51
|
Kany S, Rämö JT, Hou C, Jurgens SJ, Nauffal V, Cunningham J, Lau ES, Butte AJ, Ho JE, Olgin JE, Elmariah S, Lindsay ME, Ellinor PT, Pirruccello JP. Assessment of valvular function in over 47,000 people using deep learning-based flow measurements. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.04.29.23289299. [PMID: 37205587 PMCID: PMC10187336 DOI: 10.1101/2023.04.29.23289299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Valvular heart disease is associated with a high global burden of disease. Even mild aortic stenosis confers increased morbidity and mortality, prompting interest in understanding normal variation in valvular function at scale. We developed a deep learning model to study velocity-encoded magnetic resonance imaging in 47,223 UK Biobank participants. We calculated eight traits, including peak velocity, mean gradient, aortic valve area, forward stroke volume, mitral and aortic regurgitant volume, greatest average velocity, and ascending aortic diameter. We then computed sex-stratified reference ranges for these phenotypes in up to 31,909 healthy individuals. In healthy individuals, we found an annual decrement of 0.03cm 2 in the aortic valve area. Participants with mitral valve prolapse had a 1 standard deviation [SD] higher mitral regurgitant volume (P=9.6 × 10 -12 ), and those with aortic stenosis had a 4.5 SD-higher mean gradient (P=1.5 × 10 -431 ), validating the derived phenotypes' associations with clinical disease. Greater levels of ApoB, triglycerides, and Lp(a) assayed nearly 10 years prior to imaging were associated with higher gradients across the aortic valve. Metabolomic profiles revealed that increased glycoprotein acetyls were also associated with an increased aortic valve mean gradient (0.92 SD, P=2.1 x 10 -22 ). Finally, velocity-derived phenotypes were risk markers for aortic and mitral valve surgery even at thresholds below what is considered relevant disease currently. Using machine learning to quantify the rich phenotypic data of the UK Biobank, we report the largest assessment of valvular function and cardiovascular disease in the general population.
Collapse
|
52
|
Burdeynaya AL, Afanasieva OI, Ezhov MV, Klesareva EA, Saidova MA, Pokrovsky SN. Lipoprotein(a) and Its Autoantibodies in Association with Calcific Aortic Valve Stenosis. Diseases 2023; 11:diseases11010043. [PMID: 36975592 PMCID: PMC10047835 DOI: 10.3390/diseases11010043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 02/26/2023] [Accepted: 02/28/2023] [Indexed: 03/08/2023] Open
Abstract
Aortic valve stenosis is the most common valvular heart disease in the Western world. Lipoprotein(a) (Lp(a)) is an independent risk factor of coronary heart disease (CHD) and calcific aortic valve stenosis (CAVS). The aim of this study was to assess the role of Lp(a) and its autoantibodies [autoAbs] in CAVS in patients with and without CHD. We included 250 patients (mean age 69 ± 3 years, males 42%) and divided them into three groups. There were two groups of patients with CAVS depending on the presence (group 1) or absence of CHD (group 2). The control group included the patients without CHD or CAVS. According to logistic regression analysis, levels of Lp(a), IgM autoAbs to oxidized Lp(a) (oxLp(a)), and age were independent predictors of CAVS. A concomitant increase in Lp(a) level (≥30 mg/dL) and a decrease in IgM autoAbs concentration (<9.9 lab. Units) are associated with CAVS with an odds ratio (OR) of 6.4, p < 0.01, and with CAVS and CHD with an OR of 17.3, p < 0.001. IgM autoantibodies to oxLp(a) are associated with calcific aortic valve stenosis regardless of Lp(a) concentration and other risk factors. Higher Lp(a) and lower IgM autoantibodies to oxLp(a) levels are associated with a much higher risk of calcific aortic valve stenosis.
Collapse
Affiliation(s)
- Anna L. Burdeynaya
- Laboratory of Lipid Disorders, Department of Atherosclerosis, A.L. Myasnikov Institute of Clinical Cardiology, Federal State Budgetary Institution National Medical Research Center of Cardiology Named after Academician E.I. Chazov, Ministry of Health of the Russian Federation, 121552 Moscow, Russia
| | - Olga I. Afanasieva
- Laboratory of Atherosclerosis, Institute of Experimental Cardiology Named after Academician V.N. Smirnov, Federal State Budgetary Institution National Medical Research Center of Cardiology Named after Academician E.I. Chazov, Ministry of Health of the Russian Federation, 121552 Moscow, Russia
| | - Marat V. Ezhov
- Laboratory of Lipid Disorders, Department of Atherosclerosis, A.L. Myasnikov Institute of Clinical Cardiology, Federal State Budgetary Institution National Medical Research Center of Cardiology Named after Academician E.I. Chazov, Ministry of Health of the Russian Federation, 121552 Moscow, Russia
- Correspondence:
| | - Elena A. Klesareva
- Laboratory of Atherosclerosis, Institute of Experimental Cardiology Named after Academician V.N. Smirnov, Federal State Budgetary Institution National Medical Research Center of Cardiology Named after Academician E.I. Chazov, Ministry of Health of the Russian Federation, 121552 Moscow, Russia
| | - Marina A. Saidova
- Department of Ultrasound Diagnostics, A.L. Myasnikov Institute of Clinical Cardiology, Federal State Budgetary Institution National Medical Research Center of Cardiology Named after Academician E.I. Chazov, Ministry of Health of the Russian Federation, 121552 Moscow, Russia
| | - Sergey N. Pokrovsky
- Laboratory of Atherosclerosis, Institute of Experimental Cardiology Named after Academician V.N. Smirnov, Federal State Budgetary Institution National Medical Research Center of Cardiology Named after Academician E.I. Chazov, Ministry of Health of the Russian Federation, 121552 Moscow, Russia
| |
Collapse
|
53
|
Prosperi-Porta G, Willner N, Messika-Zeitoun D. Aortic stenosis progression: Still a long way to go. Arch Cardiovasc Dis 2023; 116:113-116. [PMID: 36774270 DOI: 10.1016/j.acvd.2023.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 02/02/2023]
Affiliation(s)
- Graeme Prosperi-Porta
- Division of Cardiology, University of Ottawa Heart Institute, Ottawa, ON K1Y 4W7 Ontario, Canada
| | - Nadav Willner
- Division of Cardiology, University of Ottawa Heart Institute, Ottawa, ON K1Y 4W7 Ontario, Canada
| | - David Messika-Zeitoun
- Division of Cardiology, University of Ottawa Heart Institute, Ottawa, ON K1Y 4W7 Ontario, Canada.
| |
Collapse
|
54
|
Willner N, Prosperi-Porta G, Lau L, Nam Fu AY, Boczar K, Poulin A, Di Santo P, Unni RR, Visintini S, Ronksley PE, Chan KL, Beauchesne L, Burwash IG, Messika-Zeitoun D. Aortic Stenosis Progression: A Systematic Review and Meta-Analysis. JACC Cardiovasc Imaging 2023; 16:314-328. [PMID: 36648053 DOI: 10.1016/j.jcmg.2022.10.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 10/11/2022] [Accepted: 10/14/2022] [Indexed: 12/15/2022]
Abstract
BACKGROUND Aortic valve stenosis is a progressive disorder with variable progression rates. The factors affecting aortic stenosis (AS) progression remain largely unknown. OBJECTIVES This systematic review and meta-analysis sought to determine AS progression rates and to assess the impact of baseline AS severity and sex on disease progression. METHODS The authors searched Medline, Embase, and the Cochrane Central Register of Controlled Trials from inception to July 1, 2020, for prospective studies evaluating the progression of AS with the use of echocardiography (mean gradient [MG], peak velocity [PV], peak gradient [PG], or aortic valve area [AVA]) or computed tomography (calcium score [AVC]). Random-effects meta-analysis was performed to evaluate the rate of AS progression for each parameter stratified by baseline severity, and meta-regression was performed to determine the impact of baseline severity and of sex on AS progression rate. RESULTS A total of 24 studies including 5,450 patients (40% female) met inclusion criteria. The pooled annualized progression of MG was +4.10 mm Hg (95% CI: 2.80-5.41 mm Hg), AVA -0.08 cm2 (95% CI: 0.06-0.10 cm2), PV +0.19 m/s (95% CI: 0.13-0.24 m/s), PG +7.86 mm Hg (95% CI: 4.98-10.75 mm Hg), and AVC +158.5 AU (95% CI: 55.0-261.9 AU). Increasing baseline severity of AS was predictive of higher rates of progression for MG (P < 0.001), PV (P = 0.001), and AVC (P < 0.001), but not AVA (P = 0.34) or PG (P = 0.21). Only 4 studies reported AS progression stratified by sex, with only PV and AVC having 3 studies to perform a meta-analysis. No difference between sex was observed for PV (P = 0.397) or AVC (P = 0.572), but the level of confidence was low. CONCLUSIONS This study provides progression rates for both hemodynamic and anatomic parameters of AS and shows that increasing hemodynamic and anatomic baseline severity is associated with faster AS progression. More studies are needed to determine if sex differences affect AS progression. (Aortic Valve Stenosis Progression Rate: A Systematic Review and Meta-Analysis; CRD42021207726).
Collapse
Affiliation(s)
- Nadav Willner
- Department of Cardiology, University of Ottawa Heart Institute, Ottawa, Canada
| | | | - Lawrence Lau
- Department of Cardiology, University of Ottawa Heart Institute, Ottawa, Canada
| | - Angel Yi Nam Fu
- Department of Cardiology, University of Ottawa Heart Institute, Ottawa, Canada
| | - Kevin Boczar
- Department of Cardiology, University of Ottawa Heart Institute, Ottawa, Canada
| | - Anthony Poulin
- Department of Cardiology, University of Ottawa Heart Institute, Ottawa, Canada
| | - Pietro Di Santo
- Department of Cardiology, University of Ottawa Heart Institute, Ottawa, Canada
| | - Rudy R Unni
- Department of Cardiology, University of Ottawa Heart Institute, Ottawa, Canada
| | - Sarah Visintini
- Berkman Library, University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | - Paul E Ronksley
- Department of Community Health Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Kwan-Leung Chan
- Department of Cardiology, University of Ottawa Heart Institute, Ottawa, Canada
| | - Luc Beauchesne
- Department of Cardiology, University of Ottawa Heart Institute, Ottawa, Canada
| | - Ian G Burwash
- Department of Cardiology, University of Ottawa Heart Institute, Ottawa, Canada
| | | |
Collapse
|
55
|
Girard A, Gaillard E, Puri R, Capoulade R, Chan KL, Paulin A, Manikpurage HD, Dumesnil J, Tam JW, Teo KK, Couture C, Wareham NJ, Clavel MA, Stroes ESG, Mathieu P, Thériault S, Tsimikas S, Pibarot P, Boekholdt SM, Arsenault BJ. Impact of C-reactive protein levels on lipoprotein(a)-associated aortic stenosis incidence and progression. EUROPEAN HEART JOURNAL OPEN 2023; 3:oead032. [PMID: 37077580 PMCID: PMC10108885 DOI: 10.1093/ehjopen/oead032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/14/2023] [Accepted: 03/22/2023] [Indexed: 04/01/2023]
Abstract
Aims Elevated lipoprotein(a) [Lp(a)] levels are associated with the risk of coronary artery disease (CAD) and calcific aortic valve stenosis (CAVS). Observational studies revealed that Lp(a) and C-reactive protein (CRP) levels, a biomarker of systemic inflammation, may jointly predict CAD risk. Whether Lp(a) and CRP levels also jointly predict CAVS incidence and progression is unknown. Methods and results We investigated the association of Lp(a) with CAVS according to CRP levels in the European Prospective Investigation into Cancer and Nutrition (EPIC)-Norfolk study (n = 18 226, 406 incident cases) and the UK Biobank (n = 438 260, 4582 incident cases), as well as in the ASTRONOMER study (n = 220), which assessed the haemodynamic progression rate of pre-existing mild-to-moderate aortic stenosis. In EPIC-Norfolk, in comparison to individuals with low Lp(a) levels (<50 mg/dL) and low CRP levels (<2.0 mg/L), those with elevated Lp(a) (>50 mg/dL) and low CRP levels (<2.0 mg/L) and those with elevated Lp(a) (>50 mg/dL) and elevated CRP levels (>2.0 mg/L) had a higher CAVS risk [hazard ratio (HR) = 1.86 (95% confidence intervals, 1.30-2.67) and 2.08 (1.44-2.99), respectively]. A comparable predictive value of Lp(a) in patients with vs. without elevated CRP levels was also noted in the UK Biobank. In ASTRONOMER, CAVS progression was comparable in patients with elevated Lp(a) levels with or without elevated CRP levels. Conclusion Lp(a) predicts the incidence and possibly progression of CAVS regardless of plasma CRP levels. Lowering Lp(a) levels may warrant further investigation in the prevention and treatment of CAVS, regardless of systemic inflammation.
