51
|
Nelson DL, Orr HT, Warren ST. The unstable repeats--three evolving faces of neurological disease. Neuron 2013; 77:825-43. [PMID: 23473314 PMCID: PMC3608403 DOI: 10.1016/j.neuron.2013.02.022] [Citation(s) in RCA: 155] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/20/2013] [Indexed: 01/08/2023]
Abstract
Disorders characterized by expansion of an unstable nucleotide repeat account for a number of inherited neurological diseases. Here, we review examples of unstable repeat disorders that nicely illustrate three of the major pathogenic mechanisms associated with these diseases: loss of function typically by disrupting transcription of the mutated gene, RNA toxic gain of function, and protein toxic gain of function. In addition to providing insight into the mechanisms underlying these devastating neurological disorders, the study of these unstable microsatellite repeat disorders has provided insight into very basic aspects of neuroscience.
Collapse
Affiliation(s)
- David L. Nelson
- Department of Molecular and Human Genetics, Baylor College
of Medicine, Houston, TX 77030
| | - Harry T. Orr
- Department of Laboratory Medicine and Pathology, University
of Minnesota, Minneapolis, MN 55455
| | - Stephen T. Warren
- Department of Human Genetics, Emory University School of
Medicine, Atlanta, GA 30322
| |
Collapse
|
52
|
Roffé M, Hajj GNM, Azevedo HF, Alves VS, Castilho BA. IMPACT is a developmentally regulated protein in neurons that opposes the eukaryotic initiation factor 2α kinase GCN2 in the modulation of neurite outgrowth. J Biol Chem 2013; 288:10860-9. [PMID: 23447528 DOI: 10.1074/jbc.m113.461970] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The product of the mouse Imprinted and Ancient gene, IMPACT, is preferentially expressed in neurons. We have previously shown that IMPACT overexpression inhibits the activation of the protein kinase GCN2, which signals amino acid starvation. GCN2 phosphorylates the α-subunit of eukaryotic translation initiation factor 2 (eIF2α), resulting in inhibition of general protein synthesis but increased translation of specific messages, such as ATF4. GCN2 is also involved in the regulation of neuronal functions, controlling synaptic plasticity, memory, and feeding behavior. We show here that IMPACT abundance increases during differentiation of neurons and neuron-like N2a cells, whereas GCN2 displays lowered activation levels. Upon differentiation, IMPACT associates with translating ribosomes, enhances translation initiation, and down-regulates the expression of ATF4. We further show that endogenous IMPACT promotes neurite outgrowth whereas GCN2 is a strong inhibitor of spontaneous neuritogenesis. Together, these results uncover the participation of the GCN2-IMPACT module of translational regulation in a highly controlled step in the development of the nervous system.
Collapse
Affiliation(s)
- Martín Roffé
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, 04023-062, Brazil
| | | | | | | | | |
Collapse
|
53
|
Sayano T, Kawakami Y, Kusada W, Suzuki T, Kawano Y, Watanabe A, Takashima K, Arimoto Y, Esaki K, Wada A, Yoshizawa F, Watanabe M, Okamoto M, Hirabayashi Y, Furuya S. L-serine deficiency caused by genetic Phgdh deletion leads to robust induction of 4E-BP1 and subsequent repression of translation initiation in the developing central nervous system. FEBS J 2013; 280:1502-17. [PMID: 23350942 DOI: 10.1111/febs.12146] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Revised: 01/09/2013] [Accepted: 01/21/2013] [Indexed: 12/23/2022]
Abstract
Targeted disruption in mice of the gene encoding D-3-phosphoglycerate dehydrogenase (Phgdh) results in embryonic lethality associated with a striking reduction in free L-serine and growth retardation including severe brain malformation. We previously observed a severe impairment in neurogenesis of the central nervous system of Phgdh knockout (KO) embryos and a reduction in the protein content of their brains. Although these findings suggest that L-serine deficiency links attenuation of mRNA translation to severe developmental malformation of the central nervous system, the underlying key molecular event remains unexplored. Here we demonstrate that mRNA of Eif4ebp1 encoding eukaryotic initiation factor 4 binding protein 1 and its protein, 4E-BP1, are markedly induced in the central nervous system of Phgdh KO embryos, whereas a modest induction is observed in the liver. The increase in 4E-BP1 was associated with a decrease in the cap initiation complex in the brain, as shown by lower levels of eukaryotic translation initiation factor 4G bound to eukaryotic translation initiation factor 4E (eIF4E) and increased eIF4E interaction with 4E-BP1 based on 7-methyl-GTP chromatography. eIF4E protein and polysomes were also diminished in Phgdh KO embryos. Induction of Eif4ebp1 mRNA and of 4E-BP1 was reproduced in mouse embryonic fibroblasts established from Phgdh KO embryos under the condition of L-serine deprivation. Induction of Eif4ebp1 mRNA was suppressed only when L-serine was supplemented in the culture medium, indicating that reduced L-serine availability regulates the induction of Eif4ebp1/4E-BP1. These data suggest that elevated levels of 4E-BP1 may be involved in a mechanism to arrest brain development in Phgdh KO embryos.
Collapse
Affiliation(s)
- Tomoko Sayano
- Division of Systems Biology, Department of Bioscience and Biotechnology, Kyushu University, Fukuoka, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
54
|
Iacoangeli A, Tiedge H. Translational control at the synapse: role of RNA regulators. Trends Biochem Sci 2012; 38:47-55. [PMID: 23218750 DOI: 10.1016/j.tibs.2012.11.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Revised: 11/01/2012] [Accepted: 11/05/2012] [Indexed: 12/31/2022]
Abstract
Translational control of gene expression is instrumental in the regulation of eukaryotic cellular form and function. Neurons in particular rely on this form of control because their numerous synaptic connections need to be independently modulated in an input-specific manner. Brain cytoplasmic (BC) RNAs implement translational control at neuronal synapses. BC RNAs regulate protein synthesis by interacting with eIF4 translation initiation factors. Recent evidence suggests that such regulation is required to control synaptic strength, and that dysregulation of local protein synthesis precipitates neuronal hyperexcitability and a propensity for epileptogenic responses. A similar phenotype results from lack of fragile X mental retardation protein (FMRP), indicating that BC RNAs and FMRP use overlapping and convergent modes of action in neuronal translational regulation.
Collapse
Affiliation(s)
- Anna Iacoangeli
- Department of Physiology and Pharmacology, The Robert F. Furchgott Center for Neural and Behavioral Science, State University of New York Health Science Center at Brooklyn, 450 Clarkson Avenue, Brooklyn, NY 11203, USA
| | | |
Collapse
|
55
|
Sanchez G, Dury AY, Murray LM, Biondi O, Tadesse H, El Fatimy R, Kothary R, Charbonnier F, Khandjian EW, Côté J. A novel function for the survival motoneuron protein as a translational regulator. Hum Mol Genet 2012; 22:668-84. [PMID: 23136128 DOI: 10.1093/hmg/dds474] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
SMN1, the causative gene for spinal muscular atrophy (SMA), plays a housekeeping role in the biogenesis of small nuclear RNA ribonucleoproteins. SMN is also present in granular foci along axonal projections of motoneurons, which are the predominant cell type affected in the pathology. These so-called RNA granules mediate the transport of specific mRNAs along neurites and regulate mRNA localization, stability, as well as local translation. Recent work has provided evidence suggesting that SMN may participate in the assembly of RNA granules, but beyond that, the precise nature of its role within these structures remains unclear. Here, we demonstrate that SMN associates with polyribosomes and can repress translation in an in vitro translation system. We further identify the arginine methyltransferase CARM1 as an mRNA that is regulated at the translational level by SMN and find that CARM1 is abnormally up-regulated in spinal cord tissue from SMA mice and in severe type I SMA patient cells. We have previously characterized a novel regulatory pathway in motoneurons involving the SMN-interacting RNA-binding protein HuD and CARM1. Thus, our results suggest the existence of a potential negative feedback loop in this pathway. Importantly, an SMA-causing mutation in the Tudor domain of SMN completely abolished translational repression, a strong indication for the functional significance of this novel SMN activity in the pathology.
Collapse
Affiliation(s)
- Gabriel Sanchez
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada K1H 8M5
| | | | | | | | | | | | | | | | | | | |
Collapse
|
56
|
Darnell JC, Richter JD. Cytoplasmic RNA-binding proteins and the control of complex brain function. Cold Spring Harb Perspect Biol 2012; 4:a012344. [PMID: 22723494 DOI: 10.1101/cshperspect.a012344] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The formation and maintenance of neural circuits in the mammal central nervous system (CNS) require the coordinated expression of genes not just at the transcriptional level, but at the translational level as well. Recent evidence shows that regulated messenger RNA (mRNA) translation is necessary for certain forms of synaptic plasticity, the cellular basis of learning and memory. In addition, regulated translation helps guide axonal growth cones to their targets on other neurons or at the neuromuscular junction. Several neurologic syndromes have been correlated with and indeed may be caused by aberrant translation; one important example is the fragile X mental retardation syndrome. Although translation in the CNS is regulated by multiple mechanisms and factors, we focus this review on regulatory mRNA-binding proteins with particular emphasis on fragile X mental retardation protein (FMRP) and cytoplasmic polyadenylation element binding (CPEB) because they have been shown to be at the nexus of translational control and brain function in health and disease.
Collapse
Affiliation(s)
- Jennifer C Darnell
- Department of Molecular Neuro-Oncology, Rockefeller University, New York, New York 10065, USA.
| | | |
Collapse
|
57
|
Fragile X mental retardation protein interacts with the RNA-binding protein Caprin1 in neuronal RiboNucleoProtein complexes [corrected]. PLoS One 2012; 7:e39338. [PMID: 22737234 PMCID: PMC3380850 DOI: 10.1371/journal.pone.0039338] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Accepted: 05/23/2012] [Indexed: 01/17/2023] Open
Abstract
Fragile X syndrome is caused by the absence of the Fragile X Mental Retardation Protein (FMRP), an RNA-binding protein. FMRP is associated with messenger RiboNucleoParticles (mRNPs) present in polyribosomes and its absence in neurons leads to alteration in synaptic plasticity as a result of translation regulation defects. The molecular mechanisms by which FMRP plays a role in translation regulation remain elusive. Using immunoprecipitation approaches with monoclonal Ab7G1-1 and a new generation of chicken antibodies, we identified Caprin1 as a novel FMRP-cellular partner. In vivo and in vitro evidence show that Caprin1 interacts with FMRP at the level of the translation machinery as well as in trafficking neuronal granules. As an RNA-binding protein, Caprin1 has in common with FMRP at least two RNA targets that have been identified as CaMKIIα and Map1b mRNAs. In view of the new concept that FMRP species bind to RNA regardless of known structural motifs, we propose that protein interactors might modulate FMRP functions.
