51
|
Schmidt L, Eskiocak B, Kohn R, Dang C, Joshi NS, DuPage M, Lee DY, Jacks T. Enhanced adaptive immune responses in lung adenocarcinoma through natural killer cell stimulation. Proc Natl Acad Sci U S A 2019; 116:17460-17469. [PMID: 31409707 PMCID: PMC6717259 DOI: 10.1073/pnas.1904253116] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Natural killer (NK) cells inhibit tumor development in mouse models and their presence in tumors correlates with patient survival. However, tumor-associated NK cells become dysfunctional; thus, stimulation of NK cells in cancer is emerging as an attractive immunotherapeutic strategy. In a mouse model of lung adenocarcinoma, NK cells localized to tumor stroma with immature phenotypes and low functional capacity. To test their responsiveness within established disease, we engineered a system for inducible expression of activating ligands in tumors. After stimulation, NK cells localized inside tumors, with increased cytokine production capacity. Strikingly, T cells were also recruited to tumors in an NK cell-dependent manner, and exhibited higher functionality. In neoantigen-expressing tumors, NK cell stimulation enhanced the number and function of tumor-specific T cells and, in long-term settings, reduced tumor growth. Thus, even in established disease NK cells can be activated to contribute to antitumor immunity, supporting their potential as an important target in cancer immunotherapy.
Collapse
Affiliation(s)
- Leah Schmidt
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Banu Eskiocak
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Ryan Kohn
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Celeste Dang
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Nikhil S Joshi
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Michel DuPage
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Da-Yae Lee
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Tyler Jacks
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139;
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139
| |
Collapse
|
52
|
Martín-Sierra C, Martins R, Laranjeira P, Coucelo M, Abrantes AM, Oliveira RC, Tralhão JG, Botelho MF, Furtado E, Domingues MR, Paiva A. Functional and Phenotypic Characterization of Tumor-Infiltrating Leukocyte Subsets and Their Contribution to the Pathogenesis of Hepatocellular Carcinoma and Cholangiocarcinoma. Transl Oncol 2019; 12:1468-1479. [PMID: 31425839 PMCID: PMC6712279 DOI: 10.1016/j.tranon.2019.07.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 07/28/2019] [Accepted: 07/29/2019] [Indexed: 12/12/2022] Open
Abstract
Hepatocellular carcinoma (HCC) and cholangiocarcinoma (CCA) represent the most common primary liver malignancies whose outcome is influenced by the immune response. In the present study, we evaluated the tumor-infiltrating leukocyte (TIL) populations in 21 HCC patients and 8 CCA patients by flow cytometry immediately after the surgical procedure. Moreover, CD4+ T cells, CD8+ T cells, monocytes, and macrophages were purified by cell sorting for further analysis of gene expression by quantitative reverse-transcription polymerase chain reaction. Regarding tumor-infiltrating macrophages, we observed a significantly higher expression of markers associated with M2 phenotype and a higher expression of PD-L1 in patients with HCC in comparison to CCA. In addition, for HCC patients, we found a significant increase in the expression of CD200R in macrophages from tumors that were in grade G3-G4 as compared to tumors in grade G1-G2. Besides, a significantly higher frequency of tumor-infiltrating lymphocytes, CD8+CD56+ T cells, and natural killer cells was detected in HCC biopsies in comparison to CCA. In summary, this study has revealed functional and phenotypic differences in TIL cell subpopulations between CCA and HCC, as well as among different histopathological grades and tumor aggressiveness degrees, and it has provided evidence to better understand the tumor immune microenvironment of CCA and HCC.
Collapse
Affiliation(s)
- C Martín-Sierra
- Unidade de Gestão Operacional em Citometria, Centro Hospitalar e Universitário de Coimbra (CHUC, Portugal); Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra (Coimbra, Portugal); CNC.IBILI, University of Coimbra, Coimbra, (Portugal); Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Portugal
| | - R Martins
- Unidade Transplantação Hepática Pediátrica e de Adultos, Centro Hospitalar e Universitário de Coimbra (UTHPA, CHUC, Portugal); Serviço de Cirurgia Geral, Unidade HBP, Centro Hospitalar e Universitário de Coimbra (CHUC, Portugal); Instituto de Biofísica, IBILI, Faculdade de Medicina, Universidade de Coimbra (Coimbra, Portugal); Coimbra Institute for Clinical and Biomedical Research (iCBR) area of Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, 3000-548 (Coimbra, Portugal)
| | - P Laranjeira
- Unidade de Gestão Operacional em Citometria, Centro Hospitalar e Universitário de Coimbra (CHUC, Portugal); Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra (Coimbra, Portugal); CNC.IBILI, University of Coimbra, Coimbra, (Portugal); Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Portugal
| | - M Coucelo
- Department of Clinical Haematology, Centro Hospitalar e Universitário de Coimbra (CHUC, Portugal)
| | - A M Abrantes
- Instituto de Biofísica, IBILI, Faculdade de Medicina, Universidade de Coimbra (Coimbra, Portugal); Coimbra Institute for Clinical and Biomedical Research (iCBR) area of Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, 3000-548 (Coimbra, Portugal)
| | - R C Oliveira
- Instituto de Biofísica, IBILI, Faculdade de Medicina, Universidade de Coimbra (Coimbra, Portugal); Coimbra Institute for Clinical and Biomedical Research (iCBR) area of Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, 3000-548 (Coimbra, Portugal); Serviço de Anatomia Patológica, Centro Hospitalar e Universitário de Coimbra (CHUC, Portugal)
| | - J G Tralhão
- Unidade Transplantação Hepática Pediátrica e de Adultos, Centro Hospitalar e Universitário de Coimbra (UTHPA, CHUC, Portugal); Serviço de Cirurgia Geral, Unidade HBP, Centro Hospitalar e Universitário de Coimbra (CHUC, Portugal); Instituto de Biofísica, IBILI, Faculdade de Medicina, Universidade de Coimbra (Coimbra, Portugal); Coimbra Institute for Clinical and Biomedical Research (iCBR) area of Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, 3000-548 (Coimbra, Portugal)
| | - M F Botelho
- Instituto de Biofísica, IBILI, Faculdade de Medicina, Universidade de Coimbra (Coimbra, Portugal); Coimbra Institute for Clinical and Biomedical Research (iCBR) area of Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, 3000-548 (Coimbra, Portugal)
| | - E Furtado
- Unidade Transplantação Hepática Pediátrica e de Adultos, Centro Hospitalar e Universitário de Coimbra (UTHPA, CHUC, Portugal)
| | - M R Domingues
- Mass Spectrometry Centre, Department of Chemistry & QOPNA, University of Aveiro, Campus Universitário de Santiago (Aveiro, Portugal)
| | - A Paiva
- Unidade de Gestão Operacional em Citometria, Centro Hospitalar e Universitário de Coimbra (CHUC, Portugal); Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra (Coimbra, Portugal); CNC.IBILI, University of Coimbra, Coimbra, (Portugal); Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Portugal; Instituto Politécnico de Coimbra, ESTESC-Coimbra Health School, Ciências Biomédicas Laboratoriais, (Portugal).
