51
|
Hannan MA, Kawate N, Fukami Y, Weerakoon WWPN, Büllesbach EE, Inaba T, Tamada H. Changes of plasma concentrations of insulin-like peptide 3 and testosterone, and their association with scrotal circumference during pubertal development in male goats. Theriogenology 2017; 92:51-56. [PMID: 28237342 DOI: 10.1016/j.theriogenology.2017.01.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 12/05/2016] [Accepted: 01/04/2017] [Indexed: 11/15/2022]
Abstract
Insulin-like peptide 3 (INSL3) has been used as a testis-specific biomarker for puberty in several species, but the secretory profile of INSL3 during pubertal development in small ruminants is unknown. Here we sought to determine the age-related changes in the plasma concentrations of INSL3 and testosterone and their association with scrotal circumference during pubertal development in five male Shiba goats. Blood samples and scrotal circumference measurement were taken every 2 weeks from week 10 to week 52 of each goat's lifespan. Based on the changes in scrotal circumference, data were grouped into early pubertal (10-22 weeks), late pubertal (22-34 weeks) and post-pubertal (34-52 weeks) categories. The plasma concentrations of testosterone and luteinizing hormone (LH) were measured by enzyme-immunoassays (EIAs), and we used a time-resolved fluorescence immunoassay (TRFIA) to measure plasma INSL3. The biweekly sampling showed that the plasma INSL3 secretions maintained a moderate increase during and after puberty, whereas the plasma testosterone secretions fluctuated over the same period. The comparison of the three age categories revealed a significant increase (p < 0.01) in the mean plasma INSL3 concentrations during the late and post-pubertal periods compared to the early pubertal period. There was no difference in the mean plasma testosterone concentrations between the early and late pubertal periods, but a significant increase (p < 0.01) was observed during the post-pubertal period compared to early and late pubertal periods. The mean plasma LH concentrations increased significantly (p < 0.05) from the early pubertal to late pubertal and from the late pubertal to post-pubertal periods. A significant increase (p < 0.05) in the mean scrotal circumference from the early pubertal to late pubertal and from the late pubertal to post-pubertal periods was observed. The R2 value of the best regression curves between scrotal circumference and INSL3 (0.513; p < 0.001) was higher than that between scrotal circumference and testosterone (0.162; p < 0.01) from 10 to 52 weeks of age. In conclusion, in male goats, plasma concentrations of INSL3 increased continuously during and after puberty, whereas testosterone secretions were fluctuated. The scrotal circumference was more highly correlated with the INSL3 concentrations than with testosterone, implying that INSL3 is superior as a biomarker of testicular total Leydig cell volume.
Collapse
Affiliation(s)
- M A Hannan
- Department of Advanced Pathobiology, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Izumisano, Osaka, Japan
| | - N Kawate
- Department of Advanced Pathobiology, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Izumisano, Osaka, Japan.
| | - Y Fukami
- Department of Advanced Pathobiology, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Izumisano, Osaka, Japan
| | - W W P N Weerakoon
- Department of Advanced Pathobiology, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Izumisano, Osaka, Japan
| | - E E Büllesbach
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
| | - T Inaba
- Department of Advanced Pathobiology, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Izumisano, Osaka, Japan
| | - H Tamada
- Department of Advanced Pathobiology, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Izumisano, Osaka, Japan
| |
Collapse
|
52
|
Umehara T, Kawashima I, Kawai T, Hoshino Y, Morohashi KI, Shima Y, Zeng W, Richards JS, Shimada M. Neuregulin 1 Regulates Proliferation of Leydig Cells to Support Spermatogenesis and Sexual Behavior in Adult Mice. Endocrinology 2016; 157:4899-4913. [PMID: 27732090 PMCID: PMC5133346 DOI: 10.1210/en.2016-1478] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Adult Leydig cells are derived from proliferating stem/progenitor Leydig cells in the infant testis and subsequent differentiation to steroidogenic cells in adult mice. Leydig cell proliferation in the infant testis occurs primarily in response to increased levels of LH that induce Leydig cell expression of neuregulin 1 (NRG1). Depletion of NRG1 in Nrg1 mutant mice (Nrg1flox;flox;Cyp19a1Cre mice) dramatically reduces Leydig cell proliferation in the infant testes, leading to a reduction of testis weight, epididymial weight, and serum T in the adult mutant mice. The mutant mice are subfertile due to impaired sexual behavior and abnormal elongation of the spermatogenic cells. These defects were reversed by T treatment of the mutant mice in vivo. Furthermore, NRG1 alone induces the proliferation of Leydig cells in cultures of infant (d 10) testes obtained from mutant mice. Collectively these results show that LH induction of NRG1 directly drives the proliferation of Leydig cells in the infant testis, leading to an obligatory number of adult Leydig cells required for the production of sufficient androgen to support and maintain spermatogenesis and sexual behavior of adult male mice.
Collapse
Affiliation(s)
- Takashi Umehara
- Graduate School of Biosphere Science (T.U., I.K., T.K., Y.H., W.Z., M.S.), Hiroshima University, Higashi-Hiroshima 7398528, Japan; Laboratory of Sex Differentiation (K.M., Y.S.), Graduate School of Medicine, Kyusyu University, Fukuoka 8258585, Japan; College of Animal Science and Technology (W.Z., Y.S.), Northwest A&F University, Yangling, 712100 China; and Department of Molecular and Cellular Biology (J.S.R.), Baylor College of Medicine, Houston, Texas 77030
| | - Ikko Kawashima
- Graduate School of Biosphere Science (T.U., I.K., T.K., Y.H., W.Z., M.S.), Hiroshima University, Higashi-Hiroshima 7398528, Japan; Laboratory of Sex Differentiation (K.M., Y.S.), Graduate School of Medicine, Kyusyu University, Fukuoka 8258585, Japan; College of Animal Science and Technology (W.Z., Y.S.), Northwest A&F University, Yangling, 712100 China; and Department of Molecular and Cellular Biology (J.S.R.), Baylor College of Medicine, Houston, Texas 77030
| | - Tomoko Kawai
- Graduate School of Biosphere Science (T.U., I.K., T.K., Y.H., W.Z., M.S.), Hiroshima University, Higashi-Hiroshima 7398528, Japan; Laboratory of Sex Differentiation (K.M., Y.S.), Graduate School of Medicine, Kyusyu University, Fukuoka 8258585, Japan; College of Animal Science and Technology (W.Z., Y.S.), Northwest A&F University, Yangling, 712100 China; and Department of Molecular and Cellular Biology (J.S.R.), Baylor College of Medicine, Houston, Texas 77030
| | - Yumi Hoshino
- Graduate School of Biosphere Science (T.U., I.K., T.K., Y.H., W.Z., M.S.), Hiroshima University, Higashi-Hiroshima 7398528, Japan; Laboratory of Sex Differentiation (K.M., Y.S.), Graduate School of Medicine, Kyusyu University, Fukuoka 8258585, Japan; College of Animal Science and Technology (W.Z., Y.S.), Northwest A&F University, Yangling, 712100 China; and Department of Molecular and Cellular Biology (J.S.R.), Baylor College of Medicine, Houston, Texas 77030
| | - Ken-Ichirou Morohashi
- Graduate School of Biosphere Science (T.U., I.K., T.K., Y.H., W.Z., M.S.), Hiroshima University, Higashi-Hiroshima 7398528, Japan; Laboratory of Sex Differentiation (K.M., Y.S.), Graduate School of Medicine, Kyusyu University, Fukuoka 8258585, Japan; College of Animal Science and Technology (W.Z., Y.S.), Northwest A&F University, Yangling, 712100 China; and Department of Molecular and Cellular Biology (J.S.R.), Baylor College of Medicine, Houston, Texas 77030
| | - Yuichi Shima
- Graduate School of Biosphere Science (T.U., I.K., T.K., Y.H., W.Z., M.S.), Hiroshima University, Higashi-Hiroshima 7398528, Japan; Laboratory of Sex Differentiation (K.M., Y.S.), Graduate School of Medicine, Kyusyu University, Fukuoka 8258585, Japan; College of Animal Science and Technology (W.Z., Y.S.), Northwest A&F University, Yangling, 712100 China; and Department of Molecular and Cellular Biology (J.S.R.), Baylor College of Medicine, Houston, Texas 77030
| | - Wenxian Zeng
- Graduate School of Biosphere Science (T.U., I.K., T.K., Y.H., W.Z., M.S.), Hiroshima University, Higashi-Hiroshima 7398528, Japan; Laboratory of Sex Differentiation (K.M., Y.S.), Graduate School of Medicine, Kyusyu University, Fukuoka 8258585, Japan; College of Animal Science and Technology (W.Z., Y.S.), Northwest A&F University, Yangling, 712100 China; and Department of Molecular and Cellular Biology (J.S.R.), Baylor College of Medicine, Houston, Texas 77030
| | - JoAnne S Richards
- Graduate School of Biosphere Science (T.U., I.K., T.K., Y.H., W.Z., M.S.), Hiroshima University, Higashi-Hiroshima 7398528, Japan; Laboratory of Sex Differentiation (K.M., Y.S.), Graduate School of Medicine, Kyusyu University, Fukuoka 8258585, Japan; College of Animal Science and Technology (W.Z., Y.S.), Northwest A&F University, Yangling, 712100 China; and Department of Molecular and Cellular Biology (J.S.R.), Baylor College of Medicine, Houston, Texas 77030
| | - Masayuki Shimada
- Graduate School of Biosphere Science (T.U., I.K., T.K., Y.H., W.Z., M.S.), Hiroshima University, Higashi-Hiroshima 7398528, Japan; Laboratory of Sex Differentiation (K.M., Y.S.), Graduate School of Medicine, Kyusyu University, Fukuoka 8258585, Japan; College of Animal Science and Technology (W.Z., Y.S.), Northwest A&F University, Yangling, 712100 China; and Department of Molecular and Cellular Biology (J.S.R.), Baylor College of Medicine, Houston, Texas 77030
| |
Collapse
|
53
|
Singh AK, Naskar S, Saikia B, Vashi Y, Gupta S, Banik S, Tamuli MK, Pande V, Sarma DK, Dhara SK. Effect of testicular tissue lysate on developmental competence of porcine oocytes matured and fertilized in vitro. Reprod Domest Anim 2016; 52:183-188. [PMID: 27862454 DOI: 10.1111/rda.12875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 09/21/2016] [Indexed: 11/29/2022]
Abstract
The objective of the present study was to investigate the effect of testicular tissue lysate (TTL) on developmental competence of germinal vesicle (GV) stage porcine oocytes. Two types of TTL were prepared through repeated freeze-thaw in liquid nitrogen, one from whole testicular tissue (wTTL) and other from either of four different sections of testes, namely just beneath the tunica albuginea (TA), from the transitional area between the seminiferous cord/tubules and the mediastinum testis (TR) and from the intermediate area (parenchymal tissue origin) and CE (cauda epididymis origin). The whole or section-wise TTL treatments were given for 44 hr during in vitro maturation (IVM). Oocyte maturation was done in either of the two media, namely defined (high-performance basic medium for porcine oocyte maturation, commercially available) and serum containing (TCM199). After maturation, oocytes were co-incubated with fresh spermatozoa for 6 hr and then transferred to embryo culture media. Treatment of GV stage oocytes with wTTL (1 mg/ml) increased the cleavage and morula percentage rate (69.23 ± 6.23 and 48.15 ± 6.77, respectively) than that of their control (58.33 ± 8.08 and 32.54 ± 5.53, respectively) in defined media, and in serum-containing media, cleavage and morula percentage rate were almost equal in both treatment (54.56 ± 7.79 and 34.70 ± 6.78, respectively) and control (59.52 ± 8.21 and 38.52 ± 6.54, respectively). However, effect of wTTL was not significant. In case of section-wise TTL supplements, TR section significantly (p < .01) improved cleavage and morula rate (58.43 ± 7.98 and 36.14 ± 6.89, respectively) followed by TA. In conclusion, present study indicates that IVM, in vitro fertilization and in vitro culture of embryo are improved in the presence of TTL, particularly its TR section. Further study is expected to reveal the principal components of TTL which may prove useful for IVM.
Collapse
Affiliation(s)
- A K Singh
- ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India.,Department of Biotechnology, Kumaun University, Nainital, Uttarakhand, India
| | - S Naskar
- ICAR-National Research Centre on Pig, Guwahati, Assam, India.,ICAR-Indian Institute of Agricultural Biotechnology, Ranchi, Jharkhand, India
| | - B Saikia
- ICAR-National Research Centre on Pig, Guwahati, Assam, India
| | - Y Vashi
- ICAR-National Research Centre on Pig, Guwahati, Assam, India
| | - S Gupta
- ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - S Banik
- ICAR-National Research Centre on Pig, Guwahati, Assam, India
| | - M K Tamuli
- ICAR-National Research Centre on Pig, Guwahati, Assam, India
| | - V Pande
- Department of Biotechnology, Kumaun University, Nainital, Uttarakhand, India
| | - D K Sarma
- ICAR-National Research Centre on Pig, Guwahati, Assam, India
| | - S K Dhara
- ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| |
Collapse
|
54
|
Fouquet B, Santulli P, Noel JC, Misrahi M. Ovarian-like differentiation in eutopic and ectopic endometrioses with aberrant FSH receptor, INSL3 and GATA4/6 expression. BBA CLINICAL 2016; 6:143-152. [PMID: 27882303 PMCID: PMC5118588 DOI: 10.1016/j.bbacli.2016.11.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 10/25/2016] [Accepted: 11/02/2016] [Indexed: 11/23/2022]
Abstract
Endometriosis, the hormone-dependent extrauterine dissemination of endometrial tissue outside the uterus, affects 5–15% of women of reproductive age. Pathogenesis remains poorly understood as well as the estrogen production by endometriotic tissue yielding autocrine growth. Estrogens (E2) are normally produced by the ovaries. We investigated whether aberrant “ovarian-like” differentiation occurred in endometriosis. 69 women, with (n = 38) and without (n = 31) histologically proven endometriosis were recruited. Comparative RT-qPCR was performed on 20 genes in paired eutopic and ectopic lesions, together with immunohistochemistry. Functional studies were performed in primary cultures of epithelial endometriotic cells (EEC). A broaden ovarian-like differentiation was found in half eutopic and all ectopic endometriosis with aberrant expression of transcripts and protein for the transcription factors GATA4 and GATA6 triggering ovarian differentiation, for the FSH receptor (FSHR) and the ovarian hormone INSL3. Like in ovaries the FSHR induced aromatase, the key enzyme in E2 production, and vascular factors in EEC. The LH receptor (LHR) was also aberrantly expressed in a subset of ectopic endometriosis (21%) and induced strongly androgen-synthesizing enzymes and INSL3 in EEC, as in ovaries, as well as endometriotic cell growth. The ERK pathway mediates signaling by both hormones. A positive feedback loop occurred through FSHR and LHR-dependent induction of GATA4/6 in EEC, as in ovaries, enhancing the production of the steroidogenic cascade. This work highlights a novel pathophysiological mechanism with a broadly ovarian pattern of differentiation in half eutopic and all ectopic endometriosis. This study provides new tools that might improve the diagnosis of endometriosis in the future. In endometriosis aberrant E2 production raises questions on ovarian differentiation. FSHR and INSL3 upregulation in eutopic/ectopic, and LHR in ectopic lesions are found. Ovarian GATA4/6 are upregulated in eutopic/ectopic lesions and induced by FSHR and LHR. FSHR and LHR induce steroidogenic enzymes and the ERK pathway in endometriotic cells. New pathophysiological mechanism of endometriosis with tools for diagnosis is shown.