Collapse
|
58
|
Human pathologies associated with defective RNA transport and localization in the nervous system. Biol Cell 2012; 99:649-61. [DOI: 10.1042/bc20070045] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
59
|
Kindler S, Kreienkamp HJ. The role of the postsynaptic density in the pathology of the fragile X syndrome. Results Probl Cell Differ 2012; 54:61-80. [PMID: 22009348 DOI: 10.1007/978-3-642-21649-7_5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The protein repertoire of excitatory synapses controls dendritic spine morphology, synaptic plasticity and higher brain functions. In brain neurons, the RNA-associated fragile X mental retardation protein (FMRP) binds in vivo to various transcripts encoding key postsynaptic components and may thereby substantially regulate the molecular composition of dendritic spines. In agreement with this notion functional loss of FMRP in patients affected by the fragile X syndrome (FXS) causes cognitive impairment. Here we address our current understanding of the functional role of individual postsynaptic proteins. We discuss how FMRP controls the abundance of select proteins at postsynaptic sites, which signaling pathways regulate the local activity of FMRP at synapses, and how altered levels of postsynaptic proteins may contribute to FXS pathology.
Collapse
Affiliation(s)
- Stefan Kindler
- Institute for Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | | |
Collapse
|
60
|
Huot ME, Bisson N, Moss T, Khandjian EW. Manipulating the Fragile X Mental Retardation Proteins in the Frog. Results Probl Cell Differ 2012; 54:165-79. [DOI: 10.1007/978-3-642-21649-7_9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
|
61
|
Molecular and genetic analysis of the Drosophila model of fragile X syndrome. Results Probl Cell Differ 2012; 54:119-56. [PMID: 22009350 DOI: 10.1007/978-3-642-21649-7_7] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The Drosophila genome contains most genes known to be involved in heritable disease. The extraordinary genetic malleability of Drosophila, coupled to sophisticated imaging, electrophysiology, and behavioral paradigms, has paved the way for insightful mechanistic studies on the causes of developmental and neurological disease as well as many possible interventions. Here, we focus on one of the most advanced examples of Drosophila genetic disease modeling, the Drosophila model of Fragile X Syndrome, which for the past decade has provided key advances into the molecular, cellular, and behavioral defects underlying this devastating disorder. We discuss the multitude of RNAs and proteins that interact with the disease-causing FMR1 gene product, whose function is conserved from Drosophila to human. In turn, we consider FMR1 mechanistic relationships in non-neuronal tissues (germ cells and embryos), peripheral motor and sensory circuits, and central brain circuits involved in circadian clock activity and learning/memory.
Collapse
|
62
|
Molecular and Cellular Aspects of Mental Retardation in the Fragile X Syndrome: From Gene Mutation/s to Spine Dysmorphogenesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 970:517-51. [DOI: 10.1007/978-3-7091-0932-8_23] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
63
|
Lauzière V, Lessard M, Meunier AJ, McCoy M, Bergeron LJ, Corbin F. Unusual subcellular confinement of the fragile X mental retardation protein (FMRP) in circulating human platelets: complete polyribosome dissociation. Biochimie 2011; 94:1069-73. [PMID: 22210492 DOI: 10.1016/j.biochi.2011.12.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Accepted: 12/15/2011] [Indexed: 12/19/2022]
Abstract
FMRP, a RNA-binding protein, was shown in association with polyribosomes in every cell types studied so far, suggesting a ubiquitous role as a translational regulator. Platelets are known for their limited protein synthesis potential. However, current investigations put forward that RNA metabolism is more developed than previously thought. Unexpectedly, our results provide evidence that FMRP, in platelets, is not constitutively associated with heavy particles, such as polyribosomes, and possesses a sedimentation coefficient of less than 10S contrasting with values of 150 to 500S as reported in other cell types. In summary, this report brings to light platelets as a simple human biological system to delineate novel FMRP functions as well as strengthening our comprehension of the pathophysiology of the fragile X syndrome which results from the absence of FMRP.
Collapse
Affiliation(s)
- Véronique Lauzière
- Biochemistry Department, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3001, 12e Avenue Nord, Sherbrooke, Québec J1H 5N4, Canada.
| | | | | | | | | | | |
Collapse
|
64
|
Coffee RL, Williamson AJ, Adkins CM, Gray MC, Page TL, Broadie K. In vivo neuronal function of the fragile X mental retardation protein is regulated by phosphorylation. Hum Mol Genet 2011; 21:900-15. [PMID: 22080836 DOI: 10.1093/hmg/ddr527] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Fragile X syndrome (FXS), caused by loss of the Fragile X Mental Retardation 1 (FMR1) gene product (FMRP), is the most common heritable cause of intellectual disability and autism spectrum disorders. It has been long hypothesized that the phosphorylation of serine 500 (S500) in human FMRP controls its function as an RNA-binding translational repressor. To test this hypothesis in vivo, we employed neuronally targeted expression of three human FMR1 transgenes, including wild-type (hFMR1), dephosphomimetic (S500A-hFMR1) and phosphomimetic (S500D-hFMR1), in the Drosophila FXS disease model to investigate phosphorylation requirements. At the molecular level, dfmr1 null mutants exhibit elevated brain protein levels due to loss of translational repressor activity. This defect is rescued for an individual target protein and across the population of brain proteins by the phosphomimetic, whereas the dephosphomimetic phenocopies the null condition. At the cellular level, dfmr1 null synapse architecture exhibits increased area, branching and bouton number. The phosphomimetic fully rescues these synaptogenesis defects, whereas the dephosphomimetic provides no rescue. The presence of Futsch-positive (microtubule-associated protein 1B) supernumerary microtubule loops is elevated in dfmr1 null synapses. The human phosphomimetic restores normal Futsch loops, whereas the dephosphomimetic provides no activity. At the behavioral level, dfmr1 null mutants exhibit strongly impaired olfactory associative learning. The human phosphomimetic targeted only to the brain-learning center restores normal learning ability, whereas the dephosphomimetic provides absolutely no rescue. We conclude that human FMRP S500 phosphorylation is necessary for its in vivo function as a neuronal translational repressor and regulator of synaptic architecture, and for the manifestation of FMRP-dependent learning behavior.
Collapse
Affiliation(s)
- R Lane Coffee
- Department of Biological Sciences, Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, TN 37232, USA
| | | | | | | | | | | |
Collapse
|
65
|
|
66
|
Cook D, del Rayo Sanchez-Carbente M, Lachance C, Radzioch D, Tremblay S, Khandjian EW, DesGroseillers L, Murai KK. Fragile X related protein 1 clusters with ribosomes and messenger RNAs at a subset of dendritic spines in the mouse hippocampus. PLoS One 2011; 6:e26120. [PMID: 22022532 PMCID: PMC3191184 DOI: 10.1371/journal.pone.0026120] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Accepted: 09/20/2011] [Indexed: 12/21/2022] Open
Abstract
The formation and storage of memories in neuronal networks relies on new protein synthesis, which can occur locally at synapses using translational machinery present in dendrites and at spines. These new proteins support long-lasting changes in synapse strength and size in response to high levels of synaptic activity. To ensure that proteins are made at the appropriate time and location to enable these synaptic changes, messenger RNA (mRNA) translation is tightly controlled by dendritic RNA-binding proteins. Fragile X Related Protein 1 (FXR1P) is an RNA-binding protein with high homology to Fragile X Mental Retardation Protein (FMRP) and is known to repress and activate mRNA translation in non-neuronal cells. However, unlike FMRP, very little is known about the role of FXR1P in the central nervous system. To understand if FXR1P is positioned to regulate local mRNA translation in dendrites and at synapses, we investigated the expression and targeting of FXR1P in developing hippocampal neurons in vivo and in vitro. We found that FXR1P was highly expressed during hippocampal development and co-localized with ribosomes and mRNAs in the dendrite and at a subset of spines in mouse hippocampal neurons. Our data indicate that FXR1P is properly positioned to control local protein synthesis in the dendrite and at synapses in the central nervous system.
Collapse
Affiliation(s)
- Denise Cook
- Department of Neurology and Neurosurgery, Centre for Research in Neuroscience, The Research Institute of the McGill University Health Centre, Montreal General Hospital, Montreal, Quebec, Canada
| | | | - Claude Lachance
- Division of Experimental Medicine, Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - Danuta Radzioch
- Division of Experimental Medicine, Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - Sandra Tremblay
- Neurobiologie Cellulaire, Centre de Recherche Robert Giffard, Université Laval, Québec, Québec, Canada
| | - Edouard W. Khandjian
- Neurobiologie Cellulaire, Centre de Recherche Robert Giffard, Université Laval, Québec, Québec, Canada
| | - Luc DesGroseillers
- Département de Biochimie, Université de Montréal, Montréal, Québec, Canada
| | - Keith K. Murai
- Department of Neurology and Neurosurgery, Centre for Research in Neuroscience, The Research Institute of the McGill University Health Centre, Montreal General Hospital, Montreal, Quebec, Canada
- * E-mail:
| |
Collapse
|
67
|
Santoro MR, Bray SM, Warren ST. Molecular mechanisms of fragile X syndrome: a twenty-year perspective. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2011; 7:219-45. [PMID: 22017584 DOI: 10.1146/annurev-pathol-011811-132457] [Citation(s) in RCA: 390] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Fragile X syndrome (FXS) is a common form of inherited intellectual disability and is one of the leading known causes of autism. The mutation responsible for FXS is a large expansion of the trinucleotide CGG repeat in the 5' untranslated region of the X-linked gene FMR1. This expansion leads to DNA methylation of FMR1 and to transcriptional silencing, which results in the absence of the gene product, FMRP, a selective messenger RNA (mRNA)-binding protein that regulates the translation of a subset of dendritic mRNAs. FMRP is critical for mGluR (metabotropic glutamate receptor)-dependent long-term depression, as well as for other forms of synaptic plasticity; its absence causes excessive and persistent protein synthesis in postsynaptic dendrites and dysregulated synaptic function. Studies continue to refine our understanding of FMRP's role in synaptic plasticity and to uncover new functions of this protein, which have illuminated therapeutic approaches for FXS.