| |
Collapse
|
53
|
Khummuang S, Chuensirikulchai K, Pata S, Laopajon W, Chruewkamlow N, Mahasongkram K, Sugiura N, Watanabe H, Tateno H, Kamuthachad L, Wongratanacheewin S, Takheaw N, Kasinrerk W. Characterization and functional analysis of novel circulating NK cell sub-populations. Int Immunol 2019; 31:515-530. [PMID: 30859183 DOI: 10.1093/intimm/dxz027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Accepted: 03/09/2019] [Indexed: 12/30/2022] Open
Abstract
Natural killer (NK) cells are innate lymphoid cells having potent cytolytic function that provide host defense against microbial infections and tumors. Using our generated monoclonal antibody (mAb), named FE-1H10, new NK cell sub-populations in peripheral blood were identified. The molecules recognized by mAb FE-1H10 were expressed on a sub-population of CD3-CD56dim NK cells. The epitope recognized by mAb FE-1H10 was demonstrated to be N-glycan and proven to be different from CD57. Upon K562 stimulation, the CD56dimFE-1H10+ NK cell sub-population exhibited significantly lower cytolytic function with low ability to degranulate and release cytolytic granules compared to the CD56dimFE-1H10- NK cell sub-population. Moreover, the CD56dimFE-1H10+ NK cells produced less IFN-γ and TNF-α than the CD56dimFE-1H10- NK cells. We demonstrated here that mAb FE-1H10 could identify two sub-populations of circulating CD56dim NK cells with different functions. Our discovery of new sub-populations of NK cells improves our understanding of NK cell biology and may lead to the development of new approaches for NK cell therapy.
Collapse
Affiliation(s)
| | | | - Supansa Pata
- Division of Clinical Immunology, Department of Medical Technology.,Biomedical Technology Research Center, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, at the Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Witida Laopajon
- Division of Clinical Immunology, Department of Medical Technology.,Biomedical Technology Research Center, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, at the Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Nuttapol Chruewkamlow
- Biomedical Technology Research Center, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, at the Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Kodchakorn Mahasongkram
- Biomedical Technology Research Center, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, at the Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Nobuo Sugiura
- Institute for Molecular Science of Medicine, Aichi Medical University, Aichi, Japan
| | - Hideto Watanabe
- Institute for Molecular Science of Medicine, Aichi Medical University, Aichi, Japan
| | - Hiroaki Tateno
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, Japan
| | - Ludthawun Kamuthachad
- Department of Microbiology, Faculty of Medicine and Melioidosis Research Center, Khon Kaen University, Khon Kaen, Thailand
| | - Surasakdi Wongratanacheewin
- Department of Microbiology, Faculty of Medicine and Melioidosis Research Center, Khon Kaen University, Khon Kaen, Thailand
| | - Nuchjira Takheaw
- Division of Clinical Immunology, Department of Medical Technology
| | - Watchara Kasinrerk
- Division of Clinical Immunology, Department of Medical Technology.,Biomedical Technology Research Center, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, at the Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
54
|
Moon WY, Powis SJ. Does Natural Killer Cell Deficiency (NKD) Increase the Risk of Cancer? NKD May Increase the Risk of Some Virus Induced Cancer. Front Immunol 2019; 10:1703. [PMID: 31379882 PMCID: PMC6658984 DOI: 10.3389/fimmu.2019.01703] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 07/08/2019] [Indexed: 12/20/2022] Open
Abstract
Natural killer cell deficiency (NKD) is a primary immunodeficiency where the main defect lies in CD56+CD3− natural killer (NK) cells which mediate cytotoxicity against tumors. Most cases are observed in children and adolescents with recurrent viral infections and cancer. GATA2 and MCM4 mutations are found in NKD patients with cancer. However, the question remains unclear whether NKD increases the risk of cancer. Mutations in the second zinc finger of GATA2 cause both NKD and haematopoietic malignancies. MCM4 splice site mutations are found in NKD patients and they increase susceptibility to DNA instability during replication. IRF8, RTEL1, and FCGR3A mutations are associated with NKD but their associations with cancer are unknown. Based on the studies, it is hypothesized that genetic mutations alone are sufficient to cause cancer. However, a number of NKD patients developed oncogenic viral infections which progressed into cancer. Here, we review the evidence of genetic mutations responsible for both NKD and cancer to identify whether NKD contributes to development of cancer. The findings provide insights into the role of NK cells in the prevention of cancer and the significance of assessing NK cell functions in susceptible individuals.
Collapse
Affiliation(s)
- Won Young Moon
- Taunton and Somerset NHS Foundation Trust, Taunton, United Kingdom
| | - Simon J Powis
- School of Medicine and Biological Sciences Research Complex, University of St. Andrews, St. Andrews, Scotland
| |
Collapse
|
55
|
Goyos A, Fort M, Sharma A, Lebrec H. Current Concepts in Natural Killer Cell Biology and Application to Drug Safety Assessments. Toxicol Sci 2019; 170:10-19. [PMID: 31020324 DOI: 10.1093/toxsci/kfz098] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Natural killer (NK) cells are lymphocytes capable of cytotoxicity against virally infected cells and tumor cells. The display of effector function by NK cells is the result of interactions between germline encoded activating/inhibitory NK cell receptors and their ligands (major histocompatibility complex class I, major histocompatibility complex class I-like, viral, and cellular stress-related surface molecules) expressed on target cells. Determination of NK cell number and function is a common element of the immunotoxicology assessment paradigm for the development of certain classes of pharmaceuticals across a range of modalities. This article summarizes the evidence associating NK cell dysfunction with infectious and cancer risks, reviews emerging NK cell biology, including the impact of immunogenetics on NK cell education and function, and provides perspectives about points to consider when assessing NK cell function in different species in the context of safety assessment.
