51
|
Singh PB, Newman AG. Age reprogramming and epigenetic rejuvenation. Epigenetics Chromatin 2018; 11:73. [PMID: 30572909 PMCID: PMC6300877 DOI: 10.1186/s13072-018-0244-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Accepted: 12/12/2018] [Indexed: 01/09/2023] Open
Abstract
Age reprogramming represents a novel method for generating patient-specific tissues for transplantation. It bypasses the de-differentiation/redifferentiation cycle that is characteristic of the induced pluripotent stem (iPS) and nuclear transfer-embryonic stem (NT-ES) cell technologies that drive current interest in regenerative medicine. Despite the obvious potential of iPS and NT-ES cell-based therapies, there are several problems that must be overcome before these therapies are safe and routine. As an alternative, age reprogramming aims to rejuvenate the specialized functions of an old cell without de-differentiation; age reprogramming does not require developmental reprogramming through an embryonic stage, unlike the iPS and NT-ES cell-based therapies. Tests of age reprogramming have largely focused on one aspect, the epigenome. Epigenetic rejuvenation has been achieved in vitro in the absence of de-differentiation using iPS cell reprogramming factors. Studies on the dynamics of epigenetic age (eAge) reprogramming have demonstrated that the separation of eAge from developmental reprogramming can be explained largely by their different kinetics. Age reprogramming has also been achieved in vivo and shown to increase lifespan in a premature ageing mouse model. We conclude that age and developmental reprogramming can be disentangled and regulated independently in vitro and in vivo.
Collapse
Affiliation(s)
- Prim B Singh
- Nazarbayev University School of Medicine, 5/1 Kerei, Zhanibek Khandar Street, Astana, Kazakhstan, Z05K4F4. .,Epigenetics Laboratory, Department of Natural Sciences, Novosibirsk State University, Pirogov Str. 2, Novosibirsk, 630090, Russian Federation. .,Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Cell and Neurobiology, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany.
| | - Andrew G Newman
- Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Cell and Neurobiology, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
| |
Collapse
|
52
|
Lopes AC, Oliveira PF, Sousa M. Shedding light into the relevance of telomeres in human reproduction and male factor infertility†. Biol Reprod 2018; 100:318-330. [DOI: 10.1093/biolre/ioy215] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 09/05/2018] [Accepted: 10/01/2018] [Indexed: 12/20/2022] Open
Affiliation(s)
- Ana Catarina Lopes
- Laboratory of Cell Biology, Department of Microscopy, and Multidisciplinary Unit for Biomedical Research (UMIB), Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
- Department of Life Sciences, Faculty of Sciences and Technology, New University of Lisbon (FCT-UNL), Campus Caparica, Caparica, Portugal
| | - Pedro F Oliveira
- Laboratory of Cell Biology, Department of Microscopy, and Multidisciplinary Unit for Biomedical Research (UMIB), Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
- Department of Genetics, Faculty of Medicine, University of Porto, Porto, Portugal
- i3S- Institute of Research and Innovation in Health, University of Porto, Porto, Portugal
| | - Mário Sousa
- Laboratory of Cell Biology, Department of Microscopy, and Multidisciplinary Unit for Biomedical Research (UMIB), Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
- Centre for Reproductive Genetics Professor Alberto Barros, Porto, Portugal
| |
Collapse
|
53
|
Kosebent EG, Uysal F, Ozturk S. Telomere length and telomerase activity during folliculogenesis in mammals. J Reprod Dev 2018; 64:477-484. [PMID: 30270279 PMCID: PMC6305847 DOI: 10.1262/jrd.2018-076] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Telomeres are repetitive non-coding DNA sequences located at the ends of chromosomes in eukaryotic cells. Their most important function is to protect chromosome ends from being recognized
as DNA damage. They are also implicated in meiosis and synapse formation. The length of telomeres inevitably shortens at the end of each round of DNA replication and, also, as a consequence
of the exposure to oxidative stress and/or genotoxic agents. The enzyme telomerase contributes to telomere lengthening. It has been reported that telomerase is exclusively expressed in germ
cells, granulosa cells, early embryos, stem cells, and various types of cancerous cells. Granulosa cells undergo many mitotic divisions and either granulosa cells or oocytes are exposed to a
variety of genotoxic agents throughout folliculogenesis; thus, telomerase plays an important role in the maintenance of telomere length. In this review article, we have comprehensively
evaluated the studies focusing on the regulation of telomerase expression and activity, as well as telomere length, during folliculogenesis from primordial to antral follicles, in several
mammalian species including mice, bovines, and humans. Also, the possible relationships between female infertility caused by follicular development defects and alterations in the telomeres
and/or telomerase activity are discussed.
Collapse
Affiliation(s)
- Esra Gozde Kosebent
- Department of Histology and Embryology, Akdeniz University School of Medicine, Antalya 07070, Turkey
| | - Fatma Uysal
- Department of Histology and Embryology, Ankara University School of Medicine, Ankara, Turkey
| | - Saffet Ozturk
- Department of Histology and Embryology, Akdeniz University School of Medicine, Antalya 07070, Turkey
| |
Collapse
|
54
|
Seeker LA, Ilska JJ, Psifidi A, Wilbourn RV, Underwood SL, Fairlie J, Holland R, Froy H, Salvo-Chirnside E, Bagnall A, Whitelaw B, Coffey MP, Nussey DH, Banos G. Bovine telomere dynamics and the association between telomere length and productive lifespan. Sci Rep 2018; 8:12748. [PMID: 30143784 PMCID: PMC6109064 DOI: 10.1038/s41598-018-31185-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 08/03/2018] [Indexed: 12/17/2022] Open
Abstract
Average telomere length (TL) in blood cells has been shown to decline with age in a range of vertebrate species, and there is evidence that TL is a heritable trait associated with late-life health and mortality in humans. In non-human mammals, few studies to date have examined lifelong telomere dynamics and no study has estimated the heritability of TL, despite these being important steps towards assessing the potential of TL as a biomarker of productive lifespan and health in livestock species. Here we measured relative leukocyte TL (RLTL) in 1,328 samples from 308 Holstein Friesian dairy cows and in 284 samples from 38 female calves. We found that RLTL declines after birth but remains relatively stable in adult life. We also calculated the first heritability estimates of RLTL in a livestock species which were 0.38 (SE = 0.03) and 0.32 (SE = 0.08) for the cow and the calf dataset, respectively. RLTL measured at the ages of one and five years were positively correlated with productive lifespan (p < 0.05). We conclude that bovine RLTL is a heritable trait, and its association with productive lifespan may be used in breeding programmes aiming to enhance cow longevity.
Collapse
Affiliation(s)
- Luise A Seeker
- Animal & Veterinary Sciences Group, SRUC, Roslin Institute Building, Easter Bush, Midlothian, UK.
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, UK.
| | - Joanna J Ilska
- Animal & Veterinary Sciences Group, SRUC, Roslin Institute Building, Easter Bush, Midlothian, UK
| | - Androniki Psifidi
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, UK
- Queen Mother Hospital for Animals, Royal Veterinary College, University of London, Hatfield, UK
| | - Rachael V Wilbourn
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, Midlothian, UK
| | - Sarah L Underwood
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, Midlothian, UK
| | - Jennifer Fairlie
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, Midlothian, UK
| | - Rebecca Holland
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, Midlothian, UK
| | - Hannah Froy
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, Midlothian, UK
| | | | | | - Bruce Whitelaw
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, UK
| | - Mike P Coffey
- Animal & Veterinary Sciences Group, SRUC, Roslin Institute Building, Easter Bush, Midlothian, UK
| | - Daniel H Nussey
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, Midlothian, UK
| | - Georgios Banos
- Animal & Veterinary Sciences Group, SRUC, Roslin Institute Building, Easter Bush, Midlothian, UK
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, UK
| |
Collapse
|
55
|
Muñoz-Lorente MA, Martínez P, Tejera Á, Whittemore K, Moisés-Silva AC, Bosch F, Blasco MA. AAV9-mediated telomerase activation does not accelerate tumorigenesis in the context of oncogenic K-Ras-induced lung cancer. PLoS Genet 2018; 14:e1007562. [PMID: 30114189 PMCID: PMC6095492 DOI: 10.1371/journal.pgen.1007562] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 07/14/2018] [Indexed: 02/07/2023] Open
Abstract
Short and dysfunctional telomeres are sufficient to induce a persistent DNA damage response at chromosome ends, which leads to the induction of senescence and/or apoptosis and to various age-related conditions, including a group of diseases known as “telomere syndromes”, which are provoked by extremely short telomeres owing to germline mutations in telomere genes. This opens the possibility of using telomerase activation as a potential therapeutic strategy to rescue short telomeres both in telomere syndromes and in age-related diseases, in this manner maintaining tissue homeostasis and ameliorating these diseases. In the past, we generated adeno-associated viral vectors carrying the telomerase gene (AAV9-Tert) and shown their therapeutic efficacy in mouse models of cardiac infarct, aplastic anemia, and pulmonary fibrosis. Although we did not observe increased cancer incidence as a consequence of Tert overexpression in any of those models, here we set to test the safety of AAV9-mediated Tert overexpression in the context of a cancer prone mouse model, owing to expression of oncogenic K-ras. As control, we also treated mice with AAV9 vectors carrying a catalytically inactive form of Tert, known to inhibit endogenous telomerase activity. We found that overexpression of Tert does not accelerate the onset or progression of lung carcinomas, even when in the setting of a p53-null background. These findings indicate that telomerase activation by using AAV9-mediated Tert gene therapy has no detectable cancer-prone effects in the context of oncogene-induced mouse tumors. The ends of our chromosomes, or telomeres, shorten with age. When telomeres become critically short cells stop dividing and die. Shortened telomeres are associated with onset of age-associated diseases. Telomerase is a retrotranscriptase enzyme that is able to elongate telomeres by coping an associated RNA template. Telomerase is silenced after birth in the majority of cells with the exception of adult stem cells. Cancer cells aberrantly reactivate telomerase facilitating indefinite cell division. Mutations in genes encoding for proteins involved in telomere maintenance lead the so-called “telomere syndromes” that include aplastic anemia and pulmonary fibrosis, among others. We have developed a telomerase gene therapy that has proven to be effective in delaying age-associated diseases and showed therapeutic effects in mouse models for the telomere syndromes. Given the potential cancer risk associated to telomerase expression in the organism, we set to analyze the effects of telomerase gene therapy in a lung cancer mouse model. Our work demonstrates that telomerase gene therapy does not aggravate the incidence, onset and progression of lung cancer in mice. These findings expand on the safety of AAV-mediated telomerase activation as a novel therapeutic strategy for the treatment of diseases associated to short telomeres.