Collapse
Affiliation(s)
- Michael R Santoro
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia 30322, USA.
| | | | | |
Collapse
|
68
|
FMRP stalls ribosomal translocation on mRNAs linked to synaptic function and autism. Cell 2011; 146:247-61. [PMID: 21784246 PMCID: PMC3232425 DOI: 10.1016/j.cell.2011.06.013] [Citation(s) in RCA: 1571] [Impact Index Per Article: 112.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Revised: 04/07/2011] [Accepted: 06/06/2011] [Indexed: 11/22/2022]
Abstract
FMRP loss of function causes Fragile X syndrome (FXS) and autistic features. FMRP is a polyribosome-associated neuronal RNA-binding protein, suggesting that it plays a key role in regulating neuronal translation, but there has been little consensus regarding either its RNA targets or mechanism of action. Here, we use high-throughput sequencing of RNAs isolated by crosslinking immunoprecipitation (HITS-CLIP) to identify FMRP interactions with mouse brain polyribosomal mRNAs. FMRP interacts with the coding region of transcripts encoding pre- and postsynaptic proteins and transcripts implicated in autism spectrum disorders (ASD). We developed a brain polyribosome-programmed translation system, revealing that FMRP reversibly stalls ribosomes specifically on its target mRNAs. Our results suggest that loss of a translational brake on the synthesis of a subset of synaptic proteins contributes to FXS. In addition, they provide insight into the molecular basis of the cognitive and allied defects in FXS and ASD and suggest multiple targets for clinical intervention.
Collapse
|
69
|
Davidovic L, Navratil V, Bonaccorso CM, Catania MV, Bardoni B, Dumas ME. A metabolomic and systems biology perspective on the brain of the fragile X syndrome mouse model. Genome Res 2011; 21:2190-202. [PMID: 21900387 DOI: 10.1101/gr.116764.110] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Fragile X syndrome (FXS) is the first cause of inherited intellectual disability, due to the silencing of the X-linked Fragile X Mental Retardation 1 gene encoding the RNA-binding protein FMRP. While extensive studies have focused on the cellular and molecular basis of FXS, neither human Fragile X patients nor the mouse model of FXS--the Fmr1-null mouse--have been profiled systematically at the metabolic and neurochemical level to provide a complementary perspective on the current, yet scattered, knowledge of FXS. Using proton high-resolution magic angle spinning nuclear magnetic resonance ((1)H HR-MAS NMR)-based metabolic profiling, we have identified a metabolic signature and biomarkers associated with FXS in various brain regions of Fmr1-deficient mice. Our study highlights for the first time that Fmr1 gene inactivation has profound, albeit coordinated consequences in brain metabolism leading to alterations in: (1) neurotransmitter levels, (2) osmoregulation, (3) energy metabolism, and (4) oxidative stress response. To functionally connect Fmr1-deficiency to its metabolic biomarkers, we derived a functional interaction network based on the existing knowledge (literature and databases) and show that the FXS metabolic response is initiated by distinct mRNA targets and proteins interacting with FMRP, and then relayed by numerous regulatory proteins. This novel "integrated metabolome and interactome mapping" (iMIM) approach advantageously unifies novel metabolic findings with previously unrelated knowledge and highlights the contribution of novel cellular pathways to the pathophysiology of FXS. These metabolomic and integrative systems biology strategies will contribute to the development of potential drug targets and novel therapeutic interventions, which will eventually benefit FXS patients.
Collapse
Affiliation(s)
- Laetitia Davidovic
- Institut de Pharmacologie Moléculaire et Cellulaire, CNRS UMR 6097, 06560 Valbonne, France.
| | | | | | | | | | | |
Collapse
|
70
|
Olmos-Serrano JL, Corbin JG. Amygdala regulation of fear and emotionality in fragile X syndrome. Dev Neurosci 2011; 33:365-78. [PMID: 21893939 PMCID: PMC3254036 DOI: 10.1159/000329424] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2010] [Accepted: 05/01/2011] [Indexed: 11/19/2022] Open
Abstract
Fear is a universal response to a threat to one's body or social status. Disruption in the detection and response of the brain's fear system is commonly observed in a variety of neurodevelopmental disorders, including fragile X syndrome (FXS), a brain disorder characterized by variable cognitive impairment and behavioral disturbances such as social avoidance and anxiety. The amygdala is highly involved in mediating fear processing, and increasing evidence supports the idea that inhibitory circuits play a key role in regulating the flow of information associated with fear conditioning in the amygdala. Here, we review the known and potential importance of amygdala fear circuits in FXS, and how developmental studies are critical to understand the formation and function of neuronal circuits that modulate amygdala-based behaviors.
Collapse
Affiliation(s)
| | - Joshua G. Corbin
- Center for Neuroscience Research, Children's Research Institute, Children's National Medical Center, Washington, D.C.,USA
| |
Collapse
|
71
|
De Rubeis S, Bagni C. Regulation of molecular pathways in the Fragile X Syndrome: insights into Autism Spectrum Disorders. J Neurodev Disord 2011; 3:257-69. [PMID: 21842222 PMCID: PMC3167042 DOI: 10.1007/s11689-011-9087-2] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2010] [Accepted: 07/07/2011] [Indexed: 11/01/2022] Open
Abstract
The Fragile X syndrome (FXS) is a leading cause of intellectual disability (ID) and autism. The disease is caused by mutations or loss of the Fragile X Mental Retardation Protein (FMRP), an RNA-binding protein playing multiple functions in RNA metabolism. The expression of a large set of neuronal mRNAs is altered when FMRP is lost, thus causing defects in neuronal morphology and physiology. FMRP regulates mRNA stability, dendritic targeting, and protein synthesis. At synapses, FMRP represses protein synthesis by forming a complex with the Cytoplasmic FMRP Interacting Protein 1 (CYFIP1) and the cap-binding protein eIF4E. Here, we review the clinical, genetic, and molecular aspects of FXS with a special focus on the receptor signaling that regulates FMRP-dependent protein synthesis. We further discuss the FMRP-CYFIP1 complex and its potential relevance for ID and autism.
Collapse
Affiliation(s)
- Silvia De Rubeis
- Center for Human Genetics, Katholieke Universiteit Leuven, 3000, Leuven, Belgium
| | | |
Collapse
|
72
|
Olde Loohuis NFM, Kos A, Martens GJM, Van Bokhoven H, Nadif Kasri N, Aschrafi A. MicroRNA networks direct neuronal development and plasticity. Cell Mol Life Sci 2011; 69:89-102. [PMID: 21833581 PMCID: PMC3249201 DOI: 10.1007/s00018-011-0788-1] [Citation(s) in RCA: 174] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Revised: 06/24/2011] [Accepted: 07/21/2011] [Indexed: 12/20/2022]
Abstract
MicroRNAs (miRNAs) constitute a class of small, non-coding RNAs that act as post-transcriptional regulators of gene expression. In neurons, the functions of individual miRNAs are just beginning to emerge, and recent studies have elucidated roles for neural miRNAs at various stages of neuronal development and maturation, including neurite outgrowth, dendritogenesis, and spine formation. Notably, miRNAs regulate mRNA translation locally in the axosomal and synaptodendritic compartments, and thereby contribute to the dynamic spatial organization of axonal and dendritic structures and their function. Given the critical role for miRNAs in regulating early brain development and in mediating synaptic plasticity later in life, it is tempting to speculate that the pathology of neurological disorders is affected by altered expression or functioning of miRNAs. Here we provide an overview of recently identified mechanisms of neuronal development and plasticity involving miRNAs, and the consequences of miRNA dysregulation.
Collapse
Affiliation(s)
- N F M Olde Loohuis
- Department of Cognitive Neuroscience, Radboud University Nijmegen, 6500 HB Nijmegen, The Netherlands
| | | | | | | | | | | |
Collapse
|
73
|
Rousseau F, Labelle Y, Bussières J, Lindsay C. The fragile x mental retardation syndrome 20 years after the FMR1 gene discovery: an expanding universe of knowledge. Clin Biochem Rev 2011; 32:135-162. [PMID: 21912443 PMCID: PMC3157949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The fragile X mental retardation (FXMR) syndrome is one of the most frequent causes of mental retardation. Affected individuals display a wide range of additional characteristic features including behavioural and physical phenotypes, and the extent to which individuals are affected is highly variable. For these reasons, elucidation of the pathophysiology of this disease has been an important challenge to the scientific community. 1991 marks the year of the discovery of both the FMR1 gene mutations involved in this disease, and of their dynamic nature. Although a mouse model for the disease has been available for 16 years and extensive research has been performed on the FMR1 protein (FMRP), we still understand little about how the disease develops, and no treatment has yet been shown to be effective. In this review, we summarise current knowledge on FXMR with an emphasis on the technical challenges of molecular diagnostics, on its prevalence and dynamics among populations, and on the potential of screening for FMR1 mutations.
Collapse
Affiliation(s)
- François Rousseau
- Réseau de Médecine Génétique Appliquée, Fonds de Recherche en Santé du Québec
- The APOGEE-Net/CanGèneTest Research and Knowledge Network (www.cangenetest.org)
- Unité de recherche en génétique humaine et moléculaire, Axe de recherche en évaluation des technologies et transfert des connaissances, Centre de recherche du CHUQ-Hôpital-Saint-François-d’Assise
- Département de biologie moléculaire, biochimie médicale et pathologie, Faculté de Médecine, Université Laval, CRCHUQ-Hôpital St-François d’Assise, 10 rue de l’Espinay, Québec, Qc, Canada G1L 3L5
| | - Yves Labelle
- The APOGEE-Net/CanGèneTest Research and Knowledge Network (www.cangenetest.org)
- Unité de recherche en génétique humaine et moléculaire, Axe de recherche en évaluation des technologies et transfert des connaissances, Centre de recherche du CHUQ-Hôpital-Saint-François-d’Assise
- Département de biologie moléculaire, biochimie médicale et pathologie, Faculté de Médecine, Université Laval, CRCHUQ-Hôpital St-François d’Assise, 10 rue de l’Espinay, Québec, Qc, Canada G1L 3L5
| | - Johanne Bussières
- Unité de recherche en génétique humaine et moléculaire, Axe de recherche en évaluation des technologies et transfert des connaissances, Centre de recherche du CHUQ-Hôpital-Saint-François-d’Assise
| | - Carmen Lindsay
- Unité de recherche en génétique humaine et moléculaire, Axe de recherche en évaluation des technologies et transfert des connaissances, Centre de recherche du CHUQ-Hôpital-Saint-François-d’Assise
| |
Collapse
|
74
|
Darnell JC. Defects in translational regulation contributing to human cognitive and behavioral disease. Curr Opin Genet Dev 2011; 21:465-73. [PMID: 21764293 DOI: 10.1016/j.gde.2011.05.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2011] [Revised: 05/27/2011] [Accepted: 05/31/2011] [Indexed: 01/13/2023]
Abstract
Recent data suggest that the levels of many synaptic proteins may be tightly controlled by the opposing processes of new translation and protein turnover in neurons. Alterations in this balance or in the levels of such dosage-sensitive proteins that result in altered stoichiometry of protein complexes at developing and remodeling synapses may underlie several human cognitive diseases including Fragile X Syndrome, autism spectrum disorders, Angelman syndrome and non-syndromic mental retardation. While a significant amount is known about the transduction of membrane signals to the translational apparatus through kinase cascades acting on general translation factors, much less is understood about how such signals may influence the activity of mRNA-specific regulators, their mechanisms of action and the specific sets of mRNAs they regulate. New approaches to the unbiased in vivo identification of maps of binding sites for these proteins on mRNA is expected to greatly increase our understanding of this crucial level of regulation in neuronal development and function.