Collapse
Affiliation(s)
- Ana Goyos
- Amgen Research, Inc, South San Francisco, California 94080
| | - Madeline Fort
- Amgen Research, Inc, South San Francisco, California 94080
| | - Amy Sharma
- Genentech, Inc, South San Francisco, California 94080
| | - Herve Lebrec
- Amgen Research, Inc, South San Francisco, California 94080
| |
Collapse
|
56
|
Almeida FF, Jacquelot N, Belz GT. Deconstructing deployment of the innate immune lymphocyte army for barrier homeostasis and protection. Immunol Rev 2019; 286:6-22. [PMID: 30294966 PMCID: PMC6446816 DOI: 10.1111/imr.12709] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 08/16/2018] [Indexed: 12/30/2022]
Abstract
The study of the immune system has shifted from a purely dichotomous separation between the innate and adaptive arms to one that is now highly complex and reshaping our ideas of how steady‐state health is assured. It is now clear that immune cells do not neatly fit into these two streams and immune homeostasis depends on continual dialogue between multiple lineages of the innate (including dendritic cells, innate lymphoid cells, and unconventional lymphocytes) and adaptive (T and B lymphocytes) arms together with a finely tuned synergy between the host and microbes which is essential to ensure immune homeostasis. Innate lymphoid cells are critical players in this new landscape. Here, we discuss recent studies that have elucidated in detail the development of ILCs from their earliest progenitors and examine factors that influence their identification and ability to drive immune homeostasis and long‐term immune protection.
Collapse
Affiliation(s)
- Francisca F Almeida
- Division of Molecular Immunology, Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
| | - Nicolas Jacquelot
- Division of Molecular Immunology, Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
| | - Gabrielle T Belz
- Division of Molecular Immunology, Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
57
|
Winkels H, Ley K. Natural Killer Cells at Ease: Atherosclerosis Is Not Affected by Genetic Depletion or Hyperactivation of Natural Killer Cells. Circ Res 2019; 122:6-7. [PMID: 29301835 DOI: 10.1161/circresaha.117.312289] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Holger Winkels
- From the Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, CA (H.W., K.L.); and Department of Bioengineering, University of California San Diego, La Jolla (K.L.)
| | - Klaus Ley
- From the Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, CA (H.W., K.L.); and Department of Bioengineering, University of California San Diego, La Jolla (K.L.).
| |
Collapse
|
58
|
Pencheva-Demireva M, El-Darawish Y, Kavaldzhieva K, Mladenov N, Lazarov V, Dimitrova-Dikanarova D, Markova T, Nikolov R, Okamura H. Upregulation of Natural Killer Cells Proliferation by Cytokine Stimulation. Monoclon Antib Immunodiagn Immunother 2019; 38:85-88. [PMID: 31009333 DOI: 10.1089/mab.2019.0009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Natural killer (NK) cells can discriminate between normal and cancer cells and are known to directly recognize and kill malignant cells or induce apoptosis. Thus, activation of NK cells is considered as a promising strategy for cancer treatment. However, clinical application has been somewhat limited because of difficulties in the preparation of sufficient number of highly cytotoxic/activated NK cells in vitro. We used cytokine stimulation to provide a suitable environment (activating receptor-ligand interactions) for the expansion of NK cells. This method potently expanded NK cells, and the final product was composed of highly proliferating NK cells. The expanded NK cells showed significant upregulation of various activation receptors such as CD69 and NKG2D. The latter is a particularly important receptor for triggering NK cell responses toward tumor cells.
Collapse
Affiliation(s)
- Magdalena Pencheva-Demireva
- 1 Department of Medical Biology, Medical Faculty, Medical University, Sofia, Bulgaria.,2 Laboratory of Tumor Immunology and Cell Therapy, Hyogo College of Medicine, Nishinomiya, Japan
| | - Yosif El-Darawish
- 2 Laboratory of Tumor Immunology and Cell Therapy, Hyogo College of Medicine, Nishinomiya, Japan
| | - Katerina Kavaldzhieva
- 1 Department of Medical Biology, Medical Faculty, Medical University, Sofia, Bulgaria
| | - Nikola Mladenov
- 1 Department of Medical Biology, Medical Faculty, Medical University, Sofia, Bulgaria
| | - Vladislav Lazarov
- 1 Department of Medical Biology, Medical Faculty, Medical University, Sofia, Bulgaria
| | | | - Tzvetanka Markova
- 3 Department of Pharmacology, Medical Faculty, Medical University, Sofia, Bulgaria
| | - Rumen Nikolov
- 3 Department of Pharmacology, Medical Faculty, Medical University, Sofia, Bulgaria
| | - Haruki Okamura
- 2 Laboratory of Tumor Immunology and Cell Therapy, Hyogo College of Medicine, Nishinomiya, Japan
| |
Collapse
|
59
|
Myeloid cell TNFR1 signaling dependent liver injury and inflammation upon BCG infection. Sci Rep 2019; 9:5297. [PMID: 30923339 PMCID: PMC6438980 DOI: 10.1038/s41598-019-41629-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 03/08/2019] [Indexed: 12/22/2022] Open
Abstract
TNF plays a critical role in mononuclear cell recruitment during acute Bacillus Calmette-Guérin (BCG) infection leading to an effective immune response with granuloma formation, but may also cause tissue injury mediated by TNFR1 or TNFR2. Here we investigated the role of myeloid and T cell specific TNFR1 and R2 expression, and show that absence of TNFR1 in myeloid cells attenuated liver granuloma formation and liver injury in response to acute BCG infection, while TNFR2 expressed in myeloid cells contributed only to liver injury. TNFR1 was the main receptor controlling cytokine production by liver mononuclear cells after antigenic specific response, modified CD4/CD8 ratio and NK, NKT and regulatory T cell recruitment. Further analysis of CD11b+CD3+ phagocytic cells revealed a TCRαβ expressing subpopulation of unknown function, which increased in response to BCG infection dependent of TNFR1 expression on myeloid cells. In conclusion, TNFR1 expressed by myeloid cells plays a critical role in mononuclear cell recruitment and injury of the liver after BCG infection.