Collapse
Affiliation(s)
- Miguel A. Muñoz-Lorente
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Centre (CNIO), Melchor Fernández Almagro 3, Madrid, Spain
| | - Paula Martínez
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Centre (CNIO), Melchor Fernández Almagro 3, Madrid, Spain
| | - Águeda Tejera
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Centre (CNIO), Melchor Fernández Almagro 3, Madrid, Spain
| | - Kurt Whittemore
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Centre (CNIO), Melchor Fernández Almagro 3, Madrid, Spain
| | - Ana Carolina Moisés-Silva
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Centre (CNIO), Melchor Fernández Almagro 3, Madrid, Spain
| | - Fàtima Bosch
- Centre of Animal Biotechnology and Gene Therapy, Department of Biochemistry and Molecular Biology, School of Veterinary Medicine, Universitat Autònoma de Barcelona, Bellaterra and CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Maria A. Blasco
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Centre (CNIO), Melchor Fernández Almagro 3, Madrid, Spain
- * E-mail:
| |
Collapse
|
56
|
Abstract
PURPOSE OF REVIEW Telomere attrition and dysfunction has become a well established pathway involved in organismal aging, not only because it imposes a limitation to cell division and therefore, tissue regeneration but also because telomere homeostasis influences other pathways involved in aging. However, the implication of telomere biology in ovarian aging and fertility is barely starting to be unveiled. RECENT FINDINGS During the last years, mounting evidence in favor of the relationship between the accumulation of short telomeres and ovarian senescence has emerged. Telomere attrition and the loss of telomerase activity in ovarian cell types is a common characteristic of female infertility. SUMMARY Recent findings regarding telomere attrition in the ovary open the possibility of both, finding new molecular biomarkers related to telomere homeostasis that make possible the early detection of ovarian dysfunction before the ovarian reserve has vanished, and the search of new therapies to preserve or set up ovarian cell types so that new and better quality oocytes can be generated in aged ovaries to improve IVF outcomes.
Collapse
|
57
|
Qiu GH, Huang C, Zheng X, Yang X. The protective function of noncoding DNA in genome defense of eukaryotic male germ cells. Epigenomics 2018; 10:499-517. [PMID: 29616594 DOI: 10.2217/epi-2017-0103] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Peripheral and abundant noncoding DNA has been hypothesized to protect the genome and the central protein-coding sequences against DNA damage in somatic genome. In the cytosol, invading exogenous nucleic acids may first be deactivated by small RNAs encoded by noncoding DNA via mechanisms similar to the prokaryotic CRISPR-Cas system. In the nucleus, the radicals generated by radiation in the cytosol, radiation energy and invading exogenous nucleic acids are absorbed, blocked and/or reduced by peripheral heterochromatin, and damaged DNA in heterochromatin is removed and excluded from the nucleus to the cytoplasm through nuclear pore complexes. To further strengthen the hypothesis, this review summarizes the experimental evidence supporting the protective function of noncoding DNA in the genome of male germ cells. Based on these data, this review provides evidence supporting the protective role of noncoding DNA in the genome defense of sperm genome through similar mechanisms to those of the somatic genome.
Collapse
Affiliation(s)
- Guo-Hua Qiu
- Fujian Provincial Key Laboratory for the Prevention & Control of Animal Infectious Diseases & Biotechnology; Key Laboratory of Preventive Veterinary Medicine and Biotechnology, Fujian Province University; College of Life Sciences, Longyan University, Longyan 364012, Fujian, PR China
| | - Cuiqin Huang
- Fujian Provincial Key Laboratory for the Prevention & Control of Animal Infectious Diseases & Biotechnology; Key Laboratory of Preventive Veterinary Medicine and Biotechnology, Fujian Province University; College of Life Sciences, Longyan University, Longyan 364012, Fujian, PR China
| | - Xintian Zheng
- Fujian Provincial Key Laboratory for the Prevention & Control of Animal Infectious Diseases & Biotechnology; Key Laboratory of Preventive Veterinary Medicine and Biotechnology, Fujian Province University; College of Life Sciences, Longyan University, Longyan 364012, Fujian, PR China
| | - Xiaoyan Yang
- Fujian Provincial Key Laboratory for the Prevention & Control of Animal Infectious Diseases & Biotechnology; Key Laboratory of Preventive Veterinary Medicine and Biotechnology, Fujian Province University; College of Life Sciences, Longyan University, Longyan 364012, Fujian, PR China
| |
Collapse
|
58
|
Entringer S, de Punder K, Buss C, Wadhwa PD. The fetal programming of telomere biology hypothesis: an update. Philos Trans R Soc Lond B Biol Sci 2018; 373:20170151. [PMID: 29335381 PMCID: PMC5784074 DOI: 10.1098/rstb.2017.0151] [Citation(s) in RCA: 127] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/26/2017] [Indexed: 12/17/2022] Open
Abstract
Research on mechanisms underlying fetal programming of health and disease risk has focused primarily on processes that are specific to cell types, organs or phenotypes of interest. However, the observation that developmental conditions concomitantly influence a diverse set of phenotypes, the majority of which are implicated in age-related disorders, raises the possibility that such developmental conditions may additionally exert effects via a common underlying mechanism that involves cellular/molecular ageing-related processes. In this context, we submit that telomere biology represents a process of particular interest in humans because, firstly, this system represents among the most salient antecedent cellular phenotypes for common age-related disorders; secondly, its initial (newborn) setting appears to be particularly important for its long-term effects; and thirdly, its initial setting appears to be plastic and under developmental regulation. We propose that the effects of suboptimal intrauterine conditions on the initial setting of telomere length and telomerase expression/activity capacity may be mediated by the programming actions of stress-related maternal-placental-fetal oxidative, immune, endocrine and metabolic pathways in a manner that may ultimately accelerate cellular dysfunction, ageing and disease susceptibility over the lifespan. This perspectives paper provides an overview of each of the elements underlying this hypothesis, with an emphasis on recent developments, findings and future directions.This article is part of the theme issue 'Understanding diversity in telomere dynamics'.
Collapse
Affiliation(s)
- Sonja Entringer
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Institute of Medical Psychology, Berlin, Germany
- Department of Pediatrics, University of California, School of Medicine, Irvine, CA, USA
- Development, Health and Disease Research Program, University of California, School of Medicine, Irvine, CA, USA
| | - Karin de Punder
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Institute of Medical Psychology, Berlin, Germany
| | - Claudia Buss
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Institute of Medical Psychology, Berlin, Germany
- Department of Pediatrics, University of California, School of Medicine, Irvine, CA, USA
- Development, Health and Disease Research Program, University of California, School of Medicine, Irvine, CA, USA
| | - Pathik D Wadhwa
- Department of Psychiatry and Human Behavior, University of California, School of Medicine, Irvine, CA, USA
- Department of Obstetrics and Gynecology, University of California, School of Medicine, Irvine, CA, USA
- Department of Pediatrics, University of California, School of Medicine, Irvine, CA, USA
- Department of Epidemiology, University of California, School of Medicine, Irvine, CA, USA
- Development, Health and Disease Research Program, University of California, School of Medicine, Irvine, CA, USA
| |
Collapse
|
59
|
Liu Y, Lucas-Hahn A, Petersen B, Li R, Hermann D, Hassel P, Ziegler M, Larsen K, Niemann H, Callesen H. Developmental Competence and Epigenetic Profile of Porcine Embryos Produced by Two Different Cloning Methods. Cell Reprogram 2018; 19:171-179. [PMID: 28557623 DOI: 10.1089/cell.2016.0055] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The "Dolly" based cloning (classical nuclear transfer, [CNT]) and the handmade cloning (HMC) are methods that are nowadays routinely used for somatic cloning of large domestic species. Both cloning protocols share several similarities, but differ with regard to the required in vitro culture, which in turn results in different time intervals until embryo transfer. It is not yet known whether the differences between cloned embryos from the two protocols are due to the cloning methods themselves or the in vitro culture, as some studies have shown detrimental effects of in vitro culture on conventionally produced embryos. The goal of this study was to unravel putative differences between two cloning methods, with regard to developmental competence, expression profile of a panel of developmentally important genes and epigenetic profile of porcine cloned embryos produced by either CNT or HMC, either with (D5 or D6) or without (D0) in vitro culture. Embryos cloned by these two methods had a similar morphological appearance on D0, but displayed different cleavage rates and different quality of blastocysts, with HMC embryos showing higher blastocyst rates (HMC vs. CNT: 35% vs. 10%, p < 0.05) and cell numbers per blastocyst (HMC vs. CNT: 31 vs. 23 on D5 and 42 vs. 18 on D6, p < 0.05) compared to CNT embryos. With regard to histone acetylation and gene expression, CNT and HMC derived cloned embryos were similar on D0, but differed on D6. In conclusion, both cloning methods and the in vitro culture may affect porcine embryo development and epigenetic profile. The two cloning methods essentially produce embryos of similar quality on D0 and after 5 days in vitro culture, but thereafter both histone acetylation and gene expression differ between the two types of cloned embryos.
