse
|
84
|
Báez-Vega PM, Echevarría Vargas IM, Valiyeva F, Encarnación-Rosado J, Roman A, Flores J, Marcos-Martínez MJ, Vivas-Mejía PE. Targeting miR-21-3p inhibits proliferation and invasion of ovarian cancer cells. Oncotarget 2017; 7:36321-36337. [PMID: 27166999 PMCID: PMC5095003 DOI: 10.18632/oncotarget.9216] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 04/18/2016] [Indexed: 12/22/2022] Open
Abstract
MicroRNA-21 is overexpressed in most cancers and has been implicated in tumorigenesis. Accumulating evidence supports a central role for the miR-21 guide strand (miR-21-5p) in ovarian cancer initiation, progression, and chemoresistance. However, there is limited information regarding the biological role of the miR-21 passenger strand (miR-21-3p) in ovarian cancer cells. The aim of this study was to investigate the role of miR-21-3p and its target genes in cisplatin-resistant ovarian cancer cells. Expression profiling of miR-21-5p and miR-21-3p was performed in a panel of cancer cells by qPCR. Colony formation and invasion assays were carried out on ovarian and prostate cancer cells transfected with miR-21-5p and miR-21-3p inhibitors. Dual luciferase reporter assays were used to identify the miR-21-3p target genes in ovarian cancer cells. Our results show that miR-21-5p had higher expression levels compared to miR-21-3p on a panel of cancer cells. Moreover, inhibition of miR-21-5p or miR-21-3p resulted in a significant decrease in ovarian and prostate cancer cell proliferation and invasion. Luciferase reporter assays identify RNA Binding Protein with Multiple Splicing (RBPMS), Regulator of Chromosome Condensation and POZ Domain Containing Protein 1 (RCBTB1), and Zinc Finger protein 608 (ZNF608) as miR-21-3p target genes. SiRNA-induced RBPMS silencing reduced the sensitivity of ovarian cancer cells to cisplatin treatment. Immunohistochemical analyses of serous ovarian cancer patient samples suggest a significant decrease of RBMPS levels when compared to normal ovarian epithelium. Taken together, the data generated in this study suggests a functional role for miR-21-3p in ovarian cancer and other solid tumors.
Collapse
Affiliation(s)
- Perla M Báez-Vega
- Comprehensive Cancer Center, University of Puerto Rico, Medical Sciences Campus, San Juan, Puerto Rico
| | - Ileabett M Echevarría Vargas
- Comprehensive Cancer Center, University of Puerto Rico, Medical Sciences Campus, San Juan, Puerto Rico.,Department of Biochemistry, University of Puerto Rico, Medical Sciences Campus, San Juan, Puerto Rico
| | - Fatma Valiyeva
- Comprehensive Cancer Center, University of Puerto Rico, Medical Sciences Campus, San Juan, Puerto Rico
| | | | - Adriana Roman
- Department of Biology, University of Puerto Rico, Rio Piedras Campus, San Juan, Puerto Rico
| | - Josean Flores
- Ponce Health Sciences University, Ponce, Puerto Rico
| | - María J Marcos-Martínez
- Department of Pathology and Laboratory Medicine-University of Puerto Rico-School of Medicine, San Juan, Puerto Rico.,Puerto Rico Medical Services Administration, University of Puerto Rico, Medical Sciences Campus, San Juan, Puerto Rico
| | - Pablo E Vivas-Mejía
- Comprehensive Cancer Center, University of Puerto Rico, Medical Sciences Campus, San Juan, Puerto Rico.,Department of Biochemistry, University of Puerto Rico, Medical Sciences Campus, San Juan, Puerto Rico
| |
Collapse
|
85
|
Yang X, Pang YY, He RQ, Lin P, Cen JM, Yang H, Ma J, Chen G. Diagnostic value of strand-specific miRNA-101-3p and miRNA-101-5p for hepatocellular carcinoma and a bioinformatic analysis of their possible mechanism of action. FEBS Open Bio 2017; 8:64-84. [PMID: 29321958 PMCID: PMC5757177 DOI: 10.1002/2211-5463.12349] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Revised: 05/08/2017] [Accepted: 11/08/2017] [Indexed: 02/06/2023] Open
Abstract
There is accumulating evidence that miRNA might serve as potential diagnostic and prognostic markers for various types of cancer. Hepatocellular carcinoma (HCC) is the most common type of malignant lesion but the significance of miRNAs in HCC remains largely unknown. The present study aimed to establish the diagnostic value of miR-101-3p/5p in HCC and then further investigate the prospective molecular mechanism via a bioinformatic analysis. First, the miR-101 expression profiles and parallel clinical parameters from 362 HCC patients and 50 adjacent non-HCC tissue samples were downloaded from The Cancer Genome Atlas (TCGA). Second, we aggregated all miR-101-3p/5p expression profiles collected from published literature and the Gene Expression Omnibus and TCGA databases. Subsequently, target genes of miR-101-3p and miR-101-5p were predicted by using the miRWalk database and then overlapped with the differentially expressed genes of HCC identified by natural language processing. Finally, bioinformatic analyses were conducted with the overlapping genes. The level of miR-101 was significantly lower in HCC tissues compared with adjacent non-HCC tissues (P < 0.001), and the area under the curve of the low miR-101 level for HCC diagnosis was 0.925 (P < 0.001). The pooled summary receiver operator characteristic (SROC) of miR-101-3p was 0.86, and the combined SROC curve of miR-101-5p was 0.80. Bioinformatic analysis showed that the target genes of both miR-101-3p and miR-101-5p are involved in several pathways that are associated with HCC. The hub genes for miR-101-3p and miR-101-5p were also found. Our results suggested that both miR-101-3p and miR-101-5p might be potential diagnostic markers in HCC, and that they exert their functions via targeting various prospective genes in the same pathways.