Collapse
Key Words
- CYP11A1, Cytochrome P450 Family 11 Subfamily A Member 1
- CYP17, Cytochrome P450 Family 17 Subfamily A Member 1
- CYP19A1, Cytochrome P450 Family 19 Subfamily A Member 1
- EEC, Epithelial Endometriotic Cells
- EGVEGF, Endocrine Gland-derived vascular endothelial growth factor
- Endometriosis
- FSHR
- FSHR, Follicle Stimulating Hormone Receptor
- GATA4/6
- GATA4/6, GATA binding protein 4/6
- INSL3
- INSL3, Insulin Like 3
- LHR
- LHR, Luteinizing Hormone Receptor
- Ovarian- like differentiation
- PTGER, Prostaglandin E Receptor
- PTGS2, Prostaglandin-Endoperoxide Synthase 2
- RT-qPCR, Reverse Transcription quantitative Polymerase Chain Reaction
- SF1, Steroidogenic Factor-1
- VEGF, Vascular Endothelial Growth Factor
Collapse
Affiliation(s)
- Baptiste Fouquet
- Faculté de Médecine Paris Sud, Univ Paris Sud, Université Paris Saclay, Hôpital Bicêtre, Le Kremlin Bicêtre, France
| | - Pietro Santulli
- Faculté de Médecine Paris Sud, Univ Paris Sud, Université Paris Saclay, Hôpital Bicêtre, Le Kremlin Bicêtre, France
| | - Jean-Christophe Noel
- Erasme University Hospital, Department of Pathology, Université Libre de Bruxelles, Belgium
| | - Micheline Misrahi
- Faculté de Médecine Paris Sud, Univ Paris Sud, Université Paris Saclay, Hôpital Bicêtre, Le Kremlin Bicêtre, France
- Corresponding author.
| |
Collapse
|
55
|
Cheon YP. Adenosine Modulates the Oocyte Developmental Competence by Exposing Stages and Synthetic Blocking during In Vitro Maturation. Dev Reprod 2016; 20:149-55. [PMID: 27660830 PMCID: PMC5027220 DOI: 10.12717/dr.2016.20.2.149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Purine metabolism is known factor for nuclear maturation of oocytes through both follicle cells and oocyte itself. However, it is largely unknown the roles of purine metabolism in the oocyte competence for fertilization and early development. In this study, the effects of adenosine in oocyte competence for development were examined using adenosine and its synthetic inhibitors. Adenosine treatment from GV intact stage for 18 hr (fGV) caused of decrease the fertilization rate but of increase the cleavage rate compared from the other stage treatment groups. Hadacidin did not effect on fertilization rate but increased cleavage rate without stage specificity. Adenosine did not block the effects of hadacidin with the exception of fGV group. By the inhibition of purine synthetic pathways the fertilization rate was decreased in the fGV and fGVB groups but increased in the fMII group. Exogenous adenosine caused of decrease fertilization rate in the fGVB group but increase in the fMII group. Cleavage rate was dramatically increased in the adenosine treatment with synthetic inhibitors. It means that the metabolism of purine has stage specific effects on fertilization and cleavage. Exogenous adenosine had only can improve oocyte developmental competence when it treated at GV intact stage. On the other hand, endogenous synthesis in all maturation stage caused of increase the cleavage rate without effects on fertilization. These data suggest that adenosine at GV stage as a paracrine fashion and inhibitions of endogenous adenosine in all stage improve oocyte developmental competence..
Collapse
Affiliation(s)
- Yong-Pil Cheon
- Division of Development and Physiology, Department of Biology, Institute for Basic Sciences, Sungshin Women's University, Seoul 136-742, Republic of Korea
| |
Collapse
|
56
|
Hannan MA, Kawate N, Fukami Y, Weerakoon WWPN, Büllesbach EE, Inaba T, Tamada H. Effects of long-acting GnRH antagonist, degarelix acetate, on plasma insulin-like peptide 3, testosterone and luteinizing hormone concentrations, and scrotal circumference in male goats. Theriogenology 2016; 88:228-235. [PMID: 27793455 DOI: 10.1016/j.theriogenology.2016.09.032] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 07/14/2016] [Accepted: 09/10/2016] [Indexed: 10/21/2022]
Abstract
We recently reported that plasma insulin-like peptide 3 (INSL3) concentrations increased soon after endogenous and exogenous stimulations of LH in male goats and bulls. However, the effects of LH suppression on INSL3 secretion are unknown in domestic animals. Here, we examined the effects of a long-acting GnRH antagonist (degarelix acetate; 4 mg/kg) on the secretions of plasma INSL3 and testosterone in two phases, an immediate and a long-term phase in male goats (n = 6; aged, 13-16 months). During the immediate phase, blood was taken at 15-minute intervals for 8 hours on Days -5, 0, and 3. The GnRH antagonist was administered after 2-hour sampling of Day 0. Moreover, a daily blood sample was taken from Day 0 to Day 7, followed by twice a week until 9 weeks and finally at week 10. The scrotal circumference was recorded before treatment and continued biweekly until week 10. Concentrations of LH, INSL3, and testosterone in plasma were determined by EIA and the pulsatile nature of secretion analyzed using pulse XP software. The mean concentrations, pulse frequency (per hour), and pulse amplitude (peak-nadir) of plasma LH and testosterone reduced from pretreatment to posttreatment Day 0 and Day 3 (P < 0.05). A decline in mean concentrations, pulse frequency, and pulse amplitude of INSL3 was exhibited on posttreatment Day 3 compared with pretreatment (P < 0.01). During long-term sampling, a decline (P < 0.01) in plasma testosterone and INSL3 concentrations was observed 1 day after treatment and remained lower until 8.5 weeks after treatment, and thereafter returned to pretreatment levels. A reduction in scrotal circumference was recorded 4 weeks after treatment and remained lower until 10 weeks after treatment (P < 0.05). In conclusion, the acute regulation of INSL3 by LH was confirmed by reduction of plasma INSL3 levels within 3 days after GnRH antagonist treatment in male goats. Although the onset of suppression of testosterone was more rapid than that of INSL3, the low levels persisted for 8.5 weeks for both hormones, and subsequently the concentrations returned to pretreatment levels. A significant reduction in testicular size was also observed. The quick, long-lasting, and transient suppression of testosterone and INSL3 after a single injection implies a potential application of this antagonist in reversible long-term chemical castration in male goats.
Collapse
Affiliation(s)
- M A Hannan
- Department of Advanced Pathobiology, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Izumisano, Osaka, Japan
| | - N Kawate
- Department of Advanced Pathobiology, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Izumisano, Osaka, Japan.
| | - Y Fukami
- Department of Advanced Pathobiology, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Izumisano, Osaka, Japan
| | - W W P N Weerakoon
- Department of Advanced Pathobiology, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Izumisano, Osaka, Japan
| | - E E Büllesbach
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - T Inaba
- Department of Advanced Pathobiology, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Izumisano, Osaka, Japan
| | - H Tamada
- Department of Advanced Pathobiology, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Izumisano, Osaka, Japan
| |
Collapse
|
57
|
Pitia AM, Uchiyama K, Sano H, Kinukawa M, Minato Y, Sasada H, Kohsaka T. Functional insulin-like factor 3 (INSL3) hormone-receptor system in the testes and spermatozoa of domestic ruminants and its potential as a predictor of sire fertility. Anim Sci J 2016; 88:678-690. [PMID: 27592693 DOI: 10.1111/asj.12694] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 05/31/2016] [Accepted: 06/26/2016] [Indexed: 11/30/2022]
Abstract
Insulin-like factor 3 (INSL3) is essential for fetal testis descent, and has been implicated in the testicular and sperm functions in adult males; however, similar functions in domestic ruminants remain largely unknown. This study investigated the functional INSL3 hormone-receptor system in adult ruminant testes and spermatozoa, and explored its potential to diagnose the fertility of sires. Testes and spermatozoa were obtained from fertile bulls, rams and he-goats, whereas subfertile testes and spermatozoa were obtained only from bulls. As expected, INSL3 was visualized in Leydig cells, while we clearly demonstrated that the functional receptor, relaxin family peptide receptor 2 (RXFP2), enabling INSL3 to bind was identified in testicular germ cells and in the sperm equatorial segment of bulls, rams and he-goats. In comparison to fertile bulls, the percentage of INSL3- and RXFP2-expressing cells and their expression levels per cell were significantly reduced in the testes of subfertile bulls. In addition, the population of INSL3-binding spermatozoa was also significantly reduced in the semen of subfertile bulls. These results provide evidence for a functional INSL3 hormone-receptor system operating in ruminant testes and spermatozoa, and its potential to predict subfertility in sires.
Collapse
Affiliation(s)
- Ali M Pitia
- Division of Animal Resource Production, United Graduate School of Agricultural Science, Gifu University, Gifu, Japan.,Laboratory of Animal Reproduction and Physiology, Faculty of Agriculture, Shizuoka University, Shizuoka, Japan
| | - Kyoko Uchiyama
- Division of Animal Reproduction, Maebashi Institute of Animal Science, Livestock Improvement Association of Japan (LIAJ), Maebashi, Japan
| | - Hiroaki Sano
- Department of Animal Science, Faculty of Agriculture, Iwate University, Morioka, Japan
| | - Masashi Kinukawa
- Division of Animal Reproduction, Maebashi Institute of Animal Science, Livestock Improvement Association of Japan (LIAJ), Maebashi, Japan
| | - Yoshiaki Minato
- Division of Animal Reproduction, Maebashi Institute of Animal Science, Livestock Improvement Association of Japan (LIAJ), Maebashi, Japan
| | - Hiroshi Sasada
- Laboratory of Animal Reproduction, School of Veterinary Medicine, Kitasato University, Towada, Japan
| | - Tetsuya Kohsaka
- Division of Animal Resource Production, United Graduate School of Agricultural Science, Gifu University, Gifu, Japan.,Laboratory of Animal Reproduction and Physiology, Faculty of Agriculture, Shizuoka University, Shizuoka, Japan
| |
Collapse
|
58
|
Acute regulation of plasma insulin-like peptide 3 concentrations by luteinizing hormone in male goats. Theriogenology 2016; 86:749-56. [DOI: 10.1016/j.theriogenology.2016.02.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 02/28/2016] [Indexed: 11/21/2022]
|
59
|
Atwood CS, Vadakkadath Meethal S. The spatiotemporal hormonal orchestration of human folliculogenesis, early embryogenesis and blastocyst implantation. Mol Cell Endocrinol 2016; 430:33-48. [PMID: 27045358 DOI: 10.1016/j.mce.2016.03.039] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 03/30/2016] [Indexed: 11/18/2022]
Abstract
The early reproductive events starting with folliculogenesis and ending with blastocyst implantation into the uterine endometrium are regulated by a complex interplay among endocrine, paracrine and autocrine factors. This review examines the spatiotemporal integration of these maternal and embryonic signals that are required for successful reproduction. In coordination with hypothalamic-pituitary-gonadal (HPG) hormones, an intraovarian HPG-like axis regulates folliculogenesis, follicular quiescence, ovulation, follicular atresia, and corpus luteal functions. Upon conception and passage of the zygote through the fallopian tube, the contribution of maternal hormones in the form of paracrine secretions from the endosalpinx to embryonic development declines, with autocrine and paracrine signaling becoming increasingly important as instructional signals for the differentiation of the early zygote/morula into a blastocyst. These maternal and embryonic signals include activin and gonadotropin-releasing hormone 1 (GnRH1) that are crucial for the synthesis and secretion of the 'pregnancy' hormone human chorionic gonadotropin (hCG). hCG in turn signals pre-implantation embryonic cell division and sex steroid production required for stem cell differentiation, and subsequent blastulation, gastrulation, cavitation and blastocyst formation. Upon reaching the uterus, blastocyst hatching occurs under the influence of decreased activin signaling, while the attachment and invasion of the trophoblast into the endometrium appears to be driven by a decrease in activin signaling, and by increased GnRH1 and hCG signaling that allows for tissue remodeling and the controlled invasion of the blastocyst into the uterine endometrium. This review demonstrates the importance of integrative endocrine, paracrine, and autocrine signaling for successful human reproduction.
Collapse
Affiliation(s)
- Craig S Atwood
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI 53705, USA; Geriatric Research, Education and Clinical Center, Veterans Administration Hospital, Madison, WI 53705, USA; School of Exercise, Biomedical and Health Sciences, Edith Cowan University, Joondalup, 6027 WA, Australia.
| | - Sivan Vadakkadath Meethal
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI 53705, USA; Department of Neurological Surgery, University of Wisconsin-Madison School of Medicine and Public Health, WI 53792, USA
| |
Collapse
|
60
|
Ferlin A, De Toni L, Sandri M, Foresta C. Relaxin and insulin-like peptide 3 in the musculoskeletal system: from bench to bedside. Br J Pharmacol 2016; 174:1015-1024. [PMID: 27059798 DOI: 10.1111/bph.13490] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Revised: 03/10/2016] [Accepted: 03/17/2016] [Indexed: 01/19/2023] Open
Abstract
Skeletal muscles and bones form a joined functional unit sharing a complex mechanical, biochemical and hormonal crosstalk. A number of factors, including sex hormones, physiologically regulate the musculoskeletal system. Striking gender differences in muscle and bone mass, and function are mainly caused by distinct actions exerted by oestrogens and androgens. However, relaxin and relaxin-related peptides, such as insulin-like peptide 3 (INSL3), might contribute to these sex-associated differences in physiological and pathological conditions (such as osteoporosis and sarcopenia). Relaxin is a 'pregnancy' hormone, but it is also produced from the prostate gland, and has recently attracted attention as a potential drug for cardiovascular disorders and fibrosis. In contrast, INSL3 is a male-specific hormone produced by the Leydig cells of the testis with a fundamental role in testicular descent during fetal life. Recent evidence suggests that both hormones have interesting roles in the musculoskeletal system. Relaxin and INSL3, by finely tuning bone formation and resorption, are involved in bone remodelling processes, and relaxin contributes to the healing of injured ligaments and promotes skeletal muscle regeneration. Here, we review the most recent findings on the effects of relaxin and INSL3 on skeletal muscle and the cell components of bone. In the light of the experimental evidence available and animal models, their clinical implications are also discussed. LINKED ARTICLES This article is part of a themed section on Recent Progress in the Understanding of Relaxin Family Peptides and their Receptors. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.10/issuetoc.