Collapse
Affiliation(s)
- Ying Liu
- 1 Department of Animal Science, Aarhus University (Foulum) , Tjele, Denmark
| | - Andrea Lucas-Hahn
- 2 Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health , Neustadt, Germany
| | - Bjoern Petersen
- 2 Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health , Neustadt, Germany
| | - Rong Li
- 1 Department of Animal Science, Aarhus University (Foulum) , Tjele, Denmark
| | - Doris Hermann
- 2 Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health , Neustadt, Germany
| | - Petra Hassel
- 2 Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health , Neustadt, Germany
| | - Maren Ziegler
- 2 Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health , Neustadt, Germany
| | - Knud Larsen
- 3 Department of Molecular Biology and Genetics, Aarhus University (Foulum) , Tjele, Denmark
| | - Heiner Niemann
- 2 Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health , Neustadt, Germany
| | - Henrik Callesen
- 1 Department of Animal Science, Aarhus University (Foulum) , Tjele, Denmark
| |
Collapse
|
60
|
Tardat M, Déjardin J. Telomere chromatin establishment and its maintenance during mammalian development. Chromosoma 2017; 127:3-18. [PMID: 29250704 PMCID: PMC5818603 DOI: 10.1007/s00412-017-0656-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 12/05/2017] [Accepted: 12/05/2017] [Indexed: 12/11/2022]
Abstract
Telomeres are specialized structures that evolved to protect the end of linear chromosomes from the action of the cell DNA damage machinery. They are composed of tandem arrays of repeated DNA sequences with a specific heterochromatic organization. The length of telomeric repeats is dynamically regulated and can be affected by changes in the telomere chromatin structure. When telomeres are not properly controlled, the resulting chromosomal alterations can induce genomic instability and ultimately the development of human diseases, such as cancer. Therefore, proper establishment, regulation, and maintenance of the telomere chromatin structure are required for cell homeostasis. Here, we review the current knowledge on telomeric chromatin dynamics during cell division and early development in mammals, and how its proper regulation safeguards genome stability.
Collapse
Affiliation(s)
- Mathieu Tardat
- Institute of Human Genetics, CNRS UMR 9002, 141 rue de la Cardonille, 34396, Montpellier, France.
| | - Jérôme Déjardin
- Institute of Human Genetics, CNRS UMR 9002, 141 rue de la Cardonille, 34396, Montpellier, France.
| |
Collapse
|
61
|
Derevyanko A, Whittemore K, Schneider RP, Jiménez V, Bosch F, Blasco MA. Gene therapy with the TRF1 telomere gene rescues decreased TRF1 levels with aging and prolongs mouse health span. Aging Cell 2017; 16:1353-1368. [PMID: 28944611 PMCID: PMC5676056 DOI: 10.1111/acel.12677] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/15/2017] [Indexed: 12/18/2022] Open
Abstract
The shelterin complex protects telomeres by preventing them from being degraded and recognized as double‐strand DNA breaks. TRF1 is an essential component of shelterin, with important roles in telomere protection and telomere replication. We previously showed that TRF1 deficiency in the context of different mouse tissues leads to loss of tissue homeostasis owing to impaired stem cell function. Here, we show that TRF1 levels decrease during organismal aging both in mice and in humans. We further show that increasing TRF1 expression in both adult (1‐year‐old) and old (2‐year‐old) mice using gene therapy can delay age‐associated pathologies. To this end, we used the nonintegrative adeno‐associated serotype 9 vector (AAV9), which transduces the majority of mouse tissues allowing for moderate and transient TRF1 overexpression. AAV9‐TRF1 gene therapy significantly prevented age‐related decline in neuromuscular function, glucose tolerance, cognitive function, maintenance of subcutaneous fat, and chronic anemia. Interestingly, although AAV9‐TRF1 treatment did not significantly affect median telomere length, we found a lower abundance of short telomeres and of telomere‐associated DNA damage in some tissues. Together, these findings suggest that rescuing naturally decreased TRF1 levels during mouse aging using AAV9‐TRF1 gene therapy results in an improved mouse health span.
Collapse
Affiliation(s)
- Aksinya Derevyanko
- Telomeres and Telomerase Group Molecular Oncology Program Spanish National Cancer Centre (CNIO) Melchor Fernández Almagro 3 Madrid E‐28029 Spain
| | - Kurt Whittemore
- Telomeres and Telomerase Group Molecular Oncology Program Spanish National Cancer Centre (CNIO) Melchor Fernández Almagro 3 Madrid E‐28029 Spain
| | - Ralph P. Schneider
- Telomeres and Telomerase Group Molecular Oncology Program Spanish National Cancer Centre (CNIO) Melchor Fernández Almagro 3 Madrid E‐28029 Spain
| | - Verónica Jiménez
- Center of Animal Biotechnology and Gene Therapy Department of Biochemistry and Molecular Biology School of Veterinary Medicine Universitat Autònoma de Barcelona Bellaterra 08193 Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM) Madrid Spain
| | - Fàtima Bosch
- Center of Animal Biotechnology and Gene Therapy Department of Biochemistry and Molecular Biology School of Veterinary Medicine Universitat Autònoma de Barcelona Bellaterra 08193 Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM) Madrid Spain
| | - Maria A. Blasco
- Telomeres and Telomerase Group Molecular Oncology Program Spanish National Cancer Centre (CNIO) Melchor Fernández Almagro 3 Madrid E‐28029 Spain
| |
Collapse
|
62
|
Booth SA, Charchar FJ. Cardiac telomere length in heart development, function, and disease. Physiol Genomics 2017; 49:368-384. [DOI: 10.1152/physiolgenomics.00024.2017] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Telomeres are repetitive nucleoprotein structures at chromosome ends, and a decrease in the number of these repeats, known as a reduction in telomere length (TL), triggers cellular senescence and apoptosis. Heart disease, the worldwide leading cause of death, often results from the loss of cardiac cells, which could be explained by decreases in TL. Due to the cell-specific regulation of TL, this review focuses on studies that have measured telomeres in heart cells and critically assesses the relationship between cardiac TL and heart function. There are several lines of evidence that have identified rapid changes in cardiac TL during the onset and progression of heart disease as well as at critical stages of development. There are also many factors, such as the loss of telomeric proteins, oxidative stress, and hypoxia, that decrease cardiac TL and heart function. In contrast, antioxidants, calorie restriction, and exercise can prevent both cardiac telomere attrition and the progression of heart disease. TL in the heart is also indicative of proliferative potential and could facilitate the identification of cells suitable for cardiac rejuvenation. Although these findings highlight the involvement of TL in heart function, there are important questions regarding the validity of animal models, as well as several confounding factors, that need to be considered when interpreting results and planning future research. With these in mind, elucidating the telomeric mechanisms involved in heart development and the transition to disease holds promise to prevent cardiac dysfunction and potentiate regeneration after injury.
Collapse
Affiliation(s)
- S. A. Booth
- Faculty of Science and Technology, School of Applied and Biomedical Sciences, Federation University Australia, Balllarat, Australia
| | - F. J. Charchar
- Faculty of Science and Technology, School of Applied and Biomedical Sciences, Federation University Australia, Balllarat, Australia
- Department of Physiology, The University of Melbourne, Melbourne, Australia; and
- Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom
| |
Collapse
|
63
|
Phillippe M, Phillippe SM. Birth and death: Evidence for the same biologic clock. Am J Reprod Immunol 2017; 77. [DOI: 10.1111/aji.12638] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 01/05/2017] [Indexed: 12/21/2022] Open
Affiliation(s)
- Mark Phillippe
- Vincent Center for Reproductive Biology; Department of Obstetrics and Gynecology; Harvard Medical School; Boston MA USA
| | - Shiela M. Phillippe
- Vincent Center for Reproductive Biology; Department of Obstetrics and Gynecology; Harvard Medical School; Boston MA USA
| |
Collapse
|
64
|
Recipient of the 2017 IETS Pioneer Award: Prof. Dr. Heiner Niemann. Reprod Fertil Dev 2017. [DOI: 10.1071/rdv29n1_pa] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
65
|
Schmidt JE, Sirman AE, Kittilson JD, Clark ME, Reed WL, Heidinger BJ. Telomere correlations during early life in a long-lived seabird. Exp Gerontol 2016; 85:28-32. [DOI: 10.1016/j.exger.2016.09.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 08/23/2016] [Accepted: 09/11/2016] [Indexed: 01/01/2023]
|
66
|
McLennan D, Armstrong JD, Stewart DC, Mckelvey S, Boner W, Monaghan P, Metcalfe NB. Interactions between parental traits, environmental harshness and growth rate in determining telomere length in wild juvenile salmon. Mol Ecol 2016; 25:5425-5438. [PMID: 27662635 PMCID: PMC5091633 DOI: 10.1111/mec.13857] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 09/02/2016] [Accepted: 09/12/2016] [Indexed: 01/03/2023]
Abstract
A larger body size confers many benefits, such as increased reproductive success, ability to evade predators and increased competitive ability and social status. However, individuals rarely maximize their growth rates, suggesting that this carries costs. One such cost could be faster attrition of the telomeres that cap the ends of eukaryotic chromosomes and play an important role in chromosome protection. A relatively short telomere length is indicative of poor biological state, including poorer tissue and organ performance, reduced potential longevity and increased disease susceptibility. Telomere loss during growth may also be accelerated by environmental factors, but these have rarely been subjected to experimental manipulation in the natural environment. Using a wild system involving experimental manipulations of juvenile Atlantic salmon Salmo salar in Scottish streams, we found that telomere length in juvenile fish was influenced by parental traits and by direct environmental effects. We found that faster‐growing fish had shorter telomeres and there was a greater cost (in terms of reduced telomere length) if the growth occurred in a harsher environment. We also found a positive association between offspring telomere length and the growth history of their fathers (but not mothers), represented by the number of years fathers had spent at sea. This suggests that there may be long‐term consequences of growth conditions and parental life history for individual longevity.