Collapse
Affiliation(s)
- Xia Yang
- Department of Pathology First Affiliated Hospital of Guangxi Medical University Nanning China
| | - Yu-Yan Pang
- Department of Pathology First Affiliated Hospital of Guangxi Medical University Nanning China
| | - Rong-Quan He
- Department of Medical Oncology First Affiliated Hospital of Guangxi Medical University Nanning China
| | - Peng Lin
- Department of Ultrasonography First Affiliated Hospital of Guangxi Medical University Nanning China
| | - Jie-Mei Cen
- Department of Medical Oncology First Affiliated Hospital of Guangxi Medical University Nanning China
| | - Hong Yang
- Department of Ultrasonography First Affiliated Hospital of Guangxi Medical University Nanning China
| | - Jie Ma
- Department of Medical Oncology First Affiliated Hospital of Guangxi Medical University Nanning China
| | - Gang Chen
- Department of Pathology First Affiliated Hospital of Guangxi Medical University Nanning China
| |
Collapse
|
86
|
MicroRNA-28 promotes cell proliferation and invasion in gastric cancer via the PTEN/PI3K/AKT signalling pathway. Mol Med Rep 2017; 17:4003-4010. [PMID: 29257342 DOI: 10.3892/mmr.2017.8299] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 09/09/2017] [Indexed: 11/05/2022] Open
Abstract
Gastric cancer is the fourth most common malignant disease and second leading cause of cancer‑associated mortalities worldwide. Previous studies revealed aberrantly expressed microRNAs (miRNAs) in various types of human cancer; these miRNAs play important roles in tumourigenesis and tumour development. miRNAs present a considerable potential for novel therapeutic approaches for treating human cancer. Therefore, the investigation of novel miRNAs involved in gastric cancer progression provides an opportunity to improve the prognosis of patients with gastric cancer. miRNA‑28 (miR‑28) has been investigated with regards to its expression and biological functions in many types of human cancer. However, previous studies have not discussed the expression patterns, roles and associated molecular mechanisms of miR‑28 in gastric cancer. In the present study, miR‑28 expression was identified to be upregulated in gastric cancer tissues and cell lines. miR‑28 inhibition functionally inhibited cell proliferation and invasion in gastric cancer in vitro. Using bioinformatics analysis, luciferase reporter assay, reverse transcription‑quantitative polymerase chain reaction and western blot analysis, phosphatase and tensin homolog (PTEN) was mechanically identified as a direct target of miR‑28 in gastric cancer. PTEN was downregulated in gastric cancer and negatively correlated with miR‑28 levels. Inhibition of PTEN restored the biological effects of miR‑28 downregulation on the proliferation and invasion of gastric cancer cells. Notably, the downregulation of miR‑28 results in the regulation of the phosphatidylinositol 3‑kinase/protein kinase B signaling pathway in gastric cancer. These results suggested that miR‑28 may be targeted for the development of novel treatments for gastric cancer in the future.
Collapse
|
87
|
Abstract
The majority of the human genome encodes RNAs that do not code for proteins. These non-coding RNAs (ncRNAs) affect normal expression of the genes, including oncogenes and tumour suppressive genes, which make them a new class of targets for drug development in cancer. Although microRNAs (miRNAs) are the most studied regulatory ncRNAs to date, and miRNA-targeted therapeutics have already reached clinical development, including the mimics of the tumour suppressive miRNAs miR-34 and miR-16, which reached phase I clinical trials for the treatment of liver cancer and mesothelioma, the importance of long non-coding RNAs (lncRNAs) is increasingly being recognised. Here, we describe obstacles and advances in the development of ncRNA therapeutics and provide the comprehensive overview of the ncRNA chemistry and delivery technologies. Furthermore, we summarise recent knowledge on the biological functions of miRNAs and their involvement in carcinogenesis, and discuss the strategies of their therapeutic manipulation in cancer. We review also the emerging insights into the role of lncRNAs and their potential as targets for novel treatment paradigms. Finally, we provide the up-to-date summary of clinical trials involving miRNAs and future directions in the development of ncRNA therapeutics.
Collapse
Affiliation(s)
- Ondrej Slaby
- Centre for Molecular Medicine, Central European Institute of Technology, Masaryk University, Kamenice 5, Brno 625 00, Czech Republic
- Department of Comprehensive Cancer Care, Masaryk Memorial Cancer Institute, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Richard Laga
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Ondrej Sedlacek
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
88
|
Zhao F, Ge YZ, Zhou LH, Xu LW, Xu Z, Ping WW, Wang M, Zhou CC, Wu R, Jia RP. Identification of hub miRNA biomarkers for bladder cancer by weighted gene coexpression network analysis. Onco Targets Ther 2017; 10:5551-5559. [PMID: 29200870 PMCID: PMC5702163 DOI: 10.2147/ott.s146479] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Bladder cancer (BC) is a common urinary system tumor with high aggressiveness, and it results in relatively high mortality due to a lack of precise and suitable biomarkers. In this study, we applied the weighted gene coexpression network analysis method to miRNA expression data from BC patients, and screened for network modules associated with BC progression. Hub miRNAs were selected, followed by functional enrichment analyses of their target genes for the most closely related module. These hub miRNAs were found to be involved in several functional pathways including pathway in cancer, regulation of actin cytoskeleton, PI3K-Akt signaling pathway, mitogen-activated protein kinase (MAPK) signaling pathway, Wnt signaling pathway, proteoglycans in cancer, focal adhesion and p53 signaling pathway via regulating target genes. Finally, their prognostic significance was tested using analyses of overall survival. A few novel prognostic miRNAs were identified based on expression profiles and related survival data. In conclusion, several miRNAs that were critical in BC initiation and progression have been identified in this study. These miRNAs, which may contribute to a comprehensive understanding of the pathogenesis of BC, could serve as potential biomarkers for BC prognosis or as new therapeutic targets.
