51
|
Orlicky DJ, Libby AE, Bales ES, McMahan RH, Monks J, La Rosa FG, McManaman JL. Perilipin-2 promotes obesity and progressive fatty liver disease in mice through mechanistically distinct hepatocyte and extra-hepatocyte actions. J Physiol 2019; 597:1565-1584. [PMID: 30536914 PMCID: PMC6418763 DOI: 10.1113/jp277140] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 12/05/2018] [Indexed: 12/22/2022] Open
Abstract
KEY POINTS Wild-type mice and mice with hepatocyte-specific or whole-body deletions of perilipin-2 (Plin2) were used to define hepatocyte and extra-hepatocyte effects of altered cellular lipid storage on obesity and non-alcoholic fatty liver disease (NAFLD) pathophysiology in a Western-diet (WD) model of these disorders. Extra-hepatocyte actions of Plin2 are responsible for obesity, adipose inflammation and glucose clearance abnormalities in WD-fed mice. Hepatocyte and extra-hepatic actions of Plin2 mediate fatty liver formation in WD-fed mice through distinct mechanisms. Hepatocyte-specific actions of Plin2 are primary mediators of immune cell infiltration and fibrotic injury in livers of obese mice. ABSTRACT Non-alcoholic fatty liver disease (NAFLD) is an obesity- and insulin resistance-related metabolic disorder with progressive pathology. Perilipin-2 (Plin2), a ubiquitously expressed cytoplasmic lipid droplet scaffolding protein, is hypothesized to contribute to NAFLD in humans and rodent models through effects on cellular lipid metabolism. In this study, we delineate hepatocyte-specific and extra-hepatocyte Plin2 mechanisms regulating the effects of obesity and insulin resistance on NAFLD pathophysiology in mice fed an obesogenic Western-style diet (WD). Total Plin2 deletion (Plin2-Null) fully protected WD-fed mice from obesity, insulin resistance, adipose inflammation, steatohepatitis (NASH) and liver fibrosis found in WT animals. Hepatocyte-specific Plin2 deletion (Plin2-HepKO) largely protected against NASH and fibrosis and partially protected against steatosis in WD-fed animals, but it did not protect against obesity, insulin resistance, or adipose inflammation. Significantly, total or hepatocyte-specific Plin2 deletion impaired WD-induced monocyte recruitment and pro-inflammatory macrophage polarization found in livers of WT mice. Analyses of the molecular and cellular processes mediating steatosis, inflammation and fibrosis identified differences in total and hepatocyte-specific actions of Plin2 on the mechanisms promoting NAFLD pathophysiology. Our results demonstrate that hepatocyte-specific actions of Plin2 are central to the initiation and pathological progression of NAFLD in obese and insulin-resistant mice through effects on immune cell recruitment and fibrogenesis. Conversely, extra-hepatocyte Plin2 actions promote NAFLD pathophysiology through effects on obesity, inflammation and insulin resistance. Our findings provide new insight into hepatocyte and extra-hepatocyte mechanisms underlying NAFLD development and progression.
Collapse
Affiliation(s)
- David J. Orlicky
- Department of PathologyUniversity of Colorado School of MedicineAuroraCOUSA
| | - Andrew E. Libby
- Graduate Program in Integrated PhysiologyUniversity of Colorado School of MedicineAuroraCOUSA
- Division of Reproductive SciencesUniversity of Colorado School of MedicineAuroraCOUSA
| | - Elise S. Bales
- Division of Reproductive SciencesUniversity of Colorado School of MedicineAuroraCOUSA
| | - Rachel H. McMahan
- Division of Gastroenterology and HepatologyUniversity of Colorado School of MedicineAuroraCOUSA
| | - Jenifer Monks
- Division of Reproductive SciencesUniversity of Colorado School of MedicineAuroraCOUSA
| | | | - James L. McManaman
- Graduate Program in Integrated PhysiologyUniversity of Colorado School of MedicineAuroraCOUSA
- Division of Reproductive SciencesUniversity of Colorado School of MedicineAuroraCOUSA
- Center for Human NutritionUniversity of Colorado School of MedicineAuroraCOUSA
| |
Collapse
|
52
|
Mehta KJ, Farnaud SJ, Sharp PA. Iron and liver fibrosis: Mechanistic and clinical aspects. World J Gastroenterol 2019; 25:521-538. [PMID: 30774269 PMCID: PMC6371002 DOI: 10.3748/wjg.v25.i5.521] [Citation(s) in RCA: 173] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 01/02/2019] [Accepted: 01/10/2019] [Indexed: 02/06/2023] Open
Abstract
Liver fibrosis is characterised by excessive deposition of extracellular matrix that interrupts normal liver functionality. It is a pathological stage in several untreated chronic liver diseases such as the iron overload syndrome hereditary haemochromatosis, viral hepatitis, alcoholic liver disease, non-alcoholic fatty liver disease, non-alcoholic steatohepatitis and diabetes. Interestingly, regardless of the aetiology, iron-loading is frequently observed in chronic liver diseases. Excess iron can feed the Fenton reaction to generate unquenchable amounts of free radicals that cause grave cellular and tissue damage and thereby contribute to fibrosis. Moreover, excess iron can induce fibrosis-promoting signals in the parenchymal and non-parenchymal cells, which accelerate disease progression and exacerbate liver pathology. Fibrosis regression is achievable following treatment, but if untreated or unsuccessful, it can progress to the irreversible cirrhotic stage leading to organ failure and hepatocellular carcinoma, where resection or transplantation remain the only curative options. Therefore, understanding the role of iron in liver fibrosis is extremely essential as it can help in formulating iron-related diagnostic, prognostic and treatment strategies. These can be implemented in isolation or in combination with the current approaches to prepone detection, and halt or decelerate fibrosis progression before it reaches the irreparable stage. Thus, this review narrates the role of iron in liver fibrosis. It examines the underlying mechanisms by which excess iron can facilitate fibrotic responses. It describes the role of iron in various clinical pathologies and lastly, highlights the significance and potential of iron-related proteins in the diagnosis and therapeutics of liver fibrosis.
Collapse
Affiliation(s)
- Kosha J Mehta
- School of Population Health and Environmental Sciences, Faculty of Life Sciences and Medicine, King’s College London, London SE1 1UL, United Kingdom
- Division of Human Sciences, School of Applied Sciences, London South Bank University, London SE1 0AA, United Kingdom
| | - Sebastien Je Farnaud
- Faculty Research Centre for Sport, Exercise and Life Sciences, Coventry University, Coventry CV1 2DS, United Kingdom
| | - Paul A Sharp
- Department of Nutritional Sciences, School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London SE1 9NH, United Kingdom
| |
Collapse
|
53
|
Koga A, Toda K, Tatsushima K, Matsuubayashi S, Tamura N, Imamura M, Kawai K. Portal hypertension in prolonged anorexia nervosa with laxative abuse: A case report of three patients. Int J Eat Disord 2019; 52:211-215. [PMID: 30636007 PMCID: PMC6590132 DOI: 10.1002/eat.23007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 11/07/2018] [Accepted: 12/08/2018] [Indexed: 12/12/2022]
Abstract
OBJECTIVE There has been no report on portal hypertension related to anorexia nervosa (AN). METHOD We describe three cases of portal hypertension manifesting with collateral circulation represented by gastroesophageal varices in prolonged AN with laxative abuse and self-vomiting. These women, in their 20s to 50s, were diagnosed as having AN binging and purging type (AN-BP) that included self-induced vomiting and abuse of irritating laxatives (more than 100 tablets daily). RESULTS Case 1 showed prominent ascites and a gastro-renal shunt on computed tomography scanning. Case 2 showed gastroesophageal varices on endoscopic examination. Case 3 showed gastroesophageal varices on computed tomography scanning and endoscopic examination. We performed liver biopsies in all patients and found only slight pericellular fibrosis. Our patients showed typical symptoms of portal hypertension, although liver cirrhosis was not present. DISCUSSION We speculated that abnormal eating and purging behaviors were involved in the development of portal hypertension. We hypothesized that long-term laxative abuse, dehydration, and abnormal eating behavior are involved in the development of portal hypertension, considering these were common features in our patients. Portal hypertension and gastroesophageal varices should be considered as one of the potentially existing complications in prolonged AN-BP with self-induced vomiting and abuse of irritating laxatives.
Collapse
Affiliation(s)
- Aiko Koga
- Department of Psychosomatic MedicineKohnodai Hospital, National Center for Global Health MedicineIchikawa CityChibaJapan
| | - Kenta Toda
- Department of Psychosomatic MedicineKohnodai Hospital, National Center for Global Health MedicineIchikawa CityChibaJapan
| | - Keita Tatsushima
- Department of Psychosomatic MedicineKohnodai Hospital, National Center for Global Health MedicineIchikawa CityChibaJapan
| | - Sunao Matsuubayashi
- Department of Psychosomatic MedicineFukuoka Tokusyuukai HospitalKasuga CityFukuokaJapan
| | - Naho Tamura
- Department of Psychosomatic MedicineKohnodai Hospital, National Center for Global Health MedicineIchikawa CityChibaJapan
| | - Masatoshi Imamura
- Department of Gastroenterology and HepatologyKohnodai Hospital, National Center for Global Health MedicineIchikawa CityChibaJapan
| | - Keisuke Kawai
- Department of Psychosomatic MedicineKohnodai Hospital, National Center for Global Health MedicineIchikawa CityChibaJapan
| |
Collapse
|
54
|
Wang E, He X, Zeng M. The Role of S1P and the Related Signaling Pathway in the Development of Tissue Fibrosis. Front Pharmacol 2019; 9:1504. [PMID: 30687087 PMCID: PMC6338044 DOI: 10.3389/fphar.2018.01504] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 12/10/2018] [Indexed: 12/12/2022] Open
Abstract
Tissue fibrosis, including pulmonary fibrosis, hepatic fibrosis, and cardiac fibrosis, is an important stage in the development of many diseases. It can lead to structural damage and dysfunction and even severe carcinogenesis or death. There is currently no effective method for the treatment of fibrosis. At present, the molecular mechanism of tissue fibrosis has not yet been fully elucidated, but many studies have demonstrated that it is involved in conveying the complex messages between fibroblasts and various cytokines. Sphingosine 1-phosphate (S1P) is a naturally bioactive sphingolipid. S1P and the related signaling pathways are important intracellular metabolic pathways involved in many life activities, including cell proliferation, differentiation, apoptosis, and cellular signal transduction. Increasing evidence suggests that S1P and its signaling pathways play an important role in the development of tissue fibrosis; however, the mechanisms of these effects have not yet been fully elucidated, and even the role of S1P and its signaling pathways are still controversial. This article focuses on the role of S1P and the related signaling pathways in the development of fibrosis of lung, liver, heart, and other tissues, with emphasis on the application of inhibitors of some of molecules in the pathway in clinical treatment of fibrosis diseases.
Collapse
Affiliation(s)
- Erjin Wang
- Department of Health Toxicology, Xiangya School of Public Health, Central South University, Changsha, China
| | - Xingxuan He
- Department of Human Genetics and Genomic Sciences, Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Ming Zeng
- Department of Health Toxicology, Xiangya School of Public Health, Central South University, Changsha, China
| |
Collapse
|
55
|
Aquaporin 11-Dependent Inhibition of Proliferation by Deuterium Oxide in Activated Hepatic Stellate Cells. Molecules 2018; 23:molecules23123209. [PMID: 30563120 PMCID: PMC6321126 DOI: 10.3390/molecules23123209] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 12/01/2018] [Accepted: 12/04/2018] [Indexed: 01/08/2023] Open
Abstract
Deuterium oxide (D2O) has been reported to be active toward various in vitro cell lines in combination with phytochemicals. Our objective was to describe, for the first time, the effect of D2O on the proliferation of hepatic stellate cells (HSCs). After D2O treatment, the p53-cyclin-dependent kinase (CDK) pathway was stimulated, leading to inhibition of the proliferation of HSCs and an increase in the [ATP]/[ADP] ratio. We also evaluated the role of aquaporin (AQP) 11 in activated HSCs. We found that D2O treatment decreased AQP11 expression levels. Of note, AQP11 levels elevated by a genetic approach counteracted the D2O-mediated inhibition of proliferation. In addition, the expression levels of AQP11 negatively correlated with those of p53. On the other hand, cells transfected with an AQP11-targeted small interfering RNA (siRNA) showed enhanced inhibition of proliferation. These findings suggest that the inhibition of cell proliferation by D2O in activated HSCs could be AQP11 dependent. Our previous studies have documented that bisdemethoxycurcumin (BDMC) induces apoptosis by regulating heme oxygenase (HO)-1 protein expression in activated HSCs. In the current study, we tested whether cotreatment with BDMC and D2O can modulate the AQP11-dependent inhibition of cell proliferation effectively. We observed that D2O cotreatment with BDMC significantly decreased cell proliferation compared to treatment with D2O alone, and this effect was accompanied by downregulation of HO-1 and an increase in p53 levels.
Collapse
|
56
|
Dornas W, Glaise D, Bodin A, Sharanek A, Burban A, Le Guillou D, Robert S, Dutertre S, Aninat C, Corlu A, Lagente V. Endotoxin regulates matrix genes increasing reactive oxygen species generation by intercellular communication between palmitate-treated hepatocyte and stellate cell. J Cell Physiol 2018; 234:122-133. [PMID: 30191979 DOI: 10.1002/jcp.27175] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 07/16/2018] [Indexed: 12/19/2022]
Abstract
Previous studies have shown that gut-derived bacterial endotoxins contribute in the progression of simple steatosis to steatohepatitis, although the mechanism(s) remains inaccurate to date. As hepatic stellate cells (HSC) play a pivotal role in the accumulation of excessive extracellular matrix (ECM), leading to collagen deposition, fibrosis, and perpetuation of inflammatory response, an in vitro model was developed to investigate the crosstalk between HSC and hepatocytes (human hepatoma cell) pretreated with palmitate. Bacterial lipopolysaccharide (LPS) stimulated HSC with phosphorylation of the p38 mitogen-activated protein kinase/NF-κB pathway, while several important pro-inflammatory cytokines were upregulated in the presence of hepatocyte-HSC. Concurrently, fibrosis-related genes were regulated by palmitate and the inflammatory effect of endotoxin where cells were more exposed or sensitive to reactive oxygen species (ROS). This interaction was accompanied by increased expression of the mitochondrial master regulator, proliferator-activated receptor gamma coactivator alpha, and a cytoprotective effect of the agent N-acetylcysteine suppressing ROS production, transforming growth factor-β1, and tissue inhibitor of metalloproteinase-1. In summary, our results demonstrate that pro-inflammatory mediators LPS-induced promote ECM rearrangement in hepatic cells transcriptionally committed to the regulation of genes encoding enzymes for fatty acid metabolism in light of differences that might require an alternative therapeutic approach targeting ROS regulation.
