51
|
The GABA system in anxiety and depression and its therapeutic potential. Neuropharmacology 2012; 62:42-53. [DOI: 10.1016/j.neuropharm.2011.08.040] [Citation(s) in RCA: 348] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Accepted: 08/23/2011] [Indexed: 01/01/2023]
|
52
|
Vinkers CH, Olivier B, Hanania T, Min W, Schreiber R, Hopkins SC, Campbell U, Paterson N. Discriminative stimulus properties of GABAA receptor positive allosteric modulators TPA023, ocinaplon and NG2-73 in rats trained to discriminate chlordiazepoxide or zolpidem. Eur J Pharmacol 2011; 668:190-3. [DOI: 10.1016/j.ejphar.2011.06.054] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Revised: 06/20/2011] [Accepted: 06/27/2011] [Indexed: 11/30/2022]
|
53
|
Karim N, Gavande N, Wellendorph P, Johnston GAR, Hanrahan JR, Chebib M. 3-Hydroxy-2'-methoxy-6-methylflavone: a potent anxiolytic with a unique selectivity profile at GABA(A) receptor subtypes. Biochem Pharmacol 2011; 82:1971-83. [PMID: 21924247 DOI: 10.1016/j.bcp.2011.09.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Revised: 09/01/2011] [Accepted: 09/02/2011] [Indexed: 11/30/2022]
Abstract
Genetic and pharmacological studies have demonstrated that α2- and α4-containing GABA(A) receptors mediate the anxiolytic effects of a number of agents. Flavonoids are a class of ligands that act at GABA(A) receptors and possess anxiolytic effects in vivo. Here we demonstrate that the synthetic flavonoid, 3-hydroxy-2'-methoxy-6-methylflavone (3-OH-2'MeO6MF) potentiates GABA-induced currents at recombinant α1/2β2, α1/2/4/6β1-3γ2L but not α3/5β1-3γ2L receptors expressed in Xenopus oocytes. The enhancement was evident at micromolar concentrations (EC(50) values between 38 and 106 μM) and occurred in a flumazenil-insensitive manner. 3-OH-2'MeO6MF displayed preference for β2/3- over β1-containing receptors with the highest efficacy observed at α2β2/3γ2L, displaying a 4-11-fold increase in efficacy over α2β1γ2L and α1/4/6-containing subtypes. In contrast, 3-OH-2'MeO6MF acted as a potent bicuculline-sensitive activator, devoid of potentiation effects at extrasynaptic α4β2/3δ receptors expressed in oocytes. The affinity of 3-OH-2'MeO6MF for α4β2/3δ receptors (EC(50) values between 1.4 and 2.5 μM) was 10-fold higher than at α4β1δ GABA(A) receptors. 3-OH-2'MeO6MF acted as a full agonist at α4β2/3δ (105% of the maximal GABA response) but as a partial agonist at α4β1δ (61% of the maximum GABA response) receptors. In mice, 3-OH-2'MeO6MF (1-100 mg/kg i.p.) induced anxiolytic-like effects in two unconditioned models of anxiety: the elevated plus maze and light/dark paradigms. No sedative or myorelaxant effects were detected using holeboard, actimeter and horizontal wire tests and only weak barbiturate potentiating effects on the loss of righting reflex test. Taken together, these data suggest that 3-OH-2'MeO6MF is an anxiolytic without sedative and myorelaxant effects acting through positive allosteric modulation of the α2β2/3γ2L and direct activation of α4β2/3δ GABA(A) receptor subtypes.
Collapse
|
54
|
Rudolph U, Knoflach F. Beyond classical benzodiazepines: novel therapeutic potential of GABAA receptor subtypes. Nat Rev Drug Discov 2011; 10:685-97. [PMID: 21799515 DOI: 10.1038/nrd3502] [Citation(s) in RCA: 502] [Impact Index Per Article: 38.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
GABA(A) (γ-aminobutyric acid, type A) receptors are a family of ligand-gated ion channels that are essential for the regulation of central nervous system function. Benzodiazepines - which non-selectively target GABA(A) receptors containing the α1, α2, α3 or α5 subunits - have been in clinical use for decades and are still among the most widely prescribed drugs for the treatment of insomnia and anxiety disorders. However, their use is limited by side effects and the risk of drug dependence. In the past decade, the identification of separable key functions of GABA(A) receptor subtypes suggests that receptor subtype-selective compounds could overcome the limitations of classical benzodiazepines; furthermore, they might be valuable for novel indications such as chronic pain, depression, schizophrenia, cognitive enhancement and stroke.
Collapse
Affiliation(s)
- Uwe Rudolph
- Laboratory of Genetic Neuropharmacology, McLean Hospital and Department of Psychiatry, Harvard Medical School, Belmont, Massachusetts 02478, USA. urudolph@ mclean.harvard.edu
| | | |
Collapse
|
55
|
Aggarwal R, Sumran G, Garg N, Aggarwal A. A regioselective synthesis of some new pyrazol-1′-ylpyrazolo[1,5-a]pyrimidines in aqueous medium and their evaluation as antimicrobial agents. Eur J Med Chem 2011; 46:3038-46. [DOI: 10.1016/j.ejmech.2011.04.041] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Accepted: 04/13/2011] [Indexed: 10/18/2022]
|
56
|
Möhler H. The rise of a new GABA pharmacology. Neuropharmacology 2011; 60:1042-9. [DOI: 10.1016/j.neuropharm.2010.10.020] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2010] [Revised: 10/13/2010] [Accepted: 10/21/2010] [Indexed: 10/18/2022]
|
57
|
Atack JR, Wafford KA, Street LJ, Dawson GR, Tye S, Van Laere K, Bormans G, Sanabria-Bohórquez SM, De Lepeleire I, de Hoon JN, Van Hecken A, Burns HD, McKernan RM, Murphy MG, Hargreaves RJ. MRK-409 (MK-0343), a GABAA receptor subtype-selective partial agonist, is a non-sedating anxiolytic in preclinical species but causes sedation in humans. J Psychopharmacol 2011; 25:314-28. [PMID: 20147571 DOI: 10.1177/0269881109354927] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
MRK-409 binds to α1-, α2-, α3- and α5-containing human recombinant GABA(A) receptors with comparable high affinity (0.21-0.40 nM). However, MRK-409 has greater agonist efficacy at the α3 compared with α1 subtypes (respective efficacies relative to the full agonist chlordiazepoxide of 0.45 and 0.18). This compound readily penetrates the brain in rats and occupies the benzodiazepine site of GABA(A) receptors, measured using an in vivo [(3)H]flumazenil binding assay, with an Occ(50) of 2.2 mg/kg p.o. and a corresponding plasma EC(50) of 115 ng/mL. Behaviourally, the α3-preferring agonist efficacy profile of MRK-409 produced anxiolytic-like activity in rodent and primate unconditioned and conditioned models of anxiety with minimum effective doses corresponding to occupancies, depending on the particular model, ranging from ∼35% to 65% yet there were minimal overt signs of sedation at occupancies greater than 90%. In humans, however, safety and tolerability studies showed that there was pronounced sedation at a dose of 2 mg, resulting in a maximal tolerated dose of 1 mg. This 2 mg dose corresponded to a C(max) plasma concentration of 28 ng/mL, which, based on the rodent plasma EC(50) for occupancy of 115 ng/mL, suggested that sedation in humans occurs at low levels of occupancy. This was confirmed in human positron emission tomography studies, in which [(11)C]flumazenil uptake following a single dose of 1 mg MRK-409 was comparable to that of placebo, indicating that occupancy of GABA(A) receptor benzodiazepine binding sites by MRK-409 was below the limits of detection (i.e. <10%). Taken together, these data show that MRK-409 causes sedation in humans at a dose (2 mg) corresponding to levels of occupancy considerably less than those predicted from rodent models to be required for anxiolytic efficacy (∼35-65%). Thus, the preclinical non-sedating anxiolytic profile of MRK-409 did not translate into humans and further development of this compound was halted.
