51
|
Enblom-Larsson A, Renlund H, Andréasson B, Holmberg H, Liljeholm M, Själander A. Thromboembolic events, major bleeding and mortality in essential thrombocythaemia and polycythaemia vera-A matched nationwide population-based study. Br J Haematol 2024; 204:1740-1751. [PMID: 38351734 DOI: 10.1111/bjh.19337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/22/2024] [Accepted: 02/01/2024] [Indexed: 05/15/2024]
Abstract
Thromboembolic events and bleeding are known complications in essential thrombocythaemia (ET) and polycythaemia vera (PV). Using multiple Swedish health care registers, we assessed the rate of arterial and venous events, major bleeding, all-cause stroke and all-cause mortality in ET and PV compared to matched controls. For each patient with ET (n = 3141) and PV (n = 2604), five matched controls were randomly selected. In total, 327 and 405 arterial or venous events were seen in the group of ET and PV patients respectively. Compared to corresponding controls, the rate of venous thromboembolism, major bleeding and all-cause mortality per 100 treatment years was significantly increased among both ET (0.63, 0.79 and 3.70) and PV patients (0.94, 1.20 and 4.80). The PV patients also displayed a significantly higher rate of arterial events and all-cause stroke compared to controls. When dividing the cohort into age groups, we found a significantly higher rate of arterial and venous events in all age groups of PV patients, and the rate of all-cause mortality was significantly higher in both ET and PV patients in all ages above the age of 50. This study confirms that PV and ET are diseases truly marked by thromboembolic complications and bleeding.
Collapse
Affiliation(s)
| | - Henrik Renlund
- Uppsala Clinical Research Centre Uppsala University, Uppsala, Sweden
| | | | - Henrik Holmberg
- Department of Epidemiology and Global Health, Umeå University, Umeå, Sweden
| | - Maria Liljeholm
- Department of Radiation Sciences, Oncology, Umeå University, Umeå, Sweden
| | - Anders Själander
- Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| |
Collapse
|
52
|
Tashkandi H, Younes IE. Advances in Molecular Understanding of Polycythemia Vera, Essential Thrombocythemia, and Primary Myelofibrosis: Towards Precision Medicine. Cancers (Basel) 2024; 16:1679. [PMID: 38730632 PMCID: PMC11083661 DOI: 10.3390/cancers16091679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
Myeloproliferative neoplasms (MPNs), including Polycythemia Vera (PV), Essential Thrombocythemia (ET), and Primary Myelofibrosis (PMF), are characterized by the clonal proliferation of hematopoietic stem cells leading to an overproduction of hematopoietic cells. The last two decades have seen significant advances in our understanding of the molecular pathogenesis of these diseases, with the discovery of key mutations in the JAK2, CALR, and MPL genes being pivotal. This review provides a comprehensive update on the molecular landscape of PV, ET, and PMF, highlighting the diagnostic, prognostic, and therapeutic implications of these genetic findings. We delve into the challenges of diagnosing and treating patients with prognostic mutations, clonal evolution, and the impact of emerging technologies like next-generation sequencing and single-cell genomics on the field. The future of MPN management lies in leveraging these molecular insights to develop personalized treatment strategies, aiming for precision medicine that optimizes outcomes for patients. This article synthesizes current knowledge on molecular diagnostics in MPNs, underscoring the critical role of genetic profiling in enhancing patient care and pointing towards future research directions that promise to further refine our approach to these complex disorders.
Collapse
Affiliation(s)
- Hammad Tashkandi
- Department of Pathology and Laboratory Medicine, Moffitt Cancer Center, Tampa, FL 33612, USA
| | - Ismail Elbaz Younes
- Department of Laboratory Medicine and Pathology, Division of Hematopathology, University of Minnesota, Minneapolis, MN 55455, USA;
| |
Collapse
|
53
|
Wang Z, Tian X, Ma J, Zhang Y, Ta W, Duan Y, Li F, Zhang H, Chen L, Yang S, Liu E, Lin Y, Yuan W, Ru K, Bai J. Clinical laboratory characteristics and gene mutation spectrum of Ph-negative MPN patients with atypical variants of JAK2, MPL, or CALR. Cancer Med 2024; 13:e7123. [PMID: 38618943 PMCID: PMC11017299 DOI: 10.1002/cam4.7123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/21/2024] [Accepted: 03/09/2024] [Indexed: 04/16/2024] Open
Abstract
OBJECTIVE To evaluate the incidence, clinical laboratory characteristics, and gene mutation spectrum of Ph-negative MPN patients with atypical variants of JAK2, MPL, or CALR. METHODS We collected a total of 359 Ph-negative MPN patients with classical mutations in driver genes JAK2, MPL, or CALR, and divided them into two groups based on whether they had additional atypical variants of driver genes JAK2, MPL, or CALR: 304 patients without atypical variants of driver genes and 55 patients with atypical variants of driver genes. We analyzed the relevant characteristics of these patients. RESULTS This study included 359 patients with Ph-negative MPNs with JAK2, MPL, or CALR classical mutations and found that 55 (15%) patients had atypical variants of JAK2, MPL, or CALR. Among them, 28 cases (51%) were male, and 27 (49%) were female, with a median age of 64 years (range, 21-83). The age of ET patients with atypical variants was higher than that of ET patients without atypical variants [70 (28-80) vs. 61 (19-82), p = 0.03]. The incidence of classical MPL mutations in ET patients with atypical variants was higher than in ET patients without atypical variants [13.3% (2/15) vs. 0% (0/95), p = 0.02]. The number of gene mutations in patients with atypical variants of driver genes PV, ET, and Overt-PMF is more than in patients without atypical variants of PV, ET, and Overt-PMF [PV: 3 (2-6) vs. 2 (1-7), p < 0.001; ET: 4 (2-8) vs. 2 (1-7), p < 0.05; Overt-PMF: 5 (2-9) vs. 3 (1-8), p < 0.001]. The incidence of SH2B3 and ASXL1 mutations were higher in MPN patients with atypical variants than in those without atypical variants (SH2B3: 16% vs. 6%, p < 0.01; ASXL1: 24% vs. 13%, p < 0.05). CONCLUSION These data indicate that classical mutations of JAK2, MPL, and CALR may not be completely mutually exclusive with atypical variants of JAK2, MPL, and CALR. In this study, 30 different atypical variants of JAK2, MPL, and CALR were identified, JAK2 G127D being the most common (42%, 23/55). Interestingly, JAK2 G127D only co-occurred with JAK2V617F mutation. The incidence of atypical variants of JAK2 in Ph-negative MPNs was much higher than that of the atypical variants of MPL and CALR. The significance of these atypical variants will be further studied in the future.
Collapse
Affiliation(s)
- Zhanlong Wang
- Department of HematologyThe Second Hospital of Tianjin Medical UniversityTianjinChina
- Sino‐US Diagnostics LabTianjin Enterprise Key Laboratory of AI‐aided Hematopathology DiagnosisTianjinChina
| | - Xin Tian
- Sino‐US Diagnostics LabTianjin Enterprise Key Laboratory of AI‐aided Hematopathology DiagnosisTianjinChina
| | - Jinyu Ma
- Department of HematologyThe Second Hospital of Tianjin Medical UniversityTianjinChina
| | - Yuhui Zhang
- Department of HematologyThe Second Hospital of Tianjin Medical UniversityTianjinChina
| | - Wenru Ta
- Department of HematologyThe Second Hospital of Tianjin Medical UniversityTianjinChina
- Sino‐US Diagnostics LabTianjin Enterprise Key Laboratory of AI‐aided Hematopathology DiagnosisTianjinChina
| | - Yifan Duan
- Department of HematologyThe Second Hospital of Tianjin Medical UniversityTianjinChina
| | - Fengli Li
- Sino‐US Diagnostics LabTianjin Enterprise Key Laboratory of AI‐aided Hematopathology DiagnosisTianjinChina
| | - Hong Zhang
- Sino‐US Diagnostics LabTianjin Enterprise Key Laboratory of AI‐aided Hematopathology DiagnosisTianjinChina
| | - Long Chen
- Sino‐US Diagnostics LabTianjin Enterprise Key Laboratory of AI‐aided Hematopathology DiagnosisTianjinChina
| | - Shaobin Yang
- Sino‐US Diagnostics LabTianjin Enterprise Key Laboratory of AI‐aided Hematopathology DiagnosisTianjinChina
| | - Enbin Liu
- Sino‐US Diagnostics LabTianjin Enterprise Key Laboratory of AI‐aided Hematopathology DiagnosisTianjinChina
| | - Yani Lin
- Sino‐US Diagnostics LabTianjin Enterprise Key Laboratory of AI‐aided Hematopathology DiagnosisTianjinChina
| | - Weiping Yuan
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Disease HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeTianjinChina
| | - Kun Ru
- Sino‐US Diagnostics LabTianjin Enterprise Key Laboratory of AI‐aided Hematopathology DiagnosisTianjinChina
- Department of Pathology and Lab MedicineShandong Cancer HospitalJinanChina
| | - Jie Bai
- Department of HematologyThe Second Hospital of Tianjin Medical UniversityTianjinChina
| |
Collapse
|
54
|
Tefferi A, Vannucchi AM, Barbui T. Essential thrombocythemia: 2024 update on diagnosis, risk stratification, and management. Am J Hematol 2024; 99:697-718. [PMID: 38269572 DOI: 10.1002/ajh.27216] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 01/08/2024] [Indexed: 01/26/2024]
Abstract
OVERVIEW Essential thrombocythemia is a Janus kinase 2 (JAK2) mutation-prevalent myeloproliferative neoplasm characterized by clonal thrombocytosis; clinical course is often indolent but might be interrupted by thrombotic or hemorrhagic complications, microcirculatory symptoms (e.g., headaches, lightheadedness, and acral paresthesias), and, less frequently, by disease transformation into myelofibrosis (MF) or acute myeloid leukemia. DIAGNOSIS In addition to thrombocytosis (platelets ≥450 × 109 /L), formal diagnosis requires the exclusion of other myeloid neoplasms, including prefibrotic MF, polycythemia vera, chronic myeloid leukemia, and myelodysplastic syndromes with ring sideroblasts and thrombocytosis. Bone marrow morphology typically shows increased number of mature-appearing megakaryocytes distributed in loose clusters. GENETICS Approximately 80% of patients express myeloproliferative neoplasm driver mutations (JAK2, CALR, MPL), in a mutually exclusive manner; in addition, about 50% harbor other mutations, the most frequent being TET2 (9%-11%), ASXL1 (7%-20%), DNMT3A (7%), and SF3B1 (5%). Abnormal karyotype is seen in <10% of patients and includes +9/20q-/13q-. SURVIVAL AND PROGNOSIS Life expectancy is less than that of the control population. Median survival is approximately 18 years but exceeds >35 years in younger patients. The triple A survival risk model, based on Age, Absolute neutrophil count, and Absolute lymphocyte count, effectively delineates high-, intermediate-1-, intermediate-2-, and low-risk disease with corresponding median survivals of 8, 14, 21, and 47 years. RISK FACTORS FOR THROMBOSIS Four risk categories are considered: very low (age ≤60 years, no thrombosis history, JAK2 wild-type), low (same as very low but JAK2 mutation present), intermediate (same as low but age >60 years), and high (thrombosis history or age >60 years with JAK2 mutation). MUTATIONS AND PROGNOSIS MPL and CALR-1 mutations have been associated with increased risk of MF transformation; spliceosome with inferior overall and MF-free survival; TP53 with leukemic transformation, and JAK2V617F with thrombosis. Leukemic transformation rate at 10 years is <1% but might be higher in JAK2-mutated patients with extreme thrombocytosis and those with abnormal karyotype. TREATMENT The main goal of therapy is to prevent thrombosis. In this regard, once-daily low-dose aspirin is advised for all patients and twice daily for low-risk disease. Cytoreductive therapy is advised for high-risk and optional for intermediate-risk disease. First-line cytoreductive drugs of choice are hydroxyurea and pegylated interferon-α and second-line busulfan. ADDITIONAL CONTENT The current review includes specific treatment strategies in the context of extreme thrombocytosis, pregnancy, splanchnic vein thrombosis, perioperative care, and post-essential thrombocythemia MF, as well as new investigational drugs.
Collapse
Affiliation(s)
- Ayalew Tefferi
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Alessandro Maria Vannucchi
- CRIMM, Center Research and Innovation of Myeloproliferative Neoplasms, University of Florence, AOU Careggi, Florence, Italy
| | - Tiziano Barbui
- Research Foundation, Papa Giovanni XXIII Hospital, Bergamo, Italy
| |
Collapse
|
55
|
Guglielmelli P, Szuber N, Gangat N, Capecchi G, Maccari C, Harnois M, Karrar O, Abdelmagid M, Balliu M, Nacca E, Atanasio A, Sestini I, Désilets A, Loscocco GG, Rotunno G, Busque L, Tefferi A, Vannucchi AM. CALR mutation burden in essential thrombocythemia and disease outcome. Blood 2024; 143:1310-1314. [PMID: 38252902 DOI: 10.1182/blood.2023023428] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/02/2024] [Accepted: 01/12/2024] [Indexed: 01/24/2024] Open
Abstract
ABSTRACT Among 281 patients with essential thrombocythemia and calreticulin (CALR) mutation, we found a variant allele frequency of ≥60% to be associated with significantly shortened myelofibrosis-free survival, mostly apparent with CALR type-1 and CALR type-indeterminate mutations.
Collapse
Affiliation(s)
- Paola Guglielmelli
- Department of Experimental and Clinical Medicine, Center of Research and Innovation of Myeloproliferative Neoplasms, Division of Hematology, Azienda Ospedaliera Universitaria Careggi, Florence, Italy
| | - Natasha Szuber
- University of Montreal, Montreal, QC, Canada
- Quebec CML-MPN Research Group, Montreal, QC, Canada
- Department of Hematology, Maisonneuve-Rosemont Hospital, Montreal, QC, Canada
| | | | - Giulio Capecchi
- Department of Experimental and Clinical Medicine, Center of Research and Innovation of Myeloproliferative Neoplasms, Division of Hematology, Azienda Ospedaliera Universitaria Careggi, Florence, Italy
| | - Chiara Maccari
- Department of Experimental and Clinical Medicine, Center of Research and Innovation of Myeloproliferative Neoplasms, Division of Hematology, Azienda Ospedaliera Universitaria Careggi, Florence, Italy
| | | | - Omer Karrar
- Division of Hematology, Mayo Clinic, Rochester, MN
| | | | - Manjola Balliu
- Department of Experimental and Clinical Medicine, Center of Research and Innovation of Myeloproliferative Neoplasms, Division of Hematology, Azienda Ospedaliera Universitaria Careggi, Florence, Italy
| | - Elena Nacca
- Department of Experimental and Clinical Medicine, Center of Research and Innovation of Myeloproliferative Neoplasms, Division of Hematology, Azienda Ospedaliera Universitaria Careggi, Florence, Italy
| | - Alessandro Atanasio
- Department of Experimental and Clinical Medicine, Center of Research and Innovation of Myeloproliferative Neoplasms, Division of Hematology, Azienda Ospedaliera Universitaria Careggi, Florence, Italy
| | - Ilaria Sestini
- Department of Experimental and Clinical Medicine, Center of Research and Innovation of Myeloproliferative Neoplasms, Division of Hematology, Azienda Ospedaliera Universitaria Careggi, Florence, Italy
| | | | - Giuseppe Gaetano Loscocco
- Department of Experimental and Clinical Medicine, Center of Research and Innovation of Myeloproliferative Neoplasms, Division of Hematology, Azienda Ospedaliera Universitaria Careggi, Florence, Italy
| | - Giada Rotunno
- Department of Experimental and Clinical Medicine, Center of Research and Innovation of Myeloproliferative Neoplasms, Division of Hematology, Azienda Ospedaliera Universitaria Careggi, Florence, Italy
| | - Lambert Busque
- University of Montreal, Montreal, QC, Canada
- Department of Hematology, Maisonneuve-Rosemont Hospital, Montreal, QC, Canada
| | | | - Alessandro Maria Vannucchi
- Department of Experimental and Clinical Medicine, Center of Research and Innovation of Myeloproliferative Neoplasms, Division of Hematology, Azienda Ospedaliera Universitaria Careggi, Florence, Italy
| |
Collapse
|
56
|
Zanelli M, Fragliasso V, Loscocco GG, Sanguedolce F, Broggi G, Zizzo M, Palicelli A, Ricci S, Ambrogi E, Martino G, Aversa S, Coppa F, Gentile P, Gozzi F, Caltabiano R, Koufopoulos N, Asaturova A, Cimino L, Cavazza A, Orcioni GF, Ascani S. Chronic myeloproliferative neoplasms with concomitant CALR mutation and BCR::ABL1 translocation: diagnostic and therapeutic implications of a rare hybrid disease. Front Cell Dev Biol 2024; 12:1391078. [PMID: 38596359 PMCID: PMC11002177 DOI: 10.3389/fcell.2024.1391078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 03/12/2024] [Indexed: 04/11/2024] Open
Abstract
Myeloproliferative neoplasms (MPNs) are subdivided into Philadelphia (Ph) chromosome-positive chronic myeloid leukemia (CML) and Ph-negative MPNs. BCR::ABL1 translocation is essential for the development and diagnosis of CML; on the other hand, the majority of Ph-negative MPNs are characterized by generally mutually exclusive mutations of Janus kinase 2 (JAK2), calreticulin (CALR), or thrombopoietin receptor/myeloproliferative leukemia (MPL). CALR mutations have been described essentially in JAK2 and MPL wild-type essential thrombocythemia and primary myelofibrosis. Rarely coexisting CALR and MPL mutations have been found in Ph-negative MPNs. BCR::ABL1 translocation and JAK2 mutations were initially considered mutually exclusive genomic events, but a discrete number of cases with the combination of these genetic alterations have been reported. The presence of BCR::ABL1 translocation with a coexisting CALR mutation is even more uncommon. Herein, starting from a routinely diagnosed case of CALR-mutated primary myelofibrosis subsequently acquiring BCR::ABL1 translocation, we performed a comprehensive review of the literature, discussing the clinicopathologic and molecular features, as well as the outcome and treatment of cases with BCR::ABL1 and CALR co-occurrence.