Collapse
Affiliation(s)
- Waleska Dornas
- Nutrition Metabolisms and Cancer Institute, Institut National de la Santé et de la Recherche Médicale U1241, INRA, Université de Rennes 1, Université Bretagne Loire, Rennes, France
| | - Denise Glaise
- Nutrition Metabolisms and Cancer Institute, Institut National de la Santé et de la Recherche Médicale U1241, INRA, Université de Rennes 1, Université Bretagne Loire, Rennes, France
| | - Aude Bodin
- Nutrition Metabolisms and Cancer Institute, Institut National de la Santé et de la Recherche Médicale U1241, INRA, Université de Rennes 1, Université Bretagne Loire, Rennes, France
| | - Ahmad Sharanek
- Nutrition Metabolisms and Cancer Institute, Institut National de la Santé et de la Recherche Médicale U1241, INRA, Université de Rennes 1, Université Bretagne Loire, Rennes, France
| | - Audrey Burban
- Nutrition Metabolisms and Cancer Institute, Institut National de la Santé et de la Recherche Médicale U1241, INRA, Université de Rennes 1, Université Bretagne Loire, Rennes, France
| | - Dounia Le Guillou
- Nutrition Metabolisms and Cancer Institute, Institut National de la Santé et de la Recherche Médicale U1241, INRA, Université de Rennes 1, Université Bretagne Loire, Rennes, France
| | - Sacha Robert
- Nutrition Metabolisms and Cancer Institute, Institut National de la Santé et de la Recherche Médicale U1241, INRA, Université de Rennes 1, Université Bretagne Loire, Rennes, France
| | - Stephanie Dutertre
- Microscopy Rennes Imaging Center UMS CNRS 3480/US INSERM 018, Biosit, Université de Rennes 1, Rennes, France
| | - Caroline Aninat
- Nutrition Metabolisms and Cancer Institute, Institut National de la Santé et de la Recherche Médicale U1241, INRA, Université de Rennes 1, Université Bretagne Loire, Rennes, France
| | - Anne Corlu
- Nutrition Metabolisms and Cancer Institute, Institut National de la Santé et de la Recherche Médicale U1241, INRA, Université de Rennes 1, Université Bretagne Loire, Rennes, France
| | - Vincent Lagente
- Nutrition Metabolisms and Cancer Institute, Institut National de la Santé et de la Recherche Médicale U1241, INRA, Université de Rennes 1, Université Bretagne Loire, Rennes, France
| |
Collapse
|
57
|
Hu JP, Zhang R, Tang M, Li YL, Xun LT, Shi ZZ, An Y, Li T, Song ZJ. Loureirin B inhibits the proliferation of hepatic stellate cells and the Wnt/β-catenin signaling pathway by regulating miR-148-3p. Cell Mol Biol Lett 2018; 23:35. [PMID: 30123297 PMCID: PMC6090993 DOI: 10.1186/s11658-018-0098-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 06/26/2018] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND We investigated the activity of loureirin B against liver fibrosis and the underlying molecular mechanisms. METHODS Hepatic stellate cells (HSCs) from Sprague-Dawley rats were treated with different concentrations of loureirin B. We used the MTT assay to determine HSC proliferation, flow cytometry to analyze apoptosis, and western blot to determine the expressions of Bax, Bcl-2, Wnt1 and β-catenin. Real-time PCR was used to determine the expressions of Wnt1 and miR-148-3p. RESULTS The MTT assay showed that loureirin B treatment significantly inhibited the proliferation of HSCs in time- and dose-dependent manners. Loureirin B significantly promoted the apoptosis of HSCs, increased the expression of Bax and decreased the Bcl-2 level. Western blot analysis showed that the expressions of Wnt1 and β-catenin were obviously lower in the loureirin B treatment group than in the control group. We also found that loureirin B could decrease the Wnt1 mRNA level and increase miR-148-3p expression. Knockdown of miR-148-3p using inhibitor could reverse the effects of loureirin B on the proliferation and apoptosis of HSCs and the expressions of Bax, Bcl-2, Wnt1 and β-catenin. CONCLUSION Our results suggest that loureirin B inhibited the proliferation and promoted the apoptosis of HSCs, and suppressed the Wnt/β-catenin signaling pathway via regulation of miR-148-3p.
Collapse
Affiliation(s)
- Jian-Peng Hu
- Medical School, Kunming University of Science and Technology, Kunming, 650500 Yunnan province China
| | - Rong Zhang
- Medical School, Kunming University of Science and Technology, Kunming, 650500 Yunnan province China
| | - Min Tang
- Department of Gastroenterology, the First People’s Hospital of Yunnan province, the Affiliated Hospital of Kunming University of Science and Technology, Kunming, 650032 Yunnan province China
| | - Yu-Lian Li
- Department of Gastroenterology, the First People’s Hospital of Yunnan province, the Affiliated Hospital of Kunming University of Science and Technology, Kunming, 650032 Yunnan province China
| | - Lin-Ting Xun
- Department of Gastroenterology, the First People’s Hospital of Yunnan province, the Affiliated Hospital of Kunming University of Science and Technology, Kunming, 650032 Yunnan province China
| | - Zhi-Zhou Shi
- Medical School, Kunming University of Science and Technology, Kunming, 650500 Yunnan province China
| | - Ying An
- Department of Gastroenterology, the First People’s Hospital of Yunnan province, the Affiliated Hospital of Kunming University of Science and Technology, Kunming, 650032 Yunnan province China
| | - Ting Li
- Department of Gastroenterology, the First People’s Hospital of Yunnan province, the Affiliated Hospital of Kunming University of Science and Technology, Kunming, 650032 Yunnan province China
| | - Zheng-Ji Song
- Department of Gastroenterology, the First People’s Hospital of Yunnan province, the Affiliated Hospital of Kunming University of Science and Technology, Kunming, 650032 Yunnan province China
| |
Collapse
|
58
|
Ezhilarasan D, Sokal E, Najimi M. Hepatic fibrosis: It is time to go with hepatic stellate cell-specific therapeutic targets. Hepatobiliary Pancreat Dis Int 2018; 17:192-197. [PMID: 29709350 DOI: 10.1016/j.hbpd.2018.04.003] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 03/29/2018] [Indexed: 02/06/2023]
Abstract
Hepatic fibrosis is a pathological lesion, characterized by the progressive accumulation of extracellular matrix (ECM) in the perisinusoidal space and it is a major problem in chronic liver diseases. Phenotypic activation of hepatic stellate cells (HSC) plays a central role in the progression of hepatic fibrosis. Retardation of proliferation and clearance of activated HSCs from the injured liver is an appropriate therapeutic strategy for the resolution and treatment of hepatic fibrosis. Clearance of activated HSCs from the injured liver by autophagy inhibitors, proapoptotic agents and senescence inducers with the high affinity toward the activated HSCs may be the novel therapeutic strategy for the treatment of hepatic fibrosis in the near future.
Collapse
Affiliation(s)
- Devaraj Ezhilarasan
- Biomedical Research Unit and Laboratory Animal Centre, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai 600 077, Tamil Nadu, India.
| | - Etienne Sokal
- Institut de Recherche Expérimentale et Clinique (IREC), Laboratory of Pediatric Hepatology and Cell Therapy, Université Catholique de Louvain, Brussels 1200, Belgium
| | - Mustapha Najimi
- Institut de Recherche Expérimentale et Clinique (IREC), Laboratory of Pediatric Hepatology and Cell Therapy, Université Catholique de Louvain, Brussels 1200, Belgium
| |
Collapse
|
59
|
Shih YL, Wu MF, Lee CH, Yeh MY, Chou J, Liu JY, Lu HF, Huang YP, Liao NC, Chung JG. Antrodia Cinnamomea Reduces Carbon Tetrachloride-induced Hepatotoxicity In Male Wister Rats. ACTA ACUST UNITED AC 2018; 31:877-884. [PMID: 28882954 DOI: 10.21873/invivo.11142] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 06/01/2017] [Accepted: 06/02/2017] [Indexed: 12/12/2022]
Abstract
BACKGROUND/AIM Antrodia cinnamomea is found with polysaccharides, lipids, vitamins, fibers and ash (minerals) and is well known in Taiwan as a traditional Chinese medicine. Its biological activities have been reported to have anti-inflammatory, anti-fatigue, anti-tumor and immunomodulatory effects, but its protective effects on liver function are still unclear. MATERIALS AND METHODS We determined if Antrodia cinnamomea was hepatoprotective against carbon tetrachloride (CCl4) toxicity in Wistar rats. Six groups were used in the study: 1) control (no induction by CCl4); 2) negative control (CCl4-induction and no treatment); 3) positive control (silymarin treatment); 4) groups 4-6 were treated with CC14 and different concentrations (350 mg/kg, 1,400 mg/kg, 3,150 mg/kg) of Antrodia cinnamomea. Blood and liver samples of rats were harvested and then detected by biochemical and tissue histochemical analysis. Activity of the antioxidative enzymes glutathione peroxidase, superoxide dismutase and catalase in the liver were also monitored. RESULTS Only the high-dose treatment was able to decrease serum glutamic-oxaloacetic transaminase (GOT) and glutamic-pyruvic transaminase (GPT) levels and improve liver function. High and medium doses increased total liver protein and reduced hydroxyproline. It was also observed that the high dose treatment reduced lipid peroxidation. Liver sections of CC14 treated animals receiving Antrodia cinnamomea showed less fibrosis compared to the CCl4 control group. CONCLUSION This finding suggested that Antrodia cinnamomea can either enhance liver recovering from CCl4 damage or attenuate CCl4 toxicity in rats.
Collapse
Affiliation(s)
- Yung-Luen Shih
- Department of Pathology and Laboratory Medicine, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan, R.O.C.,School of Medical Laboratory Science and Biotechnology, Taipei Medical University, Taipei, Taiwan, R.O.C.,School of Medicine, College of Medicine, Fu-Jen Catholic University, New Taipei, Taiwan, R.O.C
| | - Ming-Fang Wu
- Animal Medicine Center, College of Medicine, National Taiwan University, Taipei, Taiwan, R.O.C
| | - Ching-Hsiao Lee
- Department of Medical Technology, Jen-Teh Junior College of Medicine, Nursing and Management, Houlong, Miaoli County, Taiwan, R.O.C
| | - Ming-Yang Yeh
- Departments of Medical Education and Research, Cheng Hsin General Hospital, Taipei, Taiwan, R.O.C
| | - Jason Chou
- Departments of Anatomic Pathology, Cheng Hsin General Hospital, Taipei, Taiwan, R.O.C
| | - Jia-You Liu
- Departments of Clinical Pathology, Cheng Hsin General Hospital, Taipei, Taiwan, R.O.C
| | - Hsu-Feng Lu
- School of Medicine, College of Medicine, Fu-Jen Catholic University, New Taipei, Taiwan, R.O.C. .,Departments of Clinical Pathology, Cheng Hsin General Hospital, Taipei, Taiwan, R.O.C
| | - Yi-Ping Huang
- Department of Physiology, China Medical University, Taichung, Taiwan, R.O.C
| | - Nien-Chieh Liao
- Departments of Clinical Pathology, Cheng Hsin General Hospital, Taipei, Taiwan, R.O.C
| | - Jing-Gung Chung
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan, R.O.C. .,Department of Biotechnology, Asia University, Taichung, Taiwan, R.O.C
| |
Collapse
|
60
|
Okamoto M, Ishida Y, Keogh A, Strain A. Evaluation of the Function of Primary Human Hepatocytes Co-Cultured with the Human Hepatic Stellate Cell (HSC) Line LI90. Int J Artif Organs 2018. [DOI: 10.1177/039139889802100607] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Most bioartificial liver devices utilise primary hepatocytes alone although some have considered the use of non parenchymal cells in addition. However the effects of co-culture of human hepatocytes with different sinusoidal cell types has not been fully investigated. In this study we have examined the influence of co-culturing primary human hepatocytes with the human hepatic stellate cell (HSC) line, LI90. Cultures were monitored by light microscopy and on days 4, 8 and 14 urea synthesis and cytochrome P450 activity were measured. Morphologically LI90 cells proliferated to fill spaces between and into adjacent islands of hepatocytes. On day 14 cytochrome P450 activity in co-culture was significantly improved compared to hepatocytes cultured alone. By contrast, urea synthesis in hepatocytes was unaffected by single or co-culture. Therefore it can be concluded that a combination of primary human hepatocytes with LI90 cells is beneficial for growth and some stability of hepatocytes and may therefore be appropriate for seeding bioartificial liver devices.