Collapse
Affiliation(s)
- J C Darnell
- Department of Molecular Neuro-Oncology, The Rockefeller University, 1230 York Ave., New York, NY 10065, USA.
| |
Collapse
|
75
|
Whitman SA, Cover C, Yu L, Nelson DL, Zarnescu DC, Gregorio CC. Desmoplakin and talin2 are novel mRNA targets of fragile X-related protein-1 in cardiac muscle. Circ Res 2011; 109:262-71. [PMID: 21659647 DOI: 10.1161/circresaha.111.244244] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
RATIONALE The proper function of cardiac muscle requires the precise assembly and interactions of numerous cytoskeletal and regulatory proteins into specialized structures that orchestrate contraction and force transmission. Evidence suggests that posttranscriptional regulation is critical for muscle function, but the mechanisms involved remain understudied. OBJECTIVE To investigate the molecular mechanisms and targets of the muscle-specific fragile X mental retardation, autosomal homolog 1 (FXR1), an RNA binding protein whose loss leads to perinatal lethality in mice and cardiomyopathy in zebrafish. METHODS AND RESULTS Using RNA immunoprecipitation approaches we found that desmoplakin and talin2 mRNAs associate with FXR1 in a complex. In vitro assays indicate that FXR1 binds these mRNA targets directly and represses their translation. Fxr1 KO hearts exhibit an up-regulation of desmoplakin and talin2 proteins, which is accompanied by severe disruption of desmosome as well as costamere architecture and composition in the heart, as determined by electron microscopy and deconvolution immunofluorescence analysis. CONCLUSIONS Our findings reveal the first direct mRNA targets of FXR1 in striated muscle and support translational repression as a novel mechanism for regulating heart muscle development and function, in particular the assembly of specialized cytoskeletal structures.
Collapse
Affiliation(s)
- Samantha A Whitman
- Department of Cellular and Molecular Medicine, University of Arizona, 1656 East Mabel, Tucson, AZ 85724, USA
| | | | | | | | | | | |
Collapse
|
76
|
Yan X, Denman RB. Conformational-dependent and independent RNA binding to the fragile x mental retardation protein. J Nucleic Acids 2011; 2011:246127. [PMID: 21772992 PMCID: PMC3136132 DOI: 10.4061/2011/246127] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Accepted: 03/16/2011] [Indexed: 01/13/2023] Open
Abstract
The interaction between the fragile X mental retardation protein (FMRP) and BC1 RNA has been the subject of controversy. We probed the parameters of RNA binding to FMRP in several ways. Nondenaturing agarose gel analysis showed that BC1 RNA transcripts produced by in vitro transcription contain a population of conformers, which can be modulated by preannealing. Accordingly, FMRP differentially binds to the annealed and unannealed conformer populations. Using partial RNase digestion, we demonstrate that annealed BC1 RNA contains a unique conformer that FMRP likely binds. We further demonstrate that this interaction is 100-fold weaker than that the binding of eEF-1A mRNA and FMRP, and that preannealing is not a general requirement for FMRP's interaction with RNA. In addition, binding does not require the N-terminal 204 amino acids of FMRP, methylated arginine residues and can be recapitulated by both fragile X paralogs. Altogether, our data continue to support a model in which BC1 RNA functions independently of FMRP.
Collapse
Affiliation(s)
- Xin Yan
- CSI/IBR Center for Developmental Neuroscience, College of Staten Island, City University of New York, Staten Island, NY 10314, USA
| | - Robert B. Denman
- Biochemical Molecular Neurobiology Laboratory, Department of Molecular Biology, New York State Institute for Basic Research in Developmental Disabilities, 1050 Forest Hill Road, Staten Island, NY 10314, USA
| |
Collapse
|
77
|
Beerman RW, Jongens TA. A non-canonical start codon in the Drosophila fragile X gene yields two functional isoforms. Neuroscience 2011; 181:48-66. [PMID: 21333716 DOI: 10.1016/j.neuroscience.2011.02.029] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2010] [Revised: 02/10/2011] [Accepted: 02/12/2011] [Indexed: 02/07/2023]
Abstract
Fragile X syndrome is caused by the loss of expression of the fragile X mental retardation protein (FMRP). As a RNA binding protein, FMRP functions in translational regulation, localization, and stability of its neuronal target transcripts. The Drosophila homologue, dFMR1, is well conserved in sequence and function with respect to human FMRP. Although dFMR1 is known to express two main isoforms, the mechanism behind production of the second, more slowly migrating isoform has remained elusive. Furthermore, it remains unknown whether the two isoforms may also contribute differentially to dFMR1 function. We have found that this second dFMR1 isoform is generated through an alternative translational start site in the dfmr1 5'UTR. This 5'UTR coding sequence is well conserved in the melanogaster group. Translation of the predominant, smaller form of dFMR1 (dFMR1-S(N)) begins at a canonical start codon (ATG), whereas translation of the minor, larger form (dFMR1-L(N)) begins upstream at a non-canonical start codon (CTG). To assess the contribution of the N-terminal extension toward dFMR1 activity, we generated transgenic flies that exclusively express either dFMR1-S(N) or dFMR1-L(N). Expression analyses throughout development revealed that dFMR1-S(N) is required for normal dFMR1-L(N) expression levels in adult brains. In situ expression analyses showed that either dFMR1-S(N) or dFMR1-L(N) is individually sufficient for proper dFMR1 localization in the nervous system. Functional studies demonstrated that both dFMR1-S(N) and dFMR1-L(N) can function independently to rescue dfmr1 null defects in synaptogenesis and axon guidance. Thus, dfmr1 encodes two functional isoforms with respect to expression and activity throughout neuronal development.
Collapse
Affiliation(s)
- R W Beerman
- Department of Genetics, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | | |
Collapse
|
78
|
Smith RM, Sadee W. Synaptic signaling and aberrant RNA splicing in autism spectrum disorders. Front Synaptic Neurosci 2011; 3:1. [PMID: 21423409 PMCID: PMC3059609 DOI: 10.3389/fnsyn.2011.00001] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2010] [Accepted: 01/12/2011] [Indexed: 11/13/2022] Open
Abstract
Interactions between presynaptic and postsynaptic cellular adhesion molecules (CAMs) drive synapse maturation during development. These trans-synaptic interactions are regulated by alternative splicing of CAM RNAs, which ultimately determines neurotransmitter phenotype. The diverse assortment of RNAs produced by alternative splicing generates countless protein isoforms necessary for guiding specialized cell-to-cell connectivity. Failure to generate the appropriate synaptic adhesion proteins is associated with disrupted glutamatergic and gamma-aminobutyric acid signaling, resulting in loss of activity-dependent neuronal plasticity, and risk for developmental disorders, including autism. While the majority of genetic mutations currently linked to autism are rare variants that change the protein-coding sequence of synaptic candidate genes, regulatory polymorphisms affecting constitutive and alternative splicing have emerged as risk factors in numerous other diseases, accounting for an estimated 40–60% of general disease risk. Here, we review the relationship between aberrant RNA splicing of synapse-related genes and autism spectrum disorders.
Collapse
Affiliation(s)
- Ryan M Smith
- Program in Pharmacogenomics, Department of Pharmacology, The Ohio State University Columbus, OH, USA
| | | |
Collapse
|
79
|
Tessier CR, Broadie K. The fragile X mental retardation protein developmentally regulates the strength and fidelity of calcium signaling in Drosophila mushroom body neurons. Neurobiol Dis 2011; 41:147-59. [PMID: 20843478 PMCID: PMC2982942 DOI: 10.1016/j.nbd.2010.09.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2010] [Revised: 08/17/2010] [Accepted: 09/03/2010] [Indexed: 11/20/2022] Open
Abstract
Fragile X syndrome (FXS) is a broad-spectrum neurological disorder characterized by hypersensitivity to sensory stimuli, hyperactivity and severe cognitive impairment. FXS is caused by loss of the fragile X mental retardation 1 (FMR1) gene, whose FMRP product regulates mRNA translation downstream of synaptic activity to modulate changes in synaptic architecture, function and plasticity. Null Drosophila FMR1 (dfmr1) mutants exhibit reduced learning and loss of protein synthesis-dependent memory consolidation, which is dependent on the brain mushroom body (MB) learning and memory center. We targeted a transgenic GFP-based calcium reporter to the MB in order to analyze calcium dynamics downstream of neuronal activation. In the dfmr1 null MB, there was significant augmentation of the calcium transients induced by membrane depolarization, as well as elevated release of calcium from intracellular organelle stores. The severity of these calcium signaling defects increased with developmental age, although early stages were characterized by highly variable, low fidelity calcium regulation. At the single neuron level, both calcium transient and calcium store release defects were exhibited by dfmr1 null MB neurons in primary culture. Null dfmr1 mutants exhibit reduced brain mRNA expression of calcium-binding proteins, including calcium buffers calmodulin and calbindin, predicting that the inability to appropriately sequester cytosolic calcium may be the common mechanistic defect causing calcium accumulation following both influx and store release. Changes in the magnitude and fidelity of calcium signals in the absence of dFMRP likely contribute to defects in neuronal structure/function, leading to the hallmark learning and memory dysfunction of FXS.