Collapse
Affiliation(s)
- Feng Zhao
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Yu-Zheng Ge
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Liu-Hua Zhou
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Lu-Wei Xu
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Zheng Xu
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Wen-Wen Ping
- Department of Rheumatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Min Wang
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Chang-Cheng Zhou
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Ran Wu
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Rui-Peng Jia
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
89
|
Upregulation of MicroRNA 18b Contributes to the Development of Colorectal Cancer by Inhibiting CDKN2B. Mol Cell Biol 2017; 37:MCB.00391-17. [PMID: 28784723 DOI: 10.1128/mcb.00391-17] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 08/03/2017] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs (miRNAs) exhibit aberrant expression in the initiation and progression of a variety of human cancers, including colorectal cancer (CRC). However, the exact mechanisms are not well defined. miRNA expression profiles were characterized by microarrays in CRC samples, and miRNA 18b (miR-18b) was increased significantly in tumor tissues. The expression of miR-18b was confirmed in the CRC cell lines SW480 and HCT116 and 44 clinical specimens by quantitative real-time PCR (qRT-PCR). Multiple linear regression analysis showed a strong correlation of miR-18b expression with lymph node and distant metastasis. Overexpression of miR-18b promoted cell proliferation by facilitating cell cycle progression, and knockdown of miR-18b significantly suppressed migration in CRC cells. CDKN2B was identified as a target of miR-18b by high-throughput RNA sequencing and bioinformatics. After transfection with a miR-18b mimic, expression of CDKN2B was reduced significantly in CRC cells, and the effect was restored when a miR-18b inhibitor was transfected. A luciferase assay indicated miR-18b directly binds to the 3' untranslated region (UTR) of CDKN2B. Expression of CDKN2B was downregulated in patient cancer tissues and negatively correlated with miR-18b. In a model of ectopic expression of miR-18b and CDKN2B, CDKN2B overexpression antagonized the effects of miR-18b in vitro and in vivo The data show that miR-18b is involved in CRC carcinogenesis through targeting CDKN2B.
Collapse
|
90
|
Kleemann M, Bereuther J, Fischer S, Marquart K, Hänle S, Unger K, Jendrossek V, Riedel CU, Handrick R, Otte K. Investigation on tissue specific effects of pro-apoptotic micro RNAs revealed miR-147b as a potential biomarker in ovarian cancer prognosis. Oncotarget 2017; 8:18773-18791. [PMID: 27821806 PMCID: PMC5386646 DOI: 10.18632/oncotarget.13095] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 10/27/2016] [Indexed: 11/25/2022] Open
Abstract
The development and progression of cancer can be ascribed to imbalances in gene regulation leading to aberrant cellular behavior. The loss of micro RNAs (miRNAs) exhibiting tumor-suppressive function has been demonstrated to be often causative for uncontrolled cell proliferation, migration or tissue infiltration. The installation of de novo tumor suppressive function by using pro-apoptotic miRNAs might be a promising therapeutic approach. In addition, there is a great demand for novel biomarkers for the prognosis of cancer, which prompted us to transfer a high content miRNA screening initially performed to identify bioprocess relevant miRNAs in Chinese hamster ovary (CHO) cells to human cancer cell lines . Analysis of screened miRNAs exhibiting strongest pro-apoptotic effects discovered globally and cross-species active candidates. The recovery rate of apoptosis inducing miRNAs was highest in the human ovarian carcinoma cell line SKOV3. Focusing on ovarian cell lines miR-1912, miR-147b and miR-3073a showed significant apoptosis induction in cell lines with different genetic background (SKOV3p53null, OVCAR3p53R248Q, TOV21G, TOV112Dp53R175H, A2780, A2780-cisp53K351N) alone and additive effects in combination with carboplatin. While expression analysis revealed a low endogenous expression of miR-1912 and miR-147b in SKOV3, miRNA expression was highly upregulated upon apoptosis induction using chemotherapeutics. Ectopic introduction of these miRNAs lead to enhanced activation of caspase-dependent death signaling and an induction of the pro-apoptotic proteins Bak1 and Bax and a reduced expression of Bcl2 and Bcl-xL. Finally, analysis of The Cancer Genome Atlas data revealed the expression of hsa-miR-147b-5p to show a positive influence on the median survival of ovarian cancer patients.
Collapse
Affiliation(s)
- Michael Kleemann
- Institute of Applied Biotechnology, University of Applied Sciences Biberach, 88400 Biberach, Germany.,University of Ulm, Faculty of Medicine, 89079 Ulm, Germany
| | - Jeremias Bereuther
- Institute of Applied Biotechnology, University of Applied Sciences Biberach, 88400 Biberach, Germany
| | - Simon Fischer
- Boehringer Ingelheim Pharma GmbH and Co.KG, BP Process Development Germany, 88400 Biberach, Germany
| | - Kim Marquart
- Institute of Applied Biotechnology, University of Applied Sciences Biberach, 88400 Biberach, Germany
| | - Simon Hänle
- Institute of Applied Biotechnology, University of Applied Sciences Biberach, 88400 Biberach, Germany
| | - Kristian Unger
- Research Unit Radiation Cytogenetics, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Verena Jendrossek
- Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, Medical School, 45122 Essen, Germany
| | | | - René Handrick
- Institute of Applied Biotechnology, University of Applied Sciences Biberach, 88400 Biberach, Germany
| | - Kerstin Otte
- Institute of Applied Biotechnology, University of Applied Sciences Biberach, 88400 Biberach, Germany
| |
Collapse
|
91
|
The miRNA Pull Out Assay as a Method to Validate the miR-28-5p Targets Identified in Other Tumor Contexts in Prostate Cancer. Int J Genomics 2017; 2017:5214806. [PMID: 29085832 PMCID: PMC5632462 DOI: 10.1155/2017/5214806] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 08/01/2017] [Indexed: 02/07/2023] Open
Abstract
miR-28-5p is an intragenic miRNA which is underexpressed in several tumor types showing a tumor suppressor (TS) activity. Routinely, the known miR-28-5p targets are validated in specific tumor contexts but it is unclear whether these targets are also being regulated in other tumor types. To this end, we adopted the miRNA pull out assay to capture the miR-28-5p targets in DU-145 prostate cancer (PCa) cells. Firstly, we demonstrated that miR-28-5p acts as a TS-miRNA in PCa, affecting cell proliferation, survival, and apoptosis. Secondly, we evaluated the enrichment of the 10 validated miR-28-5p targets in the pull out sample. We showed that E2F6, TEX-261, MAPK1, MPL, N4BP1, and RAP1B but not BAG1, OTUB1, MAD2L1, and p21 were significantly enriched, suggesting that not all the miR-28-5p targets are regulated by this miRNA in PCa. We then verified whether the miR-28-5p-interacting targets were regulated by this miRNA. We selected E2F6, the most enriched target in the pull out sample, and demonstrated that miR-28-5p downregulated E2F6 at the protein level suggesting that our approach was effective. In general terms, these findings support the miRNA pull out assay as a useful method to identify context-specific miRNA targets.