Collapse
Affiliation(s)
- M. Okamoto
- Liver Research Laboratories, Queen Elizabeth Hospital, Edgbaston Birmingham - UK
| | - Y. Ishida
- Liver Research Laboratories, Queen Elizabeth Hospital, Edgbaston Birmingham - UK
| | - A. Keogh
- Liver Research Laboratories, Queen Elizabeth Hospital, Edgbaston Birmingham - UK
| | - A. Strain
- Liver Research Laboratories, Queen Elizabeth Hospital, Edgbaston Birmingham - UK
| |
Collapse
|
61
|
Coppola N, Perna A, Lucariello A, Martini S, Macera M, Carleo MA, Guerra G, Esposito V, De Luca A. Effects of treatment with Maraviroc a CCR5 inhibitor on a human hepatic stellate cell line. J Cell Physiol 2018; 233:6224-6231. [PMID: 29336497 DOI: 10.1002/jcp.26485] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 01/12/2018] [Indexed: 12/16/2022]
Abstract
After an acute liver damage, tissue regeneration repairs lesions with degradation of deposed fibrotic material, while mechanisms of tissue restoration are persistently activated following several repeated injuries, inducing deposition of extracellular matrix. (ECM). Factors responsible for ECM remodeling have been identified in a pathway involving a family of zinc-dependent enzyme matrix metalloproteinases (MMPs), together with tissue inhibitor of metalloproteinases (TIMPs). Recent experimental models suggested a role of CCR5 receptor in the genesis of liver fibrosis. Drawing from these background we decided to evaluate the effects of the treatment with the CCR5 inhibitor Maraviroc on LX-2, a human hepatic stellate cell line (HSC). Treatment with Maraviroc resulted in a block in S phase of LX-2 cells with increased expression levels of cyclin D1 and p21 while the expression of p53 was reduced. Treatment with Maraviroc was also able to block the accumulation of fibrillar collagens and extracellular matrix proteins (ECM), as demonstrated by the decrease of specific markers as Collagen type I, α-SMA, and TGF-β1. In addition we observed a down regulation of both metalloproteins (MMP-2, MMP-9), used for the degradation of the extracellular matrix and their inhibitors (TIMP-1, TIMP-2). The identification of a compound that may modulate the dynamic of liver fibrosis could be crucial in all chronic liver diseases. Maraviroc could play an important role because, in addition to its own anti-HIV activity, it could reduce the release of pro-inflammatory citokynes implicated in liver fibrogenesis.
Collapse
Affiliation(s)
- Nicola Coppola
- Department of Mental Health and Preventive Medicine, Section of Infectious Diseases, University of Campania "L. Vanvitelli", Naples, Italy
| | - Angelica Perna
- Department of Mental Health and Preventive Medicine, Section of Human Anatomy, University of Campania "L. Vanvitelli", Naples, Italy
| | - Angela Lucariello
- Department of Mental Health and Preventive Medicine, Section of Human Anatomy, University of Campania "L. Vanvitelli", Naples, Italy
| | - Salvatore Martini
- Department of Mental Health and Preventive Medicine, Section of Infectious Diseases, University of Campania "L. Vanvitelli", Naples, Italy
| | - Margherita Macera
- Department of Mental Health and Preventive Medicine, Section of Infectious Diseases, University of Campania "L. Vanvitelli", Naples, Italy
| | - Maria A Carleo
- Department of Infectious Disease and Infectiuos Emergencies, Immunodepression and Systemic Infections Unit, Naples, Italy
| | - Germano Guerra
- Department of Medicine and Health Sciences, University of Molise, Molise, Italy
| | - Vincenzo Esposito
- Department of Infectious Disease and Infectious Emergencies, General Infectious Diseases Unit, Naples, Italy
| | - Antonio De Luca
- Department of Mental Health and Preventive Medicine, Section of Human Anatomy, University of Campania "L. Vanvitelli", Naples, Italy
| |
Collapse
|
62
|
Le CT, Nguyen G, Park SY, Choi DH, Cho EH. LY2405319, an analog of fibroblast growth factor 21 ameliorates α-smooth muscle actin production through inhibition of the succinate-G-protein couple receptor 91 (GPR91) pathway in mice. PLoS One 2018; 13:e0192146. [PMID: 29444136 PMCID: PMC5812602 DOI: 10.1371/journal.pone.0192146] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 01/17/2018] [Indexed: 01/28/2023] Open
Abstract
Fibroblast growth factor 21 (FGF21) is an important metabolic regulator expressed predominantly in the liver. In this study, we evaluated the role of LY2405319, an analogue of FGF21, in hepatic stellate cell (HSC) activation and in a methionine and choline-deficient (MCD)-diet induced mouse model of liver fibrosis. During liver injury, HSCs trans-differentiate into activated myofibroblasts which produce alpha-smooth muscle actin (α-SMA) and become a major cell type in hepatic fibrogenesis. Succinate and succinate receptor (GPR91) signaling has emerged as a regulator to promote α-SMA production in MCD diet- induced mice. Treatment with palmitate or MCD medium on LX-2 cells (HSCs) increased succinate concentration in the conditioned medium and cell lysate of LX-2 cells and increased production of GPR91 and α-SMA. However, LY2405319 administration ameliorates palmitate or MCD media-induced succinate production and decreases over-expression of GPR91 and α-SMA in LX2-cells. In an in vivo study, the MCD diet treatment caused increased steatohepatitis and liver fibrosis compared with the control diet in mice. Administration of LY2405319 improved steatohepatitis ameliorated GPR91 and α -SMA production in the liver, decreased succinate concentration in both liver and serum of MCD diet -induced mice. These results suggest that FGF21 reduces production of α-SMA by inhibiting the succinate-GPR91 pathway. We conclude that FGF21 acts as an inhibitor of the succinate-GPR91 pathway to control liver fibrosis. This suggests that FGF21 has therapeutic potential for treating liver fibrogenesis.
Collapse
Affiliation(s)
- Cong Thuc Le
- Department of Internal Medicine, School of Medicine, Kangwon National University, Chuncheon, Republic of Korea
| | - Giang Nguyen
- Department of Internal Medicine, School of Medicine, Kangwon National University, Chuncheon, Republic of Korea
| | - So Young Park
- Department of Internal Medicine, School of Medicine, Kangwon National University, Chuncheon, Republic of Korea
| | - Dae Hee Choi
- Department of Internal Medicine, School of Medicine, Kangwon National University, Chuncheon, Republic of Korea
| | - Eun-Hee Cho
- Department of Internal Medicine, School of Medicine, Kangwon National University, Chuncheon, Republic of Korea
- * E-mail:
| |
Collapse
|
63
|
de Lazari MGT, Pereira LX, Viana CTR, Orellano LAA, de Almeida SA, Vasconcelos AC, Ribeiro GB, Couto LC, Andrade SP, Campos PP. Induction of liver proliferation using a polymeric platform in mice. Life Sci 2018; 193:226-233. [PMID: 29097158 DOI: 10.1016/j.lfs.2017.10.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 10/17/2017] [Accepted: 10/29/2017] [Indexed: 11/25/2022]
Abstract
AIMS Currently, animal models of liver regeneration are based on extensive lesions of the native organ and on cellular approaches using biomaterials to host growth factors and extracellular components to create artificial liver systems. We report a polymeric biological platform, minimally invasive, that induced sequential proliferation of liver parenchyma inside the scaffold in mice. MAIN METHODS Porous discs of polyether-polyurethane were surgically placed under the left liver lobe and removed at days 4, 8, 12 and 25 after implantation. No exogenous growth factors or extracellular matrix components were added to the scaffold. Histological analysis of the implants was performed to identify hepatocytes, liver vascular structures and bile ducts in the newly formed tissue. In addition, systemic markers for hepatic function were determined. KEY FINDINGS This biohybrid device provided a scaffold that was gradually filled with parenchymal and non-parenchymal liver tissue as detected by histological analysis. At day 4, the pores of the scaffold were filled with inflammatory cells and spindled-shaped like fibroblasts, and extracellular matrix components. At day 8, hepatocytes clusters, central lobular hepatic veins, portal space containing arteries, veins and biliary ducts were detected. By days 12 and 25 a liver-like structure filled 2/3 of the scaffold. Its organization resembled that of a mature liver. Serum concentration of ALT increased three-fold initially after implantation, returning gradually to control levels. SIGNIFICANCE The plain synthetic scaffold (without addition of exogenous molecules) placed under the intact left liver lobe exhibits the potential to investigate physiological mechanisms that regulate liver parenchyma proliferation.
Collapse
Affiliation(s)
| | - Luciana Xavier Pereira
- Department of General Pathology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Celso Tarso Rodrigues Viana
- Department of General Pathology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Laura Alejandra Ariza Orellano
- Department of General Pathology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Simone Aparecida de Almeida
- Department of General Pathology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Anilton Cesar Vasconcelos
- Department of General Pathology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Giani Barbosa Ribeiro
- Department of General Pathology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Leticia Chinait Couto
- Department of General Pathology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Silvia Passos Andrade
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Paula Peixoto Campos
- Department of General Pathology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
64
|
Kurokawa T, Ohkohchi N. Role of Platelet, Blood Stem Cell, and Thrombopoietin in Liver Regeneration, Liver Cirrhosis, and Liver Diseases. STEM CELLS AND CANCER IN HEPATOLOGY 2018:159-177. [DOI: 10.1016/b978-0-12-812301-0.00009-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
65
|
Hu MS, Borrelli MR, Januszyk M, Luan A, Malhotra S, Walmsley GG, Hong WX, Tevlin R, Gurtner GC, Longaker MT, Lorenz HP. Pathway Analysis of Gene Expression of E14 Versus E18 Fetal Fibroblasts. Adv Wound Care (New Rochelle) 2018; 7:1-10. [PMID: 29344429 DOI: 10.1089/wound.2017.0763] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 09/30/2017] [Indexed: 12/13/2022] Open
Abstract
Objective: Fetuses early in gestation heal skin wounds without forming scars. The biological mechanisms behind this process are largely unknown. Fibroblasts, however, are cells known to be intimately involved in wound healing and scar formation. We examined fibroblasts in different stages of development to characterize differences in gene expression that may result in the switch from regenerative wound repair to repair with scarring. Approach: Fibroblasts were isolated and cultured from the back skin of BALB/c wild-type mouse fetuses at embryonic day (E)14 and E18 (n = 10). The fibroblast total RNA was extracted, and microarray analysis was conducted using chips containing 42,000 genes. Significance analysis of microarrays was performed to identify genes with greater than twofold expression difference and a false discovery rate of less than two. Identified genes subsequently underwent enrichment analysis to detect differentially expressed pathways. Results: Two hundred seventy-five genes were differentially expressed between E14 and E18 in fetal fibroblasts. Thirty genes were significantly downregulated and 245 genes were significantly upregulated at E18 compared with E14. Ingenuity pathway analysis identified the top 20 signaling pathways differentially activated in fetal fibroblasts between the E18 and E14 time points. Innovation: To our knowledge, this work represents the first instance where differentially expressed genes and signaling pathways between fetal fibroblasts at E14 and E18 have been studied. Conclusion: The genes and pathways identified here potentially underlie the mechanism behind the transition from fetal wound healing via regeneration to wound healing by repair, and may prove to be key targets for future therapeutics.
Collapse
Affiliation(s)
- Michael S. Hu
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California
| | - Mimi R. Borrelli
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California
| | - Michael Januszyk
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California
| | - Anna Luan
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California
| | - Samir Malhotra
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California
| | - Graham G. Walmsley
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California
| | - Wan Xing Hong
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California
| | - Ruth Tevlin
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California
| | - Geoffrey C. Gurtner
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California
| | - Michael T. Longaker
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California
| | - Hermann P. Lorenz
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California
| |
Collapse
|
66
|
|
67
|
Vallianou NG, Kazazis C, Ioannidis G. Diabetic hepatosclerosis: True clinical entity or ghost disease? Diabetes Metab Syndr 2017; 11 Suppl 2:S775-S776. [PMID: 28602848 DOI: 10.1016/j.dsx.2017.05.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 05/31/2017] [Indexed: 10/19/2022]
Abstract
Diabetic hepatosclerosis is a novel entity that has recently been introduced by reviewing archived liver biopsies as a non-cirrhotic form of peri-sinusoidal fibrosis with basement membrane formation. Diabetic hepatosclerosis is usually characterized by an indolent clinical course. Serum aminotransferase levels are normal or minimally elevated, but elevated alkaline phosphatase levels is usually present. Clinically relevant to DH is the co-existence of other diabetic microvascular complications in the same patient, such as ESRD on long-term dialysis or renal transplantation, retinopathy, or neuropathy. Although it seems that DH occurs in patients with type 1 more often than type 2 diabetes mellitus, the true prevalence of this entity still remains unknown. Future prospective studies should include long-term follow-up to examine the natural history and to explore treatment options for this form of hepatic micro-angiopathy disease.
Collapse
Affiliation(s)
- Natalia G Vallianou
- Evangelismos General Hospital, Department of Internal Medicine, Athens, Greece.
| | - Christos Kazazis
- Evangelismos General Hospital, Department of Internal Medicine, Athens, Greece
| | - George Ioannidis
- Evangelismos General Hospital, Department of Internal Medicine, Athens, Greece
| |
Collapse
|
68
|
Eulenberg VM, Lidbury JA. Hepatic Fibrosis in Dogs. J Vet Intern Med 2017; 32:26-41. [PMID: 29194760 PMCID: PMC5787209 DOI: 10.1111/jvim.14891] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 10/17/2017] [Accepted: 10/31/2017] [Indexed: 12/19/2022] Open
Abstract
Hepatic fibrosis is commonly diagnosed in dogs, often as a sequela to chronic hepatitis (CH). The development of fibrosis is a crucial event in the progression of hepatic disease that is of prognostic value. The pathophysiology of hepatic fibrosis in human patients and rodent models has been studied extensively. Although less is known about this process in dogs, evidence suggests that fibrogenic mechanisms are similar between species and that activation of hepatic stellate cells is a key step. Diagnosis and staging of hepatic fibrosis in dogs requires histopathological examination of a liver biopsy specimen. However, performing a liver biopsy is invasive and assessment of fibrotic stage is complicated by the absence of a universally accepted staging scheme in veterinary medicine. Serum biomarkers that can discriminate among different fibrosis stages are used in human patients, but such markers must be more completely evaluated in dogs before clinical use. When successful treatment of its underlying cause is feasible, reversal of hepatic fibrosis has been shown to be possible in rodent models and human patients. Reversal of fibrosis has not been well documented in dogs, but successful treatment of CH is possible. In human medicine, better understanding of the pathomechanisms of hepatic fibrosis is leading to the development of novel treatment strategies. In time, these may be applied to dogs. This article comparatively reviews the pathogenesis of hepatic fibrosis, its diagnosis, and its treatment in dogs.