Collapse
Affiliation(s)
- Charles R Tessier
- Department of Biological Sciences, Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, TN 37232, USA
| | | |
Collapse
|
80
|
Zhong J, Chuang SC, Bianchi R, Zhao W, Paul G, Thakkar P, Liu D, Fenton AA, Wong RKS, Tiedge H. Regulatory BC1 RNA and the fragile X mental retardation protein: convergent functionality in brain. PLoS One 2010; 5:e15509. [PMID: 21124905 PMCID: PMC2990754 DOI: 10.1371/journal.pone.0015509] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2010] [Accepted: 10/06/2010] [Indexed: 12/22/2022] Open
Abstract
Background BC RNAs and the fragile X mental retardation protein (FMRP) are translational repressors that have been implicated in the control of local protein synthesis at the synapse. Work with BC1 and Fmr1 animal models has revealed that phenotypical consequences resulting from the absence of either BC1 RNA or FMRP are remarkably similar. To establish functional interactions between BC1 RNA and FMRP is important for our understanding of how local protein synthesis regulates neuronal excitability. Methodology/Principal Findings We generated BC1−/− Fmr1−/− double knockout (dKO) mice. We examined such animals, lacking both BC1 RNA and FMRP, in comparison with single knockout (sKO) animals lacking either one repressor. Analysis of neural phenotypical output revealed that at least three attributes of brain functionality are subject to control by both BC1 RNA and FMRP: neuronal network excitability, epileptogenesis, and place learning. The severity of CA3 pyramidal cell hyperexcitability was significantly higher in BC1−/− Fmr1−/− dKO preparations than in the respective sKO preparations, as was seizure susceptibility of BC1−/− Fmr1−/− dKO animals in response to auditory stimulation. In place learning, BC1−/− Fmr1−/− dKO animals were severely impaired, in contrast to BC1−/− or Fmr1−/− sKO animals which exhibited only mild deficits. Conclusions/Significance Our data indicate that BC1 RNA and FMRP operate in sequential-independent fashion. They suggest that the molecular interplay between two translational repressors directly impacts brain functionality.
Collapse
Affiliation(s)
- Jun Zhong
- Department of Physiology and Pharmacology, The Robert F. Furchgott Center for Neural and Behavioral Science, State University of New York Health Science Center at Brooklyn, Brooklyn, New York, United States of America
- * E-mail: (HT); (JZ)
| | - Shih-Chieh Chuang
- Department of Physiology and Pharmacology, The Robert F. Furchgott Center for Neural and Behavioral Science, State University of New York Health Science Center at Brooklyn, Brooklyn, New York, United States of America
- Program in Neural and Behavioral Science, State University of New York Health Science Center at Brooklyn, Brooklyn, New York, United States of America
| | - Riccardo Bianchi
- Department of Physiology and Pharmacology, The Robert F. Furchgott Center for Neural and Behavioral Science, State University of New York Health Science Center at Brooklyn, Brooklyn, New York, United States of America
- Program in Neural and Behavioral Science, State University of New York Health Science Center at Brooklyn, Brooklyn, New York, United States of America
| | - Wangfa Zhao
- Department of Physiology and Pharmacology, The Robert F. Furchgott Center for Neural and Behavioral Science, State University of New York Health Science Center at Brooklyn, Brooklyn, New York, United States of America
- Program in Neural and Behavioral Science, State University of New York Health Science Center at Brooklyn, Brooklyn, New York, United States of America
| | - Geet Paul
- Department of Physiology and Pharmacology, The Robert F. Furchgott Center for Neural and Behavioral Science, State University of New York Health Science Center at Brooklyn, Brooklyn, New York, United States of America
| | - Punam Thakkar
- Department of Physiology and Pharmacology, The Robert F. Furchgott Center for Neural and Behavioral Science, State University of New York Health Science Center at Brooklyn, Brooklyn, New York, United States of America
| | - David Liu
- Department of Physiology and Pharmacology, The Robert F. Furchgott Center for Neural and Behavioral Science, State University of New York Health Science Center at Brooklyn, Brooklyn, New York, United States of America
| | - André A. Fenton
- Department of Physiology and Pharmacology, The Robert F. Furchgott Center for Neural and Behavioral Science, State University of New York Health Science Center at Brooklyn, Brooklyn, New York, United States of America
- Program in Neural and Behavioral Science, State University of New York Health Science Center at Brooklyn, Brooklyn, New York, United States of America
| | - Robert K. S. Wong
- Department of Physiology and Pharmacology, The Robert F. Furchgott Center for Neural and Behavioral Science, State University of New York Health Science Center at Brooklyn, Brooklyn, New York, United States of America
- Program in Neural and Behavioral Science, State University of New York Health Science Center at Brooklyn, Brooklyn, New York, United States of America
- Department of Neurology, State University of New York Health Science Center at Brooklyn, Brooklyn, New York, United States of America
| | - Henri Tiedge
- Department of Physiology and Pharmacology, The Robert F. Furchgott Center for Neural and Behavioral Science, State University of New York Health Science Center at Brooklyn, Brooklyn, New York, United States of America
- Program in Neural and Behavioral Science, State University of New York Health Science Center at Brooklyn, Brooklyn, New York, United States of America
- Department of Neurology, State University of New York Health Science Center at Brooklyn, Brooklyn, New York, United States of America
- * E-mail: (HT); (JZ)
| |
Collapse
|
81
|
Conserved genes act as modifiers of invertebrate SMN loss of function defects. PLoS Genet 2010; 6:e1001172. [PMID: 21124729 PMCID: PMC2965752 DOI: 10.1371/journal.pgen.1001172] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2010] [Accepted: 09/21/2010] [Indexed: 01/27/2023] Open
Abstract
Spinal Muscular Atrophy (SMA) is caused by diminished function of the Survival of Motor Neuron (SMN) protein, but the molecular pathways critical for SMA pathology remain elusive. We have used genetic approaches in invertebrate models to identify conserved SMN loss of function modifier genes. Drosophila melanogaster and Caenorhabditis elegans each have a single gene encoding a protein orthologous to human SMN; diminished function of these invertebrate genes causes lethality and neuromuscular defects. To find genes that modulate SMN function defects across species, two approaches were used. First, a genome-wide RNAi screen for C. elegans SMN modifier genes was undertaken, yielding four genes. Second, we tested the conservation of modifier gene function across species; genes identified in one invertebrate model were tested for function in the other invertebrate model. Drosophila orthologs of two genes, which were identified originally in C. elegans, modified Drosophila SMN loss of function defects. C. elegans orthologs of twelve genes, which were originally identified in a previous Drosophila screen, modified C. elegans SMN loss of function defects. Bioinformatic analysis of the conserved, cross-species, modifier genes suggests that conserved cellular pathways, specifically endocytosis and mRNA regulation, act as critical genetic modifiers of SMN loss of function defects across species.
Collapse
|
82
|
Tanaka T, Ohashi S, Funakoshi T, Kobayashi S. YB-1 binds to GluR2 mRNA and CaM1 mRNA in the brain and regulates their translational levels in an activity-dependent manner. Cell Mol Neurobiol 2010; 30:1089-100. [PMID: 20614234 DOI: 10.1007/s10571-010-9541-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2010] [Accepted: 06/23/2010] [Indexed: 12/11/2022]
Abstract
The translational regulator YB-1 binds to mRNAs. In the brain, YB-1 is prominently expressed from the prenatal stage until the first week after birth, being associated with polysomes and distributed in neuronal dendrites, but its expression declines to a much lower level thereafter. It is therefore of interest to identify the mRNAs whose translation is controlled by YB-1 in the postnatal growing brain. In this study we found that YB-1 interacted with the mRNAs for glutamate receptor subunit 2 (GluR2) and calmodulin1 (CaM1) in both brain and NG108-15 cells. Overexpression or knockdown of YB-1 altered the levels of these proteins significantly in cultured cells without any change in their mRNA levels. When the cells were treated with neurotransmitters, translation of these proteins was induced within a short time, and a change in the amount of YB-1 on its target mRNAs was observed in the heavy-sedimenting polysome fractions on a sucrose gradient. Depletion of YB-1 expression by siRNA abrogated the translational activation. Furthermore, in the brain of kainic acid-treated mice, the distribution of YB-1 was shifted to much heavier fractions associated with polysomes within 30 min to 1 h after the treatment, and the distribution returned to lighter fractions within the following 2 h. The protein levels of GluR2 and CaM1 were also increased transiently when the distribution of YB-1 on the gradient changed. These results suggest that in the brain of growing mice, YB-1 binds to GluR2 and CaM1 mRNAs and regulates their translation in an activity-dependent manner.
Collapse
Affiliation(s)
- Toru Tanaka
- Research Unit of Biochemistry, School of Pharmacy, Nihon University, Funabashi, Chiba, Japan
| | | | | | | |
Collapse
|
83
|
Developmental characteristics of dendritic spines in the dentate gyrus of Fmr1 knockout mice. Brain Res 2010; 1355:221-7. [PMID: 20682298 DOI: 10.1016/j.brainres.2010.07.090] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2010] [Revised: 07/24/2010] [Accepted: 07/27/2010] [Indexed: 11/23/2022]
Abstract
Fragile X Syndrome (FXS) is the most common form of inherited mental retardation. The neuroanatomical phenotype of adult FXS patients, as well as adult Fmr1 knockout (KO) mice, includes elevated dendritic spine density and a spine morphology profile in neocortex that resembles younger individuals. Developmental studies in mouse neocortex have revealed a dynamic phenotype that varies with age, especially during the period of synaptic pruning. Here we investigated the hippocampal dentate gyrus to determine if the FXS spine phenotype is similarly tied to periods of maturation and pruning in this brain region. We used high-voltage electron microscopy to characterize Golgi-stained spines along granule cell dendrites in Fmr1 KO and wildtype (WT) mouse dentate gyrus at postnatal days 15, 21, 30, and 60. In contrast to neocortex, dendritic spine density was higher in Fmr1 KO mice across development. Interestingly, neither genotype showed specific phases of synaptogenesis or pruning, potentially explaining the phenotypic differences from neocortex. Similarly, although the KO mice showed a more immature morphological phenotype overall than WT (higher proportion of thin headed spines, lower proportion of mushroom and stubby spines), both genotypes showed gradual development, rather than impairments during specific phases of maturation. Finally, spine length showed a complex developmental pattern that differs from other brain regions examined, suggesting dynamic regulation by FMRP and other brain region-specific proteins. These findings shed new light on FMRP's role in development and highlight the need for new techniques to further understand the mechanisms by which FMRP affects synaptic maturation.
Collapse
|
84
|
Ortega AD, Willers IM, Sala S, Cuezva JM. Human G3BP1 interacts with beta-F1-ATPase mRNA and inhibits its translation. J Cell Sci 2010; 123:2685-96. [PMID: 20663914 DOI: 10.1242/jcs.065920] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The post-transcriptional regulation of nuclear mRNAs that encode core components of mitochondria has relevant implications in cell physiology. The mRNA that encodes the catalytic subunit of the mitochondrial H(+)-ATP synthase subunit beta (ATP5B, beta-F1-ATPase) is localized in a large ribonucleoprotein (RNP) complex (beta-F1-RNP), which is subjected to stringent translational control during development and the cell cycle, and in carcinogenesis. Because downregulation of beta-F1-ATPase is a conserved feature of most prevalent human carcinomas, we have investigated the molecular composition of the human beta-F1-RNP. By means of an improved affinity-chromatography procedure and protein sequencing we have identified nine RNA-binding proteins (RNABPs) of the beta-F1-RNP. Immunoprecipitation assays of Ras-GAP SH3 binding protein 1 (G3BP1) and fluorescent in-situ hybridization of mRNA indicate a direct interaction of the endogenous G3BP1 with mRNA of beta-F1-ATPase (beta-F1 mRNA). RNA-bridged trimolecular fluorescence complementation (TriFC) assays confirm the interaction of G3BP1 with the 3'-UTR of beta-F1 mRNA in cytoplasmic RNA-granules. Confocal and high-resolution immunoelectron-microscopy experiments suggest that the beta-F1-RNP is sorted to the periphery of mitochondria. Molecular and functional studies indicate that the interaction of G3BP1 with beta-F1 mRNA inhibits its translation at the initiation level, supporting a role for G3BP1 in the glycolytic switch that occurs in cancer.