Collapse
Affiliation(s)
- Magda Zanelli
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Valentina Fragliasso
- Laboratory of Translational Research, Azienda USL-IRCCS di Reggio Emilia, Reggio Emila, Italy
| | - Giuseppe Gaetano Loscocco
- Department of Experimental and Clinical Medicine, CRIMM, Center of Research and Innovation of Myeloproliferative Neoplasms, Azienda Ospedaliero-Universitaria Careggi, University of Florence, Florence, Italy
- Doctorate School GenOMec, University of Siena, Siena, Italy
| | | | - Giuseppe Broggi
- Department of Medical and Surgical Sciences and Advanced Technologies “G.F. Ingrassia” Anatomic Pathology, University of Catania, Catania, Italy
| | - Maurizio Zizzo
- Surgical Oncology Unit, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Andrea Palicelli
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Stefano Ricci
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Elisa Ambrogi
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Giovanni Martino
- Pathology Unit, Azienda Ospedaliera Santa Maria di Terni, University of Perugia, Terni, Italy
- Hematology, Centro di Ricerca Emato-Oncologica-C.R.E.O., University of Perugia, Perugia, Italy
| | - Sara Aversa
- Pathology Unit, Azienda Ospedaliera Santa Maria di Terni, University of Perugia, Terni, Italy
| | - Francesca Coppa
- Pathology Unit, Azienda Ospedaliera Santa Maria di Terni, University of Perugia, Terni, Italy
| | - Pietro Gentile
- Ocular Immunology Unit, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Fabrizio Gozzi
- Ocular Immunology Unit, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Rosario Caltabiano
- Department of Medical and Surgical Sciences and Advanced Technologies “G.F. Ingrassia” Anatomic Pathology, University of Catania, Catania, Italy
| | - Nektarios Koufopoulos
- Second Department of Pathology, Medical School, National and Kapodistrian University of Athens, Attikon University Hospital, Athens, Greece
| | - Aleksandra Asaturova
- Pathology Department, FSBI “National Medical Research Centre for Ostetrics, Gynecology and Perinatology Named After Academician V.I Kulakov” of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Luca Cimino
- Ocular Immunology Unit, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
- Department of Surgery, Medicine, Dentistry and Morphological Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Alberto Cavazza
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | | | - Stefano Ascani
- Pathology Unit, Azienda Ospedaliera Santa Maria di Terni, University of Perugia, Terni, Italy
| |
Collapse
|
57
|
Bhuria V, Franz T, Baldauf C, Böttcher M, Chatain N, Koschmieder S, Brümmendorf TH, Mougiakakos D, Schraven B, Kahlfuß S, Fischer T. Activating mutations in JAK2 and CALR differentially affect intracellular calcium flux in store operated calcium entry. Cell Commun Signal 2024; 22:186. [PMID: 38509561 PMCID: PMC10956330 DOI: 10.1186/s12964-024-01530-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 02/13/2024] [Indexed: 03/22/2024] Open
Abstract
BACKGROUND Calcium (Ca2+) signaling regulates various vital cellular functions, including integrin activation and cell migration. Store-operated calcium entry (SOCE) via calcium release-activated calcium (CRAC) channels represents a major pathway for Ca2+ influx from the extracellular space in multiple cell types. The impact of JAK2-V617F and CALR mutations which are disease initiating in myeloproliferative neoplasms (MPN) on SOCE, calcium flux from the endoplasmic reticulum (ER) to the cytosol, and related key signaling pathways in the presence or absence of erythropoietin (EPO) or thrombopoietin (TPO) is poorly understood. Thus, this study aimed to elucidate the effects of these mutations on the aforementioned calcium dynamics, in cellular models of MPN. METHODS Intracellular Ca2+ levels were measured over a time frame of 0-1080 s in Fura-2 AM labeled myeloid progenitor 32D cells expressing various mutations (JAK2-WT/EpoR, JAK2-V617F/EpoR; CALR-WT/MPL, CALR-ins5/MPL, and del52/MPL). Basal Ca2+ concentrations were assessed from 0-108 s. Subsequently, cells were stimulated with EPO/TPO in Ca2+-free Ringer solution, measuring Ca2+ levels from 109-594 s (store depletion). Then, 2 mM of Ca2+ buffer resembling physiological concentrations was added to induce SOCE, and Ca2+ levels were measured from 595-1080 s. Fura-2 AM emission ratios (F340/380) were used to quantify the integrated Ca2+ signal. Statistical significance was assessed by unpaired Student's t-test or Mann-Whitney-U-test, one-way or two-way ANOVA followed by Tukey's multiple comparison test. RESULTS Following EPO stimulation, the area under the curve (AUC) representing SOCE significantly increased in 32D-JAK2-V617F cells compared to JAK2-WT cells. In TPO-stimulated CALR cells, we observed elevated Ca2+ levels during store depletion and SOCE in CALR-WT cells compared to CALR-ins5 and del52 cells. Notably, upon stimulation, key components of the Ca2+ signaling pathways, including PLCγ-1 and IP3R, were differentially affected in these cell lines. Hyper-activated PLCγ-1 and IP3R were observed in JAK2-V617F but not in CALR mutated cells. Inhibition of calcium regulatory mechanisms suppressed cellular growth and induced apoptosis in JAK2-V617F cells. CONCLUSIONS This report highlights the impact of JAK2 and CALR mutations on Ca2+ flux (store depletion and SOCE) in response to stimulation with EPO and TPO. The study shows that the JAK2-V617F mutation strongly alters the regulatory mechanism of EpoR/JAK2-dependent intracellular calcium balance, affecting baseline calcium levels, EPO-induced calcium entry, and PLCγ-1 signaling pathways. Our results reveal an important role of calcium flux in the homeostasis of JAK2-V617F positive cells.
Collapse
Affiliation(s)
- Vikas Bhuria
- Institute for Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany.
- Health-Campus Immunology, Infectiology, and Inflammation (GC-I3), Medical Center, Otto-von-Guericke University, Magdeburg, Germany.
- Center for Health and Medical Prevention - CHaMP, Otto-von-Guericke University, Magdeburg, Germany.
| | - Tobias Franz
- Institute for Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany
| | - Conny Baldauf
- Institute for Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany
| | - Martin Böttcher
- Health-Campus Immunology, Infectiology, and Inflammation (GC-I3), Medical Center, Otto-von-Guericke University, Magdeburg, Germany
- Department of Hematology and Oncology, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany
| | - Nicolas Chatain
- Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
- Center of Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Aachen, Germany
| | - Steffen Koschmieder
- Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
- Center of Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Aachen, Germany
| | - Tim H Brümmendorf
- Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
- Center of Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Aachen, Germany
| | - Dimitrios Mougiakakos
- Health-Campus Immunology, Infectiology, and Inflammation (GC-I3), Medical Center, Otto-von-Guericke University, Magdeburg, Germany
- Department of Hematology and Oncology, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany
| | - Burkhart Schraven
- Institute for Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany
- Health-Campus Immunology, Infectiology, and Inflammation (GC-I3), Medical Center, Otto-von-Guericke University, Magdeburg, Germany
- Center for Health and Medical Prevention - CHaMP, Otto-von-Guericke University, Magdeburg, Germany
| | - Sascha Kahlfuß
- Institute for Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany
- Health-Campus Immunology, Infectiology, and Inflammation (GC-I3), Medical Center, Otto-von-Guericke University, Magdeburg, Germany
- Center for Health and Medical Prevention - CHaMP, Otto-von-Guericke University, Magdeburg, Germany
- Institute of Medical Microbiology and Hospital Hygiene, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany
| | - Thomas Fischer
- Institute for Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany.
- Health-Campus Immunology, Infectiology, and Inflammation (GC-I3), Medical Center, Otto-von-Guericke University, Magdeburg, Germany.
- Center for Health and Medical Prevention - CHaMP, Otto-von-Guericke University, Magdeburg, Germany.
| |
Collapse
|
58
|
Rai S, Zhang Y, Grockowiak E, Kimmerlin Q, Hansen N, Stoll CB, Usart M, Luque Paz D, Hao-Shen H, Zhu Y, Roux J, Bader MS, Dirnhofer S, Farady CJ, Schroeder T, Méndez-Ferrer S, Skoda RC. IL-1β promotes MPN disease initiation by favoring early clonal expansion of JAK2-mutant hematopoietic stem cells. Blood Adv 2024; 8:1234-1249. [PMID: 38207211 PMCID: PMC10912850 DOI: 10.1182/bloodadvances.2023011338] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 12/26/2023] [Accepted: 01/02/2024] [Indexed: 01/13/2024] Open
Abstract
ABSTRACT JAK 2-V617F is the most frequent somatic mutation causing myeloproliferative neoplasm (MPN). JAK2-V617F can be found in healthy individuals with clonal hematopoiesis of indeterminate potential (CHIP) with a frequency much higher than the prevalence of MPNs. The factors controlling the conversion of JAK2-V617F CHIP to MPN are largely unknown. We hypothesized that interleukin-1β (IL-1β)-mediated inflammation can favor this progression. We established an experimental system using bone marrow (BM) transplantations from JAK2-V617F and GFP transgenic (VF;GFP) mice that were further crossed with IL-1β-/- or IL-1R1-/- mice. To study the role of IL-1β and its receptor on monoclonal evolution of MPN, we performed competitive BM transplantations at high dilutions with only 1 to 3 hematopoietic stem cells (HSCs) per recipient. Loss of IL-1β in JAK2-mutant HSCs reduced engraftment, restricted clonal expansion, lowered the total numbers of functional HSCs, and decreased the rate of conversion to MPN. Loss of IL-1R1 in the recipients also lowered the conversion to MPN but did not reduce the frequency of engraftment of JAK2-mutant HSCs. Wild-type (WT) recipients transplanted with VF;GFP BM that developed MPNs had elevated IL-1β levels and reduced frequencies of mesenchymal stromal cells (MSCs). Interestingly, frequencies of MSCs were also reduced in recipients that did not develop MPNs, had only marginally elevated IL-1β levels, and displayed low GFP-chimerism resembling CHIP. Anti-IL-1β antibody preserved high frequencies of MSCs in VF;GFP recipients and reduced the rate of engraftment and the conversion to MPN. Our results identify IL-1β as a potential therapeutic target for preventing the transition from JAK2-V617F CHIP to MPNs.
Collapse
Affiliation(s)
- Shivam Rai
- Department of Biomedicine, Experimental Hematology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Yang Zhang
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule Zurich, Basel, Switzerland
| | - Elodie Grockowiak
- Wellcome-MRC Cambridge Stem Cell Institute, Cambridge, United Kingdom
- Department of Hematology, University of Cambridge, Cambridge, United Kingdom
- National Health Service Blood and Transplant, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Quentin Kimmerlin
- Department of Biomedicine, Experimental Hematology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Nils Hansen
- Department of Biomedicine, Experimental Hematology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Cedric B. Stoll
- Department of Biomedicine, Experimental Hematology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Marc Usart
- Department of Biomedicine, Experimental Hematology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Damien Luque Paz
- University of Angers, Nantes Université, CHU Angers, INSERM, CNRS, CRCI2NA, Angers, France
| | - Hui Hao-Shen
- Department of Biomedicine, Experimental Hematology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Yexuan Zhu
- Wellcome-MRC Cambridge Stem Cell Institute, Cambridge, United Kingdom
- Department of Hematology, University of Cambridge, Cambridge, United Kingdom
- National Health Service Blood and Transplant, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Julien Roux
- Department of Biomedicine, Bioinformatics core facility, University of Basel, Basel, Switzerland
- Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Michael S. Bader
- Division of Hematology, University Hospital Basel, Basel, Switzerland
| | - Stefan Dirnhofer
- Department of Pathology, University Hospital Basel, Basel, Switzerland
| | | | - Timm Schroeder
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule Zurich, Basel, Switzerland
| | - Simón Méndez-Ferrer
- Wellcome-MRC Cambridge Stem Cell Institute, Cambridge, United Kingdom
- Department of Hematology, University of Cambridge, Cambridge, United Kingdom
- National Health Service Blood and Transplant, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Radek C. Skoda
- Department of Biomedicine, Experimental Hematology, University Hospital Basel, University of Basel, Basel, Switzerland
| |
Collapse
|
59
|
Kramer F, Mullally A. Antibody targeting of mutant calreticulin in myeloproliferative neoplasms. J Cell Mol Med 2024; 28:e17896. [PMID: 37551061 PMCID: PMC10902560 DOI: 10.1111/jcmm.17896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 07/18/2023] [Accepted: 07/25/2023] [Indexed: 08/09/2023] Open
Abstract
Mutations in calreticulin are one of the key disease-initiating mutations in myeloproliferative neoplasms (MPN). In MPN, mutant calreticulin translates with a novel C-terminus that leads to aberrant binding to the extracellular domain of the thrombopoietin receptor, MPL. This cell surface neoantigen has become an attractive target for immunological intervention. Here, we summarize recent advances in the development of mutant calreticulin targeting antibodies as a novel therapeutic approach in MPN.
Collapse
Affiliation(s)
- Frederike Kramer
- Division of Hematology, Department of Medicine, Brigham and Women's HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Ann Mullally
- Division of Hematology, Department of Medicine, Brigham and Women's HospitalHarvard Medical SchoolBostonMassachusettsUSA
- Department of Medical OncologyDana‐Farber Cancer InstituteBostonMassachusettsUSA
- Broad InstituteCambridgeMassachusettsUSA
| |
Collapse
|
60
|
Michalak M. Calreticulin: Endoplasmic reticulum Ca 2+ gatekeeper. J Cell Mol Med 2024; 28:e17839. [PMID: 37424156 PMCID: PMC10902585 DOI: 10.1111/jcmm.17839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/21/2023] [Accepted: 06/27/2023] [Indexed: 07/11/2023] Open
Abstract
Endoplasmic reticulum (ER) luminal Ca2+ is vital for the function of the ER and regulates many cellular processes. Calreticulin is a highly conserved, ER-resident Ca2+ binding protein and lectin-like chaperone. Over four decades of studying calreticulin demonstrate that this protein plays a crucial role in maintaining Ca2+ supply under different physiological conditions, in managing access to Ca2+ and how Ca2+ is used depending on the environmental events and in making sure that Ca2+ is not misused. Calreticulin plays a role of ER luminal Ca2+ sensor to manage Ca2+-dependent ER luminal events including maintaining interaction with its partners, Ca2+ handling molecules, substrates and stress sensors. The protein is strategically positioned in the lumen of the ER from where the protein manages access to and distribution of Ca2+ for many cellular Ca2+-signalling events. The importance of calreticulin Ca2+ pool extends beyond the ER and includes influence of cellular processes involved in many aspects of cellular pathophysiology. Abnormal handling of the ER Ca2+ contributes to many pathologies from heart failure to neurodegeneration and metabolic diseases.
Collapse
Affiliation(s)
- Marek Michalak
- Department of BiochemistryUniversity of AlbertaEdmontonAlbertaCanada
| |
Collapse
|
61
|
Su N, Wang J, Zhang H, Jin H, Miao B, Zhao J, Liu X, Li C, Wang X, Yang N. Identification and clinical validation of the role of anoikis-related genes in diabetic foot. Int Wound J 2024; 21:e14771. [PMID: 38468369 PMCID: PMC10928261 DOI: 10.1111/iwj.14771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 01/28/2024] [Indexed: 03/13/2024] Open
Abstract
This study aims to investigate the role of anoikis-related genes in diabetic foot (DF) by utilizing bioinformatics analysis to identify key genes associated with anoikis in DF. We selected the GEO datasets GSE7014, GSE80178 and GSE68183 for the extraction and analysis of differentially expressed anoikis-related genes (DE-ARGs). GO analysis and KEGG analysis indicated that DE-ARGs in DF were primarily enriched in apoptosis, positive regulation of MAPK cascade, anoikis, focal adhesion and the PI3K-Akt signalling pathway. Based on the LASSO and SVM-RFE algorithms, we identified six characteristic genes. ROC curve analysis revealed that these six characteristic genes had an area under the curve (AUC) greater than 0.7, indicating good diagnostic efficacy. Expression analysis in the validation set revealed downregulation of CALR in DF, consistent with the training set results. GSEA results demonstrated that CALR was mainly enriched in blood vessel morphogenesis, endothelial cell migration, ECM-receptor interaction and focal adhesion. The HPA database revealed that CALR was moderately enriched in endothelial cells, and CALR was found to interact with 63 protein-coding genes. Functional analysis with DAVID suggested that CALR and associated genes were enriched in the phagosome component. CALR shows promise as a potential marker for the development and treatment of DF.