Collapse
Affiliation(s)
- Alberto Ferlin
- Department of Medicine, Operative Unit of Andrology and Medicine of Human Reproduction, University of Padova, Padova, Italy
| | - Luca De Toni
- Department of Medicine, Operative Unit of Andrology and Medicine of Human Reproduction, University of Padova, Padova, Italy
| | - Marco Sandri
- Venetian Institute of Molecular Medicine (VIMM), Padova, Italy.,Department of Biomedical Sciences, University of Padova, Padova, Italy.,Institute of Neuroscience, Consiglio Nazionale delle Ricerche (CNR), Padova, Italy.,Department of Medicine, McGill University, Montreal, QC, Canada
| | - Carlo Foresta
- Department of Medicine, Operative Unit of Andrology and Medicine of Human Reproduction, University of Padova, Padova, Italy
| |
Collapse
|
61
|
Spermatogenesis in humans and its affecting factors. Semin Cell Dev Biol 2016; 59:10-26. [PMID: 27143445 DOI: 10.1016/j.semcdb.2016.04.009] [Citation(s) in RCA: 269] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 04/13/2016] [Accepted: 04/15/2016] [Indexed: 12/13/2022]
Abstract
Spermatogenesis is an extraordinary complex process. The differentiation of spermatogonia into spermatozoa requires the participation of several cell types, hormones, paracrine factors, genes and epigenetic regulators. Recent researches in animals and humans have furthered our understanding of the male gamete differentiation, and led to clinical tools for the better management of male infertility. There is still much to be learned about this intricate process. In this review, the critical steps of human spermatogenesis are discussed together with its main affecting factors.
Collapse
|
62
|
Martin LJ. Cell interactions and genetic regulation that contribute to testicular Leydig cell development and differentiation. Mol Reprod Dev 2016; 83:470-87. [DOI: 10.1002/mrd.22648] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 04/10/2016] [Indexed: 12/13/2022]
Affiliation(s)
- Luc J. Martin
- Department of Biology; Université de Moncton; Moncton New-Brunswick Canada
| |
Collapse
|
63
|
Huang X, Jia J, Sun M, Li M, Liu N. Mutational screening of the INSL3 gene in azoospermic males with a history of cryptorchidism. Andrologia 2016; 48:835-9. [PMID: 26840636 DOI: 10.1111/and.12522] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/03/2015] [Indexed: 12/16/2022] Open
Abstract
The insulin-like factor 3 (INSL3 ) gene encodes 131 amino acids, consisting of two exons. In human beings, mutations of this gene may lead to bilateral cryptorchidism and infertility. However, the role of INSL3 in male spermatogenesis still remains controversial. We have analysed the coding sequence of INSL3 by PCR and DNA sequencing in 97 azoospermic patients with a history of bilateral cryptorchidism (patient group) versus 49 males with obstructive azoospermia (control group). The G178A mutation, which were predicted to alter the protein sequence (alanine to threonine), was detected in the patient group but not in the control group. While synonymous mutations G27A and G126A were detected in the control group, each occurred only in a single sample. When the patient group were divided into two subgroups according to the testicular biopsy result: sperm+ subgroup (51 cases with spermatozoa can be detected) or sperm- subgroup (46 cases with spermatozoa could not be detected). The INSL3 G178A polymorphism was not significantly associated with spermatozoa or no spermatozoa in the testes of males with a history of bilateral cryptorchidism. In conclusion, the evidence suggests that mutations of INSL3 may not directly contribute to the damage of spermatogenesis in patients with bilateral cryptorchidism history.
Collapse
Affiliation(s)
- X Huang
- Shanxi Women and Children Health Hospital, Center of Reproductive Medicine, Xinghualing District, Taiyuan, Shanxi, China
| | - J Jia
- Department of pharmacy, First affiliated Hospital of Xiamen University, Xiamen, China
| | - M Sun
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, First affiliated Hospital of Xiamen University, Xiamen, China
| | - M Li
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - N Liu
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| |
Collapse
|
64
|
BDNF-induced expansion of cumulus-oocyte complexes in pigs was mediated by microRNA-205. Theriogenology 2016; 85:1476-82. [PMID: 26838466 DOI: 10.1016/j.theriogenology.2016.01.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 12/11/2015] [Accepted: 01/05/2016] [Indexed: 01/29/2023]
Abstract
The neurotrophin family of proteins is required for the survival and differentiation of the nervous system and is important to the development of reproductive tissues. The objectives of the present study were to detect the presence of the brain-derived neurotrophic factor (BDNF) and its tyrosine kinase receptor protein in cumulus-oocyte complexes in pigs and to explore the role of microRNAs in the BDNF-induced in vitro maturation of oocytes. We demonstrate that both BDNF and tyrosine kinase receptor protein are expressed in porcine cumulus oocyte complexes. BDNF supplementation promotes the in vitro maturation of porcine oocytes. MiRNA-205 is downregulated during the BDNF-induced maturation of oocytes. The overexpression of miRNA-205 in granulosa cells and reporter gene assay shows that the marker gene ptx3 for cumulus expansion is the putative target gene of miR-205. Our data provide evidence that the BDNF-induced maturation of oocytes in pigs may be mediated by miR-205 through the regulation of potential target gene, ptx3.
Collapse
|
65
|
Pan Y, Jing J, Dong F, Yao Q, Zhang W, Zhang H, Yao B, Dai J. Association between phthalate metabolites and biomarkers of reproductive function in 1066 Chinese men of reproductive age. JOURNAL OF HAZARDOUS MATERIALS 2015; 300:729-736. [PMID: 26296076 DOI: 10.1016/j.jhazmat.2015.08.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 08/06/2015] [Accepted: 08/06/2015] [Indexed: 06/04/2023]
Abstract
Phthalates are suspected endocrine disrupting chemicals that impair male reproductive function in animal and epidemiological studies. We investigated associations between urinary phthalate metabolites and acrosin activity, along with that between insulin like-factor 3 (INSL3), a Leydig cell function marker, in Chinese adult men and assessed the association between the metabolites and male reproductive function. Serum levels of INSL3 and other hormones, semen parameters, and urinary concentrations of 14 phthalate metabolites in 1066 men were measured. The unadjusted concentrations of phthalates were included as independent variables and urinary creatinine as a separate covariate. INSL3 was negatively associated with mono-2-ethylhexyl phthalate (MEHP) and %MEHP [percentage of MEHP to all di(2-ethylhexyl) phthalate (DEHP) metabolites]. Acrosin activity was negatively associated with mono-n-butyl phthalate (MBP), mono-isobutyl phthalate (MiBP), MEHP and %MEHP. MBP and MiBP were also negatively associated with total testosterone (T), free androgen index (FAI), free testosterone (FT), luteinizing hormone (LH) and sperm morphology and positively associated with DNA fragmentation index (DFI). A negative association between %MEHP and sperm motility was observed. Several other metabolites were also associated with reproductive function. This is the first report on the inverse associations of phthalate metabolites with acrosin activity and INSL3. Phthalates may cause multiple adverse results on reproductive function at environmental levels.
Collapse
Affiliation(s)
- Yitao Pan
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Jun Jing
- Reproductive Medical Center, Nanjing Jinling Hospital, Nanjing University, School of Medicine, Nanjing, Jiangsu 210002, PR China
| | - Fengshou Dong
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Qi Yao
- Reproductive Medical Center, Nanjing Jinling Hospital, Nanjing University, School of Medicine, Nanjing, Jiangsu 210002, PR China
| | - Wei Zhang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Hongxia Zhang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Bing Yao
- Reproductive Medical Center, Nanjing Jinling Hospital, Nanjing University, School of Medicine, Nanjing, Jiangsu 210002, PR China.
| | - Jiayin Dai
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China.
| |
Collapse
|
66
|
Halls ML, Bathgate RAD, Sutton SW, Dschietzig TB, Summers RJ. International Union of Basic and Clinical Pharmacology. XCV. Recent advances in the understanding of the pharmacology and biological roles of relaxin family peptide receptors 1-4, the receptors for relaxin family peptides. Pharmacol Rev 2015; 67:389-440. [PMID: 25761609 DOI: 10.1124/pr.114.009472] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Relaxin, insulin-like peptide 3 (INSL3), relaxin-3, and INSL5 are the cognate ligands for the relaxin family peptide (RXFP) receptors 1-4, respectively. RXFP1 activates pleiotropic signaling pathways including the signalosome protein complex that facilitates high-sensitivity signaling; coupling to Gα(s), Gα(i), and Gα(o) proteins; interaction with glucocorticoid receptors; and the formation of hetero-oligomers with distinctive pharmacological properties. In addition to relaxin-related ligands, RXFP1 is activated by Clq-tumor necrosis factor-related protein 8 and by small-molecular-weight agonists, such as ML290 [2-isopropoxy-N-(2-(3-(trifluoromethylsulfonyl)phenylcarbamoyl)phenyl)benzamide], that act allosterically. RXFP2 activates only the Gα(s)- and Gα(o)-coupled pathways. Relaxin-3 is primarily a neuropeptide, and its cognate receptor RXFP3 is a target for the treatment of depression, anxiety, and autism. A variety of peptide agonists, antagonists, biased agonists, and an allosteric modulator target RXFP3. Both RXFP3 and the related RXFP4 couple to Gα(i)/Gα(o) proteins. INSL5 has the properties of an incretin; it is secreted from the gut and is orexigenic. The expression of RXFP4 in gut, adipose tissue, and β-islets together with compromised glucose tolerance in INSL5 or RXFP4 knockout mice suggests a metabolic role. This review focuses on the many advances in our understanding of RXFP receptors in the last 5 years, their signal transduction mechanisms, the development of novel compounds that target RXFP1-4, the challenges facing the field, and current prospects for new therapeutics.
Collapse
Affiliation(s)
- Michelle L Halls
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia (M.L.H., R.J.S.); Neuropeptides Division, Florey Institute of Neuroscience and Mental Health and Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria, Australia (R.A.D.B.); Neuroscience Drug Discovery, Janssen Research & Development, LLC, San Diego, California (S.W.S.); Immundiagnostik AG, Bensheim, Germany (T.B.D.); and Charité-University Medicine Berlin, Campus Mitte, Medical Clinic for Cardiology and Angiology, Berlin, Germany (T.B.D.)
| | - Ross A D Bathgate
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia (M.L.H., R.J.S.); Neuropeptides Division, Florey Institute of Neuroscience and Mental Health and Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria, Australia (R.A.D.B.); Neuroscience Drug Discovery, Janssen Research & Development, LLC, San Diego, California (S.W.S.); Immundiagnostik AG, Bensheim, Germany (T.B.D.); and Charité-University Medicine Berlin, Campus Mitte, Medical Clinic for Cardiology and Angiology, Berlin, Germany (T.B.D.)
| | - Steve W Sutton
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia (M.L.H., R.J.S.); Neuropeptides Division, Florey Institute of Neuroscience and Mental Health and Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria, Australia (R.A.D.B.); Neuroscience Drug Discovery, Janssen Research & Development, LLC, San Diego, California (S.W.S.); Immundiagnostik AG, Bensheim, Germany (T.B.D.); and Charité-University Medicine Berlin, Campus Mitte, Medical Clinic for Cardiology and Angiology, Berlin, Germany (T.B.D.)
| | - Thomas B Dschietzig
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia (M.L.H., R.J.S.); Neuropeptides Division, Florey Institute of Neuroscience and Mental Health and Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria, Australia (R.A.D.B.); Neuroscience Drug Discovery, Janssen Research & Development, LLC, San Diego, California (S.W.S.); Immundiagnostik AG, Bensheim, Germany (T.B.D.); and Charité-University Medicine Berlin, Campus Mitte, Medical Clinic for Cardiology and Angiology, Berlin, Germany (T.B.D.)
| | - Roger J Summers
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia (M.L.H., R.J.S.); Neuropeptides Division, Florey Institute of Neuroscience and Mental Health and Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria, Australia (R.A.D.B.); Neuroscience Drug Discovery, Janssen Research & Development, LLC, San Diego, California (S.W.S.); Immundiagnostik AG, Bensheim, Germany (T.B.D.); and Charité-University Medicine Berlin, Campus Mitte, Medical Clinic for Cardiology and Angiology, Berlin, Germany (T.B.D.)
| |
Collapse
|
67
|
Hannan M, Kawate N, Kubo Y, Pathirana I, Büllesbach E, Hatoya S, Inaba T, Takahashi M, Tamada H. Expression analyses of insulin-like peptide 3, RXFP2, LH receptor, and 3β-hydroxysteroid dehydrogenase in testes of normal and cryptorchid dogs. Theriogenology 2015. [DOI: 10.1016/j.theriogenology.2015.06.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
68
|
Celik O, Celik N, Gungor S, Haberal ET, Aydin S. Selective Regulation of Oocyte Meiotic Events Enhances Progress in Fertility Preservation Methods. BIOCHEMISTRY INSIGHTS 2015; 8:11-21. [PMID: 26417205 PMCID: PMC4577271 DOI: 10.4137/bci.s28596] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 08/23/2015] [Accepted: 08/24/2015] [Indexed: 11/15/2022]
Abstract
Following early embryonic germ cell migration, oocytes are surrounded by somatic cells and remain arrested at diplotene stage until luteinizing hormone (LH) surge. Strict regulation of both meiotic arrest and meiotic resumption during dormant stage are critical for future fertility. Inter-cellular signaling system between the somatic compartment and oocyte regulates these meiotic events and determines the follicle quality. As well as the collected number of eggs, their qualities are also important for in vitro fertilization (IVF) outcome. In spontaneous and IVF cycles, germinal vesicle (GV)–stage oocytes, premature GV breakdown, and persistence of first meiotic arrest limit the reproductive performance. Likewise, both women with premature ovarian aging and young cancer women are undergoing chemoradiotherapy under the risk of follicle loss because of unregulated meiotic events. Understanding of oocyte meiotic events is therefore critical for the prevention of functional ovarian reserve. High levels of cyclic guanosine monophophate (cGMP), cyclic adenosine monophophate (cAMP) and low phosphodiesterase (PDE) 3A enzyme activity inside the oocyte are responsible for maintaining of meiotic arrest before the LH surge. cGMP is produced in the somatic compartment, and natriuretic peptide precursor C (Nppc) and natriuretic peptide receptor 2 (Npr2) regulate its production. cGMP diffuses into the oocyte and reduces the PDE3A activity, which inhibits the conversion of cAMP to the 5′AMP, and cAMP levels are enhanced. In addition, oocyte itself has the ability to produce cAMP. Taken together, accumulation of cAMP inside the oocyte induces protein kinase activity, which leads to the inhibition of maturation-promoting factor and meiotic arrest also continues. By stimulating the expression of epidermal growth factor, LH inhibits the Nppc/Npr2 system, blocks cGMP synthesis, and initiates meiotic resumption. Oocytes lacking the functional of this pathway may lead to persistence of the GV oocyte, which reduces the number of good quality eggs. Selective regulation of somatic cell signals and oocyte meiotic events enhance progress in fertility preservation methods, which may give us the opportunity to prevent follicle loss in prematurely aging women and young women with cancer are undergoing chemoradiotherapy.