Collapse
Affiliation(s)
- D McLennan
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Graham Kerr Building, Glasgow, G12 8QQ, UK.
| | - J D Armstrong
- Marine Scotland - Science, Freshwater Laboratory, Faskally, Pitlochry, PH16 5LB, UK
| | - D C Stewart
- Marine Scotland - Science, Freshwater Laboratory, Faskally, Pitlochry, PH16 5LB, UK
| | - S Mckelvey
- Cromarty Firth Fishery Trust, CKD Galbraith, Reay House, 17 Old Edinburgh Road, Inverness, IV2 3HF, UK
| | - W Boner
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Graham Kerr Building, Glasgow, G12 8QQ, UK
| | - P Monaghan
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Graham Kerr Building, Glasgow, G12 8QQ, UK
| | - N B Metcalfe
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Graham Kerr Building, Glasgow, G12 8QQ, UK
| |
Collapse
|
67
|
Liu HJ, Peng H, Hu CC, Li XY, Zhang JL, Zheng Z, Zhang WC. Effects of donor cells' sex on nuclear transfer efficiency and telomere lengths of cloned goats. Reprod Domest Anim 2016; 51:789-94. [PMID: 27558653 DOI: 10.1111/rda.12752] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 07/11/2016] [Indexed: 11/29/2022]
Abstract
The aim of this study was to investigate the effects of donor cells' sex on nuclear transfer efficiency and telomere length of cloned goats from adult skin fibroblast cells. The telomere length of somatic cell cloned goats and their offspring was determined by measuring their mean terminal restriction fragment (TRF) length. The result showed that (i) reconstructed embryos with fibroblast cells from males Boer goats obtained significantly higher kids rate and rate of live kids than those of female embryos and (ii) the telomere lengths of four female cloned goats were shorter compared to their donor cells, but five male cloned goats had the same telomere length with their donor cells, mainly due to great variation existed among them. The offspring from female cloned goats had the same telomere length with their age-matched counterparts. In conclusion, the donor cells' sex had significant effects on nuclear transfer efficiency and telomere lengths of cloned goats.
Collapse
Affiliation(s)
- H-J Liu
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, P. R. China.,Tianjin Institute of Animal Science and Veterinary Medicine, Tianjin, P. R. China
| | - H Peng
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, P. R. China
| | - C-C Hu
- College of Animal Science and Technology, Agricultural University of Hebei, Baoding, Hebei, P. R. China
| | - X-Y Li
- College of Animal Science and Technology, Agricultural University of Hebei, Baoding, Hebei, P. R. China
| | - J-L Zhang
- Tianjin Institute of Animal Science and Veterinary Medicine, Tianjin, P. R. China
| | - Z Zheng
- Tianjin Institute of Animal Science and Veterinary Medicine, Tianjin, P. R. China
| | - W-C Zhang
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, P. R. China.
| |
Collapse
|
68
|
Transcription Regulation of the Human Telomerase Reverse Transcriptase (hTERT) Gene. Genes (Basel) 2016; 7:genes7080050. [PMID: 27548225 PMCID: PMC4999838 DOI: 10.3390/genes7080050] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 07/23/2016] [Accepted: 08/01/2016] [Indexed: 12/11/2022] Open
Abstract
Embryonic stem cells and induced pluripotent stem cells have the ability to maintain their telomere length via expression of an enzymatic complex called telomerase. Similarly, more than 85%–90% of cancer cells are found to upregulate the expression of telomerase, conferring them with the potential to proliferate indefinitely. Telomerase Reverse Transcriptase (TERT), the catalytic subunit of telomerase holoenzyme, is the rate-limiting factor in reconstituting telomerase activity in vivo. To date, the expression and function of the human Telomerase Reverse Transcriptase (hTERT) gene are known to be regulated at various molecular levels (including genetic, mRNA, protein and subcellular localization) by a number of diverse factors. Among these means of regulation, transcription modulation is the most important, as evident in its tight regulation in cancer cell survival as well as pluripotent stem cell maintenance and differentiation. Here, we discuss how hTERT gene transcription is regulated, mainly focusing on the contribution of trans-acting factors such as transcription factors and epigenetic modifiers, as well as genetic alterations in hTERT proximal promoter.
Collapse
|
69
|
Varela E, Muñoz-Lorente MA, Tejera AM, Ortega S, Blasco MA. Generation of mice with longer and better preserved telomeres in the absence of genetic manipulations. Nat Commun 2016; 7:11739. [PMID: 27252083 PMCID: PMC4895768 DOI: 10.1038/ncomms11739] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 04/26/2016] [Indexed: 12/17/2022] Open
Abstract
Although telomere length is genetically determined, mouse embryonic stem (ES) cells with telomeres of twice the normal size have been generated. Here, we use such ES cells with ‘hyper-long' telomeres, which also express green fluorescent protein (GFP), to generate chimaeric mice containing cells with both hyper-long and normal telomeres. We show that chimaeric mice contain GFP-positive cells in all mouse tissues, display normal tissue histology and normal survival. Both hyper-long and normal telomeres shorten with age, but GFP-positive cells retain longer telomeres as mice age. Chimaeric mice with hyper-long telomeres also accumulate fewer cells with short telomeres and less DNA damage with age, and express lower levels of p53. In highly renewing compartments, such as the blood, cells with hyper-long telomeres are longitudinally maintained or enriched with age. We further show that wound-healing rates in the skin are increased in chimaeric mice. Our work demonstrates that mice with functional, longer and better preserved telomeres can be generated without the need for genetic manipulations, such as TERT overexpression. Telomere shortening has been linked to some aspects of organismal ageing. Here the authors create chimaeric mice that contain a mix of cells with normal or unnaturally long telomeres, and show chimaeric mice are protected from some forms of ageing-associated cellular damage and have accelerated wound-healing.
Collapse
Affiliation(s)
- Elisa Varela
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro 3, Madrid E-28029, Spain
| | - Miguel A Muñoz-Lorente
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro 3, Madrid E-28029, Spain
| | - Agueda M Tejera
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro 3, Madrid E-28029, Spain
| | - Sagrario Ortega
- Transgenics Mice Unit, Biotechnology Program, Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro 3, Madrid E-28029, Spain
| | - Maria A Blasco
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro 3, Madrid E-28029, Spain
| |
Collapse
|
70
|
Niemann H. Epigenetic reprogramming in mammalian species after SCNT-based cloning. Theriogenology 2016; 86:80-90. [PMID: 27160443 DOI: 10.1016/j.theriogenology.2016.04.021] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 02/23/2016] [Accepted: 03/14/2016] [Indexed: 12/16/2022]
Abstract
The birth of "Dolly," the first mammal cloned from an adult mammary epithelial cell, abolished the decades-old scientific dogma implying that a terminally differentiated cell cannot be reprogrammed into a pluripotent embryonic state. The most dramatic epigenetic reprogramming occurs in SCNT when the expression profile of a differentiated cell is abolished and a new embryo-specific expression profile, involving 10,000 to 12,000 genes, and thus, most genes of the entire genome is established, which drives embryonic and fetal development. The initial release from somatic cell epigenetic constraints is followed by establishment of post-zygotic expression patterns, X-chromosome inactivation, and adjustment of telomere length. Somatic cell nuclear transfer may be associated with a variety of pathologic changes of the fetal and placental phenotype in a proportion of cloned offspring, specifically in ruminants, that are thought to be caused by aberrant epigenetic reprogramming. Improvements in our understanding of this dramatic epigenetic reprogramming event will be instrumental in realizing the great potential of SCNT for basic research and for important agricultural and biomedical applications. Here, current knowledge on epigenetic reprogramming after use of SCNT in livestock is reviewed, with emphasis on gene-specific and global DNA methylation, imprinting, X-chromosome inactivation, and telomere length restoration in early development.
Collapse
Affiliation(s)
- Heiner Niemann
- Institute of Farm Animal Genetics (FLI), Mariensee, Neustadt, Germany.
| |
Collapse
|
71
|
|
72
|
Abstract
Telomeres, the protective ends of linear chromosomes, shorten throughout an individual's lifetime. Telomere shortening is a hallmark of molecular aging and is associated with premature appearance of diseases associated with aging. Here, we discuss the role of telomere shortening as a direct cause for aging and age-related diseases. In particular, we draw attention to the fact that telomere length influences longevity. Furthermore, we discuss intrinsic and environmental factors that can impact on human telomere erosion. Finally, we highlight recent advances in telomerase-based therapeutic strategies for the treatment of diseases associated with extremely short telomeres owing to mutations in telomerase, as well as age-related diseases, and ultimately aging itself.