Collapse
|
60
|
de Jonge K, Ebering A, Nassiri S, Maby-El Hajjami H, Ouertatani-Sakouhi H, Baumgaertner P, Speiser DE. Circulating CD56 bright NK cells inversely correlate with survival of melanoma patients. Sci Rep 2019; 9:4487. [PMID: 30872676 PMCID: PMC6418246 DOI: 10.1038/s41598-019-40933-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Accepted: 02/19/2019] [Indexed: 12/22/2022] Open
Abstract
The roles of NK cells in human melanoma remain only partially understood. We characterized NK cells from peripheral blood ex vivo by flow cytometry obtained from late stage (III/IV) melanoma patients. Interestingly, we found that the abundance of CD56bright NK cells negatively correlate with overall patient survival, together with distant metastases, in a multivariate cox regression analysis. The patients' CD56bright NK cells showed upregulation of CD11a, CD38 and CD95 as compared to healthy controls, pointing to an activated phenotype as well as a possible immune regulatory role in melanoma patients. After stimulation in vitro, CD56bright NK cells produced less TNFα and GMCSF in patients than controls. Furthermore, IFNγ production by the CD56bright NK cells correlated inversely with overall survival. Our results highlight that abundance and function of CD56bright NK cells are associated with melanoma patient survival, emphasizing the potential of NK cell subsets for biomarker discovery and future therapeutic targeting.
Collapse
Affiliation(s)
- Kaat de Jonge
- Department of Fundamental Oncology, University of Lausanne, Epalinges, Switzerland
| | - Anna Ebering
- Department of Fundamental Oncology, University of Lausanne, Epalinges, Switzerland
| | - Sina Nassiri
- Department of Fundamental Oncology, University of Lausanne, Epalinges, Switzerland
- Swiss Institute of Bioinformatics (SIB), Bâtiment Génopode, Lausanne, Switzerland
| | | | | | - Petra Baumgaertner
- Department of Fundamental Oncology, University of Lausanne, Epalinges, Switzerland
| | - Daniel E Speiser
- Department of Fundamental Oncology, University of Lausanne, Epalinges, Switzerland.
- Department of Oncology, University Hospital Center (CHUV), Lausanne, Switzerland.
| |
Collapse
|
61
|
Cruz-Muñoz ME, Valenzuela-Vázquez L, Sánchez-Herrera J, Santa-Olalla Tapia J. From the "missing self" hypothesis to adaptive NK cells: Insights of NK cell-mediated effector functions in immune surveillance. J Leukoc Biol 2019; 105:955-971. [PMID: 30848847 DOI: 10.1002/jlb.mr0618-224rr] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 01/29/2019] [Accepted: 02/04/2019] [Indexed: 12/11/2022] Open
Abstract
The original discovery of NK cells approximately 40 yr ago was based on their unique capability to kill tumor cells without prior sensitization or priming, a process named natural cytotoxicity. Since then, several studies have documented that NK cells can kill hematopoietic and nonhematopoietic cancer cells. NK cells also recognize and kill cells that have undergone viral infections. Besides natural cytotoxicity, NK cells are also major effectors of antibody-dependent cell cytotoxicity (ADCC). Therefore, NK cells are well "armed" to recognize and mount immune responses against "insults" that result from cell transformation and viral infections. Because of these attributes, an essential role of NK cells in tumor surveillance was noted. Indeed, several studies have shown a correlation between impaired NK cell cytotoxicity and a higher risk of developing cancer. This evidence led to the idea that cancer initiation and progress is intimately related to an abnormal or misdirected immune response. Whereas all these ideas remain current, it is also true that NK cells represent a heterogeneous population with different abilities to secrete cytokines and to mediate cytotoxic functions. In addition, recent data has shown that NK cells are prone to suffer epigenetic modifications resulting in the acquisition of previously unrecognized attributes such as memory and long-term survival. Such NK cells, referred as "adaptive" or "memory-like," also display effector functions that are not necessarily equal to those observed in conventional NK cells. Given the new evidence available, it is essential to discuss the conceptual reasoning and misconceptions regarding the role of NK cells in immune surveillance and immunotherapy.
Collapse
|
62
|
Choi SI, Lee SH, Park JY, Kim KA, Lee EJ, Lee SY, In KH. Clinical utility of a novel natural killer cell activity assay for diagnosing non-small cell lung cancer: a prospective pilot study. Onco Targets Ther 2019; 12:1661-1669. [PMID: 30881021 PMCID: PMC6398406 DOI: 10.2147/ott.s194473] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Purpose Although decreased natural killer cell activity (NKA) has been observed in many solid cancers, clinical implication of NKA has been scarcely investigated in lung cancer. The objective of this study was to evaluate the potential of using NKA to support diagnosis of non-small cell lung cancer (NSCLC). Materials and methods We prospectively evaluated and compared peripheral blood NKA using a novel interferon-gamma releasing assay in healthy population (n=40), patients with benign lung disease (n=40), and those with NSCLC (n=71). We explored the correlation between NKA and clinical parameters and assessed diagnostic performance of NKA for NSCLC using receiver operating characteristic curve analysis. Results Median NKA values in healthy population, patients with benign lung disease, and those with NSCLC were 1,364.2, 1,438.2, and 406.3 pg/mL, respectively. NKA in NSCLC patients was significantly lower than that in the other two control groups (both P<0.001). At a cutoff value of NKA at 391.0 pg/mL, the area under the curve was 0.762 (95% CI: 0.685–0.838, P<0.001), with a sensitivity of 52.3%, a specificity of 91.0%, a positive predictive value of 85.3%, and a negative predictive value of 65.4% for the diagnosis of NSCLC. Multivariate analysis demonstrated that diagnosis of NSCLC is the only clinical parameter that was significantly associated with NKA (P<0.001). Conclusion This pilot study showed that patients with low NKA were more likely to have lung cancer. Further studies are warranted in order to establish the clinical utility of NKA test for diagnosing lung cancer.