Collapse
Affiliation(s)
- J R Atack
- Neuroscience Research Centre, Merck Sharp & Dohme Research Laboratories, Harlow, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
58
|
Atack JR, Hallett DJ, Tye S, Wafford KA, Ryan C, Sanabria-Bohórquez SM, Eng WS, Gibson RE, Burns HD, Dawson GR, Carling RW, Street LJ, Pike A, De Lepeleire I, Van Laere K, Bormans G, de Hoon JN, Van Hecken A, McKernan RM, Murphy MG, Hargreaves RJ. Preclinical and clinical pharmacology of TPA023B, a GABAA receptor α2/α3 subtype-selective partial agonist. J Psychopharmacol 2011; 25:329-44. [PMID: 20156926 DOI: 10.1177/0269881109354928] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In the accompanying paper we describe how MRK-409 unexpectedly produced sedation in man at relatively low levels of GABA(A) receptor occupancy (∼10%). Since it was not clear whether this sedation was mediated via the α2/α3 or α1 GABA(A) subtype(s), we characterized the properties of TPA023B, a high-affinity imidazotriazine which, like MRK-409, has partial agonist efficacy at the α2 and α3 subtype but is an antagonist at the α1 subtype, at which MRK-409 has weak partial agonism. TPA023B gave dose- and time-dependent occupancy of rat brain GABA(A) receptors as measured using an in vivo [(3)H]flumazenil binding assay, with 50% occupancy corresponding to a respective dose and plasma drug concentration of 0.09 mg/kg and 19 ng/mL, the latter of which was similar to that observed in mice (25 ng/mL) and comparable to values obtained in baboon and man using [(11)C]flumazenil PET (10 and 5.8 ng/mL, respectively). TPA023B was anxiolytic in rodent and primate (squirrel monkey) models of anxiety (elevated plus maze, fear-potentiated startle, conditioned suppression of drinking, conditioned emotional response) yet had no significant effects in rodent or primate assays of ataxia and/or myorelaxation (rotarod, chain-pulling, lever pressing), up to doses (10 mg/kg) corresponding to occupancy of greater than 99%. In man, TPA023B was well tolerated at a dose (1.5 mg) that produced occupancy of >50%, suggesting that the sedation previously seen with MRK-409 is due to the partial agonist efficacy of that compound at the α1 subtype, and highlighting the importance of antagonist efficacy at this particular GABA(A) receptor population for avoiding sedation in man.
Collapse
Affiliation(s)
- J R Atack
- Neuroscience Research Centre, Merck Sharp & Dohme Research Laboratories, Harlow, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
59
|
Vinkers CH, Mirza NR, Olivier B, Kahn RS. The inhibitory GABA system as a therapeutic target for cognitive symptoms in schizophrenia: investigational agents in the pipeline. Expert Opin Investig Drugs 2011; 19:1217-33. [PMID: 20812877 DOI: 10.1517/13543784.2010.513382] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
IMPORTANCE OF THE FIELD Cognitive impairments associated with schizophrenia include neuropsychological deficits in attention, working memory, learning and executive function. Because these cognitive deficits precede the onset of psychosis, are present in non-affected relatives and constitute the best predictor of functional outcome, they are a cardinal clinical feature in schizophrenia. Currently, no effective treatment for the cognitive symptoms in schizophrenia exists. AREAS COVERED IN THIS REVIEW There is evidence that the inhibitory GABA system is affected in schizophrenia, suggesting that cognitive impairments associated with schizophrenia may be effectively treated by drugs that modulate the GABA(A) receptor. However, classical benzodiazepines produce cognitive impairments and are associated with numerous side effects. The recent development of compounds with selective efficacy for different α subunits at the benzodiazepine site of the GABA(A) receptor has renewed interest for the therapeutic potential of GABAergic drugs. WHAT THE READER WILL GAIN This review summarizes the involvement of the inhibitory GABA system in the cognitive abnormalities of schizophrenia and discusses putative (selective) GABAergic cognition-enhancing drugs for schizophrenia. TAKE HOME MESSAGE If cognitive abnormalities in schizophrenic individuals are the result of GABAergic dysfunction, selectively modulating the GABA system could comprise a promising therapeutic intervention for cognitive symptoms in schizophrenia.
Collapse
Affiliation(s)
- Christiaan H Vinkers
- Department of Psychiatry, University Medical Center Utrecht, Rudolf Magnus Institute of Neuroscience, Utrecht, The Netherlands
| | | | | | | |
Collapse
|
60
|
Lee YL, Wu Y, Tsang HWH, Leung AY, Cheung WM. A systematic review on the anxiolytic effects of aromatherapy in people with anxiety symptoms. J Altern Complement Med 2011; 17:101-8. [PMID: 21309711 DOI: 10.1089/acm.2009.0277] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
PURPOSE We reviewed studies from 1990 to 2010 on using aromatherapy for people with anxiety or anxiety symptoms and examined their clinical effects. METHODS The review was conducted on available electronic databases to extract journal articles that evaluated the anxiolytic effects of aromatherapy for people with anxiety symptoms. RESULTS The results were based on 16 randomized controlled trials examining the anxiolytic effects of aromatherapy among people with anxiety symptoms. Most of the studies indicated positive effects to quell anxiety. No adverse events were reported. CONCLUSIONS It is recommended that aromatherapy could be applied as a complementary therapy for people with anxiety symptoms. Further studies with better quality on methodology should be conducted to identify its clinical effects and the underlying biologic mechanisms.
Collapse
Affiliation(s)
- Yuk-Lan Lee
- Neuropsychiatric Rehabilitation Laboratory, Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong
| | | | | | | | | |
Collapse
|
61
|
Saari TI, Uusi-Oukari M, Ahonen J, Olkkola KT. Enhancement of GABAergic activity: neuropharmacological effects of benzodiazepines and therapeutic use in anesthesiology. Pharmacol Rev 2011; 63:243-67. [PMID: 21245208 DOI: 10.1124/pr.110.002717] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
GABA is the major inhibitory neurotransmitter in the central nervous system (CNS). The type A GABA receptor (GABA(A)R) system is the primary pharmacological target for many drugs used in clinical anesthesia. The α1, β2, and γ2 subunit-containing GABA(A)Rs located in the various parts of CNS are thought to be involved in versatile effects caused by inhaled anesthetics and classic benzodiazepines (BZD), both of which are widely used in clinical anesthesiology. During the past decade, the emergence of tonic inhibitory conductance in extrasynaptic GABA(A)Rs has coincided with evidence showing that these receptors are highly sensitive to the sedatives and hypnotics used in anesthesia. Anesthetic enhancement of tonic GABAergic inhibition seems to be preferentially increased in regions shown to be important in controlling memory, awareness, and sleep. This review focuses on the physiology of the GABA(A)Rs and the pharmacological properties of clinically used BZDs. Although classic BZDs are widely used in anesthesiological practice, there is a constant need for new drugs with more favorable pharmacokinetic and pharmacodynamic effects and fewer side effects. New hypnotics are currently developed, and promising results for one of these, the GABA(A)R agonist remimazolam, have recently been published.
Collapse
Affiliation(s)
- Teijo I Saari
- Department of Anesthesiology, Intensive Care, Emergency Care and Pain Medicine, Turku University Hospital, P.O. Box 52 (Kiinamyllynkatu 4-8), FI-20520 Turku, Finland.