Collapse
Affiliation(s)
- Christian Bär
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Centre (CNIO), Madrid, Spain
| | - Maria A Blasco
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Centre (CNIO), Madrid, Spain
| |
Collapse
|
73
|
Antunes DMF, Kalmbach KH, Wang F, Dracxler RC, Seth-Smith ML, Kramer Y, Buldo-Licciardi J, Kohlrausch FB, Keefe DL. A single-cell assay for telomere DNA content shows increasing telomere length heterogeneity, as well as increasing mean telomere length in human spermatozoa with advancing age. J Assist Reprod Genet 2015; 32:1685-90. [PMID: 26411311 DOI: 10.1007/s10815-015-0574-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 09/07/2015] [Indexed: 11/28/2022] Open
Abstract
PURPOSE The effect of age on telomere length heterogeneity in men has not been studied previously. Our aims were to determine the relationship between variation in sperm telomere length (STL), men's age, and semen parameters in spermatozoa from men undergoing in vitro fertilization (IVF) treatment. METHODS To perform this prospective cross-sectional pilot study, telomere length was estimated in 200 individual spermatozoa from men undergoing IVF treatment at the NYU Fertility Center. A novel single-cell telomere content assay (SCT-pqPCR) measured telomere length in individual spermatozoa. RESULTS Telomere length among individual spermatozoa within an ejaculate varies markedly and increases with age. Older men not only have longer STL but also have more variable STL compared to younger men. STL from samples with normal semen parameters was significantly longer than that from samples with abnormal parameters, but STL did not differ between spermatozoa with normal versus abnormal morphology. CONCLUSION The marked increase in STL heterogeneity as men age is consistent with a role for ALT during spermatogenesis. No data have yet reported the effect of age on STL heterogeneity. Based on these results, future studies should expand this modest sample size to search for molecular evidence of ALT in human testes during spermatogenesis.
Collapse
Affiliation(s)
- Danielle M F Antunes
- Department of Obstetrics and Gynecology, New York University, Langone Medical Center, New York, NY, 10016, USA.,Graduation Program in Pathology, Fluminense Federal University, Niteroi, Rio de Janeiro, Brazil, 24033
| | - Keri H Kalmbach
- Department of Obstetrics and Gynecology, New York University, Langone Medical Center, New York, NY, 10016, USA
| | - Fang Wang
- Department of Obstetrics and Gynecology, New York University, Langone Medical Center, New York, NY, 10016, USA
| | - Roberta C Dracxler
- Department of Psychiatry, New York University School of Medicine, New York, NY, 10016, USA
| | - Michelle L Seth-Smith
- Department of Obstetrics and Gynecology, New York University, Langone Medical Center, New York, NY, 10016, USA
| | - Yael Kramer
- Department of Obstetrics and Gynecology, New York University, Langone Medical Center, New York, NY, 10016, USA
| | - Julia Buldo-Licciardi
- Department of Obstetrics and Gynecology, New York University, Langone Medical Center, New York, NY, 10016, USA
| | - Fabiana B Kohlrausch
- Graduation Program in Pathology, Fluminense Federal University, Niteroi, Rio de Janeiro, Brazil, 24033
| | - David L Keefe
- Department of Obstetrics and Gynecology, New York University, Langone Medical Center, New York, NY, 10016, USA. .,Department of Obstetrics and Gynecology, NYU School of Medicine, Laboratory of Reproductive Medicine, 180 Varick Street, New York, NY, 10014, USA.
| |
Collapse
|
74
|
Combination effects of epidermal growth factor and glial cell line-derived neurotrophic factor on the in vitro developmental potential of porcine oocytes. ZYGOTE 2015; 24:465-76. [PMID: 26350562 DOI: 10.1017/s0967199415000416] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The developmental potential of in vitro matured porcine oocytes is still lower than that of oocytes matured and fertilized in vivo. Major problems that account for the lower efficiency of in vitro production include the improper nuclear and cytoplasmic maturation of oocytes. With the aim of improving this issue, the single and combined effects of epidermal growth factor (EGF) and glial cell line-derived neurotrophic factor (GDNF) on oocyte developmental competence were investigated. Porcine cumulus-oocyte cell complexes (COCs) were matured in serum-free medium supplemented with EGF (0, 10 or 50 ng/ml) and/or GDNF (0, 10 or 50 ng/ml) for 44 h, and subsequently subjected to fertilization and cultured for 7 days in vitro. The in vitro-formed blastocysts derived from selected growth factor groups (i.e. EGF = 50 ng/ml; GDNF = 50 ng/ml; EGF = 50 ng/ml + GDNF = 50 ng/ml) were also used for mRNA expression analysis, or were subjected to Hoechst staining. The results showed that the addition of EGF and/or GDNF during oocyte maturation dose dependently enhanced oocyte developmental competence. Compared with the embryos obtained from control or single growth factor-treated oocytes, treatment with the combination of EGF and GDNF was shown to significantly improve oocyte competence in terms of blastocyst formation, blastocyst cell number and blastocyst hatching rate (P < 0.05), and also simultaneously induced the expression of BCL-xL and TERT and suppressed the expression of caspase-3 in resulting blastocysts (P < 0.05). These results suggest that both GDNF and EGF may play an important role in the regulation of porcine in vitro oocyte maturation and the combination of these growth factors could promote oocyte competency and blastocyst quality.
Collapse
|
75
|
Hasegawa Y, Taylor D, Ovchinnikov DA, Wolvetang EJ, de Torrenté L, Mar JC. Variability of Gene Expression Identifies Transcriptional Regulators of Early Human Embryonic Development. PLoS Genet 2015; 11:e1005428. [PMID: 26288249 PMCID: PMC4546122 DOI: 10.1371/journal.pgen.1005428] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 07/06/2015] [Indexed: 11/18/2022] Open
Abstract
An analysis of gene expression variability can provide an insightful window into how regulatory control is distributed across the transcriptome. In a single cell analysis, the inter-cellular variability of gene expression measures the consistency of transcript copy numbers observed between cells in the same population. Application of these ideas to the study of early human embryonic development may reveal important insights into the transcriptional programs controlling this process, based on which components are most tightly regulated. Using a published single cell RNA-seq data set of human embryos collected at four-cell, eight-cell, morula and blastocyst stages, we identified genes with the most stable, invariant expression across all four developmental stages. Stably-expressed genes were found to be enriched for those sharing indispensable features, including essentiality, haploinsufficiency, and ubiquitous expression. The stable genes were less likely to be associated with loss-of-function variant genes or human recessive disease genes affected by a DNA copy number variant deletion, suggesting that stable genes have a functional impact on the regulation of some of the basic cellular processes. Genes with low expression variability at early stages of development are involved in regulation of DNA methylation, responses to hypoxia and telomerase activity, whereas by the blastocyst stage, low-variability genes are enriched for metabolic processes as well as telomerase signaling. Based on changes in expression variability, we identified a putative set of gene expression markers of morulae and blastocyst stages. Experimental validation of a blastocyst-expressed variability marker demonstrated that HDDC2 plays a role in the maintenance of pluripotency in human ES and iPS cells. Collectively our analyses identified new regulators involved in human embryonic development that would have otherwise been missed using methods that focus on assessment of the average expression levels; in doing so, we highlight the value of studying expression variability for single cell RNA-seq data.
Collapse
Affiliation(s)
- Yu Hasegawa
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, New York, United States of America; Division of Life Science, Graduate School of Life Science, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Deanne Taylor
- RMANJ Reproductive Medicine Associates of New Jersey, Morristown, New Jersey, United States of America; Division of Reproductive Endocrinology, Department of Obstetrics, Gynecology, and Reproductive Science, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, New Jersey, United States of America
| | - Dmitry A Ovchinnikov
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, Queensland, Australia
| | - Ernst J Wolvetang
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, Queensland, Australia
| | - Laurence de Torrenté
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Jessica C Mar
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, New York, United States of America; Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, New York, United States of America
| |
Collapse
|
76
|
Bär C, Huber N, Beier F, Blasco MA. Therapeutic effect of androgen therapy in a mouse model of aplastic anemia produced by short telomeres. Haematologica 2015. [PMID: 26206796 DOI: 10.3324/haematol.2015.129239] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Aplastic anemia is a rare but life-threatening disorder characterized by cytopenia in at least two of the three blood lineages. A frequent feature of patients with aplastic anemia is that they have shorter telomeres than those of age-matched controls. Testosterone has been used for over half a century in the treatment of aplastic anemia. However, although remissions are frequent following hormone therapy, the molecular mechanism underlying the response to treatment has remained unknown. Here we explored the possibility that the recently described regulation of telomerase activity by sex hormones may be the mechanism responsible. To this end, we used a mouse model of aplastic anemia induced by short telomeres in the bone marrow compartment. We found that testosterone therapy results in telomerase up-regulation, improved blood counts, and a significant extension of life-span of these mice. Importantly, longitudinal follow-up studies revealed longer telomeres in peripheral blood in mice subjected to hormone treatment. Our results demonstrate that testosterone-mediated telomerase activation can attenuate or reverse aplastic anemia disease progression associated with the presence of short telomeres.