Collapse
Affiliation(s)
- Nan Su
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain‐Inspired ScienceShandong UniversityJinanChina
- School of Medicine, Cheeloo College of MedicineShandong UniversityJinanChina
| | - Jiwei Wang
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain‐Inspired ScienceShandong UniversityJinanChina
- School of Medicine, Cheeloo College of MedicineShandong UniversityJinanChina
| | - Hengrui Zhang
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain‐Inspired ScienceShandong UniversityJinanChina
- School of Medicine, Cheeloo College of MedicineShandong UniversityJinanChina
| | - Haoyong Jin
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain‐Inspired ScienceShandong UniversityJinanChina
- School of Medicine, Cheeloo College of MedicineShandong UniversityJinanChina
| | - Baojian Miao
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain‐Inspired ScienceShandong UniversityJinanChina
- School of Medicine, Cheeloo College of MedicineShandong UniversityJinanChina
| | - Jiangli Zhao
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain‐Inspired ScienceShandong UniversityJinanChina
- School of Medicine, Cheeloo College of MedicineShandong UniversityJinanChina
| | - Xuchen Liu
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain‐Inspired ScienceShandong UniversityJinanChina
- School of Medicine, Cheeloo College of MedicineShandong UniversityJinanChina
| | - Chao Li
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain‐Inspired ScienceShandong UniversityJinanChina
- School of Medicine, Cheeloo College of MedicineShandong UniversityJinanChina
| | - Xinyu Wang
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain‐Inspired ScienceShandong UniversityJinanChina
- School of Medicine, Cheeloo College of MedicineShandong UniversityJinanChina
| | - Ning Yang
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain‐Inspired ScienceShandong UniversityJinanChina
- School of Medicine, Cheeloo College of MedicineShandong UniversityJinanChina
| |
Collapse
|
62
|
Narlı Özdemir Z, İpek Y, Patır P, Ermiş G, Çiftçiler R, Özmen D, Baysal M, Gürsoy V, Yıldızhan E, Güven S, Ercan T, Elibol T, Mersin S, Genç E, Davulcu EA, Karakuş V, Erkut N, Güneş G, Diz Küçükkaya R, Eşkazan AE. Impact of CALR and JAK2V617F Mutations on Clinical Course and Disease Outcomes in Essential Thrombocythemia: A Multicenter Retrospective Study in Turkish Patients. Turk J Haematol 2024; 41:26-36. [PMID: 38433449 PMCID: PMC10918406 DOI: 10.4274/tjh.galenos.2024.2023.0430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 02/11/2024] [Indexed: 03/05/2024] Open
Abstract
Objective In this study, we investigated the effects of calreticulin (CALR) and JAK2V617F mutational status on clinical course and disease outcomes in Turkish patients with essential thrombocythemia (ET). Materials and Methods Seventeen centers from Türkiye participated in the study and CALR- and JAK2V617F-mutated ET patients were evaluated retrospectively. Results A total of 302 patients were included, of whom 203 (67.2%) and 99 (32.8%) were JAK2V617F- and CALR-positive, respectively. CALR-mutated patients were significantly younger (51 years vs. 57.5 years, p=0.03), with higher median platelet counts (987x109/L vs. 709x109/L, p<0.001) and lower median hemoglobin levels (13.1 g/dL vs. 14.1 g/dL, p<0.001) compared to JAK2V617F-mutated patients. Thromboembolic events (TEEs) occurred in 54 patients (17.9%), 77.8% of which were arterial. Compared to CALR mutation, JAK2V617F was associated with a higher risk of thrombosis (8.1% vs. 22.7%, p=0.002). Rates of transformation to myelofibrosis (MF) and leukemia were 4% and 0.7%, respectively, and these rates were comparable between JAK2V617F- and CALR-mutated cases. The estimated overall survival (OS) and MF-free survival of the entire cohort were 265.1 months and 235.7 months, respectively. OS and MF-free survival durations were similar between JAK2V617F- and CALR-mutated patients. Thrombosis-free survival (TFS) was superior in CALR-mutated patients compared to JAK2V617F-positive patients (5-year TFS: 90% vs. 71%, respectively; p=0.001). Age at diagnosis was an independent factor affecting the incidence of TEEs. Conclusion In our ET cohort, CALR mutations resulted in higher platelet counts and lower hemoglobin levels than JAK2V617F and were associated with younger age at diagnosis. JAK2V617F was strongly associated with thrombosis and worse TFS. Hydroxyurea was the most preferred cytoreductive agent for patients with high thrombosis risk.
Collapse
Affiliation(s)
| | - Yıldız İpek
- Kartal Dr. Lüfti Kırdar City Hospital, Clinic of Hematology, İstanbul, Türkiye
| | - Püsem Patır
- Antalya Training and Research Hospital, Clinic of Hematology, Antalya, Türkiye
| | - Gözde Ermiş
- Karadeniz Technical University Faculty of Medicine, Department of Internal Medicine, Division of Hematology, Trabzon, Türkiye
| | - Rafiye Çiftçiler
- Selçuk University Faculty of Medicine, Department of Hematology, Konya, Türkiye
| | - Deniz Özmen
- İstanbul University-Cerrahpaşa, Cerrahpaşa Faculty of Medicine, Department of Internal Medicine, Division of Hematology, İstanbul, Türkiye
| | - Mehmet Baysal
- Ali Osman Sönmez Oncology Hospital, Clinic of Hematology, Bursa, Türkiye
| | - Vildan Gürsoy
- Bursa City Hospital, Clinic of Orthopedics and Traumatology, Bursa, Türkiye
| | - Esra Yıldızhan
- Kayseri City Hospital, Clinic of Hematology, Kayseri, Türkiye
| | - Serkan Güven
- Mehmet Akif Ersoy State Hospital, Clinic of Hematology, Çanakkale, Türkiye
| | - Tarık Ercan
- Haydarpaşa Numune Training and Research Hospital, Clinic of Hematology, İstanbul, Türkiye
| | - Tayfun Elibol
- Medeniyet University Göztepe Training and Research Hospital, Clinic of Hematology, İstanbul, Türkiye
| | - Sinan Mersin
- Muğla Sıtkı Koçman University Training and Research Hospital, Clinic of Hematology, Muğla, Türkiye
| | - Eylem Genç
- Tekirdağ Dr. İsmail Fehmi Cumalıoğlu City Hospital, Clinic of Hematology, Tekirdağ, Türkiye
| | - Eren Arslan Davulcu
- University of Health Sciences Türkiye, İstanbul Bakırköy Dr. Sadi Konuk Training and Research Hospital, Clinic of Hematology, İstanbul, Türkiye
| | - Volkan Karakuş
- Antalya Training and Research Hospital, Clinic of Hematology, Antalya, Türkiye
| | - Nergiz Erkut
- Karadeniz Technical University Faculty of Medicine, Department of Internal Medicine, Division of Hematology, Trabzon, Türkiye
| | - Gürsel Güneş
- University of Health Sciences Türkiye, Dışkapı Yıldırım Beyazıt Training and Research Hospital, Clinic of Hematology, Ankara, Türkiye
| | - Reyhan Diz Küçükkaya
- İstanbul University Faculty of Science, Department of Molecular Biology and Genetics, İstanbul, Türkiye
| | - Ahmet Emre Eşkazan
- İstanbul University-Cerrahpaşa, Cerrahpaşa Faculty of Medicine, Department of Internal Medicine, Division of Hematology, İstanbul, Türkiye
| |
Collapse
|
63
|
Vincenzi M, Mercurio FA, Autiero I, Leone M. Cancer-Related Mutations in the Sam Domains of EphA2 Receptor and Ship2 Lipid Phosphatase: A Computational Study. Molecules 2024; 29:1024. [PMID: 38474536 DOI: 10.3390/molecules29051024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/09/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024] Open
Abstract
The lipid phosphatase Ship2 interacts with the EphA2 receptor by forming a heterotypic Sam (sterile alpha motif)-Sam complex. Ship2 works as a negative regulator of receptor endocytosis and consequent degradation, and anti-oncogenic effects in cancer cells should be induced by hindering its association with EphA2. Herein, a computational approach is presented to investigate the relationship between Ship2-Sam/EphA2-Sam interaction and cancer onset and further progression. A search was first conducted through the COSMIC (Catalogue of Somatic Mutations in Cancer) database to identify cancer-related missense mutations positioned inside or close to the EphA2-Sam and Ship2-Sam reciprocal binding interfaces. Next, potential differences in the chemical-physical properties of mutant and wild-type Sam domains were evaluated by bioinformatics tools based on analyses of primary sequences. Three-dimensional (3D) structural models of mutated EphA2-Sam and Ship2-Sam domains were built as well and deeply analysed with diverse computational instruments, including molecular dynamics, to classify potentially stabilizing and destabilizing mutations. In the end, the influence of mutations on the EphA2-Sam/Ship2-Sam interaction was studied through docking techniques. This in silico approach contributes to understanding, at the molecular level, the mutation/cancer relationship by predicting if amino acid substitutions could modulate EphA2 receptor endocytosis.
Collapse
Affiliation(s)
- Marian Vincenzi
- Institute of Biostructures and Bioimaging, Via Pietro Castellino 111, 80131 Naples, Italy
| | - Flavia Anna Mercurio
- Institute of Biostructures and Bioimaging, Via Pietro Castellino 111, 80131 Naples, Italy
| | - Ida Autiero
- Institute of Biostructures and Bioimaging, Via Pietro Castellino 111, 80131 Naples, Italy
| | - Marilisa Leone
- Institute of Biostructures and Bioimaging, Via Pietro Castellino 111, 80131 Naples, Italy
| |
Collapse
|
64
|
Wang Y, Shtylla B, Chou T. Order-of-Mutation Effects on Cancer Progression: Models for Myeloproliferative Neoplasm. Bull Math Biol 2024; 86:32. [PMID: 38363386 PMCID: PMC10873249 DOI: 10.1007/s11538-024-01257-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 01/08/2024] [Indexed: 02/17/2024]
Abstract
In some patients with myeloproliferative neoplasms (MPN), two genetic mutations are often found: JAK2 V617F and one in the TET2 gene. Whether one mutation is present influences how the other subsequent mutation will affect the regulation of gene expression. In other words, when a patient carries both mutations, the order of when they first arose has been shown to influence disease progression and prognosis. We propose a nonlinear ordinary differential equation, the Moran process, and Markov chain models to explain the non-additive and non-commutative mutation effects on recent clinical observations of gene expression patterns, proportions of cells with different mutations, and ages at diagnosis of MPN. Combined, these observations are used to shape our modeling framework. Our key proposal is that bistability in gene expression provides a natural explanation for many observed order-of-mutation effects. We also propose potential experimental measurements that can be used to confirm or refute predictions of our models.
Collapse
Affiliation(s)
- Yue Wang
- Department of Computational Medicine, UCLA, Los Angeles, CA, 90095, USA
- Department of Statistics, Irving Institute for Cancer Dynamics, Columbia University, New York, NY, 10027, USA
| | - Blerta Shtylla
- Mathematics Department, Pomona College, Claremont, CA, 91711, USA
- Pharmacometrics and Systems Pharmacology, Pfizer Research and Development, San Diego, CA, 92121, USA
| | - Tom Chou
- Department of Computational Medicine, UCLA, Los Angeles, CA, 90095, USA.
- Department of Mathematics, UCLA, Los Angeles, CA, 90095, USA.
| |
Collapse
|
65
|
Fabre MA, Vassiliou GS. The lifelong natural history of clonal hematopoiesis and its links to myeloid neoplasia. Blood 2024; 143:573-581. [PMID: 37992214 DOI: 10.1182/blood.2023019964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/26/2023] [Accepted: 11/13/2023] [Indexed: 11/24/2023] Open
Abstract
ABSTRACT The study of somatic mutations and the associated clonal mosaicism across the human body has transformed our understanding of aging and its links to cancer. In proliferative human tissues, stem cells compete for dominance, and those with an advantage expand clonally to outgrow their peers. In the hematopoietic system, such expansion is termed clonal hematopoiesis (CH). The forces driving competition, namely heterogeneity of the hematopoietic stem cell (HSC) pool and attrition of their environment, become increasingly prominent with age. As a result, CH becomes progressively more common through life to the point of becoming essentially ubiquitous. We are beginning to unravel the specific intracellular and extracellular factors underpinning clonal behavior, with somatic mutations in specific driver genes, inflammation, telomere maintenance, extraneous exposures, and inherited genetic variation among the important players. The inevitability of CH with age combined with its unequivocal links to myeloid cancers poses a scientific and clinical challenge. Specifically, we need to decipher the factors determining clonal behavior and develop prognostic tools to identify those at high risk of malignant progression, for whom preventive interventions may be warranted. Here, we discuss how recent advances in our understanding of the natural history of CH have provided important insights into these processes and helped define future avenues of investigation.
Collapse
Affiliation(s)
- Margarete A Fabre
- Department of Haematology, Cambridge University Hospitals National Health Service Trust, Cambridge, United Kingdom
- Centre for Genomics Research, Discovery Sciences, BioPharmaceuticals Research & Development, AstraZeneca, Cambridge, United Kingdom
| | - George S Vassiliou
- Department of Haematology, Cambridge University Hospitals National Health Service Trust, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
- Wellcome-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
66
|
Sarson-Lawrence KTG, Hardy JM, Iaria J, Stockwell D, Behrens K, Saiyed T, Tan C, Jebeli L, Scott NE, Dite TA, Nicola NA, Leis AP, Babon JJ, Kershaw NJ. Cryo-EM structure of the extracellular domain of murine Thrombopoietin Receptor in complex with Thrombopoietin. Nat Commun 2024; 15:1135. [PMID: 38326297 PMCID: PMC10850085 DOI: 10.1038/s41467-024-45356-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 01/19/2024] [Indexed: 02/09/2024] Open
Abstract
Thrombopoietin (Tpo) is the primary regulator of megakaryocyte and platelet numbers and is required for haematopoetic stem cell maintenance. Tpo functions by binding its receptor (TpoR, a homodimeric Class I cytokine receptor) and initiating cell proliferation or differentiation. Here we characterise the murine Tpo:TpoR signalling complex biochemically and structurally, using cryo-electron microscopy. Tpo uses opposing surfaces to recruit two copies of receptor, forming a 1:2 complex. Although it binds to the same, membrane-distal site on both receptor chains, it does so with significantly different affinities and its highly glycosylated C-terminal domain is not required. In one receptor chain, a large insertion, unique to TpoR, forms a partially structured loop that contacts cytokine. Tpo binding induces the juxtaposition of the two receptor chains adjacent to the cell membrane. The therapeutic agent romiplostim also targets the cytokine-binding site and the characterisation presented here supports the future development of improved TpoR agonists.
Collapse
Affiliation(s)
- Kaiseal T G Sarson-Lawrence
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, 3052, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Royal Parade, Parkville, 3052, Victoria, Australia
| | - Joshua M Hardy
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, 3052, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Royal Parade, Parkville, 3052, Victoria, Australia
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, 3052, Victoria, Australia
| | - Josephine Iaria
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, 3052, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Royal Parade, Parkville, 3052, Victoria, Australia
| | - Dina Stockwell
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, 3052, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Royal Parade, Parkville, 3052, Victoria, Australia
| | - Kira Behrens
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, 3052, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Royal Parade, Parkville, 3052, Victoria, Australia
| | - Tamanna Saiyed
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, 3052, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Royal Parade, Parkville, 3052, Victoria, Australia
| | - Cyrus Tan
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, 3052, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Royal Parade, Parkville, 3052, Victoria, Australia
| | - Leila Jebeli
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, 3000, Victoria, Australia
| | - Nichollas E Scott
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, 3000, Victoria, Australia
| | - Toby A Dite
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, 3052, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Royal Parade, Parkville, 3052, Victoria, Australia
| | - Nicos A Nicola
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, 3052, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Royal Parade, Parkville, 3052, Victoria, Australia
| | - Andrew P Leis
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, 3052, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Royal Parade, Parkville, 3052, Victoria, Australia
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, 3052, Victoria, Australia
| | - Jeffrey J Babon
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, 3052, Victoria, Australia.
- Department of Medical Biology, The University of Melbourne, Royal Parade, Parkville, 3052, Victoria, Australia.
| | - Nadia J Kershaw
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, 3052, Victoria, Australia.
- Department of Medical Biology, The University of Melbourne, Royal Parade, Parkville, 3052, Victoria, Australia.
| |
Collapse
|
67
|
Chen P, Long J, Zhang J, Xie F, Wu W, Tian Z, Zhang S, Yu K. Identification and validation of the association of Janus kinase 2 mutations with the response to immune checkpoint inhibitor therapy. Inflamm Res 2024; 73:263-276. [PMID: 38200372 PMCID: PMC10824873 DOI: 10.1007/s00011-023-01833-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 11/14/2023] [Accepted: 12/07/2023] [Indexed: 01/12/2024] Open
Abstract
BACKGROUND Janus kinase 2 (JAK2) mutation plays an important role in T cell immunity. However, the effect of JAK2 mutation on immunotherapy is largely uncharacterized. METHODS In this study, we analyzed the effect of JAK2 mutation on the efficacy and outcomes of immune checkpoint inhibitor (ICI) therapy in the discovery cohort (n = 662) and the verification cohort (n = 1423). Furthermore, we explored the association of JAK2 mutation with the tumor immune microenvironment in a multiomics cohort. RESULTS In the discovery cohort (n = 662), JAK2 mutant-type patients had a better objective response rate (58.8% vs. 26.7%, P = 0.010), durable clinical benefit (64.7% vs. 38.9%, P = 0.043), progression-free survival (hazard ratio [HR] = 0.431, P = 0.015), and overall survival (HR = 0.378, P = 0.025), relative to JAK2 wild-type patients. Moreover, we further verified the prognostic significance of JAK2 mutation in an independent ICI treatment cohort with a larger sample size (n = 1423). In addition, we discovered that the JAK2 mutation was remarkably related to increased immunogenicity, such as a higher TMB, higher expression of costimulatory molecules and stimulation of antigen processing mechanisms. In addition, JAK2 mutation was positively correlated with activated anticancer immunity, such as infiltration of various immune cells and higher expression of chemokines. CONCLUSION Our study demonstrates that JAK2 mutation is a novel marker that can be used to effectively predict prognosis and response to ICI therapy.