| | | | | | | |
Collapse
|
62
|
Guo J, Davis PC, Gu C, Grimm SW. Absorption, excretion, and metabolism of a potential GABA-Aα2/3receptor modulator in rats. Xenobiotica 2011; 41:385-99. [DOI: 10.3109/00498254.2010.545453] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
63
|
Iosifescu DV. GABA-A receptor modulators: can they offer any improvement over benzodiazepines in the treatment of anxiety disorders? CNS Neurosci Ther 2010; 16:61-2. [PMID: 20415836 DOI: 10.1111/j.1755-5949.2009.00127.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
64
|
Savić MM, Majumder S, Huang S, Edwankar RV, Furtmüller R, Joksimović S, Clayton T, Ramerstorfer J, Milinković MM, Roth BL, Sieghart W, Cook JM. Novel positive allosteric modulators of GABAA receptors: do subtle differences in activity at alpha1 plus alpha5 versus alpha2 plus alpha3 subunits account for dissimilarities in behavioral effects in rats? Prog Neuropsychopharmacol Biol Psychiatry 2010; 34:376-86. [PMID: 20074611 PMCID: PMC2859624 DOI: 10.1016/j.pnpbp.2010.01.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2009] [Revised: 01/04/2010] [Accepted: 01/06/2010] [Indexed: 11/18/2022]
Abstract
Over the last years, genetic studies have greatly improved our knowledge on the receptor subtypes mediating various pharmacological effects of positive allosteric modulators at GABA(A) receptors. This stimulated the development of new benzodiazepine (BZ)-like ligands, especially those inactive/low-active at GABA(A) receptors containing the alpha(1) subunit, with the aim of generating more selective drugs. Hereby, the affinity and efficacy of four recently synthesized BZ site ligands: SH-053-2'N, SH-053-S-CH3-2'F, SH-053-R-CH3-2'F and JY-XHe-053 were assessed. They were also studied in behavioral tests of spontaneous locomotor activity, elevated plus maze, and water maze in rats, which are considered predictive of, respectively, the sedative, anxiolytic, and amnesic influence of BZs. The novel ligands had moderately low to low affinity and mild to partial agonistic efficacy at GABA(A) receptors containing the alpha(1) subunit, with variable, but more pronounced efficacy at other BZ-sensitive binding sites. While presumably alpha(1) receptor-mediated sedative effects of GABA(A) modulation were not fully eliminated with any of the ligands tested, only SH-053-2'N and SH-053-S-CH3-2'F, both dosed at 30 mg/kg, exerted anxiolytic effects. The lack of clear anxiolytic-like activity of JY-XHe-053, despite its efficacy at alpha(2)- and alpha(3)-GABA(A) receptors, may have been partly connected with its preferential affinity at alpha(5)-GABA(A) receptors coupled with weak agonist activity at alpha(1)-containing subtypes. The memory impairment in water-maze experiments, generally reported with BZ site agonists, was completely circumvented with all four ligands. The results suggest that a substantial amount of activity at alpha(1) GABA(A) receptors is needed for affecting spatial learning and memory impairments, while much weaker activity at alpha(1)- and alpha(5)-GABA(A) receptors is sufficient for eliciting sedation.
Collapse
Affiliation(s)
- Miroslav M Savić
- Department of Pharmacology, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
65
|
Uusi-Oukari M, Korpi ER. Regulation of GABA(A) receptor subunit expression by pharmacological agents. Pharmacol Rev 2010; 62:97-135. [PMID: 20123953 DOI: 10.1124/pr.109.002063] [Citation(s) in RCA: 145] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The gamma-aminobutyric acid (GABA) type A receptor system, the main fast-acting inhibitory neurotransmitter system in the brain, is the pharmacological target for many drugs used clinically to treat, for example, anxiety disorders and epilepsy, and to induce and maintain sedation, sleep, and anesthesia. These drugs facilitate the function of pentameric GABA(A) receptors that exhibit widespread expression in all brain regions and large structural and pharmacological heterogeneity as a result of composition from a repertoire of 19 subunit variants. One of the main problems in clinical use of GABA(A) receptor agonists is the development of tolerance. Most drugs, in long-term use and during withdrawal, have been associated with important modulations of the receptor subunit expression in brain-region-specific manner, participating in the mechanisms of tolerance and dependence. In most cases, the molecular mechanisms of regulation of subunit expression are poorly known, partly as a result of neurobiological adaptation to altered neuronal function. More knowledge has been obtained on the mechanisms of GABA(A) receptor trafficking and cell surface expression and the processes that may contribute to tolerance, although their possible pharmacological regulation is not known. Drug development for neuropsychiatric disorders, including epilepsy, alcoholism, schizophrenia, and anxiety, has been ongoing for several years. One key step to extend drug development related to GABA(A) receptors is likely to require deeper understanding of the adaptational mechanisms of neurons, receptors themselves with interacting proteins, and finally receptor subunits during drug action and in neuropsychiatric disease processes.
Collapse
Affiliation(s)
- Mikko Uusi-Oukari
- Department of Pharmacology, Drug Development and Therapeutics, University of Turku, Itainen Pitkakatu 4, 20014 Turku, Finland.
| | | |
Collapse
|
66
|
Czobor P, Skolnick P, Beer B, Lippa A. A multicenter, placebo-controlled, double-blind, randomized study of efficacy and safety of ocinaplon (DOV 273,547) in generalized anxiety disorder. CNS Neurosci Ther 2009; 16:63-75. [PMID: 20041911 DOI: 10.1111/j.1755-5949.2009.00109.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Preclinical studies demonstrated that ocinaplon, a positive allosteric modulator of GABA(A) receptors, possesses anxiolytic-like actions at doses devoid of the side effects typically associated with benzodiazepines. The aim of this study was to evaluate the effects of ocinaplon in a multicenter, double-blind proof-of-concept trial of male and female outpatients who met DSM-IV criteria for GAD with no coexisting depression, and had a baseline score of > or =20 on the Hamilton Scale for Anxiety (HAM-A). Patients with <20% reduction in HAM-A to placebo in a single-blind 7-day run-in period were randomly assigned to treatment with ocinaplon 90 mg t.i.d. (n = 31) or placebo for 28 days (n = 29). Ocinaplon was more effective than placebo in reducing HAM-A scores (P= 0.009). Patients assigned to ocinaplon exhibited a mean improvement of 14.2 points (SE = 2.6) on the total score of the HAM-A scale at the conclusion of the trial, while patients assigned to placebo obtained a mean improvement of 6.3 points (SE = 2.0). A significant (P= 0.023) difference in improvement between ocinaplon and placebo was observed beginning at and continuing from 1-week after the initiation of dosing. The proportion of patients with treatment-emergent adverse events (TEAE) was not statistically significant between ocinaplon and placebo. One serious adverse event (SAE) occurred in the ocinaplon group that was considered possibly related to study medication (icterus following transaminase elevations). The patient had preexisting medical conditions that may have contributed to this SAE. A full recovery was observed with no residual effects. The overall safety profile revealed no patterns of TEAEs, including those effects typically associated with other anxiolytic and/or benzodiazepine compounds, such as sedation. Ocinaplon appears to be a well-tolerated and effective treatment for GAD. It produces a rapid onset of anxiolytic action absent the side effects (e.g., dizziness, sedation) typically reported following anxiolytic doses of benzodiazepines.
Collapse
Affiliation(s)
- Pál Czobor
- Semmelweis University, Department of Psychiatry and Psychotherapy, Budapest, Balassa u. 6, Hungary.
| | | | | | | |
Collapse
|
67
|
Gee KW, Tran MB, Hogenkamp DJ, Johnstone TB, Bagnera RE, Yoshimura RF, Huang JC, Belluzzi JD, Whittemore ER. Limiting activity at beta1-subunit-containing GABAA receptor subtypes reduces ataxia. J Pharmacol Exp Ther 2009; 332:1040-53. [PMID: 19940102 DOI: 10.1124/jpet.109.161885] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
GABA(A) receptor (R) positive allosteric modulators that selectively modulate GABA(A)Rs containing beta(2)- and/or beta(3)- over beta(1)-subunits have been reported across diverse chemotypes. Examples include loreclezole, mefenamic acid, tracazolate, and etifoxine. In general,"beta(2/3)-selective" GABA(A)R positive allosteric modulators are nonbenzodiazepines (nonBZs), do not show alpha-subunit isoform selectivity, yet have anxiolytic efficacy with reduced ataxic/sedative effects in animal models and humans. Here, we report on an enantiomeric pair of nonBZ GABA(A)R positive allosteric modulators that demonstrate differential beta-subunit isoform selectivity. We have tested this enantiomeric pair along with a series of other beta(2/3)-subunit selective, alpha-subunit isoform-selective, BZ and nonBZ GABA(A) positive allosteric modulators using electrophysiological, pharmacokinetic, and behavioral assays to test the hypothesis that ataxia may be correlated with the extent of modulation at beta(1)-subunit-containing GABA(A)Rs. Our findings provide an alternative strategy for designing anxioselective allosteric modulators of the GABA(A)R with BZ-like anxiolytic efficacy by reducing or eliminating activity at beta(1)-subunit-containing GABA(A)Rs.