Collapse
Affiliation(s)
- Sue In Choi
- Division of Respiratory and Critical Care Medicine, Department of Internal Medicine, Korea University College of Medicine, Seoul, South Korea,
| | - Seung Hyeun Lee
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Internal Medicine, Kyung Hee University School of Medicine, Seoul, South Korea
| | - Ji-Young Park
- Department of Clinical Pharmacology and Toxicology, Korea University College of Medicine, Seoul, South Korea
| | - Kyoung-Ah Kim
- Department of Clinical Pharmacology and Toxicology, Korea University College of Medicine, Seoul, South Korea
| | - Eun Joo Lee
- Division of Respiratory and Critical Care Medicine, Department of Internal Medicine, Korea University College of Medicine, Seoul, South Korea,
| | - Sang Yeub Lee
- Division of Respiratory and Critical Care Medicine, Department of Internal Medicine, Korea University College of Medicine, Seoul, South Korea,
| | - Kwang Ho In
- Division of Respiratory and Critical Care Medicine, Department of Internal Medicine, Korea University College of Medicine, Seoul, South Korea,
| |
Collapse
|
63
|
Perry NJS, Wigmore T. Propofol (TIVA) Versus Volatile-Based Anesthetics: Is There Any Oncological Benefit? CURRENT ANESTHESIOLOGY REPORTS 2018. [DOI: 10.1007/s40140-018-0296-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
64
|
Csepregi JZ, Orosz A, Zajta E, Kása O, Németh T, Simon E, Fodor S, Csonka K, Barátki BL, Kövesdi D, He YW, Gácser A, Mócsai A. Myeloid-Specific Deletion of Mcl-1 Yields Severely Neutropenic Mice That Survive and Breed in Homozygous Form. THE JOURNAL OF IMMUNOLOGY 2018; 201:3793-3803. [PMID: 30464050 PMCID: PMC6287103 DOI: 10.4049/jimmunol.1701803] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 10/09/2018] [Indexed: 12/13/2022]
Abstract
Mouse strains with specific deficiency of given hematopoietic lineages provide invaluable tools for understanding blood cell function in health and disease. Whereas neutrophils are dominant leukocytes in humans and mice, there are no widely useful genetic models of neutrophil deficiency in mice. In this study, we show that myeloid-specific deletion of the Mcl-1 antiapoptotic protein in Lyz2Cre/CreMcl1flox/flox (Mcl1ΔMyelo) mice leads to dramatic reduction of circulating and tissue neutrophil counts without affecting circulating lymphocyte, monocyte, or eosinophil numbers. Surprisingly, Mcl1ΔMyelo mice appeared normally, and their survival was mostly normal both under specific pathogen-free and conventional housing conditions. Mcl1ΔMyelo mice were also able to breed in homozygous form, making them highly useful for in vivo experimental studies. The functional relevance of neutropenia was confirmed by the complete protection of Mcl1ΔMyelo mice from arthritis development in the K/B×N serum-transfer model and from skin inflammation in an autoantibody-induced mouse model of epidermolysis bullosa acquisita. Mcl1ΔMyelo mice were also highly susceptible to systemic Staphylococcus aureus or Candida albicans infection, due to defective clearance of the invading pathogens. Although neutrophil-specific deletion of Mcl-1 in MRP8-CreMcl1flox/flox (Mcl1ΔPMN) mice also led to severe neutropenia, those mice showed an overt wasting phenotype and strongly reduced survival and breeding, limiting their use as an experimental model of neutrophil deficiency. Taken together, our results with the Mcl1ΔMyelo mice indicate that severe neutropenia does not abrogate the viability and fertility of mice, and they provide a useful genetic mouse model for the analysis of the role of neutrophils in health and disease.
Collapse
Affiliation(s)
- Janka Zsófia Csepregi
- Department of Physiology, Semmelweis University School of Medicine, 1094 Budapest, Hungary.,MTA-SE "Lendület" Inflammation Physiology Research Group of the Hungarian Academy of Sciences and Semmelweis University, 1094 Budapest, Hungary
| | - Anita Orosz
- Department of Physiology, Semmelweis University School of Medicine, 1094 Budapest, Hungary.,MTA-SE "Lendület" Inflammation Physiology Research Group of the Hungarian Academy of Sciences and Semmelweis University, 1094 Budapest, Hungary
| | - Erik Zajta
- Department of Microbiology, University of Szeged, 6726 Szeged, Hungary
| | - Orsolya Kása
- Department of Physiology, Semmelweis University School of Medicine, 1094 Budapest, Hungary.,MTA-SE "Lendület" Inflammation Physiology Research Group of the Hungarian Academy of Sciences and Semmelweis University, 1094 Budapest, Hungary
| | - Tamás Németh
- Department of Physiology, Semmelweis University School of Medicine, 1094 Budapest, Hungary.,MTA-SE "Lendület" Inflammation Physiology Research Group of the Hungarian Academy of Sciences and Semmelweis University, 1094 Budapest, Hungary
| | - Edina Simon
- Department of Physiology, Semmelweis University School of Medicine, 1094 Budapest, Hungary.,MTA-SE "Lendület" Inflammation Physiology Research Group of the Hungarian Academy of Sciences and Semmelweis University, 1094 Budapest, Hungary
| | - Szabina Fodor
- Department of Computer Science, Corvinus University of Budapest, 1093 Budapest, Hungary
| | - Katalin Csonka
- Department of Microbiology, University of Szeged, 6726 Szeged, Hungary
| | - Balázs L Barátki
- Department of Immunology, Eötvös Loránd University, 1117 Budapest, Hungary
| | - Dorottya Kövesdi
- Department of Immunology, Eötvös Loránd University, 1117 Budapest, Hungary.,Office of Supported Research Groups of the Hungarian Academy of Sciences, 1051 Budapest, Hungary; and
| | - You-Wen He
- Department of Immunology, Duke University Medical Center, Durham, NC 27710
| | - Attila Gácser
- Department of Microbiology, University of Szeged, 6726 Szeged, Hungary
| | - Attila Mócsai
- Department of Physiology, Semmelweis University School of Medicine, 1094 Budapest, Hungary; .,MTA-SE "Lendület" Inflammation Physiology Research Group of the Hungarian Academy of Sciences and Semmelweis University, 1094 Budapest, Hungary
| |
Collapse
|
65
|
Wang Y, Chu J, Yi P, Dong W, Saultz J, Wang Y, Wang H, Scoville S, Zhang J, Wu LC, Deng Y, He X, Mundy-Bosse B, Freud AG, Wang LS, Caligiuri MA, Yu J. SMAD4 promotes TGF-β-independent NK cell homeostasis and maturation and antitumor immunity. J Clin Invest 2018; 128:5123-5136. [PMID: 30183689 DOI: 10.1172/jci121227] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 08/28/2018] [Indexed: 12/13/2022] Open
Abstract
SMAD4 is the only common SMAD in TGF-β signaling that usually impedes immune cell activation in the tumor microenvironment. However, we demonstrated here that selective deletion of Smad4 in NK cells actually led to dramatically reduced tumor cell rejection and augmented tumor cell metastases, reduced murine CMV clearance, as well as impeded NK cell homeostasis and maturation. This was associated with a downregulation of granzyme B (Gzmb), Kit, and Prdm1 in Smad4-deficient NK cells. We further unveiled the mechanism by which SMAD4 promotes Gzmb expression. Gzmb was identified as a direct target of a transcriptional complex formed by SMAD4 and JUNB. A JUNB binding site distinct from that for SMAD4 in the proximal Gzmb promoter was required for transcriptional activation by the SMAD4-JUNB complex. In a Tgfbr2 and Smad4 NK cell-specific double-conditional KO model, SMAD4-mediated events were found to be independent of canonical TGF-β signaling. Our study identifies and mechanistically characterizes unusual functions and pathways for SMAD4 in governing innate immune responses to cancer and viral infection, as well as NK cell development.