Collapse
Affiliation(s)
- Alvaro D Ortega
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa (CBMSO), CSIC-UAM, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | | | | | | |
Collapse
|
85
|
Auerbach BD, Bear MF. Loss of the fragile X mental retardation protein decouples metabotropic glutamate receptor dependent priming of long-term potentiation from protein synthesis. J Neurophysiol 2010; 104:1047-51. [PMID: 20554840 DOI: 10.1152/jn.00449.2010] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Fragile X Syndrome (FXS), the most common inherited form of intellectual disability, is caused by loss of the fragile X mental retardation protein (FMRP). FMRP is a negative regulator of local mRNA translation downstream of group 1 metabotropic glutamate receptor (Gp1 mGluR) activation. In the absence of FMRP there is excessive mGluR-dependent protein synthesis, resulting in exaggerated mGluR-dependent long-term synaptic depression (LTD) in area CA1 of the hippocampus. Understanding disease pathophysiology is critical for development of therapies for FXS and the question arises of whether it is more appropriate to target excessive LTD or excessive mGluR-dependent protein synthesis. Priming of long-term potentiation (LTP) is a qualitatively different functional consequence of Gp1 mGluR-stimulated protein synthesis at the same population of CA1 synapses where LTD can be induced. Therefore we determined if LTP priming, like LTD, is also disrupted in the Fmr1 knockout (KO) mouse. We found that mGluR-dependent priming of LTP is of comparable magnitude in wild-type (WT) and Fmr1 KO mice. However, whereas LTP priming requires acute stimulation of protein synthesis in WT mice, it is no longer protein synthesis dependent in the Fmr1 KO. These experiments show that the dysregulation of mGluR-mediated protein synthesis seen in Fmr1 KO mice has multiple consequences on synaptic plasticity, even within the same population of synapses. Furthermore, it suggests that there is a bifurcation in the Gp1 mGluR signaling pathway, with one arm triggering synaptic modifications such as LTP priming and LTD and the other stimulating protein synthesis that is permissive for these modifications.
Collapse
Affiliation(s)
- Benjamin D Auerbach
- Department of Brain and Cognitive Sciences, Howard Hughes Medical Institute, The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | |
Collapse
|
86
|
Melko M, Bardoni B. The role of G-quadruplex in RNA metabolism: involvement of FMRP and FMR2P. Biochimie 2010; 92:919-26. [PMID: 20570707 DOI: 10.1016/j.biochi.2010.05.018] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2010] [Accepted: 05/28/2010] [Indexed: 12/20/2022]
Abstract
Regulation of post-transcriptional gene expression is a cellular process that is accomplished through the activity of multiple mRNP (messenger RiboNucleoProtein) complexes which are composed of mRNA-binding proteins and RNA molecules interacting with those proteins. The specificity of these interactions is mediated by the ability of the RNA-binding proteins to precisely recognize and bind RNA sequences or structures. Alterations of their function may have some dramatic consequences, resulting in different pathologies. An increasing body of data is emerging showing the impact of a G-quadruplex forming structure in the maturation and expression of some RNA molecules. We review here the role of the G-quadruplex RNA structure in the regulation of translation and splicing, when it interacts with two RNA-binding proteins: FMRP (Fragile X Mental Retardation Protein) and FMR2P (Fragile X Mental Retardation 2 protein). Impaired expression of these proteins causes two forms of intellectual disability: the Fragile X Mental Retardation syndrome (FXS) and the FRAXE-associated mental retardation (FRAXE), respectively. FMRP is involved in different steps of RNA metabolism and, in particular, in translational regulation. FMR2P has been initially described as a transcription factor and we recently showed also its role in regulation of alternative splicing. By the study of the functional significance of the interaction of both FMRP and FMR2P with a G-quadruplex forming RNA we were able to show an impact of this structure in translational regulation and also in splicing, behaving as an Exonic Splicing Enhancer.
Collapse
Affiliation(s)
- Mireille Melko
- CNRS UMR 6097, Institute of Molecular and Cellular Pharmacology, University of Nice-Sophia Antipolis, 06560 Valbonne Sophia-Antipolis, France
| | | |
Collapse
|
87
|
Coffee RL, Tessier CR, Woodruff EA, Broadie K. Fragile X mental retardation protein has a unique, evolutionarily conserved neuronal function not shared with FXR1P or FXR2P. Dis Model Mech 2010; 3:471-85. [PMID: 20442204 DOI: 10.1242/dmm.004598] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Fragile X syndrome (FXS), resulting solely from the loss of function of the human fragile X mental retardation 1 (hFMR1) gene, is the most common heritable cause of mental retardation and autism disorders, with syndromic defects also in non-neuronal tissues. In addition, the human genome encodes two closely related hFMR1 paralogs: hFXR1 and hFXR2. The Drosophila genome, by contrast, encodes a single dFMR1 gene with close sequence homology to all three human genes. Drosophila that lack the dFMR1 gene (dfmr1 null mutants) recapitulate FXS-associated molecular, cellular and behavioral phenotypes, suggesting that FMR1 function has been conserved, albeit with specific functions possibly sub-served by the expanded human gene family. To test evolutionary conservation, we used tissue-targeted transgenic expression of all three human genes in the Drosophila disease model to investigate function at (1) molecular, (2) neuronal and (3) non-neuronal levels. In neurons, dfmr1 null mutants exhibit elevated protein levels that alter the central brain and neuromuscular junction (NMJ) synaptic architecture, including an increase in synapse area, branching and bouton numbers. Importantly, hFMR1 can, comparably to dFMR1, fully rescue both the molecular and cellular defects in neurons, whereas hFXR1 and hFXR2 provide absolutely no rescue. For non-neuronal requirements, we assayed male fecundity and testes function. dfmr1 null mutants are effectively sterile owing to disruption of the 9+2 microtubule organization in the sperm tail. Importantly, all three human genes fully and equally rescue mutant fecundity and spermatogenesis defects. These results indicate that FMR1 gene function is evolutionarily conserved in neural mechanisms and cannot be compensated by either FXR1 or FXR2, but that all three proteins can substitute for each other in non-neuronal requirements. We conclude that FMR1 has a neural-specific function that is distinct from its paralogs, and that the unique FMR1 function is responsible for regulating neuronal protein expression and synaptic connectivity.
Collapse
Affiliation(s)
- R Lane Coffee
- Department of Biological Sciences, Vanderbilt Brain Institute, Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, TN 37235-1634, USA
| | | | | | | |
Collapse
|
88
|
Monzo K, Dowd SR, Minden JS, Sisson JC. Proteomic analysis reveals CCT is a target of Fragile X mental retardation protein regulation in Drosophila. Dev Biol 2010; 340:408-18. [PMID: 20122915 DOI: 10.1016/j.ydbio.2010.01.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2009] [Revised: 01/21/2010] [Accepted: 01/22/2010] [Indexed: 10/19/2022]
Abstract
Fragile X mental retardation protein (FMRP) is an RNA-binding protein that is required for the translational regulation of specific target mRNAs. Loss of FMRP causes Fragile X syndrome (FXS), the most common form of inherited mental retardation in humans. Understanding the basis for FXS has been limited because few in vivo targets of FMRP have been identified and mechanisms for how FMRP regulates physiological targets are unclear. We have previously demonstrated that Drosophila FMRP (dFMRP) is required in early embryos for cleavage furrow formation. In an effort to identify new targets of dFMRP-dependent regulation and new effectors of cleavage furrow formation, we used two-dimensional difference gel electrophoresis and mass spectrometry to identify proteins that are misexpressed in dfmr1 mutant embryos. Of the 28 proteins identified, we have identified three subunits of the Chaperonin containing TCP-1 (CCT) complex as new direct targets of dFMRP-dependent regulation. Furthermore, we found that the septin Peanut, a known effector of cleavage, is a likely conserved substrate of fly CCT and is mislocalized in both cct and in dfmr1 mutant embryos. Based on these results we propose that dFMRP-dependent regulation of CCT subunits is required for cleavage furrow formation and that at least one of its substrates is affected in dfmr1- embryos suggesting that dFMRP-dependent regulation of CCT contributes to the cleavage furrow formation phenotype.
Collapse
Affiliation(s)
- Kate Monzo
- Institute of Cellular and Molecular Biology and Section of Molecular Cell and Developmental Biology, University of Texas at Austin, 2400 Speedway Ave, Patterson Labs 216, Austin, TX 78712, USA.
| | | | | | | |
Collapse
|
89
|
Bolduc FV, Bell K, Rosenfelt C, Cox H, Tully T. Fragile x mental retardation 1 and filamin a interact genetically in Drosophila long-term memory. Front Neural Circuits 2010; 3:22. [PMID: 20190856 PMCID: PMC2813723 DOI: 10.3389/neuro.04.022.2009] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2009] [Accepted: 12/03/2009] [Indexed: 11/13/2022] Open
Abstract
The last decade has witnessed the identification of single-gene defects associated with an impressive number of mental retardation syndromes. Fragile X syndrome, the most common cause of mental retardation for instance, results from disruption of the FMR1 gene. Similarly, Periventricular Nodular Heterotopia, which includes cerebral malformation, epilepsy and cognitive disabilities, derives from disruption of the Filamin A gene. While it remains unclear whether defects in common molecular pathways may underlie the cognitive dysfunction of these various syndromes, defects in cytoskeletal structure nonetheless appear to be common to several mental retardation syndromes. FMR1 is known to interact with Rac, profilin, PAK and Ras, which are associated with dendritic spine defects. In Drosophila, disruptions of the dFmr1 gene impair long-term memory (LTM), and the Filamin A homolog (cheerio) was identified in a behavioral screen for LTM mutants. Thus, we investigated the possible interaction between cheerio and dFmr1 during LTM formation in Drosophila. We show that LTM specifically is defective in dFmr1/cheerio double heterozygotes, while it is normal in single heterozygotes for either dFmr1 or cheerio. In dFmr1 mutants, Filamin (Cheerio) levels are lower than normal after spaced training. These observations support the notion that decreased actin cross-linking may underlie the persistence of long and thin dendritic spines in Fragile X patients and animal models. More generally, our results represent the first demonstration of a genetic interaction between mental retardation genes in an in vivo model system of memory formation.