Collapse
Affiliation(s)
- Onder Celik
- Private Clinic, Obstetrics and Gynecology, Usak, Turkey
| | - Nilufer Celik
- Behçet Uz Children's Hospital, Department of Biochemistry, İzmir, Turkey
| | - Sami Gungor
- Private Medical Hospital, Obstetrics and Gynecology, Elazig, Turkey
| | - Esra Tustas Haberal
- Umraniye Education and Research Hospital, Obstetrics and Gynecology, İstanbul, Turkey
| | - Suleyman Aydin
- Department of Medical Biochemistry (Firat Hormone Research Group), School of Medicine, Firat University, Elazig, Turkey
| |
Collapse
|
69
|
Chang WH, Li SS, Wu MH, Pan HA, Lee CC. Phthalates might interfere with testicular function by reducing testosterone and insulin-like factor 3 levels. Hum Reprod 2015; 30:2658-70. [PMID: 26385792 DOI: 10.1093/humrep/dev225] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2014] [Accepted: 08/24/2015] [Indexed: 01/10/2023] Open
Abstract
STUDY QUESTION Do phthalates create a male reproductive hormone imbalance by down-regulating the secretion of testosterone and insulin-like factor 3 (INSL3)? SUMMARY ANSWER Our study suggests that exposure to phthalates is related to a reduction in the secretion of testosterone and INSL3 in adult males. WHAT IS KNOWN ALREADY There is evidence that exposure to phthalates, an abundant group of industrial plasticizers, negatively affects testosterone biosynthesis, but little is known about the mechanism in men. The hypothesis that exposure to phthalates reduces the levels of testosterone and INSL3, a marker of Leydig cell function, is underexplored. STUDY DESIGN, SIZE, DURATION This case-control study of 176 men ran from 2010 to 2012. Infertile men were recruited through infertility clinics in Taiwan, fertile men were recruited from childbirth preparation classes and all were categorized based on the World Health Organization definition of infertility and by the diagnoses of obstetricians. PARTICIPANTS/MATERIALS, SETTING, METHODS Urinary concentrations of 11 phthalate metabolites were measured, along with serum levels of FSH, LH, total testosterone (TT), estradiol, sex hormone-binding globulin and Inhibin B. Androgen status indices including free testosterone (fT) and the free androgen index (FAI) were calculated. The circulating INSL3 level was evaluated using a radioimmunoassay. Non-parametric analyses, trend tests and linear regression models were used. MAIN RESULTS AND THE ROLE OF CHANCE Urinary mono-n-butyl phthalate (MnBP), mono-(2-ethylhexyl) phthalate (MEHP) and mono-2-ethyl-5-carboxypentyl phthalate were significantly higher in infertile than in fertile men. Serum Inhibin B, the Inhibin B : FSH ratio, the TT : LH ratio and INSL3 were significantly lower in infertile men. In multiple regression models controlled for potential confounders, there is an inverse association between urinary levels of mono-methyl phthalate (MMP), mono-iso-butyl phthalate (MiBP), MEHP, MEHP% and serum TT (P = 0.001, 0.007, 0.042 and 0.012, respectively). The inverse associations were also found between urinary levels of MiBP, monobenzyl phthalate (MBzP), MEHP, MEHP% and serum fT (P = 0.028, 0.017, 0.045 and 0.027, respectively); between urinary levels of MMP, MEHP, MEHP% and the TT : LH ratio (P = 0.004, 0.029 and 0.039, respectively); between urinary levels of MMP, MiBP, MnBP, MBzP, MEHP and the FAI (P = 0.002, 0.008, 0.037, 0.028, 0.042 and 0.016, respectively). Urinary MBzP and MEHP% were negatively associated with a decrease in serum INSL3 (P = 0.049 and <0.001). We also observed a strong inverse relationship between MEHP% quartiles and serum TT, fT, the TT : LH ratio and INSL3 (Ptrend = 0.003, 0.080, 0.002 and 0.012, respectively). Serum INSL3, TT, fT and the TT : LH ratio were lower for men in the highest MEHP% quartile than in the reference group (P = 0.007, 0.002, 0.090 and 0.001, respectively). LIMITATIONS, REASONS FOR CAUTION A potential limitation is using a single urine and blood sample to predict urinary phthalate metabolites and reproductive hormone status over long periods. However, there is evidence that a single measure provides a reliable result in population studies. WIDER IMPLICATIONS OF THE FINDINGS Non-occupational exposure to phthalates, including di-2-ethylhexyl phthalate, might lead to adverse effects on testicular/Leydig cell function and be of concern owing to the ubiquitous multisource exposure to phthalates among the general population. Although our findings are in agreement with recent experimental data, more studies are required to draw firm conclusions on the relation of INSL3 to phthalate exposure or testicular/Leydig cell function.
Collapse
Affiliation(s)
- Wei-Hsiang Chang
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, 138 Sheng-Li Road, Tainan 70403, Taiwan
| | - Sih-Syuan Li
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, 138 Sheng-Li Road, Tainan 70403, Taiwan
| | - Meng-Hsing Wu
- Department of Obstetrics and Gynecology, Hospital of National Cheng Kung University, 138 Sheng-Li Road, Tainan 70403, Taiwan
| | - Hsien-An Pan
- An-An Women and Children Clinic, 286 Kaiyuan Road, Tainan 70403, Taiwan
| | - Ching-Chang Lee
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, 138 Sheng-Li Road, Tainan 70403, Taiwan Research Center of Environmental Trace Toxic Substance, National Cheng Kung University, 138 Sheng-Li Road, Tainan 70403, Taiwan
| |
Collapse
|
70
|
Hannan MA, Fukami Y, Kawate N, Sakase M, Fukushima M, Pathirana IN, Büllesbach EE, Inaba T, Tamada H. Plasma insulin-like peptide 3 concentrations are acutely regulated by luteinizing hormone in pubertal Japanese Black beef bulls. Theriogenology 2015; 84:1530-5. [PMID: 26318230 DOI: 10.1016/j.theriogenology.2015.07.039] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 07/29/2015] [Accepted: 07/30/2015] [Indexed: 10/23/2022]
Abstract
Insulin-like peptide 3 (INSL3) is a major secretory product of testicular Leydig cells. The mechanism of acute regulation of INSL3 secretion is still unknown. The present study was undertaken in pubertal beef bulls to (1) determine the temporal relationship of pulsatile secretion among LH, INSL3, and testosterone and (2) monitor acute regulation of INSL3 secretion by LH using GnRH analogue and hCG. Blood samples were collected from Japanese Black beef bulls (N = 6) at 15-minute intervals for 8 hours. Moreover, blood samples were collected at -0.5, 0, 1, 2, 3, 4, 5, and 6 hours after GnRH treatment and -0.5, 0, 2, 4, and 8 hours on the day of treatment (Day 0), and Days 1, 2, 4, 8, and 12 after hCG treatment. Concentrations of LH, INSL3, and testosterone determined by EIAs indicated that secretion in the general circulation was pulsatile. The frequency of LH, INSL3, and testosterone pulses was 4.7 ± 0.9, 3.8 ± 0.2, and 1.0 ± 0.0, respectively, during the 8-hour period. Seventy percent of these INSL3 pulses peaked within 1 hour after a peak of an LH pulse had occurred. The mean increase (peak per basal concentration) of testosterone pulses was higher (P < 0.001) than that of INSL3 pulses. After GnRH treatment, LH concentrations increased (P < 0.01) dramatically 1 hour after treatment and remained high (P < 0.05) until the end of sampling, whereas an elevated (P < 0.05) INSL3 concentration occurred at 1, 2, 5, and 6 hours after treatment. Testosterone concentrations increased (P < 0.01) 1 hour after the treatment and remained high until the end of sampling. After hCG treatment, an increase of INSL3 concentration occurred at 2 and 4 hours, and Days 2, 4, and 8 after treatment (P < 0.05), whereas in case of testosterone, concentrations remained high (P < 0.01) until Day 8 after treatment. The increase (maximum per pretreatment concentration) of INSL3 concentrations after injecting GnRH or hCG was much lower (P < 0.001) than that of testosterone. In conclusion, secretion of INSL3 in blood of bulls occurred in a pulsatile manner. We inferred an acute regulation of INSL3 by LH in bulls because INSL3 concentrations increased immediately after endogenous and exogenous LH stimulation. The increase of INSL3 concentrations by LH was much lower than that of testosterone in bulls.
Collapse
Affiliation(s)
- M A Hannan
- Department of Advanced Pathobiology, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Izumisano, Osaka, Japan
| | - Y Fukami
- Department of Advanced Pathobiology, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Izumisano, Osaka, Japan
| | - N Kawate
- Department of Advanced Pathobiology, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Izumisano, Osaka, Japan.
| | - M Sakase
- Northern Center of Agricultural Technology, General Technological Center of Hyogo Prefecture for Agriculture, Forest and Fishery, Wadayama, Hyogo, Japan
| | - M Fukushima
- Northern Center of Agricultural Technology, General Technological Center of Hyogo Prefecture for Agriculture, Forest and Fishery, Wadayama, Hyogo, Japan
| | - I N Pathirana
- Department of Animal Science, Faculty of Agriculture, University of Ruhuna, Kamburupitiya, Sri Lanka
| | - E E Büllesbach
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - T Inaba
- Department of Advanced Pathobiology, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Izumisano, Osaka, Japan
| | - H Tamada
- Department of Advanced Pathobiology, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Izumisano, Osaka, Japan
| |
Collapse
|
71
|
Braun BC, Müller K, Jewgenow K. Expression profiles of relaxin family peptides and their receptors indicate their influence on spermatogenesis in the domestic cat (Felis catus). Domest Anim Endocrinol 2015; 52:25-34. [PMID: 25704248 DOI: 10.1016/j.domaniend.2015.01.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 01/19/2015] [Accepted: 01/19/2015] [Indexed: 11/26/2022]
Abstract
Disturbed spermatogenesis is a common problem in felines. Studying spermatogenesis in the domestic cat can improve the understanding of the biological background and help to counteract fertility problems in other feline species. Here, we analyzed 3 relaxin family peptides (relaxin, relaxin-3, and INSL3) and their receptors (RXFP1, RXFP2, and RXFP3) as potential spermatogenic factors involving their expression in the testis at different stages of its development. It may be concluded from its stage-dependent expression that relaxin, together with RXFP1, appears to be involved in the first stage of spermatogenesis, whereas relaxin-3 via binding to RXFP3 influences spermiogenesis. Furthermore, correlations were observed between relaxin, relaxin-3, RXFP1, RXFP2 and RXFP3 messenger RNA expression, and the relative numbers of haploid cells in testes. The peptide INSL3 was highly expressed at all testis development stages. Because of the low and stage-independent expression of its receptor RXFP2, an auto- and/or paracrine function of INSL3 in spermatogenesis seems unlikely. In the adult testis, messenger RNA expression of relaxin, RXFP1, and RXFP3 predominantly occurs in the tubular testis compartment, whereas INLS3 is mainly expressed in the interstitium.
Collapse
Affiliation(s)
- B C Braun
- Leibniz Institute for Zoo and Wildlife Research, Department of Reproduction Biology, PF 700430, 10324 Berlin, Germany.
| | - K Müller
- Leibniz Institute for Zoo and Wildlife Research, Department of Reproduction Biology, PF 700430, 10324 Berlin, Germany
| | - K Jewgenow
- Leibniz Institute for Zoo and Wildlife Research, Department of Reproduction Biology, PF 700430, 10324 Berlin, Germany
| |
Collapse
|
72
|
INSL3 stimulates spermatogonial differentiation in testis of adult zebrafish (Danio rerio). Cell Tissue Res 2015; 363:579-88. [PMID: 26077926 PMCID: PMC4735252 DOI: 10.1007/s00441-015-2213-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 05/08/2015] [Indexed: 01/04/2023]
Abstract
INSL3 (insulin-like peptide 3) is a relaxin peptide family member expressed by Leydig cells in the vertebrate testis. In mammals, INSL3 mediates testicular descent during embryogenesis but information on its function in adults is limited. In fish, the testes remain in the body cavity, although the insl3 gene is still expressed, suggesting yet undiscovered, evolutionary older functions. Anti-Müllerian hormone (Amh), in addition to inhibiting spermatogonial differentiation and androgen release, inhibits the Fsh (follicle-stimulating hormone)-induced increase in insl3 transcript levels in zebrafish testis. Therefore, the two growth factors might have antagonistic effects. We examine human INSL3 (hINSL3) effects on zebrafish germ cell proliferation/differentiation and androgen release by using a testis tissue culture system. hINSL3 increases the proliferation of type A undifferentiated (Aund) but not of type A differentiating (Adiff) spermatogonia, while reducing the proliferation of Sertoli cells associated with proliferating Aund. Since the area occupied by Aund decreases and that of Adiff increases, we conclude that hINSL3 recruits Aund into differentiation; this is supported by the hINSL3-induced down-regulation of nanos2 transcript levels, a marker of single Aund spermatogonia in zebrafish and other vertebrates. Pulse-chase experiments with a mitosis marker also indicate that hINSL3 promotes spermatogonial differentiation. However, hINSL3 does not modulate basal or Fsh-stimulated androgen release or growth factor transcript levels, including those of amh. Thus, hINSL3 seems to recruit Aund spermatogonia into differentiation, potentially mediating an Fsh effect on spermatogenesis.
Collapse
|
73
|
Expression of insulin-like factor 3 hormone-receptor system in the reproductive organs of male goats. Cell Tissue Res 2015; 362:407-20. [PMID: 26017634 DOI: 10.1007/s00441-015-2206-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2014] [Accepted: 04/24/2015] [Indexed: 10/23/2022]
Abstract
Relaxin-like factor (RLF), generally known as insulin-like factor 3 (INSL3), is essential for testis descent during fetal development. However, its role in adult males is not fully understood. We investigate the function of INSL3 in male Saanen goats by identifying cell types expressing its receptor, relaxin/insulin-like family peptide receptor (RXFP)2 and by characterizing the developmental expression pattern of INSL3 and RXFP2 and the binding of INSL3 to target cells in the male reproductive system. A highly specific RXFP2 antibody that co-localizes with an anti-FLAG antibody in HEK-293 cells recognizes RXFP2-transcript-expressing cells in the testis. INSL3 and RXFP2 mRNA expression is upregulated in the testis, starting from puberty. INSL3 mRNA and protein expression has been detected in Leydig cells, whereas RXFP2 mRNA and protein localize to Leydig cells, to meiotic and post-meiotic germ cells and to the epithelium and smooth muscle of the cauda epididymis and vas deferens. INSL3 binds to all of these tissues and cell types, with the exception of Leydig cells, in a hormone-specific and saturable manner. These results provide evidence for a functional intra- and extra-testicular INSL3 ligand-receptor system in adult male goats.