Collapse
Affiliation(s)
- Kelvin W Gee
- Department of Pharmacology, School of Medicine, University of California, Irvine, CA 92697, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
68
|
Abstract
Complex brains have developed specialized mechanisms for the grouping of principal cells into temporal coalitions of local or distant networks: the inhibitory interneuron ‘clocking’ networks. They consist of GABAergic (where GABA is γ-aminobutyric acid) interneurons of a rich diversity. In cortical circuits, these neurons control spike timing of the principal cells, sculpt neuronal rhythms, select cell assemblies and implement brain states. On the basis of these considerations, the deficits in cognition, emotion and perception in psychiatric disorders such as anxiety, depression or schizophrenia are considered to manifest themselves through a dysregulation of the inhibitory interneuron ‘clocking’ network as a final common denominator, irrespective of the diverse underlying disease pathologies. The diversity of GABAergic interneurons is paralleled by a corresponding diversity of GABAA receptors in network regulation. The region-, cell- and domain-specific location of these receptor subtypes offers the possibility to gain functional insights into the role of behaviourally relevant neuronal circuits. Using genetic manipulation, the regulation of anxiety behaviour was attributed to neuronal circuits characterized by the expression of α2-GABAA receptors. Neurons expressing α3-GABAA receptors, located mainly in aminergic and basal forebrain cholinergic neurons, were related to a hyperdopaminergic phenotype, typical of schizophrenic symptoms. Temporal and spatial memory were selectively modulated by extrasynaptic α5-GABAA receptors. Chronic pathological pain was under the regulation of spinal and cortical α2- (and α3-) GABAA receptors. Thus the relevance of the diversity of inhibitory GABAA receptor subtypes for the regulation of cognition, emotion and memory is increasingly being recognized. The clinical proof-of-concept of a subtype-specific pharmacology is most advanced for the alleviation of cognitive dysfunctions in schizophrenia, based on the treatment of patients with an α2/α3-GABAA receptor ligand.
Collapse
|
69
|
Emelina EE, Petrov AA, Selivanov SI, Nelyubina YV, Antipin MY. Highly regioselective synthesis of trifluoromethyl derivatives of pyrazolo[1,5-a]pyrimidines bearing fused cycloalkane rings using (2-ethoxycycloalkenyl)-2,2,2-trifluoroethanones. J Fluor Chem 2009. [DOI: 10.1016/j.jfluchem.2009.06.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
70
|
Kirchhoff VD, Nguyen HTT, Soczynska JK, Woldeyohannes H, McIntyre RS. Discontinued psychiatric drugs in 2008. Expert Opin Investig Drugs 2009; 18:1431-43. [DOI: 10.1517/13543780903184591] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
71
|
Takahashi A, Yap JJ, Bohager DZ, Faccidomo S, Clayton T, Cook JM, Miczek KA. Glutamatergic and GABAergic modulations of ultrasonic vocalizations during maternal separation distress in mouse pups. Psychopharmacology (Berl) 2009; 204:61-71. [PMID: 19099296 PMCID: PMC2758424 DOI: 10.1007/s00213-008-1437-8] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2008] [Accepted: 12/05/2008] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Dysregulation of GABAergic inhibition and glutamatergic excitation has been implicated in exaggerated anxiety. Mouse pups emit distress-like ultrasonic vocalizations (USVs) when they are separated from their dam/siblings, and this behavior is reduced by benzodiazepines (BZs) which modulate GABAergic inhibition. The roles of glutamate receptors on USVs remain to be investigated. MATERIALS AND METHODS We examined the roles of glutamate receptor subtypes on mouse pup USVs using N-methyl-D: -aspartate (NMDA) receptor antagonists with different affinities [dizocilpine (MK-801), memantine, and neramexane] and group II metabotropic glutamate receptor agonist (LY-379268) and antagonist (LY-341495). These effects were compared with classic BZs: flunitrazepam, bromazepam, and chlordiazepoxide. To assess the role of GABA(A) receptor subunits on USVs, drugs that have preferential actions at different GABA(A)-alpha subunits (L-838417 and QH-ii-066) were tested. Seven-day-old CFW mouse pups were separated from their dam and littermates and placed individually on a 19 degrees C test platform for 4 min. Grid crossings and body rolls were measured in addition to USVs. RESULTS Dizocilpine dose-dependently reduced USVs, whereas memantine and neramexane showed biphasic effects and enhanced USVs at low to moderate doses. The NMDA receptor antagonists increased locomotion. LY-379268 reduced USVs but also suppressed locomotion. All BZs reduced USVs and increased motor incoordination. Neither L-838417 nor QH-ii-066 changed USVs, but both induced motor incoordination. CONCLUSION Low-affinity NMDA receptor antagonists, but not the high-affinity antagonist, enhanced mouse pup distress calls, which may be reflective of an anxiety-like state. BZs reduced USVs but also induced motor incoordination, possibly mediated by the alpha5 subunit containing GABA(A) receptors.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Anti-Anxiety Agents/adverse effects
- Anti-Anxiety Agents/pharmacology
- Anxiety/psychology
- Behavior, Animal/drug effects
- GABA Agents/pharmacology
- Locomotion/drug effects
- Maternal Deprivation
- Mice
- Motor Activity/drug effects
- Protein Subunits/physiology
- Receptors, GABA-A/physiology
- Receptors, Metabotropic Glutamate/agonists
- Receptors, Metabotropic Glutamate/antagonists & inhibitors
- Receptors, Metabotropic Glutamate/physiology
- Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors
- Receptors, N-Methyl-D-Aspartate/physiology
- Sound Spectrography
- Ultrasonics
- Vocalization, Animal/drug effects
- Vocalization, Animal/physiology
Collapse
Affiliation(s)
- Aki. Takahashi
- A. Takahashi · J. J. Yap · D. Z. Bohager · S. Faccidomo · K. A. Miczek, Department of Psychology, Tufts University, 530 Boston Ave. (Bacon Hall), Medford, MA 02155, USA, e-mail:
- K. A. Miczek, Departments of Psychiatry, Pharmacology and Neuroscience, Tufts University, Medford, MA, USA
- T. Clayton · J. M. Cook, Department of Chemistry and Biochemistry, University of Wisconsin–Milwaukee, Milwaukee, WI, USA
| | - Jasmine. J. Yap
- A. Takahashi · J. J. Yap · D. Z. Bohager · S. Faccidomo · K. A. Miczek, Department of Psychology, Tufts University, 530 Boston Ave. (Bacon Hall), Medford, MA 02155, USA, e-mail:
- K. A. Miczek, Departments of Psychiatry, Pharmacology and Neuroscience, Tufts University, Medford, MA, USA
- T. Clayton · J. M. Cook, Department of Chemistry and Biochemistry, University of Wisconsin–Milwaukee, Milwaukee, WI, USA
| | - Dawnya Zitzman Bohager
- A. Takahashi · J. J. Yap · D. Z. Bohager · S. Faccidomo · K. A. Miczek, Department of Psychology, Tufts University, 530 Boston Ave. (Bacon Hall), Medford, MA 02155, USA, e-mail:
- K. A. Miczek, Departments of Psychiatry, Pharmacology and Neuroscience, Tufts University, Medford, MA, USA
- T. Clayton · J. M. Cook, Department of Chemistry and Biochemistry, University of Wisconsin–Milwaukee, Milwaukee, WI, USA
| | - Sara Faccidomo
- A. Takahashi · J. J. Yap · D. Z. Bohager · S. Faccidomo · K. A. Miczek, Department of Psychology, Tufts University, 530 Boston Ave. (Bacon Hall), Medford, MA 02155, USA, e-mail:
- K. A. Miczek, Departments of Psychiatry, Pharmacology and Neuroscience, Tufts University, Medford, MA, USA
- T. Clayton · J. M. Cook, Department of Chemistry and Biochemistry, University of Wisconsin–Milwaukee, Milwaukee, WI, USA
| | - Terry Clayton
- A. Takahashi · J. J. Yap · D. Z. Bohager · S. Faccidomo · K. A. Miczek, Department of Psychology, Tufts University, 530 Boston Ave. (Bacon Hall), Medford, MA 02155, USA, e-mail:
- K. A. Miczek, Departments of Psychiatry, Pharmacology and Neuroscience, Tufts University, Medford, MA, USA
- T. Clayton · J. M. Cook, Department of Chemistry and Biochemistry, University of Wisconsin–Milwaukee, Milwaukee, WI, USA
| | - James. M. Cook
- A. Takahashi · J. J. Yap · D. Z. Bohager · S. Faccidomo · K. A. Miczek, Department of Psychology, Tufts University, 530 Boston Ave. (Bacon Hall), Medford, MA 02155, USA, e-mail:
- K. A. Miczek, Departments of Psychiatry, Pharmacology and Neuroscience, Tufts University, Medford, MA, USA
- T. Clayton · J. M. Cook, Department of Chemistry and Biochemistry, University of Wisconsin–Milwaukee, Milwaukee, WI, USA
| | - Klaus A. Miczek
- A. Takahashi · J. J. Yap · D. Z. Bohager · S. Faccidomo · K. A. Miczek, Department of Psychology, Tufts University, 530 Boston Ave. (Bacon Hall), Medford, MA 02155, USA, e-mail:
- K. A. Miczek, Departments of Psychiatry, Pharmacology and Neuroscience, Tufts University, Medford, MA, USA
- T. Clayton · J. M. Cook, Department of Chemistry and Biochemistry, University of Wisconsin–Milwaukee, Milwaukee, WI, USA
| |
Collapse
|
72
|
Drugability of extracellular targets: discovery of small molecule drugs targeting allosteric, functional, and subunit-selective sites on GPCRs and ion channels. Neuropsychopharmacology 2009; 34:106-25. [PMID: 18800070 DOI: 10.1038/npp.2008.149] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Beginning with the discovery of the structure of deoxyribose nucleic acid in 1953, by James Watson and Francis Crick, the sequencing of the entire human genome some 50 years later, has begun to quantify the classes and types of proteins that may have relevance to human disease with the promise of rapidly identifying compounds that can modulate these proteins so as to have a beneficial and therapeutic outcome. This so called 'drugable space' involves a variety of membrane-bound proteins including the superfamily of G-protein-coupled receptors (GPCRs), ion channels, and transporters among others. The recent number of novel therapeutics targeting membrane-bound extracellular proteins that have reached the market in the past 20 years however pales in magnitude when compared, during the same timeframe, to the advancements made in the technologies available to aid in the discovery of these novel therapeutics. This review will consider select examples of extracellular drugable targets and focus on the GPCRs and ion channels highlighting the corticotropin releasing factor (CRF) type 1 and gamma-aminobutyric acid receptors, and the Ca(V)2.2 voltage-gated ion channel. These examples will elaborate current technological advancements in drug discovery and provide a prospective framework for future drug development.