Collapse
Affiliation(s)
- Youwei Wang
- Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, Ohio, USA.,The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, USA
| | - Jianhong Chu
- The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, USA
| | - Ping Yi
- The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, USA.,Third Affiliated Hospital, Third Military Medical University, Chongqing, China
| | - Wenjuan Dong
- The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, USA
| | - Jennifer Saultz
- The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, USA
| | - Yufeng Wang
- The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, USA
| | - Hongwei Wang
- The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, USA
| | - Steven Scoville
- The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, USA
| | | | - Lai-Chu Wu
- The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, USA
| | - Youcai Deng
- The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, USA
| | | | | | - Aharon G Freud
- The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, USA.,Department of Pathology, The Ohio State University, Columbus, Ohio, USA
| | - Li-Shu Wang
- Division of Hematology and Oncology at the Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Michael A Caligiuri
- Department of Hematology and Hematopoietic Cell Transplantation, Comprehensive Cancer Center, City of Hope National Medical Center, Duarte, California, USA
| | - Jianhua Yu
- Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, Ohio, USA.,The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, USA.,Department of Hematology and Hematopoietic Cell Transplantation, Comprehensive Cancer Center, City of Hope National Medical Center, Duarte, California, USA
| |
Collapse
|
66
|
Lemay AM, Haston CK. A Chromosome 6, not Natural Killer Cell, Contribution to Radiation- and Bleomycin-Induced Lung Disease in Mice. Radiat Res 2018; 190:605-611. [DOI: 10.1667/rr15144.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Anne-Marie Lemay
- Departments of Human Genetics and Medicine and the Meakins-Christie Laboratories, McGill University, Montreal, Canada
| | - Christina K. Haston
- Departments of Human Genetics and Medicine and the Meakins-Christie Laboratories, McGill University, Montreal, Canada
| |
Collapse
|
67
|
Stolk D, van der Vliet HJ, de Gruijl TD, van Kooyk Y, Exley MA. Positive & Negative Roles of Innate Effector Cells in Controlling Cancer Progression. Front Immunol 2018; 9:1990. [PMID: 30298063 PMCID: PMC6161645 DOI: 10.3389/fimmu.2018.01990] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 08/13/2018] [Indexed: 12/29/2022] Open
Abstract
Innate immune cells are active at the front line of host defense against pathogens and now appear to play a range of roles under non-infectious conditions as well, most notably in cancer. Establishing the balance of innate immune responses is critical for the “flavor” of these responses and subsequent adaptive immunity and can be either “good or bad” in controlling cancer progression. The importance of innate NK cells in tumor immune responses has already been extensively studied over the last few decades, but more recently several relatively mono- or oligo-clonal [i.e., (semi-) invariant] innate T cell subsets received substantial interest in tumor immunology including invariant natural killer T (iNKT), γδ-T and mucosal associated invariant T (MAIT) cells. These subsets produce high levels of various pro- and/or anti-inflammatory cytokines/chemokines reflecting their capacity to suppress or stimulate immune responses. Survival of patients with cancer has been linked to the frequencies and activation status of NK, iNKT, and γδ-T cells. It has become clear that NK, iNKT, γδ-T as well as MAIT cells all have physiological roles in anti-tumor responses, which emphasize their possible relevance for tumor immunotherapy. A variety of clinical trials has focused on manipulating NK, iNKT, and γδ-T cell functions as a cancer immunotherapeutic approach demonstrating their safety and potential for achieving beneficial therapeutic effects, while the exploration of MAIT cell related therapies is still in its infancy. Current issues limiting the full therapeutic potential of these innate cell subsets appear to be related to defects and suppressive properties of these subsets that, with the right stimulus, might be reversed. In general, how innate lymphocytes are activated appears to control their subsequent abilities and consequent impact on adaptive immunity. Controlling these potent regulators and mediators of the immune system should enable their protective roles to dominate and their deleterious potential (in the specific context of cancer) to be mitigated.
Collapse
Affiliation(s)
- Dorian Stolk
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, Netherlands
| | - Hans J van der Vliet
- Department of Medical Oncology, VU University Medical Center, Amsterdam, Netherlands
| | - Tanja D de Gruijl
- Department of Medical Oncology, VU University Medical Center, Amsterdam, Netherlands
| | - Yvette van Kooyk
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, Netherlands
| | - Mark A Exley
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom.,Harvard Medical School, Brigham and Women's Hospital, Boston, MA, United States.,Agenus, Inc., Lexington, MA, United States
| |
Collapse
|
68
|
Lazăr DC, Avram MF, Romoșan I, Cornianu M, Tăban S, Goldiș A. Prognostic significance of tumor immune microenvironment and immunotherapy: Novel insights and future perspectives in gastric cancer. World J Gastroenterol 2018; 24:3583-3616. [PMID: 30166856 PMCID: PMC6113718 DOI: 10.3748/wjg.v24.i32.3583] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Revised: 06/05/2018] [Accepted: 06/27/2018] [Indexed: 02/06/2023] Open
Abstract
Despite a decrease in gastric cancer incidence, the development of novel biologic agents and combined therapeutic strategies, the prognosis of gastric cancer remains poor. Recently, the introduction of modern immunotherapy, especially using immune checkpoint inhibitors, led to an improved prognosis in many cancers. The use of immunotherapy was also associated with manageable adverse event profiles and promising results in the treatment of patients with gastric cancer, especially in heavily pretreated patients. These data have led to an accelerated approval of some checkpoint inhibitors in this setting. Understanding the complex relationship between the host immune microenvironment and tumor and the immune escape phenomenon leading to cancer occurrence and progression will subsequently lead to the identification of prognostic immune markers. Furthermore, this understanding will result in the discovery of both new mechanisms for blocking tumor immunosuppressive signals and pathways to stimulate the local immune response by targeting and modulating different subsets of immune cells. Due to the molecular heterogeneity of gastric cancers associated with different clinico-biologic parameters, immune markers expression and prognosis, novel immunotherapy algorithms should be personalized and addressed to selected subsets of gastric tumors, which have been proven to elicit the best clinical responses. Future perspectives in the treatment of gastric cancer include tailored dual immunotherapies or a combination of immunotherapy with other targeted agents with synergistic antitumor effects.