Collapse
Affiliation(s)
- François V Bolduc
- Watson School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor New York, NY, USA
| | | | | | | | | |
Collapse
|
90
|
Zang JB, Nosyreva ED, Spencer CM, Volk LJ, Musunuru K, Zhong R, Stone EF, Yuva-Paylor LA, Huber KM, Paylor R, Darnell JC, Darnell RB. A mouse model of the human Fragile X syndrome I304N mutation. PLoS Genet 2009; 5:e1000758. [PMID: 20011099 PMCID: PMC2779495 DOI: 10.1371/journal.pgen.1000758] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2008] [Accepted: 11/09/2009] [Indexed: 01/29/2023] Open
Abstract
The mental retardation, autistic features, and behavioral abnormalities characteristic of the Fragile X mental retardation syndrome result from the loss of function of the RNA–binding protein FMRP. The disease is usually caused by a triplet repeat expansion in the 5′UTR of the FMR1 gene. This leads to loss of function through transcriptional gene silencing, pointing to a key function for FMRP, but precluding genetic identification of critical activities within the protein. Moreover, antisense transcripts (FMR4, ASFMR1) in the same locus have been reported to be silenced by the repeat expansion. Missense mutations offer one means of confirming a central role for FMRP in the disease, but to date, only a single such patient has been described. This patient harbors an isoleucine to asparagine mutation (I304N) in the second FMRP KH-type RNA–binding domain, however, this single case report was complicated because the patient harbored a superimposed familial liver disease. To address these issues, we have generated a new Fragile X Syndrome mouse model in which the endogenous Fmr1 gene harbors the I304N mutation. These mice phenocopy the symptoms of Fragile X Syndrome in the existing Fmr1–null mouse, as assessed by testicular size, behavioral phenotyping, and electrophysiological assays of synaptic plasticity. I304N FMRP retains some functions, but has specifically lost RNA binding and polyribosome association; moreover, levels of the mutant protein are markedly reduced in the brain specifically at a time when synapses are forming postnatally. These data suggest that loss of FMRP function, particularly in KH2-mediated RNA binding and in synaptic plasticity, play critical roles in pathogenesis of the Fragile X Syndrome and establish a new model for studying the disorder. Missense mutations in human genes provide valuable insight into the genetic causes of disease. Fragile X Syndrome (FXS), a common genetic cause of autism and mental retardation, is usually caused by transcriptional silencing of the FMR1 gene. The potential importance of single patient with a missense mutation (I304N) in an RNA–binding domain of the Fragile X protein, FMRP, has been questioned in part because he has a confounding liver disease. We introduced the I304N mutation into the endogenous Fmr1 locus to create a mouse model of Fragile X Syndrome. We find that this mutation results in behavioral, electrophysiologic, and phenotypic features of the disease, loss of binding to RNA targets in the brain, and lower FMRP levels at a critical time during synapse formation. We conclude that loss of RNA binding and underexpression of FMRP are sufficient to cause the Fragile X Syndrome.
Collapse
Affiliation(s)
- Julie B. Zang
- Laboratory of Molecular Neuro-Oncology, The Rockefeller University, New York, New York, United States of America
| | - Elena D. Nosyreva
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Corinne M. Spencer
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Lenora J. Volk
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Kiran Musunuru
- Laboratory of Molecular Neuro-Oncology, The Rockefeller University, New York, New York, United States of America
| | - Ru Zhong
- Laboratory of Molecular Neuro-Oncology, The Rockefeller University, New York, New York, United States of America
| | - Elizabeth F. Stone
- Laboratory of Molecular Neuro-Oncology, The Rockefeller University, New York, New York, United States of America
| | - Lisa A. Yuva-Paylor
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Kimberly M. Huber
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Richard Paylor
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Jennifer C. Darnell
- Laboratory of Molecular Neuro-Oncology, The Rockefeller University, New York, New York, United States of America
- * E-mail:
| | - Robert B. Darnell
- Laboratory of Molecular Neuro-Oncology, The Rockefeller University, New York, New York, United States of America
- Howard Hughes Medical Institute, The Rockefeller University, New York, New York, United States of America
| |
Collapse
|
91
|
Zukin RS, Richter JD, Bagni C. Signals, synapses, and synthesis: how new proteins control plasticity. Front Neural Circuits 2009; 3:14. [PMID: 19838324 PMCID: PMC2762370 DOI: 10.3389/neuro.04.014.2009] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2009] [Accepted: 09/11/2009] [Indexed: 12/18/2022] Open
Abstract
Localization of mRNAs to dendrites and local protein synthesis afford spatial and temporal regulation of gene expression and endow synapses with the capacity to autonomously alter their structure and function. Emerging evidence indicates that RNA binding proteins, ribosomes, translation factors and mRNAs encoding proteins critical to synaptic structure and function localize to neuronal processes. RNAs are transported into dendrites in a translationally quiescent state where they are activated by synaptic stimuli. Two RNA binding proteins that regulate dendritic RNA delivery and translational repression are cytoplasmic polyadenylation element binding protein and fragile X mental retardation protein (FMRP). The fragile X syndrome (FXS) is the most common known genetic cause of autism and is characterized by the loss of FMRP. Hallmark features of the FXS include dysregulation of spine morphogenesis and exaggerated metabotropic glutamate receptor-dependent long term depression, a cellular substrate of learning and memory. Current research focuses on mechanisms whereby mRNAs are transported in a translationally repressed state from soma to distal process and are activated at synaptic sites in response to synaptic signals.
Collapse
Affiliation(s)
- R Suzanne Zukin
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine Bronx, NY, USA
| | | | | |
Collapse
|
92
|
Abstract
Regulatory RNAs have been suggested to contribute to the control of gene expression in eukaryotes. Brain cytoplasmic (BC) RNAs are regulatory RNAs that control translation initiation. We now report that neuronal BC1 RNA plays an instrumental role in the protein-synthesis-dependent implementation of neuronal excitation-repression equilibria. BC1 repression counter-regulates translational stimulation resulting from synaptic activation of group I metabotropic glutamate receptors (mGluRs). Absence of BC1 RNA precipitates plasticity dysregulation in the form of neuronal hyperexcitability, elicited by group I mGluR-stimulated translation and signaled through the mitogen-activated protein kinase kinase/extracellular signal-regulated kinase pathway. Dysregulation of group I mGluR function in the absence of BC1 RNA gives rise to abnormal brain function. Cortical EEG recordings from freely moving BC1(-/-) animals show that group I mGluR-mediated oscillations in the gamma frequency range are significantly elevated. When subjected to sensory stimulation, these animals display an acute group I mGluR-dependent propensity for convulsive seizures. Inadequate RNA control in neurons is thus causally linked to heightened group I mGluR-stimulated translation, neuronal hyperexcitability, heightened gamma band oscillations, and epileptogenesis. These data highlight the significance of small RNA control in neuronal plasticity.
Collapse
|
93
|
Darnell JC, Fraser CE, Mostovetsky O, Darnell RB. Discrimination of common and unique RNA-binding activities among Fragile X mental retardation protein paralogs. Hum Mol Genet 2009; 18:3164-77. [PMID: 19487368 PMCID: PMC2722981 DOI: 10.1093/hmg/ddp255] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Fragile X mental retardation is caused by loss-of-function of a single gene encoding FMRP, an RNA-binding protein that harbors three canonical RNA-binding domains, two KH-type and one RGG box. Two autosomal paralogs of FMRP, FXR1P and FXR2P, are similar to FMRP in their overall structure, including the presence of putative RNA-binding domains, but to what extent they provide functional redundancy with FMRP is unclear. Although FMRP has been characterized as a polyribosome-associated regulator of translation, less is known about the functions of FXR1P and FXR2P. For example, FMRP binds intramolecular G-quadruplex and kissing complex RNA (kcRNA) ligands via the RGG box and KH2 domain, respectively, although the RNA ligands of FXR1P and FXR2P are unknown. Here we demonstrate that FXR1P and FXR2P KH2 domains bind kcRNA ligands with the same affinity as the FMRP KH2 domain although other KH domains do not. RNA ligand recognition by this family is highly conserved, as the KH2 domain of the single Drosophila ortholog, dFMRP, also binds kcRNA. kcRNA was able to displace FXR1P and FXR2P from polyribosomes as it does for FMRP, and this displacement was FMRP-independent. This suggests that all three family members recognize the same binding site on RNA mediating their polyribosome association, and that they may be functionally redundant with regard to this aspect of translational control. In contrast, FMRP is unique in its ability to recognize G-quadruplexes, suggesting the FMRP RGG domain may play a non-redundant role in the pathophysiology of the disease.
Collapse
Affiliation(s)
- Jennifer C Darnell
- Laboratory of Molecular Neuro-oncology, The Rockefeller University, New York, NY 10065, USA.
| | | | | | | |
Collapse
|
94
|
Grange J, Belly A, Dupas S, Trembleau A, Sadoul R, Goldberg Y. Specific interaction between Sam68 and neuronal mRNAs: implication for the activity-dependent biosynthesis of elongation factor eEF1A. J Neurosci Res 2009; 87:12-25. [PMID: 18711726 DOI: 10.1002/jnr.21824] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In cultured hippocampal neurons and in adult brain, the splicing regulatory protein Sam68 is partially relocated to the somatodendritic domain and associates with dendritic polysomes. Transfer to the dendrites is activity-dependent. We have investigated the repertoire of neuronal mRNAs to which Sam68 binds in vivo. By using coimmunoprecipitation and microarray screening techniques, Sam68 was found to associate with a number of plasticity-related mRNA species, including Eef1a1, an activity-responsive mRNA coding for translation elongation factor eEF1A. In cortical neuronal cultures, translation of the Eef1a1 mRNA was strongly induced by neuronal depolarisation and correlated with enhanced association of Sam68 with polysomal mRNAs. The possible function of Sam68 in Eef1a1 mRNA utilization was studied by expressing a dominant-negative, cytoplasmic Sam68 mutant (GFP-Sam68DeltaC) in cultured hippocampal neurons. The level of eEF1A was lower in neurons expressing GFP-Sam68DeltaC than in control neurons, supporting the proposal that endogenous Sam68 may contribute to the translational efficiency of the Eef1a1 mRNA. These findings are discussed in the light of the complex, potentially crucial regulation of eEF1A biosynthesis during long-term synaptic change.