Collapse
Affiliation(s)
- Arnaud Girard
- Centre de recherche de l’Institut universitaire de cardiologie et de pneumologie de Québec, Québec, QC, G1V 4G5, Canada
| | - Emilie Gaillard
- Department of Cardiology, Amsterdam UMC, University of Amsterdam, Amsterdam, 1105 AZ, The Netherlands
| | - Rishi Puri
- Department of Cardiovascular Medicine, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Romain Capoulade
- Nantes Université, CNRS, INSERM, l’institut du thorax, F-44000 Nantes, 44007, France
| | - Kwan L Chan
- Department of Medicine, University of Ottawa Heart Institute, Ottawa, ON, K1Y 4W7, Canada
| | - Audrey Paulin
- Centre de recherche de l’Institut universitaire de cardiologie et de pneumologie de Québec, Québec, QC, G1V 4G5, Canada
| | - Hasanga D Manikpurage
- Centre de recherche de l’Institut universitaire de cardiologie et de pneumologie de Québec, Québec, QC, G1V 4G5, Canada
| | - Jean Dumesnil
- Centre de recherche de l’Institut universitaire de cardiologie et de pneumologie de Québec, Québec, QC, G1V 4G5, Canada
| | - James W Tam
- Department of Medicine, St. Boniface General Hospital, Winnipeg, MB, R2H 2A6, Canada
| | - Koon K Teo
- Department of Medicine (Cardiology), McMaster University, Hamilton, ON, L8S 4L8, Canada
| | - Christian Couture
- Centre de recherche de l’Institut universitaire de cardiologie et de pneumologie de Québec, Québec, QC, G1V 4G5, Canada
| | - Nicholas J Wareham
- Department of Public Health and Primary Care, University of Cambridge, Cambridge, CB2 1TN, UK
| | - Marie-Annick Clavel
- Centre de recherche de l’Institut universitaire de cardiologie et de pneumologie de Québec, Québec, QC, G1V 4G5, Canada
- Department of Medicine, Faculty of Medicine, Université Laval, Québec, QC, G1V 0A6, Canada
| | - Erik S G Stroes
- Department of Vascular Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, 1105 AZ, The Netherlands
| | - Patrick Mathieu
- Centre de recherche de l’Institut universitaire de cardiologie et de pneumologie de Québec, Québec, QC, G1V 4G5, Canada
- Department of Surgery, Faculty of Medicine, Université Laval, Québec, QC, G1V 0A6, Canada
| | - Sébastien Thériault
- Centre de recherche de l’Institut universitaire de cardiologie et de pneumologie de Québec, Québec, QC, G1V 4G5, Canada
- Department of Molecular Biology, Medical Biochemistry and Pathology, Faculty of Medicine, Université Laval, Québec, QC, G1V 0A6, Canada
| | - Sotirios Tsimikas
- Division of Cardiovascular Diseases, Department of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Philippe Pibarot
- Centre de recherche de l’Institut universitaire de cardiologie et de pneumologie de Québec, Québec, QC, G1V 4G5, Canada
- Department of Medicine, Faculty of Medicine, Université Laval, Québec, QC, G1V 0A6, Canada
| | - S Matthijs Boekholdt
- Department of Cardiology, Amsterdam UMC, University of Amsterdam, Amsterdam, 1105 AZ, The Netherlands
| | - Benoit J Arsenault
- Centre de recherche de l’Institut universitaire de cardiologie et de pneumologie de Québec, Québec, QC, G1V 4G5, Canada
- Department of Medicine, Faculty of Medicine, Université Laval, Québec, QC, G1V 0A6, Canada
| |
Collapse
|
56
|
Calcific aortic valve disease: mechanisms, prevention and treatment. Nat Rev Cardiol 2023:10.1038/s41569-023-00845-7. [PMID: 36829083 DOI: 10.1038/s41569-023-00845-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/01/2023] [Indexed: 02/26/2023]
Abstract
Calcific aortic valve disease (CAVD) is the most common disorder affecting heart valves and is characterized by thickening, fibrosis and mineralization of the aortic valve leaflets. Analyses of surgically explanted aortic valve leaflets have shown that dystrophic mineralization and osteogenic transition of valve interstitial cells co-occur with neovascularization, microhaemorrhage and abnormal production of extracellular matrix. Age and congenital bicuspid aortic valve morphology are important and unalterable risk factors for CAVD, whereas additional risk is conferred by elevated blood pressure and plasma lipoprotein(a) levels and the presence of obesity and diabetes mellitus, which are modifiable factors. Genetic and molecular studies have identified that the NOTCH, WNT-β-catenin and myocardin signalling pathways are involved in the control and commitment of valvular cells to a fibrocalcific lineage. Complex interactions between valve endothelial and interstitial cells and immune cells promote the remodelling of aortic valve leaflets and the development of CAVD. Although no medical therapy is effective for reducing or preventing the progression of CAVD, studies have started to identify actionable targets.
Collapse
|
57
|
Tsamoulis D, Siountri I, Rallidis LS. Lipoprotein(a): Its Association with Calcific Aortic Valve Stenosis, the Emerging RNA-Related Treatments and the Hope for a New Era in “Treating” Aortic Valve Calcification. J Cardiovasc Dev Dis 2023; 10:jcdd10030096. [PMID: 36975859 PMCID: PMC10056331 DOI: 10.3390/jcdd10030096] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 02/19/2023] [Accepted: 02/20/2023] [Indexed: 02/25/2023] Open
Abstract
The treatment of patients with aortic valve calcification (AVC) and calcific aortic valve stenosis (CAVS) remains challenging as, until today, all non-invasive interventions have proven fruitless in preventing the disease’s onset and progression. Despite the similarities in the pathogenesis of AVC and atherosclerosis, statins failed to show a favorable effect in preventing AVC progression. The recognition of lipoprotein(a) [Lp(a)] as a strong and potentially modifiable risk factor for the development and, perhaps, the progression of AVC and CAVS and the evolution of novel agents leading in a robust Lp(a) reduction, have rekindled hope for a promising future in the treatment of those patients. Lp(a) seems to promote AVC via a ‘three hit’ mechanism including lipid deposition, inflammation and autotaxin transportation. All of these lead to valve interstitial cells transition into osteoblast-like cells and, thus, to parenchymal calcification. Currently available lipid-lowering therapies have shown a neutral or mild effect on Lp(a), which was proven insufficient to contribute to clinical benefits. The short-term safety and the efficacy of the emerging agents in reducing Lp(a) have been proven; nevertheless, their effect on cardiovascular risk is currently under investigation in phase 3 clinical trials. A positive result of these trials will probably be the spark to test the hypothesis of the modification of AVC’s natural history with the novel Lp(a)-lowering agents.
Collapse
Affiliation(s)
- Donatos Tsamoulis
- 1st Department of Internal Medicine, Thriasio General Hospital of Eleusis, 192 00 Athens, Greece
- Society of Junior Doctors, 5 Menalou Str., 151 23 Athens, Greece
| | - Iliana Siountri
- 1st Department of Internal Medicine, General Hospital of Nikaia “Agios Panteleimon”, 184 54 Nikaia, Greece
| | - Loukianos S. Rallidis
- Second Department of Cardiology, National & Kapodistrian University of Athens, School of Medicine, University General Hospital ATTIKON, 124 62 Athens, Greece
- Correspondence:
| |
Collapse
|
58
|
Tissue and Serum Biomarkers in Degenerative Aortic Stenosis-Insights into Pathogenesis, Prevention and Therapy. BIOLOGY 2023; 12:biology12030347. [PMID: 36979039 PMCID: PMC10045285 DOI: 10.3390/biology12030347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/03/2023] [Accepted: 02/09/2023] [Indexed: 02/25/2023]
Abstract
Background and Aim. Degenerative Aortic Stenosis (DAS) is a common disease that causes substantial morbidity and mortality worldwide, especially in the older population. Our aim was to further investigate novel serum and tissue biomarkers to elucidate biological processes involved in this entity. Material and Methods. We evaluated the expression of six biomarkers significantly involved in cardiovascular pathology, i.e., irisin, periostin, osteoglycin, interleukin 18, high mobility group box 1 and proprotein convertase subtilisin/kexin type 9 in the serum at the protein level, and in the tissue at both the protein and mRNA levels of patients with AS (N = 60). Five normal valves obtained after transplantation from hearts of patients with idiopathic dilated cardiomyopathy were also studied. Serum measurements were also performed in 22 individuals without valvular disease who served as controls (C). Results. Higher levels of all factors were found in DAS patients’ serum than in normal C. IHC and PCR mRNA tissue analysis showed the presence of all biomarkers in the aortic valve cusps with DAS, but no trace of PCR mRNA was found in the five transplantation valves. Moreover, periostin serum levels correlated significantly with IHC and mRNA tissue levels in AS patients. Conclusion. We showed that six widely prevalent biomarkers affecting the atherosclerotic process were also involved in DAS, suggesting a strong osteogenic and pro-inflammatory profile, indicating that aortic valve calcification is a multifactorial biological process.
Collapse
|
59
|
Chen J, Lin Y, Sun Z. Inhibition of miR-101-3p prevents human aortic valve interstitial cell calcification through regulation of CDH11/SOX9 expression. Mol Med 2023; 29:24. [PMID: 36809926 PMCID: PMC9945614 DOI: 10.1186/s10020-023-00619-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 02/10/2023] [Indexed: 02/24/2023] Open
Abstract
BACKGROUND Calcific aortic valve disease (CAVD) is the second leading cause of adult heart diseases. The purpose of this study is to investigate whether miR-101-3p plays a role in the human aortic valve interstitial cells (HAVICs) calcification and the underlying mechanisms. METHODS Small RNA deep sequencing and qPCR analysis were used to determine changes in microRNA expression in calcified human aortic valves. RESULTS The data showed that miR-101-3p levels were increased in the calcified human aortic valves. Using cultured primary HAVICs, we demonstrated that the miR-101-3p mimic promoted calcification and upregulated the osteogenesis pathway, while anti-miR-101-3p inhibited osteogenic differentiation and prevented calcification in HAVICs treated with the osteogenic conditioned medium. Mechanistically, miR-101-3p directly targeted cadherin-11 (CDH11) and Sry-related high-mobility-group box 9 (SOX9), key factors in the regulation of chondrogenesis and osteogenesis. Both CDH11 and SOX9 expressions were downregulated in the calcified human HAVICs. Inhibition of miR-101-3p restored expression of CDH11, SOX9 and ASPN and prevented osteogenesis in HAVICs under the calcific condition. CONCLUSION miR-101-3p plays an important role in HAVIC calcification through regulation of CDH11/SOX9 expression. The finding is important as it reveals that miR-1013p may be a potential therapeutic target for calcific aortic valve disease.
Collapse
Affiliation(s)
- Jianglei Chen
- Department of Physiology, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Yi Lin
- Department of Physiology, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Zhongjie Sun
- Department of Physiology, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA. .,Department of Physiology, College of Medicine, UT Cardiovascular Institute, University of Tennessee Health Science Center, 956 Court Avenue, Memphis, TN, 38163, USA.
| |
Collapse
|
60
|
Teramoto M, Yamagishi K, Cui R, Shirai K, Tamakoshi A, Iso H. Body Mass Index and Mortality from Nonrheumatic Aortic Valve Disease among Japanese Men and Women. J Atheroscler Thromb 2023; 30:150-159. [PMID: 35418541 PMCID: PMC9925207 DOI: 10.5551/jat.63452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Accepted: 02/23/2022] [Indexed: 02/04/2023] Open
Abstract
AIM We aimed to examine the impact of overweight and obesity on mortality from nonrheumatic aortic valve disease. METHODS In the Japan Collaborative Cohort Study, we analyzed data of 98,378 participants aged 40-79 years, with no history of coronary heart disease, stroke, or cancer at baseline (1988-1990) and who completed a lifestyle questionnaire including height and body weight; they were followed for mortality until the end of 2009. The Cox proportional hazards model was used to calculate the multivariable hazard ratios (HRs) with 95% confidence intervals (CIs) of nonrheumatic aortic valve disease mortality according to body mass index (BMI) after adjusting for potential confounding factors. RESULTS During the median 19.2 years follow-up, 60 deaths from nonrheumatic aortic valve disease were reported. BMI was positively associated with the risk of mortality from nonrheumatic aortic valve disease; the multivariable HRs (95% CIs) were 0.90 (0.40-2.06) for persons with BMI <21 kg/m2, 1.71 (0.81-3.58) for BMI 23-24.9 kg/m2, 1.65 (0.69-3.94) for BMI 25-26.9 kg/m2, and 2.83 (1.20-6.65) for BMI ≥ 27 kg/m2 (p for trend=0.006), compared with persons with BMI 21-22.9 kg/m2. Similar associations were observed between men and women (p for interaction=0.56). Excluding those who died during the first ten years of follow-up or a competing risk analysis with other causes of death as competing risk events did not change the association materially. CONCLUSIONS Overweight and obesity may be independent risk factors for nonrheumatic aortic valve disease mortality in Asian populations.
Collapse
Affiliation(s)
- Masayuki Teramoto
- Public Health, Department of Social Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Kazumasa Yamagishi
- Department of Public Health Medicine, Faculty of Medicine, and Health Services Research and Development Center, University of Tsukuba, Tsukuba, Japan
| | - Renzhe Cui
- Public Health, Department of Social Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Kokoro Shirai
- Public Health, Department of Social Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Akiko Tamakoshi
- Department of Preventive Medicine, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Hiroyasu Iso
- Public Health, Department of Social Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
- Department of Public Health Medicine, Faculty of Medicine, and Health Services Research and Development Center, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
61
|
Tserensonom M, Yagi S, Ise T, Kawabata Y, Kadota M, Hara T, Kusunos K, Yamaguchi K, Yamada H, Soeki T, Wakatsuki T, Sata M. Lipoprotein (a) is a risk factor of aortic valve calcification in patients with a risk of atherosclerosis. THE JOURNAL OF MEDICAL INVESTIGATION 2023; 70:450-456. [PMID: 37940531 DOI: 10.2152/jmi.70.450] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
Aortic valve calcification (AVC), which causes aortic stenosis (AS), is more common in elderly persons. Controlling for conventional risk variables did not, however, reduce the incidence of AS. Thus, residual risk factors of AS should be identified. We enrolled 513 patients who underwent coronary angiography with computed tomography because of suspicion of coronary artery disease (CAD) or ruling out of CAD before aortic valve replacement. Calcium volume was calculated with a commercially available application. Conventional and lipid-related risk factors including serum levels of Lp(a) were evaluated for all patients. Calcium volume and Lp(a) levels were significantly higher in patients who underwent aortic valve replacement than in those who did not. A single regression analysis showed that the calcium volume was positively associated with age and the Lp(a) levels and negatively associated with the estimated glomerular filtration rate. No statistical significance was observed for other risk factors, including oxidized low-density lipoprotein, omega-3 fatty acids levels. The multiple regression analysis revealed that age (P<0.001), female sex (P<0.05), Lp(a) (P<0.01), and hemoglobin A1c (P<0.01) were determinants of the calcium volume. The area under the curve in receiver operating characteristic analysis of Lp(a) for implementation of AVR was 0.65 at an Lp(a) cut-off level of 16 mg/dL. In conclusion, the serum Lp(a) level is a potent risk factor of AVC in patients with high risk of atherosclerosis. J. Med. Invest. 70 : 450-456, August, 2023.
Collapse
Affiliation(s)
- Munkhtsetseg Tserensonom
- Department of Cardiovascular Medicine, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Shusuke Yagi
- Department of Cardiovascular Medicine, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
- Department of Community Medicine and Human Resource Development, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Takayuki Ise
- Department of Cardiovascular Medicine, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Yutaka Kawabata
- Department of Cardiovascular Medicine, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Muneyuki Kadota
- Department of Cardiovascular Medicine, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Tomoya Hara
- Department of Cardiovascular Medicine, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Kenya Kusunos
- Department of Cardiovascular Medicine, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Koji Yamaguchi
- Department of Cardiovascular Medicine, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Hirotsugu Yamada
- Department of Cardiovascular Medicine, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Takeshi Soeki
- Department of Cardiovascular Medicine, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Tetsuzo Wakatsuki
- Department of Cardiovascular Medicine, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Masataka Sata
- Department of Cardiovascular Medicine, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| |
Collapse
|
62
|
Xie K, Zeng J, Wen L, Peng X, Lin Z, Xian G, Guo Y, Yang X, Li P, Xu D, Zeng Q. Abnormally elevated EZH2-mediated H3K27me3 enhances osteogenesis in aortic valve interstitial cells by inhibiting SOCS3 expression. Atherosclerosis 2023; 364:1-9. [PMID: 36455343 DOI: 10.1016/j.atherosclerosis.2022.11.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 10/22/2022] [Accepted: 11/16/2022] [Indexed: 11/24/2022]
Abstract
BACKGROUND AND AIMS The osteogenic transition of aortic valve interstitial cells (AVICs) plays a critical role for the progression of calcific aortic valve disease (CAVD). Enhancer of zeste homolog 2 (EZH2) is an important methyltransferase for histone H3 Lys27 (H3K27) that has been found to be involved in osteogenesis. Here, we investigated the effect and mechanism of EZH2 in CAVD progression. METHODS High throughout mRNA sequencing, qRT-PCR and immunoblot were performed to screen differentially expressed genes in non-CAVD and CAVD aortic valves. To investigate the role of EZH2 and SOCS3 in osteogenesis, AVICs were treated with siRNA, adenovirus and specific inhibitors, then osteogenic markers and mineralized deposits were examined. In vivo, the morphology and function of aortic valves were investigated by HE stain and echocardiography in ApoE-/- mice fed a long-term western diet (WD). RESULTS We discovered that EZH2 was upregulated and SOCS3 was downregulated in calcified aortic valves. In AVICs, inhibition or silencing of EZH2 attenuated the osteogenic responses. On the other hand, demethylases inhibitor (GSK-J4) enhanced osteogenic transition of AVICs. Moreover, SOCS3 knockdown enhanced the expression of osteogenic markers, while SOCS3 overexpression suppressed osteogenesis and calcification. The chromatin immunoprecipitation and restored experiments indicated that EZH2 directly targeted SOCS3 to promote osteogenic responses of AVICs. In vivo, treatment with EZH2 inhibitor through intraperitoneal injection attenuated aortic valve thickening, calcification and dysfunction induced by WD. CONCLUSIONS Collectively, we found that EZH2-mediated H3K27me3 enhanced osteogenesis and microcalcification of AVICs via inhibiting SOCS3 expression, which provides potential targets for future therapeutic interventions of CAVD.