Collapse
Affiliation(s)
- Peipei Chen
- Department of Clinical Nutrition & Health Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Junyu Long
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jiayang Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Breast Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Fucun Xie
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Wei Wu
- Department of Cardiology, Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Zhuang Tian
- Department of Cardiology, Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Shuyang Zhang
- Department of Cardiology, Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| | - Kang Yu
- Department of Clinical Nutrition & Health Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
68
|
Bharadwaj AG, Okura GC, Woods JW, Allen EA, Miller VA, Kempster E, Hancock MA, Gujar S, Slibinskas R, Waisman DM. Identification and characterization of calreticulin as a novel plasminogen receptor. J Biol Chem 2024; 300:105465. [PMID: 37979915 PMCID: PMC10770727 DOI: 10.1016/j.jbc.2023.105465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/22/2023] [Accepted: 11/06/2023] [Indexed: 11/20/2023] Open
Abstract
Calreticulin (CRT) was originally identified as a key calcium-binding protein of the endoplasmic reticulum. Subsequently, CRT was shown to possess multiple intracellular functions, including roles in calcium homeostasis and protein folding. Recently, several extracellular functions have been identified for CRT, including roles in cancer cell invasion and phagocytosis of apoptotic and cancer cells by macrophages. In the current report, we uncover a novel function for extracellular CRT and report that CRT functions as a plasminogen-binding receptor that regulates the conversion of plasminogen to plasmin. We show that human recombinant or bovine tissue-derived CRT dramatically stimulated the conversion of plasminogen to plasmin by tissue plasminogen activator or urokinase-type plasminogen activator. Surface plasmon resonance analysis revealed that CRT-bound plasminogen (KD = 1.8 μM) with moderate affinity. Plasminogen binding and activation by CRT were inhibited by ε-aminocaproic acid, suggesting that an internal lysine residue of CRT interacts with plasminogen. We subsequently show that clinically relevant CRT variants (lacking four or eight lysines in carboxyl-terminal region) exhibited decreased plasminogen activation. Furthermore, CRT-deficient fibroblasts generated 90% less plasmin and CRT-depleted MDA MB 231 cells also demonstrated a significant reduction in plasmin generation. Moreover, treatment of fibroblasts with mitoxantrone dramatically stimulated plasmin generation by WT but not CRT-deficient fibroblasts. Our results suggest that CRT is an important cellular plasminogen regulatory protein. Given that CRT can empower cells with plasmin proteolytic activity, this discovery may provide new mechanistic insight into the established role of CRT in cancer.
Collapse
Affiliation(s)
- Alamelu G Bharadwaj
- Departments of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada; Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Gillian C Okura
- Departments of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - John W Woods
- Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Erica A Allen
- Departments of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Victoria A Miller
- Departments of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Emma Kempster
- Departments of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Mark A Hancock
- McGill SPR-MS Facility, McGill University, Montréal, Québec, Canada
| | - Shashi Gujar
- Departments of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Rimantas Slibinskas
- Life Sciences Center, Institute of Biotechnology, Vilnius University, Vilnius, Lithuania
| | - David M Waisman
- Departments of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada; Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada.
| |
Collapse
|
69
|
Zbieranski N, Insuasti-Beltran G. Analytical Validation of an Automated Semiconductor-Based Next-Generation Sequencing Assay for Detection of DNA and RNA Alterations in Myeloid Neoplasms. J Mol Diagn 2024; 26:29-36. [PMID: 37879438 DOI: 10.1016/j.jmoldx.2023.09.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/23/2023] [Accepted: 09/20/2023] [Indexed: 10/27/2023] Open
Abstract
Myeloid neoplasms are heterogeneous tumors derived from early hematopoietic progenitors. Most international guidelines, including the European LeukemiaNet 2022 update, recommend testing a comprehensive set of genes, most within a 3- to 5-day period for optimal treatment decisions. Next-generation sequencing gene panels are essential for identifying genetic alterations, risk stratification, and determining targeted therapies for myeloid malignancies. This study describes the analytical validation of the Oncomine Myeloid Assay GX v2 (Myeloid GX v2) in combination with the Ion Torrent Genexus System using commercial controls, 16 variant-negative samples, and 130 clinical samples of myeloid neoplasms. The Myeloid GX v2 panel detected single nucleotide variants (SNVs), insertions/deletions (indels) (allele frequency >5%), and gene fusions (minimum 11 fusion copies/μL) in synthetic controls with a sensitivity of 100%. Specificity for detection of SNVs, indels, or fusions in 16 variant-negative samples was 100%. Sensitivity for detection of SNVs, indels, and gene fusions in 130 clinical samples was 99%, 97%, and 100%, respectively. Overall precision was 100% for SNVs, 96% for indels, and 100% for fusions. The average turnaround time from nucleic acid extraction to results was 2 days. The Myeloid GX v2 panel is highly accurate and reproducible for the detection of SNVs, indels, and gene fusions in myeloid neoplasms. The ability to deliver clinically relevant results in a short time is key to providing personalized treatments.
Collapse
Affiliation(s)
- Nora Zbieranski
- Department of Pathology, Wake Forest Baptist Medical Center, Winston-Salem, North Carolina
| | | |
Collapse
|
70
|
Avelar-Barragan J, Mendez Luque LF, Nguyen J, Nguyen H, Odegaard AO, Fleischman AG, Whiteson KL. Characterizing the microbiome of patients with myeloproliferative neoplasms during a Mediterranean diet intervention. mBio 2023; 14:e0230823. [PMID: 37877698 PMCID: PMC10746218 DOI: 10.1128/mbio.02308-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 09/18/2023] [Indexed: 10/26/2023] Open
Abstract
IMPORTANCE The gut microbiome serves as an interface between the host and the diet. Diet and the gut microbiome both play important roles in managing inflammation, which is a key aspect of myeloproliferative neoplasm (MPN). Studies have shown that a Mediterranean (MED) diet can reduce inflammation. Therefore, we longitudinally characterized the gut microbiomes of MPN patients in response to Mediterranean or standard 2020 US Guidelines for Americans dietary counseling to determine whether there were microbiome-associated changes in inflammation. We did not find significant changes in the gut microbiome associated with diet, but we did find several associations with inflammation. This research paves the way for future studies by identifying potential mechanistic targets implicated in inflammation within the MPN gut microbiome.
Collapse
Affiliation(s)
- Julio Avelar-Barragan
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, California, USA
| | - Laura F. Mendez Luque
- Department of Biological Chemistry, University of California Irvine, Irvine, California, USA
| | - Jenny Nguyen
- Division of Hematology/Oncology, University of California Irvine, Irvine, California, USA
| | - Hellen Nguyen
- Division of Hematology/Oncology, University of California Irvine, Irvine, California, USA
| | - Andrew O. Odegaard
- Department of Epidemiology and Biostatistics, University of California Irvine, Irvine, California, USA
| | - Angela G. Fleischman
- Department of Biological Chemistry, University of California Irvine, Irvine, California, USA
- Division of Hematology/Oncology, University of California Irvine, Irvine, California, USA
| | - Katrine L. Whiteson
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, California, USA
| |
Collapse
|
71
|
Cherdchoo N, Polprasert C, Rojnuckarin P, Kongkiatkamon S. Clinical characteristics and symptom burden of Thai myeloproliferative neoplasm patients. Hematology 2023; 28:2280731. [PMID: 37942783 DOI: 10.1080/16078454.2023.2280731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 11/02/2023] [Indexed: 11/10/2023] Open
Abstract
ABSTRACTObjective Patients living with myeloproliferative neoplasms (MPNs) suffer from symptom burden that affect quality of life. Due to the differences in cultures, climates, and genetic background, we aimed to investigate the symptom burden of Thai MPN patients Methods A comprehensive survey using the MPN-10 questionnaire was carried out between September 1, 2014, and September 30, 2017. The scores obtained were then correlated with clinical outcomes.. Results A total of 145 patients were enrolled. Nearly 90% of patients reported being symptomatic. The mean MPN-10 score was 13.6 (SD = 11). The mean MPN-10 score was highest in PMF, whereas the mean score and intensity of individual items were surprisingly low in ET and PV. Notably, the mean MPN-10 score was significantly higher in patients with documented splenomegaly compared to those with a normal-sized spleen. However, there were no correlations between MPN-10 scores and the mutation status, disease complications such as thrombosis and hemorrhage, progression to myelofibrosis or leukemia, and mortality. Patients who needed regular transfusions reported a higher MPN-10 score compared to those who did not. Conclusion The MPN-10 score did not predict survival outcomes among Thai MPN patients. Higher MPN-10 was associated with more transfusion. Thai MPN patients reported lower MPN-10 compared to western population especially PV and ET.
Collapse
Affiliation(s)
- Naritsara Cherdchoo
- Faculty of Medicine Chulalongkorn University, Department of Medicine, King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Chantana Polprasert
- Faculty of Medicine Chulalongkorn University, Department of Medicine, King Chulalongkorn Memorial Hospital, Bangkok, Thailand
- Faculty of Medicine, Center of excellence in Translational Hematology, Division of Hematology, Department of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Ponlapat Rojnuckarin
- Faculty of Medicine Chulalongkorn University, Department of Medicine, King Chulalongkorn Memorial Hospital, Bangkok, Thailand
- Faculty of Medicine, Center of excellence in Translational Hematology, Division of Hematology, Department of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Sunisa Kongkiatkamon
- Faculty of Medicine Chulalongkorn University, Department of Medicine, King Chulalongkorn Memorial Hospital, Bangkok, Thailand
- Faculty of Medicine, Center of excellence in Translational Hematology, Division of Hematology, Department of Medicine, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
72
|
Aziz N, Hong YH, Kim HG, Kim JH, Cho JY. Tumor-suppressive functions of protein lysine methyltransferases. Exp Mol Med 2023; 55:2475-2497. [PMID: 38036730 PMCID: PMC10766653 DOI: 10.1038/s12276-023-01117-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 08/30/2023] [Accepted: 09/05/2023] [Indexed: 12/02/2023] Open
Abstract
Protein lysine methyltransferases (PKMTs) play crucial roles in histone and nonhistone modifications, and their dysregulation has been linked to the development and progression of cancer. While the majority of studies have focused on the oncogenic functions of PKMTs, extensive evidence has indicated that these enzymes also play roles in tumor suppression by regulating the stability of p53 and β-catenin, promoting α-tubulin-mediated genomic stability, and regulating the transcription of oncogenes and tumor suppressors. Despite their contradictory roles in tumorigenesis, many PKMTs have been identified as potential therapeutic targets for cancer treatment. However, PKMT inhibitors may have unintended negative effects depending on the specific cancer type and target enzyme. Therefore, this review aims to comprehensively summarize the tumor-suppressive effects of PKMTs and to provide new insights into the development of anticancer drugs targeting PKMTs.
Collapse
Affiliation(s)
- Nur Aziz
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Yo Han Hong
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Han Gyung Kim
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| | - Ji Hye Kim
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| | - Jae Youl Cho
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| |
Collapse
|
73
|
Miller EW, Lamberson CM, Akabari RR, Nasr MR, Sperber SM. Expanded molecular detection of MPL codon p.W515 and p.S505N mutations in myeloproliferative neoplasms. J Clin Lab Anal 2023; 37:e24992. [PMID: 38058281 PMCID: PMC10756946 DOI: 10.1002/jcla.24992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 09/21/2023] [Accepted: 11/12/2023] [Indexed: 12/08/2023] Open
Abstract
BACKGROUND Patients negative for the JAK2 p.V617F somatic variant are frequently reflexed to testing for MPL exon 10 variants. Detection of these variants via multiplexed allele-specific PCR followed by fragment analysis has been previously published. The present study builds on this concept by improving the detection of the p.W515A variant, adding a second allele-specific primer to detect the p.W515R variant, and incorporating an improved primer for p.S505N detection. METHODS The W515 amplification employs 5'-labeled allele-specific forward primers to detect p.W515K, p.W515L, p.W515R, and p.W515A. The p.S505N amplification includes an allele-specific reverse primer with a tail extension. Fragments were subject to capillary electrophoresis on an ABI 3500 Genetic Analyzer and analyzed using GeneMapper 6.0 (Thermo Fisher Scientific). RESULTS Thirty MPL-negative and 13 MPL-positive samples previously tested by a reference laboratory were tested with the MPL LDT. Results were 100% concordant. The MPL LDT has a limit of detection of at least 5% VAF for the p.W515 variants and 10% VAF for the p.S505N variant. CONCLUSION Current MPL assays are predominantly focused on p.W515L/K and p.S505N mutations. We have engineered an MPL test for detecting p.W515A/L/K/R and p.S505N variants, thereby increasing the diagnostic yield with little additional expense or technician time.
Collapse
Affiliation(s)
- Eric W. Miller
- Department of PathologySUNY Upstate Medical UniversitySyracuseNew YorkUSA
| | | | - Ratilal R. Akabari
- Department of PathologySUNY Upstate Medical UniversitySyracuseNew YorkUSA
| | - Michel R. Nasr
- Department of PathologySUNY Upstate Medical UniversitySyracuseNew YorkUSA
| | - Steven M. Sperber
- Department of PathologySUNY Upstate Medical UniversitySyracuseNew YorkUSA
| |
Collapse
|
74
|
Koschmieder S, Isfort S, Schulte C, Jacobasch L, Geer T, Reiser M, Koenigsmann M, Heinrich B, Wehmeyer J, von der Heyde E, Tesch H, Gröschl B, Bachhuber P, Großer S, Pahl HL. Real-world analysis of ruxolitinib in myelofibrosis: interim results focusing on patients who were naïve to JAK inhibitor therapy treated within the JAKoMo non-interventional, phase IV trial. Ann Hematol 2023; 102:3383-3399. [PMID: 37792065 PMCID: PMC10640411 DOI: 10.1007/s00277-023-05458-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 09/16/2023] [Indexed: 10/05/2023]
Abstract
Ruxolitinib (RUX) is a Janus kinase 1/2 inhibitor (JAKi) approved in the EU for treating disease‑related splenomegaly or symptoms in adults patients with myelofibrosis (MF). This is an interim analysis of JAKoMo, a prospective, non‑interventional, phase IV study in MF. Between 2012-2019 (cutoff March 2021), 928 patients (JAKi-naïve and -pretreated) enrolled from 122 German centers. This analysis focuses on JAKi-naïve patients. RUX was administered according to the Summary of Product Characteristics. Compared to the COMFORT-I, -II, and JUMP trials, patients in JAKoMo were older (median 73 years), had poorer Eastern Cooperative Oncology Group (ECOG) performance statuses (16.5% had ECOG ≥ 2), and were more transfusion dependent (48.5%). JAKoMo represents the more challenging patients with MF encountered outside of interventional studies. However, patients with low-risk International Prognostic Scoring System (IPSS) scores or without palpable splenomegaly were also included. Following RUX treatment, 82.5% of patients experienced rapid (≤ 1 month), significant decreases in palpable spleen size, which remained durable for 24 months (60% patients). Symptom assessment scores improved significantly in Month 1 (median -5.2) up to Month 12 (-6.2). Common adverse events (AEs) were anemia (31.2%) and thrombocytopenia (28.6%). At cutoff, 54.3% of patients had terminated the study due to, death, AEs, or deterioration of health. No new safety signals were observed. Interim analysis of the JAKoMo study confirms RUX safety and efficacy in a representative cohort of real-world, elderly, JAKi-naïve patients with MF. Risk scores were used in less than half of the patients to initiate RUX treatment.Trial registration: NCT05044026; September 14, 2021.
Collapse
Affiliation(s)
- Steffen Koschmieder
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany.
- Center for Integrated Oncology, Aachen Bonn Cologne Düsseldorf (CIO ABCD), Aachen, Germany.
| | - Susanne Isfort
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
- Center for Integrated Oncology, Aachen Bonn Cologne Düsseldorf (CIO ABCD), Aachen, Germany
| | - Clemens Schulte
- Gemeinschaftspraxis Für Hämatologie Und Onkologie, Dortmund, Germany
| | - Lutz Jacobasch
- Gemeinschaftspraxis Hämatologie - Onkologie, Dresden, Germany
| | - Thomas Geer
- Medizinische Klinik III, Diakonie-Klinikum Schwäbisch Hall, Schwäbisch Hall, Germany
| | - Marcel Reiser
- Praxis Internistischer Onkologie Und Hämatologie, Cologne, Germany
| | | | - Bernhard Heinrich
- Hämatologisch-Onkologische Praxis Heinrich/Bangerter, Augsburg, Germany
| | - Jürgen Wehmeyer
- Gemeinschaftspraxis Für Hämatologie Und Onkologie, Münster, Germany
| | - Eyck von der Heyde
- Onkologische Schwerpunktpraxis Dres. Ingo Zander und Eyck von der Heyde, Hannover, Germany
| | - Hans Tesch
- Onkologische Gemeinschaftspraxis am Bethanien-Krankenhaus, Frankfurt/Main, Germany
| | | | | | | | - Heike L Pahl
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
75
|
Gill H, Leung GMK, Ooi MGM, Teo WZY, Wong CL, Choi CW, Wong GC, Lao Z, Rojnuckarin P, Castillo MRID, Xiao Z, Hou HA, Kuo MC, Shih LY, Gan GG, Lin CC, Chng WJ, Kwong YL. Management of classical Philadelphia chromosome-negative myeloproliferative neoplasms in Asia: consensus of the Asian Myeloid Working Group. Clin Exp Med 2023; 23:4199-4217. [PMID: 37747591 DOI: 10.1007/s10238-023-01189-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 09/04/2023] [Indexed: 09/26/2023]
Abstract
Myeloproliferative neoplasms (MPN) are a heterogeneous group of clonal hematopoietic stem cell disorders characterized clinically by the proliferation of one or more hematopoietic lineage(s). The classical Philadelphia-chromosome (Ph)-negative MPNs include polycythemia vera (PV), essential thrombocythemia (ET) and primary myelofibrosis (PMF). The Asian Myeloid Working Group (AMWG) comprises representatives from fifteen Asian centers experienced in the management of MPN. This consensus from the AMWG aims to review the current evidence in the risk stratification and treatment of Ph-negative MPN, to identify management gaps for future improvement, and to offer pragmatic approaches for treatment commensurate with different levels of resources, drug availabilities and reimbursement policies in its constituent regions. The management of MPN should be patient-specific and based on accurate diagnostic and prognostic tools. In patients with PV, ET and early/prefibrotic PMF, symptoms and risk stratification will guide the need for early cytoreduction. In younger patients requiring cytoreduction and in those experiencing resistance or intolerance to hydroxyurea, recombinant interferon-α preparations (pegylated interferon-α 2A or ropeginterferon-α 2b) should be considered. In myelofibrosis, continuous risk assessment and symptom burden assessment are essential in guiding treatment selection. Allogeneic hematopoietic stem cell transplantation (allo-HSCT) in MF should always be based on accurate risk stratification for disease-risk and post-HSCT outcome. Management of classical Ph-negative MPN entails accurate diagnosis, cytogenetic and molecular evaluation, risk stratification, and treatment strategies that are outcome-oriented (curative, disease modification, improvement of quality-of-life).