Collapse
|
74
|
Feugang JM, Greene JM, Sanchez-Rodríguez HL, Stokes JV, Crenshaw MA, Willard ST, Ryan PL. Profiling of relaxin and its receptor proteins in boar reproductive tissues and spermatozoa. Reprod Biol Endocrinol 2015; 13:46. [PMID: 25990010 PMCID: PMC4445784 DOI: 10.1186/s12958-015-0043-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 05/08/2015] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Relaxin levels in seminal plasma have been associated with positive effects on sperm motility and quality, and thus having potential roles in male fertility. However, the origin of seminal relaxin, within the male reproductive tract, and the moment of its release in the vicinity of spermatozoa remain unclear. Here, we assessed the longitudinal distribution of relaxin and its receptors RXFP1 and RXFP2 in the reproductive tract, sex accessory glands, and spermatozoa of adult boars. METHODS Spermatozoa were harvested from three fertile boars and reproductive tract (testes and epididymis) and sex accessory gland (prostate and seminal vesicles) tissues were collected post-mortem from each boar. Epididymis ducts were sectioned into caput, corpus, and cauda regions, and spermatozoa were mechanically collected. All samples were subjected to immunofluorescence and/or western immunoblotting for relaxin, RXFP1, and RXFP2 detection. Immunolabeled-spermatozoa were submitted to flow cytometry analyses and data were statistically analyzed with ANOVA. RESULTS Both receptors were detected in all tissues, with a predominance of mature and immature isoforms of RXFP1 and RXFP2, respectively. Relaxin signals were found in the testes, with Leydig cells displaying the highest intensity compared to other testicular cells. The testicular immunofluorescence intensity of relaxin was greater than that of other tissues. Epithelial basal cells exhibited the highest relaxin immunofluorescence intensity within the epididymis and the vas deferens. The luminal immunoreactivity to relaxin was detected in the seminiferous tubule, epididymis, and vas deferens ducts. Epididymal and ejaculated spermatozoa were immunopositive to relaxin, RXFP1, and RXFP2, and epididymal corpus-derived spermatozoa had the highest immunoreactivities across epididymal sections. Both vas deferens-collected and ejaculated spermatozoa displayed comparable, but lowest immunofluorescence signals among groups. The entire sperm length was immunopositive to both relaxin and receptors, with relaxin signal being robust in the acrosome area and RXFP2, homogeneously distributed than RXFP1 on the head of ejaculated spermatozoa. CONCLUSIONS Immunolocalization indicates that relaxin-receptor complexes may have important roles in boar reproduction and that spermatozoa are already exposed to relaxin upon their production. The findings suggest autocrine and/or paracrine actions of relaxin on spermatozoa, either before or after ejaculation, which have possible roles on the fertilizing potential of spermatozoa.
Collapse
Affiliation(s)
- Jean M Feugang
- Department of Animal and Dairy Sciences, Facility for Organismal and Cellular Imaging (FOCI), Mississippi State University, Mississippi State, MS, 39762, USA.
| | - Jonathan M Greene
- Department of Animal and Dairy Sciences, Facility for Organismal and Cellular Imaging (FOCI), Mississippi State University, Mississippi State, MS, 39762, USA.
- Department of Pathobiology & Population Medicine, Mississippi State University, Mississippi State, MS, 39762, USA.
- Department of Pathobiological Sciences, Robert P. Hanson Biomedical Sciences Laboratories, University of Wisconsin, Madison, WI, 53706, USA.
| | - Hector L Sanchez-Rodríguez
- Department of Animal and Dairy Sciences, Facility for Organismal and Cellular Imaging (FOCI), Mississippi State University, Mississippi State, MS, 39762, USA.
- Department of Animal Science, Mayaguez Campus, University of Puerto Rico, Mayaguez, Puerto Rico.
| | - John V Stokes
- Department of Basic Sciences, Flow Cytometry facility core, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, 39762, USA.
| | - Mark A Crenshaw
- Department of Animal and Dairy Sciences, Facility for Organismal and Cellular Imaging (FOCI), Mississippi State University, Mississippi State, MS, 39762, USA.
| | - Scott T Willard
- Department of Animal and Dairy Sciences, Facility for Organismal and Cellular Imaging (FOCI), Mississippi State University, Mississippi State, MS, 39762, USA.
- Department of Biochemistry and Molecular Biology & Entomology and Plant Pathology, Mississippi State University, Mississippi State, MS, 39762, USA.
| | - Peter L Ryan
- Department of Animal and Dairy Sciences, Facility for Organismal and Cellular Imaging (FOCI), Mississippi State University, Mississippi State, MS, 39762, USA.
- Department of Pathobiology & Population Medicine, Mississippi State University, Mississippi State, MS, 39762, USA.
| |
Collapse
|
75
|
Feugang JM, Rodríguez-Muñoz JC, Dillard DS, Crenshaw MA, Willard ST, Ryan PL. Beneficial effects of relaxin on motility characteristics of stored boar spermatozoa. Reprod Biol Endocrinol 2015; 13:24. [PMID: 25880070 PMCID: PMC4393568 DOI: 10.1186/s12958-015-0021-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 03/19/2015] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Relaxin is detected in seminal plasma of many species and its association with sperm motility may be beneficial in some aspects of assisted reproduction. Here, we immunolocalized relaxin receptors and investigated the effects of exogenous relaxin on motility characteristics, viability, and cAMP content of boar spermatozoa after storage. METHODS Commercial doses of boar semen were obtained on the collection day (Day 0) and kept in shipping containers at room temperature for up to 4 days (Day 4). On Day 0, spermatozoa were fixed for immunofluorescence detection of relaxin receptors RXFP1 and RXFP2 (Experiment 1). Semen aliquots were taken from the same dose at Day 0, Day 1, and Day 2 (Experiment 2a), and Day 2 and Day 4 (Experiment 2b) for analyses. Alive spermatozoa were purified and incubated (1 h-37°C) with 0, 50, or 100 ng relaxin/ml (Experiment 2a) and 0, 100, or 500 ng relaxin/ml (Experiment 2b). Afterward, aliquots of each treatment group were subjected to motility (Experiments 2), viability (Experiment 3) analyses, and cAMP quantification (Experiment 4). Data (3-4 independent replicates) were statistically analyzed (ANOVA followed by pairwise comparisons) and p values less or equal to 0.05 was set for significant difference. RESULTS Both RXFP1 and RXFP2 receptors were immunolocalized on the entire spermatozoon. Relaxin concentration of 100 ng/ml significantly improved the proportions of motile, progressive, and rapid spermatozoa up to Day 2. Only 500 ng relaxin/ml provided beneficial effects on Day 4. The viability of spermatozoa was not affected by relaxin (100 ng/ml) during storage, but the extent of mitochondria membrane damages was significantly decreased. Furthermore, relaxin did not affect the cAMP contents of spermatozoa during storage, in our conditions. CONCLUSIONS Relaxin could be a valuable motility booster of stored- or aged-spermatozoa for assisted reproduction techniques. However, the related-intracellular signaling cascades of relaxin in boar spermatozoa remain undetermined.
Collapse
Affiliation(s)
- Jean M Feugang
- Facility for Organismal and Cellular Imaging (FOCI), Department of Animal and Dairy Sciences, Mississippi State University, Mississippi State, Mississippi, 39762, USA.
| | - Juan C Rodríguez-Muñoz
- Facility for Organismal and Cellular Imaging (FOCI), Department of Animal and Dairy Sciences, Mississippi State University, Mississippi State, Mississippi, 39762, USA.
| | - Darby S Dillard
- Facility for Organismal and Cellular Imaging (FOCI), Department of Animal and Dairy Sciences, Mississippi State University, Mississippi State, Mississippi, 39762, USA.
| | - Mark A Crenshaw
- Facility for Organismal and Cellular Imaging (FOCI), Department of Animal and Dairy Sciences, Mississippi State University, Mississippi State, Mississippi, 39762, USA.
| | - Scott T Willard
- Facility for Organismal and Cellular Imaging (FOCI), Department of Animal and Dairy Sciences, Mississippi State University, Mississippi State, Mississippi, 39762, USA.
- Department of Biochemistry and Molecular Biology & Entomology and Plant Pathology, Mississippi State University, Mississippi State, Mississippi, 39762, USA.
| | - Peter L Ryan
- Facility for Organismal and Cellular Imaging (FOCI), Department of Animal and Dairy Sciences, Mississippi State University, Mississippi State, Mississippi, 39762, USA.
- Department of Pathobiology and Population Medicine, Mississippi State University, Mississippi State, Mississippi, 39762, USA.
| |
Collapse
|
76
|
Teerds KJ, Huhtaniemi IT. Morphological and functional maturation of Leydig cells: from rodent models to primates. Hum Reprod Update 2015; 21:310-28. [PMID: 25724971 DOI: 10.1093/humupd/dmv008] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2014] [Accepted: 01/15/2015] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Leydig cells (LC) are the sites of testicular androgen production. Development of LC occurs in the testes of most mammalian species as two distinct growth phases, i.e. as fetal and pubertal/adult populations. In primates there are indications of a third neonatal growth phase. LC androgen production begins in embryonic life and is crucial for the intrauterine masculinization of the male fetal genital tract and brain, and continues until birth after which it rapidly declines. A short post-natal phase of LC activity in primates (including human) termed 'mini-puberty' precedes the period of juvenile quiescence. The adult population of LC evolves, depending on species, in mid- to late-prepuberty upon reawakening of the hypothalamic-pituitary-testicular axis, and these cells are responsible for testicular androgen production in adult life, which continues with a slight gradual decline until senescence. This review is an updated comparative analysis of the functional and morphological maturation of LC in model species with special reference to rodents and primates. METHODS Pubmed, Scopus, Web of Science and Google Scholar databases were searched between December 2012 and October 2014. Studies published in languages other than English or German were excluded, as were data in abstract form only. Studies available on primates were primarily examined and compared with available data from specific animal models with emphasis on rodents. RESULTS Expression of different marker genes in rodents provides evidence that at least two distinct progenitor lineages give rise to the fetal LC (FLC) population, one arising from the coelomic epithelium and the other from specialized vascular-associated cells along the gonad-mesonephros border. There is general agreement that the formation and functioning of the FLC population in rodents is gonadotrophin-responsive but not gonadotrophin-dependent. In contrast, although there is in primates some controversy on the role of gonadotrophins in the formation of the FLC population, there is consensus about the essential role of gonadotrophins in testosterone production. Like the FLC population, adult Leydig cells (ALC) in rodents arise from stem cells, which have their origin in the fetal testis. In contrast, in primates the ALC population is thought to originate from FLC, which undergo several cycles of regression and redifferentiation before giving rise to the mature ALC population, as well as from differentiation of stem cells/precursor cells. Despite this difference in origin, both in primates and rodents the formation of the mature and functionally active ALC population is critically dependent on the pituitary gonadotrophin, LH. From studies on rodents considerable knowledge has emerged on factors that are involved besides LH in the regulation of this developmental process. Whether the same factors also play a role in the development of the mature primate LC population awaits further investigation. CONCLUSION Distinct populations of LC develop along the life span of males, including fetal, neonatal (primates) and ALC. Despite differences in the LC lineages of rodents and primates, the end product is a mature population of LC with the main function to provide androgens necessary for the maintenance of spermatogenesis and extra-gonadal androgen actions.
Collapse
Affiliation(s)
- Katja J Teerds
- Human and Animal Physiology, Wageningen University, De Elst 1, 6709 WD, Wageningen, The Netherlands
| | - Ilpo T Huhtaniemi
- Department of Surgery and Cancer, Institute of Reproductive and Developmental Biology, Imperial College London, Hammersmith Campus, Du Cane Road, W12 0NN London, UK Department of Physiology, Institute of Biomedicine, University of Turku, Kiinamyllynkatu 10, 20520 Turku, Finland
| |
Collapse
|
77
|
Yegorov S, Bogerd J, Good SV. The relaxin family peptide receptors and their ligands: new developments and paradigms in the evolution from jawless fish to mammals. Gen Comp Endocrinol 2014; 209:93-105. [PMID: 25079565 DOI: 10.1016/j.ygcen.2014.07.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2014] [Revised: 07/01/2014] [Accepted: 07/16/2014] [Indexed: 12/13/2022]
Abstract
Relaxin family peptide receptors (Rxfps) and their ligands, relaxin (Rln) and insulin-like (Insl) peptides, are broadly implicated in the regulation of reproductive and neuroendocrine processes in mammals. Most placental mammals harbour genes for four receptors, namely rxfp1, rxfp2, rxfp3 and rxfp4. The number and identity of rxfps in other vertebrates are immensely variable, which is probably attributable to intraspecific variation in reproductive and neuroendocrine regulation. Here, we highlight several interesting, but greatly overlooked, aspects of the rln/insl-rxfp evolutionary history: the ancient origin, recruitment of novel receptors, diverse roles of selection, differential retention and lineage-specific loss of genes over evolutionary time. The tremendous diversity of rln/insl and rxfp genes appears to have arisen from two divergent receptors and one ligand that were duplicated by whole genome duplications (WGD) in early vertebrate evolution, although several genes, notably relaxin in mammals, were also duplicated via small scale duplications. Duplication and loss of genes have varied across lineages: teleosts retained more WGD-derived genes, dominated by those thought to be involved in neuroendocrine regulation (rln3, insl5 and rxfp 3/4 genes), while eutherian mammals witnessed the diversification and rapid evolution of genes involved in reproduction (rln/insl3). Several genes that arose early in evolutionary history were lost in most mammals, but retained in teleosts and, to a lesser extent, in early diverging tetrapods. To elaborate on their evolutionary history, we provide updated phylogenies of the Rxfp1/2 and Rxfp3/4 receptors and their ligands, including new sequences from early diverging vertebrate taxa such as coelacanth, skate, spotted gar, and lamprey. We also summarize the recent progress made towards understanding the functional biology of Rxfps in non-mammalian taxa, providing a new conceptual framework for research on Rxfp signaling across vertebrates.
Collapse
Affiliation(s)
- Sergey Yegorov
- Department of Biology, University of Winnipeg, 599 Portage Ave., Winnipeg, MB, Canada
| | - Jan Bogerd
- Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Sara V Good
- Department of Biology, University of Winnipeg, 599 Portage Ave., Winnipeg, MB, Canada.
| |
Collapse
|
78
|
O'Hara L, McInnes K, Simitsidellis I, Morgan S, Atanassova N, Slowikowska-Hilczer J, Kula K, Szarras-Czapnik M, Milne L, Mitchell RT, Smith LB. Autocrine androgen action is essential for Leydig cell maturation and function, and protects against late-onset Leydig cell apoptosis in both mice and men. FASEB J 2014; 29:894-910. [PMID: 25404712 PMCID: PMC4422361 DOI: 10.1096/fj.14-255729] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Leydig cell number and function decline as men age, and low testosterone is associated with all “Western” cardio-metabolic disorders. However, whether perturbed androgen action within the adult Leydig cell lineage predisposes individuals to this late-onset degeneration remains unknown. To address this, we generated a novel mouse model in which androgen receptor (AR) is ablated from ∼75% of adult Leydig stem cell/cell progenitors, from fetal life onward (Leydig cell AR knockout mice), permitting interrogation of the specific roles of autocrine Leydig cell AR signaling through comparison to adjacent AR-retaining Leydig cells, testes from littermate controls, and to human testes, including from patients with complete androgen insensitivity syndrome (CAIS). This revealed that autocrine AR signaling is dispensable for the attainment of final Leydig cell number but is essential for Leydig cell maturation and regulation of steroidogenic enzymes in adulthood. Furthermore, these studies reveal that autocrine AR signaling in Leydig cells protects against late-onset degeneration of the seminiferous epithelium in mice and inhibits Leydig cell apoptosis in both adult mice and patients with CAIS, possibly via opposing aberrant estrogen signaling. We conclude that autocrine androgen action within Leydig cells is essential for the lifelong support of spermatogenesis and the development and lifelong health of Leydig cells.—O’Hara, L., McInnes, K., Simitsidellis, I., Morgan, S., Atanassova, N., Slowikowska-Hilczer, J., Kula, K., Szarras-Czapnik, M., Milne, L., Mitchell, R. T., Smith, L. B. Autocrine androgen action is essential for Leydig cell maturation and function, and protects against late-onset Leydig cell apoptosis in both mice and men.