Collapse
Affiliation(s)
- Kaiji Xie
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, China; Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, 510515, Guangzhou, China; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), 510005, Guangzhou, China
| | - Jingxin Zeng
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, China; Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, 510515, Guangzhou, China; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), 510005, Guangzhou, China
| | - Liming Wen
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, China; Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, 510515, Guangzhou, China; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), 510005, Guangzhou, China
| | - Xin Peng
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, China; Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, 510515, Guangzhou, China; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), 510005, Guangzhou, China; Huazhong University of Science and Technology Union Shenzhen Hospital, 518052, Shenzhen, China
| | - Zhibin Lin
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, China; Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, 510515, Guangzhou, China; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), 510005, Guangzhou, China
| | - Gaopeng Xian
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, China; Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, 510515, Guangzhou, China; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), 510005, Guangzhou, China
| | - Yuyang Guo
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, China; Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, 510515, Guangzhou, China; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), 510005, Guangzhou, China
| | - Xi Yang
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, China; Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, 510515, Guangzhou, China; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), 510005, Guangzhou, China
| | - Peixin Li
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, China; Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, 510515, Guangzhou, China; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), 510005, Guangzhou, China
| | - Dingli Xu
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, China; Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, 510515, Guangzhou, China; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), 510005, Guangzhou, China.
| | - Qingchun Zeng
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, China; Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, 510515, Guangzhou, China; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), 510005, Guangzhou, China.
| |
Collapse
|
63
|
Yasuhara J, Schultz K, Bigelow AM, Garg V. Congenital aortic valve stenosis: from pathophysiology to molecular genetics and the need for novel therapeutics. Front Cardiovasc Med 2023; 10:1142707. [PMID: 37187784 PMCID: PMC10175644 DOI: 10.3389/fcvm.2023.1142707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 04/14/2023] [Indexed: 05/17/2023] Open
Abstract
Congenital aortic valve stenosis (AVS) is one of the most common valve anomalies and accounts for 3%-6% of cardiac malformations. As congenital AVS is often progressive, many patients, both children and adults, require transcatheter or surgical intervention throughout their lives. While the mechanisms of degenerative aortic valve disease in the adult population are partially described, the pathophysiology of adult AVS is different from congenital AVS in children as epigenetic and environmental risk factors play a significant role in manifestations of aortic valve disease in adults. Despite increased understanding of genetic basis of congenital aortic valve disease such as bicuspid aortic valve, the etiology and underlying mechanisms of congenital AVS in infants and children remain unknown. Herein, we review the pathophysiology of congenitally stenotic aortic valves and their natural history and disease course along with current management strategies. With the rapid expansion of knowledge of genetic origins of congenital heart defects, we also summarize the literature on the genetic contributors to congenital AVS. Further, this increased molecular understanding has led to the expansion of animal models with congenital aortic valve anomalies. Finally, we discuss the potential to develop novel therapeutics for congenital AVS that expand on integration of these molecular and genetic advances.
Collapse
Affiliation(s)
- Jun Yasuhara
- Center for Cardiovascular Research, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH, United States
- Heart Center, Nationwide Children’s Hospital, Columbus, OH, United States
- Correspondence: Jun Yasuhara Vidu Garg
| | - Karlee Schultz
- Medical Student Research Program, The Ohio State University College of Medicine, Columbus, OH, United States
| | - Amee M. Bigelow
- Heart Center, Nationwide Children’s Hospital, Columbus, OH, United States
- Department of Pediatrics, The Ohio State University, Columbus, OH, United States
| | - Vidu Garg
- Center for Cardiovascular Research, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH, United States
- Heart Center, Nationwide Children’s Hospital, Columbus, OH, United States
- Department of Pediatrics, The Ohio State University, Columbus, OH, United States
- Department of Molecular Genetics, The Ohio State University, Columbus, OH, United States
- Correspondence: Jun Yasuhara Vidu Garg
| |
Collapse
|
64
|
Ferrer-Sistach E, Teis A, Bayés-Genís A, Delgado V. Multimodality imaging in aortic stenosis: new diagnostic and therapeutic frontiers. REVISTA ESPANOLA DE CARDIOLOGIA (ENGLISH ED.) 2023; 76:40-46. [PMID: 35716910 DOI: 10.1016/j.rec.2022.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 06/03/2022] [Indexed: 12/24/2022]
Abstract
The advent of transcatheter aortic valve implantation has revolutionized the treatment of calcific aortic valve stenosis. Elderly patients who were previously considered inoperable have currently an efficacious and safe therapy that provides better survival. In addition, current practice guidelines tend to recommend earlier intervention to avoid the irreversible consequences of long-lasting pressure overload caused by the stenotic aortic valve. Appropriate timing of the intervention relies significantly on imaging techniques that provide information on the severity of the aortic stenosis as well as on the hemodynamic consequences and cardiac remodeling. While left ventricular ejection fraction remains one of the main functional parameters for risk stratification in patients with severe aortic stenosis, advances in imaging techniques have provided new structural and functional parameters that allow the identification of patients who will benefit from intervention before the occurrence of symptoms or irreversible cardiac damage. Furthermore, ongoing research aiming to identify the medical therapies that can effectively halt the progression of aortic stenosis relies heavily on imaging endpoints, and new imaging techniques that characterize the metabolic activity of calcific aortic stenosis have been proposed to monitor the effects of these therapies. The present review provides an up-to-date overview of the imaging advances that characterizes the pathophysiology and that have changed the management paradigm of aortic stenosis.
Collapse
Affiliation(s)
| | - Albert Teis
- Institut del Cor, Hospital Universitari Germans Trias i Pujol, Badalona, Spain; Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Antoni Bayés-Genís
- Institut del Cor, Hospital Universitari Germans Trias i Pujol, Badalona, Spain
| | - Victoria Delgado
- Institut del Cor, Hospital Universitari Germans Trias i Pujol, Badalona, Spain; Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
65
|
Novel Insights Into Identifying Patients at Risk for Developing Calcific Aortic Stenosis: Clinical Implications. J Am Soc Echocardiogr 2023; 36:50-52. [PMID: 36402636 DOI: 10.1016/j.echo.2022.10.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 10/30/2022] [Accepted: 10/31/2022] [Indexed: 11/19/2022]
|
66
|
Pavlides GS, Chatzizisis YS, Porter TR. Integrating hemodynamics with ventricular and valvular remodeling in aortic stenosis. A paradigm shift in therapeutic decision making. Am Heart J 2022; 254:66-76. [PMID: 35970400 DOI: 10.1016/j.ahj.2022.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 08/05/2022] [Accepted: 08/06/2022] [Indexed: 06/15/2023]
Abstract
Aortic valve stenosis (AS) has traditionally been approached in hemodynamic terms. Although hemodynamics and symptoms have formed the basis of recommending interventional treatment in AS, other factors reflecting left ventricular and valvular and/or vascular remodeling are equally important for the prognosis and outcome of patients with AS. Left ventricular and valvular/vascular remodeling in AS do not consistently correlate with hemodynamic severity of AS. Those remodeling changes are reflected and can be detected by a variety of novel laboratory and imaging techniques, including biomarkers, echocardiography, cardiac magnetic resonance and gated Computer Tomography (CT) imaging. Taking all those elements into Heart Team therapeutic decision making in patients with AS, can significantly improve appropriate patient selection for interventional treatment and patient outcomes. We review this novel approach and propose a simple algorithm for decision making by the Heart Team, in patients with moderate or severe AS.
Collapse
|
67
|
Xiong T, Chen Y, Han S, Zhang TC, Pu L, Fan YX, Fan WC, Zhang YY, Li YX. Development and analysis of a comprehensive diagnostic model for aortic valve calcification using machine learning methods and artificial neural networks. Front Cardiovasc Med 2022; 9:913776. [PMID: 36531717 PMCID: PMC9751025 DOI: 10.3389/fcvm.2022.913776] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 11/07/2022] [Indexed: 11/27/2023] Open
Abstract
BACKGROUND Although advanced surgical and interventional treatments are available for advanced aortic valve calcification (AVC) with severe clinical symptoms, early diagnosis, and intervention is critical in order to reduce calcification progression and improve patient prognosis. The aim of this study was to develop therapeutic targets for improving outcomes for patients with AVC. MATERIALS AND METHODS We used the public expression profiles of individuals with AVC (GSE12644 and GSE51472) to identify potential diagnostic markers. First, the R software was used to identify differentially expressed genes (DEGs) and perform functional enrichment analysis. Next, we combined bioinformatics techniques with machine learning methodologies such as random forest algorithms and support vector machines to screen for and identify diagnostic markers of AVC. Subsequently, artificial neural networks were employed to filter and model the diagnostic characteristics for AVC incidence. The diagnostic values were determined using the receiver operating characteristic (ROC) curves. Furthermore, CIBERSORT immune infiltration analysis was used to determine the expression of different immune cells in the AVC. Finally, the CMap database was used to predict candidate small compounds as prospective AVC therapeutics. RESULTS A total of 78 strong DEGs were identified. The leukocyte migration and pid integrin 1 pathways were highly enriched for AVC-specific DEGs. CXCL16, GPM6A, BEX2, S100A9, and SCARA5 genes were all regarded diagnostic markers for AVC. The model was effectively constructed using a molecular diagnostic score system with significant diagnostic value (AUC = 0.987) and verified using the independent dataset GSE83453 (AUC = 0.986). Immune cell infiltration research revealed that B cell naive, B cell memory, plasma cells, NK cell activated, monocytes, and macrophage M0 may be involved in the development of AVC. Additionally, all diagnostic characteristics may have varying degrees of correlation with immune cells. The most promising small molecule medicines for reversing AVC gene expression are Doxazosin and Terfenadine. CONCLUSION It was identified that CXCL16, GPM6A, BEX2, S100A9, and SCARA5 are potentially beneficial for diagnosing and treating AVC. A diagnostic model was constructed based on a molecular prognostic score system using machine learning. The aforementioned immune cell infiltration may have a significant influence on the development and incidence of AVC.
Collapse
Affiliation(s)
- Tao Xiong
- Department of Cardiovascular Surgery, Yan’an Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
- Key Laboratory of Cardiovascular Disease of Yunnan Province, Yan’an Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Yan Chen
- Department of Cardiovascular Surgery, Yan’an Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
- Key Laboratory of Cardiovascular Disease of Yunnan Province, Yan’an Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Shen Han
- Department of Cardiovascular Surgery, Yan’an Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
- Key Laboratory of Cardiovascular Disease of Yunnan Province, Yan’an Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Tian-Chen Zhang
- Department of Cardiovascular Surgery, Yan’an Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
- Key Laboratory of Cardiovascular Disease of Yunnan Province, Yan’an Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Lei Pu
- Department of Cardiovascular Surgery, Yan’an Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
- Key Laboratory of Cardiovascular Disease of Yunnan Province, Yan’an Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Yu-Xin Fan
- Department of Cardiovascular Surgery, Yan’an Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
- Key Laboratory of Cardiovascular Disease of Yunnan Province, Yan’an Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Wei-Chen Fan
- Department of Cardiovascular Surgery, Yan’an Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
- Key Laboratory of Cardiovascular Disease of Yunnan Province, Yan’an Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Ya-Yong Zhang
- Department of Cardiovascular Surgery, Yan’an Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
- Key Laboratory of Cardiovascular Disease of Yunnan Province, Yan’an Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Ya-Xiong Li
- Department of Cardiovascular Surgery, Yan’an Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
- Key Laboratory of Cardiovascular Disease of Yunnan Province, Yan’an Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| |
Collapse
|
68
|
Gorton AJ, Keshavamurthy S, Saha SP. Diagnosis and Management of Aortic Valvular Disease in the Elderly. Int J Angiol 2022; 31:232-243. [PMID: 36588869 PMCID: PMC9803555 DOI: 10.1055/s-0042-1759527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Aortic valvular disease, including aortic stenosis and aortic regurgitation, is increasingly common with age. Due to the aging population, more elderly patients are presenting with aortic valve pathology and expectations for prompt diagnosis and efficacious treatment. The current paradigm for aortic valve disease is based on surgical or interventional therapy. In this review, we discuss the approach to diagnosing aortic valvular disease and the different options for treatment based on the most recent evidence.
Collapse
Affiliation(s)
- Andrew J. Gorton
- Division of Cardiothoracic Surgery, Department of Surgery, University of Kentucky, Lexington, Kentucky
| | - Suresh Keshavamurthy
- Division of Cardiothoracic Surgery, Department of Surgery, University of Kentucky, Lexington, Kentucky
| | - Sibu P. Saha
- Division of Cardiothoracic Surgery, Department of Surgery, University of Kentucky, Lexington, Kentucky
| |
Collapse
|
69
|
Uzunget SB, Sahin KE. Atherogenic index of plasma is an independent predictor of mitral annular calcification. BMC Cardiovasc Disord 2022; 22:511. [PMID: 36451082 PMCID: PMC9710030 DOI: 10.1186/s12872-022-02891-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 10/10/2022] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND In the latest reports, atherogenic indices have been related to acute coronary syndromes, stable coronary artery disease, heart failure and future cardiac events. Conventional atherosclerosis risk factors have been associated with mitral annular calcification (MAC), but data on the relationship between atherogenic indices and MAC are lacking. We aimed to investigate a possible relationship between MAC and atherogenic indices. METHODS In total 741 patients (n = 427 with MAC and n = 314 without MAC) who were examined in our cardiology clinic from February 2016 to October 2021 were recruited in the study. Mitral annular calcification was diagnosed by transthoracic 2-dimensional echocardiography. The atherogenic coefficient (AC), Castelli risk index 1 (CRI-1), Castelli risk index 2 (CRI-2) and atherogenic index of plasma (AIP) were calculated by utilizing standard lipid test values. RESULTS There was no statistically significant difference in sex, age, diabetes and hypertension status between the patient and the control groups. Serum triglyceride level, AIP, Hs-CRP, smoking and BMI were independently significantly associated with MAC in multiple regression analysis (p < 0.001). CONCLUSION Higher AIP was related to the existence of MAC and also predict the presence of MAC independently. Studies evaluating the modification of these indices are needed.