Collapse
|
92
|
Li Z, Wong KY, Chan GCF, Chim CS. Epigenetic silencing of LPP/miR-28 in multiple myeloma. J Clin Pathol 2017; 71:253-258. [PMID: 28775176 PMCID: PMC5868533 DOI: 10.1136/jclinpath-2017-204501] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 07/07/2017] [Accepted: 07/11/2017] [Indexed: 12/15/2022]
Abstract
Aims miR-28-5- is a tumour suppressor microRNA implicated in cancers. As a CpG island is absent in miR-28-5- but present in its host gene, LPP (LIM domain containing preferred translocation partner in lipoma), we hypothesized that miR-28-5p is epigenetically silenced by promoter DNA methylation of its host gene in multiple myeloma. Methods Methylation-specific PCR, verified by quantitative bisulfite pyrosequencing, was employed to study methylation of LPP/miR-28 in healthy controls (n=10), human myeloma cell lines (HMCLs) (n=15), and primary myeloma marrow samples at diagnosis (n=49) and at relapse (n=18). Quantitative reverse transcription PCR was used to investigate expression of miR-28-5p, LPP and CCND1. Results LPP/miR-28 was completely unmethylated in all healthy controls and 12 (80%) HMCLs, but partially methylated in three (20%) HMCLs. Methylation of LPP/miR-28 correlated with low expression of miR-285p (p=0.012) and LPP (p=0.037) in HMCLs. In RPMI-8226R cells, in which LPP/miR-28 was partially methylated, 5-AzadC treatment led to demethylation of LPP/miR-28 and re-expression of both miR-28-5p (p=0.0007) and LPP (p=0.0007), whereas continuous culture without 5-AzadC restored LPP/miR-28 methylation and reduced expression of both miR-28-5p (p=0.0013) and LPP (p=0.0025). Moreover, a known miR-28-5p target, CCND1, was expressed at higher levels in HMCLs with LPP/miR-28 methylation than those without, consistent with a tumour suppressor role of miR-28-5p in myeloma. However, in primary samples, LPP/miR-28 was methylated in two (4.1%) at diagnosis, whereas none at relapse. Conclusions This is the first report of epigenetic regulation of the intronic miR-28-5p expression by promoter DNA methylation of its host gene, hence warrants further study in different cancers.
Collapse
Affiliation(s)
- Zhenhai Li
- Department of Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong, China
| | - Kwan Yeung Wong
- Department of Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong, China
| | - Godfrey Chi-Fung Chan
- Department of Pediatrics and Adolescent Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong, China
| | - Chor Sang Chim
- Department of Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
93
|
Lin J, Chuang CC, Zuo L. Potential roles of microRNAs and ROS in colorectal cancer: diagnostic biomarkers and therapeutic targets. Oncotarget 2017; 8:17328-17346. [PMID: 28061475 PMCID: PMC5370044 DOI: 10.18632/oncotarget.14461] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 12/16/2016] [Indexed: 02/06/2023] Open
Abstract
As one of the most commonly diagnosed cancers worldwide, colorectal adenocarcinoma often occurs sporadically in individuals aged 50 or above and there is an increase among younger patients under 50. Routine screenings are recommended for this age group to improve early detection. The multifactorial etiology of colorectal cancer consists of both genetic and epigenetic factors. Recently, studies have shown that the development and progression of colorectal cancer can be attributed to aberrant expression of microRNA. Reactive oxygen species (ROS) that play a key role in cancer cell survival, can also lead to carcinogenesis and cancer exacerbations. Given the rapid accumulating knowledge in the field, an updated review regarding microRNA and ROS in colorectal cancer is necessary. An extensive literature search has been conducted in PubMed/Medline databases to review the roles of microRNAs and ROS in colorectal cancer. Unique microRNA expression in tumor tissue, peripheral blood, and fecal samples from patients with colorectal cancer is outlined. Therapeutic approaches focusing on microRNA and ROS in colorectal cancer treatment is also delineated. This review aims to summarize the newest knowledge on the pathogenesis of colorectal cancer in the hopes of discovering novel diagnostic biomarkers and therapeutic techniques.