Collapse
Affiliation(s)
- Laura O'Hara
- *MRC Centre for Reproductive Health and BHF Centre for Cardiovascular Science, University of Edinburgh, The Queen's Medical Research Institute, Edinburgh, United Kingdom; Institute of Experimental Morphology and Anthropology with Museum, Bulgarian Academy of Sciences, Sofia, Bulgaria; Department of Andrology and Reproductive Endocrinology, Medical University of Lodz, Lodz, Poland; and Clinic of Endocrinology and Diabetology, Children's Memorial Health Institute, Warsaw, Poland
| | - Kerry McInnes
- *MRC Centre for Reproductive Health and BHF Centre for Cardiovascular Science, University of Edinburgh, The Queen's Medical Research Institute, Edinburgh, United Kingdom; Institute of Experimental Morphology and Anthropology with Museum, Bulgarian Academy of Sciences, Sofia, Bulgaria; Department of Andrology and Reproductive Endocrinology, Medical University of Lodz, Lodz, Poland; and Clinic of Endocrinology and Diabetology, Children's Memorial Health Institute, Warsaw, Poland
| | - Ioannis Simitsidellis
- *MRC Centre for Reproductive Health and BHF Centre for Cardiovascular Science, University of Edinburgh, The Queen's Medical Research Institute, Edinburgh, United Kingdom; Institute of Experimental Morphology and Anthropology with Museum, Bulgarian Academy of Sciences, Sofia, Bulgaria; Department of Andrology and Reproductive Endocrinology, Medical University of Lodz, Lodz, Poland; and Clinic of Endocrinology and Diabetology, Children's Memorial Health Institute, Warsaw, Poland
| | - Stephanie Morgan
- *MRC Centre for Reproductive Health and BHF Centre for Cardiovascular Science, University of Edinburgh, The Queen's Medical Research Institute, Edinburgh, United Kingdom; Institute of Experimental Morphology and Anthropology with Museum, Bulgarian Academy of Sciences, Sofia, Bulgaria; Department of Andrology and Reproductive Endocrinology, Medical University of Lodz, Lodz, Poland; and Clinic of Endocrinology and Diabetology, Children's Memorial Health Institute, Warsaw, Poland
| | - Nina Atanassova
- *MRC Centre for Reproductive Health and BHF Centre for Cardiovascular Science, University of Edinburgh, The Queen's Medical Research Institute, Edinburgh, United Kingdom; Institute of Experimental Morphology and Anthropology with Museum, Bulgarian Academy of Sciences, Sofia, Bulgaria; Department of Andrology and Reproductive Endocrinology, Medical University of Lodz, Lodz, Poland; and Clinic of Endocrinology and Diabetology, Children's Memorial Health Institute, Warsaw, Poland
| | - Jolanta Slowikowska-Hilczer
- *MRC Centre for Reproductive Health and BHF Centre for Cardiovascular Science, University of Edinburgh, The Queen's Medical Research Institute, Edinburgh, United Kingdom; Institute of Experimental Morphology and Anthropology with Museum, Bulgarian Academy of Sciences, Sofia, Bulgaria; Department of Andrology and Reproductive Endocrinology, Medical University of Lodz, Lodz, Poland; and Clinic of Endocrinology and Diabetology, Children's Memorial Health Institute, Warsaw, Poland
| | - Krzysztof Kula
- *MRC Centre for Reproductive Health and BHF Centre for Cardiovascular Science, University of Edinburgh, The Queen's Medical Research Institute, Edinburgh, United Kingdom; Institute of Experimental Morphology and Anthropology with Museum, Bulgarian Academy of Sciences, Sofia, Bulgaria; Department of Andrology and Reproductive Endocrinology, Medical University of Lodz, Lodz, Poland; and Clinic of Endocrinology and Diabetology, Children's Memorial Health Institute, Warsaw, Poland
| | - Maria Szarras-Czapnik
- *MRC Centre for Reproductive Health and BHF Centre for Cardiovascular Science, University of Edinburgh, The Queen's Medical Research Institute, Edinburgh, United Kingdom; Institute of Experimental Morphology and Anthropology with Museum, Bulgarian Academy of Sciences, Sofia, Bulgaria; Department of Andrology and Reproductive Endocrinology, Medical University of Lodz, Lodz, Poland; and Clinic of Endocrinology and Diabetology, Children's Memorial Health Institute, Warsaw, Poland
| | - Laura Milne
- *MRC Centre for Reproductive Health and BHF Centre for Cardiovascular Science, University of Edinburgh, The Queen's Medical Research Institute, Edinburgh, United Kingdom; Institute of Experimental Morphology and Anthropology with Museum, Bulgarian Academy of Sciences, Sofia, Bulgaria; Department of Andrology and Reproductive Endocrinology, Medical University of Lodz, Lodz, Poland; and Clinic of Endocrinology and Diabetology, Children's Memorial Health Institute, Warsaw, Poland
| | - Rod T Mitchell
- *MRC Centre for Reproductive Health and BHF Centre for Cardiovascular Science, University of Edinburgh, The Queen's Medical Research Institute, Edinburgh, United Kingdom; Institute of Experimental Morphology and Anthropology with Museum, Bulgarian Academy of Sciences, Sofia, Bulgaria; Department of Andrology and Reproductive Endocrinology, Medical University of Lodz, Lodz, Poland; and Clinic of Endocrinology and Diabetology, Children's Memorial Health Institute, Warsaw, Poland
| | - Lee B Smith
- *MRC Centre for Reproductive Health and BHF Centre for Cardiovascular Science, University of Edinburgh, The Queen's Medical Research Institute, Edinburgh, United Kingdom; Institute of Experimental Morphology and Anthropology with Museum, Bulgarian Academy of Sciences, Sofia, Bulgaria; Department of Andrology and Reproductive Endocrinology, Medical University of Lodz, Lodz, Poland; and Clinic of Endocrinology and Diabetology, Children's Memorial Health Institute, Warsaw, Poland
| |
Collapse
|
79
|
Hunter D, Anand-Ivell R, Danner S, Ivell R. Models of in vitro spermatogenesis. SPERMATOGENESIS 2014; 2:32-43. [PMID: 22553488 PMCID: PMC3341244 DOI: 10.4161/spmg.19383] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Understanding the mechanisms that lead to the differentiation of male germ cells from their spermatogonial stem cells through meiosis to give rise to mature haploid spermatozoa has been a major quest for many decades. Unlike most other cell types this differentiation process is more or less completely dependent upon the cells being located within the strongly structured niche provided by mature Sertoli cells within an intact seminiferous epithelium. While much new information is currently being obtained through the application and description of relevant gene mutations, there is still a considerable need for in vitro models with which to explore the mechanisms involved. Not only are systems of in vitro spermatogenesis important for understanding the basic science, they have marked pragmatic value in offering ex vivo systems for the artificial maturation of immature germ cells from male infertility patients, as well as providing opportunities for the transgenic manipulation of male germ cells. In this review, we have summarized literature relating to simplistic culturing of germ cells, co-cultures of germ cells with other cell types, especially with Sertoli cells, cultures of seminiferous tubule fragments, and briefly mention the opportunities of xenografting larger testicular pieces. The majority of methods are successful in allowing the differentiation of small steps in the progress of spermatogonia to spermatozoa; few tolerate the chromosomal reduction division through meiosis, and even fewer seem able to complete the complex morphogenesis which results in freely swimming spermatozoa. However, recent progress with complex culture environments, such as 3-d matrices, suggest that possibly success is now not too far away.
Collapse
|
80
|
Kusakabe M, Ishikawa A, Kitano J. Relaxin-related gene expression differs between anadromous and stream-resident stickleback (Gasterosteus aculeatus) following seawater transfer. Gen Comp Endocrinol 2014; 205:197-206. [PMID: 24973563 DOI: 10.1016/j.ygcen.2014.06.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 06/09/2014] [Accepted: 06/15/2014] [Indexed: 10/25/2022]
Abstract
Relaxin (RLN) is a hormone that was originally identified as a regulator of pregnancy and reproduction. However, recent mammalian studies have demonstrated that relaxins also have potent osmoregulatory actions. In mammals, six relaxin family peptides have been identified: RLN1/2, RLN3, insulin-like peptide (INSL) 3, INSL4, INSL5, and INSL6. Previous genome database searches have revealed that teleosts also possess multiple relaxin family genes. However, the functions of these relaxin family peptides in teleosts remain unclear. In order to gain insight into the osmoregulatory functions of teleost relaxins, we studied the relaxin family peptides in euryhaline three-spined sticklebacks (Gasterosteus aculeatus), which have diversified into a variety of ecotypes. Rln3a, rln3b, and rln transcripts were abundant in the stickleback brain, whereas insl5b transcript levels were highest in the intestine among tissues. Seawater challenge experiments showed that transcript levels of rln3a, rln3b, and rln in the brain changed significantly after seawater transfer. Particularly, rln3b showed different patterns of temporal changes between anadromous and stream-resident morphs. The transcript levels of relaxin family peptide receptors, rxfp1, rxfp2b, rxfp3-2a, and rxfp3-2b, did not exhibit substantial changes in the brain, although these were constantly higher in the anadromous morph than the stream-resident morph. These results suggest that stickleback relaxin systems are differentially regulated by salinity signals, at least at the transcriptional level, and anadromous and stream-resident morphs differ in relaxin signaling pathways. The differences in the expression of relaxin-related genes between these two morphs provide a foundation for further exploration of the osmoregulatory function of relaxins in teleosts.
Collapse
Affiliation(s)
- Makoto Kusakabe
- Atmosphere and Ocean Research Institute, The University of Tokyo, Chiba 277-8564, Japan.
| | - Asano Ishikawa
- Ecological Genetics Laboratory, National Institute of Genetics, Shizuoka 411-8540, Japan
| | - Jun Kitano
- Ecological Genetics Laboratory, National Institute of Genetics, Shizuoka 411-8540, Japan
| |
Collapse
|
81
|
Mendoza-Villarroel RE, Di-Luoffo M, Camiré E, Giner XC, Brousseau C, Tremblay JJ. The INSL3 gene is a direct target for the orphan nuclear receptor, COUP-TFII, in Leydig cells. J Mol Endocrinol 2014; 53:43-55. [PMID: 24780841 DOI: 10.1530/jme-13-0290] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Insulin-like 3 (INSL3), a hormone produced by Leydig cells, regulates testicular descent during foetal life and bone metabolism in adults. Despite its importance, little is known about the molecular mechanisms controlling INSL3 expression. Reduced Insl3 mRNA levels were reported in the testis of mice deficient for chicken ovalbumin upstream promoter-transcription factor II (COUP-TFII), an orphan nuclear receptor known to play critical roles in cell differentiation and lineage determination in several tissues. Although COUP-TFII-deficient mice had Leydig cell dysfunction and impaired fertility, it remained unknown whether Insl3 expression was directly regulated by COUP-TFII. In this study, we observed a significant decrease in Insl3 mRNA levels in MA-10 Leydig cells depleted of COUP-TFII. Furthermore, a -1087 bp mouse Insl3 promoter was activated fourfold by COUP-TFII in MA-10 Leydig cells. Using 5' progressive deletions, the COUP-TFII-responsive element was located between -186 and -79 bp, a region containing previously uncharacterised direct repeat 0-like (DR0-like) and DR3 elements. The recruitment and direct binding of COUP-TFII to the DR0-like element were confirmed by chromatin immunoprecipitation and DNA precipitation assay respectively. Mutation of the DR0-like element, which prevented COUP-TFII binding, significantly decreased COUP-TFII-mediated activation of the -1087 bp Insl3 reporter in CV-1 fibroblast cells but not in MA-10 Leydig cells. Finally, we found that COUP-TFII cooperates with the nuclear receptor steroidogenic factor 1 (SF1) to further enhance Insl3 promoter activity. Our results identify Insl3 as a target for COUP-TFII in Leydig cells and revealed that COUP-TFII acts through protein-protein interactions with other DNA-bound transcription factors, including SF1, to activate Insl3 transcription in these cells.
Collapse
Affiliation(s)
- Raifish E Mendoza-Villarroel
- ReproductionMother and Child Health, Centre de Recherche du Centre Hospitalier Universitaire de Québec, CHUL Room T3-67, 2705 Laurier Boulevard, Québec, City, Québec, Canada G1V 4G2Department of ObstetricsGynecology, and Reproduction, Faculty of Medicine, Centre for Research in Biology of Reproduction, Université Laval, Québec City, Québec, Canada G1V 0A6
| | - Mickaël Di-Luoffo
- ReproductionMother and Child Health, Centre de Recherche du Centre Hospitalier Universitaire de Québec, CHUL Room T3-67, 2705 Laurier Boulevard, Québec, City, Québec, Canada G1V 4G2Department of ObstetricsGynecology, and Reproduction, Faculty of Medicine, Centre for Research in Biology of Reproduction, Université Laval, Québec City, Québec, Canada G1V 0A6
| | - Etienne Camiré
- ReproductionMother and Child Health, Centre de Recherche du Centre Hospitalier Universitaire de Québec, CHUL Room T3-67, 2705 Laurier Boulevard, Québec, City, Québec, Canada G1V 4G2Department of ObstetricsGynecology, and Reproduction, Faculty of Medicine, Centre for Research in Biology of Reproduction, Université Laval, Québec City, Québec, Canada G1V 0A6
| | - Xavier C Giner
- ReproductionMother and Child Health, Centre de Recherche du Centre Hospitalier Universitaire de Québec, CHUL Room T3-67, 2705 Laurier Boulevard, Québec, City, Québec, Canada G1V 4G2Department of ObstetricsGynecology, and Reproduction, Faculty of Medicine, Centre for Research in Biology of Reproduction, Université Laval, Québec City, Québec, Canada G1V 0A6
| | - Catherine Brousseau
- ReproductionMother and Child Health, Centre de Recherche du Centre Hospitalier Universitaire de Québec, CHUL Room T3-67, 2705 Laurier Boulevard, Québec, City, Québec, Canada G1V 4G2Department of ObstetricsGynecology, and Reproduction, Faculty of Medicine, Centre for Research in Biology of Reproduction, Université Laval, Québec City, Québec, Canada G1V 0A6
| | - Jacques J Tremblay
- ReproductionMother and Child Health, Centre de Recherche du Centre Hospitalier Universitaire de Québec, CHUL Room T3-67, 2705 Laurier Boulevard, Québec, City, Québec, Canada G1V 4G2Department of ObstetricsGynecology, and Reproduction, Faculty of Medicine, Centre for Research in Biology of Reproduction, Université Laval, Québec City, Québec, Canada G1V 0A6ReproductionMother and Child Health, Centre de Recherche du Centre Hospitalier Universitaire de Québec, CHUL Room T3-67, 2705 Laurier Boulevard, Québec, City, Québec, Canada G1V 4G2Department of ObstetricsGynecology, and Reproduction, Faculty of Medicine, Centre for Research in Biology of Reproduction, Université Laval, Québec City, Québec, Canada G1V 0A6
| |
Collapse
|
82
|
Kong RCK, Bathgate RAD, Bruell S, Wade JD, Gooley PR, Petrie EJ. Mapping Key Regions of the RXFP2 Low-Density Lipoprotein Class-A Module That Are Involved in Signal Activation. Biochemistry 2014; 53:4537-48. [DOI: 10.1021/bi500797d] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Roy C. K. Kong
- Department of Biochemistry and Molecular Biology, The Bio21 Molecular
Science and Biotechnology Institute, ‡Florey Institute of Neuroscience
and Mental Health, and §School of Chemistry, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Ross A. D. Bathgate
- Department of Biochemistry and Molecular Biology, The Bio21 Molecular
Science and Biotechnology Institute, ‡Florey Institute of Neuroscience
and Mental Health, and §School of Chemistry, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Shoni Bruell
- Department of Biochemistry and Molecular Biology, The Bio21 Molecular
Science and Biotechnology Institute, ‡Florey Institute of Neuroscience
and Mental Health, and §School of Chemistry, University of Melbourne, Parkville, Victoria 3010, Australia
| | - John D. Wade
- Department of Biochemistry and Molecular Biology, The Bio21 Molecular
Science and Biotechnology Institute, ‡Florey Institute of Neuroscience
and Mental Health, and §School of Chemistry, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Paul R. Gooley
- Department of Biochemistry and Molecular Biology, The Bio21 Molecular
Science and Biotechnology Institute, ‡Florey Institute of Neuroscience
and Mental Health, and §School of Chemistry, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Emma J. Petrie
- Department of Biochemistry and Molecular Biology, The Bio21 Molecular
Science and Biotechnology Institute, ‡Florey Institute of Neuroscience
and Mental Health, and §School of Chemistry, University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
83
|
Zhang H, Lu Y, Luo B, Yan S, Guo X, Dai J. Proteomic analysis of mouse testis reveals perfluorooctanoic acid-induced reproductive dysfunction via direct disturbance of testicular steroidogenic machinery. J Proteome Res 2014; 13:3370-85. [PMID: 24940614 DOI: 10.1021/pr500228d] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Perfluorooctanoic acid (PFOA) is a ubiquitous environmental pollutant suspected of being an endocrine disruptor; however, mechanisms of male reproductive disorders induced by PFOA are poorly understood. In this study, male mice were exposed to 0, 0.31, 1.25, 5, and 20 mg PFOA/kg/day by oral gavage for 28 days. PFOA significantly damaged the seminiferous tubules and reduced testosterone and progesterone levels in the testis in a dose-dependent manner. Furthermore, PFOA exposure reduced sperm quality. We identified 93 differentially expressed proteins between the control and the 5 mg/kg/d PFOA treated mice using a quantitative proteomic approach. Among them, insulin like-factor 3 (INSL3) and cytochrome P450 cholesterol side-chain cleavage enzyme (CYP11A1) as Leydig-cell-specific markers were significantly decreased. We examined in detail the expression patterns of CYP11A1 and associated genes involved in steroidogenesis in the mouse testis. PFOA inhibited the mRNA and protein levels of CYP11A1 and the mRNA levels of 17β-hydroxysteroid dehydrogenase (17β-HSD) in a dose-dependent manner. Moreover, in vitro study showed the reduction in progesterone levels was accompanied by decreased expression of CYP11A1 in cAMP-stimulated mLTC-1 cells. Our findings indicate that PFOA exposure can impair male reproductive function, possibly by disturbing testosterone levels, and CPY11A1 may be a major steroidogenic enzyme targeted by PFOA.