Collapse
Affiliation(s)
- Harinder Gill
- Department of Medicine, LKS Faculty of Medicine, School of Clinical Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong, China.
- Department of Medicine, Professorial Block, Queen Mary Hospital, Pokfulam Road, Pok Fu Lam, Hong Kong, China.
| | - Garret M K Leung
- Department of Medicine, LKS Faculty of Medicine, School of Clinical Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong, China
| | - Melissa G M Ooi
- Department of Hematology-Oncology, National University Cancer Institute, Singapore, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University, Singapore, Singapore
| | - Winnie Z Y Teo
- Department of Hematology-Oncology, National University Cancer Institute, Singapore, Singapore
- Fast and Chronic Program, Alexandra Hospital, Singapore, Singapore
| | - Chieh-Lee Wong
- Department of Medicine, Sunway Medical Centre, Shah Alam, Selangor, Malaysia
| | - Chul Won Choi
- Department of Internal Medicine, Korea University College of Medicine, Seoul, Korea
| | - Gee-Chuan Wong
- Department of Haematology, Singapore General Hospital, Singapore, Singapore
| | - Zhentang Lao
- Department of Haematology, Singapore General Hospital, Singapore, Singapore
| | - Ponlapat Rojnuckarin
- King Chulalongkorn Memorial Hospital, Chulalongkorn University, Bangkok, Thailand
| | | | - Zhijian Xiao
- Blood Disease Hospital and Institute of Hematology, Chinese Academy of Medical Sciences Peking Union Medical College, Tianjin, China
| | - Hsin-An Hou
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Ming-Chung Kuo
- Chang Gung Memorial Hospital-Linkou, Chang Gung University, Taoyuan, Taiwan
| | - Lee-Yung Shih
- Chang Gung Memorial Hospital-Linkou, Chang Gung University, Taoyuan, Taiwan
| | - Gin-Gin Gan
- University of Malaya, Kuala Lumpur, Malaysia
| | - Chien-Chin Lin
- Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Wee-Joo Chng
- Department of Hematology-Oncology, National University Cancer Institute, Singapore, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University, Singapore, Singapore
| | - Yok-Lam Kwong
- Department of Medicine, LKS Faculty of Medicine, School of Clinical Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong, China
| |
Collapse
|
76
|
Fang Z, Corbizi Fattori G, McKerrell T, Boucher RH, Jackson A, Fletcher RS, Forte D, Martin JE, Fox S, Roberts J, Glover R, Harris E, Bridges HR, Grassi L, Rodriguez-Meira A, Mead AJ, Knapper S, Ewing J, Butt NM, Jain M, Francis S, Clark FJ, Coppell J, McMullin MF, Wadelin F, Narayanan S, Milojkovic D, Drummond MW, Sekhar M, ElDaly H, Hirst J, Paramor M, Baxter EJ, Godfrey AL, Harrison CN, Méndez-Ferrer S. Tamoxifen for the treatment of myeloproliferative neoplasms: A Phase II clinical trial and exploratory analysis. Nat Commun 2023; 14:7725. [PMID: 38001082 PMCID: PMC10673935 DOI: 10.1038/s41467-023-43175-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 11/02/2023] [Indexed: 11/26/2023] Open
Abstract
Current therapies for myeloproliferative neoplasms (MPNs) improve symptoms but have limited effect on tumor size. In preclinical studies, tamoxifen restored normal apoptosis in mutated hematopoietic stem/progenitor cells (HSPCs). TAMARIN Phase-II, multicenter, single-arm clinical trial assessed tamoxifen's safety and activity in patients with stable MPNs, no prior thrombotic events and mutated JAK2V617F, CALRins5 or CALRdel52 peripheral blood allele burden ≥20% (EudraCT 2015-005497-38). 38 patients were recruited over 112w and 32 completed 24w-treatment. The study's A'herns success criteria were met as the primary outcome ( ≥ 50% reduction in mutant allele burden at 24w) was observed in 3/38 patients. Secondary outcomes included ≥25% reduction at 24w (5/38), ≥50% reduction at 12w (0/38), thrombotic events (2/38), toxicities, hematological response, proportion of patients in each IWG-MRT response category and ELN response criteria. As exploratory outcomes, baseline analysis of HSPC transcriptome segregates responders and non-responders, suggesting a predictive signature. In responder HSPCs, longitudinal analysis shows high baseline expression of JAK-STAT signaling and oxidative phosphorylation genes, which are downregulated by tamoxifen. We further demonstrate in preclinical studies that in JAK2V617F+ cells, 4-hydroxytamoxifen inhibits mitochondrial complex-I, activates integrated stress response and decreases pathogenic JAK2-signaling. These results warrant further investigation of tamoxifen in MPN, with careful consideration of thrombotic risk.
Collapse
Affiliation(s)
- Zijian Fang
- Wellcome-MRC Cambridge Stem Cell Institute, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
- NHS Blood and Transplant, Cambridge, UK
| | - Giuditta Corbizi Fattori
- Wellcome-MRC Cambridge Stem Cell Institute, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
- NHS Blood and Transplant, Cambridge, UK
| | - Thomas McKerrell
- Wellcome-MRC Cambridge Stem Cell Institute, Cambridge, UK
- NHS Blood and Transplant, Cambridge, UK
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Rebecca H Boucher
- Cancer Research UK Clinical Trials Unit, University of Birmingham, Birmingham, UK
| | - Aimee Jackson
- Cancer Research UK Clinical Trials Unit, University of Birmingham, Birmingham, UK
| | - Rachel S Fletcher
- Cancer Research UK Clinical Trials Unit, University of Birmingham, Birmingham, UK
| | - Dorian Forte
- Wellcome-MRC Cambridge Stem Cell Institute, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
- NHS Blood and Transplant, Cambridge, UK
| | - Jose-Ezequiel Martin
- Cancer Molecular Diagnostic Laboratory, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Sonia Fox
- Cancer Research UK Clinical Trials Unit, University of Birmingham, Birmingham, UK
| | - James Roberts
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - Rachel Glover
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - Erica Harris
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - Hannah R Bridges
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | - Luigi Grassi
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - Alba Rodriguez-Meira
- NIHR Biomedical Research Centre and MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Adam J Mead
- NIHR Biomedical Research Centre and MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | | | - Joanne Ewing
- University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Nauman M Butt
- The Clatterbridge Cancer Centre NHS Foundation Trust, Liverpool, UK
| | | | | | - Fiona J Clark
- University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | | | | | | | | | | | | | | | - Hesham ElDaly
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Judy Hirst
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | - Maike Paramor
- Wellcome-MRC Cambridge Stem Cell Institute, Cambridge, UK
| | - E Joanna Baxter
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - Anna L Godfrey
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | | | - Simón Méndez-Ferrer
- Wellcome-MRC Cambridge Stem Cell Institute, Cambridge, UK.
- Department of Haematology, University of Cambridge, Cambridge, UK.
- NHS Blood and Transplant, Cambridge, UK.
| |
Collapse
|
77
|
Chung C. Current therapies for classic myeloproliferative neoplasms: A focus on pathophysiology and supportive care. Am J Health Syst Pharm 2023; 80:1624-1636. [PMID: 37556726 DOI: 10.1093/ajhp/zxad181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Indexed: 08/11/2023] Open
Abstract
PURPOSE This article concisely evaluates current therapies that have received regulatory approval for the treatment of classic myeloproliferative neoplasms (MPNs). Pertinent pathophysiology and supportive care are discussed. Emerging therapies are also briefly described. SUMMARY MPNs are a heterogeneous group of diseases characterized by acquired abnormalities of hematopoietic stem cells (HSCs), resulting in the generation of transformed myeloid progenitor cells that overproduce mature and immature cells within the myeloid lineage. Mutations in JAK2 and other driver oncogenes are central to the genetic variability of these diseases. Cytoreductive therapies such as hydroxyurea, anagrelide, interferon, and therapeutic phlebotomy aim to lower the risk of thrombotic events without exposing patients to an increased risk of leukemic transformation. However, no comparisons can be made between these therapies, as reduction of thrombotic risk has not been used as an endpoint. On the other hand, Janus kinase (JAK) inhibitors such as ruxolitinib, fedratinib, pacritinib, and momelotinib (an investigational agent at the time of writing) directly target the constitutively activated JAK-signal transducer and activator of transcription (JAK-STAT) pathway of HSCs in the bone marrow. Mutations of genes in the JAK-STAT signaling pathway provide a unifying understanding of MPNs, spur therapeutic innovations, and represent opportunities for pharmacists to optimize mitigation strategies for both disease-related and treatment-related adverse effects. CONCLUSION Treatment options for MPNs span a wide range of disease mechanisms. The growth of targeted therapies holds promise for expanding the treatment arsenal for these rare, yet complex diseases and creates opportunities to optimize supportive care for affected patients.
Collapse
|
78
|
Olschok K, Altenburg B, de Toledo MAS, Maurer A, Abels A, Beier F, Gezer D, Isfort S, Paeschke K, Brümmendorf TH, Zenke M, Chatain N, Koschmieder S. The telomerase inhibitor imetelstat differentially targets JAK2V617F versus CALR mutant myeloproliferative neoplasm cells and inhibits JAK-STAT signaling. Front Oncol 2023; 13:1277453. [PMID: 37941547 PMCID: PMC10628476 DOI: 10.3389/fonc.2023.1277453] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 10/09/2023] [Indexed: 11/10/2023] Open
Abstract
Imetelstat shows activity in patients with myeloproliferative neoplasms, including primary myelofibrosis (PMF) and essential thrombocythemia. Here, we describe a case of prolonged disease stabilization by imetelstat treatment of a high-risk PMF patient enrolled into the clinical study MYF2001. We confirmed continuous shortening of telomere length (TL) by imetelstat treatment but observed emergence and expansion of a KRAST58I mutated clone during the patient's clinical course. In order to investigate the molecular mechanisms involved in the imetelstat treatment response, we generated induced pluripotent stem cells (iPSC) from this patient. TL of iPSC-derived hematopoietic stem and progenitor cells, which was increased after reprogramming, was reduced upon imetelstat treatment for 14 days. However, while imetelstat reduced clonogenic growth of the patient's primary CD34+ cells, clonogenic growth of iPSC-derived CD34+ cells was not affected, suggesting that TL was not critically short in these cells. Also, the propensity of iPSC differentiation toward megakaryocytes and granulocytes was not altered. Using human TF-1MPL and murine 32DMPL cell lines stably expressing JAK2V617F or CALRdel52, imetelstat-induced reduction of viability was significantly more pronounced in CALRdel52 than in JAK2V617F cells. This was associated with an immediate downregulation of JAK2 phosphorylation and downstream signaling as well as a reduction of hTERT and STAT3 mRNA expression. Hence, our data demonstrate that imetelstat reduces TL and targets JAK/STAT signaling, particularly in CALR-mutated cells. Although the exact patient subpopulation who will benefit most from imetelstat needs to be defined, our data propose that CALR-mutated clones are highly vulnerable.
Collapse
Affiliation(s)
- Kathrin Olschok
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Aachen, Germany
| | - Bianca Altenburg
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Aachen, Germany
| | - Marcelo A. S. de Toledo
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Aachen, Germany
| | - Angela Maurer
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Aachen, Germany
| | - Anne Abels
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Aachen, Germany
| | - Fabian Beier
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Aachen, Germany
| | - Deniz Gezer
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Aachen, Germany
| | - Susanne Isfort
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Aachen, Germany
| | - Katrin Paeschke
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Aachen, Germany
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
| | - Tim H. Brümmendorf
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Aachen, Germany
| | - Martin Zenke
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Aachen, Germany
| | - Nicolas Chatain
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Aachen, Germany
| | - Steffen Koschmieder
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Aachen, Germany
| |
Collapse
|
79
|
Fulvio G, Baldini C, Mosca M, di Paolo A, Bocci G, Palumbo GA, Cacciola E, Migliorini P, Cacciola R, Galimberti S. Philadelphia chromosome-negative myeloproliferative chronic neoplasms: is clonal hematopoiesis the main determinant of autoimmune and cardio-vascular manifestations? Front Med (Lausanne) 2023; 10:1254868. [PMID: 37915324 PMCID: PMC10616863 DOI: 10.3389/fmed.2023.1254868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 09/19/2023] [Indexed: 11/03/2023] Open
Abstract
In this article, we reviewed the possible mechanisms linking the clonal hematopoiesis of indeterminate potential (CHIP) to chronic myeloproliferative neoplasms (MPNs), autoimmune diseases (ADs), and cardiovascular diseases (CADs). CHIP is characterized by the presence of clonal mutations with an allelic frequency >2% in the peripheral blood without dysplasia, overt hematological neoplasms, or abnormalities in blood cell count. The prevalence may reach 20% of elderly healthy individuals and is considered a risk factor for myelodysplastic neoplasms and acute leukemia. In MPNs, CHIP is often associated with mutations such as JAK2V617F or DNMT3A, TET2, or ASXL1, which exhibit a 12.1- and 1.7-2-fold increase in CADs. Specifically, JAK2-mutated cells produce excessive cytokines and reactive oxygen species, leading to proinflammatory modifications in the bone marrow microenvironment. Consequently, the likelihood of experiencing thrombosis is influenced by the variant allele frequency (VAF) of the JAK2V617F mutation, which also appears to be correlated with anti-endothelial cell antibodies that sustain thrombosis. However, DNMT3A mutations induce pro-inflammatory T-cell polarization and activate the inflammasome complex, while TET2 downregulation leads to endothelial cell autophagy and inflammatory factor upregulation. As a result, in patients with TET2 and DNMT3A-related CHIP, the inflammasome hyperactivation represents a potential cause of CADs. CHIP also occurs in patients with large and small vessel vasculitis, while ADs are more frequently associated with MPNs. In these diseases, monocytes and neutrophils play a key role in the formation of neutrophil extracellular trap (NET) as well as anti-endothelial cell antibodies, resulting in a final procoagulant effect. ADs, such as systemic lupus erythematosus, psoriasis, and arthritis, are also characterized by an overexpression of the Rho-associated coiled-coil containing protein kinase 2 (ROCK2), a serine/threonine kinase that can hyperactivate the JAK-STAT pathway. Interestingly, hyperactivation of ROCK2 has also been observed in myeloid malignancies, where it promotes the growth and survival of leukemic cells. In summary, the presence of CHIP, with or without neoplasia, can be associated with autoimmune manifestations and thrombosis. In the presence of these manifestations, it is necessary to consider a "disease-modifying therapy" that may either reduce the clonal burden or inhibit the clonally activated JAK pathway.
Collapse
Affiliation(s)
- Giovanni Fulvio
- Department of Clinical and Experimental Medicine, Rheumatology, University of Pisa, Pisa, Italy
- Department of Clinical and Translational Science, University of Pisa, Pisa, Italy
| | - Chiara Baldini
- Department of Clinical and Experimental Medicine, Rheumatology, University of Pisa, Pisa, Italy
| | - Marta Mosca
- Department of Clinical and Experimental Medicine, Rheumatology, University of Pisa, Pisa, Italy
| | - Antonello di Paolo
- Department of Clinical and Experimental Medicine, Clinical Pharmacology, University of Pisa, Pisa, Italy
| | - Guido Bocci
- Department of Clinical and Experimental Medicine, Clinical Pharmacology, University of Pisa, Pisa, Italy
| | - Giuseppe Alberto Palumbo
- Department of Medical, Surgical Sciences and Advanced Technologies “G.F. Ingrassia” Hematology, University of Catania, Catania, Italy
| | - Emma Cacciola
- Department of Medical, Surgical Sciences and Advanced Technologies “G.F. Ingrassia” Hemostasis, University of Catania, Catania, Italy
| | - Paola Migliorini
- Department of Clinical and Experimental Medicine, Clinical Immunology, University of Pisa, Pisa, Italy
| | - Rossella Cacciola
- Department of Clinical and Experimental Medicine, Hemostasis, University of Catania, Catania, Italy
| | - Sara Galimberti
- Department of Clinical and Experimental Medicine, Hematology, University of Pisa, Pisa, Italy
| |
Collapse
|
80
|
Wildschut MHE, Mena J, Dördelmann C, van Oostrum M, Hale BD, Settelmeier J, Festl Y, Lysenko V, Schürch PM, Ring A, Severin Y, Bader MS, Pedrioli PGA, Goetze S, van Drogen A, Balabanov S, Skoda RC, Lopes M, Wollscheid B, Theocharides APA, Snijder B. Proteogenetic drug response profiling elucidates targetable vulnerabilities of myelofibrosis. Nat Commun 2023; 14:6414. [PMID: 37828014 PMCID: PMC10570306 DOI: 10.1038/s41467-023-42101-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 09/25/2023] [Indexed: 10/14/2023] Open
Abstract
Myelofibrosis is a hematopoietic stem cell disorder belonging to the myeloproliferative neoplasms. Myelofibrosis patients frequently carry driver mutations in either JAK2 or Calreticulin (CALR) and have limited therapeutic options. Here, we integrate ex vivo drug response and proteotype analyses across myelofibrosis patient cohorts to discover targetable vulnerabilities and associated therapeutic strategies. Drug sensitivities of mutated and progenitor cells were measured in patient blood using high-content imaging and single-cell deep learning-based analyses. Integration with matched molecular profiling revealed three targetable vulnerabilities. First, CALR mutations drive BET and HDAC inhibitor sensitivity, particularly in the absence of high Ras pathway protein levels. Second, an MCM complex-high proliferative signature corresponds to advanced disease and sensitivity to drugs targeting pro-survival signaling and DNA replication. Third, homozygous CALR mutations result in high endoplasmic reticulum (ER) stress, responding to ER stressors and unfolded protein response inhibition. Overall, our integrated analyses provide a molecularly motivated roadmap for individualized myelofibrosis patient treatment.