Collapse
Affiliation(s)
- Daniela Cornelia Lazăr
- Department of Internal Medicine I, University Medical Clinic, University of Medicine and Pharmacy “Victor Babeş”, Timişoara 300041, Timiş County, Romania
| | - Mihaela Flavia Avram
- Department of Surgery X, 1st Surgery Clinic, University of Medicine and Pharmacy “Victor Babeş”, Timişoara 300041, Timiş County, Romania
| | - Ioan Romoșan
- Department of Internal Medicine I, University Medical Clinic, University of Medicine and Pharmacy “Victor Babeş”, Timişoara 300041, Timiş County, Romania
| | - Mărioara Cornianu
- Department of Pathology, University of Medicine and Pharmacy “Victor Babeş”, Timişoara 300041, Timiş County, Romania
| | - Sorina Tăban
- Department of Pathology, University of Medicine and Pharmacy “Victor Babeş”, Timişoara 300041, Timiş County, Romania
| | - Adrian Goldiș
- Department of Gastroenterology and Hepatology, University of Medicine and Pharmacy “Victor Babeş”, Timişoara 300041, Timiş County, Romania
| |
Collapse
|
69
|
Assessment of new HDAC inhibitors for immunotherapy of malignant pleural mesothelioma. Clin Epigenetics 2018; 10:79. [PMID: 29946373 PMCID: PMC6006850 DOI: 10.1186/s13148-018-0517-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 06/11/2018] [Indexed: 12/21/2022] Open
Abstract
Background Malignant pleural mesothelioma (MPM) is a very rare and highly aggressive cancer of the pleura associated in most cases with asbestos exposure. To date, no really efficient treatments are available for this pathology. Recently, it has been shown that epigenetic drugs, particularly DNA methylation or histone acetylation modulating agents, could be very efficient in terms of cytotoxicity for several types of cancer cells. We previously showed that a hypomethylating agent (decitabine) and a histone deacetylase inhibitor (HDACi) (valproic acid (VPA)) combination was immunogenic and led to the induction of an anti-tumor immune response in a mice model of mesothelioma. However, VPA is not very specific, is active at millimolar concentrations and is responsible for side effects in clinic. To improve this approach, we studied four newly synthetized HDACi, two hydroxamates (ODH and NODH) and two benzamides (ODB and NODB), in comparison with VPA and SAHA. We evaluated their toxicity on immune cells and their immunogenicity on MPM cells in combination with decitabine. Results All the tested HDACi were toxic for immune cells at high concentrations. Combination with decitabine increased toxicity of HDACi only towards T-cell clone. A decrease in the proportion of regulatory T cells and natural killer cells was observed in particular with VPA and ODH. In MPM cells, all HDACi combinations induced NY-ESO-1 cancer testis antigen (CTA) expression and the recognition of the treated cells by a NY-ESO-1 specific T-CD8 clone. However, for MAGE-A1, MAGE-A3 and XAGE-1b mRNA expression, the results obtained depended on the HDACi used and on the CTA studied. Depending on the MPM cell line studied, molecules alone increased moderately PD-L1 expression. When combined, a higher stimulation of this immune check point inhibitor expression was observed. Decitabine-induced anti-viral response seemed to be inhibited in the presence of HDACi. Conclusions This work shows that the combination of decitabine and HDACi could be of interest for MPM immunotherapy. However, this combination induced PD-L1 expression which suggests that an association with anti-PD-L1 therapy should be performed to induce an efficient anti-tumor immune response. Electronic supplementary material The online version of this article (10.1186/s13148-018-0517-9) contains supplementary material, which is available to authorized users.
Collapse
|
70
|
Aktaş ON, Öztürk AB, Erman B, Erus S, Tanju S, Dilege Ş. Role of natural killer cells in lung cancer. J Cancer Res Clin Oncol 2018; 144:997-1003. [PMID: 29616326 DOI: 10.1007/s00432-018-2635-3] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 03/28/2018] [Indexed: 01/08/2023]
Abstract
PURPOSE One of the key immune cells involved in the pathogenesis of lung cancer is natural killer (NK) cells and these cells are novel targets for therapeutic applications in lung cancer. The purpose of this review is to summarize the current literature on lung cancer pathogenesis with a focus on the interaction between NK cells and smoking, how these factors are related to the pathogenesis of lung cancer and how NK cell-based immunotherapy effect lung cancer survival. METHODS The relevant literature from PubMed and Medline databases is reviewed in this article. RESULTS The cytolytic potential of NK cells are reduced in lung cancer and increasing evidence suggests that improving NK cell functioning may induce tumor regression. Recent clinical trials on NK cell-based novel therapies such as cytokines including interleukin (IL)-15, IL-12 and IL-2, NK-92 cell lines and allogenic NK cell immunotherapy showed promising results with less adverse effects on the lung cancer survival. CONCLUSIONS The NK cell targeting strategy has not yet been approved for lung cancer treatment. More clinical studies focusing on the role of NK cells in lung cancer pathogenesis are warranted to develop novel NK cell-based therapeutic approaches for the treatment of lung cancer.
Collapse
Affiliation(s)
- Ozge Nur Aktaş
- Feinberg School of Medicine, Center for Community Health, Northwestern University, Chicago, IL, USA
| | - Ayşe Bilge Öztürk
- Department of Allergy and Immunology, Koç University Hospital, Istanbul, Turkey.
| | - Baran Erman
- Koç University, School of Medicine, Translational Medicine Research Center, Istanbul, Turkey
| | - Suat Erus
- Department of Thoracic Surgery, Koç University Hospital, Istanbul, Turkey
| | - Serhan Tanju
- Department of Thoracic Surgery, Koç University Hospital, Istanbul, Turkey
| | - Şükrü Dilege
- Department of Thoracic Surgery, Koç University Hospital, Istanbul, Turkey
| |
Collapse
|
71
|
The Effect of Anesthesia on the Immune System in Colorectal Cancer Patients. Can J Gastroenterol Hepatol 2018; 2018:7940603. [PMID: 29805965 PMCID: PMC5899868 DOI: 10.1155/2018/7940603] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 02/04/2018] [Accepted: 02/21/2018] [Indexed: 12/28/2022] Open
Abstract
Colorectal cancer (CRC) is the key leading cause of high morbidity and mortality worldwide. Surgical excision is the most effective treatment for CRC. However, stress caused by surgery response can destroy the body's immunity and increase the likelihood of cancer dissemination and metastasis. Anesthesia is an effective way to control the stress response, and recent basic and clinical research has shown that anesthesia and related drugs can directly or indirectly affect the immune system of colorectal cancer patients during the perioperative period. Thus, these drugs may affect the prognosis of CRC surgery patients. This review is intended to summarize currently available data regarding the effects of anesthetics and related drugs on perioperative immune function and postoperative recurrence and metastasis in CRC patients. Determining the most suitable anesthesia for patients with CRC is of utmost importance.