Collapse
Affiliation(s)
- Julien Grange
- Université Joseph Fourier, Grenoble Institute of Neuroscience, Grenoble, France
| | | | | | | | | | | |
Collapse
|
95
|
Abstract
Fragile X syndrome (FXS) is the most common inherited form of mental retardation and a leading genetic cause of autism. There is increasing evidence in both FXS and other forms of autism that alterations in synapse number, structure, and function are associated and contribute to these prevalent diseases. FXS is caused by loss of function of the Fmr1 gene, which encodes the RNA binding protein, fragile X mental retardation protein (FMRP). Therefore, FXS is a tractable model to understand synaptic dysfunction in cognitive disorders. FMRP is present at synapses where it associates with mRNA and polyribosomes. Accumulating evidence finds roles for FMRP in synapse development, elimination, and plasticity. Here, the authors review the synaptic changes observed in FXS and try to relate these changes to what is known about the molecular function of FMRP. Recent advances in the understanding of the molecular and synaptic function of FMRP, as well as the consequences of its loss, have led to the development of novel therapeutic strategies for FXS.
Collapse
Affiliation(s)
- Brad E Pfeiffer
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390-9011, USA
| | | |
Collapse
|
96
|
Pan Q, Rong L, Zhao X, Liang C. Fragile X mental retardation protein restricts replication of human immunodeficiency virus type 1. Virology 2009; 387:127-35. [PMID: 19249802 DOI: 10.1016/j.virol.2009.02.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2008] [Revised: 11/21/2008] [Accepted: 02/03/2009] [Indexed: 11/17/2022]
Abstract
Gag protein is the major structural component of human immunodeficiency virus type 1 (HIV-1) particles and drives virus assembly on cellular membranes. This function of Gag is attributed to its intrinsic self-multimerization ability as well as its interaction with cellular factors such as TSG101 that binds to the PTAP sequence in the p6 region of Gag and promotes HIV-1 budding through recruiting the ESCRT (endosomal sorting complex required for transport). As a result of its essential role in virus assembly, Gag also becomes the target of cellular restriction factors such as APOBEC3G and Trim5alpha. In this study, we report that the fragile X mental retardation protein (FMRP) interacts with HIV-1 Gag and is packaged into virus particles. Although knockdown of FMRP does not markedly affect production of virus particles, infectivity of HIV-1 virions was significantly decreased. Consistent with this observation, overexpression of the wild type FMRP, but not the FMRP mutants that lack the KH1 or the KH2 domains, led to 2- to 3-fold reduction of virus infectivity. Together, these results suggest that FMRP diminishes HIV-1 infectivity through association with viral Gag protein and virus particles.
Collapse
Affiliation(s)
- Qinghua Pan
- McGill AIDS Centre, Lady Davis Institute-Jewish General Hospital, 3755 Cote Ste-Catherine Road, Montreal, Quebec, Canada H3T 1E2
| | | | | | | |
Collapse
|
97
|
Bechara EG, Didiot MC, Melko M, Davidovic L, Bensaid M, Martin P, Castets M, Pognonec P, Khandjian EW, Moine H, Bardoni B. A novel function for fragile X mental retardation protein in translational activation. PLoS Biol 2009; 7:e16. [PMID: 19166269 PMCID: PMC2628407 DOI: 10.1371/journal.pbio.1000016] [Citation(s) in RCA: 157] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2008] [Accepted: 12/05/2008] [Indexed: 11/19/2022] Open
Abstract
Fragile X syndrome, the most frequent form of inherited mental retardation, is due to the absence of Fragile X Mental Retardation Protein (FMRP), an RNA-binding protein involved in several steps of RNA metabolism. To date, two RNA motifs have been found to mediate FMRP/RNA interaction, the G-quartet and the "kissing complex," which both induce translational repression in the presence of FMRP. We show here a new role for FMRP as a positive modulator of translation. FMRP specifically binds Superoxide Dismutase 1 (Sod1) mRNA with high affinity through a novel RNA motif, SoSLIP (Sod1 mRNA Stem Loops Interacting with FMRP), which is folded as three independent stem-loop structures. FMRP induces a structural modification of the SoSLIP motif upon its interaction with it. SoSLIP also behaves as a translational activator whose action is potentiated by the interaction with FMRP. The absence of FMRP results in decreased expression of Sod1. Because it has been observed that brain metabolism of FMR1 null mice is more sensitive to oxidative stress, we propose that the deregulation of Sod1 expression may be at the basis of several traits of the physiopathology of the Fragile X syndrome, such as anxiety, sleep troubles, and autism.
Collapse
Affiliation(s)
- Elias G Bechara
- Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne, France
- CNRS, UMR6097, Valbonne, France
- Université de Nice Sophia-Antipolis, Nice, France
| | - Marie Cecile Didiot
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
- CNRS, UMR 7104, Illkirch, France
- INSERM, U596, Illkirch, France
- Université Louis Pasteur 1, Strasbourg, France
| | - Mireille Melko
- Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne, France
- CNRS, UMR6097, Valbonne, France
- Université de Nice Sophia-Antipolis, Nice, France
| | - Laetitia Davidovic
- Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne, France
- CNRS, UMR6097, Valbonne, France
- Université de Nice Sophia-Antipolis, Nice, France
| | - Mounia Bensaid
- Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne, France
- CNRS, UMR6097, Valbonne, France
- Université de Nice Sophia-Antipolis, Nice, France
| | - Patrick Martin
- Université de Nice Sophia-Antipolis, Nice, France
- CNRS, FRE3094, Nice, France
| | - Marie Castets
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
- CNRS, UMR 7104, Illkirch, France
- INSERM, U596, Illkirch, France
- Université Louis Pasteur 1, Strasbourg, France
| | - Philippe Pognonec
- Université de Nice Sophia-Antipolis, Nice, France
- CNRS, FRE3094, Nice, France
| | - Edouard W Khandjian
- Neurobiologie Cellulaire, Centre de Recherche Robert Giffard, Université Laval, Québec, Canada
| | - Hervé Moine
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
- CNRS, UMR 7104, Illkirch, France
- INSERM, U596, Illkirch, France
- Université Louis Pasteur 1, Strasbourg, France
| | - Barbara Bardoni
- Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne, France
- CNRS, UMR6097, Valbonne, France
- Université de Nice Sophia-Antipolis, Nice, France
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
98
|
Gatto CL, Broadie K. The fragile X mental retardation protein in circadian rhythmicity and memory consolidation. Mol Neurobiol 2009; 39:107-29. [PMID: 19214804 DOI: 10.1007/s12035-009-8057-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2008] [Accepted: 01/22/2009] [Indexed: 02/06/2023]
Abstract
The control of new protein synthesis provides a means to locally regulate the availability of synaptic components necessary for dynamic neuronal processes. The fragile X mental retardation protein (FMRP), an RNA-binding translational regulator, is a key player mediating appropriate synaptic protein synthesis in response to neuronal activity levels. Loss of FMRP causes fragile X syndrome (FraX), the most commonly inherited form of mental retardation and autism spectrum disorders. FraX-associated translational dysregulation causes wide-ranging neurological deficits including severe impairments of biological rhythms, learning processes, and memory consolidation. Dysfunction in cytoskeletal regulation and synaptic scaffolding disrupts neuronal architecture and functional synaptic connectivity. The understanding of this devastating disease and the implementation of meaningful treatment strategies require a thorough exploration of the temporal and spatial requirements for FMRP in establishing and maintaining neural circuit function.
Collapse
Affiliation(s)
- Cheryl L Gatto
- Department of Biological Sciences, Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, TN 37232, USA
| | | |
Collapse
|
99
|
Fähling M, Mrowka R, Steege A, Kirschner KM, Benko E, Förstera B, Persson PB, Thiele BJ, Meier JC, Scholz H. Translational regulation of the human achaete-scute homologue-1 by fragile X mental retardation protein. J Biol Chem 2008; 284:4255-66. [PMID: 19097999 DOI: 10.1074/jbc.m807354200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Fragile X syndrome is a common inherited cause of mental retardation that results from loss or mutation of the fragile X mental retardation protein (FMRP). In this study, we identified the mRNA of the basic helix-loop-helix transcription factor human achaete-scute homologue-1 (hASH1 or ASCL1), which is required for normal development of the nervous system and has been implicated in the formation of neuroendocrine tumors, as a new FMRP target. Using a double-immunofluorescent staining technique we detected an overlapping pattern of both proteins in the hippocampus, temporal cortex, subventricular zone, and cerebellum of newborn rats. Forced expression of FMRP and gene silencing by small interference RNA transfection revealed a positive correlation between the cellular protein levels of FMRP and hASH1. A luciferase reporter construct containing the 5'-untranslated region of hASH1 mRNA was activated by the full-length FMRP, but not by naturally occurring truncated FMR proteins, in transient co-transfections. The responsible cis-element was mapped by UV-cross-linking experiments and reporter mutagenesis assays to a (U)(10) sequence located in the 5'-untranslated region of the hASH1 mRNA. Sucrose density gradient centrifugation revealed that hASH1 transcripts were translocated into a translationally active polysomal fraction upon transient transfection of HEK293 cells with FMRP, thus indicating translational activation of hASH1 mRNA. In conclusion, we identified hASH1 as a novel downstream target of FMRP. Improved translation efficiency of hASH1 mRNA by FMRP may represent an important regulatory switch in neuronal differentiation.
Collapse
Affiliation(s)
- Michael Fähling
- Charité, Universitätsmedizin Berlin, Institut für Vegetative Physiologie, Tucholskystrasse 2, D-10117 Berlin
| | | | | | | | | | | | | | | | | | | |
Collapse
|
100
|
Bassell GJ, Warren ST. Fragile X syndrome: loss of local mRNA regulation alters synaptic development and function. Neuron 2008; 60:201-14. [PMID: 18957214 DOI: 10.1016/j.neuron.2008.10.004] [Citation(s) in RCA: 809] [Impact Index Per Article: 47.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Fragile X syndrome is the most common inherited form of cognitive deficiency in humans and perhaps the best-understood single cause of autism. A trinucleotide repeat expansion, inactivating the X-linked FMR1 gene, leads to the absence of the fragile X mental retardation protein. FMRP is a selective RNA-binding protein that regulates the local translation of a subset of mRNAs at synapses in response to activation of Gp1 metabotropic glutamate receptors (mGluRs) and possibly other receptors. In the absence of FMRP, excess and dysregulated mRNA translation leads to altered synaptic function and loss of protein synthesis-dependent plasticity. Recent evidence indicates the role of FMRP in regulated mRNA transport in dendrites. New studies also suggest a possible local function of FMRP in axons that may be important for guidance, synaptic development, and formation of neural circuits. The understanding of FMRP function at synapses has led to rationale therapeutic approaches.
Collapse
Affiliation(s)
- Gary J Bassell
- Department of Cell Biology and Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA.
| | | |
Collapse
|