Collapse
Affiliation(s)
- Hongxia Zhang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences , Beijing, 100101, P.R. China
| | | | | | | | | | | |
Collapse
|
84
|
Johansen ML, Anand-Ivell R, Mouritsen A, Hagen CP, Mieritz MG, Søeborg T, Johannsen TH, Main KM, Andersson AM, Ivell R, Juul A. Serum levels of insulin-like factor 3, anti-Müllerian hormone, inhibin B, and testosterone during pubertal transition in healthy boys: a longitudinal pilot study. Reproduction 2014; 147:529-35. [DOI: 10.1530/rep-13-0435] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Insulin-like factor 3 (INSL3) is a promising marker of Leydig cell function with potentially high clinical relevance. Limited data of INSL3 levels in relation to other reproductive hormones in healthy pubertal boys exist. In this study, we aimed to evaluate longitudinal serum changes in INSL3 compared with LH, FSH, testosterone, inhibin B, and anti-Müllerian hormone (AMH) during puberty in healthy boys. Ten boys were included from the longitudinal part of the COPENHAGEN Puberty Study. Pubertal evaluation, including testicular volume, was performed and blood samples were drawn every 6 months for 5 years. Serum concentrations of testosterone were determined by a newly developed LC–MS/MS method, and serum concentrations of INSL3, AMH, inhibin B, FSH, and LH respectively were determined by validated immunoassays. The results showed that serum INSL3 levels increased progressively with increasing age, pubertal onset, and testicular volume. In six of the ten boys, LH increased before the first observed increase in INSL3. In the remaining four boys, the increase in LH and INSL3 was observed at the same examination. The increases in serum concentrations of LH, testosterone, and INSL3 were not parallel or in ordered succession and varied interindividually. We demonstrated that INSL3 concentrations were tightly associated with pubertal onset and increasing testicular volume. However, the pubertal increases in LH, INSL3, and testosterone concentrations were not entirely parallel, suggesting that INSL3 and testosterone may be regulated differently. Thus, we speculate that INSL3 provides additional information on Leydig cell differentiation and function during puberty compared with traditional markers of testicular function.
Collapse
|
85
|
Minagawa I, Sagata D, Pitia AM, Kohriki H, Shibata M, Sasada H, Hasegawa Y, Kohsaka T. Dynamics of insulin-like factor 3 and its receptor expression in boar testes. J Endocrinol 2014; 220:247-61. [PMID: 24464024 DOI: 10.1530/joe-13-0430] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Relaxin-like factor (RLF), now mainly known as insulin-like factor 3 (INSL3), is essential for testis descent during fetal development; however, its function in the adult testis is still being elucidated. As a major step toward understanding the as-yet-unknown function of INSL3 in boars, this study aimed to develop a time-resolved fluoroimmunoassay for boar INSL3, characterize the dynamics of INSL3 expression during development, and demonstrate the expression of the INSL3 hormone-receptor system in the testis. All samples were collected from Duroc boars. The sensitivity of the assay system established was 8.2 pg/well (164 pg/ml), and no cross-reactivity with other hormones, such as porcine relaxin, was observed. Circulating INSL3 was shown to increase progressively during development. INSL3 secreted from the Leydig cells was released not only into the blood circulation but also into the interstitial and seminiferous compartments in sufficient concentrations. A testicular fractionation study revealed that its receptor RXFP2 transcripts were expressed mainly in testicular germ cells. In addition, INSL3 bound to the germ cell membranes in a hormone-specific and saturable manner. These results reveal that INSL3 secreted into the interstitial compartment from the Leydig cells is transported into the seminiferous compartments, where its receptor RXFP2 is expressed mainly in the germ cells to which INSL3 binds, suggesting that INSL3 functions as a paracrine factor on seminiferous germ cells.
Collapse
Affiliation(s)
- Itaru Minagawa
- Laboratory of Animal Reproduction and Physiology, Department of Applied Biological Chemistry, Faculty of Agriculture, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan Division of Animal Resource Production, The United Graduate School of Agricultural Science, Gifu University, Gifu, Japan Shizuoka Swine and Poultry Experimental Station, Kikugawa, Shizuoka, Japan Laboratory of Animal Reproduction, School of Veterinary Medicine, Kitasato University, Towada, Japan School of Veterinary Medicine, Animal Sciences High-Tech Research Center, Kitasato University, Towada, Japan
| | | | | | | | | | | | | | | |
Collapse
|
86
|
Anand-Ivell R, Ivell R. Regulation of the reproductive cycle and early pregnancy by relaxin family peptides. Mol Cell Endocrinol 2014; 382:472-479. [PMID: 23994019 DOI: 10.1016/j.mce.2013.08.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Revised: 08/09/2013] [Accepted: 08/18/2013] [Indexed: 12/16/2022]
Abstract
The relaxin family of peptide hormones are structurally closely related to one another sharing a heterodimeric A-B structure, like that of insulin. They may also be active as unprocessed B-C-A pro-forms. Relaxin has been shown to pay a key role within the ovary, being involved in follicle growth, and ovulation. Relaxin is produced in large amounts also by the corpus luteum where it acts as an endocrine hormone positively affecting implantation, placentation and vascularization during the all-important first trimester phase of pregnancy establishment. Relaxin exerts its functions via the receptor RXFP1. Insulin-like peptide 3 (INSL3) in contrast acts through the related receptor RXFP2, and plays an essential role in the production of androgens within growing antral follicles. INSL3 is also produced in large amounts by the male fetus shortly after sex determination, where it controls the first transabdominal phase of testicular descent. However, this fetal INSL3 is also able to influence placental and maternal physiology, indicating associations with later preeclampsia and/or fetal growth restriction. Other members of this relaxin-like family of peptides, such as INSL4, INSL5 and INSL6 are less well studied, though all suggest modulatory roles in ovarian and/or placental function.
Collapse
Affiliation(s)
| | - Richard Ivell
- Leibniz Institute for Farm Animal Biology, 18196 Dummerstorf, Germany.
| |
Collapse
|
87
|
Rashidi Z, Azadbakht M, Amini A, Karimi I. Hydrostatic pressure affects in vitro maturation of oocytes and follicles and increases granulosa cell death. CELL JOURNAL 2014; 15:282-93. [PMID: 24381852 PMCID: PMC3866531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2012] [Accepted: 01/22/2013] [Indexed: 11/22/2022]
Abstract
OBJECTIVE This study examines the effects of hydrostatic pressure on in vitro maturation (IVM) of oocytes derived from in vitro grown follicles. MATERIALS AND METHODS In this experimental study, preantral follicles were isolated from 12-day-old female NMRI mice. Each follicle was cultured individually in Alpha Minimal Essential Medium (α-MEM) under mineral oil for 12 days. Then, follicles were induced for IVM and divided into two groups, control and experiment. In the experiment group follicles were subjected to 20 mmHg pressure for 30 minutes and cultured for 24-48 hours. We assessed for viability and IVM of the oocytes. The percentage of apoptosis in cumulus cells was determined by the TUNEL assay. A comparison between groups was made using the student's t test. RESULTS The percentage of metaphase II oocytes (MII) increased in hydrostatic pressuretreated follicles compared to controls (p<0.05). Cumulus cell viability reduced in hydrostatic pressure-treated follicles compared to controls (p<0.05). Exposure of follicles to pressure increased apoptosis in cumulus cells compared to controls (p<0.05). CONCLUSION Hydrostatic pressure, by inducing apoptosis in cumulus cells, participates in the cumulus oocyte coupled relationship with oocyte maturation.
Collapse
Affiliation(s)
- Zahra Rashidi
- Department of Biology, Faculty of Basic Sciences, Razi University, Kermanshah, Iran
| | - Mehri Azadbakht
- Department of Biology, Faculty of Basic Sciences, Razi University, Kermanshah, Iran,
* Corresponding Address:
P.O.Box: 6714967346Department of BiologyFaculty of Basic SciencesRazi UniversityKermanshahIran
Email
| | - Ali Amini
- Department of Biology, Faculty of Basic Sciences, Razi University, Kermanshah, Iran
| | - Isac Karimi
- Department of Basic Sciences, College of Veterinary Medicine, Razi University, Kermanshah, Iran
| |
Collapse
|
88
|
Xue K, Kim JY, Liu JY, Tsang BK. Insulin-like 3-induced rat preantral follicular growth is mediated by growth differentiation factor 9. Endocrinology 2014; 155:156-67. [PMID: 24169563 DOI: 10.1210/en.2013-1491] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The communication of somatic cells and oocytes by intrafollicular paracrine factors is essential for follicular growth in the ovary. Insulin-like 3 (INSL3) is a theca cell-secreted paracrine factor. Androgens and growth differentiation factor 9 (GDF9), an oocyte-derived growth factor, are essential for follicular development. Using a rat preantral follicle culture model, we examined in the present study the influence of INSL3 on preantral follicular growth and the molecular mechanisms involved. We have observed that the receptor for INSL3, relaxin/insulin-like family peptide receptor 2 (RXFP2), was exclusively expressed in oocytes. Recombinant INSL3 stimulated Gdf9 expression, preantral follicular growth, and testosterone synthesis in vitro. Inhibition of the cAMP/protein kinase A signaling pathway (with cAMP antagonist, 8-bromoadenosine 3',5'-cyclic monophosphorothioate, Rp-isomer) attenuated INSL3-induced Gdf9 expression and preantral follicular growth. Moreover, knocking down Gdf9 expression (with small interfering RNA) or inhibiting GDF9 signaling (with SB431542, an activin receptor-like kinase receptor 5 inhibitor, or specific inhibitor of mothers against decapentaplegic homolog 3) or androgen action (with flutamide, an androgen receptor antagonist) suppressed INSL3-induced preantral follicular growth. In addition, LH and DHT regulated the expression of Insl3 mRNA in preantral follicles. These observations suggest that INSL3 is a key theca cell-derived growth factor for preantral follicle and that its action is mediated by GDF9.
Collapse
Affiliation(s)
- Kai Xue
- State Key Laboratory in Reproductive Medicine (K.X., J.L.), Centre for Clinical Reproductive Medicine, Nanjing Medical University, Nanjing 210029, China; Departments of Obstetrics and Gynecology and Cellular and Molecular Medicine (K.X., J.Y.K., B.K.T.) and Interdisciplinary School of Health Sciences (B.K.T.), University of Ottawa, and Chronic Disease Program (K.X., J.Y.K., B.K.T.), Ottawa Hospital Research Institute, Ottawa K1H 8L6, Canada; and World Class University Biomodulation Major (J.Y.K., B.K.T.), Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul 151-742, Republic of Korea
| | | | | | | |
Collapse
|
89
|
Bay K, Anand-Ivell R. Human Testicular Insulin-Like Factor 3 and Endocrine Disrupters. VITAMINS & HORMONES 2014; 94:327-48. [DOI: 10.1016/b978-0-12-800095-3.00012-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
90
|
Ivell R, Heng K, Anand-Ivell R. Insulin-Like Factor 3 and the HPG Axis in the Male. Front Endocrinol (Lausanne) 2014; 5:6. [PMID: 24478759 PMCID: PMC3902607 DOI: 10.3389/fendo.2014.00006] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Accepted: 01/13/2014] [Indexed: 11/30/2022] Open
Abstract
The hypothalamic-pituitary-gonadal (HPG) axis comprises pulsatile GnRH from the hypothalamus impacting on the anterior pituitary to induce expression and release of both LH and FSH into the circulation. These in turn stimulate receptors on testicular Leydig and Sertoli cells, respectively, to promote steroidogenesis and spermatogenesis. Both Leydig and Sertoli cells exhibit negative feedback to the pituitary and/or hypothalamus via their products testosterone and inhibin B, respectively, thereby allowing tight regulation of the HPG axis. In particular, LH exerts both acute control on Leydig cells by influencing steroidogenic enzyme activity, as well as chronic control by impacting on Leydig cell differentiation and gene expression. Insulin-like peptide 3 (INSL3) represents an additional and different endpoint of the HPG axis. This Leydig cell hormone interacts with specific receptors, called RXFP2, on Leydig cells themselves to modulate steroidogenesis, and on male germ cells, probably to synergize with androgen-dependent Sertoli cell products to support spermatogenesis. Unlike testosterone, INSL3 is not acutely regulated by the HPG axis, but is a constitutive product of Leydig cells, which reflects their number and/or differentiation status and their ability therefore to produce various factors including steroids, together this is referred to as Leydig cell functional capacity. Because INSL3 is not subject to the acute episodic fluctuations inherent in the HPG axis itself, it serves as an excellent marker for Leydig cell differentiation and functional capacity, as in puberty, or in monitoring the treatment of hypogonadal patients, and at the same time buffering the HPG output.