Collapse
Affiliation(s)
- V M Eulenberg
- Gastrointestinal Laboratory, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX
| | - J A Lidbury
- Gastrointestinal Laboratory, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX
| |
Collapse
|
69
|
Lebda MA, Sadek KM, Abouzed TK, Tohamy HG, El-Sayed YS. Melatonin mitigates thioacetamide-induced hepatic fibrosis via antioxidant activity and modulation of proinflammatory cytokines and fibrogenic genes. Life Sci 2017; 192:136-143. [PMID: 29180002 DOI: 10.1016/j.lfs.2017.11.036] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 11/18/2017] [Accepted: 11/23/2017] [Indexed: 12/11/2022]
Abstract
AIMS The potential antifibrotic effects of melatonin against induced hepatic fibrosis were explored. MAIN METHODS Rats were allocated into four groups: placebo; thioacetamide (TAA) (200mg/kg bwt, i.p twice weekly for two months); melatonin (5mg/kgbwt, i.p daily for a week before TAA and continued for an additional two months); and melatonin plus TAA. Hepatic fibrotic changes were evaluated biochemically and histopathologically. Hepatic oxidative/antioxidative indices were assessed. The expression of hepatic proinflammatory cytokines (tumor necrosis factor-α, and interleukin-1β), fibrogenic-related genes (transforming growth factor-1β, collagen I, collagen, III, laminin, and autotaxin) and an antioxidant-related gene (thioredoxin-1) were detected by qRT-PCR. KEY FINDINGS In fibrotic rats, melatonin lowered serum aspartate aminotransferase, alanine aminotransferase, and autotaxin activities, bilirubin, hepatic hydroxyproline and plasma ammonia levels. Melatonin displayed hepatoprotective and antifibrotic potential as indicated by mild hydropic degeneration of some hepatocytes and mild fibroplasia. In addition, TAA induced the depletion of glutathione, glutathione s-transferase, glutathione peroxidase, superoxide dismutase, catalase, and paraoxonase-1 (PON-1), while inducing the accumulation of malondialdehyde, protein carbonyl (C=O) and nitric oxide (NO), and DNA fragmentation. These effects were restored by melatonin pretreatment. Furthermore, melatonin markedly attenuated the expression of proinflammatory cytokines and fibrogenic genes via the upregulation of thioredoxin-1 mRNA transcripts. SIGNIFICANCE Melatonin exhibits potent anti-inflammatory, antioxidant and fibrosuppressive activities against TAA-induced hepatic fibrogenesis via the suppression of oxidative stress, DNA damage, proinflammatory cytokines and fibrogenic gene transcripts. In addition, we demonstrate that the antifibrotic activity of melatonin is mediated by the induction of thioredoxin-1 with attenuation of autotaxin expressions.
Collapse
Affiliation(s)
- Mohamed A Lebda
- Department of Biochemistry, Faculty of Veterinary Medicine, Alexandria University, Egypt.
| | - Kadry M Sadek
- Department of Biochemistry, Faculty of Veterinary Medicine, Damanhur University, Egypt
| | - Tarek K Abouzed
- Department of Biochemistry, Faculty of Veterinary Medicine, Kafr Elsheikh University, Egypt
| | - Hossam G Tohamy
- Department of Pathology, Faculty of Veterinary Medicine, Alexandria University, Egypt
| | - Yasser S El-Sayed
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Damanhur University, Egypt.
| |
Collapse
|
70
|
Red blood cell-like particles with the ability to avoid lung and spleen accumulation for the treatment of liver fibrosis. Biomaterials 2017; 156:45-55. [PMID: 29190497 DOI: 10.1016/j.biomaterials.2017.11.031] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 10/19/2017] [Accepted: 11/21/2017] [Indexed: 01/03/2023]
Abstract
Micro-sized drug-carrier particles accumulate mainly in the lungs and nano-sized particles tend to accumulate in the liver and spleen. Here, we show that micro-particles designed to mimic red blood cells (RBCs) can overcome these limitations. The RBC-MPs created in this study have a unique intra-particle elasticity distribution (IED), enabling them to bend around the central axis of the RBC-like dent, enabling them to pass through pores smaller than their diameter, mechanically behaving as authentic RBCs. In contrast, spherical MPs (SPH-MPs) and RBC-MPs hardened by incorporating a siloxane network (SiO2-RBC-MPs), could not. In addition to the IED, we discovered that the deformability also depends on the shape and average particle elasticity. RBC-MPs did not accumulate in the lungs and the spleen, but were targeted specifically to the liver instead. In contrast, non-RBC-MPs such as SPH-MPs and SiO2-RBC-MPs showed heavy accumulation in the lungs and/or spleen, and were dispersed non-specifically in various organs. Thus, controlling the shape and mechanical properties of RBC-MPs is important for achieving the desired biodistribution. When RBC-MPs were loaded with a (TGF)-β receptor inhibitor, RBC-MPs could treat liver fibrosis without pneumotoxicity.
Collapse
|
71
|
Petrescu AD, Grant S, Frampton G, Kain J, Hadidi K, Williams E, McMillin M, DeMorrow S. Glucocorticoids Cause Gender-Dependent Reversal of Hepatic Fibrosis in the MDR2-Knockout Mouse Model. Int J Mol Sci 2017; 18:E2389. [PMID: 29125588 PMCID: PMC5713358 DOI: 10.3390/ijms18112389] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 11/06/2017] [Accepted: 11/06/2017] [Indexed: 12/12/2022] Open
Abstract
Hepatic cholestasis is associated with a significant suppression of the hypothalamus-pituitary-adrenal axis (HPA). In the present study, we tested the hypothesis that activation of the HPA axis by corticosterone treatment can reverse liver inflammation and fibrosis in a multidrug resistance protein 2 knockout (MDR2KO) transgenic mouse model of hepatic cholestasis. Friend Virus B NIH-Jackson (FVBN) control and MDR2KO male and female mice were treated with vehicle or corticosterone for two weeks, then serum and liver analyses of hepatic cholestasis markers were performed. Indicators of inflammation, such as increased numbers of macrophages, were determined. MDR2KO mice had lower corticotropin releasing hormone and corticosterone levels than FVBN controls in the serum. There was a large accumulation of CD68 and F4/80 macrophages in MDR2KO mice livers, which indicated greater inflammation compared to FVBNs, an effect reversed by corticosterone treatment. Intrahepatic biliary duct mass, collagen deposition and alpha smooth muscle actin (αSMA) were found to be much higher in livers of MDR2KO mice than in controls; corticosterone treatment significantly decreased these fibrosis markers. When looking at the gender-specific response to corticosterone treatment, male MDR2KO mice tended to have a more pronounced reversal of liver fibrosis than females treated with corticosterone.
Collapse
Affiliation(s)
- Anca D Petrescu
- Department of Medical Physiology, Texas A & M Health Science Center College of Medicine, Temple, TX 76504, USA.
| | - Stephanie Grant
- Department of Medical Physiology, Texas A & M Health Science Center College of Medicine, Temple, TX 76504, USA.
| | - Gabriel Frampton
- Department of Medical Physiology, Texas A & M Health Science Center College of Medicine, Temple, TX 76504, USA.
| | - Jessica Kain
- Department of Medical Physiology, Texas A & M Health Science Center College of Medicine, Temple, TX 76504, USA.
| | - Karam Hadidi
- Department of Medical Physiology, Texas A & M Health Science Center College of Medicine, Temple, TX 76504, USA.
| | - Elaina Williams
- Department of Medical Physiology, Texas A & M Health Science Center College of Medicine, Temple, TX 76504, USA.
| | - Matthew McMillin
- Central Texas Veterans Health Care System, Temple, TX 76504, USA.
| | - Sharon DeMorrow
- Department of Medical Physiology, Texas A & M Health Science Center College of Medicine, Temple, TX 76504, USA.
- Central Texas Veterans Health Care System, Temple, TX 76504, USA.
| |
Collapse
|
72
|
Yang D, Li L, Qian S, Liu L. Evodiamine ameliorates liver fibrosis in rats via TGF-β1/Smad signaling pathway. J Nat Med 2017; 72:145-154. [PMID: 28936800 DOI: 10.1007/s11418-017-1122-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 08/03/2017] [Indexed: 01/01/2023]
Abstract
Liver fibrosis is considered to be a result of chronic liver pathological changes, and hepatic stellate cells (HSCs) play an important role during this process. Evodiamine, an indole alkaloid derived from Evodia rutaecarpa, exhibits pharmacological activities. This study focused on the effects of evodiamine on carbon tetrachloride (CCl4)-induced liver fibrosis in rats and HSCs in vitro via the TGF-β1/Smad signaling pathway. A liver fibrosis rat model was established by the intraperitoneal injection of CCl4 (3 ml/kg, 30% in olive oil). Evodiamine (15 and 25 mg/kg) was administered orally for 8 weeks. HSCs were treated with different evodiamine concentrations. The results indicated that evodiamine could improve the histopathological abnormalities in liver tissues and decrease the level of aspartate aminotransferase (AST), alanine aminotransferase (ALT), hydroxyproline, and total bilirubin (TBIL). Concentrations of IL-6, tumor necrosis factor-α (TNF-α), collagen-I (COL-I), and collagen-III (COL-III) were reduced by evodiamine. Western blotting and real-time PCR showed that protein expression of transforming growth factor-β (TGF-β1), p-Smad 2/3 (phosphorylation of Smad 2/3), and smooth muscle alpha-actin (α-SMA) as well as mRNA expression of TGF-β1 and α-SMA in liver tissues were downregulated by evodiamine. The cell proliferation, production of hydroxyproline, and the protein expression of TGF-β1, p-Smad 2/3, and α-SMA in HSCs were dose-dependently reduced by evodiamine. Collectively, evodiamine had an antifibrosis effect in CCl4-induced liver fibrosis, and reduced HSCs proliferation and collagen metabolism in vitro. The major mechanism was downregulation of relative expression of TGF-β1, p-Smad 2/3, and α-SMA.
Collapse
Affiliation(s)
- Dongmei Yang
- Department of Pharmacy, Anhui Medical College, No. 632, Furong Road, Economic and Technological Development Zone, Hefei, 230601, Anhui, People's Republic of China
| | - Li Li
- Department of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, People's Republic of China
| | - Shanjun Qian
- Department of Pharmacy, Anhui Medical College, No. 632, Furong Road, Economic and Technological Development Zone, Hefei, 230601, Anhui, People's Republic of China
| | - Lixin Liu
- Department of Pharmacy, Anhui Medical College, No. 632, Furong Road, Economic and Technological Development Zone, Hefei, 230601, Anhui, People's Republic of China.
| |
Collapse
|
73
|
Mohammed A, Abd Al Haleem EN, El-Bakly WM, El-Demerdash E. Deferoxamine alleviates liver fibrosis induced by CCl4 in rats. Clin Exp Pharmacol Physiol 2017; 43:760-8. [PMID: 27168353 DOI: 10.1111/1440-1681.12591] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 05/04/2016] [Accepted: 05/07/2016] [Indexed: 11/28/2022]
Abstract
Several chronic liver diseases can lead to the occurrence of hepatic fibrosis through the accumulation of iron, which causes induction of oxidative stress and consequently activation of fibrogenesis. The present study was designed to investigate the potential antifibrotic and anti-oxidant effects of deferoxamine (DFO), a well-known iron chelator in an experimental rat model of liver injury using carbon tetrachloride (CCl4 ). First, the potential effective dose of DFO was screened against CCl4 -induced acute hepatotoxicity. Then, rats were co-treated with DFO (300 mg/kg, i.p.) for 6 weeks starting from the third week of CCl4 induction of chronic hepatotoxicity. Liver function was assessed in addition to histopathological examination. Furthermore, oxidative stress and fibrosis markers were assessed. It was found that treatment of animals with DFO significantly counteracted the changes in liver function; histopathological lesions and hepatic iron deposition that were induced by CCl4 . DFO also significantly counteracted the CCl4 -induced lipid peroxidation increase and reduction in antioxidant activities of superoxide dismutase and glutathione peroxidase enzymes. In addition, DFO ameliorated significantly liver fibrosis markers including hydroxyproline, collagen accumulation, and the expression of the hepatic stellate cells (HSCs) activation marker; alpha smooth muscle actin and transforming growth factor-beta (TGF-β). Together, these findings indicate that DFO possesses a potent antifibrotic effect due to its antioxidant properties that counteracted oxidative stress and lipid peroxidation and restored antioxidant enzymes activities as well as reducing HSCs activation and fibrogenesis.
Collapse
Affiliation(s)
- Aya Mohammed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Ekram N Abd Al Haleem
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Wesam M El-Bakly
- Department of Pharmacology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Ebtehal El-Demerdash
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt.,Department of Pharmacology and Toxicology, Faculty of Pharmacy, Misr International University, Cairo, Egypt
| |
Collapse
|
74
|
Yu Y, Duan J, Li Y, Li Y, Jing L, Yang M, Wang J, Sun Z. Silica nanoparticles induce liver fibrosis via TGF-β 1/Smad3 pathway in ICR mice. Int J Nanomedicine 2017; 12:6045-6057. [PMID: 28860765 PMCID: PMC5573053 DOI: 10.2147/ijn.s132304] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The liver is one of the target organs of silica nanoparticles (SiO2 NPs) but the toxic mechanism on the liver still remains unclear. This study aimed to explore the hepatic toxicity and its mechanism through repeated intravenous exposure to SiO2 NPs in ICR mice. Results indicated that SiO2 NPs could be distributed in hepatocytes, Kupffer cells, and hepatic stellate cells, and induce hepatic dysfunction as well as granuloma formation in the liver. The increase of lipid peroxide level and decrease of antioxidant enzyme activities in the liver indicated that SiO2 NPs could induce hepatic oxidative damage. SiO2 NPs induced hepatocytes’ apoptosis shown by morphological examination and TUNEL assay. The results of Masson’s trichrome staining and hydroxyproline assay showed hyperplasia of collagen fibers in the liver, suggesting SiO2 NPs caused liver fibrosis, and it was promoted by oxidative damage and hepatocytes’ apoptosis. The results of Western blot analysis and immunohistochemical staining indicated that the activation of TGF-β1/Smad3 signaling pathway played an important role in this pathophysiological process. The results suggested that oxidative damage and hepatocyte apoptosis activated TGF-β1/Smad3 signaling pathway, and thus promoted the process of liver fibrosis induced by intravenous injection of SiO2 NPs in mice. This study, for the first time, investigated liver fibrosis and its related mechanism induced by repeated intravenous exposure of amorphous SiO2 NPs, and provides important experimental evidence for safety evaluation of SiO2 NPs, especially in biomedical application.