Collapse
Affiliation(s)
- Christian Bär
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Centre (CNIO), Melchor Fernández Almagro 3, Madrid, Spain
| | - Nicolas Huber
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Centre (CNIO), Melchor Fernández Almagro 3, Madrid, Spain
| | - Fabian Beier
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Centre (CNIO), Melchor Fernández Almagro 3, Madrid, Spain Department of Hematology, Oncology and Stem Cell Transplantation, Medical Faculty, RWTH Aachen University Germany
| | - Maria A Blasco
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Centre (CNIO), Melchor Fernández Almagro 3, Madrid, Spain
| |
Collapse
|
77
|
Abstract
Multiple previous reports have provided compelling support for the premise that spontaneous parturition is mediated by activation of inflammation-related signaling pathways leading to increased secretion of cytokines and chemokines, the influx of neutrophils and macrophages into the pregnant uterus, increased production of uterine activation proteins (eg, connexin-43, cyclo-oxygenase-2, oxytocin receptors, etc), activation of matrix metalloproteinases, and the release of uterotonins leading to cervical ripening, membrane rupture, and myometrial contractions. The missing link has been the fetal/placental signal that triggers these proinflammatory events in the absence of microbial invasion and intrauterine infection. This article reviews the biomedical literature regarding the increase in cell-free fetal DNA (cffDNA), which is released during apoptosis in the placenta and fetal membranes at term, the ability of apoptosis modified vertebrate DNA to stimulate toll-like receptor-9 (TLR9) leading to increased release of cytokines and chemokines, and the potential "fail-safe" role for the anti-inflammatory cytokine IL-10. This article also reviews the literature supporting the key role that telomere loss plays in regard to increasing the ability of vertebrate (including placental) DNA to stimulate TLR9, and in regard to signaling the onset of apoptosis in the placenta and fetal membranes, thereby providing a biologic clock that determines the length of gestation and the timing for the onset of parturition. In summary, this literature review provides a strong rationale for future research to test the hypothesis that telomere loss and increased cffDNA levels trigger the proinflammatory events leading to the spontaneous onset of parturition in mammals: the "cffDNA/telomere hypothesis."
Collapse
Affiliation(s)
- Mark Phillippe
- Department of Obstetrics, Gynecology & Reproductive Biology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
78
|
Garcia-Cisneros A, Pérez-Portela R, Almroth BC, Degerman S, Palacín C, Sköld HN. Long telomeres are associated with clonality in wild populations of the fissiparous starfish Coscinasterias tenuispina. Heredity (Edinb) 2015; 115:437-43. [PMID: 25990879 DOI: 10.1038/hdy.2015.43] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 03/23/2015] [Accepted: 04/13/2015] [Indexed: 01/01/2023] Open
Abstract
Telomeres usually shorten during an organism's lifespan and have thus been used as an aging and health marker. When telomeres become sufficiently short, senescence is induced. The most common method of restoring telomere length is via telomerase reverse transcriptase activity, highly expressed during embryogenesis. However, although asexual reproduction from adult tissues has an important role in the life cycles of certain species, its effect on the aging and fitness of wild populations, as well as its implications for the long-term survival of populations with limited genetic variation, is largely unknown. Here we compare relative telomere length of 58 individuals from four populations of the asexually reproducing starfish Coscinasterias tenuispina. Additionally, 12 individuals were used to compare telomere lengths in regenerating and non-regenerating arms, in two different tissues (tube feet and pyloric cecum). The level of clonality was assessed by genotyping the populations based on 12 specific microsatellite loci and relative telomere length was measured via quantitative PCR. The results revealed significantly longer telomeres in Mediterranean populations than Atlantic ones as demonstrated by the Kruskal-Wallis test (K=24.17, significant value: P-value<0.001), with the former also characterized by higher levels of clonality derived from asexual reproduction. Telomeres were furthermore significantly longer in regenerating arms than in non-regenerating arms within individuals (pyloric cecum tissue: Mann-Whitney test, V=299, P-value<10(-6); and tube feet tissue Student's t=2.28, P-value=0.029). Our study suggests that one of the mechanisms responsible for the long-term somatic maintenance and persistence of clonal populations is telomere elongation.
Collapse
Affiliation(s)
- A Garcia-Cisneros
- Department of Animal Biology (Invertebrates), University of Barcelona, and Biodiversity Research Institute (IRBIO), Barcelona, Spain
| | - R Pérez-Portela
- Center for Advanced Studies of Blanes (CEAB-CSIC), Acesso a la Cala Sant Francesc 14, Blanes, Girona, Spain
| | - B C Almroth
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - S Degerman
- Department of Medical Biosciensces, Umeå University, Umeå, Sweden
| | - C Palacín
- Department of Animal Biology (Invertebrates), University of Barcelona, and Biodiversity Research Institute (IRBIO), Barcelona, Spain
| | - H Nilsson Sköld
- Sven Lovén Centre for Marine Sciences-Kristineberg, University of Gothenburg, Fiskebäckskil, Sweden
| |
Collapse
|
79
|
|
80
|
Kong Q, Ji G, Xie B, Li J, Mao J, Wang J, Liu S, Liu L, Liu Z. Telomere elongation facilitated by trichostatin a in cloned embryos and pigs by somatic cell nuclear transfer. Stem Cell Rev Rep 2014; 10:399-407. [PMID: 24510582 DOI: 10.1007/s12015-014-9499-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Telomere attrition and genomic instability are associated with organism aging. Concerns still exist regarding telomere length resetting in cloned embryos and ntES cells, and possibilities of premature aging of cloned animals achieved by somatic cell nuclear transfer (SCNT). Trichostatin A (TSA), a histone deacetylase inhibitor, effectively improves the developmental competence of cloned embryos and animals, and recently contributes to successful generation of human ntES cells by SCNT. To test the function of TSA on resetting telomere length, we analyzed telomeres in cloned blastocysts and pigs following treatment of SCNT embryos with TSA. Here, we show that telomeres of cloned pigs generated by standard SCNT methods are not effectively restored, compared with those of donor cells, however TSA significantly increases telomere lengths in cloned pigs. Telomeres elongate in cloned porcine embryos during early cleavage from one-cell to four-cell stages. Notably, TSA facilitates telomere lengthening of cloned embryos mainly at morula-blastocyst stages. Knockdown of pTert by shRNA in donor cells reduces telomerase activity in cloned blastocysts but does not abrogate telomere elongation in the TSA-treated embryos (p > 0.05). However, genes associated with recombination or telomerase-independent mechanism of alternative lengthening of telomeres (ALT) Rad50 and BLM show increased expression in TSA-treated embryos. These data suggest that TSA may promote telomere elongation of cloned porcine embryos by ALT. Together, TSA can elongate telomeres in cloned embryos and piglets, and this could be one of the mechanisms underlying improved development of cloned embryos and animals treated with TSA.
Collapse
Affiliation(s)
- Qingran Kong
- Laboratory of Embryo Biotechnology, College of Life Science, Northeast Agricultural University, Harbin, China,
| | | | | | | | | | | | | | | | | |
Collapse
|
81
|
Gilchrist GC, Kurjanowicz P, Mereilles FV, King WA, LaMarre J. Telomere Length and Telomerase Activity in Bovine Pre-implantation EmbryosIn Vitro. Reprod Domest Anim 2014; 50:58-67. [DOI: 10.1111/rda.12449] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Accepted: 10/05/2014] [Indexed: 11/27/2022]
Affiliation(s)
- GC Gilchrist
- Department of Biomedical Sciences; University of Guelph; Guelph ON Canada
| | - P Kurjanowicz
- Department of Physiology (Reproductive & Development Platform); University of Toronto; Toronto ON Canada
| | - FV Mereilles
- Department of Veterinary Medicine; Faculty of Animal Science and Food Engineering; University of São Paulo; Pirassununga SP Brazil
| | - WA King
- Department of Biomedical Sciences; University of Guelph; Guelph ON Canada
| | - J LaMarre
- Department of Biomedical Sciences; University of Guelph; Guelph ON Canada
| |
Collapse
|
82
|
Zhao Z, Pan X, Liu L, Liu N. Telomere length maintenance, shortening, and lengthening. J Cell Physiol 2014; 229:1323-9. [PMID: 24374808 DOI: 10.1002/jcp.24537] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Accepted: 12/13/2013] [Indexed: 12/28/2022]
Abstract
Telomeres maintain chromosome stability and cell replicative capacity. Telomere shortening occurs concomitant with aging. Short telomeres are associated with some diseases, such as dyskeratosis congenita, idiopathic pulmonary fibrosis, and aplastic anemia. Telomeres are longer in pluripotent stem cells than in somatic cells and lengthen significantly during preimplantation development. Furthermore, telomere elongation during somatic cell reprogramming is of great importance in the acquisition of authentic pluripotency. This review focuses primarily on regulatory mechanisms of telomere length maintenance in pluripotent cells, telomere length extension in early embryo development, and also telomere rejuvenation in somatic cell reprogramming. Telomere related diseases are also discussed in this review.
Collapse
Affiliation(s)
- Zhenrong Zhao
- Department of Genetics and Cell Biology, College of Life Science, Nankai University, Tianjin, China; State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
| | | | | | | |
Collapse
|
83
|
Wang N, Rizvydeen S, Vahedi M, Vargas Gonzalez DM, Allred AL, Perry DW, Mirabito PM, Kirk KE. Novel telomere-anchored PCR approach for studying sexual stage telomeres in Aspergillus nidulans. PLoS One 2014; 9:e99491. [PMID: 24927411 PMCID: PMC4057176 DOI: 10.1371/journal.pone.0099491] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 05/15/2014] [Indexed: 12/11/2022] Open
Abstract
Telomere length varies between germline and somatic cells of the same organism, leading to the hypothesis that telomeres are lengthened during meiosis. However, little is known about the meiotic telomere length in many organisms. In the filamentous fungus Aspergillus nidulans, the telomere lengths in hyphae and asexual spores are invariant. No study using existing techniques has determined the telomere length of the sexual ascospores due to the relatively low abundance of pure meiotic cells in A. nidulans and the small quantity of DNA present. To address this, we developed a simple and sensitive PCR strategy to measure the telomere length of A. nidulans meiotic cells. This novel technique, termed “telomere-anchored PCR,” measures the length of the telomere on chromosome II-L using a small fraction of the DNA required for the traditional terminal restriction fragment (TRF) Southern analysis. Using this approach, we determined that the A. nidulans ascospore telomere length is virtually identical to telomeres of other cell types from this organism, approximately 110 bp, indicating that a surprisingly strict telomere length regulation exists in the major cell types of A. nidulans. When the hyphal telomeres were measured in a telomerase reverse transcriptase (TERT) knockout strain, small decreases in length were readily detected. Thus, this technique can detect telomeres in relatively rare cell types and is particularly sensitive in measuring exceptionally short telomeres. This rapid and inexpensive telomere-anchored PCR method potentially can be utilized in other filamentous fungi and types of organisms.