Collapse
Affiliation(s)
| | - Kader Eliz Sahin
- grid.411126.10000 0004 0369 5557Department of Cardiology, Adiyaman University Education and Research Hospital, Adiyaman, Turkey
| |
Collapse
|
70
|
Molnár AÁ, Pásztor D, Merkely B. Cellular Senescence, Aging and Non-Aging Processes in Calcified Aortic Valve Stenosis: From Bench-Side to Bedside. Cells 2022; 11:cells11213389. [PMID: 36359785 PMCID: PMC9659237 DOI: 10.3390/cells11213389] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/23/2022] [Accepted: 10/24/2022] [Indexed: 11/30/2022] Open
Abstract
Aortic valve stenosis (AS) is the most common valvular heart disease. The incidence of AS increases with age, however, a significant proportion of elderly people have no significant AS, indicating that both aging and nonaging pathways are involved in the pathomechanism of AS. Age-related and stress-induced cellular senescence accompanied by further active processes represent the key elements of AS pathomechanism. The early stage of aortic valve degeneration involves dysfunction and disruption of the valvular endothelium due to cellular senescence and mechanical stress on blood flow. These cells are replaced by circulating progenitor cells, but in an age-dependent decelerating manner. When endothelial denudation is no longer replaced by progenitor cells, the path opens for focal lipid deposition, initiating subsequent oxidation, inflammation and micromineralisation. Later stages of AS feature a complex active process with extracellular matrix remodeling, fibrosis and calcification. Echocardiography is the gold standard method for diagnosing aortic valve disease, although computed tomography and cardiac magnetic resonance are useful additional imaging methods. To date, no medical treatment has been proven to halt the progression of AS. Elucidation of differences and similarities between vascular and valvular calcification pathomechanisms may help to find effective medical therapy and reduce the increasing health burden of the disease.
Collapse
|
71
|
Identification of HIBCH as a Fatty Acid Metabolism-Related Biomarker in Aortic Valve Calcification Using Bioinformatics. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022. [DOI: 10.1155/2022/9558713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Objective. To identify fatty acid metabolism-related biomarkers of aortic valve calcification (AVC) using bioinformatics and to research the role of immune cell infiltration for AVC. Methods. The AVC dataset was retrieved from the Gene Expression Omnibus database. R package is used for differential expression genes analysis and weighted gene coexpression analysis. The differentially coexpressed genes were identified by the Venn diagram, followed by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses of differentially coexpressed genes. Functions closely related to AVC were identified by GO and KEGG enrichment analyses of differentially coexpressed genes. Genes related to fatty acid metabolism were retrieved from the Molecular Signatures Database (MSigDB) database. After removing duplicate genes, least absolute shrinkage and selection operator (LASSO) regression analysis, support vector machine recursive feature elimination (SVM-RFE), and random forest were applied to recognize biomarkers related to fatty acid metabolism in AVC. The CIBERSORT tool was used to analyze infiltration of immune cells in normal and AVC samples. Correlations between biomarkers and immune cells were calculated. Finally, HIBCH-related pathway was predicted by single-gene gene set enrichment analysis (GSEA). Results. 2416 differentially expressed genes and one coexpression module were identified. A total of 1473 differentially coexpressed genes were acquired. GO and KEGG enrichment analyses demonstrated that differentially coexpressed genes were closely related to fatty acid metabolism. LASSO regression analysis, SVM-REF, and random forest revealed that 3-hydroxyisobutyryl-CoA hydrolase (HIBCH) was a biomarker of fatty acid metabolism-related genes in AVC. Significant high levels of memory B cells were found in AVC than normal samples, while activated natural killer (NK) cells were significantly low in AVC than normal samples. A significantly positive relevance was observed between HIBCH and activated NK cells, regulatory T cells, monocytes, naïve B cells, activated dendritic cells, resting memory CD4 T cells, resting NK cells, and CD8 T cells. A significantly negative relevance was observed between HIBCH and activated memory CD4 T cells, memory B cells, neutrophils, gamma delta T cells, M0 macrophages, and plasma cells. The single-gene GSEA results suggest that HIBCH may work through the inhibition of multiple immune-related pathways. Conclusion. HIBCH is closely relevant to immune cell infiltration in AVC and could be applied as a diagnostic marker for AVC.
Collapse
|
72
|
Ferrer-Sistach E, Teis A, Bayés-Genís A, Delgado V. Imagen multimodal en la estenosis aórtica: nuevas fronteras diagnósticas y terapéuticas. Rev Esp Cardiol 2022. [DOI: 10.1016/j.recesp.2022.05.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2022]
|
73
|
Ito S, Oh JK. Aortic Stenosis: New Insights in Diagnosis, Treatment, and Prevention. Korean Circ J 2022; 52:721-736. [PMID: 36217595 PMCID: PMC9551229 DOI: 10.4070/kcj.2022.0234] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 09/07/2022] [Indexed: 12/02/2022] Open
Abstract
Aortic stenosis (AS) is one of the most common valvular heart diseases and the number of patients with AS is expected to increase globally as the older population is growing fast. Since the majority of patients are elderly, AS is no longer a simple valvular heart disease of left ventricular outflow obstruction but is accompanied by other cardiac and comorbid conditions. Because of the significant variations of the disease, identifying patients at high risk and even earlier detection of patients with AS before developing symptomatic severe AS is becoming increasingly important. With the proven of efficacy and safety of transcatheter aortic valve replacement (TAVR) in the severe AS population, there is a growing interest in applying TAVR in those with less than severe AS. A medical therapy to reduce or prevent the progression in AS is actively investigated by several randomized control trials. In this review, we will summarize the most recent findings in AS and discuss potential future management strategies of patients with AS.
Collapse
Affiliation(s)
- Saki Ito
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Jae K Oh
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
74
|
Lee SH, Kim N, Kim M, Woo SH, Han I, Park J, Kim K, Park KS, Kim K, Shim D, Park SE, Zhang JY, Go DM, Kim DY, Yoon WK, Lee SP, Chung J, Kim KW, Park JH, Lee SH, Lee S, Ann SJ, Lee SH, Ahn HS, Jeong SC, Kim TK, Oh GT, Park WY, Lee HO, Choi JH. Single-cell transcriptomics reveal cellular diversity of aortic valve and the immunomodulation by PPARγ during hyperlipidemia. Nat Commun 2022; 13:5461. [PMID: 36115863 PMCID: PMC9482653 DOI: 10.1038/s41467-022-33202-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 09/07/2022] [Indexed: 11/30/2022] Open
Abstract
Valvular inflammation triggered by hyperlipidemia has been considered as an important initial process of aortic valve disease; however, cellular and molecular evidence remains unclear. Here, we assess the relationship between plasma lipids and valvular inflammation, and identify association of low-density lipoprotein with increased valvular lipid and macrophage accumulation. Single-cell RNA sequencing analysis reveals the cellular heterogeneity of leukocytes, valvular interstitial cells, and valvular endothelial cells, and their phenotypic changes during hyperlipidemia leading to recruitment of monocyte-derived MHC-IIhi macrophages. Interestingly, we find activated PPARγ pathway in Cd36+ valvular endothelial cells increased in hyperlipidemic mice, and the conservation of PPARγ activation in non-calcified human aortic valves. While the PPARγ inhibition promotes inflammation, PPARγ activation using pioglitazone reduces valvular inflammation in hyperlipidemic mice. These results show that low-density lipoprotein is the main lipoprotein accumulated in the aortic valve during hyperlipidemia, leading to early-stage aortic valve disease, and PPARγ activation protects the aortic valve against inflammation. Identifying the mechanisms underlying the early inflammatory phase of aortic valve disease is crucial for disease prevention. Here the authors perform single-cell RNA sequencing to show the immunomodulatory role of PPARγ in valvular endothelial cells during hyperlipidemia.
Collapse
|
75
|
Overexpressed Thrombospondin 2 Induced Osteogenic Differentiation of Valve Interstitial Cells via Inhibition of Akt/NF-κB Signaling Pathway to Promote Calcific Aortic Valve Disease Development. DISEASE MARKERS 2022; 2022:2022958. [PMID: 36118676 PMCID: PMC9477632 DOI: 10.1155/2022/2022958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 07/26/2022] [Accepted: 07/27/2022] [Indexed: 11/25/2022]
Abstract
Thrombospondin 2 (THBS2) is reported to participate in the development of calcific aortic valve disease (CAVD), while the effects are not elucidated completely. The study aimed to explore the role and mechanism of THBS2 in CAVD. Differentially expressed genes related to stenosis and sclerosis were screened through Limma package based on data from Gene Expression Omnibus (GEO), and the functional enrichment analysis was performed by the Database for Annotation, Visualization and Integrated Discovery (DAVID) database. The immunoreactivity of THBS2 in CAVD and normal samples was detected through immunohistochemistry. Valve interstitial cells (VICs) were transfected with short hairpin RNA against THBS2 (shTHBS2) and THBS2 overexpression plasmid and treated with LY294002 (Akt inhibitor) and induced osteogenic differentiation. The expression of THBS2 in CAVD and normal samples and the levels of THBS2, osteocalcin, Runx2, SPARC, COL1A2, COL1A1, SPP1, CTGF, MMP-2, MMP-13, Akt, p-Akt, p65, p-p65, and nuclear p65 in VICs were tested by qRT-PCR and Western blot. ALP activity was assessed using colorimetry. Calcic nodule formation was measured by Alizarin Red staining. THBS2 and PI3K-Akt pathway were differentially enriched in stenosis samples when compared with those in sclerosis samples. THBS2 expression was upregulated in CAVD and positively correlated with ALP activity, calcic nodule formation, osteogenic differentiation-related (osteocalcin, Runx2, SPARC, COL1A2, COL1A1, SPP1, and CTGF) and extracellular matrix– (ECM–) related (MMP-2 and MMP-13) factors in the process of osteogenic differentiation. ShTHBS2 suppressed ALP activity, calcic nodule formation, and osteogenic differentiation/ECM-related molecules while upregulating p-Akt/Akt, p-p65/p65, and nuclear p65 expressions in VICs during osteogenic differentiation. However, THBS2 overexpression had the opposite effect to shTHBS2, and LY294002 reversed the effect of shTHBS2. Collectively, overexpressed THBS2 induces the osteogenic differentiation of VICs via inhibiting Akt/NF-κB pathway to promote the development of CAVD.
Collapse
|
76
|
Trindade F, Ferreira AF, Saraiva F, Martins D, Mendes VM, Sousa C, Gavina C, Leite-Moreira A, Manadas B, Falcão-Pires I, Vitorino R. Optimization of a Protocol for Protein Extraction from Calcified Aortic Valves for Proteomics Applications: Development of a Standard Operating Procedure. Proteomes 2022; 10:proteomes10030030. [PMID: 36136308 PMCID: PMC9505568 DOI: 10.3390/proteomes10030030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/02/2022] [Accepted: 08/11/2022] [Indexed: 11/28/2022] Open
Abstract
The comprehension of the pathophysiological mechanisms, the identification of druggable targets, and putative biomarkers for aortic valve stenosis can be pursued through holistic approaches such as proteomics. However, tissue homogenization and protein extraction are made difficult by tissue calcification. The reproducibility of proteome studies is key in clinical translation of the findings. Thus, we aimed to optimize a protocol for aortic valve homogenization and protein extraction and to develop a standard operating procedure (SOP), which researchers can use to maximize protein yield while reducing inter-laboratory variability. We have compared the protein yield between conventional tissue grinding in nitrogen followed by homogenization with a Potter apparatus with a more advanced bead-beating system. Once we confirmed the superiority of the latter, we further optimized it by testing the effect of beads size, the number of homogenization cycles, tube capacity, lysis buffer/tissue mass ratio, and two different lysis buffers. Optimal protein extraction was achieved with 2.8 mm zirconium dioxide beads, in two homogenization cycles, in the presence of 20 µL RIPA buffer/mg tissue, using 2 mL O-ring cryotubes. As a proof of concept of the usefulness of this SOP for proteomics, the AV proteome of men and women with aortic stenosis was characterized, resulting in the quantification of proteins across six orders of magnitude and uncovering some putative proteins dysregulated by sex.
Collapse
Affiliation(s)
- Fábio Trindade
- Cardiovascular R&D Centre—UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
- Correspondence:
| | - Ana F. Ferreira
- Cardiovascular R&D Centre—UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| | - Francisca Saraiva
- Cardiovascular R&D Centre—UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| | - Diana Martins
- Cardiovascular R&D Centre—UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| | - Vera M. Mendes
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal
| | - Carla Sousa
- Cardiovascular R&D Centre—UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
- Cardiology Department, Centro Hospitalar Universitário de São João, 4200-319 Porto, Portugal
| | - Cristina Gavina
- Cardiovascular R&D Centre—UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
- Cardiology Department, Hospital Pedro Hispano, Unidade Local de Saúde de Matosinhos, 4464-513 Matosinhos, Portugal
| | - Adelino Leite-Moreira
- Cardiovascular R&D Centre—UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
- Department of Cardiothoracic Surgery, Centro Hospitalar Universitário de São João, 4200-319 Porto, Portugal
| | - Bruno Manadas
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal
- Institute for Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal
| | - Inês Falcão-Pires
- Cardiovascular R&D Centre—UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| | - Rui Vitorino
- Cardiovascular R&D Centre—UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
- iBiMED—Institute of Biomedicine, Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal
- LAQV/REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
77
|
Iribarren AC, AlBadri A, Wei J, Nelson MD, Li D, Makkar R, Merz CNB. Sex differences in aortic stenosis: Identification of knowledge gaps for sex-specific personalized medicine. AMERICAN HEART JOURNAL PLUS : CARDIOLOGY RESEARCH AND PRACTICE 2022; 21:100197. [PMID: 36330169 PMCID: PMC9629620 DOI: 10.1016/j.ahjo.2022.100197] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/18/2022] [Accepted: 08/20/2022] [Indexed: 06/16/2023]
Abstract
Objectives This review summarizes sex-based differences in aortic stenosis (AS) and identifies knowledge gaps that should be addressed by future studies. Background AS is the most common valvular heart disease in developed countries. Sex-specific differences have not been fully appreciated, as a result of widespread under diagnosis of AS in women. Summary Studies including sex-stratified analyses have shown differences in pathophysiology with less calcification and more fibrosis in women's aortic valve. Women have impaired myocardial perfusion reserve and different compensatory response of the left ventricle (LV) to pressure overload, with concentric remodeling and more diffuse fibrosis, in contrast to men with more focal fibrosis and more dilated/eccentrically remodeled LV. There is sex difference in clinical presentation and anatomical characteristics, with women having more paradoxical low-flow/low-gradient AS, under-diagnosis and severity underestimated, with less referral to aortic valve replacement (AVR) compared to men. The response to therapies is also different: women have more adverse events with surgical AVR and greater survival benefit with transcatheter AVR. After AVR, women would have more favorable LV remodeling, but sex-related differences in changes in myocardial reserve flow need future research. Conclusions Investigation into these described sex-related differences in AS offers potential utility for improving prevention and treatment of AS in women and men. To better understand sex-based differences in pathophysiology, clinical presentation, and response to therapies, sex-specific critical knowledge gaps should be addressed in future research for sex-specific personalized medicine.