Collapse
Affiliation(s)
- Yang Yu
- School of Public Health, Capital Medical University, Beijing, People's Republic of China.,Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, People's Republic of China
| | - Junchao Duan
- School of Public Health, Capital Medical University, Beijing, People's Republic of China.,Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, People's Republic of China
| | - Yang Li
- School of Public Health, Capital Medical University, Beijing, People's Republic of China.,Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, People's Republic of China
| | - Yanbo Li
- School of Public Health, Capital Medical University, Beijing, People's Republic of China.,Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, People's Republic of China
| | - Li Jing
- School of Public Health, Capital Medical University, Beijing, People's Republic of China.,Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, People's Republic of China
| | - Man Yang
- School of Public Health, Capital Medical University, Beijing, People's Republic of China.,Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, People's Republic of China
| | - Ji Wang
- School of Public Health, Capital Medical University, Beijing, People's Republic of China.,Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, People's Republic of China
| | - Zhiwei Sun
- School of Public Health, Capital Medical University, Beijing, People's Republic of China.,Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, People's Republic of China
| |
Collapse
|
75
|
Liu H, Pan X, Cao H, Shu X, Sun H, Lu J, Liang J, Zhang K, Zhu F, Li G, Zhang Q. IL-32γ promotes integrin αvβ6 expression through the activation of NF-κB in HSCs. Exp Ther Med 2017; 14:3880-3886. [PMID: 29042996 DOI: 10.3892/etm.2017.4956] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 02/01/2017] [Indexed: 12/11/2022] Open
Abstract
Hepatic stellate cell (HSC) activation is important in the pathogenesis of liver fibrosis. However, the molecular mechanism of HSC activation is not completely understood. In the present study, it was demonstrated that interleukin-32γ (IL-32γ) is capable of enhancing intefgrin αvβ6 expression by inducing integrin αvβ6 promoter activity in a dose-dependent manner in HSCs. Furthermore, it was determined that nuclear factor κB (NF-κB) activation is required for IL-32γ-induced integrin αvβ6 expression. Increased integrin αvβ6 expression is then able to activate HSCs. These results indicate that NF-κB activation is required for IL-32γ to induce integrin αvβ6 expression and consequently promote HSC activation. Therefore, IL-32γ activates HSCs and therefore may be associated with hepatic fibrogenesis. These results may enable the development of novel effective strategies to treat hepatic fibrosis.
Collapse
Affiliation(s)
- Hongcan Liu
- Department of Clinical Laboratory, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510630, P.R. China.,Department of Clinical Laboratory, The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510120, P.R. China
| | - Xingfei Pan
- Department of Infectious Diseases, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510150, P.R. China
| | - Hong Cao
- Department of Infectious Diseases, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Xin Shu
- Department of Infectious Diseases, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Haixia Sun
- Department of Infectious Diseases, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Jianxi Lu
- Vaccine Research Institute, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Jiayin Liang
- Department of Clinical Laboratory, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Ka Zhang
- Department of Infectious Diseases, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Fengqin Zhu
- Department of Infectious Diseases, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Gang Li
- Department of Infectious Diseases, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Qi Zhang
- Vaccine Research Institute, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510630, P.R. China
| |
Collapse
|
76
|
Bashandy SAE, Alaamer A, Moussa SAA, Omara EA. Role of zinc oxide nanoparticles in alleviating hepatic fibrosis and nephrotoxicity induced by thioacetamide in rats. Can J Physiol Pharmacol 2017; 96:337-344. [PMID: 28813612 DOI: 10.1139/cjpp-2017-0247] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The present research studied the influence of zinc oxide nanoparticles (ZnO-NPs; 5, 7.5, and 10 mg/kg, i.p.) on the liver and kidney injuries motivated by thioacetamide (TAA; 100 mg/kg, i.p.). Each treatment was carried out 3 times per week for 8 weeks. ZnO-NPs relieved the decrease of hepatic or renal reduced glutathione (GSH), catalase (CAT), and superoxide dismutase (SOD) induced by TAA. Moreover, ZnO-NPs lowered tissue malondialdehyde (MDA, an indicator for lipid peroxidation). TAA treatment led to a significant increase in plasma inflammatory markers (TNF-α, IL-6), liver enzymes (gamma-glutamyltransferase (GGT), aspartate aminotransferase (AST), alanine aminotransferase (ALT), and kidney function parameters (creatinine, urea, uric acid). However, these parameters were reduced after treatment with ZnO-NPs. In addition, the hepatic fibrosis markers, hydroxyproline level, and α-smooth muscle actin immunopositive stain were lowered by ZnO-NPs. The protective effect of ZnO-NPs in respect to biochemical changes was also confirmed by histopathological and immunohistochemistry studies in the liver and kidney sections. Our results suggested that ZnO-NPs may attenuate TAA toxicity via suppression of oxidative stress.
Collapse
Affiliation(s)
- Samir A E Bashandy
- a Department of Pharmacology, Medical Division, National Research Centre, 33 EL Bohouth St. (former EL Tahir St.), Dokki, Giza, Egypt. P.O.12622
| | - Abdulaziz Alaamer
- b Committee of Radiation and Environmental Pollution Protection (CREPP), Department of Physics, College of Science, Al-Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | - Sherif A Abdelmottaleb Moussa
- b Committee of Radiation and Environmental Pollution Protection (CREPP), Department of Physics, College of Science, Al-Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia.,c Biophysics Group, Biochemistry Department, Genetic Engineering and Biotechnology Division, National Research Centre, 33 EL Bohouth St. (former EL Tahir St.), Dokki, Giza, Egypt P.O.12622
| | - Enayat A Omara
- d Department of Pathology, Medical Division, National Research Centre, 33 EL Bohouth St. (former EL Tahir St.), Dokki, Giza, Egypt. P.O.12622
| |
Collapse
|
77
|
Fukawa A, Kobayashi O, Yamaguchi M, Uchida M, Hosono A. Bovine milk-derived α-lactalbumin prevents hepatic fibrosis induced by dimethylnitrosamine via nitric oxide pathway in rats. Biosci Biotechnol Biochem 2017; 81:1941-1947. [PMID: 28752795 DOI: 10.1080/09168451.2017.1356215] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The present study was designed to evaluate the hepatoprotective potential of α-lactalbumin (αLA) against dimethylnitrosamine (DMN)-induced toxic insults in the rat liver. The liver damage was induced in rats by the repeated administration of DMN (10 mg/kg, i.p.) on three consecutive days per week for three weeks. The rats were maintained on either a standard AIN-93 M or αLA-enriched diet starting one week before the DMN injection until the termination of the experiment. The DMN treatment produced a progressive increase in the plasma markers (aspartate aminotransferase, alanine aminotransferase, total bililbin, hyarulonic acid, and matrix metalloproteinase-2) in 28 days after the first DMN injection. Dietary treatment with αLA significantly reduced the DMN-induced damage toward normalcy. NG-nitro-L-arginine methyl ester, a nitric oxide synthase inhibitor, significantly attenuated the hepatoprotective effect of αLA. These findings show that αLA has a marked suppressive effect on hepetic fibrosis through a nitric oxide-mediated mechanism.
Collapse
Affiliation(s)
- Akika Fukawa
- a Food Science Research Labs, R&D Division , Meiji Co., Ltd. , Odawara , Japan
| | - Orie Kobayashi
- a Food Science Research Labs, R&D Division , Meiji Co., Ltd. , Odawara , Japan
| | - Makoto Yamaguchi
- a Food Science Research Labs, R&D Division , Meiji Co., Ltd. , Odawara , Japan
| | - Masayuki Uchida
- a Food Science Research Labs, R&D Division , Meiji Co., Ltd. , Odawara , Japan
| | - Akira Hosono
- b College of Bioresource Sciences , Nihon University , Fujisawa , Japan
| |
Collapse
|
78
|
Kim JY, An HJ, Kim WH, Gwon MG, Gu H, Park YY, Park KK. Anti-fibrotic Effects of Synthetic Oligodeoxynucleotide for TGF-β1 and Smad in an Animal Model of Liver Cirrhosis. MOLECULAR THERAPY. NUCLEIC ACIDS 2017; 8:250-263. [PMID: 28918026 PMCID: PMC5511593 DOI: 10.1016/j.omtn.2017.06.022] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 06/29/2017] [Accepted: 06/29/2017] [Indexed: 12/12/2022]
Abstract
Liver fibrosis is characterized by changes in tissue architecture and extracellular matrix composition. Liver fibrosis affects not only hepatocytes but also the non-parenchymal cells such as hepatic stellate cells (HSCs), which are essential for maintaining an intact liver structure and function. Transforming growth factor β1 (TGF-β1) is a multifunctional cytokine that induces liver fibrosis through activation of Smad signaling pathways. To improve a new therapeutic approach, synthetic TGF-β1/Smad oligodeoxynucleotide (ODN) was used to suppress both TGF-β1 expression and Smad transcription factor using a combination of antisense ODN and decoy ODN. The aims of this study are to investigate the anti-fibrotic effects of TGF-β1/Smad ODN on simultaneous suppressions of both Smad transcription factor and TGF-β1 mRNA expression in the hepatic fibrosis model in vitro and in vivo. Synthetic TGF-β1/Smad ODN effectively inhibits Smad binding activity and TGF-β1 expression. TGF-β1/Smad ODN attenuated the epithelial mesenchymal transition (EMT) and activation of HSCs in TGF-β1-induced AML12 and HSC-T6 cells. TGF-β1/Smad ODN prevented the fibrogenesis and deposition of collagen in CCl4-treated mouse model. Synthetic TGF-β1/Smad ODN demonstrates anti-fibrotic effects that are mediated by the suppression of fibrogenic protein and inflammatory cytokines. Therefore, synthetic TGF-β1/Smad ODN has substantial therapeutic feasibility for the treatment of liver fibrotic diseases.
Collapse
Affiliation(s)
- Jung-Yeon Kim
- Department of Pathology, College of Medicine, Catholic University of Daegu, Daegu 42472, Republic of Korea
| | - Hyun-Jin An
- Department of Pathology, College of Medicine, Catholic University of Daegu, Daegu 42472, Republic of Korea
| | - Woon-Hae Kim
- Department of Pathology, College of Medicine, Catholic University of Daegu, Daegu 42472, Republic of Korea
| | - Mi-Gyeong Gwon
- Department of Pathology, College of Medicine, Catholic University of Daegu, Daegu 42472, Republic of Korea
| | - Hyemin Gu
- Department of Pathology, College of Medicine, Catholic University of Daegu, Daegu 42472, Republic of Korea
| | - Yoon-Yub Park
- Department of Physiology, College of Medicine, Catholic University of Daegu, Daegu 42472, Republic of Korea
| | - Kwan-Kyu Park
- Department of Pathology, College of Medicine, Catholic University of Daegu, Daegu 42472, Republic of Korea.
| |
Collapse
|
79
|
Annexin A2 promotes liver fibrosis by mediating von Willebrand factor secretion. Dig Liver Dis 2017; 49:780-788. [PMID: 28377286 DOI: 10.1016/j.dld.2017.02.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 02/20/2017] [Accepted: 02/20/2017] [Indexed: 12/11/2022]
Abstract
BACKGROUND Liver fibrosis can lead to cirrhosis and hepatocellular carcinoma if not treated in the early stages. The molecular mechanisms of the pathogenesis of hepatic fibrosis remain unclear. AIM To identify the molecules involved in the pathogenesis of liver fibrosis and to investigate the potential effect and mechanism of Annexin A2 up-regulation during liver fibrosis progression. METHODS Twenty Sprague-Dawley rats were divided into two groups: the carbon tetrachloride (CCl4)-induced liver fibrosis group and the normal control group. Hematoxylin and eosin staining or Masson Trichrome staining and enzyme-linked immunosorbent assay were applied to assess the degree of liver damage and fibrosis in rats with CCl4-induced liver fibrosis. Liver tissue protein profiles were analyzed using iTRAQ and mass spectrometry. RT-PCR and western blotting analyses were employed to validate differentially expressed proteins. Small interfering RNA-based silencing was performed to study the function of Annexin A2. RESULTS Twelve weeks after CCl4 injection, significant body weight changes and liver injury and liver fibrosis were observed in rats. In addition, 130 proteins were differentially expressed in the liver fibrosis group. Overexpression of Annexin A2 was confirmed by RT-PCR and Western blotting analysis. Silencing of Annexin A2 expression in HepG2 and LX-2 cells significantly reduced the secretion of von Willebrand factor (vWF). CONCLUSION Annexin A2 promotes liver fibrosis by mediating vWF secretion, which can be used to mitigate the progression of liver fibrosis.
Collapse
|
80
|
Guo Y, Chen B, Chen LJ, Zhang CF, Xiang C. Current status and future prospects of mesenchymal stem cell therapy for liver fibrosis. J Zhejiang Univ Sci B 2017; 17:831-841. [PMID: 27819130 DOI: 10.1631/jzus.b1600101] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Liver fibrosis is the end-stage of many chronic liver diseases and is a significant health threat. The only effective therapy is liver transplantation, which still has many problems, including the lack of donor sources, immunological rejection, and high surgery costs, among others. However, the use of cell therapy is becoming more prevalent, and mesenchymal stem cells (MSCs) seem to be a promising cell type for the treatment of liver fibrosis. MSCs have multiple differentiation abilities, allowing them to migrate directly into injured tissue and differentiate into hepatocyte-like cells. Additionally, MSCs can release various growth factors and cytokines to increase hepatocyte regeneration, regress liver fibrosis, and regulate inflammation and immune responses. In this review, we summarize the current uses of MSC therapies for liver fibrosis and suggest potential future applications.