Collapse
Affiliation(s)
- Nengding Wang
- Biology Department, Lake Forest College, Lake Forest, Illinois, United States of America
| | - Saajidha Rizvydeen
- Biology Department, Lake Forest College, Lake Forest, Illinois, United States of America
| | - Mithaq Vahedi
- Biology Department, Lake Forest College, Lake Forest, Illinois, United States of America
| | | | - Amanda L. Allred
- Biology Department, Lake Forest College, Lake Forest, Illinois, United States of America
| | - Dustin W. Perry
- Biology Department, University of Kentucky, Lexington, Kentucky, United States of America
| | - Peter M. Mirabito
- Biology Department, University of Kentucky, Lexington, Kentucky, United States of America
| | - Karen E. Kirk
- Biology Department, Lake Forest College, Lake Forest, Illinois, United States of America
- * E-mail:
| |
Collapse
|
84
|
Simpson JL, Wells D. Telomere length and aneuploidy: clinical and biological insights into human preimplantation embryos. Reprod Biomed Online 2014; 28:531-2. [DOI: 10.1016/j.rbmo.2014.03.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
85
|
Mania A, Mantzouratou A, Delhanty JD, Baio G, Serhal P, Sengupta SB. Telomere length in human blastocysts. Reprod Biomed Online 2014; 28:624-37. [DOI: 10.1016/j.rbmo.2013.12.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2013] [Revised: 12/10/2013] [Accepted: 12/18/2013] [Indexed: 11/27/2022]
|
86
|
Puglisi R, Pozzi A, Vanni R, Balduzzi D, Lagutina I, Colleoni S, Lazzari G, Galli C, Bongioni G, Galli A. Assessment of telomere length during post-natal period in offspring produced by a bull and its fibroblast derived clone. ASIAN PACIFIC JOURNAL OF REPRODUCTION 2014. [DOI: 10.1016/s2305-0500(13)60176-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
87
|
Telomere length reprogramming in embryos and stem cells. BIOMED RESEARCH INTERNATIONAL 2014; 2014:925121. [PMID: 24719895 PMCID: PMC3955682 DOI: 10.1155/2014/925121] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2013] [Accepted: 01/15/2014] [Indexed: 01/20/2023]
Abstract
Telomeres protect and cap linear chromosome ends, yet these genomic buffers erode over an organism's lifespan. Short telomeres have been associated with many age-related conditions in humans, and genetic mutations resulting in short telomeres in humans manifest as syndromes of precocious aging. In women, telomere length limits a fertilized egg's capacity to develop into a healthy embryo. Thus, telomere length must be reset with each subsequent generation. Although telomerase is purportedly responsible for restoring telomere DNA, recent studies have elucidated the role of alternative telomeres lengthening mechanisms in the reprogramming of early embryos and stem cells, which we review here.
Collapse
|
88
|
Batista LFZ. Telomere biology in stem cells and reprogramming. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2014; 125:67-88. [PMID: 24993698 DOI: 10.1016/b978-0-12-397898-1.00003-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Telomerase expression in humans is restricted to different populations of stem and progenitor cells, being silenced in most somatic tissues. Efficient telomere homeostasis is essential for embryonic and adult stem cell function and therefore essential for tissue homeostasis throughout organismal life. Accordingly, the mutations in telomerase culminate in reduced stem cell function both in vivo and in vitro and have been associated with tissue dysfunction in human patients. Despite the importance of telomerase for stem cell biology, the mechanisms behind telomerase regulation during development are still poorly understood, mostly due to difficulties in acquiring and maintaining pluripotent stem cell populations in culture. In this chapter, we will analyze recent developments in this field, including the importance of efficient telomere homeostasis in different stem cell types and the role of telomerase in different techniques used for cellular reprogramming.
Collapse
Affiliation(s)
- Luis F Z Batista
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA; Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
89
|
|
90
|
Shalaby T, Fiaschetti G, Nagasawa K, Shin-ya K, Baumgartner M, Grotzer M. G-quadruplexes as potential therapeutic targets for embryonal tumors. Molecules 2013; 18:12500-37. [PMID: 24152672 PMCID: PMC6269990 DOI: 10.3390/molecules181012500] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 09/18/2013] [Accepted: 09/25/2013] [Indexed: 12/27/2022] Open
Abstract
Embryonal tumors include a heterogeneous group of highly malignant neoplasms that primarily affect infants and children and are characterized by a high rate of mortality and treatment-related morbidity, hence improved therapies are clearly needed. G-quadruplexes are special secondary structures adopted in guanine (G)-rich DNA sequences that are often present in biologically important regions, e.g. at the end of telomeres and in the regulatory regions of oncogenes such as MYC. Owing to the significant roles that both telomeres and MYC play in cancer cell biology, G-quadruplexes have been viewed as emerging therapeutic targets in oncology and as tools for novel anticancer drug design. Several compounds that target these structures have shown promising anticancer activity in tumor xenograft models and some of them have entered Phase II clinical trials. In this review we examine approaches to DNA targeted cancer therapy, summarize the recent developments of G-quadruplex ligands as anticancer drugs and speculate on the future direction of such structures as a potential novel therapeutic strategy for embryonal tumors of the nervous system.
Collapse
Affiliation(s)
- Tarek Shalaby
- Division of Oncology, University Children's Hospital of Zurich, Zurich 8032, Switzerland.
| | | | | | | | | | | |
Collapse
|
91
|
Ozturk S, Sozen B, Demir N. Telomere length and telomerase activity during oocyte maturation and early embryo development in mammalian species. Mol Hum Reprod 2013; 20:15-30. [DOI: 10.1093/molehr/gat055] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
92
|
Dang-Nguyen TQ, Haraguchi S, Akagi S, Somfai T, Kaneda M, Watanabe S, Kikuchi K, Tajima A, Nagai T. Telomere elongation during morula-to-blastocyst transition in cloned porcine embryos. Cell Reprogram 2013. [PMID: 23194454 DOI: 10.1089/cell.2012.0045] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Although telomeres are elongated during morula-to-blastocyst transition in cloned embryos, it is still unknown whether donor cell types have any effect on this elongation. In the present study, we examined the changes of telomere length during morula-to-blastocyst transition in cloned porcine embryos using different types of donor cells. Porcine embryonic stem-like cells (pESLCs), porcine cumulus cells (PCs), and porcine embryonic fibroblasts at passages 7 and 10 (PEF7s and PEF10s, respectively) were used as donor cells. Telomere lengths of pESLCs (35.8±1.5 kb), PCs (24.4±0.5 kb), PEF7s (18.7±0.6 kb), and PEF10s (17.2±0.1 kb) were significantly different. In contrast, telomere length in morulae derived from pESLCs (18.2±0.3 kb), PC (17.8±0.7 kb), PEF7 (18.5±0.3 kb), and PEF10 (18.4±0.4 kb) did not differ significantly. Likewise, telomeres in blastocysts derived from pESLCs (22.3±1.5 kb), PCs (23.5±2.6 kb), PEF7s (20.2±1.0 kb), and PEF10s (20.9±1.0 kb) had similar lengths. However, telomeres in blastocysts were significant longer (p<0.05) compared with morulae in each group. Relative telomerase activities of morulae derived from pESLCs (4.2±0.4), PCs (4.0±0.5), PEF7s (5.1±0.4), and PEF10s (4.9±0.4) were significantly lower (p<0.01) than those of blastocysts derived from pESLCs (8.2±1.1), PCs (8.6±0.6), PEF7s (12.5±2.9), and PEF10s (8.3±1.1). In conclusion, the telomere elongation in cloned pig embryos that occurred during morula-to-blastocyst transition may be related to the rise of telomerase activity. The telomere elongation may also be independent of the type and telomere length of the donor cell.
Collapse
Affiliation(s)
- Thanh Quang Dang-Nguyen
- Department of Animal Breeding and Reproduction, NARO Institute of Livestock and Grassland Science, Ibaraki 305-0901, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
93
|
Abstract
In recent years, the highly conserved Lin28 RNA-binding proteins have emerged as factors that define stemness in several tissue lineages. Lin28 proteins repress let-7 microRNAs and influence mRNA translation, thereby regulating the self-renewal of mammalian embryonic stem cells. Subsequent discoveries revealed that Lin28a and Lin28b are also important in organismal growth and metabolism, tissue development, somatic reprogramming, and cancer. In this review, we discuss the Lin28 pathway and its regulation, outline its roles in stem cells, tissue development, and pathogenesis, and examine the ramifications for re-engineering mammalian physiology.