Collapse
Affiliation(s)
- Ana C. Iribarren
- Barbra Streisand Women's Heart Center, Cedars-Sinai Smidt Heart Institute, Los Angeles, CA, United States of America
| | - Ahmed AlBadri
- Barbra Streisand Women's Heart Center, Cedars-Sinai Smidt Heart Institute, Los Angeles, CA, United States of America
| | - Janet Wei
- Barbra Streisand Women's Heart Center, Cedars-Sinai Smidt Heart Institute, Los Angeles, CA, United States of America
- Cedars-Sinai Biomedical Imaging Research Institute, Los Angeles, CA, United States of America
| | - Michael D. Nelson
- Barbra Streisand Women's Heart Center, Cedars-Sinai Smidt Heart Institute, Los Angeles, CA, United States of America
| | - Debiao Li
- Cedars-Sinai Biomedical Imaging Research Institute, Los Angeles, CA, United States of America
| | - Raj Makkar
- Cedars-Sinai Cardiovascular Intervention Center, Smidt Heart Institute, Los Angeles, CA, United States of America
| | - C. Noel Bairey Merz
- Barbra Streisand Women's Heart Center, Cedars-Sinai Smidt Heart Institute, Los Angeles, CA, United States of America
| |
Collapse
|
78
|
Pinto G, Fragasso G. Aortic valve stenosis: drivers of disease progression and drug targets for therapeutic opportunities. Expert Opin Ther Targets 2022; 26:633-644. [DOI: 10.1080/14728222.2022.2118576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Giuseppe Pinto
- Departmen of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
- IRCCS Humanitas Research Hospital, Rozzano-Milan, Italy
| | - Gabriele Fragasso
- Department of Clinical Cardiology, Heart Failure Clinic, IRCCS San Raffaele Scientific Institute, Milano
| |
Collapse
|
79
|
Tanase DM, Valasciuc E, Gosav EM, Floria M, Costea CF, Dima N, Tudorancea I, Maranduca MA, Serban IL. Contribution of Oxidative Stress (OS) in Calcific Aortic Valve Disease (CAVD): From Pathophysiology to Therapeutic Targets. Cells 2022; 11:cells11172663. [PMID: 36078071 PMCID: PMC9454630 DOI: 10.3390/cells11172663] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 11/16/2022] Open
Abstract
Calcific aortic valve disease (CAVD) is a major cause of cardiovascular mortality and morbidity, with increased prevalence and incidence. The underlying mechanisms behind CAVD are complex, and are mainly illustrated by inflammation, mechanical stress (which induces prolonged aortic valve endothelial dysfunction), increased oxidative stress (OS) (which trigger fibrosis), and calcification of valve leaflets. To date, besides aortic valve replacement, there are no specific pharmacological treatments for CAVD. In this review, we describe the mechanisms behind aortic valvular disease, the involvement of OS as a fundamental element in disease progression with predilection in AS, and its two most frequent etiologies (calcific aortic valve disease and bicuspid aortic valve); moreover, we highlight the potential of OS as a future therapeutic target.
Collapse
Affiliation(s)
- Daniela Maria Tanase
- Department of Internal Medicine, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania
- Internal Medicine Clinic, St. Spiridon County Clinical Emergency Hospital Iasi, 700111 Iasi, Romania
| | - Emilia Valasciuc
- Department of Internal Medicine, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania
- Internal Medicine Clinic, St. Spiridon County Clinical Emergency Hospital Iasi, 700111 Iasi, Romania
| | - Evelina Maria Gosav
- Department of Internal Medicine, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania
- Internal Medicine Clinic, St. Spiridon County Clinical Emergency Hospital Iasi, 700111 Iasi, Romania
| | - Mariana Floria
- Department of Internal Medicine, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania
- Internal Medicine Clinic, St. Spiridon County Clinical Emergency Hospital Iasi, 700111 Iasi, Romania
- Correspondence:
| | - Claudia Florida Costea
- Department of Ophthalmology, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania
- 2nd Ophthalmology Clinic, Prof. Dr. Nicolae Oblu Emergency Clinical Hospital, 700309 Iasi, Romania
| | - Nicoleta Dima
- Department of Internal Medicine, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania
- Internal Medicine Clinic, St. Spiridon County Clinical Emergency Hospital Iasi, 700111 Iasi, Romania
| | - Ionut Tudorancea
- Department of Morpho-Functional Sciences II, Discipline of Physiology, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania
- Cardiology Clinic St. Spiridon County Clinical Emergency Hospital, 700111 Iasi, Romania
| | - Minela Aida Maranduca
- Internal Medicine Clinic, St. Spiridon County Clinical Emergency Hospital Iasi, 700111 Iasi, Romania
- Department of Morpho-Functional Sciences II, Discipline of Physiology, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Ionela Lacramioara Serban
- Department of Morpho-Functional Sciences II, Discipline of Physiology, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iasi, Romania
| |
Collapse
|
80
|
Xia C, Lei W, Hu Y, Yang H, Zeng X, Chen M. Association of serum levels of calcium, phosphate, and vitamin D with risk of developing aortic stenosis: the UK Biobank cohort. Eur J Prev Cardiol 2022; 29:1520-1528. [PMID: 35104862 DOI: 10.1093/eurjpc/zwac016] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/04/2022] [Accepted: 01/26/2022] [Indexed: 11/13/2022]
Abstract
AIMS This study was aimed to investigate the associations of serum calcium, phosphate, and vitamin D levels with the risk of developing aortic stenosis (AS). METHODS AND RESULTS We included 296 415 participants who were free of prior diagnosis of any valvular heart disease from the UK Biobank. Serum levels of phosphate, calcium, and vitamin D were measured. Incidental AS was determined by the records of hospital data. Cox regression was used to examine the association of serum mineral levels with incidental AS after adjustment for potential confounders. The mean age was 56.4 years (SD 8.14) and 53.3% of participants were women. During an average follow-up of 8.1 years, 1232 individuals developed AS. After adjustment, each 0.5-unit increase in serum phosphate level was associated with a 50% increase of AS risk (hazard ratio 1.50, 95% confidence interval 1.26-1.80). We observed no association of serum calcium and vitamin D levels with AS. CONCLUSION Increased serum phosphate level, but not calcium or vitamin D, was associated with a higher risk of incident AS, this association did not differed substantially between patients with and without decreased kidney function. This finding implied that phosphate may be a potential interventional target for AS.
Collapse
Affiliation(s)
- Congying Xia
- Department of Cardiology, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu, Sichuan Province 610041, China
| | - Wenhua Lei
- Department of Cardiology, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu, Sichuan Province 610041, China
| | - Yao Hu
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu, Sichuan Province 610041, China
- Med-X Center for Informatics, Sichuan University, 37 Guoxue Alley, Chengdu, Sichuan Province 610041, China
| | - Huazhen Yang
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu, Sichuan Province 610041, China
- Med-X Center for Informatics, Sichuan University, 37 Guoxue Alley, Chengdu, Sichuan Province 610041, China
| | - Xiaoxi Zeng
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu, Sichuan Province 610041, China
- Division of Nephrology, Kidney Research Institute, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu, Sichuan Province 610041, China
| | - Mao Chen
- Department of Cardiology, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu, Sichuan Province 610041, China
| |
Collapse
|
81
|
Statins in High Cardiovascular Risk Patients: Do Comorbidities and Characteristics Matter? Int J Mol Sci 2022; 23:ijms23169326. [PMID: 36012589 PMCID: PMC9409457 DOI: 10.3390/ijms23169326] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/12/2022] [Accepted: 08/15/2022] [Indexed: 11/25/2022] Open
Abstract
Atherosclerotic cardiovascular disease (ASCVD) morbidity and mortality are decreasing in high-income countries, but ASCVD remains the leading cause of morbidity and mortality in high-income countries. Over the past few decades, major risk factors for ASCVD, including LDL cholesterol (LDL-C), have been identified. Statins are the drug of choice for patients at increased risk of ASCVD and remain one of the most commonly used and effective drugs for reducing LDL cholesterol and the risk of mortality and coronary artery disease in high-risk groups. Unfortunately, doctors tend to under-prescribe or under-dose these drugs, mostly out of fear of side effects. The latest guidelines emphasize that treatment intensity should increase with increasing cardiovascular risk and that the decision to initiate intervention remains a matter of individual consideration and shared decision-making. The purpose of this review was to analyze the indications for initiation or continuation of statin therapy in different categories of patient with high cardiovascular risk, considering their complexity and comorbidities in order to personalize treatment.
Collapse
|
82
|
Rawshani A, Sattar N, McGuire DK, Wallström O, Smith U, Borén J, Bergström G, Omerovic E, Rosengren A, Eliasson B, Bhatt DL, Rawshani A. Left-Sided Degenerative Valvular Heart Disease in Type 1 and Type 2 Diabetes. Circulation 2022; 146:398-411. [PMID: 35678729 DOI: 10.1161/circulationaha.121.058072] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND The role of diabetes in the development of valvular heart disease, and, in particular, the relation with risk factor control, has not been extensively studied. METHODS We included 715 143 patients with diabetes registered in the Swedish National Diabetes Register and compared them with 2 732 333 matched controls randomly selected from the general population. First, trends were analyzed with incidence rates and Cox regression, which was also used to assess diabetes as a risk factor compared with controls, and, second, separately in patients with diabetes according to the presence of 5 risk factors. RESULTS The incidence of valvular outcomes is increasing among patients with diabetes and the general population. In type 2 diabetes, systolic blood pressure, body mass index, and renal function were associated with valvular lesions. Hazard ratios for patients with type 2 diabetes who had nearly all risk factors within target ranges, compared with controls, were as follows: aortic stenosis 1.34 (95% CI, 1.31-1.38), aortic regurgitation 0.67 (95% CI, 0.64-0.70), mitral stenosis 1.95 (95% CI, 1.76-2.20), and mitral regurgitation 0.82 (95% CI, 0.79-0.85). Hazard ratios for patients with type 1 diabetes and nearly optimal risk factor control were as follows: aortic stenosis 2.01 (95% CI, 1.58-2.56), aortic regurgitation 0.63 (95% CI, 0.43-0.94), and mitral stenosis 3.47 (95% CI, 1.37-8.84). Excess risk in patients with type 2 diabetes for stenotic lesions showed hazard ratios for aortic stenosis 1.62 (95% CI, 1.59-1.65), mitral stenosis 2.28 (95% CI, 2.08-2.50), and excess risk in patients with type 1 diabetes showed hazard ratios of 2.59 (95% CI, 2.21-3.05) and 11.43 (95% CI, 6.18-21.15), respectively. Risk for aortic and mitral regurgitation was lower in type 2 diabetes: 0.81 (95% CI, 0.78-0.84) and 0.95 (95% CI, 0.92-0.98), respectively. CONCLUSIONS Individuals with type 1 and 2 diabetes have greater risk for stenotic lesions, whereas risk for valvular regurgitation was lower in patients with type 2 diabetes. Patients with well-controlled cardiovascular risk factors continued to display higher risk for valvular stenosis, without a clear stepwise decrease in risk between various degrees of risk factor control.
Collapse
Affiliation(s)
- Araz Rawshani
- Department of Molecular and Clinical Medicine (Araz Rawshani, O.W., U.S., J.B., G.B., E.O., A. Rosengren, Aidin Rawshani), University of Gothenburg, Sweden.,Wallenberg Laboratory for Cardiovascular and Metabolic Research (Araz Rawshani, U.S., J.B., G.B., E.O., A. Rosengren, Aidin Rawshani), University of Gothenburg, Sweden
| | - Naveed Sattar
- Institute of Cardiovascular and Medical Sciences, British Heart Foundation Glasgow Cardiovascular Research Centre, Glasgow, United Kingdom (N.S.)
| | - Darren K McGuire
- Department of Internal Medicine, University of Texas Southwestern Medical Center, and Parkland Health and Hospital System, Dallas (D.K.M.)
| | - Oskar Wallström
- Department of Molecular and Clinical Medicine (Araz Rawshani, O.W., U.S., J.B., G.B., E.O., A. Rosengren, Aidin Rawshani), University of Gothenburg, Sweden
| | - Ulf Smith
- Department of Molecular and Clinical Medicine (Araz Rawshani, O.W., U.S., J.B., G.B., E.O., A. Rosengren, Aidin Rawshani), University of Gothenburg, Sweden.,Wallenberg Laboratory for Cardiovascular and Metabolic Research (Araz Rawshani, U.S., J.B., G.B., E.O., A. Rosengren, Aidin Rawshani), University of Gothenburg, Sweden.,Institute of Medicine, The Lundberg Laboratory for Diabetes Research, Department of Molecular and Clinical Medicine (U.S., B.E., Aidin Rawshani), University of Gothenburg, Sweden
| | - Jan Borén
- Department of Molecular and Clinical Medicine (Araz Rawshani, O.W., U.S., J.B., G.B., E.O., A. Rosengren, Aidin Rawshani), University of Gothenburg, Sweden.,Wallenberg Laboratory for Cardiovascular and Metabolic Research (Araz Rawshani, U.S., J.B., G.B., E.O., A. Rosengren, Aidin Rawshani), University of Gothenburg, Sweden
| | - Göran Bergström
- Wallenberg Laboratory for Cardiovascular and Metabolic Research (Araz Rawshani, U.S., J.B., G.B., E.O., A. Rosengren, Aidin Rawshani), University of Gothenburg, Sweden.,Department of Clinical Physiology, Sahlgrenska University Hospital, Region Västra Götaland, Gothenburg, Sweden (G.B., Aidin Rawshani)
| | - Elmir Omerovic
- Department of Molecular and Clinical Medicine (Araz Rawshani, O.W., U.S., J.B., G.B., E.O., A. Rosengren, Aidin Rawshani), University of Gothenburg, Sweden.,Wallenberg Laboratory for Cardiovascular and Metabolic Research (Araz Rawshani, U.S., J.B., G.B., E.O., A. Rosengren, Aidin Rawshani), University of Gothenburg, Sweden
| | - Annika Rosengren
- Department of Molecular and Clinical Medicine (Araz Rawshani, O.W., U.S., J.B., G.B., E.O., A. Rosengren, Aidin Rawshani), University of Gothenburg, Sweden.,Wallenberg Laboratory for Cardiovascular and Metabolic Research (Araz Rawshani, U.S., J.B., G.B., E.O., A. Rosengren, Aidin Rawshani), University of Gothenburg, Sweden
| | - Björn Eliasson
- Institute of Medicine, The Lundberg Laboratory for Diabetes Research, Department of Molecular and Clinical Medicine (U.S., B.E., Aidin Rawshani), University of Gothenburg, Sweden
| | - Deepak L Bhatt
- Brigham and Women's Hospital Heart and Vascular Center, Harvard Medical School, Boston, MA (D.L.B.)