Collapse
Affiliation(s)
- Yang Guo
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, and Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Bo Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, and Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Li-Jun Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, and Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Chun-Feng Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, and Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Charlie Xiang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, and Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| |
Collapse
|
81
|
Perumal N, Perumal M, Halagowder D, Sivasithamparam N. Morin attenuates diethylnitrosamine-induced rat liver fibrosis and hepatic stellate cell activation by co-ordinated regulation of Hippo/Yap and TGF-β1/Smad signaling. Biochimie 2017; 140:10-19. [PMID: 28552397 DOI: 10.1016/j.biochi.2017.05.017] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 05/24/2017] [Indexed: 01/18/2023]
Abstract
Despite great progress in understanding the activation of hepatic stellate cells (HSCs) during liver fibrosis, therapeutic approaches to inhibit HSC activation remain very limited. Recent reports highlight Yes-associated protein (Yap) and transforming growth factor-β1 (TGF-β1) as critical regulators of HSC activation and henceforth a compound targeting Hippo/Yap and TGF-β1/Smad pathways would be a potential anti-fibrotic candidate. Morin, a dietary flavonoid, was earlier reported to inhibit HSC proliferation and induction of apoptosis of cultured HSCs, mainly by suppressing Wnt/β-catenin and NF-κB signaling, but its effect on Hippo/Yap and TGF-β1/Smad pathways was not determined. To address this concern, this study was carried out in cultured LX-2 cells and diethylnitrosamine-induced fibrotic rats. Morin activated hippo signaling through significantly increased expression of Mst1 and Lats1 with decreased expression of transcriptional effectors Yap/TAZ, thereby prevented HSC activation and also suppressed the expression of exacerbated TGF-β/Smad signaling molecules such as TGF-β1, p-Smad2/3, collagen-I, MMP-2, MMP-9 and TIMP-1 in cultured LX-2 and DEN induced fibrotic rats. Both the in vitro and in vivo results clearly showed that, morin by acting on Hippo/Yap and TGF-β1/Smad pathways, ameliorated experimental liver fibrosis, indicating that morin has potential for effective treatment of liver fibrosis.
Collapse
Affiliation(s)
- NaveenKumar Perumal
- Department of Biochemistry, University of Madras, Guindy Campus, Chennai 600 025, India
| | - MadanKumar Perumal
- Department of Biochemistry, University of Madras, Guindy Campus, Chennai 600 025, India; Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Devaraj Halagowder
- Department of Zoology, University of Madras, Guindy Campus, Chennai 600 025, India
| | | |
Collapse
|
82
|
Kurokawa T, Ohkohchi N. Platelets in liver disease, cancer and regeneration. World J Gastroenterol 2017; 23:3228-3239. [PMID: 28566882 PMCID: PMC5434428 DOI: 10.3748/wjg.v23.i18.3228] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Revised: 11/17/2016] [Accepted: 03/15/2017] [Indexed: 02/06/2023] Open
Abstract
Although viral hepatitis treatments have evolved over the years, the resultant liver cirrhosis still does not completely heal. Platelets contain proteins required for hemostasis, as well as many growth factors required for organ development, tissue regeneration and repair. Thrombocytopenia, which is frequently observed in patients with chronic liver disease (CLD) and cirrhosis, can manifest from decreased thrombopoietin production and accelerated platelet destruction caused by hypersplenism; however, the relationship between thrombocytopenia and hepatic pathogenesis, as well as the role of platelets in CLD, is poorly understood. In this paper, experimental evidence of platelets improving liver fibrosis and accelerating liver regeneration is summarized and addressed based on studies conducted in our laboratory and current progress reports from other investigators. In addition, we describe our current perspective based on the results of these studies. Platelets improve liver fibrosis by inactivating hepatic stellate cells, which decreases collagen production. The regenerative effect of platelets in the liver involves a direct effect on hepatocytes, a cooperative effect with liver sinusoidal endothelial cells, and a collaborative effect with Kupffer cells. Based on these observations, we ascertained the direct effect of platelet transfusion on improving several indicators of liver function in patients with CLD and liver cirrhosis. However, unlike the results of our previous clinical study, the smaller incremental changes in liver function in patients with CLD who received eltrombopag for 6 mo were due to patient selection from a heterogeneous population. We highlight the current knowledge concerning the role of platelets in CLD and cancer and anticipate a novel application of platelet-based clinical therapies to treat liver disease.
Collapse
|
83
|
Hackstein CP, Assmus LM, Welz M, Klein S, Schwandt T, Schultze J, Förster I, Gondorf F, Beyer M, Kroy D, Kurts C, Trebicka J, Kastenmüller W, Knolle PA, Abdullah Z. Gut microbial translocation corrupts myeloid cell function to control bacterial infection during liver cirrhosis. Gut 2017; 66:507-518. [PMID: 27432540 DOI: 10.1136/gutjnl-2015-311224] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 06/20/2016] [Accepted: 06/22/2016] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Patients with liver cirrhosis suffer from increased susceptibility to life-threatening bacterial infections that cause substantial morbidity. METHODS Experimental liver fibrosis in mice induced by bile duct ligation or CCl4 application was used to characterise the mechanisms determining failure of innate immunity to control bacterial infections. RESULTS In murine liver fibrosis, translocation of gut microbiota induced tonic type I interferon (IFN) expression in the liver. Such tonic IFN expression conditioned liver myeloid cells to produce high concentrations of IFN upon intracellular infection with Listeria that activate cytosolic pattern recognition receptors. Such IFN-receptor signalling caused myeloid cell interleukin (IL)-10 production that corrupted antibacterial immunity, leading to loss of infection-control and to infection-associated mortality. In patients with liver cirrhosis, we also found a prominent liver IFN signature and myeloid cells showed increased IL-10 production after bacterial infection. Thus, myeloid cells are both source and target of IFN-induced and IL-10-mediated immune dysfunction. Antibody-mediated blockade of IFN-receptor or IL-10-receptor signalling reconstituted antibacterial immunity and prevented infection-associated mortality in mice with liver fibrosis. CONCLUSIONS In severe liver fibrosis and cirrhosis, failure to control bacterial infection is caused by augmented IFN and IL-10 expression that incapacitates antibacterial immunity of myeloid cells. Targeted interference with the immune regulatory host factors IL-10 and IFN reconstitutes antibacterial immunity and may be used as therapeutic strategy to control bacterial infections in patients with liver cirrhosis.
Collapse
Affiliation(s)
| | | | - Meike Welz
- Institute of Experimental Immunology, Universität Bonn, Bonn, Germany
| | - Sabine Klein
- Department of Internal Medicine I, Universität Bonn, Bonn, Germany
| | - Timo Schwandt
- Institute of Experimental Immunology, Universität Bonn, Bonn, Germany
| | - Joachim Schultze
- Genomics and Immunoregulation, LIMES Institute, Universität Bonn, Bonn, Germany
| | - Irmgard Förster
- Immunology and Environment, LIMES Institute, Universität Bonn, Bonn, Germany
| | - Fabian Gondorf
- Immunology and Environment, LIMES Institute, Universität Bonn, Bonn, Germany
| | - Marc Beyer
- Genomics and Immunoregulation, LIMES Institute, Universität Bonn, Bonn, Germany
| | - Daniela Kroy
- Department of Medicine III, University Hospital Aachen, Aachen, Germany
| | - Christian Kurts
- Institute of Experimental Immunology, Universität Bonn, Bonn, Germany
| | - Jonel Trebicka
- Department of Internal Medicine I, Universität Bonn, Bonn, Germany
| | | | - Percy A Knolle
- Institute of Experimental Immunology, Universität Bonn, Bonn, Germany.,Institute of Molecular Immunology and Experimental Oncology, Technische Universität München, München, Germany
| | - Zeinab Abdullah
- Institute of Experimental Immunology, Universität Bonn, Bonn, Germany
| |
Collapse
|
84
|
Huang Y, Deng X, Liang J. Modulation of hepatic stellate cells and reversibility of hepatic fibrosis. Exp Cell Res 2017; 352:420-426. [PMID: 28238836 DOI: 10.1016/j.yexcr.2017.02.038] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 02/19/2017] [Accepted: 02/21/2017] [Indexed: 12/21/2022]
Abstract
Hepatic fibrosis (HF) is the pathological component of a variety of chronic liver diseases. Hepatic stellate cells (HSC) are the main collagen-producing cells in the liver and their activation promotes HF. If HSC activation and proliferation can be inhibited, HF occurrence and development can theoretically be reduced and even reversed. Over the past ten years, a number of studies have addressed this process, and here we present a review of HSC modulation and HF reversal.
Collapse
Affiliation(s)
- Yu Huang
- Faculty of Graduate Studies of Guangxi University of Chinese Medicine, Nanning 530001, Guangxi Zhuang Autonomous Region, PR China.
| | - Xin Deng
- Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, 10 East China Road, Nanning 530011, Guangxi Zhuang Autonomous Region, PR China.
| | - Jian Liang
- Guangxi University of Chinese Medicine, Nanning 530001, Guangxi Zhuang Autonomous Region, PR China.
| |
Collapse
|
85
|
Algandaby MM, Breikaa RM, Eid BG, Neamatallah TA, Abdel-Naim AB, Ashour OM. Icariin protects against thioacetamide-induced liver fibrosis in rats: Implication of anti-angiogenic and anti-autophagic properties. Pharmacol Rep 2017; 69:616-624. [PMID: 28505603 DOI: 10.1016/j.pharep.2017.02.016] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Revised: 01/19/2017] [Accepted: 02/17/2017] [Indexed: 12/27/2022]
Abstract
BACKGROUND Liver fibrosis is a major health problem. The current study evaluated the potential of icariin (ICA) to guard against thioacetamide (TAA)-induced liver fibrosis in rats. METHODS Four groups of male rats were treated as follows: group 1 was the control group, group 2 was given TAA (200mg/kg), group 3 was administered ICA (50mg/kg) and TAA (200mg/kg), and group 4 was given ICA (50mg/kg) alone. Animal treatment was continued for four weeks. RESULTS Co-administration of ICA guarded against TAA hepatotoxicity as indicated by significant inhibition in the rise of serum ALT and AST activities and albumin concentrations. This was accompanied by inhibition of reduced glutathione depletion, superoxide dismutase exhaustion, and lipid peroxide accumulation. In addition, ICA inhibited the pathological alterations in liver architecture induced by TAA. The antifibrotic activity of ICA was verified by reduced hepatic collagen deposition in liver sections stained with Masson's trichrome and hepatic Col-1α mRNA and hydroxyproline contents compared to the TAA-treated group. The antiangiogenic activity of ICA was evidenced by lowered levels of mRNA of Ang-1 and protein expression of VEGF, PDGF-β, and CTGF immunohistochemically. Further, the anti-autophagic property of ICA was evidenced by amelioration of the decrease in mTOR and p70S6 kinase expression and an increase in TLR4, NFκB, IL1-β, and COX-2 immunohistochemically. Moreover, ICA antagonized the increase in HMGB1, TGF-β, and Beclin-1 and the decrease in BAMBI hepatic mRNA levels. CONCLUSIONS ICA inhibits TAA-induced liver fibrosis in rats, possibly via inhibition of angiogenesis and autophagy.
Collapse
Affiliation(s)
- Mardi M Algandaby
- Medicinal Plants Research Group, Deanship of Scientific Research, King Abdulaziz University, Jeddah, Saudi Arabia; Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Randa M Breikaa
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Basma G Eid
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Thikrayat A Neamatallah
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ashraf B Abdel-Naim
- Medicinal Plants Research Group, Deanship of Scientific Research, King Abdulaziz University, Jeddah, Saudi Arabia; Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Osama M Ashour
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia.
| |
Collapse
|
86
|
Rogler CE, Matarlo JS, Kosmyna B, Fulop D, Rogler LE. Knockdown of miR-23, miR-27, and miR-24 Alters Fetal Liver Development and Blocks Fibrosis in Mice. Gene Expr 2017; 17:99-114. [PMID: 27938504 PMCID: PMC8751183 DOI: 10.3727/105221616x693891] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
MicroRNAs (miRNAs) regulate cell fate selection and cellular differentiation. miRNAs of the miR23b polycistron (miR-23b, miR-27b, and miR-24) target components of the TGF-β signaling pathway and affect murine bile ductular and hepatocyte cell fate selection in vitro. Here we show that miR-23b polycistron miRNAs directly target murine Smad4, which is required for TGF-β signaling. Injection of antagomirs against these miRNAs directly into E16.5 murine fetuses caused increased cytokeratin expression in sinusoids and primitive ductular elements throughout the parenchyma of newborn mice. Similar antagomir injection in newborn mice increased bile ductular differentiation in the liver periphery and reduced hepatocyte proliferation. Antagomir injection in newborn Alb/TGF-β1 transgenic mice that develop fibrosis inhibited the development of fibrosis, and injection of older mice caused the resolution of existing fibrosis. Furthermore, murine stellate cell activation, including ColA1 and ACTA2 expression, is regulated by miR-23b cluster miRNAs. In summary, knockdown of miR-23b cluster miRNAs in fetal and newborn liver promotes bile duct differentiation and can block or revert TGF-β-induced liver fibrosis that is dependent on stellate cell activation. These data may find practical application in the highly needed development of therapies for the treatment of fibrosis.