Collapse
|
73
|
Atack JR. Subtype-Selective GABAA Receptor Modulation Yields a Novel Pharmacological Profile: The Design and Development of TPA023. ADVANCES IN PHARMACOLOGY 2009; 57:137-85. [DOI: 10.1016/s1054-3589(08)57004-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
74
|
Flavan-3-ol derivatives are positive modulators of GABAA receptors with higher efficacy for the α2 subtype and anxiolytic action in mice. Neuropharmacology 2008; 55:900-7. [DOI: 10.1016/j.neuropharm.2008.06.069] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2008] [Revised: 06/30/2008] [Accepted: 06/30/2008] [Indexed: 11/19/2022]
|
75
|
Berezhnoy D, Gravielle MC, Downing S, Kostakis E, Basile AS, Skolnick P, Gibbs TT, Farb DH. Pharmacological Properties of DOV 315,090, an ocinaplon metabolite. BMC Pharmacol 2008; 8:11. [PMID: 18554397 PMCID: PMC2529273 DOI: 10.1186/1471-2210-8-11] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2007] [Accepted: 06/13/2008] [Indexed: 11/30/2022] Open
Abstract
Background Compounds targeting the benzodiazepine binding site of the GABAA-R are widely prescribed for the treatment of anxiety disorders, epilepsy, and insomnia as well as for pre-anesthetic sedation and muscle relaxation. It has been hypothesized that these various pharmacological effects are mediated by different GABAA-R subtypes. If this hypothesis is correct, then it may be possible to develop compounds targeting particular GABAA-R subtypes as, for example, selective anxiolytics with a diminished side effect profile. The pyrazolo[1,5-a]-pyrimidine ocinaplon is anxioselective in both preclinical studies and in patients with generalized anxiety disorder, but does not exhibit the selectivity between α1/α2-containing receptors for an anxioselective that is predicted by studies using transgenic mice. Results We hypothesized that the pharmacological properties of ocinaplon in vivo might be influenced by an active biotransformation product with greater selectivity for the α2 subunit relative to α1. One hour after administration of ocinaplon, the plasma concentration of its primary biotransformation product, DOV 315,090, is 38% of the parent compound. The pharmacological properties of DOV 315,090 were assessed using radioligand binding studies and two-electrode voltage clamp electrophysiology. We report that DOV 315,090 possesses modulatory activity at GABAA-Rs, but that its selectivity profile is similar to that of ocinaplon. Conclusion These findings imply that DOV 315,090 could contribute to the action of ocinaplon in vivo, but that the anxioselective properties of ocinaplon cannot be readily explained by a subtype selective effect/action of DOV 315,090. Further inquiry is required to identify the extent to which different subtypes are involved in the anxiolytic and other pharmacological effects of GABAA-R modulators.
Collapse
Affiliation(s)
- Dmytro Berezhnoy
- Laboratory of Molecular Neurobiology, Department of Pharmacology & Experimental Therapeutics, Boston University School of Medicine, 715 Albany St., Boston, MA 02118, USA
| | - Maria C Gravielle
- Laboratory of Molecular Neurobiology, Department of Pharmacology & Experimental Therapeutics, Boston University School of Medicine, 715 Albany St., Boston, MA 02118, USA
| | - Scott Downing
- Laboratory of Molecular Neurobiology, Department of Pharmacology & Experimental Therapeutics, Boston University School of Medicine, 715 Albany St., Boston, MA 02118, USA
| | - Emmanuel Kostakis
- Laboratory of Molecular Neurobiology, Department of Pharmacology & Experimental Therapeutics, Boston University School of Medicine, 715 Albany St., Boston, MA 02118, USA
| | - Anthony S Basile
- DOV Pharmaceutical, Inc, 150 Pierce St., Somerset, NJ 08873-4185, USA
| | - Phil Skolnick
- DOV Pharmaceutical, Inc, 150 Pierce St., Somerset, NJ 08873-4185, USA
| | - Terrell T Gibbs
- Laboratory of Molecular Neurobiology, Department of Pharmacology & Experimental Therapeutics, Boston University School of Medicine, 715 Albany St., Boston, MA 02118, USA
| | - David H Farb
- Laboratory of Molecular Neurobiology, Department of Pharmacology & Experimental Therapeutics, Boston University School of Medicine, 715 Albany St., Boston, MA 02118, USA
| |
Collapse
|
76
|
Guerrini G, Ciciani G, Cambi G, Bruni F, Selleri S, Melani F, Montali M, Martini C, Ghelardini C, Norcini M, Costanzo A. Novel 3-aroylpyrazolo[5,1-c][1,2,4]benzotriazine 5-oxides 8-substituted, ligands at GABAA/benzodiazepine receptor complex: Synthesis, pharmacological and molecular modeling studies. Bioorg Med Chem 2008; 16:4471-89. [DOI: 10.1016/j.bmc.2008.02.058] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2007] [Revised: 02/13/2008] [Accepted: 02/19/2008] [Indexed: 11/29/2022]
|
77
|
Mathiasen LS, Mirza NR, Rodgers RJ. Strain- and model-dependent effects of chlordiazepoxide, L-838,417 and zolpidem on anxiety-like behaviours in laboratory mice. Pharmacol Biochem Behav 2008; 90:19-36. [PMID: 18321566 DOI: 10.1016/j.pbb.2008.01.014] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2007] [Revised: 01/10/2008] [Accepted: 01/22/2008] [Indexed: 01/23/2023]
Abstract
The promise of subtype-selective GABA(A) receptor drugs with anxiolytic properties but with a much reduced side-effect burden (compared to benzodiazepines) is an attainable goal. However, its achievement necessitates the availability of in vivo preclinical assays capable of demonstrating differences as well as similarities between subtype-selective agents and non-selective benzodiazepines. In this study, we have compared three mouse strains (NMRI, C57BL/6J and DBA/2) in four models of anxiety-like behaviour (plus-maze, zero-maze, light-dark, and Vogel conflict). Furthermore, in each model, we have contrasted in detail the behavioural responses of each strain to the non-selective benzodiazepine chlordiazepoxide (CDP; 5-20 mg/kg), and the subtype-selective agents L-838,417 (GABA(A)-alpha(2/3/5); 3-30 mg/kg) and zolpidem (GABA(A)-alpha1; 0.3-3.0 mg/kg). The data show a complex mouse strainxmodelxpharmacological agent interaction. Most importantly, not all mouse strainxmodel test systems showed a positive response to CDP or predicted the response to L-838,417. This dissociation between CDP and L-838,417 opens up opportunities for preclinical test systems that differentiate subtype-selective and non-selective GABA(A) receptor agents, an attribute that might well be important in providing the necessary confidence for further drug development. Present findings suggest the need for a much greater focus on defining test systems appropriate for screening novel chemical entities, rather than self-selection of models or genotypes based on responses to known pharmacological agents. For example, if current data with L-838,417 are confirmed with compounds showing similar selectivity profiles, such agents may in future be best identified and characterised using test systems comprising NMRI mice in the zero-maze and/or C57 mice in the Vogel conflict and/or light-dark tests.