| | - Aidin Rawshani
- Department of Molecular and Clinical Medicine (Araz Rawshani, O.W., U.S., J.B., G.B., E.O., A. Rosengren, Aidin Rawshani), University of Gothenburg, Sweden.,Wallenberg Laboratory for Cardiovascular and Metabolic Research (Araz Rawshani, U.S., J.B., G.B., E.O., A. Rosengren, Aidin Rawshani), University of Gothenburg, Sweden.,Institute of Medicine, The Lundberg Laboratory for Diabetes Research, Department of Molecular and Clinical Medicine (U.S., B.E., Aidin Rawshani), University of Gothenburg, Sweden.,Department of Clinical Physiology, Sahlgrenska University Hospital, Region Västra Götaland, Gothenburg, Sweden (G.B., Aidin Rawshani)
| |
Collapse
|
83
|
Kaiser Y, van der Toorn JE, Singh SS, Zheng KH, Kavousi M, Sijbrands EJG, Stroes ESG, Vernooij MW, de Rijke YB, Boekholdt SM, Bos D. Lipoprotein(a) is associated with the onset but not the progression of aortic valve calcification. Eur Heart J 2022; 43:3960-3967. [PMID: 35869873 PMCID: PMC9840475 DOI: 10.1093/eurheartj/ehac377] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 05/10/2022] [Accepted: 06/30/2022] [Indexed: 01/19/2023] Open
Abstract
AIM Lipoprotein(a) [Lp(a)] is a potential causal factor in the pathogenesis of aortic valve disease. However, the relationship of Lp(a) with new onset and progression of aortic valve calcium (AVC) has not been studied. The purpose of the study was to assess whether high serum levels of Lp(a) are associated with AVC incidence and progression. METHODS AND RESULTS A total of 922 individuals from the population-based Rotterdam Study (mean age 66.0±4.2 years, 47.7% men), whose Lp(a) measurements were available, underwent non-enhanced cardiac computed tomography imaging at baseline and after a median follow-up of 14.0 [interquartile range (IQR) 13.9-14.2] years. New-onset AVC was defined as an AVC score >0 on the follow-up scan in the absence of AVC on the first scan. Progression was defined as the absolute difference in AVC score between the baseline and follow-up scan. Logistic and linear regression analyses were performed to evaluate the relationship of Lp(a) with baseline, new onset, and progression of AVC. All analyses were corrected for age, sex, body mass index, smoking, hypertension, dyslipidaemia, and creatinine. AVC progression was analysed conditional on baseline AVC score expressed as restricted cubic splines. Of the 702 individuals without AVC at baseline, 415 (59.1%) developed new-onset AVC on the follow-up scan. In those with baseline AVC, median annual progression was 13.5 (IQR = 5.2-37.8) Agatston units (AU). Lipoprotein(a) concentration was independently associated with baseline AVC [odds ratio (OR) 1.43 for each 50 mg/dL higher Lp(a); 95% confidence interval (CI) 1.15-1.79] and new-onset AVC (OR 1.30 for each 50 mg/dL higher Lp(a); 95% CI 1.02-1.65), but not with AVC progression (β: -71 AU for each 50 mg/dL higher Lp(a); 95% CI -117; 35). Only baseline AVC score was significantly associated with AVC progression (P < 0.001). CONCLUSION In the population-based Rotterdam Study, Lp(a) is robustly associated with baseline and new-onset AVC but not with AVC progression, suggesting that Lp(a)-lowering interventions may be most effective in pre-calcific stages of aortic valve disease.
Collapse
Affiliation(s)
- Yannick Kaiser
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands,Department of Vascular Medicine, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Janine E van der Toorn
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands,Department of Radiology & Nuclear Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Sunny S Singh
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands,Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands,Department of Clinical Chemistry, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Kang H Zheng
- Department of Vascular Medicine, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Maryam Kavousi
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Eric J G Sijbrands
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Erik S G Stroes
- Department of Vascular Medicine, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Meike W Vernooij
- Department of Radiology & Nuclear Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Yolanda B de Rijke
- Department of Clinical Chemistry, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | | | - Daniel Bos
- Corresponding author. Tel: +31 10 44875, Fax: +31 10 70 44657,
| |
Collapse
|
84
|
Phua K, Chew NWS, Kong WKF, Tan RS, Ye L, Poh KK. The mechanistic pathways of oxidative stress in aortic stenosis and clinical implications. Theranostics 2022; 12:5189-5203. [PMID: 35836811 PMCID: PMC9274751 DOI: 10.7150/thno.71813] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 06/03/2022] [Indexed: 02/06/2023] Open
Abstract
Despite the elucidation of the pathways behind the development of aortic stenosis (AS), there remains no effective medical treatment to slow or reverse its progress. Instead, the gold standard of care in severe or symptomatic AS is replacement of the aortic valve. Oxidative stress is implicated, both directly as well as indirectly, in lipid infiltration, inflammation and fibro-calcification, all of which are key processes underlying the pathophysiology of degenerative AS. This culminates in the breakdown of the extracellular matrix, differentiation of the valvular interstitial cells into an osteogenic phenotype, and finally, calcium deposition as well as thickening of the aortic valve. Oxidative stress is thus a promising and potential therapeutic target for the treatment of AS. Several studies focusing on the mitigation of oxidative stress in the context of AS have shown some success in animal and in vitro models, however similar benefits have yet to be seen in clinical trials. Statin therapy, once thought to be the key to the treatment of AS, has yielded disappointing results, however newer lipid lowering therapies may hold some promise. Other potential therapies, such as manipulation of microRNAs, blockade of the renin-angiotensin-aldosterone system and the use of dipeptidylpeptidase-4 inhibitors will also be reviewed.
Collapse
Affiliation(s)
- Kailun Phua
- Department of Cardiology, National University Heart Centre, National University Hospital, Singapore, Singapore
| | - Nicholas WS Chew
- Department of Cardiology, National University Heart Centre, National University Hospital, Singapore, Singapore,✉ Corresponding authors: A/Prof Kian-Keong Poh, . Dr Nicholas Chew, MBChB, MMED (Singapore), MRCP (UK) . Department of Cardiology, National University Heart Centre Singapore, National University Health System, Singapore. 1E Kent Ridge Rd, NUHS Tower Block, Level 9, Singapore 119228. Fax: (65) 68722998 Telephone: (65) 67722476
| | - William KF Kong
- Department of Cardiology, National University Heart Centre, National University Hospital, Singapore, Singapore
| | - Ru-San Tan
- Department of Cardiology, National Heart Centre Singapore, Singapore, 169609, Singapore
| | - Lei Ye
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore, 169609, Singapore
| | - Kian-Keong Poh
- Department of Cardiology, National University Heart Centre, National University Hospital, Singapore, Singapore,Yong Loo Lin School of Medicine, National University of Singapore, Singapore,✉ Corresponding authors: A/Prof Kian-Keong Poh, . Dr Nicholas Chew, MBChB, MMED (Singapore), MRCP (UK) . Department of Cardiology, National University Heart Centre Singapore, National University Health System, Singapore. 1E Kent Ridge Rd, NUHS Tower Block, Level 9, Singapore 119228. Fax: (65) 68722998 Telephone: (65) 67722476
| |
Collapse
|
85
|
Bélanger AM, Akioyamen LE, Ruel I, Hales L, Genest J. Aortic stenosis in homozygous familial hypercholesterolaemia: a paradigm shift over a century. Eur Heart J 2022; 43:3227-3239. [PMID: 35776569 DOI: 10.1093/eurheartj/ehac339] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 05/13/2022] [Accepted: 06/09/2022] [Indexed: 01/31/2023] Open
Abstract
AIMS Homozygous familial hypercholesterolaemia (HoFH) is an orphan disease defined by extreme elevations in low-density lipoprotein cholesterol, cutaneous xanthomas, and pre-mature atherosclerotic cardiovascular disease. Survival has more than doubled over the past three decades. Aortic stenosis (AS) [supravalvular aortic stenosis (SVAS) or valvular aortic stenosis (VAS)] is commonly encountered. There are no medical treatments available and complex high-risk surgeries represent the only available option in severe cases. A systematic review was performed to summarize the current evidence on AS in HoFH and to determine whether pharmacological treatment (statins) have had an impact on clinical presentation, phenotype and clinical course over the past nine decades (PROSPERO CRD42021250565). METHODS AND RESULTS MEDLINE, Embase Classic + Embase, Cochrane Central Register of Controlled Trials, PubMed, AfricaWide, and Scopus were searched from inception to 10 November 2021. Searches identified 381 publications, of which 19 were retained; they were cross-sectional or retrospective studies. Separately, 108 individual case reports were described. Within the 424 HoFH cases, AS was identified in 57% of patients in the pre-statin era vs. 35% in patients reported more recently (>2000, long-term statin period). With an increase in longevity due to statins and lipoprotein apheresis, a change in the proportion of patients with SVAS and VAS with a SVAS:VAS ratio of 47:53 and 10:90 for HoFH patients not on statin and on long-term statin, respectively, was noted. CONCLUSION These data suggest that SVAS and VAS are frequent in HoFH and that the phenotype has shifted towards calcific VAS as statins and lipoprotein apheresis improve survival in these patients.
Collapse
Affiliation(s)
- Alexandre M Bélanger
- Research Institute of the McGill University Health Centre, 1001, Boul. Décarie, Office EM1.2212, Montréal, Québec, Canada
| | - Leo E Akioyamen
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Isabelle Ruel
- Research Institute of the McGill University Health Centre, 1001, Boul. Décarie, Office EM1.2212, Montréal, Québec, Canada
| | - Lindsay Hales
- McGill University Health Centre Medical Libraries, Montréal, Québec, Canada
| | - Jacques Genest
- Research Institute of the McGill University Health Centre, 1001, Boul. Décarie, Office EM1.2212, Montréal, Québec, Canada
| |
Collapse
|
86
|
Oostveen RF, Kaiser Y, Stroes ES, Verberne HJ. Molecular Imaging of Aortic Valve Stenosis with Positron Emission Tomography. Pharmaceuticals (Basel) 2022; 15:ph15070812. [PMID: 35890111 PMCID: PMC9319069 DOI: 10.3390/ph15070812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/16/2022] [Accepted: 06/21/2022] [Indexed: 11/16/2022] Open
Abstract
Aortic valve stenosis (AVS) is an increasingly prevalent disease in our aging population. Although multiple risk factors for AVS have been elucidated, medical therapies capable of slowing down disease progression remain unavailable. Molecular imaging technologies are opening up avenues for the non-invasive assessment of disease progression, allowing the assessment of (early) medical interventions. This review will focus on the role of positron emission tomography of the aortic valve with 18F-fluorodeoxyglucose and 18F-sodium fluoride but will also shed light on novel tracers which have potential in AVS, ranging from the healthy aortic valve to end-stage valvular disease.
Collapse
Affiliation(s)
- Reindert F. Oostveen
- Department of Vascular Medicine, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (R.F.O.); (Y.K.); (E.S.G.S.)
| | - Yannick Kaiser
- Department of Vascular Medicine, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (R.F.O.); (Y.K.); (E.S.G.S.)
| | - Erik S.G. Stroes
- Department of Vascular Medicine, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (R.F.O.); (Y.K.); (E.S.G.S.)
| | - Hein J. Verberne
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
- Correspondence: ; Tel.: +31-20-562-8436
| |
Collapse
|
87
|
Nsaibia MJ, Devendran A, Goubaa E, Bouitbir J, Capoulade R, Bouchareb R. Implication of Lipids in Calcified Aortic Valve Pathogenesis: Why Did Statins Fail? J Clin Med 2022; 11:jcm11123331. [PMID: 35743402 PMCID: PMC9225514 DOI: 10.3390/jcm11123331] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 06/01/2022] [Accepted: 06/06/2022] [Indexed: 12/12/2022] Open
Abstract
Calcific Aortic Valve Disease (CAVD) is a fibrocalcific disease. Lipoproteins and oxidized phospholipids play a substantial role in CAVD; the level of Lp(a) has been shown to accelerate the progression of valve calcification. Indeed, oxidized phospholipids carried by Lp(a) into the aortic valve stimulate endothelial dysfunction and promote inflammation. Inflammation and growth factors actively promote the synthesis of the extracellular matrix (ECM) and trigger an osteogenic program. The accumulation of ECM proteins promotes lipid adhesion to valve tissue, which could initiate the osteogenic program in interstitial valve cells. Statin treatment has been shown to have the ability to diminish the death rate in subjects with atherosclerotic impediments by decreasing the serum LDL cholesterol levels. However, the use of HMG-CoA inhibitors (statins) as cholesterol-lowering therapy did not significantly reduce the progression or the severity of aortic valve calcification. However, new clinical trials targeting Lp(a) or PCSK9 are showing promising results in reducing the severity of aortic stenosis. In this review, we discuss the implication of lipids in aortic valve calcification and the current findings on the effect of lipid-lowering therapy in aortic stenosis.
Collapse
Affiliation(s)
- Mohamed J. Nsaibia
- Department of Cell Biology and Molecular Medicine, Rutgers University, Newark, NJ 07103, USA;
| | - Anichavezhi Devendran
- Department of Medicine, Cardiovascular Research Institute, The Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
| | - Eshak Goubaa
- Thomas Jefferson University East Falls, Philadelphia, PA 19144, USA;
| | - Jamal Bouitbir
- Department of Pharmaceutical Sciences, Division of Molecular and Systems Toxicology, University of Basel, 4056 Basel, Switzerland;
| | - Romain Capoulade
- L’institut Du Thorax, Nantes Université, CNRS, INSERM, F-44000 Nantes, France;
| | - Rihab Bouchareb
- Department of Medicine, Division of Nephrology, The Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Correspondence: or ; Tel.: +1-(212)-241-8471
| |
Collapse
|
88
|
The Haemodynamic and Pathophysiological Mechanisms of Calcific Aortic Valve Disease. Biomedicines 2022; 10:biomedicines10061317. [PMID: 35740339 PMCID: PMC9220142 DOI: 10.3390/biomedicines10061317] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/13/2022] [Accepted: 05/18/2022] [Indexed: 11/17/2022] Open
|
89
|
Tavenier AH, Nicolas J, Mehran R. The Final Word: Current Strategies for the Lifetime Management of Patients with Aortic Valve Stenosis. US CARDIOLOGY REVIEW 2022. [DOI: 10.15420/usc.2022.07] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Affiliation(s)
- Anne H Tavenier
- The Zena and Michael A Wiener Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York, NY; Department of Cardiology, Isala Hospital, Zwolle, the Netherlands
| | - Johny Nicolas
- The Zena and Michael A Wiener Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Roxana Mehran
- The Zena and Michael A Wiener Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| |
Collapse
|
90
|
Greenberg HZE, Zhao G, Shah AM, Zhang M. Role of oxidative stress in calcific aortic valve disease and its therapeutic implications. Cardiovasc Res 2022; 118:1433-1451. [PMID: 33881501 PMCID: PMC9074995 DOI: 10.1093/cvr/cvab142] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 04/19/2021] [Indexed: 12/12/2022] Open
Abstract
Calcific aortic valve disease (CAVD) is the end result of active cellular processes that lead to the progressive fibrosis and calcification of aortic valve leaflets. In western populations, CAVD is a significant cause of cardiovascular morbidity and mortality, and in the absence of effective drugs, it will likely represent an increasing disease burden as populations age. As there are currently no pharmacological therapies available for preventing, treating, or slowing the development of CAVD, understanding the mechanisms underlying the initiation and progression of the disease is important for identifying novel therapeutic targets. Recent evidence has emerged of an important causative role for reactive oxygen species (ROS)-mediated oxidative stress in the pathophysiology of CAVD, inducing the differentiation of valve interstitial cells into myofibroblasts and then osteoblasts. In this review, we focus on the roles and sources of ROS driving CAVD and consider their potential as novel therapeutic targets for this debilitating condition.