Collapse
Affiliation(s)
- Ng Shyh-Chang
- Stem Cell Transplantation Program, Division of Pediatric Hematology/Oncology, Boston Children’s Hospital and Dana Farber Cancer Institute, Boston, Massachusetts, USA. Harvard Stem Cell Institute, Boston, Massachusetts, USA. Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA. Manton Center for Orphan Disease Research, Boston, Massachusetts, USA. Howard Hughes Medical Institute, Boston, Massachusetts, USA
| | - George Q. Daley
- Stem Cell Transplantation Program, Division of Pediatric Hematology/Oncology, Boston Children’s Hospital and Dana Farber Cancer Institute, Boston, Massachusetts, USA. Harvard Stem Cell Institute, Boston, Massachusetts, USA. Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA. Manton Center for Orphan Disease Research, Boston, Massachusetts, USA. Howard Hughes Medical Institute, Boston, Massachusetts, USA
| |
Collapse
|
94
|
Aviv A, Susser E. Leukocyte telomere length and the father's age enigma: implications for population health and for life course. Int J Epidemiol 2013; 42:457-62. [PMID: 23382366 PMCID: PMC3619950 DOI: 10.1093/ije/dys236] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
What are the implications for population health of the demographic trend toward increasing paternal age at conception (PAC) in modern societies? We propose that the effects of older PAC are likely to be broad and harmful in some domains of health but beneficial in others. Harmful effects of older PAC have received the most attention. Thus, for example, older PAC is associated with an increased risk of offspring having rare conditions such as achondroplasia and Marfan syndrome, as well as with neurodevelopmental disorders such as autism. However, newly emerging evidence in the telomere field suggests potentially beneficial effects, since older PAC is associated with a longer leukocyte telomere length (LTL) in offspring, and a longer LTL is associated with a reduced risk of atherosclerosis and with increased survival in the elderly. Thus, older PAC may cumulatively increase resistance to atherosclerosis and lengthen lifespan in successive generations of modern humans. In this paper we: (i) introduce these novel findings; (ii) discuss potential explanations for the effect of older PAC on offspring LTL; (iii) draw implications for population health and for life course; (iv) put forth an evolutionary perspective as a context for the multigenerational effects of PAC; and (v) call for broad and intensive research to understand the mechanisms underlying the effects of PAC. We draw together work across a range of disciplines to offer an integrated perspective of this issue.
Collapse
Affiliation(s)
- Abraham Aviv
- The Center of Human Development and Aging, University of Medicine and Dentistry of New Jersey, New Jersey Medical School, Newark, NJ 07103, USA.
| | | |
Collapse
|
95
|
Turner S, Hartshorne GM. Telomere lengths in human pronuclei, oocytes and spermatozoa. Mol Hum Reprod 2013; 19:510-8. [PMID: 23519357 DOI: 10.1093/molehr/gat021] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Telomeres are chromosome ends that control functions related to cell division. Short telomeres are proposed to underlie infertility, female reproductive ageing and abnormal embryogenesis, but there is little direct evidence on telomere length in gametes and embryos. The aim of this study was to measure telomere lengths in individual human oocytes, spermatozoa, male and female pronuclei, in order to compare parental contributions to telomere lengths in the human zygote. Quantitative fluorescence in situ hybridization was used to measure average telomere length in pronuclei of oocytes fertilized for research using a known fertile sperm sample. Pronuclei derived from male and female gametes were distinguished by 5-methylcytosine staining. Results were compared with those for unfertilized mature and immature oocytes and individual spermatozoa decondensed in vitro. Fifty unselected men and one sperm donor provided semen samples and 32 women donated oocytes surplus to IVF treatment. Telomeres in mature oocytes and female pronuclei were significantly longer than those in individual spermatozoa and male pronuclei (P < 0.0001). Telomeres were longer in immature oocytes than in mature oocytes (P < 0.04). Sperm telomere length increased with male age (P < 0.05). Neither sperm nor oocyte telomere lengths were significantly associated with clinical parameters or outcome of treatment. In conclusion, telomere length measurements directly comparing human pronuclei under identical conditions show that male-derived telomeres are shorter on average than female-derived telomeres at fertilization. We propose that from this starting point, telomere lengths are probably modified by recombination events in the oocyte until telomerase increases at the blastocyst stage. Our findings do not support the use of gamete telomere lengths as a fertility diagnostic tool.
Collapse
Affiliation(s)
- S Turner
- Division of Reproductive Health, Warwick Medical School, University of Warwick, Coventry CV2 2DX, UK
| | | |
Collapse
|
96
|
Alternative lengthening of telomeres is induced by telomerase inhibitors in Barrett’s esophageal cells. Oncol Rep 2013; 29:1399-404. [DOI: 10.3892/or.2013.2238] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Accepted: 12/10/2012] [Indexed: 11/05/2022] Open
|
97
|
Niemann H, Lucas-Hahn A. Somatic cell nuclear transfer cloning: practical applications and current legislation. Reprod Domest Anim 2013; 47 Suppl 5:2-10. [PMID: 22913555 DOI: 10.1111/j.1439-0531.2012.02121.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Somatic cloning is emerging as a new biotechnology by which the opportunities arising from the advances in molecular genetics and genome analysis can be implemented in animal breeding. Significant improvements have been made in SCNT protocols in the past years which now allow to embarking on practical applications. The main areas of application of SCNT are: Reproductive cloning, therapeutic cloning and basic research. A great application potential of SCNT based cloning is the production of genetically modified (transgenic) animals. Somatic cell nuclear transfer based transgenic animal production has significant advances over the previously employed microinjection of foreign DNA into pronuclei of zygotes. This cell based transgenesis is compatible with gene targeting and allows both, the addition of a specific gene and the deletion of an endogenous gene. Efficient transgenic animal production provides numerous opportunities for agriculture and biomedicine. Regulatory agencies around the world have agreed that food derived from cloned animals and their offspring is safe and there is no scientific basis for questioning this. Commercial application of somatic cloning within the EU is via the Novel Food regulation EC No. 258/97. Somatic cloning raises novel questions regarding the ethical and moral status of animals and their welfare which has prompted a controversial discussion in Europe which has not yet been resolved.
Collapse
Affiliation(s)
- H Niemann
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Mariensee, Neustadt, Germany.
| | | |
Collapse
|
98
|
Telomere lengthening by trichostatin A treatment in cloned pigs. YI CHUAN = HEREDITAS 2012; 34:1583-90. [DOI: 10.3724/sp.j.1005.2012.01583] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
99
|
Entringer S, Buss C, Wadhwa PD. Prenatal stress, telomere biology, and fetal programming of health and disease risk. Sci Signal 2012; 5:pt12. [PMID: 23112344 DOI: 10.1126/scisignal.2003580] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A substantial body of epidemiological, clinical, cellular, and molecular evidence converges to suggest that conditions during the intrauterine period of life play a critical role in developmental programming to influence subsequent health and susceptibility for common, complex disorders. Elucidation of the biological mechanisms underlying these effects is an area of considerable interest and investigation, and it is important to determine whether these mechanisms are distinct for different health outcomes or whether there are some common underlying pathways that may account for the effects of disparate prenatal and early postnatal conditions on various health and disease risk phenotypes. We propose that telomere biology may represent a common underlying mechanism connecting fetal programming and subsequent health outcomes. It appears that the initial establishment of telomere length and regulation of telomere homeostasis may be plastic and receptive to the influence of intrauterine and other early life conditions. Moreover, telomere homeostasis in various cell types may serve as a fundamental integrator and regulator of processes underlying cell genomic integrity and function, aging, and senescence over the life span. We advance the hypothesis that context- and time-inappropriate exposures to various forms of physiological stress (maternal-placental-fetal endocrine aberrations and immune, inflammatory, and oxidative stresses) during the intrauterine period of development may alter or program the telomere biology system in a manner that accelerates cellular dysfunction, aging, and disease susceptibility over the life span.
Collapse
Affiliation(s)
- Sonja Entringer
- Department of Pediatrics, University of California, Irvine, School of Medicine, Irvine, CA 92697, USA.
| | | | | |
Collapse
|
100
|
Garrels W, Kues WB, Herrmann D, Holler S, Baulain U, Niemann H. Ectopic expression of human telomerase RNA component results in increased telomerase activity and elongated telomeres in bovine blastocysts. Biol Reprod 2012; 87:95. [PMID: 22855562 DOI: 10.1095/biolreprod.112.100198] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Telomeres play an important role in aging, and are critical for the regenerative capacity of mammalian cells. The holoenzyme telomerase rebuilds telomeres and is composed of two components, the catalytic protein telomerase reverse transcriptase (TERT) and the telomerase RNA (TERC). TERC is ubiquitously expressed in somatic cells and is thought to have no regulatory effects on telomerase activity. Transgenic expression of human TERT (hTERT) in bovine somatic and embryonic cells extends telomere length and enhances telomerase activity. To obtain further insight into the regulatory capacity of the two telomerase components, we have studied the ability of hTERC and hTERT to increase telomerase activity and telomere length in bovine embryos. Expression plasmids for the human RNA component (hTERC) and/or the catalytic subunit of human telomerase (hTERT), respectively, were injected into the cytoplasm of in vitro-produced bovine zygotes. Ectopic expression of hTERC increased telomerase activity and telomere length in bovine blastocysts. Coexpression of hTERT and hTERC did not result in further telomere elongation when compared to the hTERC group. These data indicate that TERC is one of the limiting factors of telomerase activity in bovine blastocysts, and further establish bovine preimplantation embryos as a useful model to modulate telomere length with impact for basic embryology and derivation of pluripotent cells.
Collapse
Affiliation(s)
- Wiebke Garrels
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut, Mariensee, Neustadt, Germany
| | | | | | | | | | | |
Collapse
|