Collapse
Affiliation(s)
- Jingmei Lin
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Chia-Chen Chuang
- Radiologic Sciences and Respiratory Therapy Division, School of Health and Rehabilitation Sciences, The Ohio State University College of Medicine, Columbus, OH, USA.,Interdisciplinary Biophysics Graduate Program, The Ohio State University, Columbus, OH, USA
| | - Li Zuo
- Radiologic Sciences and Respiratory Therapy Division, School of Health and Rehabilitation Sciences, The Ohio State University College of Medicine, Columbus, OH, USA.,Interdisciplinary Biophysics Graduate Program, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
94
|
Zhao LY, Tong DD, Xue M, Ma HL, Liu SY, Yang J, Liu YX, Guo B, Ni L, Liu LY, Qin YN, Wang LM, Zhao XG, Huang C. MeCP2, a target of miR-638, facilitates gastric cancer cell proliferation through activation of the MEK1/2-ERK1/2 signaling pathway by upregulating GIT1. Oncogenesis 2017; 6:e368. [PMID: 28759023 PMCID: PMC5541712 DOI: 10.1038/oncsis.2017.60] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 05/02/2017] [Accepted: 06/07/2017] [Indexed: 02/08/2023] Open
Abstract
Methyl-CpG binding protein 2 (MeCP2) is involved in the carcinogenesis and progression of multiple types of cancer. However, its precise role in gastric cancer (GC) and the relevant molecular mechanism remain unknown. In the present study, we found that miR-638 levels were lower in GC tissues and GC cell lines than in adjacent normal tissues and normal gastric epithelial cell lines, respectively. Low miR-638 levels were associated with poor tumor differentiation, tumor size and lymph node metastasis. MeCP2 expression levels were higher in GC tissues than in adjacent normal tissues. It was found that miR-638 inhibited GC cell proliferation, colony formation, G1–S transition and tumor growth, and induced cell apoptosis by directly targeting MeCP2. MeCP2 promoted GC cell proliferation, colony formation and G1–S cell-cycle transition, and suppressed apoptosis. Molecular mechanistic investigations were performed using an integrated approach with a combination of microarray analysis, chromatin immunoprecipitation sequencing and a reporter gene assay. The results showed that MeCP2 bound to the methylated CpG islands of G-protein-coupled receptor kinase-interacting protein 1 (GIT1) promoter and upregulated its expression, thereby activating the MEK1/2–ERK1/2 signaling pathway and promoting GC cell proliferation. Taken together, our study demonstrates that MeCP2, a target of miR-638, facilitates GC cell proliferation and induces cell-cycle progression through activation of the MEK1/2–ERK1/2 signaling pathway by upregulating GIT1. The findings suggest that MeCP2 plays a significant role in GC progression, and may serve as a potential target for GC therapy.
Collapse
Affiliation(s)
- L Y Zhao
- Department of Cell Biology and Genetics/Key Laboratory of Environment and Genes Related to Diseases, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - D D Tong
- Department of Cell Biology and Genetics/Key Laboratory of Environment and Genes Related to Diseases, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - M Xue
- Department of Cell Biology and Genetics/Key Laboratory of Environment and Genes Related to Diseases, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - H L Ma
- Department of Radiation Oncology, The First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - S Y Liu
- Department of Cell Biology and Genetics/Key Laboratory of Environment and Genes Related to Diseases, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - J Yang
- Department of Cell Biology and Genetics/Key Laboratory of Environment and Genes Related to Diseases, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Y X Liu
- Department of Cell Biology and Genetics/Key Laboratory of Environment and Genes Related to Diseases, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - B Guo
- Department of Cell Biology and Genetics/Key Laboratory of Environment and Genes Related to Diseases, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - L Ni
- Department of Cell Biology and Genetics/Key Laboratory of Environment and Genes Related to Diseases, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - L Y Liu
- Department of Cell Biology and Genetics/Key Laboratory of Environment and Genes Related to Diseases, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Y N Qin
- Department of Cell Biology and Genetics/Key Laboratory of Environment and Genes Related to Diseases, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - L M Wang
- Department of Cell Biology and Genetics/Key Laboratory of Environment and Genes Related to Diseases, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - X G Zhao
- Department of Cell Biology and Genetics/Key Laboratory of Environment and Genes Related to Diseases, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - C Huang
- Department of Cell Biology and Genetics/Key Laboratory of Environment and Genes Related to Diseases, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China.,Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China.,Medical College of Yan'an University, Yan'an, Shaanxi, China
| |
Collapse
|
95
|
MicroRNAs and acute myeloid leukemia: therapeutic implications and emerging concepts. Blood 2017; 130:1290-1301. [PMID: 28751524 DOI: 10.1182/blood-2016-10-697698] [Citation(s) in RCA: 127] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 07/24/2017] [Indexed: 02/08/2023] Open
Abstract
Acute myeloid leukemia (AML) is a deadly hematologic malignancy characterized by the uncontrolled growth of immature myeloid cells. Over the past several decades, we have learned a tremendous amount regarding the genetic aberrations that govern disease development in AML. Among these are genes that encode noncoding RNAs, including the microRNA (miRNA) family. miRNAs are evolutionarily conserved small noncoding RNAs that display important physiological effects through their posttranscriptional regulation of messenger RNA targets. Over the past decade, studies have identified miRNAs as playing a role in nearly all aspects of AML disease development, including cellular proliferation, survival, and differentiation. These observations have led to the study of miRNAs as biomarkers of disease, and efforts to therapeutically manipulate miRNAs to improve disease outcome in AML are ongoing. Although much has been learned regarding the importance of miRNAs in AML disease initiation and progression, there are many unanswered questions and emerging facets of miRNA biology that add complexity to their roles in AML. Moving forward, answers to these questions will provide a greater level of understanding of miRNA biology and critical insights into the many translational applications for these small regulatory RNAs in AML.
Collapse
|
96
|
孙 瑞, 龚 建, 邹 海, 张 林, 高 林. miR-17-92基因簇在肿瘤发生发展中作用的研究进展. Shijie Huaren Xiaohua Zazhi 2017; 25:1840-1853. [DOI: 10.11569/wcjd.v25.i20.1840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
肿瘤是威胁全世界人类健康和影响社会经济的重要因素. 近年来, 随着经济的发展, 肿瘤的发病率呈明显上升趋势, 但是其病因尚未完全阐明. 越来越多的证据显示肿瘤的发生和遗传因素有关, 随着病理生理学和遗传学的发展, 许多学者认为生物标志物可以预测癌症甚至指导临床治疗. 微小RNA(microRNA, miRNA)是非编码小分子RNA, 在发育、生理、病理过程以及肿瘤发生等环节中起着重要的调节作用. miR-17-92基因簇是研究较为深入、最有特点的miRNA, 被认为是原癌基因miRNA的代表, 在多种肿瘤的发生发展中起着至关重要的作用. 本文就miR-17-92基因簇在肿瘤发生发展中的作用及功能进行综述.