Collapse
Affiliation(s)
- Charles E. Rogler
- Division of Gastroenterology and Liver Disease, Department of Medicine, Marion Bessin Liver Research Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Joe S. Matarlo
- Division of Gastroenterology and Liver Disease, Department of Medicine, Marion Bessin Liver Research Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Brian Kosmyna
- Division of Gastroenterology and Liver Disease, Department of Medicine, Marion Bessin Liver Research Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Daniel Fulop
- Division of Gastroenterology and Liver Disease, Department of Medicine, Marion Bessin Liver Research Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Leslie E. Rogler
- Division of Gastroenterology and Liver Disease, Department of Medicine, Marion Bessin Liver Research Center, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
87
|
Feng Z, Tan Q, Tang J, Li L, Tao Y, Chen Y, Yang Y, Luo C, Feng H, Zhu G, Chen Q, Chen Z. Intraventricular administration of urokinase as a novel therapeutic approach for communicating hydrocephalus. Transl Res 2017; 180:77-90.e2. [PMID: 27614013 DOI: 10.1016/j.trsl.2016.08.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 07/18/2016] [Accepted: 08/13/2016] [Indexed: 01/10/2023]
Abstract
Fibrosis of the subarachnoid space (SAS) after infection, inflammation, or hemorrhage can impair cerebrospinal fluid absorption and circulation, causing diffuse ventricular dilatation. In the present study, we tested the hypothesis that urokinase (also known as urokinase-type plasminogen activator [uPA]), a fibrinolytic agent, attenuates fibrosis and ventriculomegaly in a rat model of kaolin-induced communicating hydrocephalus and thus may have potential as a therapy for these conditions. Thirty microliters of sterile 25% kaolin suspension was injected into the basal cisterns of adult Sprague-Dawley rats to induce hydrocephalus, and 2 intraventricular injections of either uPA or vehicle (saline) were administered immediately and 3 days thereafter. Ventricular volumes were measured by magnetic resonance imaging (MRI) on days 3, 14, and 28 after kaolin injection. Fibrosis and reactive astrogliosis were evaluated on day 28 by immunofluorescence and Western blotting. Neurocognitive features were tested using the Morris water maze from days 23 to 28. MRI analysis demonstrated that kaolin administration successfully induced hydrocephalus in rats and that uPA treatment significantly attenuated ventricular enlargement. In addition, uPA inhibited the deposition of laminin and fibronectin, extracellular matrix molecules, in the SAS, attenuated gliosis, and improved learning and memory in kaolin-treated rats. Therefore, we concluded that uPA prevents the development of kaolin-induced communicating hydrocephalus by preventing the development of subarachnoid fibrosis and by eliciting improvements in neurocognition. The results of this study indicate that uPA may be a novel clinical therapy for communicating hydrocephalus.
Collapse
Affiliation(s)
- Zhou Feng
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, People's Republic of China
| | - Qiang Tan
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, People's Republic of China
| | - Jun Tang
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, People's Republic of China
| | - Lin Li
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, People's Republic of China
| | - Yihao Tao
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, People's Republic of China
| | - Yujie Chen
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, People's Republic of China
| | - Yunfeng Yang
- Department of Neurosurgery, Sichuan Provincial Corps Hospital, Chinese People's Armed Police Forces, Leshan, People's Republic of China
| | - Chunxia Luo
- Department of Neurology, Southwest Hospital, Third Military Medical University, Chongqing, People's Republic of China
| | - Hua Feng
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, People's Republic of China
| | - Gang Zhu
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, People's Republic of China
| | - Qianwei Chen
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, People's Republic of China.
| | - Zhi Chen
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, People's Republic of China.
| |
Collapse
|
88
|
Sun J, Zhang H, Li L, Yu L, Fu L. MicroRNA-9 limits hepatic fibrosis by suppressing the activation and proliferation of hepatic stellate cells by directly targeting MRP1/ABCC1. Oncol Rep 2017; 37:1698-1706. [DOI: 10.3892/or.2017.5382] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2016] [Accepted: 10/17/2016] [Indexed: 11/06/2022] Open
|
89
|
Abstract
The World Small Animal Veterinary Association's Liver Standardization Group produced standardized criteria for the histologic diagnosis of canine chronic hepatitis (CH). They define CH by the presence of hepatocellular apoptosis or necrosis, a variable mononuclear or mixed inflammatory cell infiltrate, regeneration, and fibrosis. There are variations in histologic appearance between breeds. Hepatic copper accumulation is an important cause of canine CH. However, where copper accumulation has been ruled out, dogs are said to have idiopathic CH. This article reviews theories regarding the etiopathogenesis of canine CH other than copper accumulation, and its clinical features, diagnostic findings, and management.
Collapse
Affiliation(s)
- Nick Bexfield
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, School Road, Leicestershire LE12 5RD, UK.
| |
Collapse
|
90
|
Huang WSW, Lin HY, Yeh CB, Chen LY, Chou YE, Yang SF, Liu YF. Correlation of Chitinase 3-Like 1 Single Nucleotide Polymorphisms with Hepatocellular Carcinoma in Taiwan. Int J Med Sci 2017; 14:136-142. [PMID: 28260989 PMCID: PMC5332842 DOI: 10.7150/ijms.17754] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 12/28/2016] [Indexed: 01/14/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the second leading cause of cancer death in Taiwan. Multiple risk factors, such as chronic hepatitis B or C virus infection, carcinogen exposure, cirrhosis, and various single-nucleotide polymorphisms (SNPs), are considered to contribute to hepatocarcinogenesis. Chitinase-3-like protein 1 (CHI3L1), a biomarker implicated in inflammation and tissue remodeling, plays a promoting role in angiogenesis, antiapoptosis, and cell proliferation. This study investigated the role of CHI3L1 SNPs in HCC susceptibility and clinicopathology. Real-time polymerase chain reaction was used to analyze four SNPs of CHI3L1 in 343 patients with HCC and 686 cancer-free controls. We found associations with HCC susceptibility in CHI3L1 rs880633 polymorphism carriers with genotypes (TC+CC). We observed that HCC patients had lower frequencies of CHI3L1 rs6691378 polymorphisms with the variant genotype GA+AA than the wild-type carriers with distant metastasis and positive HBsAg did. In 200 HBsAg negative HCC patients, we observed that the CHI3L1 rs4950928 polymorphisms carriers with the variant genotype CG+GG had higher frequencies of vascular invasion. Finally, carriers of CHI3L1 rs6691378 and 10399805 polymorphisms with the variant genotypes GA+AA showed lower levels of alpha-fetoprotein in HCC laboratory status. In conclusion, our results indicate that patients with CHI3L1 rs880633 variant genotypes TC+CC are at a higher risk of HCC. CHI3L1 polymorphisms rs880633 or rs4950928 may be potential candidates for predicting poor HCC prognosis and clinical status.
Collapse
Affiliation(s)
| | - Hung-Yu Lin
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan; School of Medicine, Chung Shan Medical University, Taichung, Taiwan; Department of Ophthalmology, Show Chwan Memorial Hospital, Changhua, Taiwan; Department of Optometry, Yuan Pei University, Hsinchu, Taiwan
| | - Chao-Bin Yeh
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan; Department of Emergency Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Li-You Chen
- Department of Anatomy, Faculty of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Ying-Erh Chou
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan; Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan; Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Yu-Fan Liu
- Department of Biomedical Sciences, College of Medicine Sciences and Technology, Chung Shan Medical University, Taichung, Taiwan; Division of Allergy, Department of Pediatrics, Chung-Shan Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
91
|
Chang TT, Thakar D, Weaver VM. Force-dependent breaching of the basement membrane. Matrix Biol 2016; 57-58:178-189. [PMID: 28025167 DOI: 10.1016/j.matbio.2016.12.005] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 10/20/2016] [Accepted: 12/12/2016] [Indexed: 12/24/2022]
Abstract
Clinically, non-invasive carcinomas are confined to the epithelial side of the basement membrane and are classified as benign, whereas invasive cancers invade through the basement membrane and thereby acquire the potential to metastasize. Recent findings suggest that, in addition to protease-mediated degradation and chemotaxis-stimulated migration, basement membrane invasion by malignant cells is significantly influenced by the stiffness of the associated interstitial extracellular matrix and the contractility of the tumor cells that is dictated in part by their oncogenic genotype. In this review, we highlight recent findings that illustrate unifying molecular mechanisms whereby these physical cues contribute to tissue fibrosis and malignancy in three epithelial organs: breast, pancreas, and liver. We also discuss the clinical implications of these findings and the biological properties and clinical challenges linked to the unique biology of each of these organs.
Collapse
Affiliation(s)
- Tammy T Chang
- Department of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA; Liver Center, University of California, San Francisco, San Francisco, CA 94143, USA.
| | - Dhruv Thakar
- Department of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA; Center for Bioengineering and Tissue Regeneration, University of California San Francisco, San Francisco, CA 94143, USA.
| | - Valerie M Weaver
- Department of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA; Center for Bioengineering and Tissue Regeneration, University of California San Francisco, San Francisco, CA 94143, USA; Department of Anatomy, UCSF, San Francisco, CA 94143, USA; Department of Bioengineering and Therapeutic Sciences, UCSF, San Francisco, CA 94143, USA; Department of Radiation Oncology, UCSF, San Francisco, CA 94143, USA; Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, UCSF, San Francisco, CA 94143, USA; The Helen Diller Family Comprehensive Cancer Center, UCSF, San Francisco, CA 94143, USA.
| |
Collapse
|
92
|
Ramaiah S, Rivera C, Arteel G. Early-Phase Alcoholic Liver Disease: An Update on Animal Models, Pathology, and Pathogenesis. Int J Toxicol 2016; 23:217-31. [PMID: 15371166 DOI: 10.1080/10915810490502069] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Alcoholic liver disease (ALD) remains to be one of the most common etiology of liver disease and is a major cause of morbidity and mortality worldwide. The pathologic stages of ALD comprises of steatosis, steatohepatitis, and fibrosis/cirrhosis. Steatosis and steatohepatitis represents the early phase of ALD and are precursor stages for fibrosis/cirrhosis. Numerous research efforts have been directed at recognizing cofactors interacting with alcohol in the pathogenesis of steatosis and steatohepatitis. This review will elucidate the constellation of complex pathogenesis, available animal models, and microscopic pathologic findings mostly in the early-phase of ALD. The role of endotoxin, reactive oxygen species, alcohol metabolism, and cytokines are discussed. Understanding the mechanisms of early-phase ALD should provide insight into the development of therapeutic strategies and thereby decrease the morbidity and mortality associated with ALD.
Collapse
Affiliation(s)
- Shashi Ramaiah
- Department of Pathobiology, Texas Veterinary Medical Center, College of Veterinary Medicine, Texas A and M University, College Station, TX 77843, USA
| | | | | |
Collapse
|
93
|
Alzaid F, Lagadec F, Albuquerque M, Ballaire R, Orliaguet L, Hainault I, Blugeon C, Lemoine S, Lehuen A, Saliba DG, Udalova IA, Paradis V, Foufelle F, Venteclef N. IRF5 governs liver macrophage activation that promotes hepatic fibrosis in mice and humans. JCI Insight 2016; 1:e88689. [PMID: 27942586 DOI: 10.1172/jci.insight.88689] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Hepatic fibrosis arises from inflammation in the liver initiated by resident macrophage activation and massive leukocyte accumulation. Hepatic macrophages hold a central position in maintaining homeostasis in the liver and in the pathogenesis of acute and chronic liver injury linked to fibrogenesis. Interferon regulatory factor 5 (IRF5) has recently emerged as an important proinflammatory transcription factor involved in macrophage activation under acute and chronic inflammation. Here, we revealed that IRF5 is significantly induced in liver macrophages from human subjects developing liver fibrosis from nonalcoholic fatty liver disease or hepatitis C virus infection. Furthermore, IRF5 expression positively correlated with clinical markers of liver damage, such as plasma transaminase and bilirubin levels. Interestingly, mice lacking IRF5 in myeloid cells (MKO) were protected from hepatic fibrosis induced by metabolic or toxic stresses. Transcriptional reprogramming of macrophages lacking IRF5 was characterized by immunosuppressive and antiapoptotic properties. Consequently, IRF5 MKO mice respond to hepatocellular stress by promoting hepatocyte survival, leading to complete protection from hepatic fibrogenesis. Our findings reveal a regulatory network, governed by IRF5, that mediates hepatocyte death and liver fibrosis in mice and humans. Therefore, modulating IRF5 function may be an attractive approach to experimental therapeutics in fibroinflammatory liver disease.
Collapse
Affiliation(s)
- Fawaz Alzaid
- Institut National de la Santé et de la Recherche Médicale (INSERM) UMRS 1138, Sorbonne Universités, UPMC Université Paris 06; Sorbonne Paris Cité, Université Paris Descartes, Université Paris Diderot; and Centre de Recherche des Cordeliers, Paris, France
| | - Floriane Lagadec
- INSERM UMRS 1149 and Department of Pathology Beaujon Hospital, Assistance Publique-Hôpitaux de Paris, Clichy, France
| | - Miguel Albuquerque
- INSERM UMRS 1149 and Department of Pathology Beaujon Hospital, Assistance Publique-Hôpitaux de Paris, Clichy, France
| | - Raphaëlle Ballaire
- Institut National de la Santé et de la Recherche Médicale (INSERM) UMRS 1138, Sorbonne Universités, UPMC Université Paris 06; Sorbonne Paris Cité, Université Paris Descartes, Université Paris Diderot; and Centre de Recherche des Cordeliers, Paris, France
| | - Lucie Orliaguet
- Institut National de la Santé et de la Recherche Médicale (INSERM) UMRS 1138, Sorbonne Universités, UPMC Université Paris 06; Sorbonne Paris Cité, Université Paris Descartes, Université Paris Diderot; and Centre de Recherche des Cordeliers, Paris, France
| | - Isabelle Hainault
- Institut National de la Santé et de la Recherche Médicale (INSERM) UMRS 1138, Sorbonne Universités, UPMC Université Paris 06; Sorbonne Paris Cité, Université Paris Descartes, Université Paris Diderot; and Centre de Recherche des Cordeliers, Paris, France
| | - Corinne Blugeon
- École normale supérieure, PSL Research University, Centre National de la Recherche Scientifique (CNRS), INSERM, Institut de Biologie de l'École Normale Supérieure (IBENS), Plateforme Génomique, Paris, France
| | - Sophie Lemoine
- École normale supérieure, PSL Research University, Centre National de la Recherche Scientifique (CNRS), INSERM, Institut de Biologie de l'École Normale Supérieure (IBENS), Plateforme Génomique, Paris, France
| | - Agnès Lehuen
- INSERM UMRS 1016, Institut Cochin, Paris, France; CNRS UMR_S 8104, Paris, France; and Laboratoire d'Excellence INFLAMEX, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - David G Saliba
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, United Kingdom
| | - Irina A Udalova
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, United Kingdom
| | - Valérie Paradis
- INSERM UMRS 1149 and Department of Pathology Beaujon Hospital, Assistance Publique-Hôpitaux de Paris, Clichy, France
| | - Fabienne Foufelle
- Institut National de la Santé et de la Recherche Médicale (INSERM) UMRS 1138, Sorbonne Universités, UPMC Université Paris 06; Sorbonne Paris Cité, Université Paris Descartes, Université Paris Diderot; and Centre de Recherche des Cordeliers, Paris, France
| | - Nicolas Venteclef
- Institut National de la Santé et de la Recherche Médicale (INSERM) UMRS 1138, Sorbonne Universités, UPMC Université Paris 06; Sorbonne Paris Cité, Université Paris Descartes, Université Paris Diderot; and Centre de Recherche des Cordeliers, Paris, France
| |
Collapse
|
94
|
Saito K, Tajima Y, Harada TL. Diffusion-weighted imaging of the liver: Current applications. World J Radiol 2016; 8:857-867. [PMID: 27928467 PMCID: PMC5120245 DOI: 10.4329/wjr.v8.i11.857] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 08/10/2016] [Accepted: 10/24/2016] [Indexed: 02/06/2023] Open
Abstract
Diffusion-weighted imaging (DWI) of the liver can be performed using most commercially available machines and is currently accepted in routine sequence. This sequence has some potential as an imaging biomarker for fibrosis, tumor detection/characterization, and following/predicting therapy. To improve reliability including accuracy and reproducibility, researchers have validated this new technique in terms of image acquisition, data sampling, and analysis. The added value of DWI in contrast-enhanced magnetic resonance imaging was established in the detection of malignant liver lesions. However, some limitations remain in terms of lesion characterization and fibrosis detection. Furthermore, the methodologies of image acquisition and data analysis have been inconsistent. Therefore, researchers should make every effort to not only improve accuracy and reproducibility but also standardize imaging parameters.