Collapse
Affiliation(s)
- Harry Z E Greenberg
- Department of Cardiology, Cardiovascular Division, King's College London British Heart Foundation Centre of Research Excellence, James Black Centre, 125 Coldharbour Lane, London SE5 9NU, UK
| | - Guoan Zhao
- Department of Cardiology, The First Affiliated Hospital of Xinxiang Medical University, Heart Center of Xinxiang Medical University, Henan, China
| | - Ajay M Shah
- Department of Cardiology, Cardiovascular Division, King's College London British Heart Foundation Centre of Research Excellence, James Black Centre, 125 Coldharbour Lane, London SE5 9NU, UK
| | - Min Zhang
- Department of Cardiology, Cardiovascular Division, King's College London British Heart Foundation Centre of Research Excellence, James Black Centre, 125 Coldharbour Lane, London SE5 9NU, UK
| |
Collapse
|
91
|
Diederichsen AC, Lindholt JS, Möller S, Øvrehus KA, Auscher S, Lambrechtsen J, Hosbond SE, Alan DH, Urbonaviciene G, Becker SW, Fredgart MH, Hasific S, Folkestad L, Gerke O, Rasmussen LM, Møller JE, Mickley H, Dahl JS. Vitamin K2 and D in Patients With Aortic Valve Calcification: A Randomized Double-Blinded Clinical Trial. Circulation 2022; 145:1387-1397. [PMID: 35465686 PMCID: PMC9047644 DOI: 10.1161/circulationaha.121.057008] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 02/09/2022] [Indexed: 01/24/2023]
Abstract
BACKGROUND Menaquinone-7 (MK-7), also known as vitamin K2, is a cofactor for the carboxylation of proteins involved in the inhibition of arterial calcification and has been suggested to reduce the progression rate of aortic valve calcification (AVC) in patients with aortic stenosis. METHODS In a randomized, double-blind, multicenter trial, men from the community with an AVC score >300 arbitrary units (AU) on cardiac noncontrast computer tomography were randomized to daily treatment with tablet 720 µg MK-7 plus 25 µg vitamin D or matching placebo for 24 months. The primary outcome was the change in AVC score. Selected secondary outcomes included change in aortic valve area and peak aortic jet velocity on echocardiography, heart valve surgery, change in aortic and coronary artery calcification, and change in dp-ucMGP (dephosphorylated-undercarboxylated matrix Gla-protein). Safety outcomes included all-cause death and cardiovascular events. RESULTS From February 1, 2018, to March 21, 2019, 365 men were randomized. Mean age was 71.0 (±4.4) years. The mean (95% CI) increase in AVC score was 275 AU (95% CI, 225-326 AU) and 292 AU (95% CI, 246-338 AU) in the intervention and placebo groups, respectively. The mean difference on AVC progression was 17 AU (95% CI, -86 to 53 AU; P=0.64). The mean change in aortic valve area was 0.02 cm2 (95% CI, -0.09 to 0.12 cm2; P=0.78) and in peak aortic jet velocity was 0.04 m/s (95% CI, -0.11 to 0.02 m/s; P=0.21). The progression in aortic and coronary artery calcification score was not significantly different between patients treated with MK-7 plus vitamin D and patients receiving placebo. There was no difference in the rate of heart valve surgery (1 versus 2 patients; P=0.99), all-cause death (1 versus 4 patients; P=0.37), or cardiovascular events (10 versus 10 patients; P=0.99). Compared with patients in the placebo arm, a significant reduction in dp-ucMGP was observed with MK-7 plus vitamin D (-212 pmol/L versus 45 pmol/L; P<0.001). CONCLUSIONS In elderly men with an AVC score >300 AU, 2 years MK-7 plus vitamin D supplementation did not influence AVC progression. REGISTRATION URL: https://www. CLINICALTRIALS gov; Unique identifier: NCT03243890.
Collapse
Affiliation(s)
- Axel C.P. Diederichsen
- Department of Cardiology (A.C.P.D., K.A.Ø., M.H.F., S.H.‚ H.M., J.S.D.), Odense University Hospital, Denmark
| | - Jes S. Lindholt
- Department of Cardiothoracic and Vascular Surgery (J.S.L.), Odense University Hospital, Denmark
| | - Sören Möller
- Open Patient Data Explorative Network (S.M.), Odense University Hospital, Denmark
| | - Kristian A. Øvrehus
- Department of Cardiology (A.C.P.D., K.A.Ø., M.H.F., S.H.‚ H.M., J.S.D.), Odense University Hospital, Denmark
| | - Søren Auscher
- Department of Cardiology, Svendborg Hospital, Denmark (S.A., J.L.)
| | | | - Susanne E. Hosbond
- Department of Cardiology, Lillebaelt Hospital, Vejle, Denmark (S.E.H.‚ D.H.A.)
| | - Dilek H. Alan
- Department of Cardiology, Lillebaelt Hospital, Vejle, Denmark (S.E.H.‚ D.H.A.)
| | - Grazina Urbonaviciene
- Department of Cardiology, Regional Hospital Central Jutland, Silkeborg, Denmark (G.U., S.W.B.)
| | - Søren W. Becker
- Department of Cardiology, Regional Hospital Central Jutland, Silkeborg, Denmark (G.U., S.W.B.)
| | - Maise H. Fredgart
- Department of Cardiology (A.C.P.D., K.A.Ø., M.H.F., S.H.‚ H.M., J.S.D.), Odense University Hospital, Denmark
| | - Selma Hasific
- Department of Cardiology (A.C.P.D., K.A.Ø., M.H.F., S.H.‚ H.M., J.S.D.), Odense University Hospital, Denmark
| | - Lars Folkestad
- Department of Endocrinology (L.F.), Odense University Hospital, Denmark
| | - Oke Gerke
- Department of Nuclear Medicine (O.G.), Odense University Hospital, Denmark
| | - Lars Melholt Rasmussen
- Department of Clinical Biochemistry and Pharmacology (L.M.R.), Odense University Hospital, Denmark
| | - Jacob E. Møller
- Department of Cardiology, Copenhagen University Hospital, Denmark (J.E.M.)
| | - Hans Mickley
- Department of Cardiology (A.C.P.D., K.A.Ø., M.H.F., S.H.‚ H.M., J.S.D.), Odense University Hospital, Denmark
| | - Jordi S. Dahl
- Department of Cardiology (A.C.P.D., K.A.Ø., M.H.F., S.H.‚ H.M., J.S.D.), Odense University Hospital, Denmark
| |
Collapse
|
92
|
Kassis N, Hariri EH, Karrthik AK, Ahuja KR, Layoun H, Saad AM, Gad MM, Kaur M, Bazarbashi N, Griffin BP, Popovic ZB, Harb SC, Desai MY, Kapadia SR. Supplemental calcium and vitamin D and long-term mortality in aortic stenosis. Heart 2022; 108:964-972. [DOI: 10.1136/heartjnl-2021-320215] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 01/05/2022] [Indexed: 12/28/2022] Open
Abstract
ObjectiveCalcium metabolism has long been implicated in aortic stenosis (AS). Studies assessing the long-term safety of oral calcium and/or vitamin D in AS are scarce yet imperative given the rising use among an elderly population prone to deficiency. We sought to identify the associations between supplemental calcium and vitamin D with mortality and progression of AS.MethodsIn this retrospective longitudinal study, patients aged ≥60 years with mild-moderate native AS were selected from the Cleveland Clinic Echocardiography Database from 2008 to 2016 and followed until 2018. Groups were stratified into no supplementation, supplementation with vitamin D alone and supplementation with calcium±vitamin D. The primary outcomes were mortality (all-cause, cardiovascular (CV) and non-CV) and aortic valve replacement (AVR), and the secondary outcome was AS progression by aortic valve area and peak/mean gradients.ResultsOf 2657 patients (mean age 74 years, 42% women) followed over a median duration of 69 months, 1292 (49%) did not supplement, 332 (12%) took vitamin D alone and 1033 (39%) supplemented with calcium±vitamin D. Calcium±vitamin D supplementation was associated with a significantly higher risk of all-cause mortality (absolute rate (AR)=43.0/1000 person-years; HR=1.31, 95% CI (1.07 to 1.62); p=0.009), CV mortality (AR=13.7/1000 person-years; HR=2.0, 95% CI (1.31 to 3.07); p=0.001) and AVR (AR=88.2/1000 person-years; HR=1.48, 95% CI (1.24 to 1.78); p<0.001). Any supplementation was not associated with longitudinal change in AS parameters in a linear mixed-effects model.ConclusionsSupplemental calcium with or without vitamin D is associated with lower survival and greater AVR in elderly patients with mild-moderate AS.
Collapse
|
93
|
Sasakawa Y, Okamoto N, Fujii M, Kato J, Yuzawa Y, Inaguma D. Factors associated with aortic valve stenosis in Japanese patients with end-stage kidney disease. BMC Nephrol 2022; 23:129. [PMID: 35366815 PMCID: PMC8977035 DOI: 10.1186/s12882-022-02758-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 03/21/2022] [Indexed: 11/10/2022] Open
Abstract
Background Aortic valve stenosis (AS) has a high prevalence and poor prognosis in patients who receive maintenance dialysis. However, few large-scale observational studies in Japan have investigated patients with AS who underwent dialysis. In this study, we investigated the prevalence and factors associated with AS in Japanese patients who underwent dialysis. Methods In this cross-sectional analysis, we enrolled patients who underwent dialysis and transthoracic echocardiography between July 1, 2017 and June 30, 2018. Patients with a maximum aortic jet velocity (Vmax) ≥ 2.0 m/s, pressure gradient (PG) between the left ventricle and ascending aorta (mean PG) ≥ 20 mmHg, or aortic valve area (AVA) ≤ 1.0 cm2 were categorized into the AS group (G1). Patients with Vmax ≥ 3.0 m/s, mean PG ≥ 20 mmHg, or AVA ≤ 1.0 cm2 were categorized into the moderate and severe AS groups (G2). We performed multivariate logistic regression analysis and compared G1 and G2 with the non-AS group to determine the risk factors for AS. We also investigated the risk factors for aortic valve calcification, which is a pre-stage for AS. Results Of the 2,786 patients investigated, 555 (20.0%) and 193 (6.9%) were categorized into G1 and G2, respectively. Multivariate logistic regression analysis revealed that age, long-term dialysis, and elevated serum phosphorus levels were associated with AS in both the groups (p < 0.05). These factors were converted into ordinal categories, and a multivariate logistic regression analysis was performed. Patients with serum phosphorus levels measuring 5.0–5.9 mg/dL and > 6.0 mg/dL showed a higher risk of AS than those with serum phosphorus levels measuring < 4.0 mg/dL (odds ratio 2.24, p = 0.01 and odds ratio 2.66, p = 0.005, respectively). Aortic valve calcification was associated with age, long-term dialysis, diabetes mellitus, administration of vitamin D receptor activators, elevated serum calcium levels, and anemia (p < 0.05 for all). Conclusions Patients on dialysis showed a high prevalence of AS, which was associated with age, long-term dialysis, and elevated serum phosphorus levels. Trial registration UMIN000026756, registered on March 29, 2017. Supplementary Information The online version contains supplementary material available at 10.1186/s12882-022-02758-y.
Collapse
|
94
|
Jin Y, Wang Y, Weng Y, Li X, Huang Q, Liu Y, Xiang Y, Li X, Jiang P, He W, Luo J, Shi Q. Resveratrol exhibits inhibition effects on osteogenic differentiation of aortic valve interstitial cells by interfering with the AKT pathway. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
95
|
Dayawansa NH, Baratchi S, Peter K. Uncoupling the Vicious Cycle of Mechanical Stress and Inflammation in Calcific Aortic Valve Disease. Front Cardiovasc Med 2022; 9:783543. [PMID: 35355968 PMCID: PMC8959593 DOI: 10.3389/fcvm.2022.783543] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 02/15/2022] [Indexed: 12/24/2022] Open
Abstract
Calcific aortic valve disease (CAVD) is a common acquired valvulopathy, which carries a high burden of mortality. Chronic inflammation has been postulated as the predominant pathophysiological process underlying CAVD. So far, no effective medical therapies exist to halt the progression of CAVD. This review aims to outline the known pathways of inflammation and calcification in CAVD, focussing on the critical roles of mechanical stress and mechanosensing in the perpetuation of valvular inflammation. Following initiation of valvular inflammation, dysregulation of proinflammatory and osteoregulatory signalling pathways stimulates endothelial-mesenchymal transition of valvular endothelial cells (VECs) and differentiation of valvular interstitial cells (VICs) into active myofibroblastic and osteoblastic phenotypes, which in turn mediate valvular extracellular matrix remodelling and calcification. Mechanosensitive signalling pathways convert mechanical forces experienced by valve leaflets and circulating cells into biochemical signals and may provide the positive feedback loop that promotes acceleration of disease progression in the advanced stages of CAVD. Mechanosensing is implicated in multiple aspects of CAVD pathophysiology. The mechanosensitive RhoA/ROCK and YAP/TAZ systems are implicated in aortic valve leaflet mineralisation in response to increased substrate stiffness. Exposure of aortic valve leaflets, endothelial cells and platelets to high shear stress results in increased expression of mediators of VIC differentiation. Upregulation of the Piezo1 mechanoreceptor has been demonstrated to promote inflammation in CAVD, which normalises following transcatheter valve replacement. Genetic variants and inhibition of Notch signalling accentuate VIC responses to altered mechanical stresses. The study of mechanosensing pathways has revealed promising insights into the mechanisms that perpetuate inflammation and calcification in CAVD. Mechanotransduction of altered mechanical stresses may provide the sought-after coupling link that drives a vicious cycle of chronic inflammation in CAVD. Mechanosensing pathways may yield promising targets for therapeutic interventions and prognostic biomarkers with the potential to improve the management of CAVD.