Collapse
|
97
|
Li LL, Qu LL, Fu HJ, Zheng XF, Tang CH, Li XY, Chen J, Wang WX, Yang SX, Wang L, Zhao GH, Lv PP, Zhang M, Lei YY, Qin HF, Wang H, Gao HJ, Liu XQ. Circulating microRNAs as novel biomarkers of ALK-positive nonsmall cell lung cancer and predictors of response to crizotinib therapy. Oncotarget 2017; 8:45399-45414. [PMID: 28514730 PMCID: PMC5542196 DOI: 10.18632/oncotarget.17535] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 04/12/2017] [Indexed: 01/09/2023] Open
Abstract
Circulating microRNAs are potential diagnostic and predictive biomarkers, but have not been investigated for patients with anaplastic lymphoma kinase (ALK)-positive lung cancer. In this exploratory study, we sought to identify potential plasma biomarkers for ALK-positive non-small cell lung cancer (NSCLC). A microRNA microarray was used to select ALK-related microRNAs in ALK-positive NSCLC (n = 3), ALK-negative NSCLC (n = 3), and healthy subjects (n = 3). Plasma levels of 21 microRNAs were differentially expressed for ALK-positive and ALK-negative NSCLC, including 14 down-regulated and 7 up-regulated microRNAs. We also identified 5s rRNA as the most stable endogenous control gene using geNorm and NormFinder algorithms. Candidate microRNAs in plasma from ALK-positive (n = 41) and ALK-negative NSCLC patients (n = 32) were quantified using real-time reverse transcriptase quantitative polymerase chain reaction. The expression levels of miR-28-5p, miR-362-5p, and miR-660-5p were all down-regulated in ALK-positive NSCLC, compared with ALK-negative NSCLC. The areas under the receiver operating characteristic curves of miR-28-5p, miR-362-5p, miR-660-5p, and 3-microRNAs panel were 0.873, 0.673, 0.760, and 0.876, respectively. The positive predictive values of miR-28-5p, miR-362-5p, and miR-660-5p were 96.43%, 80.77%, and 83.87%, respectively. Increased plasma levels of miR-660-5p after crizotinib treatment predicted good tumor response (p = 0.012). The pre-crizotinib levels of miR-362-5p were significantly associated with progression-free survival (p = 0.015). Thus, in this preliminary investigation, we identified a potential panel of 3 microRNAs for distinguishing between patients with ALK-positive and ALK-negative NSCLC. We also identified miR-660-5p and miR-362-5p as potential predictors for response to crizotinib treatment.
Collapse
Affiliation(s)
- Liang-Liang Li
- Department of Lung Cancer, Affiliated Hospital of Academy of Military Medical Sciences, Beijing, China
- Department of Oncology, 309th Hospital of PLA, Beijing, China
| | - Li-Li Qu
- Department of Lung Cancer, Affiliated Hospital of Academy of Military Medical Sciences, Beijing, China
| | - Han-Jiang Fu
- Department of Biochemistry and Molecular Biology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Xiao-Fei Zheng
- Department of Biochemistry and Molecular Biology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Chuan-Hao Tang
- Department of Oncology, Peking University International Hospital, Beijing, China
| | - Xiao-Yan Li
- Department of Lung Cancer, Affiliated Hospital of Academy of Military Medical Sciences, Beijing, China
| | - Jian Chen
- Department of Respiratory, Affiliated Hospital of Aviation Medicine, Beijing, China
| | - Wei-Xia Wang
- Department of Lung Cancer, Affiliated Hospital of Academy of Military Medical Sciences, Beijing, China
| | - Shao-Xing Yang
- Department of Lung Cancer, Affiliated Hospital of Academy of Military Medical Sciences, Beijing, China
| | - Lin Wang
- Department of Lung Cancer, Affiliated Hospital of Academy of Military Medical Sciences, Beijing, China
| | - Guan-Hua Zhao
- Department of Lung Cancer, Affiliated Hospital of Academy of Military Medical Sciences, Beijing, China
| | - Pan-Pan Lv
- Department of Lung Cancer, Affiliated Hospital of Academy of Military Medical Sciences, Beijing, China
| | - Min Zhang
- Department of Lung Cancer, Affiliated Hospital of Academy of Military Medical Sciences, Beijing, China
| | - Yang-Yang Lei
- Department of Lung Cancer, Affiliated Hospital of Academy of Military Medical Sciences, Beijing, China
| | - Hai-Feng Qin
- Department of Lung Cancer, Affiliated Hospital of Academy of Military Medical Sciences, Beijing, China
| | - Hong Wang
- Department of Lung Cancer, Affiliated Hospital of Academy of Military Medical Sciences, Beijing, China
| | - Hong-Jun Gao
- Department of Lung Cancer, Affiliated Hospital of Academy of Military Medical Sciences, Beijing, China
| | - Xiao-Qing Liu
- Department of Lung Cancer, Affiliated Hospital of Academy of Military Medical Sciences, Beijing, China
| |
Collapse
|
98
|
Rigoutsos I, Lee SK, Nam SY, Anfossi S, Pasculli B, Pichler M, Jing Y, Rodriguez-Aguayo C, Telonis AG, Rossi S, Ivan C, Catela Ivkovic T, Fabris L, Clark PM, Ling H, Shimizu M, Redis RS, Shah MY, Zhang X, Okugawa Y, Jung EJ, Tsirigos A, Huang L, Ferdin J, Gafà R, Spizzo R, Nicoloso MS, Paranjape AN, Shariati M, Tiron A, Yeh JJ, Teruel-Montoya R, Xiao L, Melo SA, Menter D, Jiang ZQ, Flores ER, Negrini M, Goel A, Bar-Eli M, Mani SA, Liu CG, Lopez-Berestein G, Berindan-Neagoe I, Esteller M, Kopetz S, Lanza G, Calin GA. N-BLR, a primate-specific non-coding transcript leads to colorectal cancer invasion and migration. Genome Biol 2017; 18:98. [PMID: 28535802 PMCID: PMC5442648 DOI: 10.1186/s13059-017-1224-0] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 04/26/2017] [Indexed: 12/13/2022] Open
Abstract
Background Non-coding RNAs have been drawing increasing attention in recent years as functional data suggest that they play important roles in key cellular processes. N-BLR is a primate-specific long non-coding RNA that modulates the epithelial-to-mesenchymal transition, facilitates cell migration, and increases colorectal cancer invasion. Results We performed multivariate analyses of data from two independent cohorts of colorectal cancer patients and show that the abundance of N-BLR is associated with tumor stage, invasion potential, and overall patient survival. Through in vitro and in vivo experiments we found that N-BLR facilitates migration primarily via crosstalk with E-cadherin and ZEB1. We showed that this crosstalk is mediated by a pyknon, a short ~20 nucleotide-long DNA motif contained in the N-BLR transcript and is targeted by members of the miR-200 family. In light of these findings, we used a microarray to investigate the expression patterns of other pyknon-containing genomic loci. We found multiple such loci that are differentially transcribed between healthy and diseased tissues in colorectal cancer and chronic lymphocytic leukemia. Moreover, we identified several new loci whose expression correlates with the colorectal cancer patients’ overall survival. Conclusions The primate-specific N-BLR is a novel molecular contributor to the complex mechanisms that underlie metastasis in colorectal cancer and a potential novel biomarker for this disease. The presence of a functional pyknon within N-BLR and the related finding that many more pyknon-containing genomic loci in the human genome exhibit tissue-specific and disease-specific expression suggests the possibility of an alternative class of biomarkers and therapeutic targets that are primate-specific. Electronic supplementary material The online version of this article (doi:10.1186/s13059-017-1224-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Isidore Rigoutsos
- Computational Medicine Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA, USA.