Collapse
|
95
|
Wu X, Liu G, Mu M, Peng Y, Li X, Deng L, Zhang Z, Chen M, You S, Kong X. Augmenter of Liver Regeneration Gene Therapy Using a Novel Minicircle DNA Vector Alleviates Liver Fibrosis in Rats. Hum Gene Ther 2016; 27:880-891. [PMID: 27136973 DOI: 10.1089/hum.2016.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Affiliation(s)
- Xin Wu
- Institute of Life Science and Bio-Pharmaceutics, Shenyang Pharmaceutical University, Shenyang, China
- Key Laboratory of Liver Disease, Centre of Infectious Diseases, 458th Hospital of PLA, Guangzhou, China
| | - Guangze Liu
- Key Laboratory of Liver Disease, Centre of Infectious Diseases, 458th Hospital of PLA, Guangzhou, China
| | - Mao Mu
- Institute of Life Science and Bio-Pharmaceutics, Shenyang Pharmaceutical University, Shenyang, China
- Key Laboratory of Liver Disease, Centre of Infectious Diseases, 458th Hospital of PLA, Guangzhou, China
| | - Yuting Peng
- Institute of Life Science and Bio-Pharmaceutics, Shenyang Pharmaceutical University, Shenyang, China
- Key Laboratory of Liver Disease, Centre of Infectious Diseases, 458th Hospital of PLA, Guangzhou, China
| | - Xiumei Li
- Key Laboratory of Liver Disease, Centre of Infectious Diseases, 458th Hospital of PLA, Guangzhou, China
| | - Lisi Deng
- The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, China
| | - Zhenwei Zhang
- Key Laboratory of Liver Disease, Centre of Infectious Diseases, 458th Hospital of PLA, Guangzhou, China
| | - Meijuan Chen
- Key Laboratory of Liver Disease, Centre of Infectious Diseases, 458th Hospital of PLA, Guangzhou, China
| | - Song You
- Institute of Life Science and Bio-Pharmaceutics, Shenyang Pharmaceutical University, Shenyang, China
| | - Xiangping Kong
- Key Laboratory of Liver Disease, Centre of Infectious Diseases, 458th Hospital of PLA, Guangzhou, China
| |
Collapse
|
96
|
Yokohama K, Fukunishi S, Ii M, Nakamura K, Ohama H, Tsuchimoto Y, Asai A, Tsuda Y, Higuchi K. Rosuvastatin as a potential preventive drug for the development of hepatocellular carcinoma associated with non-alcoholic fatty liver disease in mice. Int J Mol Med 2016; 38:1499-1506. [PMID: 28025996 DOI: 10.3892/ijmm.2016.2766] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 09/12/2016] [Indexed: 12/14/2022] Open
Abstract
Hepatocellular carcinoma (HCC) represents approximately 85% of all primary liver cancer cases. Non-alcoholic fatty liver disease (NAFLD) is one of the risk factors for HCC. NAFLD occurs in patients with components of metabolic syndrome, such as type 2 diabetes mellitus, obesity, hypertension and hyperlipidemia. Therefore, hyperlipidemia also represents a patient population at risk for HCC that can readily be identified. Rosuvastatin, a 3-hydroxy-3-methyl-glutaryl coenzyme A (HMG-CoA) reductase inhibitor, has exhibited a more potent affinity for the active site of HMG-CoA reductase than other statins. In addition, the hepatic uptake of rosuvastatin in rats has been found to be more selective and efficient than that with other drugs. Furthermore, the cytoprotective effects of rosuvastatin against ischemic injury have been clearly reported. Thus, in this study, we aimed to determine the role of rosuvastatin as a preventive drug in HCC associated with NAFLD. STAM mice, which developed HCC from NAFLD by being fed a high-fat diet (HFD), were divided into a group in which a HFD was given to the mice for 15 weeks (n=8) and another in which a HFD supplemented with 0.00125% rosuvastatin was given to the mice for 15 weeks (n=8). Rosuvastatin inhibited the development of hepatic tumors in the mice with NAFLD induced by a specific diet both macroscopically and histologically. Rosuvastatin significantly decreased the expression levels of pro-inflammatry cytokines, such as tumor necrosis factor (TNF)-α, interleukin (IL)-6 and transforming growth factor (TGF)-β1. Tumor aggressiveness is mediated by angiogenic factors. Therefore, we examined the hepatic mRNA expression of vascular endothelial growth factor receptor (VEGFR), epidermal growth factor receptor (EGFR) and platelet-derived growth factor (PDGF). The hepatic expression of these factors significantly decreased in the rousvastin-fed mice. Our results thus suggest rosuvastatin that prevents carcinogenesis and improves the hepatic background. Our data suggest that rosuvastatin has potential for use as a preventive drug for the development of HCC associated with NAFLD in mice.
Collapse
Affiliation(s)
- Keisuke Yokohama
- Second Department of Internal Medicine, Osaka Medical College, Takatsuki, Osaka 569-8686, Japan
| | - Shinya Fukunishi
- Second Department of Internal Medicine, Osaka Medical College, Takatsuki, Osaka 569-8686, Japan
| | - Masaaki Ii
- Department of Pharmacology, Osaka Medical College, Takatsuki, Osaka 569-8686, Japan
| | - Ken Nakamura
- Second Department of Internal Medicine, Osaka Medical College, Takatsuki, Osaka 569-8686, Japan
| | - Hideko Ohama
- Second Department of Internal Medicine, Osaka Medical College, Takatsuki, Osaka 569-8686, Japan
| | - Yusuke Tsuchimoto
- Second Department of Internal Medicine, Osaka Medical College, Takatsuki, Osaka 569-8686, Japan
| | - Akira Asai
- Second Department of Internal Medicine, Osaka Medical College, Takatsuki, Osaka 569-8686, Japan
| | - Yasuhiro Tsuda
- Second Department of Internal Medicine, Osaka Medical College, Takatsuki, Osaka 569-8686, Japan
| | - Kazuhide Higuchi
- Second Department of Internal Medicine, Osaka Medical College, Takatsuki, Osaka 569-8686, Japan
| |
Collapse
|
97
|
Noninvasive mapping of the redox status of dimethylnitrosamine-induced hepatic fibrosis using in vivo dynamic nuclear polarization-magnetic resonance imaging. Sci Rep 2016; 6:32604. [PMID: 27587186 PMCID: PMC5009327 DOI: 10.1038/srep32604] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 08/09/2016] [Indexed: 12/13/2022] Open
Abstract
Hepatic fibrosis is a chronic disorder caused by viral infection and/or metabolic, genetic and cholestatic disorders. A noninvasive procedure that enables the detection of liver fibrosis based on redox status would be useful for disease identification and monitoring, and the development of treatments. However, an appropriate technique has not been reported. This study describes a novel method for assessing the redox status of the liver using in vivo dynamic nuclear polarization-magnetic resonance imaging (DNP-MRI) with the nitroxyl radical carbamoyl-PROXYL as a molecular imaging probe, which was tested in dimethylnitrosamine-treated mice as a model of liver fibrosis. Based on the pharmacokinetics of carbamoyl-PROXYL in control livers, reduction rate mapping was performed in fibrotic livers. Reduction rate maps demonstrated a clear difference between the redox status of control and fibrotic livers according to the expression of antioxidants. These findings indicate that in vivo DNP-MRI with a nitroxyl radical probe enables noninvasive detection of changes in liver redox status.
Collapse
|
98
|
Xu H, Zhang S, Pan X, Cao H, Huang X, Xu Q, Zhong H, Peng X. TIMP-1 expression induced by IL-32 is mediated through activation of AP-1 signal pathway. Int Immunopharmacol 2016; 38:233-7. [DOI: 10.1016/j.intimp.2016.06.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 05/28/2016] [Accepted: 06/01/2016] [Indexed: 12/13/2022]
|
99
|
Zhang H, Yang Q, Yu T, Chen X, Huang J, Tan C, Liang B, Guo H. Comparison of T2, T1rho, and diffusion metrics in assessment of liver fibrosis in rats. J Magn Reson Imaging 2016; 45:741-750. [PMID: 27527587 DOI: 10.1002/jmri.25424] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 08/02/2016] [Indexed: 12/12/2022] Open
Abstract
PURPOSE To evaluate the value of T2 , T1 rho, and diffusion metrics in assessment of liver fibrosis in rats. MATERIALS AND METHODS Liver fibrosis in a rat model (n = 72) was induced by injection of carbon tetrachloride (CCl4 ) at 3T. T2 , T1 rho, and diffusion parameters (apparent diffusion coefficient (ADC), Dtrue ) via spin echo (SE) diffusion-weighted imaging (DWI) and stimulated echo acquisition mode (STEAM) DWI with three diffusion times (DT: 80, 106, 186 msec) were obtained in surviving rats with hepatic fibrosis (n = 52) and controls (n = 8). Liver fibrosis stage (F0-F6) was identified based on pathological results using the traditional liver fibrosis staging method for rodents. Nonparametric statistical methods and receiver operating characteristic (ROC) curve analysis were employed to determine the diagnostic accuracy. RESULTS Mean T2 , T1 rho, ADC, and Dtrue with DT = 186 msec correlated with the severity of fibrosis with r = 0.73, 0.83, -0.83, and -0.85 (all P < 0.001), respectively. The average areas under the ROC curve at different stages for T1 rho and diffusion parameters (DT = 186 msec) were larger than those of T2 and SE DWI (0.92, 0.92, and 0.92 vs. 0.86, 0.82, and 0.83). The corresponding average sensitivity and specificity for T1 rho and diffusion parameters with a long DT were larger (89.35 and 88.90, 88.36 and 89.97, 90.16 and 87.13) than T2 and SE DWI (90.28 and 79.93, 85.30 and 77.64, 78.21 and 82.41). The performances of T1 rho and Dtrue (DT = 186 msec) were comparable (average AUC: 0.92 and 0.92). CONCLUSION Among the evaluated sequences, T1 rho and STEAM DWI with a long DT may serve as superior imaging biomarkers for assessing liver fibrosis and monitoring disease severity. LEVEL OF EVIDENCE 1 J. Magn. Reson. Imaging 2017;45:741-750.
Collapse
Affiliation(s)
- Hui Zhang
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, Beijing, China
| | - Qihua Yang
- Department of Radiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Taihui Yu
- Department of Radiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xiaodong Chen
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, Beijing, China.,Department of Radiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.,Department of Radiology, Affiliated hospital of Guangdong Medical College, Guangdong, China
| | - Jingwen Huang
- Department of Radiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Cui Tan
- Department of Pathology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Biling Liang
- Department of Radiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Hua Guo
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, Beijing, China
| |
Collapse
|
100
|
Houben T, Brandsma E, Walenbergh SMA, Hofker MH, Shiri-Sverdlov R. Oxidized LDL at the crossroads of immunity in non-alcoholic steatohepatitis. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1862:416-429. [PMID: 27472963 DOI: 10.1016/j.bbalip.2016.07.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 07/01/2016] [Accepted: 07/21/2016] [Indexed: 02/08/2023]
Abstract
Non-alcoholic steatohepatitis (NASH) is viewed as the hepatic manifestation of the metabolic syndrome and is a condition hallmarked by lipid accumulation in the liver (steatosis) along with inflammation (hepatitis). Currently, the etiology and mechanisms leading to obesity-induced hepatic inflammation are not clear and, as a consequence, strategies to diagnose or treat NASH in an accurate manner do not exist. In the current review, we put forward the concept of oxidized lipids as a significant risk factor for NASH. We will focus on the contribution of the different types of oxidized lipids as part of the oxidized low-density lipoprotein (oxLDL) to the hepatic inflammatory response. Furthermore, we will elaborate on the underlying mechanisms linking oxLDL to inflammatory responses in the liver and on how these cascades can be used as therapeutic targets to combat NASH. This article is part of a Special Issue entitled: Lipid modification and lipid peroxidation products in innate immunity and inflammation edited by Christoph J. Binder.
Collapse
Affiliation(s)
- T Houben
- Department of Molecular Genetics, Maastricht University, School for Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht, the Netherlands
| | - E Brandsma
- Molecular Genetics Section, Department of Pediatrics, University Medical Center Groningen, University of Groningen, the Netherlands
| | - S M A Walenbergh
- Department of Molecular Genetics, Maastricht University, School for Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht, the Netherlands
| | - M H Hofker
- Molecular Genetics Section, Department of Pediatrics, University Medical Center Groningen, University of Groningen, the Netherlands
| | - R Shiri-Sverdlov
- Department of Molecular Genetics, Maastricht University, School for Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht, the Netherlands.
| |
Collapse
|