Collapse
Affiliation(s)
- Richard Ivell
- School of Molecular and Biomedical Science, University of Adelaide , Adelaide, SA , Australia ; Leibniz Institute for Farm Animal Biology , Dummerstorf , Germany
| | - Kee Heng
- School of Molecular and Biomedical Science, University of Adelaide , Adelaide, SA , Australia
| | | |
Collapse
|
91
|
Matsumoto T, Masaoka T, Fujiwara A, Nakamura Y, Satoh N, Awaji M. Reproduction-related genes in the pearl oyster genome. Zoolog Sci 2013; 30:826-50. [PMID: 24125647 DOI: 10.2108/zsj.30.826] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Molluscan reproduction has been a target of biological research because of the various reproductive strategies that have evolved in this phylum. It has also been studied for the development of fisheries technologies, particularly aquaculture. Although fundamental processes of reproduction in other phyla, such as vertebrates and arthropods, have been well studied, information on the molecular mechanisms of molluscan reproduction remains limited. The recently released draft genome of the pearl oyster Pinctada fucata provides a novel and powerful platform for obtaining structural information on the genes and proteins involved in bivalve reproduction. In the present study, we analyzed the pearl oyster draft genome to screen reproduction-related genes. Analysis was mainly conducted for genes reported from other molluscs for encoding orthologs of reproduction-related proteins in other phyla. The gene search in the P. fucata gene models (version 1.1) and genome assembly (version 1.0) were performed using Genome Browser and BLAST software. The obtained gene models were then BLASTP searched against a public database to confirm the best-hit sequences. As a result, more than 40 gene models were identified with high accuracy to encode reproduction-related genes reported for P. fucata and other molluscs. These include vasa, nanos, doublesex- and mab-3-related transcription factor, 5-hydroxytryptamine (5-HT) receptors, vitellogenin, estrogen receptor, and others. The set of reproduction-related genes of P. fucata identified in the present study constitute a new tool for research on bivalve reproduction at the molecular level.
Collapse
Affiliation(s)
- Toshie Matsumoto
- 1 Aquaculture Technology Division, National Research Institute of Aquaculture, Fisheries Research Agency, Minami-lse, Watarai, Mie 516-0193, Japan
| | | | | | | | | | | |
Collapse
|
92
|
A novel ultrasensitive bioluminescent receptor-binding assay of INSL3 through chemical conjugation with nanoluciferase. Biochimie 2013; 95:2454-9. [DOI: 10.1016/j.biochi.2013.09.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2013] [Accepted: 09/09/2013] [Indexed: 11/22/2022]
|
93
|
Mamoulakis C, Georgiou I, Dimitriadis F, Tsounapi P, Giannakis I, Chatzikyriakidou A, Antypas S, Sofras F, Takenaka A, Sofikitis N. Genetic analysis of the human Insulin-like 3 gene: absence of mutations in a Greek paediatric cohort with testicular maldescent. Andrologia 2013; 46:986-96. [DOI: 10.1111/and.12184] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/12/2013] [Indexed: 11/30/2022] Open
Affiliation(s)
- C. Mamoulakis
- Department of Urology; Medical School; University of Crete; Heraklion Crete Greece
| | - I. Georgiou
- Genetics and IVF Unit; Department of Obstetrics and Gynaecology; Medical School; University of Ioannina; Ioannina Greece
| | - F. Dimitriadis
- B' Department of Urology; Medical School; Aristotle University; Thessaloniki Greece
| | - P. Tsounapi
- Department of Urology; Medical School; Tottori University; Yonago Japan
| | - I. Giannakis
- Department of Urology; Medical School; University of Ioannina; Ioannina Greece
| | - A. Chatzikyriakidou
- Genetics and IVF Unit; Department of Obstetrics and Gynaecology; Medical School; University of Ioannina; Ioannina Greece
| | - S. Antypas
- First Pediatric Surgery Clinic; Aghia Sophia Children's Hospital; Athens Greece
| | - F. Sofras
- Department of Urology; Medical School; University of Crete; Heraklion Crete Greece
| | - A. Takenaka
- Department of Urology; Medical School; Tottori University; Yonago Japan
| | - N. Sofikitis
- Department of Urology; Medical School; University of Ioannina; Ioannina Greece
| |
Collapse
|
94
|
Zucchi S, Castiglioni S, Fent K. Progesterone alters global transcription profiles at environmental concentrations in brain and ovary of female zebrafish (Danio rerio). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:12548-12556. [PMID: 24083816 DOI: 10.1021/es403800y] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Progesterone (P4) is a natural steroid hormone excreted by humans and animals. Noncomplete degradation in treatment plants result in levels in the ng/L range in surface waters. Very little is known of the effects on fish at such concentrations. Here we determine the global expression profile in the brain and ovary of female zebrafish exposed for 14 days to 3.5, 33 and 306 ng/L P4 to elucidate molecular effects. For validation selected transcripts were determined by RT-qPCR. In the brain, 54 and 255 transcripts were altered at 3.5 and 306 ng/L, respectively. Genes related to circadian rhythm (nr1d2b, per1b), cell cycle and reproduction (cdc20, ccnb1) were down-regulated. In the ovary, transcriptional changes occurred in 200, 84 and 196 genes at 3.5, 33 and 306 ng/L, respectively. The genes belong to different pathways including cardiac hypertrophy, cell cycle and its regulation. P4 slightly influenced oocyte maturation as revealed by histology of the ovaries. In the liver, vtg1 was down-regulated at all concentrations and VTG protein at 306 ng/L in the blood. The data show molecular effects and the modes of action of P4 at environmental concentrations. Ultimately they may translate to adverse effects on reproduction.
Collapse
Affiliation(s)
- Sara Zucchi
- School of Life Sciences, University of Applied Sciences Northwestern Switzerland , Gründenstrasse 40, CH-4132 Muttenz, Switzerland
| | | | | |
Collapse
|
95
|
MacLean JA, Hu Z, Welborn JP, Song HW, Rao MK, Wayne CM, Wilkinson MF. The RHOX homeodomain proteins regulate the expression of insulin and other metabolic regulators in the testis. J Biol Chem 2013; 288:34809-25. [PMID: 24121513 DOI: 10.1074/jbc.m113.486340] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Defects in cellular metabolism have been widely implicated in causing male infertility, but there has been little progress in understanding the underlying mechanism. Here we report that several key metabolism genes are regulated in the testis by Rhox5, the founding member of a large X-linked homeobox gene cluster. Among these Rhox5-regulated genes are insulin 2 (Ins2), resistin (Retn), and adiponectin (Adipoq), all of which encode secreted proteins that have profound and wide-ranging effects on cellular metabolism. The ability of Rhox5 to regulate their levels in the testis has the potential to dictate metabolism locally in this organ, given the existence of the blood-testes barrier. We demonstrate that Ins2 is a direct target of Rhox5 in Sertoli cells, and we show that this regulation is physiologically significant, because Rhox5-null mice fail to up-regulate Ins2 expression during the first wave of spermatogenesis and have insulin-signaling defects. We identify other Rhox family members that induce Ins2 transcription, define protein domains and homeodomain amino acid residues crucial for this property, and demonstrate that this regulation is conserved. Rhox5-null mice also exhibit altered expression of other metabolism genes, including those encoding the master transcriptional regulators of metabolism, PPARG and PPARGC1A, as well as SCD1, the rate-limiting enzyme for fatty acid metabolism. These results, coupled with the known roles of RHOX5 and its target metabolism genes in spermatogenesis in vivo, lead us to propose a model in which RHOX5 is a central transcription factor that promotes the survival of male germ cells via its effects on cellular metabolism.
Collapse
Affiliation(s)
- James A MacLean
- From the Department of Physiology, Southern Illinois University School of Medicine, Carbondale, Illinois 62901
| | | | | | | | | | | | | |
Collapse
|
96
|
Anand-Ivell R, Tremellen K, Dai Y, Heng K, Yoshida M, Knight PG, Hale GE, Ivell R. Circulating insulin-like factor 3 (INSL3) in healthy and infertile women. Hum Reprod 2013; 28:3093-102. [DOI: 10.1093/humrep/det349] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
97
|
Rosen O, Weil S, Manor R, Roth Z, Khalaila I, Sagi A. A crayfish insulin-like-binding protein: another piece in the androgenic gland insulin-like hormone puzzle is revealed. J Biol Chem 2013; 288:22289-98. [PMID: 23775079 DOI: 10.1074/jbc.m113.484279] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Across the animal kingdom, the involvement of insulin-like peptide (ILP) signaling in sex-related differentiation processes is attracting increasing attention. Recently, a gender-specific ILP was identified as the androgenic sex hormone in Crustacea. However, moieties modulating the actions of this androgenic insulin-like growth factor were yet to be revealed. Through molecular screening of an androgenic gland (AG) cDNA library prepared from the crayfish Cherax quadricarinatus, we have identified a novel insulin-like growth factor-binding protein (IGFBP) termed Cq-IGFBP. Based on bioinformatics analyses, the deduced Cq-IGFBP was shown to share high sequence homology with IGFBP family members from both invertebrates and vertebrates. The protein also includes a sequence determinant proven crucial for ligand binding, which according to three-dimensional modeling is assigned to the exposed outer surface of the protein. Recombinant Cq-IGFBP (rCq-IGFBP) protein was produced and, using a "pulldown" methodology, was shown to specifically interact with the insulin-like AG hormone of the crayfish (Cq-IAG). Particularly, using both mass spectral analysis and an immunological tool, rCq-IGFBP was shown to bind the Cq-IAG prohormone. Furthermore, a peptide corresponding to residues 23-38 of the Cq-IAG A-chain was found sufficient for in vitro recognition by rCq-IGFBP. Cq-IGFBP is the first IGFBP family member shown to specifically interact with a gender-specific ILP. Unlike their ILP ligands, IGFBPs are highly conserved across evolution, from ancient arthropods, like crustaceans, to humans. Such conservation places ILP signaling at the center of sex-related phenomena in early animal development.
Collapse
Affiliation(s)
- Ohad Rosen
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | | | | | | | | | | |
Collapse
|
98
|
Hampel U, Klonisch T, Sel S, Schulze U, Garreis F, Seitmann H, Zouboulis CC, Paulsen FP. Insulin-like factor 3 promotes wound healing at the ocular surface. Endocrinology 2013; 154:2034-45. [PMID: 23539510 DOI: 10.1210/en.2012-2201] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Tear fluid is known to contain many different hormones with relevance for ocular surface homeostasis. We studied the presence and functional role of insulin-like factor 3 (INSL3) and its cognate receptor RXFP2 (relaxin/insulin-like family peptide receptor 2) at the ocular surface and in tears. Expression of human INSL3 and RXFP2 was determined in tissues of the ocular surface and lacrimal apparatus; in human corneal (HCE), conjunctival (HCjE), and sebaceous (SC) epithelial cell lines; and in human tears by RT-PCR and ELISA. We investigated effects of human recombinant INSL3 (hrINSL3) on cell proliferation and cell migration and the influence of hrINSL3 on the expression of MMP2, -9, and -13 and TIMP1 and -2 was quantified by real-time PCR and ELISA in HCE, HCjE, and SC cells. We used a C57BL/6 mouse corneal defect model to elucidate the effect of topical application of hrINSL3 on corneal wound healing. INSL3 and RXFP2 transcripts and INSL3 protein were detected in all tissues and cell lines investigated. Significantly higher concentrations of INSL3 were detected in tears from male vs. female volunteers. Stimulation of HCE, HCjE, and SC with hrINSL3 significantly increased cell proliferation in HCjE and SC and migration of HCjE. Treatment with hrINSL3 for 24 hours regulated MMP2, TIMP1, and TIMP2 expression. The local application of hrINSL3 onto denuded corneal surface resulted in significantly accelerated corneal wound healing in mice. These findings suggest a novel and gender-specific role for INSL3 and cognate receptor RXFP2 signaling in ocular surface homeostasis and determined a novel role for hrINSL3 in corneal wound healing.
Collapse
Affiliation(s)
- Ulrike Hampel
- Department of Anatomy II, Friedrich Alexander University Erlangen-Nürnberg, Faculty of Medicine, Universitätsstrasse 19, 91054 Erlangen, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
99
|
Functional link between bone morphogenetic proteins and insulin-like peptide 3 signaling in modulating ovarian androgen production. Proc Natl Acad Sci U S A 2013; 110:E1426-35. [PMID: 23530236 DOI: 10.1073/pnas.1222216110] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Bone morphogenetic proteins (BMPs) are firmly implicated as intra-ovarian regulators of follicle development and steroidogenesis. Here we report a microarray analysis showing that treatment of cultured bovine theca cells (TC) with BMP6 significantly (>twofold; P < 0.01) up- or down-regulated expression of 445 genes. Insulin-like peptide 3 (INSL3) was the most heavily down-regulated gene (-43-fold) with cytochrome P450, subfamily XVII (CYP17A1) and other key steroidogenic transcripts including steroidogenic acute regulatory protein (STAR), cytochrome P450 family 11, subfamily A1 (CYP11A1) and 3 beta-hydroxysteroid dehydrogenase type 1 (HSD3B1) also down-regulated. BMP6 also reduced expression of nuclear receptor subfamily 5A1 (NR5A1) known to target the promoter regions of the aforementioned genes. Real-time PCR confirmed these findings and also revealed a marked reduction in expression of INSL3 receptor, relaxin/insulin-like family peptide receptor 2 (RXFP2). Secretion of INSL3 protein and androstenedione were also suppressed suggesting a functional link between BMP and INSL3 pathways in controlling androgen synthesis. RNAi-mediated knockdown of INSL3 reduced INSL3 mRNA (75%) and protein (94%) level and elicited a 77% reduction in CYP17A1 mRNA and 83% reduction in androstenedione secretion. Knockdown of RXFP2 also reduced CYP17A1 expression (81%) and androstenedione secretion (88%). Conversely, treatment with exogenous (human) INSL3 increased androstenedione secretion ∼twofold. The CYP17A1 inhibitor abiraterone abolished androgen secretion and reduced expression of both INSL3 and RXFP2. Collectively, these findings indicate a positive autoregulatory role for INSL3 signaling in maintaining thecal androgen production, and visa versa. Moreover, BMP6-induced suppression of thecal androgen synthesis may be mediated, at least in part, by reduced INSL3-RXFP2 signaling.
Collapse
|
100
|
Anand-Ivell R, Dai Y, Ivell R. Neohormones as biomarkers of reproductive health. Fertil Steril 2013; 99:1153-60. [DOI: 10.1016/j.fertnstert.2012.12.023] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Revised: 12/14/2012] [Accepted: 12/14/2012] [Indexed: 12/13/2022]
|