Collapse
Affiliation(s)
- Nalin H. Dayawansa
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
- Department of Cardiology, Alfred Hospital, Melbourne, VIC, Australia
- Department of Medicine, Monash University, Melbourne, VIC, Australia
| | - Sara Baratchi
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
- School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC, Australia
- Department of Cardiometabolic Health, The University of Melbourne, Melbourne, VIC, Australia
| | - Karlheinz Peter
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
- Department of Cardiology, Alfred Hospital, Melbourne, VIC, Australia
- Department of Medicine, Monash University, Melbourne, VIC, Australia
- Department of Cardiometabolic Health, The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
96
|
Conte M, Petraglia L, Poggio P, Valerio V, Cabaro S, Campana P, Comentale G, Attena E, Russo V, Pilato E, Formisano P, Leosco D, Parisi V. Inflammation and Cardiovascular Diseases in the Elderly: The Role of Epicardial Adipose Tissue. Front Med (Lausanne) 2022; 9:844266. [PMID: 35242789 PMCID: PMC8887867 DOI: 10.3389/fmed.2022.844266] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 01/13/2022] [Indexed: 01/08/2023] Open
Abstract
Human aging is a complex phenomenon characterized by a wide spectrum of biological changes which impact on behavioral and social aspects. Age-related changes are accompanied by a decline in biological function and increased vulnerability leading to frailty, thereby advanced age is identified among the major risk factors of the main chronic human diseases. Aging is characterized by a state of chronic low-grade inflammation, also referred as inflammaging. It recognizes a multifactorial pathogenesis with a prominent role of the innate immune system activation, resulting in tissue degeneration and contributing to adverse outcomes. It is widely recognized that inflammation plays a central role in the development and progression of numerous chronic and cardiovascular diseases. In particular, low-grade inflammation, through an increased risk of atherosclerosis and insulin resistance, promote cardiovascular diseases in the elderly. Low-grade inflammation is also promoted by visceral adiposity, whose accumulation is paralleled by an increased inflammatory status. Aging is associated to increase in epicardial adipose tissue (EAT), the visceral fat depot of the heart. Structural and functional changes in EAT have been shown to be associated with several heart diseases, including coronary artery disease, aortic stenosis, atrial fibrillation, and heart failure. EAT increase is associated with a greater production and secretion of pro-inflammatory mediators and neuro-hormones, so that thickened EAT can pathologically influence, in a paracrine and vasocrine manner, the structure and function of the heart and is associated to a worse cardiovascular outcome. In this review, we will discuss the evidence underlying the interplay between inflammaging, EAT accumulation and cardiovascular diseases. We will examine and discuss the importance of EAT quantification, its characteristics and changes with age and its clinical implication.
Collapse
Affiliation(s)
- Maddalena Conte
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy.,Casa di Cura San Michele, Maddaloni, Italy
| | - Laura Petraglia
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | | | | | - Serena Cabaro
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | - Pasquale Campana
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | - Giuseppe Comentale
- Department of Advanced Biomedical Science, University of Naples Federico II, Naples, Italy
| | - Emilio Attena
- Department of Cardiology, Monaldi Hospital, Naples, Italy
| | - Vincenzo Russo
- Department of Medical Translational Sciences, Monaldi Hospital, University of Campania Luigi Vanvitelli, Campania, Italy
| | - Emanuele Pilato
- Department of Advanced Biomedical Science, University of Naples Federico II, Naples, Italy
| | - Pietro Formisano
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | - Dario Leosco
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | - Valentina Parisi
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| |
Collapse
|
97
|
Xiong T, Han S, Pu L, Zhang TC, Zhan X, Fu T, Dai YH, Li YX. Bioinformatics and Machine Learning Methods to Identify FN1 as a Novel Biomarker of Aortic Valve Calcification. Front Cardiovasc Med 2022; 9:832591. [PMID: 35295271 PMCID: PMC8918776 DOI: 10.3389/fcvm.2022.832591] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 01/28/2022] [Indexed: 12/14/2022] Open
Abstract
AimThe purpose of this study was to identify potential diagnostic markers for aortic valve calcification (AVC) and to investigate the function of immune cell infiltration in this disease.MethodsThe AVC data sets were obtained from the Gene Expression Omnibus. The identification of differentially expressed genes (DEGs) and the performance of functional correlation analysis were carried out using the R software. To explore hub genes related to AVC, a protein–protein interaction network was created. Diagnostic markers for AVC were then screened and verified using the least absolute shrinkage and selection operator, logistic regression, support vector machine-recursive feature elimination algorithms, and hub genes. The infiltration of immune cells into AVC tissues was evaluated using CIBERSORT, and the correlation between diagnostic markers and infiltrating immune cells was analyzed. Finally, the Connectivity Map database was used to forecast the candidate small molecule drugs that might be used as prospective medications to treat AVC.ResultsA total of 337 DEGs were screened. The DEGs that were discovered were mostly related with atherosclerosis and arteriosclerotic cardiovascular disease, according to the analyses. Gene sets involved in the chemokine signaling pathway and cytokine–cytokine receptor interaction were differently active in AVC compared with control. As the diagnostic marker for AVC, fibronectin 1 (FN1) (area the curve = 0.958) was discovered. Immune cell infiltration analysis revealed that the AVC process may be mediated by naïve B cells, memory B cells, plasma cells, activated natural killer cells, monocytes, and macrophages M0. Additionally, FN1 expression was associated with memory B cells, M0 macrophages, activated mast cells, resting mast cells, monocytes, and activated natural killer cells. AVC may be reversed with the use of yohimbic acid, the most promising small molecule discovered so far.ConclusionFN1 can be used as a diagnostic marker for AVC. It has been shown that immune cell infiltration is important in the onset and progression of AVC, which may benefit in the improvement of AVC diagnosis and treatment.
Collapse
Affiliation(s)
- Tao Xiong
- Cardiovascular Surgery, Yan'an Affiliated Hospital of Kunming Medical University, Kunming Medical University, Kunming, China
| | - Shen Han
- Cardiovascular Surgery, Yan'an Affiliated Hospital of Kunming Medical University, Kunming Medical University, Kunming, China
- Key Laboratory of Cardiovascular Disease of Yunnan Province, Yan'an Affiliated Hospital of Kunming Medical University, Kunming Medical University, Kunming, China
| | - Lei Pu
- Cardiovascular Surgery, Yan'an Affiliated Hospital of Kunming Medical University, Kunming Medical University, Kunming, China
- Key Laboratory of Cardiovascular Disease of Yunnan Province, Yan'an Affiliated Hospital of Kunming Medical University, Kunming Medical University, Kunming, China
| | - Tian-Chen Zhang
- Cardiovascular Surgery, Yan'an Affiliated Hospital of Kunming Medical University, Kunming Medical University, Kunming, China
| | - Xu Zhan
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Tao Fu
- Cardiovascular Surgery, Yan'an Affiliated Hospital of Kunming Medical University, Kunming Medical University, Kunming, China
| | - Ying-Hai Dai
- Cardiovascular Surgery, Yan'an Affiliated Hospital of Kunming Medical University, Kunming Medical University, Kunming, China
| | - Ya-Xiong Li
- Cardiovascular Surgery, Yan'an Affiliated Hospital of Kunming Medical University, Kunming Medical University, Kunming, China
- Key Laboratory of Cardiovascular Disease of Yunnan Province, Yan'an Affiliated Hospital of Kunming Medical University, Kunming Medical University, Kunming, China
- *Correspondence: Ya-Xiong Li ;
| |
Collapse
|
98
|
Sastre-Oliva T, Corbacho-Alonso N, Albo-Escalona D, Lopez JA, Lopez-Almodovar LF, Vázquez J, Padial LR, Mourino-Alvarez L, Barderas MG. The Influence of Coronary Artery Disease in the Development of Aortic Stenosis and the Importance of the Albumin Redox State. Antioxidants (Basel) 2022; 11:antiox11020317. [PMID: 35204200 PMCID: PMC8868205 DOI: 10.3390/antiox11020317] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/01/2022] [Accepted: 02/03/2022] [Indexed: 12/14/2022] Open
Abstract
Calcific aortic valve and coronary artery diseases are related cardiovascular pathologies in which common processes lead to the calcification of the corresponding affected tissue. Among the mechanisms involved in calcification, the oxidative stress that drives the oxidation of sulfur-containing amino acids such ascysteines is of particular interest. However, there are important differences between calcific aortic valve disease and coronary artery disease, particularly in terms of the reactive oxygen substances and enzymes involved. To evaluate what effect coronary artery disease has on aortic valves, we analyzed valve tissue from patients with severe calcific aortic stenosis with and without coronary artery disease. Proteins and peptides with oxidized cysteines sites were quantified, leading to the identification of 16 proteins with different levels of expression between the two conditions studied, as well as differences in the redox state of the tissue. We also identified two specific sites of cysteine oxidation in albumin that have not been described previously. These results provide evidence that coronary artery disease affects valve calcification, modifying the molecular profile of aortic valve tissue. In addition, the redox proteome is also altered when these conditions coincide, notably affecting human serum albumin.
Collapse
Affiliation(s)
- Tamara Sastre-Oliva
- Department of Vascular Physiopathology, Hospital Nacional de Paraplejicos, Servicio de Salud de Castilla-La Mancha (SESCAM), 45071 Toledo, Spain; (T.S.-O.); (N.C.-A.); (D.A.-E.)
| | - Nerea Corbacho-Alonso
- Department of Vascular Physiopathology, Hospital Nacional de Paraplejicos, Servicio de Salud de Castilla-La Mancha (SESCAM), 45071 Toledo, Spain; (T.S.-O.); (N.C.-A.); (D.A.-E.)
| | - Diego Albo-Escalona
- Department of Vascular Physiopathology, Hospital Nacional de Paraplejicos, Servicio de Salud de Castilla-La Mancha (SESCAM), 45071 Toledo, Spain; (T.S.-O.); (N.C.-A.); (D.A.-E.)
| | - Juan A. Lopez
- Cardiovascular Proteomics Laboratory and Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares (CIBER-CV), Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain; (J.A.L.); (J.V.)
| | - Luis F. Lopez-Almodovar
- Cardiac Surgery, Hospital Virgen de la Salud, Servicio de Salud de Castilla-La Mancha (SESCAM), 45004 Toledo, Spain;
| | - Jesús Vázquez
- Cardiovascular Proteomics Laboratory and Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares (CIBER-CV), Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain; (J.A.L.); (J.V.)
| | - Luis R. Padial
- Department of cardiology, Hospital Virgen de la Salud, Servicio de Salud de Castilla-La Mancha (SESCAM), 45004 Toledo, Spain;
| | - Laura Mourino-Alvarez
- Department of Vascular Physiopathology, Hospital Nacional de Paraplejicos, Servicio de Salud de Castilla-La Mancha (SESCAM), 45071 Toledo, Spain; (T.S.-O.); (N.C.-A.); (D.A.-E.)
- Correspondence: or (L.M.-A.); or (M.G.B.); Tel.: +34-9253-96826 (L.M.A. & M.G.B.)
| | - Maria G. Barderas
- Department of Vascular Physiopathology, Hospital Nacional de Paraplejicos, Servicio de Salud de Castilla-La Mancha (SESCAM), 45071 Toledo, Spain; (T.S.-O.); (N.C.-A.); (D.A.-E.)
- Correspondence: or (L.M.-A.); or (M.G.B.); Tel.: +34-9253-96826 (L.M.A. & M.G.B.)
| |
Collapse
|
99
|
Matsui M, Bouchareb R, Storto M, Hussain Y, Gregg A, Marx SO, Pitt GS. Increased Ca2+ influx through CaV1.2 drives aortic valve calcification. JCI Insight 2022; 7:155569. [PMID: 35104251 PMCID: PMC8983132 DOI: 10.1172/jci.insight.155569] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 01/28/2022] [Indexed: 11/17/2022] Open
Abstract
Calcific aortic valve disease (CAVD) is heritable as revealed by recent genome wide association studies. While polymorphisms linked to increased expression of CACNA1C, encoding the CaV1.2 L-type voltage-gated Ca2+ channel, and increased Ca2+ signaling are associated with CAVD, whether increased Ca2+ influx through the druggable CaV1.2 is causal for calcific aortic valve disease is unknown. With surgically removed aortic valves from patients, we confirmed the association between increased CaV1.2 expression and CAVD. We extended our studies with a transgenic mouse model that mimics increased CaV1.2 expression in within aortic valve interstitial cells (VICs). In young mice maintained on normal chow, we observed dystrophic valve lesions that mimic changes found in pre-symptomatic CAVD, and showed activation of chondrogenic and osteogenic transcriptional regulators within these valve lesions. Chronic administration of verapamil, a clinically used CaV1.2 antagonist, slowed the progression of lesion development in vivo. Exploiting VIC cultures we demonstrated that increased Ca2+ influx through CaV1.2 drives signaling programs that lead to myofibroblast activation of VICs and upregulation of genes associated with aortic valve calcification. Our data support a causal role for Ca2+ influx through CaV1.2 in CAVD and suggest that early treatment with Ca2+ channel blockers is an effective therapeutic strategy.
Collapse
Affiliation(s)
- Maiko Matsui
- Cardiovascular Research Institute, Weill Cornell Medicine, New York, United States of America
| | - Rihab Bouchareb
- Zena and Michael A. Wiener Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York, United States of America
| | - Mara Storto
- Cardiovascular Research Institute, Weill Cornell Medicine, New York, United States of America
| | - Yasin Hussain
- Cardiovascular Research Institute, Weill Cornell Medicine, New York, United States of America
| | - Andrew Gregg
- Cardiovascular Research Institute, Weill Cornell Medicine, New York, United States of America
| | - Steven O Marx
- Division of Cardiology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, United States of America
| | - Geoffrey S Pitt
- Cardiovascular Research Institute, Weill Cornell Medicine, New York, United States of America
| |
Collapse
|
100
|
Santangelo G, Faggiano A, Bernardi N, Carugo S, Giammanco A, Faggiano P. Lipoprotein(a) and aortic valve stenosis: A casual or causal association? Nutr Metab Cardiovasc Dis 2022; 32:309-317. [PMID: 34893419 DOI: 10.1016/j.numecd.2021.10.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/30/2021] [Accepted: 10/18/2021] [Indexed: 01/09/2023]
Abstract
AIMS This review aims to provide an update of available methods for imaging calcification activity and potential therapeutic options. DATA SYNTHESIS Aortic valve calcification represents the most common heart valve condition requiring treatment among adults in Western societies. No medical therapies are proven to be effective in treating symptoms or reducing disease progression. Therefore, surgical or transcatheter aortic valve replacement remains the only available treatment option. Elevated circulating concentrations of lipoprotein(a) is strongly associated with degenerative aortic stenosis. This relationship was first observed in prospective observational studies, and the causal relationship was confirmed in genetic studies. CONCLUSIONS New therapeutic targets have been identified and new imaging techniques could be used to test the effectiveness of new agents and further clarify the pathophysiology of AVS. No therapy that specifically lowers Lp (a) levels has been approved for clinical use.
Collapse
Affiliation(s)
- Gloria Santangelo
- Division of Cardiology, San Paolo Hospital, Department of Health Sciences, University of Milan, Italy
| | - Andrea Faggiano
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Internal Medicine Department, Cardiac Unit, University of Milan, Italy
| | - Nicola Bernardi
- Cardiology Division, Spedali Civili and University of Brescia, Italy
| | - Stefano Carugo
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Internal Medicine Department, Cardiac Unit, University of Milan, Italy
| | - Antonella Giammanco
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties-University of Palermo, Italy
| | - Pompilio Faggiano
- Cardiovascular Department, Fondazione Poliambulanza, Brescia, Italy.
| |
Collapse
|