Collapse
Affiliation(s)
- Mattheus H E Wildschut
- Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, Zurich, Switzerland
- Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
- Department of Medical Oncology and Hematology, Division of Hematology, University Hospital Zurich, Zurich, Switzerland
| | - Julien Mena
- Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Cyril Dördelmann
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland
| | - Marc van Oostrum
- Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Benjamin D Hale
- Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Jens Settelmeier
- Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Yasmin Festl
- Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Veronika Lysenko
- Department of Medical Oncology and Hematology, Division of Hematology, University Hospital Zurich, Zurich, Switzerland
| | - Patrick M Schürch
- Department of Medical Oncology and Hematology, Division of Hematology, University Hospital Zurich, Zurich, Switzerland
| | - Alexander Ring
- Department of Medical Oncology and Hematology, Division of Hematology, University Hospital Zurich, Zurich, Switzerland
| | - Yannik Severin
- Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Michael S Bader
- Department of Biomedicine, Experimental Hematology, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Patrick G A Pedrioli
- Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
- ETH PHRT Swiss Multi-Omics Center (SMOC), Zurich, Switzerland
| | - Sandra Goetze
- Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
- ETH PHRT Swiss Multi-Omics Center (SMOC), Zurich, Switzerland
| | - Audrey van Drogen
- Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
- ETH PHRT Swiss Multi-Omics Center (SMOC), Zurich, Switzerland
| | - Stefan Balabanov
- Department of Medical Oncology and Hematology, Division of Hematology, University Hospital Zurich, Zurich, Switzerland
| | - Radek C Skoda
- Department of Biomedicine, Experimental Hematology, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Massimo Lopes
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland
| | - Bernd Wollscheid
- Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland.
- Swiss Institute of Bioinformatics, Lausanne, Switzerland.
| | - Alexandre P A Theocharides
- Department of Medical Oncology and Hematology, Division of Hematology, University Hospital Zurich, Zurich, Switzerland.
| | - Berend Snijder
- Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, Zurich, Switzerland.
- Swiss Institute of Bioinformatics, Lausanne, Switzerland.
| |
Collapse
|
81
|
Seetharam SM, Liu Y, Wu J, Fechter L, Murugesan K, Maecker H, Gotlib J, Zehnder J, Paulmurugan R, Krishnan A. Enkurin: a novel marker for myeloproliferative neoplasms from platelet, megakaryocyte, and whole blood specimens. Blood Adv 2023; 7:5433-5445. [PMID: 37315179 PMCID: PMC10509670 DOI: 10.1182/bloodadvances.2022008939] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 05/10/2023] [Accepted: 05/30/2023] [Indexed: 06/16/2023] Open
Abstract
Impaired protein homeostasis, though well established in age-related disorders, has been recently linked with the pathogenesis of myeloproliferative neoplasms (MPNs). However, little is known about MPN-specific modulators of proteostasis, thus impeding our ability for increased mechanistic understanding and discovery of additional therapeutic targets. Loss of proteostasis, in itself, is traced to dysregulated mechanisms in protein folding and intracellular calcium signaling at the endoplasmic reticulum (ER). Here, using ex vivo and in vitro systems (including CD34+ cultures from patient bone marrow and healthy cord/peripheral blood specimens), we extend our prior data from platelet RNA sequencing in patients with MPN and discover select proteostasis-associated markers at RNA and/or protein levels in each of platelet, parent megakaryocyte, and whole blood specimens. Importantly, we identify a novel role in MPNs for enkurin (ENKUR), a calcium mediator protein originally implicated only in spermatogenesis. Our data reveal consistent ENKUR downregulation at both RNA and protein levels across specimens from patients with MPN and experimental models (including upon treatment with thapsigargin, an agent that causes protein misfolding in the ER by selective loss of calcium), with a concomitant upregulation of a cell cycle marker, CDC20. Silencing of ENKUR using short hairpin RNA in CD34+-derived megakaryocytes further confirms this association with CDC20 at both RNA and protein levels and indicates a likely role for the PI3K/Akt pathway. Together, our work sheds light on enkurin as a novel marker of MPN pathogenesis and indicates further mechanistic investigation into a role for dysregulated calcium homeostasis and ER and protein folding stress in MPN transformation.
Collapse
Affiliation(s)
| | - Yi Liu
- Department of Radiology, Stanford University, Stanford, CA
| | - Jason Wu
- High-Throughput Bioscience Center and Stanford Genomics, Stanford University School of Medicine, Stanford, CA
| | - Lenn Fechter
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA
| | | | - Holden Maecker
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA
- Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA
| | - Jason Gotlib
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA
- Department of Medicine, Stanford University School of Medicine, Stanford, CA
| | - James Zehnder
- Department of Pathology, Stanford University, Stanford, CA
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA
- Department of Medicine, Stanford University School of Medicine, Stanford, CA
| | | | - Anandi Krishnan
- Department of Pathology, Stanford University, Stanford, CA
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA
| |
Collapse
|
82
|
Reynolds SB, Pettit K, Kandarpa M, Talpaz M, Li Q. Exploring the Molecular Landscape of Myelofibrosis, with a Focus on Ras and Mitogen-Activated Protein (MAP) Kinase Signaling. Cancers (Basel) 2023; 15:4654. [PMID: 37760623 PMCID: PMC10527328 DOI: 10.3390/cancers15184654] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/12/2023] [Accepted: 09/16/2023] [Indexed: 09/29/2023] Open
Abstract
Myelofibrosis (MF) is a clonal myeloproliferative neoplasm (MPN) characterized clinically by cytopenias, fatigue, and splenomegaly stemming from extramedullary hematopoiesis. MF commonly arises from mutations in JAK2, MPL, and CALR, which manifests as hyperactive Jak/Stat signaling. Triple-negative MF is diagnosed in the absence of JAK2, MPL, and CALR but when clinical, morphologic criteria are met and other mutation(s) is/are present, including ASXL1, EZH2, and SRSF2. While the clinical and classic molecular features of MF are well-established, emerging evidence indicates that additional mutations, specifically within the Ras/MAP Kinase signaling pathway, are present and may play important role in disease pathogenesis and treatment response. KRAS and NRAS mutations alone are reportedly present in up to 15 and 14% of patients with MF (respectively), and other mutations predicted to activate Ras signaling, such as CBL, NF1, BRAF, and PTPN11, collectively exist in as much as 21% of patients. Investigations into the prevalence of RAS and related pathway mutations in MF and the mechanisms by which they contribute to its pathogenesis are critical in better understanding this condition and ultimately in the identification of novel therapeutic targets.
Collapse
Affiliation(s)
- Samuel B. Reynolds
- Division of Hematology/Oncology, Department of Medicine, University of Michigan, Ann Arbor, MI 48109, USA; (K.P.); (M.T.)
| | - Kristen Pettit
- Division of Hematology/Oncology, Department of Medicine, University of Michigan, Ann Arbor, MI 48109, USA; (K.P.); (M.T.)
| | - Malathi Kandarpa
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA;
| | - Moshe Talpaz
- Division of Hematology/Oncology, Department of Medicine, University of Michigan, Ann Arbor, MI 48109, USA; (K.P.); (M.T.)
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA;
| | - Qing Li
- Division of Hematology/Oncology, Department of Medicine, University of Michigan, Ann Arbor, MI 48109, USA; (K.P.); (M.T.)
| |
Collapse
|
83
|
Tsutsumi N, Masoumi Z, James SC, Tucker JA, Winkelmann H, Grey W, Picton LK, Moss L, Wilson SC, Caveney NA, Jude KM, Gati C, Piehler J, Hitchcock IS, Garcia KC. Structure of the thrombopoietin-MPL receptor complex is a blueprint for biasing hematopoiesis. Cell 2023; 186:4189-4203.e22. [PMID: 37633268 PMCID: PMC10528194 DOI: 10.1016/j.cell.2023.07.037] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 06/26/2023] [Accepted: 07/28/2023] [Indexed: 08/28/2023]
Abstract
Thrombopoietin (THPO or TPO) is an essential cytokine for hematopoietic stem cell (HSC) maintenance and megakaryocyte differentiation. Here, we report the 3.4 Å resolution cryoelectron microscopy structure of the extracellular TPO-TPO receptor (TpoR or MPL) signaling complex, revealing the basis for homodimeric MPL activation and providing a structural rationalization for genetic loss-of-function thrombocytopenia mutations. The structure guided the engineering of TPO variants (TPOmod) with a spectrum of signaling activities, from neutral antagonists to partial- and super-agonists. Partial agonist TPOmod decoupled JAK/STAT from ERK/AKT/CREB activation, driving a bias for megakaryopoiesis and platelet production without causing significant HSC expansion in mice and showing superior maintenance of human HSCs in vitro. These data demonstrate the functional uncoupling of the two primary roles of TPO, highlighting the potential utility of TPOmod in hematology research and clinical HSC transplantation.
Collapse
Affiliation(s)
- Naotaka Tsutsumi
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8530, Japan.
| | - Zahra Masoumi
- York Biomedical Research Institute, Department of Biology, University of York, Heslington, York YO10 5DD, UK
| | - Sophie C James
- York Biomedical Research Institute, Department of Biology, University of York, Heslington, York YO10 5DD, UK
| | - Julie A Tucker
- York Biomedical Research Institute, Department of Biology, University of York, Heslington, York YO10 5DD, UK
| | - Hauke Winkelmann
- Department of Biology/Chemistry and Center of Cellular Nanoanalytics, Osnabrück University, 49076 Osnabrück, Germany
| | - William Grey
- York Biomedical Research Institute, Department of Biology, University of York, Heslington, York YO10 5DD, UK
| | - Lora K Picton
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Lucie Moss
- York Biomedical Research Institute, Department of Biology, University of York, Heslington, York YO10 5DD, UK
| | - Steven C Wilson
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Nathanael A Caveney
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Kevin M Jude
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Cornelius Gati
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; Biosciences Division, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Jacob Piehler
- Department of Biology/Chemistry and Center of Cellular Nanoanalytics, Osnabrück University, 49076 Osnabrück, Germany
| | - Ian S Hitchcock
- York Biomedical Research Institute, Department of Biology, University of York, Heslington, York YO10 5DD, UK.
| | - K Christopher Garcia
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
84
|
Eickhardt-Dalbøge CS, Ingham AC, Nielsen HV, Fuursted K, Stensvold CR, Andersen LO, Larsen MK, Kjær L, Christensen SF, Knudsen TA, Skov V, Ellervik C, Olsen LR, Hasselbalch HC, Elmer Christensen JJ, Nielsen XC. Pronounced gut microbiota signatures in patients with JAK2V617F-positive essential thrombocythemia. Microbiol Spectr 2023; 11:e0066223. [PMID: 37695126 PMCID: PMC10581245 DOI: 10.1128/spectrum.00662-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 07/18/2023] [Indexed: 09/12/2023] Open
Abstract
Essential thrombocythemia (ET) is part of the Philadelphia chromosome-negative myeloproliferative neoplasms. It is characterized by an increased risk of thromboembolic events and also to a certain degree hypermetabolic symptoms. The gut microbiota is an important initiator of hematopoiesis and regulation of the immune system, but in patients with ET, where inflammation is a hallmark of the disease, it is vastly unexplored. In this study, we compared the gut microbiota via amplicon-based 16S rRNA gene sequencing of the V3-V4 region in 54 patients with ET according to mutation status Janus-kinase 2 (JAK2V617F)-positive vs JAK2V617F-negative patients with ET, and in 42 healthy controls (HCs). Gut microbiota richness was higher in patients with ET (median-observed richness, 283.5; range, 75-535) compared with HCs (median-observed richness, 191.5; range, 111-300; P < 0.001). Patients with ET had a different overall bacterial composition (beta diversity) than HCs (analysis of similarities [ANOSIM]; R = 0.063, P = 0.004). Patients with ET had a significantly lower relative abundance of taxa within the Firmicutes phylum compared with HCs (51% vs 59%, P = 0.03), and within that phylum, patients with ET also had a lower relative abundance of the genus Faecalibacterium (8% vs 15%, P < 0.001), an important immunoregulative bacterium. The microbiota signatures were more pronounced in patients harboring the JAK2V617F mutation, and highly similar to patients with polycythemia vera as previously described. These findings suggest that patients with ET may have an altered immune regulation; however, whether this dysregulation is induced in part by, or is itself inducing, an altered gut microbiota remains to be investigated. IMPORTANCE Essential thrombocythemia (ET) is a cancer characterized by thrombocyte overproduction. Inflammation has been shown to be vital in both the initiation and progression of other myeloproliferative neoplasms, and it is well known that the gut microbiota is important in the regulation of our immune system. However, the gut microbiota of patients with ET remains uninvestigated. In this study, we characterized the gut microbiota of patients with ET compared with healthy controls and thereby provide new insights into the field. We show that the gut microbiota of patients with ET differs significantly from that of healthy controls and the patients with ET have a lower relative abundance of important immunoregulative bacteria. Furthermore, we demonstrate that patients with JAK2V617F-positive ET have pronounced gut microbiota signatures compared with JAK2V617F-negative patients. Thereby confirming the importance of the underlying mutation, the immune response as well as the composition of the microbiota.
Collapse
Affiliation(s)
- Christina Schjellerup Eickhardt-Dalbøge
- Regional Department of Clinical Microbiology, Zealand University Hospital, Koege, Denmark
- Department of Hematology, Zealand University Hospital, Roskilde, Denmark
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark
| | - Anna Cäcilia Ingham
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark
| | - Henrik V. Nielsen
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark
| | - Kurt Fuursted
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark
| | | | - Lee O'Brien Andersen
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark
| | - Morten Kranker Larsen
- Department of Hematology, Zealand University Hospital, Roskilde, Denmark
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lasse Kjær
- Department of Hematology, Zealand University Hospital, Roskilde, Denmark
| | | | - Trine Alma Knudsen
- Department of Hematology, Zealand University Hospital, Roskilde, Denmark
| | - Vibe Skov
- Department of Hematology, Zealand University Hospital, Roskilde, Denmark
| | - Christina Ellervik
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Laboratory Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Department of Data and Data Support, Region Zealand, Sorø, Denmark
| | - Lars Rønn Olsen
- Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
| | - Hans Carl Hasselbalch
- Department of Hematology, Zealand University Hospital, Roskilde, Denmark
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens Jørgen Elmer Christensen
- Regional Department of Clinical Microbiology, Zealand University Hospital, Koege, Denmark
- Institute of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Xiaohui Chen Nielsen
- Regional Department of Clinical Microbiology, Zealand University Hospital, Koege, Denmark
| |
Collapse
|
85
|
Mroczkowska-Bękarciak A, Wróbel T. BCR::ABL1-negative myeloproliferative neoplasms in the era of next-generation sequencing. Front Genet 2023; 14:1241912. [PMID: 37745842 PMCID: PMC10514516 DOI: 10.3389/fgene.2023.1241912] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 08/22/2023] [Indexed: 09/26/2023] Open
Abstract
The classical BCR::ABL1-negative myeloproliferative neoplasms such as polycythemia vera (PV), essential thrombocythemia (ET), and myelofibrosis (MF) are clonal diseases with the presence of characteristic "driver mutations" in one of the genes: JAK2, CALR, or MPL. The search for mutations in these three genes is required for the diagnosis of MPNs. Nevertheless, the progress that has been made in the field of molecular genetics has opened a new era in medicine. The search for additional mutations in MPNs is helpful in assessing the risk stratification, disease progression, transformation to acute myeloid leukemia (AML), or choosing the right treatment. In some cases, advanced technologies are needed to find a clonal marker of the disease and establish a diagnosis. This review focuses on how the use of new technologies like next-generation sequencing (NGS) helps in the diagnosis of BCR::ABL1-negative myeloproliferative neoplasms.
Collapse
|
86
|
Duminuco A, Vetro C, Giallongo C, Palumbo GA. The pharmacotherapeutic management of patients with myelofibrosis: looking beyond JAK inhibitors. Expert Opin Pharmacother 2023; 24:1449-1461. [PMID: 37341682 DOI: 10.1080/14656566.2023.2228695] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 06/20/2023] [Indexed: 06/22/2023]
Abstract
INTRODUCTION The approach to myelofibrosis (MF) has been revolutionized in recent years, overcoming the traditional therapies, often not very effective. Janus kinase inhibitors (JAKi - from ruxolitinib up to momelotinib) were the first class of drugs with considerable results. AREAS COVERED Ongoing, new molecules are being tested that promise to give hope even to those patients not eligible for bone marrow transplants who become intolerant or are refractory to JAKi, for which therapeutic hopes are currently limited. Telomerase, murine double minute 2 (MDM2), phosphatidylinositol 3-kinase δ (PI3Kδ), BCL-2/xL, and bromodomain and extra-terminal motif (BET) inhibitors are the drugs with promising results in clinical trials and close to closure with consequent placing on the market, finally allowing JAK to look beyond. The novelty of the MF field was searched in the PubMed database, and the recently completed/ongoing trials are extrapolated from the ClinicalTrial website. EXPERT OPINION From this point of view, the use of new molecules widely described in this review, probably in association with JAKi, will represent the future treatment of choice in MF, leaving, in any case, the potential new approaches actually in an early stage of development, such as the use of immunotherapy in targeting CALR, which is coming soon.