Collapse
Affiliation(s)
- L S Mathiasen
- Behavioural Neuroscience Laboratory, Institute of Psychological Sciences, Leeds University, Leeds LS2 9JT, Leeds, UK
| | | | | |
Collapse
|
78
|
de Haas SL, de Visser SJ, van der Post JP, Schoemaker RC, van Dyck K, Murphy MG, de Smet M, Vessey LK, Ramakrishnan R, Xue L, Cohen AF, van Gerven JMA. Pharmacodynamic and pharmacokinetic effects of MK-0343, a GABA(A) alpha2,3 subtype selective agonist, compared to lorazepam and placebo in healthy male volunteers. J Psychopharmacol 2008; 22:24-32. [PMID: 18187530 DOI: 10.1177/0269881107082108] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The use of non-selective gamma-aminobutyric acid (GABA) enhancers, such as benzodiazepines in the treatment of anxiety disorders is still widespread but hampered by unfavourable side effects. some of these may be associated with binding properties to certain subtypes of the GABA(A) receptor that are unnecessary for therapeutic effects. MK-0343 was designed to be a less sedating anxiolytic, based on reduced efficacy at the alpha1 subtype and significant efficacy at alpha2 and alpha3 subtypes of the GABA(A) receptor. This paper is a double-blind, four-way cross-over (n = 12) study to investigate the effects of MK-0343 (0.25 and 0.75 mg) in comparison to placebo and an anxiolytic dose (2 mg) of the non-selective agonist lorazepam. Effects were measured by eye movements, body sway, Visual Analogue scales (VAS) and memory tests. Lorazepam impaired saccadic peak velocity (SPV), VAs alertness scores, postural stability and memory and increased saccadic latency and inaccuracy. MK-0343 0.75 mg was equipotent with lorazepam as indicated by SPV (-42.4 deg/s), saccadic latency (0.02 s) and VAS alertness scores (1.50 ln mm), while effects on memory and postural stability were smaller. MK-0343 0.25 mg only affected postural stability to a similar extent as MK-0343 0.75 mg. The effect profile of MK-0343 0.75 mg is different from the full agonist lorazepam, which could reflect the selective actions of this compound. Although less effect on VAS alertness was expected, diminished effects on memory and postural stability were present. Clinical studies in anxiety patients should show whether this dose of MK-0343 is therapeutically effective with a different side-effect profile.
Collapse
Affiliation(s)
- S L de Haas
- Centre for Human Drug Research, Leiden, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
79
|
Zeller A, Crestani F, Camenisch I, Iwasato T, Itohara S, Fritschy JM, Rudolph U. Cortical glutamatergic neurons mediate the motor sedative action of diazepam. Mol Pharmacol 2007; 73:282-91. [PMID: 17965197 DOI: 10.1124/mol.107.038828] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The neuronal circuits mediating the sedative action of diazepam are unknown. Although the motor-depressant action of diazepam is suppressed in alpha1(H101R) homozygous knockin mice expressing diazepam-insensitive alpha1-GABA(A) receptors, global alpha1-knockout mice show greater motor sedation with diazepam. To clarify this paradox, attributed to compensatory up-regulation of the alpha2 and alpha3 subunits, and to further identify the neuronal circuits supporting diazepam-induced sedation, we generated Emx1-cre-recombinase-mediated conditional mutant mice, selectively lacking the alpha1 subunit (forebrain-specific alpha1(-/-)) or expressing either a single wild-type (H) or a single point-mutated (R) alpha1 allele (forebrain-specific alpha1(-/H) and alpha1(-/R) mice, respectively) in forebrain glutamatergic neurons. In the rest of the brain, alpha1(-/R) mutants are heterozygous alpha1(H101R) mice. Forebrain-specific alpha1(-/-) mice showed enhanced diazepam-induced motor depression and increased expression of the alpha2 and alpha3 subunits in the neocortex and hippocampus, in comparison with their pseudo-wild-type littermates. Forebrain-specific alpha1(-/R) mice were less sensitive than alpha1(-/H) mice to the motor-depressing action of diazepam, but each of these conditional mutants had a similar behavioral response as their corresponding control littermates. Unexpectedly, expression of the alpha1 subunit was reduced in forebrain, notably in alpha1(-/R) mice, and the alpha3 subunit was up-regulated in neocortex, indicating that proper alpha1 subunit expression requires both alleles. In conclusion, conditional manipulation of GABA(A) receptor alpha1 subunit expression can induce compensatory changes in the affected areas. Specifically, alterations in GABA(A) receptor expression restricted to forebrain glutamatergic neurons reproduce the behavioral effects seen after a global alteration, thereby implicating these neurons in the motor-sedative effect of diazepam.
Collapse
Affiliation(s)
- A Zeller
- Laboratory of Genetic Neuropharmacology, McLean Hospital, Department of Psychiatry, Harvard Medical School, 115 Mill St., Belmont, MA 02478, USA
| | | | | | | | | | | | | |
Collapse
|
80
|
Mathiasen LS, Rodgers RJ, Mirza NR. Comparative effects of nonselective and subtype-selective gamma-aminobutyric acidA receptor positive modulators in the rat-conditioned emotional response test. Behav Pharmacol 2007; 18:191-203. [PMID: 17426483 DOI: 10.1097/fbp.0b013e32814fcdd4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Benzodiazepine receptor anxiolytics show no selectivity between gamma-aminobutyric acid-A receptors containing alpha1, alpha2, alpha3 or alpha5 subunits. Pharmacological studies and data emerging from transgenic mouse models, however, predict that compounds with selective affinity and/or efficacy for gamma-aminobutyric acid-A receptor subtypes would have novel pharmacological profiles. Thus, the gamma-aminobutyric acid-A-alpha1 'affinity selective' drug zolpidem has a sedative-hypnotic profile, whereas L838,417, which has 'selective efficacy' for gamma-aminobutyric acid-A-alpha2, alpha3 and alpha5 receptors, has an anxiolytic-like profile. Here, we compare the nonselective benzodiazepine-site-positive modulators diazepam, lorazepam, midazolam, alprazolam and zopiclone with (i) gamma-aminobutyric acid-AA-alpha1 affinity selective compounds zolpidem and CL218,872 and (ii) L838,417, in the rat-conditioned emotional response test after systemic administration. Given the role of the basolateral amygdala in anxiety and the expression of alpha1, alpha2 and alpha3 subunits in this region, we also assessed the effects of bilateral infusion of L838,417 and midazolam directly into basolateral amygdala in the conditioned emotional response test. Nonselective modulators at low-moderate doses produced anxiolytic effects and sedation at higher doses. Zolpidem was inactive as an anxiolytic and engendered severe sedation, whereas CL218,872 produced an anxiolytic-like profile with minimal sedation. L838,417 produced an anxiolytic-like profile with no sedation, albeit producing behavioural disturbance at high doses. Infusion of midazolam and L838,417 into basolateral amygdala engendered anxiolytic-like effects, although both compounds were more effective after systemic injections, implicating additional brain sites in their anxiolytic-like actions after systemic administration. In conclusion, the diversity of effects of the compounds studied implicates both intrinsic efficacy and/or subtype selectivity as important determinants of anxiolytic-like effects in the rat-conditioned emotional response test.