| | - Sang Kil Lee
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Present address: Institute of Gastroenterology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Su Youn Nam
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Gastroenterology, Department of Internal Medicine, Kyungpook National University Medical School, Daegu, Korea
| | - Simone Anfossi
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Barbara Pasculli
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Present address: Laboratory of Oncology, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, FG, Italy
| | - Martin Pichler
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Present address: Division of Oncology, Medical University of Graz, Graz, Austria
| | - Yi Jing
- Computational Medicine Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA, USA
| | - Cristian Rodriguez-Aguayo
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Center for RNA interference and non-coding RNA, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Aristeidis G Telonis
- Computational Medicine Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA, USA
| | - Simona Rossi
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Present address: Institute of Oncology Research (IOR), Research Division of the Oncology Institute of Southern Switzerland (IOSI), Bellinzona, Switzerland
| | - Cristina Ivan
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Center for RNA interference and non-coding RNA, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Tina Catela Ivkovic
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Department of Molecular Medicine, Ruder Boskovic Institute, Zagreb, Croatia
| | - Linda Fabris
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Peter M Clark
- Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Hui Ling
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Masayoshi Shimizu
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Roxana S Redis
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Present address: ProQR Therapeutics, Leiden, Netherlands
| | - Maitri Y Shah
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xinna Zhang
- Center for RNA interference and non-coding RNA, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Department of Gynecologic Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yoshinaga Okugawa
- Center for Gastrointestinal Research, and Center for Translational Genomics and Oncology, Baylor Scott & White Research Institute and Charles A. Sammons Cancer Center, Baylor University Medical Center, Dallas, TX, USA
| | - Eun Jung Jung
- Department of Surgery, School of Medicine, Gyeongsang National University, Jin-ju, South Korea
| | | | - Li Huang
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jana Ferdin
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Present address: Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Roberta Gafà
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Riccardo Spizzo
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Present address: CRO, National Cancer Institute, 33081, Aviano, Italy
| | - Milena S Nicoloso
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Present address: CRO, National Cancer Institute, 33081, Aviano, Italy
| | - Anurag N Paranjape
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Present address: National Cancer Institute, Bethesda, MD, USA
| | - Maryam Shariati
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Aida Tiron
- Department of Medicine, Nassau University Medical Center, 2201 Hempstead Tpke, East Meadow, NY, 11554, USA
| | - Jen Jen Yeh
- Departments of Surgery and Pharmacology, UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Raul Teruel-Montoya
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Present address: Centro Regional de Hemodonación, Universidad de Murcia, IMIB-Arrixaca, CIBEER (CB15/00055), Murcia, Spain
| | - Lianchun Xiao
- Division of Quantitative Science, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sonia A Melo
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, and Ipatimup - Institute of Pathology and Molecular Immunology of the University of Porto, 4200, Porto, Portugal.,Department of Pathology, Faculty of Medicine of Porto University, 4200-319, Porto, Portugal
| | - David Menter
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Zhi-Qin Jiang
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Elsa R Flores
- Department of Molecular Oncology, Moffitt Cancer Center, Tampa, FL, USA
| | - Massimo Negrini
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Ajay Goel
- Center for Gastrointestinal Research, and Center for Translational Genomics and Oncology, Baylor Scott & White Research Institute and Charles A. Sammons Cancer Center, Baylor University Medical Center, Dallas, TX, USA
| | - Menashe Bar-Eli
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sendurai A Mani
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Chang Gong Liu
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Gabriel Lopez-Berestein
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Center for RNA interference and non-coding RNA, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ioana Berindan-Neagoe
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Medfuture, Cluj-Napoca, Romania.,Research Center for Advanced Medicine - University of Medicine and Pharmacy "Iuliu Haţieganu", Cluj-Napoca, Romania.,Department of Functional Genomics, Proteomics and Experimental Pathology- The Oncology Institute " Prof Dr. Ion Chiricuta, Cluj-Napoca, Romania
| | - Manel Esteller
- Cancer Epigenetics and Biology Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet, Barcelona, Catalonia, Spain.,Physiological Sciences Department, School of Medicine and Health Sciences, University of Barcelona (UB), Barcelona, Catalonia, Spain.,Institucio Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Catalonia, Spain
| | - Scott Kopetz
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Giovanni Lanza
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - George A Calin
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA. .,Center for RNA interference and non-coding RNA, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
99
|
He Y, Wang G, Zhang L, Zhai C, Zhang J, Zhao X, Jiang X, Zhao Z. Biological effects and clinical characteristics of microRNA-106a in human colorectal cancer. Oncol Lett 2017; 14:830-836. [PMID: 28693239 PMCID: PMC5494767 DOI: 10.3892/ol.2017.6179] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 03/14/2017] [Indexed: 01/14/2023] Open
Abstract
MicroRNAs serve important roles in various diseases, particularly cancer. microRNA-106a (miR-106a) exhibits abnormal expression and oncogenic activity in carcinogenesis. The clinical significance of the abnormal expression of miR-106a in colorectal cancer is poorly understood. In the present study, miR-106a expression from colorectal cancer tissues was quantified using the reverse transcription-quantitative polymerase chain reaction. The overexpression or knockdown of miR-106a was performed by transfection with microRNA mimic or inhibitor in human colorectal carcinoma HCT116 cells. The overexpression of miR-106a promoted viability and inhibited apoptosis in colorectal cancer cells. The association between miR-106a expression and clinicopathological factors was analyzed, and it was identified that miR-106a exhibited significantly increased expression in adenocarcinoma tissues compared with in mucinous carcinoma tissues, and the expression of miR-106a was identified to be associated with the depth of invasion and differentiation. The expression of miR-106a in plasma was also determined and it was identified that increased expression of miR-106a, as a characteristic of patients with colorectal cancer, may be distinguished from that of other patients by digitization of the areas under the receiver operating characteristic curves. These data suggested that miR-106a is a potential biomarker in the diagnosis of colorectal carcinoma. However, the underlying molecular mechanism of miR-106a-promoted viability and inhibition of apoptosis requires further investigation.