Collapse
Affiliation(s)
- Andrea Duminuco
- Hematology with BMT Unit, A.O.U. "G. Rodolico-San Marco", Catania, Italy
| | - Calogero Vetro
- Hematology with BMT Unit, A.O.U. "G. Rodolico-San Marco", Catania, Italy
| | - Cesarina Giallongo
- Dipartimento di Scienze Mediche Chirurgiche E Tecnologie Avanzate "G.F. Ingrassia", University of Catania, Catania, Italy
| | - Giuseppe Alberto Palumbo
- Hematology with BMT Unit, A.O.U. "G. Rodolico-San Marco", Catania, Italy
- Dipartimento di Scienze Mediche Chirurgiche E Tecnologie Avanzate "G.F. Ingrassia", University of Catania, Catania, Italy
| |
Collapse
|
87
|
Zhang M, Xiao J, Liu J, Bai X, Zeng X, Zhang Z, Liu F. Calreticulin as a marker and therapeutic target for cancer. Clin Exp Med 2023; 23:1393-1404. [PMID: 36335525 DOI: 10.1007/s10238-022-00937-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 10/27/2022] [Indexed: 11/07/2022]
Abstract
Calreticulin (CRT) is a multifunctional protein found within the endoplasmic reticulum (ER). In addition, CRT participates in the formation and development of tumors and promotes the proliferation and migration of tumor cells. When a malignant tumor occurs in the human body, cancer cells that die from immunogenic cell death (ICD) expose CRT on their surface, and CRT that is transferred to the cell surface represents an "eat me" signal, which promotes dendritic cells to phagocytose the tumor cells, thereby increasing the sensitivity of tumors to anticancer immunotherapy. Expression of CRT in tumor tissues is higher than in normal tissues and is associated with disease progression in many malignant tumors. Thus, the dysfunctional production of CRT can promote tumorigenesis because it disturbs not only the balance of healthy cells but also the body's immune surveillance. CRT may be a diagnostic marker and a therapeutic target for cancer, which is discussed extensively in this review.
Collapse
Affiliation(s)
- Meilan Zhang
- Department of Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Juan Xiao
- Department of Otolaryngology, Hengyang Medical School, The Second Affiliated Hospital, University of South China, Hengyang, 421001, Hunan, China
| | - Jiangrong Liu
- Department of Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Xue Bai
- Department of Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Xuemei Zeng
- Department of Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Zhiwei Zhang
- Department of Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
| | - Feng Liu
- Department of Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
| |
Collapse
|
88
|
Chen X, Lu Q, Zhou H, Liu J, Nadorp B, Lasry A, Sun Z, Lai B, Rona G, Zhang J, Cammer M, Wang K, Al-Santli W, Ciantra Z, Guo Q, You J, Sengupta D, Boukhris A, Zhang H, Liu C, Cresswell P, Dahia PLM, Pagano M, Aifantis I, Wang J. A membrane-associated MHC-I inhibitory axis for cancer immune evasion. Cell 2023; 186:3903-3920.e21. [PMID: 37557169 PMCID: PMC10961051 DOI: 10.1016/j.cell.2023.07.016] [Citation(s) in RCA: 82] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 05/30/2023] [Accepted: 07/11/2023] [Indexed: 08/11/2023]
Abstract
Immune-checkpoint blockade has revolutionized cancer treatment, but some cancers, such as acute myeloid leukemia (AML), do not respond or develop resistance. A potential mode of resistance is immune evasion of T cell immunity involving aberrant major histocompatibility complex class I (MHC-I) antigen presentation (AP). To map such mechanisms of resistance, we identified key MHC-I regulators using specific peptide-MHC-I-guided CRISPR-Cas9 screens in AML. The top-ranked negative regulators were surface protein sushi domain containing 6 (SUSD6), transmembrane protein 127 (TMEM127), and the E3 ubiquitin ligase WWP2. SUSD6 is abundantly expressed in AML and multiple solid cancers, and its ablation enhanced MHC-I AP and reduced tumor growth in a CD8+ T cell-dependent manner. Mechanistically, SUSD6 forms a trimolecular complex with TMEM127 and MHC-I, which recruits WWP2 for MHC-I ubiquitination and lysosomal degradation. Together with the SUSD6/TMEM127/WWP2 gene signature, which negatively correlates with cancer survival, our findings define a membrane-associated MHC-I inhibitory axis as a potential therapeutic target for both leukemia and solid cancers.
Collapse
Affiliation(s)
- Xufeng Chen
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA; The Laura and Isaac Perlmutter Cancer Center, New York University Langone Health, New York, NY 10016, USA
| | - Qiao Lu
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA; The Laura and Isaac Perlmutter Cancer Center, New York University Langone Health, New York, NY 10016, USA
| | - Hua Zhou
- Applied Bioinformatics Laboratories, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Jia Liu
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA; The Laura and Isaac Perlmutter Cancer Center, New York University Langone Health, New York, NY 10016, USA
| | - Bettina Nadorp
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA; The Laura and Isaac Perlmutter Cancer Center, New York University Langone Health, New York, NY 10016, USA
| | - Audrey Lasry
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA; The Laura and Isaac Perlmutter Cancer Center, New York University Langone Health, New York, NY 10016, USA
| | - Zhengxi Sun
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA; The Laura and Isaac Perlmutter Cancer Center, New York University Langone Health, New York, NY 10016, USA
| | - Baoling Lai
- Department of Neuroscience and Physiology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Gergely Rona
- The Laura and Isaac Perlmutter Cancer Center, New York University Langone Health, New York, NY 10016, USA; Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA; Howard Hughes Medical Institute, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Jiangyan Zhang
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA; The Laura and Isaac Perlmutter Cancer Center, New York University Langone Health, New York, NY 10016, USA
| | - Michael Cammer
- Microscopy Core, Division of Advanced Research Technologies, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Kun Wang
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA; The Laura and Isaac Perlmutter Cancer Center, New York University Langone Health, New York, NY 10016, USA
| | - Wafa Al-Santli
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA; The Laura and Isaac Perlmutter Cancer Center, New York University Langone Health, New York, NY 10016, USA
| | - Zoe Ciantra
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Qianjin Guo
- Department of Medicine, Division of Hematology and Medical Oncology, Mays Cancer Center, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Jia You
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA; The Laura and Isaac Perlmutter Cancer Center, New York University Langone Health, New York, NY 10016, USA
| | - Debrup Sengupta
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06519, USA
| | - Ahmad Boukhris
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA; The Laura and Isaac Perlmutter Cancer Center, New York University Langone Health, New York, NY 10016, USA
| | | | - Cheng Liu
- Eureka Therapeutics Inc., Emeryville, CA 94608, USA
| | - Peter Cresswell
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06519, USA
| | - Patricia L M Dahia
- Department of Medicine, Division of Hematology and Medical Oncology, Mays Cancer Center, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Michele Pagano
- The Laura and Isaac Perlmutter Cancer Center, New York University Langone Health, New York, NY 10016, USA; Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA; Howard Hughes Medical Institute, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Iannis Aifantis
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA; The Laura and Isaac Perlmutter Cancer Center, New York University Langone Health, New York, NY 10016, USA.
| | - Jun Wang
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA; The Laura and Isaac Perlmutter Cancer Center, New York University Langone Health, New York, NY 10016, USA.
| |
Collapse
|
89
|
Wang Y, Shtylla B, Chou T. Order-of-mutation effects on cancer progression: models for myeloproliferative neoplasm. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.08.16.23294177. [PMID: 37662184 PMCID: PMC10473807 DOI: 10.1101/2023.08.16.23294177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
In some patients with myeloproliferative neoplasms (MPN), two genetic mutations are often found, JAK2 V617F and one in the TET2 gene. Whether or not one mutation is present will influence how the other subsequent mutation affects the regulation of gene expression. When both mutations are present, the order of their occurrence has been shown to influence disease progression and prognosis. We propose a nonlinear ordinary differential equation (ODE), Moran process, and Markov chain models to explain the non-additive and non-commutative mutation effects on recent clinical observations of gene expression patterns, proportions of cells with different mutations, and ages at diagnosis of MPN. These observations consistently shape our modeling framework. Our key proposal is that bistability in gene expression provides a natural explanation for many observed order-of-mutation effects. We also propose potential experimental measurements that can be used to confirm or refute predictions of our models.
Collapse
Affiliation(s)
- Yue Wang
- Dept. of Computational Medicine, UCLA, Los Angeles, CA 90095
- Irving Institute for Cancer Dynamics and Department of Statistics, Columbia University, New York, NY 10027
| | - Blerta Shtylla
- Mathematics Department, Pomona College, Claremont, CA, 91711
- Quantitative Systems Pharmacology, Oncology, Pfizer, San Diego, CA 92121
| | - Tom Chou
- Dept. of Computational Medicine, UCLA, Los Angeles, CA 90095
- Dept. of Mathematics, UCLA, Los Angeles, CA 90095
| |
Collapse
|
90
|
Morishita S, Komatsu N. Diagnosis- and Prognosis-Related Gene Alterations in BCR::ABL1-Negative Myeloproliferative Neoplasms. Int J Mol Sci 2023; 24:13008. [PMID: 37629188 PMCID: PMC10455804 DOI: 10.3390/ijms241613008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/15/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023] Open
Abstract
BCR::ABL1-negative myeloproliferative neoplasms (MPNs) are a group of hematopoietic malignancies in which somatic mutations are acquired in hematopoietic stem/progenitor cells, resulting in an abnormal increase in blood cells in peripheral blood and fibrosis in bone marrow. Mutations in JAK2, MPL, and CALR are frequently found in BCR::ABL1-negative MPNs, and detecting typical mutations in these three genes has become essential for the diagnosis of BCR::ABL1-negative MPNs. Furthermore, comprehensive gene mutation and expression analyses performed using massively parallel sequencing have identified gene mutations associated with the prognosis of BCR::ABL1-negative MPNs such as ASXL1, EZH2, IDH1/2, SRSF2, and U2AF1. Furthermore, single-cell analyses have partially elucidated the effect of the order of mutation acquisition on the phenotype of BCR::ABL1-negative MPNs and the mechanism of the pathogenesis of BCR::ABL1-negative MPNs. Recently, specific CREB3L1 overexpression has been identified in megakaryocytes and platelets in BCR::ABL1-negative MPNs, which may be promising for the development of diagnostic applications. In this review, we describe the genetic mutations found in BCR::ABL1-negative MPNs, including the results of analyses conducted by our group.
Collapse
Affiliation(s)
- Soji Morishita
- Development of Therapies against MPNs, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
- Advanced Hematology, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkuo-ku, Tokyo 113-8421, Japan
| | - Norio Komatsu
- Development of Therapies against MPNs, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
- Advanced Hematology, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkuo-ku, Tokyo 113-8421, Japan
- PharmaEssentia Japan, Akasaka Center Building 12 Fl, 1-3-13 Motoakasaka, Minato-ku, Tokyo 107-0051, Japan
| |
Collapse
|
91
|
Wang Y, Shtylla B, Chou T. Order-of-mutation effects on cancer progression: models for myeloproliferative neoplasm. ARXIV 2023:arXiv:2308.09941v1. [PMID: 37645049 PMCID: PMC10462171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
In some patients with myeloproliferative neoplasms (MPN), two genetic mutations are often found, JAK2 V617F and one in the TET2 gene. Whether or not one mutation is present will influence how the other subsequent mutation affects the regulation of gene expression. When both mutations are present, the order of their occurrence has been shown to influence disease progression and prognosis. We propose a nonlinear ordinary differential equation (ODE), Moran process, and Markov chain models to explain the non-additive and non-commutative mutation effects on recent clinical observations of gene expression patterns, proportions of cells with different mutations, and ages at diagnosis of MPN. These observations consistently shape our modeling framework. Our key proposal is that bistability in gene expression provides a natural explanation for many observed order-of-mutation effects. We also propose potential experimental measurements that can be used to confirm or refute predictions of our models.
Collapse
Affiliation(s)
- Yue Wang
- Dept. of Computational Medicine, UCLA, Los Angeles, CA 90095
- Irving Institute for Cancer Dynamics and Department of Statistics, Columbia University, New York, NY 10027
| | - Blerta Shtylla
- Mathematics Department, Pomona College, Claremont, CA, 91711
- Quantitative Systems Pharmacology, Oncology, Pfizer, San Diego, CA 92121
| | - Tom Chou
- Dept. of Computational Medicine, UCLA, Los Angeles, CA 90095
- Dept. of Mathematics, UCLA, Los Angeles, CA 90095
| |
Collapse
|
92
|
Holmström MO, Andersen M, Traynor S, Ahmad SM, Lisle TL, Handlos Grauslund J, Skov V, Kjær L, Ottesen JT, Gjerstorff MF, Hasselbalch HC, Andersen MH. Therapeutic cancer vaccination against mutant calreticulin in myeloproliferative neoplasms induces expansion of specific T cells in the periphery but specific T cells fail to enrich in the bone marrow. Front Immunol 2023; 14:1240678. [PMID: 37662956 PMCID: PMC10470021 DOI: 10.3389/fimmu.2023.1240678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 07/12/2023] [Indexed: 09/05/2023] Open
Abstract
Background Therapeutic cancer vaccination against mutant calreticulin (CALR) in patients with CALR-mutant (CALRmut) myeloproliferative neoplasms (MPN) induces strong T-cell responses against mutant CALR yet fails to demonstrate clinical activity. Infiltration of tumor specific T cells into the tumor microenvironment is needed to attain a clinical response to therapeutic cancer vaccination. Aim Determine if CALRmut specific T cells isolated from vaccinated patients enrich in the bone marrow upon completion of vaccination and explore possible explanations for the lack of enrichment. Methods CALRmut specific T cells from four of ten vaccinated patients were expanded, enriched, and analyzed by T-cell receptor sequencing (TCRSeq). The TCRs identified were used as fingerprints of CALRmut specific T cells. Bone marrow aspirations from the four patients were acquired at baseline and at the end of trial. T cells were enriched from the bone marrow aspirations and analyzed by TCRSeq to identify the presence and fraction of CALRmut specific T cells at the two different time points. In silico calculations were performed to calculate the ratio between transformed cells and effector cells in patients with CALRmut MPN. Results The fraction of CALRmut specific T cells in the bone marrow did not increase upon completion of the vaccination trial. In general, the T cell repertoire in the bone marrow remains relatively constant through the vaccination trial. The enriched and expanded CALRmut specific T cells recognize peripheral blood autologous CALRmut cells. In silico analyses demonstrate a high imbalance in the fraction of CALRmut cells and CALRmut specific effector T-cells in peripheral blood. Conclusion CALRmut specific T cells do not enrich in the bone marrow after therapeutic cancer peptide vaccination against mutant CALR. The specific T cells recognize autologous peripheral blood derived CALRmut cells. In silico analyses demonstrate a high imbalance between the number of transformed cells and CALRmut specific effector T-cells in the periphery. We suggest that the high burden of transformed cells in the periphery compared to the number of effector cells could impact the ability of specific T cells to enrich in the bone marrow.
Collapse
Affiliation(s)
- Morten Orebo Holmström
- National Center for Cancer Immune Therapy, Department of Oncology, Herlev University Hospital, Herlev, Denmark
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Morten Andersen
- Centre for Mathematical Modeling – Human Health and Disease, IMFUFA, Department of Science and Environment, Roskilde University, Roskilde, Denmark
| | - Sofie Traynor
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Shamaila Munir Ahmad
- National Center for Cancer Immune Therapy, Department of Oncology, Herlev University Hospital, Herlev, Denmark
| | - Thomas Landkildehus Lisle
- National Center for Cancer Immune Therapy, Department of Oncology, Herlev University Hospital, Herlev, Denmark
| | - Jacob Handlos Grauslund
- National Center for Cancer Immune Therapy, Department of Oncology, Herlev University Hospital, Herlev, Denmark
| | - Vibe Skov
- Department of Hematology, Zealand University Hospital, Roskilde, Denmark
| | - Lasse Kjær
- Department of Hematology, Zealand University Hospital, Roskilde, Denmark
| | - Johnny T. Ottesen
- Centre for Mathematical Modeling – Human Health and Disease, IMFUFA, Department of Science and Environment, Roskilde University, Roskilde, Denmark
| | - Morten Frier Gjerstorff
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
- Department of Oncology, Odense University Hospital, Odense, Denmark
| | | | - Mads Hald Andersen
- National Center for Cancer Immune Therapy, Department of Oncology, Herlev University Hospital, Herlev, Denmark
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
93
|
Tian Y, Qin S, Zhang F, Luo J, He X, Sun Y, Yang T. Discovery of N-(4-(Aminomethyl)phenyl)-5-methylpyrimidin-2-amine Derivatives as Potent and Selective JAK2 Inhibitors. ACS Med Chem Lett 2023; 14:1113-1121. [PMID: 37583815 PMCID: PMC10424325 DOI: 10.1021/acsmedchemlett.3c00251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 07/28/2023] [Indexed: 08/17/2023] Open
Abstract
The JAK2V617F mutation leads to JAK2 autophosphorylation and activation of downstream pathways, eventually resulting in myeloproliferative neoplasms (MPNs). Selective inhibitors showed advantages in terms of side effects; therefore, there is an urgent need to develop novel selective JAK2 inhibitors for treating MPNs. In this study, we described a series of N-(4-(aminomethyl)phenyl)pyrimidin-2-amine derivatives as selective JAK2 inhibitors. Systematic exploration through opening the tetrahydroisoquinoline based on the previous lead compound 13ac led to the discovery of the optimal compound A8. Compound A8 showed excellent potency on JAK2 kinase, with an IC50 value of 5 nM, and inhibited the phosphorylation of JAK2 and its downstream signaling pathway. Moreover, A8 exhibited 38.6-, 54.6-, and 41.2-fold selectivity for JAK1, JAK3, and TYK2, respectively. Compared to the lead compound, A8 demonstrated much better metabolic stabilities, with a bioavailability of 41.1%. These findings suggest that A8 is a relatively selective JAK2 inhibitor, deserving to be developed for treating MPNs.