Collapse
Affiliation(s)
- Linda S Mathiasen
- Division of In-vivo Pharmacology, NeuroSearch A/S, Ballerup, Denmark
| | | | | |
Collapse
|
81
|
Möhler H. Molecular regulation of cognitive functions and developmental plasticity: impact of GABAA receptors. J Neurochem 2007; 102:1-12. [PMID: 17394533 DOI: 10.1111/j.1471-4159.2007.04454.x] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
By controlling spike timing and sculpting neuronal rhythms, inhibitory interneurons play a key role in regulating neuronal circuits and behavior. The pronounced diversity of GABAergic (gamma-aminobutyric acid) interneurons is paralleled by an extensive diversity of GABAA receptor subtypes. The region- and domain-specific location of these receptor subtypes offers the opportunity to gain functional insights into the role of defined neuronal circuits. These developments are reviewed with regard to the regulation of sleep, anxiety, memory, sensorimotor processing and post-natal developmental plasticity.
Collapse
Affiliation(s)
- Hanns Möhler
- Institute of Pharmacology, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
82
|
Rabe H, Kronbach C, Rundfeldt C, Lüddens H. The novel anxiolytic ELB139 displays selectivity to recombinant GABAA receptors different from diazepam. Neuropharmacology 2007; 52:796-801. [PMID: 17087982 DOI: 10.1016/j.neuropharm.2006.09.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2006] [Accepted: 09/26/2006] [Indexed: 11/17/2022]
Abstract
A chemically heterogeneous group of compounds acts at the benzodiazepine (BZ) recognition site of the diverse gamma-aminobutyric acid type A (GABA(A)) receptor complexes which can assemble from more than 16 known subunits. Most 1,4-BZs like diazepam recognize all GABA(A)/BZ receptors containing the alpha1-3 or alpha5 together with any beta and the gamma2 subunit. Other compounds differentiate less, e.g. Ro15-4513, that additionally recognizes alpha4- and a6-containing receptors, or differentiate more, e.g. zolpidem, that recognizes preferentially alpha1-containing receptors. Here we describe the functional properties of 1-(4-chloro-phenyl)-4-piperidin-1-yl-1,5-dihydro-imidazol-2-on (ELB139) in the presence and absence of the BZ receptor antagonist flumazenil (Ro15-1788) on recombinant alphaibeta2gamma2 (i=1-5) receptor subtypes expressed in HEK 293 cells. The properties were measured with the whole-cell variation of the patch-clamp technique and compared to those of diazepam. Like the latter, ELB139 did not potentiate GABA-induced currents in alpha4-containing receptors, but it displays functional subtype specificity between alpha1, alpha2, alpha3, and alpha5beta2gamma2 receptors with highest potency in alpha3-containing receptors but highest efficacy in alpha1- or alpha2-containing receptors, respectively. ELB139 acted as a partial agonist on these receptor subtypes reaching 40-50% of the efficacy of diazepam.
Collapse
Affiliation(s)
- Holger Rabe
- Laboratory of Molecular Biology, Department of Psychiatry, University of Mainz, Untere Zahlbacher Str. 8, 55131 Mainz, Germany
| | | | | | | |
Collapse
|
83
|
Abstract
Anxiety disorders are highly prevalent and disabling disorders which are commonly treated with pharmacotherapy and/or psychotherapy. While benzodiazepines are of great value for the treatment of acute anxiety states, their long-term use is hampered by their well-known side effect profile. Meanwhile, antidepressants represent first line treatment options for anxiety disorders. However, their slow onset of action is a disadvantage for their use in these disorders. Therefore, there is need for novel anxiolytics with a rapid onset of action and a favourable side effect profile. Currently, there is a renaissance of gamma-aminobutyric acid type A (GABAA) receptors as targets for the development of novel anxiolytic drugs. While compounds structurally related to GABA, e.g., pregabalin, have already entered large scale clinical development, GABA transporter inhibitors, subtype specific benzodiazepines and GABAA receptor modulating neuroactive steroids are promising new candidates. However, their clinical efficacy has still to be shown in clinical trials.
Collapse
Affiliation(s)
- Rainer Rupprecht
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilians-University, Munich, Germany.
| | | | | | | |
Collapse
|
84
|
Basile AS, Lippa AS, Skolnick P. GABAA receptor modulators as anxioselective anxiolytics. ACTA ACUST UNITED AC 2006. [DOI: 10.1016/j.ddstr.2006.10.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
85
|
Popik P, Kostakis E, Krawczyk M, Nowak G, Szewczyk B, Krieter P, Chen Z, Russek SJ, Gibbs TT, Farb DH, Skolnick P, Lippa AS, Basile AS. The anxioselective agent 7-(2-chloropyridin-4-yl)pyrazolo-[1,5-a]-pyrimidin-3-yl](pyridin-2-yl)methanone (DOV 51892) is more efficacious than diazepam at enhancing GABA-gated currents at alpha1 subunit-containing GABAA receptors. J Pharmacol Exp Ther 2006; 319:1244-52. [PMID: 16971504 DOI: 10.1124/jpet.106.107201] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Studies using mice with point mutations of GABA(A) receptor alpha subunits suggest that the sedative and anxiolytic properties of 1,4-benzodiazepines are mediated, respectively, by GABA(A) receptors bearing the alpha(1) and alpha(2) subunits. This hypothesis predicts that a compound with high efficacy at GABA(A) receptors containing the alpha(1) subunit would produce sedation, whereas an agonist acting at alpha(2) subunit-containing receptors (with low or null efficacy at alpha(1)-containing receptors) would be anxioselective. Electrophysiological studies using recombinant GABA(A) receptors expressed in Xenopus oocytes indicate that maximal potentiation of GABA-stimulated currents by the pyrazolo-[1,5-a]-pyrimidine, DOV 51892, at alpha(1)beta(2)gamma(2S) constructs of the GABA(A) receptor was significantly higher (148%) than diazepam. In contrast, DOV 51892 was considerably less efficacious and/or potent than diazepam in enhancing GABA-stimulated currents mediated by constructs containing alpha(2), alpha(3), or alpha(5) subunits. In vivo, DOV 51892 increased punished responding in the Vogel conflict test, an effect blocked by flumazenil, and increased the percentage of time spent in the open arms of the elevated plus-maze. However, DOV 51892 had no consistent effects on motor function or muscle relaxation at doses more than 1 order of magnitude greater than the minimal effective anxiolytic dose. Although the mutant mouse data predict that the high-efficacy potentiation of GABA(A1a) receptor-mediated currents by DOV 51892 would be sedating, behavioral studies demonstrate that DOV 51892 is anxioselective, indicating that GABA potentiation mediated by alpha(1) subunit-containing GABA(A) receptors may be neither the sole mechanism nor highly predictive of the sedative properties of benzodiazepine recognition site modulators.
Collapse
Affiliation(s)
- Piotr Popik
- Behavioral Neuroscience, Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
86
|
Möhler H. GABA(A) receptor diversity and pharmacology. Cell Tissue Res 2006; 326:505-16. [PMID: 16937111 DOI: 10.1007/s00441-006-0284-3] [Citation(s) in RCA: 262] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2006] [Accepted: 06/13/2006] [Indexed: 12/22/2022]
Abstract
Because of its control of spike-timing and oscillatory network activity, gamma-aminobutyric acid (GABA)-ergic inhibition is a key element in the central regulation of somatic and mental functions. The recognition of GABA(A) receptor diversity has provided molecular tags for the analysis of distinct neuronal networks in the control of specific pharmacological and physiological brain functions. Neurons expressing alpha(1)GABA(A) receptors have been found to mediate sedation, whereas those expressing alpha(2)GABA(A) receptors mediate anxiolysis. Furthermore, associative temporal and spatial memory can be regulated by modulating the activity of hippocampal pyramidal cells via extrasynaptic alpha(5)GABA(A) receptors. In addition, neurons expressing alpha(3)GABA(A) receptors are instrumental in the processing of sensory motor information related to a schizophrenia endophenotype. Finally, during the postnatal development of the brain, the maturation of GABAergic interneurons seems to provide the trigger for the experience-dependent plasticity of neurons in the visual cortex, with alpha(1)GABA(A) receptors setting the time of onset of a critical period of plasticity. Thus, particular neuronal networks defined by respective GABA(A) receptor subtypes can now be linked to the regulation of various clearly defined behavioural patterns. These achievements are of obvious relevance for the pharmacotherapy of certain brain disorders, in particular sleep dysfunctions, anxiety disorders, schizophrenia and diseases associated with memory deficits.