Collapse
Affiliation(s)
- Yuzheng He
- Department of General Surgery, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei 050031, P.R. China.,Department of Thoracic Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050031, P.R. China
| | - Guiqi Wang
- Department of General Surgery, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei 050031, P.R. China
| | - Lei Zhang
- Department of General Surgery, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei 050031, P.R. China
| | - Congjie Zhai
- Department of General Surgery, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei 050031, P.R. China
| | - Jun Zhang
- Department of General Surgery, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei 050031, P.R. China
| | - Xusheng Zhao
- Department of General Surgery, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei 050031, P.R. China
| | - Xia Jiang
- Department of General Surgery, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei 050031, P.R. China
| | - Zengren Zhao
- Department of General Surgery, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei 050031, P.R. China
| |
Collapse
|
100
|
Müller-Deile J, Dannenberg J, Schroder P, Lin MH, Miner JH, Chen R, Bräsen JH, Thum T, Nyström J, Staggs LB, Haller H, Fiedler J, Lorenzen JM, Schiffer M. Podocytes regulate the glomerular basement membrane protein nephronectin by means of miR-378a-3p in glomerular diseases. Kidney Int 2017; 92:836-849. [PMID: 28476557 DOI: 10.1016/j.kint.2017.03.005] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 02/11/2017] [Accepted: 03/02/2017] [Indexed: 01/03/2023]
Abstract
The pathophysiology of many proteinuric kidney diseases is poorly understood, and microRNAs (miRs) regulation of these diseases has been largely unexplored. Here, we tested whether miR-378a-3p is a novel regulator of glomerular diseases. MiR-378a-3p has two predicted targets relevant to glomerular function, the glomerular basement membrane matrix component, nephronectin (NPNT), and vascular endothelial growth factor VEGF-A. In zebrafish (Danio rerio), miR-378a-3p mimic injection or npnt knockdown by a morpholino oligomer caused an identical phenotype consisting of edema, proteinuria, podocyte effacement, and widening of the glomerular basement membrane in the lamina rara interna. Zebrafish vegf-A protein could not rescue this phenotype. However, mouse Npnt constructs containing a mutated 3'UTR region prevented the phenotype caused by miR-378a-3p mimic injection. Overexpression of miR-378a-3p in mice confirmed glomerular dysfunction in a mammalian model. Biopsies from patients with focal segmental glomerulosclerosis and membranous nephropathy had increased miR-378a-3p expression and reduced glomerular levels of NPNT. Thus, miR-378a-3p-mediated suppression of the glomerular matrix protein NPNT is a novel mechanism for proteinuria development in active glomerular diseases.
Collapse
Affiliation(s)
- Janina Müller-Deile
- Department of Medicine/Nephrology, Hannover Medical School, Hannover, Germany; Mount Desert Island Biological Laboratory, Salisbury Cove, Maine, USA.
| | - Jan Dannenberg
- Department of Medicine/Nephrology, Hannover Medical School, Hannover, Germany; Mount Desert Island Biological Laboratory, Salisbury Cove, Maine, USA
| | - Patricia Schroder
- Mount Desert Island Biological Laboratory, Salisbury Cove, Maine, USA
| | - Meei-Hua Lin
- Division of Nephrology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Jeffrey H Miner
- Division of Nephrology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Rongjun Chen
- Department of Medicine/Nephrology, Hannover Medical School, Hannover, Germany
| | | | - Thomas Thum
- Institute of Molecular and Translational Therapeutic Strategies, Hannover Medical School, Hannover, Germany; Imperial College London, National Heart and Lung Institute, London, UK; REBIRTH Excellence Cluster, Hannover Medical School, Hannover, Germany
| | - Jenny Nyström
- Departments of Physiology and Nephrology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | | | - Hermann Haller
- Department of Medicine/Nephrology, Hannover Medical School, Hannover, Germany; Mount Desert Island Biological Laboratory, Salisbury Cove, Maine, USA
| | - Jan Fiedler
- Institute of Molecular and Translational Therapeutic Strategies, Hannover Medical School, Hannover, Germany
| | - Johan M Lorenzen
- Department of Medicine/Nephrology, Hannover Medical School, Hannover, Germany; Institute of Molecular and Translational Therapeutic Strategies, Hannover Medical School, Hannover, Germany; REBIRTH Excellence Cluster, Hannover Medical School, Hannover, Germany
| | - Mario Schiffer
- Department of Medicine/Nephrology, Hannover Medical School, Hannover, Germany; Mount Desert Island Biological Laboratory, Salisbury Cove, Maine, USA.
| |
Collapse
|