Collapse
Affiliation(s)
- Yang Tian
- Department
of Otolaryngology Head and Neck Surgery, The Third People’s Hospital of Chengdu, The Affiliated Hospital
of Southwest Jiaotong University, The Second Chengdu Hospital Affiliated
to Chongqing Medical University, Chengdu 610014, China
- Medical
Research Center. The Third People’s Hospital of Chengdu, The
Affiliated Hospital of Southwest Jiaotong University, The Second Chengdu
Hospital Affiliated to Chongqing Medical University, Chengdu, 610014, China
| | - Songhui Qin
- State
Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation
Center of Biotherapy, Chengdu 610041, China
| | - Fang Zhang
- Department
of Otolaryngology Head and Neck Surgery, The Third People’s Hospital of Chengdu, The Affiliated Hospital
of Southwest Jiaotong University, The Second Chengdu Hospital Affiliated
to Chongqing Medical University, Chengdu 610014, China
| | - Jing Luo
- Department
of Otolaryngology Head and Neck Surgery, The Third People’s Hospital of Chengdu, The Affiliated Hospital
of Southwest Jiaotong University, The Second Chengdu Hospital Affiliated
to Chongqing Medical University, Chengdu 610014, China
| | - Xi He
- Department
of Otolaryngology Head and Neck Surgery, The Third People’s Hospital of Chengdu, The Affiliated Hospital
of Southwest Jiaotong University, The Second Chengdu Hospital Affiliated
to Chongqing Medical University, Chengdu 610014, China
| | - Yi Sun
- Department
of Otolaryngology Head and Neck Surgery, The Third People’s Hospital of Chengdu, The Affiliated Hospital
of Southwest Jiaotong University, The Second Chengdu Hospital Affiliated
to Chongqing Medical University, Chengdu 610014, China
| | - Tao Yang
- State
Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation
Center of Biotherapy, Chengdu 610041, China
| |
Collapse
|
94
|
Grockowiak E, Korn C, Rak J, Lysenko V, Hallou A, Panvini FM, Williams M, Fielding C, Fang Z, Khatib-Massalha E, García-García A, Li J, Khorshed RA, González-Antón S, Baxter EJ, Kusumbe A, Wilkins BS, Green A, Simons BD, Harrison CN, Green AR, Lo Celso C, Theocharides APA, Méndez-Ferrer S. Different niches for stem cells carrying the same oncogenic driver affect pathogenesis and therapy response in myeloproliferative neoplasms. NATURE CANCER 2023; 4:1193-1209. [PMID: 37550517 PMCID: PMC10447237 DOI: 10.1038/s43018-023-00607-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 06/27/2023] [Indexed: 08/09/2023]
Abstract
Aging facilitates the expansion of hematopoietic stem cells (HSCs) carrying clonal hematopoiesis-related somatic mutations and the development of myeloid malignancies, such as myeloproliferative neoplasms (MPNs). While cooperating mutations can cause transformation, it is unclear whether distinct bone marrow (BM) HSC-niches can influence the growth and therapy response of HSCs carrying the same oncogenic driver. Here we found different BM niches for HSCs in MPN subtypes. JAK-STAT signaling differentially regulates CDC42-dependent HSC polarity, niche interaction and mutant cell expansion. Asymmetric HSC distribution causes differential BM niche remodeling: sinusoidal dilation in polycythemia vera and endosteal niche expansion in essential thrombocythemia. MPN development accelerates in a prematurely aged BM microenvironment, suggesting that the specialized niche can modulate mutant cell expansion. Finally, dissimilar HSC-niche interactions underpin variable clinical response to JAK inhibitor. Therefore, HSC-niche interactions influence the expansion rate and therapy response of cells carrying the same clonal hematopoiesis oncogenic driver.
Collapse
Affiliation(s)
- Elodie Grockowiak
- National Health Service Blood and Transplant, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, Cambridge, UK
| | - Claudia Korn
- National Health Service Blood and Transplant, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, Cambridge, UK
| | - Justyna Rak
- National Health Service Blood and Transplant, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, Cambridge, UK
| | - Veronika Lysenko
- Department of Medical Oncology and Hematology, University of Zurich and University Hospital Zurich, Zurich, Switzerland
| | - Adrien Hallou
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, Cambridge, UK
- Wellcome Trust-CRUK Gurdon Institute, University of Cambridge, Cambridge, UK
- Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge, UK
- Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of Cambridge, Cambridge, UK
| | - Francesca M Panvini
- National Health Service Blood and Transplant, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, Cambridge, UK
| | - Matthew Williams
- Department of Haematology, University of Cambridge, Cambridge, UK
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, Cambridge, UK
| | - Claire Fielding
- National Health Service Blood and Transplant, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, Cambridge, UK
| | - Zijian Fang
- National Health Service Blood and Transplant, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, Cambridge, UK
| | - Eman Khatib-Massalha
- National Health Service Blood and Transplant, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, Cambridge, UK
| | - Andrés García-García
- National Health Service Blood and Transplant, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, Cambridge, UK
| | - Juan Li
- Department of Haematology, University of Cambridge, Cambridge, UK
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, Cambridge, UK
| | - Reema A Khorshed
- Department of Life Sciences, Sir Alexander Fleming Building, Imperial College London, London, UK
- The Sir Francis Crick Institute, London, UK
| | - Sara González-Antón
- Department of Life Sciences, Sir Alexander Fleming Building, Imperial College London, London, UK
- The Sir Francis Crick Institute, London, UK
| | - E Joanna Baxter
- National Health Service Blood and Transplant, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - Anjali Kusumbe
- The Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | | | - Anna Green
- Guy's and Saint Thomas' NHS Foundation Trust, London, UK
| | - Benjamin D Simons
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, Cambridge, UK
- Wellcome Trust-CRUK Gurdon Institute, University of Cambridge, Cambridge, UK
- Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge, UK
- Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of Cambridge, Cambridge, UK
| | | | - Anthony R Green
- Department of Haematology, University of Cambridge, Cambridge, UK
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, Cambridge, UK
| | - Cristina Lo Celso
- Department of Life Sciences, Sir Alexander Fleming Building, Imperial College London, London, UK
- The Sir Francis Crick Institute, London, UK
| | - Alexandre P A Theocharides
- Department of Medical Oncology and Hematology, University of Zurich and University Hospital Zurich, Zurich, Switzerland
| | - Simón Méndez-Ferrer
- National Health Service Blood and Transplant, Cambridge, UK.
- Department of Haematology, University of Cambridge, Cambridge, UK.
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, Cambridge, UK.
| |
Collapse
|
95
|
Xu K, Ge Q, Zhang Y, Ouyang G, Yan X. Expression properties, structural features and functional analysis of CALR E381A in MPN patients. Am J Transl Res 2023; 15:4718-4726. [PMID: 37560236 PMCID: PMC10408505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 06/24/2023] [Indexed: 08/11/2023]
Abstract
OBJECTIVE To investigate the expression properties, structural features and function of CALR E381A in myeloproliferative neoplasms (MPN) patients. METHODS In this retrospective study, 435 MPN patients admitted to the Department of Hematology, Ningbo First Hospital from July 2015 to July 2021 were selected as the study subjects. Mutations in CALR exon 9 from genomic DNA samples were identified by PCR, followed by Sanger sequencing. The physicochemical properties of the wild-type calreticulin and the p.E381A variant, and the structural information of the p.E381A variant were analyzed by using the bioinformatics databases. Growth assay of UT-7/mpl cells with CALR E381A was used for the functional analysis of CALR E381A. RESULTS The predominant types of CALR variants were identified as follows: p.L367fs*46 (38.1%), p.K385fs*47 (25.8%) and p.E381A (19.6%). Notably, the frequency of the p.E381A variant (c.1142A >C) in polycythemia vera or essential thrombocythemia was significantly higher than the frequency of that as a single nucleotide polymorphism (SNP) in the East Asian population. Furthermore, CALR E381A coexisted with other genetic variants, of which JAK2 V617F was more common. Bioinformatics analysis confirmed that CALR E381A did not change the physicochemical properties of the calreticulin protein, but did change the electrical charge, energy state and steric hindrance of amino acid residues at site 381. UT-7/mpl cells harboring CALR E381A overexpression did not exhibit altered cell growth, which is distinctly different from the stereotypical frameshift mutation. CONCLUSION CALR E381A is not a driver mutation for the development of MPN but may be a risk SNP implying an inherited predisposition for MPN disease in East Asian populations.
Collapse
Affiliation(s)
- Kaihong Xu
- Department of Hematology, Ningbo First Hospital Ningbo, Zhejiang, China
| | - Qunfang Ge
- Department of Hematology, Ningbo First Hospital Ningbo, Zhejiang, China
| | - Yanli Zhang
- Department of Hematology, Ningbo First Hospital Ningbo, Zhejiang, China
| | - Guifang Ouyang
- Department of Hematology, Ningbo First Hospital Ningbo, Zhejiang, China
| | - Xiao Yan
- Department of Hematology, Ningbo First Hospital Ningbo, Zhejiang, China
| |
Collapse
|
96
|
Greenfield G, McMullin MF. Epigenetics in myeloproliferative neoplasms. Front Oncol 2023; 13:1206965. [PMID: 37519812 PMCID: PMC10373880 DOI: 10.3389/fonc.2023.1206965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 06/27/2023] [Indexed: 08/01/2023] Open
Abstract
The myeloproliferative neoplasms (MPNs) are a group of acquired clonal disorders where mutations drive proliferative disease resulting in increased blood counts and in some cases end-stage myelofibrosis. Epigenetic changes are the reversible modifications to DNA- and RNA-associated proteins that impact gene activity without changing the DNA sequence. This review summarizes mechanisms of epigenetic changes and the nucleosome. The drivers and epigenetic regulators in MPNs are outlined. In MPNs, distinct patterns of epigenetic dysregulation have been seen in chronic and in advanced phases. Methylation age and histone modification are altered in MPNs and by further treatment. The alterations found in methylation age in MPNs and with treatment are discussed, and the changes in histone modification with Janus kinase (JAK) inhibition are evaluated. Currently available therapeutic areas where the epigenome can be altered are outlined. Thus, we review the current knowledge and understanding of epigenetics in MPN and consider further management options. Understanding the epigenome and its alteration in MPNs and epigenetic changes associated with the progression of disease will lead to advances in therapeutic options.
Collapse
|
97
|
Iurlo A, Bucelli C, Cattaneo D. Essential Thrombocythemia in Adolescents and Young Adults: Clinical Aspects, Treatment Options and Unmet Medical Needs. Curr Treat Options Oncol 2023; 24:802-820. [PMID: 37195587 DOI: 10.1007/s11864-023-01099-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/25/2023] [Indexed: 05/18/2023]
Abstract
OPINION STATEMENT Current treatment of essential thrombocythemia (ET) should primarily prevent thrombo-hemorrhagic events, without increasing the rate of fibrotic progression or leukemic evolution, and secondarily control microvascular symptoms. Unlike other classic BCR::ABL1-negative myeloproliferative neoplasms, ET is frequently diagnosed in adolescents and young adults (AYA), defined as individuals aged 15 to 39 years, in up to 20% of patients. However, since the current risk stratification of this disease is based on models, including that of ELN, IPSET-Thrombosis and its revised version, mainly applied to an older patients' population, international guidelines are needed that specifically consider how to evaluate the prognosis of AYAs with ET. Furthermore, although ET is the most frequent MPN among AYA subjects, there is a lack of specific recommendations on how to treat it in this subgroup of patients, as management decisions are typically extrapolated from those for the elderly. Accordingly, since AYAs with ET represent a unique disease subset defined by attenuated genetic risk, more indolent phenotype, and longer survival than their older counterparts, treatment selection requires special attention to specific issues such as the risk of fibrotic/leukemic transformation, carcinogenicity, and fertility. This review article will provide a comprehensive overview of the diagnosis, prognostic stratification, and possible therapeutic approaches for AYA patients with ET, including antiplatelets/anticoagulants and cytoreductive agents, with a focus on pregnancy management in real-life clinical practice.
Collapse
Affiliation(s)
- Alessandra Iurlo
- Hematology Division, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122, Milan, Italy.
| | - Cristina Bucelli
- Hematology Division, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122, Milan, Italy
| | - Daniele Cattaneo
- Hematology Division, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| |
Collapse
|
98
|
Andrews C, Conneally E, Langabeer SE. Molecular diagnostic criteria of myeloproliferative neoplasms. Expert Rev Mol Diagn 2023; 23:1077-1090. [PMID: 37999991 DOI: 10.1080/14737159.2023.2277370] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 10/26/2023] [Indexed: 11/26/2023]
Abstract
INTRODUCTION Myeloproliferative neoplasms (MPN) are a heterogeneous group of clonal hematopoietic stem cell neoplasms characterized by the driver mutations JAK2, CALR, and MPL. These mutations cause constitutive activation of JAK-STAT signaling, which is central to pathogenesis of MPNs. Next-generation sequencing has further expanded the molecular landscape allowing for improved diagnostics, prognostication, and targeted therapy. AREAS COVERED This review aims to address current understanding of the molecular diagnosis of MPN not only through improved awareness of the driver mutations but also the disease modifying mutations. In addition, other genetic factors such as clonal hematopoiesis of indeterminate potential (CHIP), order of mutation, and mutation co-occurrence are discussed and how these factors influence disease initiation and ultimately progression. How this molecular information is incorporated into risk stratification models allowing for earlier intervention and targeted therapy in the future will be addressed further. EXPERT OPINION The genomic landscape of the MPN has evolved in the last 15 years with integration of next-generation sequencing becoming the gold standard of MPN management. Although diagnostics and prognostication have become more personalized, additional studies are required to translate these molecular findings into targeted therapy therefore improving patient outcomes.
Collapse
Affiliation(s)
- Claire Andrews
- Department of Haematology, St. Vincent's University Hospital, Dublin, Ireland
| | | | | |
Collapse
|
99
|
Babarović E, Marijić B, Vranić L, Ban J, Valković T, Hadžisejdić I. A Comparison of Bone Marrow Morphology and Peripheral Blood Findings in Low and High Level JAK2 V617F Allele Burden. Diagnostics (Basel) 2023; 13:2086. [PMID: 37370982 DOI: 10.3390/diagnostics13122086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/11/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
Cases with low level JAK2 V617F mutations are increasingly detected; however, the clinical interpretation of the low allele JAK2 burden may be challenging. The aim of this study is to analyze and compare the bone marrow morphology and peripheral blood findings in the low level JAK2 V617F allele burden (≤15% of JAK2) and high JAK2 V617F mutation burden patients (>15% JAK2). In total, 122 JAK2 V617F positive cases with concomitant bone marrow biopsies and peripheral blood findings were re-evaluated (62 low and 60 high level JAK2 V617F positive). Within the low burden group, normal looking megakaryocytes (p = 0.0005) were more frequently found, compared with those with no atypia (p = 0.0003), their number was more frequently not increased (p = 0.009), and they did not form clusters (p = 0.001). We found statistically significant difference in the number of platelet (p = 0.0003) and hematocrit levels (p = 0.032) when comparing the JAK2 V617F <3% and ≥3% mutation burden. In the high-level burden, the megakaryocytes were more frequently atypical (p = 0.054), and more frequently formed clusters (p = 0.053) with nuclei with maturation defects (p ≤ 0.0001). In conclusion, the JAK2 V617F mutation burden is reflected by morphological changes in the bone marrow and careful follow up of each and every patient with a low JAK2 V617F positivity is mandatory.
Collapse
Affiliation(s)
- Emina Babarović
- Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia
- Laboratory for Molecular Pathology, Clinical Department of Pathology and Cytology, Clinical Hospital Center Rijeka, 51000 Rijeka, Croatia
| | - Blažen Marijić
- Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia
- Department of Otorhinolaryngology and Head and Neck Surgery, Clinical Hospital Center Rijeka, 51000 Rijeka, Croatia
| | - Luka Vranić
- Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia
- Department of Internal Medicine, Clinic for Gastroenterology, Clinical Hospital Center Rijeka, 51000 Rijeka, Croatia
| | - Josipa Ban
- Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia
| | - Toni Valković
- Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia
- Department of Internal Medicine, Clinic for Hematology, Clinical Hospital Center Rijeka, 51000 Rijeka, Croatia
| | - Ita Hadžisejdić
- Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia
- Laboratory for Molecular Pathology, Clinical Department of Pathology and Cytology, Clinical Hospital Center Rijeka, 51000 Rijeka, Croatia
| |
Collapse
|
100
|
Soyfer EM, Fleischman AG. Myeloproliferative neoplasms - blurring the lines between cancer and chronic inflammatory disorder. Front Oncol 2023; 13:1208089. [PMID: 37361587 PMCID: PMC10288874 DOI: 10.3389/fonc.2023.1208089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 05/23/2023] [Indexed: 06/28/2023] Open
Abstract
Myeloproliferative Neoplasm (MPN) is a group of chronic blood cancers that arise from a hematopoietic stem cell (HSC) clone with somatic mutations causing constitutive activation of myeloid cytokine receptor signaling. In addition to elevated blood cell counts, MPN typically presents with increased inflammatory signaling and inflammation symptoms. Therefore, while being a clonally derived neoplasm, MPN has much in common with chronic non-cancerous inflammatory conditions, such as rheumatoid arthritis, lupus, and many more. MPN and chronic inflammatory disease (CID) share similar chronicity, symptoms, dependency on the immune system, environmental triggers, and treatments. Overall, we will highlight the similarities between an MPN and CID. We highlight that while MPN is classified as a cancer, its behavior is more aligned to that of a chronic inflammatory disease. We propose that MPN should inhabit a fluid/spectrum between auto-inflammatory disease and cancer.
Collapse
Affiliation(s)
- Eli M. Soyfer
- School of Medicine, University of California, Irvine, Irvine, CA, United States
| | - Angela G. Fleischman
- School of Medicine, University of California, Irvine, Irvine, CA, United States
- Division of Hematology/Oncology, University of California (UC) Irvine Health, Irvine, CA, United States
- Chao Family Comprehensive Cancer Center, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|