Collapse
Affiliation(s)
- H Möhler
- Institute of Pharmacology and Department of Chemistry and Applied Biosciences, University and ETH Zurich, Winterthurerstrasse 190, Zürich, CH-8057, Switzerland.
| |
Collapse
|
87
|
Machu TK, Dillon GH, Huang R, Lovinger DM, Leidenheimer NJ. Temperature: an important experimental variable in studying PKC modulation of ligand-gated ion channels. Brain Res 2006; 1086:1-8. [PMID: 16626662 DOI: 10.1016/j.brainres.2006.01.091] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2005] [Revised: 12/14/2005] [Accepted: 01/20/2006] [Indexed: 10/24/2022]
Abstract
Amphibian oocyte and mammalian heterologous expression systems are often used to investigate the function of recombinant ion channels using electrophysiological techniques. Although both systems have yielded important information, the results obtained in these systems are sometimes conflicting. Oocytes and mammalian cells differ in their physiological temperature requirements. While room temperature is within the physiological temperature range for oocytes, this temperature is far below that required by mammalian cells. Since electrophysiological studies are often performed in both oocytes and mammalian cells at room temperature, we sought to determine if recording temperature could be a factor in some disparate results obtained in these cell types. For these studies, we examined phorbol ester modulation of GABA(A) and glycine receptors. Consistent with the literature, at room temperature, PMA (phorbol 12-myristate 13-acetate) produced a large reproducible decrease in the peak amplitude of GABA and glycine-gated currents in Xenopus oocytes. In contrast, PMA was ineffective in modulating these heterologously expressed receptors at room temperature in human embryonic kidney (HEK) 293 cells. However, when electrophysiological experiments were performed at 35 degrees C in HEK 293 cells, PMA decreased the function of these receptors. Our results indicate that the temperature at which electrophysiological studies are conducted is an important experimental variable. To determine the extent to which electrophysiological recordings are performed at physiological temperatures in HEK 293 cells, a PubMed search was conducted using the search terms "patch clamp" and "HEK" for the years 2003-2004. This search revealed that only 15% of the patch clamp studies were reported to have been conducted in the temperature range of 32-37 degrees C. The results of our study indicate that temperature is an important experimental variable that requires rational consideration in the design of electrophysiological experiments.
Collapse
Affiliation(s)
- Tina K Machu
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Forth Worth, 76203-1067, USA
| | | | | | | | | |
Collapse
|
88
|
Rowlett JK, Lelas S, Tornatzky W, Licata SC. Anti-conflict effects of benzodiazepines in rhesus monkeys: relationship with therapeutic doses in humans and role of GABAA receptors. Psychopharmacology (Berl) 2006; 184:201-11. [PMID: 16378217 DOI: 10.1007/s00213-005-0228-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2005] [Accepted: 10/26/2005] [Indexed: 11/24/2022]
Abstract
RATIONALE AND OBJECTIVES Conflict procedures are used to study mechanisms underlying the anxiolytic effects of benzodiazepines (BZs). We established a conflict procedure with rhesus monkeys in order to examine the role of GABAA receptors in the anxiolytic-like effects of BZs. METHODS Four rhesus monkeys responded under a two-component multiple schedule in which responding was maintained under a fixed-ratio schedule of food delivery in the absence (non-suppressed responding) and presence (suppressed responding) of response-contingent electric shock. RESULTS Conventional BZs (alprazolam, flunitrazepam, clonazepam, nitrazepam, lorazepam, bromazepam, diazepam, flurazepam, clorazepate, chlordiazepoxide) engendered increases in the average rates of suppressed responding at low to intermediate doses and decreased the average rates of non-suppressed responding at higher doses. Positive correlations were observed when the therapeutic potencies of BZs in humans were compared with potencies to increase the rates of suppressed responding (R2=0.83) or decrease the rates of non-suppressed responding (R2=0.60). The 5-HT1A agonist buspirone increased the rates of suppressed responding, although the effects were modest, whereas the opioid morphine lacked anti-conflict effects. The BZ antagonist flumazenil also modestly increased the rates of suppressed responding. A relatively low dose of flumazenil enhanced, while a high dose blocked, alprazolam's anti-conflict effects. Compounds selective for alpha1 subunit-containing GABAA receptors (zolpidem, zaleplon, CL218,872) engendered relatively weak increases in the rates of suppressed responding. CONCLUSIONS A rhesus monkey conflict procedure was established with predictive validity for therapeutic doses in people and provided evidence that anxiolytic-like effects of BZs can occur with relatively low intrinsic efficacy at GABAA receptors and are reduced by alpha1GABAA receptor selectivity.
Collapse
Affiliation(s)
- James K Rowlett
- Harvard Medical School, New England Primate Research Center, Box 9102, One Pine Hill Drive Southborough, MA, 01772-9102, USA.
| | | | | | | |
Collapse
|
89
|
Mirza NR, Rodgers RJ, Mathiasen LS. Comparative cue generalization profiles of L-838, 417, SL651498, zolpidem, CL218,872, ocinaplon, bretazenil, zopiclone, and various benzodiazepines in chlordiazepoxide and zolpidem drug discrimination. J Pharmacol Exp Ther 2005; 316:1291-9. [PMID: 16339395 DOI: 10.1124/jpet.105.094003] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The zolpidem discriminative cue is mediated by GABA(A)-alpha1 receptors, whereas the chlordiazepoxide cue may be mediated via non-alpha1 GABA(A) receptors because compounds with selective affinity for GABA(A)-alpha1 receptors fully generalize to the former cue. We predicted that L-838,417 [7-tert-butyl-3-(2,5-difluorophenyl)-6-(2-methyl-2H-1,2,4-triazol-3-ylmethoxy)-1,2,4-triazolo[4,3-b]pyridazine], a partial agonist at non-alpha1 GABA(A) receptors and an antagonist at GABA(A)-alpha1 receptors, would generalize to the chlordiazepoxide but not the zolpidem-discriminative cue. SL651498 [6-fluoro-9-methyl-2-phenyl-4-(pyrrolidin-1-yl-carbonyl)-2,9-dihydro-1H-pyridol[3,4-b]indol-1-one] is a full agonist at GABA(A)-alpha2 receptors, with lower efficacy at GABA(A)-alpha3 receptors and least efficacy at GABA(A)-alpha1 and GABA(A)-alpha5 receptors. Because SL651498 has efficacy at GABA(A)-alpha1 receptors, we anticipated that it would generalize to both discriminative cues. Rats were trained to discriminate either zolpidem (3 mg/kg) or chlordiazepoxide (5 mg/kg) from vehicle using a two-lever operant procedure. The generalization profiles of L-838,417 and SL651498 were compared with nonselective full agonists, GABA(A)-alpha1-selective ligands zolpidem and CL218,872 [3-methyl-6-[3-(trifluoromethyl)phenyl]-1,2,4-triazolo[4,3-b]pyridazine], the nonselective partial agonist bretazenil, and the novel anxioselective drug ocinaplon. A nonselective partial agonist was included because L-838,417 and SL651498 are partial agonists at some GABA(A) receptors, and this property may influence their generalization profiles. All nonselective full agonists and ocinaplon fully generalized to both cues. CL218,872 and zolpidem generalized to zolpidem only, whereas L-838,417 fully generalized to chlordiazepoxide only. SL651498 fully generalized to chlordiazepoxide and occasioned significant zolpidem-appropriate responding. Bretazenil was similar to SL651498. In conclusion, at this training dose, the chlordiazepoxide-discriminative stimulus is mediated primarily via non-alpha1 GABA(A) receptors and the generalization profiles of the ligands tested seem to correspond with their in vitro profiles at GABA(A) receptor subtypes.
Collapse
Affiliation(s)
- N R Mirza
- Department of In vivo Pharmacology, NeuroSearch A/S, 93 Pederstrupvej, DK-2750 Ballerup, Denmark.
| | | | | |
Collapse
|
90
|
In Brief. Nat Rev Drug Discov 2005. [DOI: 10.1038/nrd1783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|