Collapse
|
72
|
EGFR-targeted therapy results in dramatic early lung tumor regression accompanied by imaging response and immune infiltration in EGFR mutant transgenic mouse models. Oncotarget 2018; 7:54137-54156. [PMID: 27494838 PMCID: PMC5338915 DOI: 10.18632/oncotarget.11021] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 07/22/2016] [Indexed: 01/21/2023] Open
Abstract
Lung adenocarcinoma patients harboring kinase domain mutations in Epidermal growth factor receptor (EGFR) have significant clinical benefit from EGFR-targeted tyrosine kinase inhibitors (TKIs). Although a majority of patients experience clinical symptomatic benefit immediately, an objective response can only be demonstrated after 6-8 weeks of treatment. Evaluation of patient response by imaging shows that 30-40% of patients do not respond due to intrinsic resistance to these TKIs. We investigated immediate-early effects of EGFR-TKI treatment in mutant EGFR-driven transgenic mouse models by FDG-PET and MRI and correlated the effects on the tumor and the tumor microenvironment. Within 24 hours of erlotinib treatment we saw approximately 65% tumor regression in mice with TKI-sensitive EGFRL858R lung adenocarcinoma. However, mice with EGFRL858R/T790M-driven tumors did not respond to either erlotinib or afatinib monotherapy, but did show a significant tumor response to afatinib-cetuximab combination treatment. The imaging responses correlated with the inhibition of downstream EGFR signaling, increased apoptosis, and decreased proliferation in the tumor tissues. In EGFRL858R-driven tumors, we saw a significant increase in CD45+ leukocytes, NK cells, dendritic cells, macrophages and lymphocytes, particularly CD8+ T cells. In response to erlotinib, these dendritic cells and macrophages had significantly higher MHC class II expression, indicating increased antigen-presenting capabilities. Together, results of our study provide novel insight into the immediate-early therapeutic response to EGFR TKIs in vivo.
Collapse
|
73
|
Uppendahl LD, Dahl CM, Miller JS, Felices M, Geller MA. Natural Killer Cell-Based Immunotherapy in Gynecologic Malignancy: A Review. Front Immunol 2018; 8:1825. [PMID: 29354116 PMCID: PMC5760535 DOI: 10.3389/fimmu.2017.01825] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 12/04/2017] [Indexed: 12/20/2022] Open
Abstract
Harnessing the immune system has proven an effective therapy in treating malignancies. Since the discovery of natural killer (NK) cells, strategies aimed to manipulate and augment their effector function against cancer have been the subject of intense research. Recent progress in the immunobiology of NK cells has led to the development of promising therapeutic approaches. In this review, we will focus on the recent advances in NK cell immunobiology and the clinical application of NK cell immunotherapy in ovarian, cervical, and uterine cancer.
Collapse
Affiliation(s)
- Locke D Uppendahl
- Department of Obstetrics, Gynecology and Women's Health, Division of Gynecologic Oncology, University of Minnesota School of Medicine, Minneapolis, MN, United States
| | - Carly M Dahl
- University of Minnesota School of Medicine, Minneapolis, MN, United States
| | - Jeffrey S Miller
- Department of Medicine, Division of Hematology, Oncology, and Transplantation, University of Minnesota School of Medicine, Minneapolis, MN, United States
| | - Martin Felices
- Department of Medicine, Division of Hematology, Oncology, and Transplantation, University of Minnesota School of Medicine, Minneapolis, MN, United States
| | - Melissa A Geller
- Department of Obstetrics, Gynecology and Women's Health, Division of Gynecologic Oncology, University of Minnesota School of Medicine, Minneapolis, MN, United States
| |
Collapse
|
74
|
Nour-Eldine W, Joffre J, Zibara K, Esposito B, Giraud A, Zeboudj L, Vilar J, Terada M, Bruneval P, Vivier E, Ait-Oufella H, Mallat Z, Ugolini S, Tedgui A. Genetic Depletion or Hyperresponsiveness of Natural Killer Cells Do Not Affect Atherosclerosis Development. Circ Res 2018; 122:47-57. [DOI: 10.1161/circresaha.117.311743] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 10/12/2017] [Accepted: 10/17/2016] [Indexed: 01/20/2023]
Abstract
Rationale:
Chronic inflammation is central in the development of atherosclerosis. Both innate and adaptive immunities are involved. Although several studies have evaluated the functions of natural killer (NK) cells in experimental animal models of atherosclerosis, it is not yet clear whether NK cells behave as protective or proatherogenic effectors. One of the main caveats of previous studies was the lack of specificity in targeting loss or gain of function of NK cells.
Objectives:
We used 2 selective genetic approaches to investigate the role of NK cells in atherosclerosis: (1)
Ncr1
iCre/+
R26
lsl−
DTA/+
mice in which NK cells were depleted and (2)
Noé
mice in which NK cells are hyperresponsive.
Methods and Results:
No difference in atherosclerotic lesion size was found in
Ldlr
−/−
(low-density lipoprotein receptor null) mice transplanted with bone marrow (BM) cells from
Ncr1
iCre
R26R
lsl−
DTA
,
Noé
, or wild-type mice. Also, no difference was observed in plaque composition in terms of collagen content, macrophage infiltration, or the immune profile, although
Noé
chimera had more IFN (interferon)-γ–producing NK cells, compared with wild-type mice. Then, we investigated the NK-cell selectivity of anti–asialoganglioside M1 antiserum, which was previously used to conclude the proatherogenicity of NK cells. Anti–asialoganglioside M1 treatment decreased atherosclerosis in both
Ldlr
−/−
mice transplanted with
Ncr1
iCre
R26R
lsl−
DTA
or wild-type bone marrow, indicating that its antiatherogenic effects are unrelated to NK-cell depletion, but to CD8
+
T and NKT cells. Finally, to determine whether NK cells could contribute to the disease in conditions of pathological NK-cell overactivation, we treated irradiated
Ldlr
−/−
mice reconstituted with either wild-type or
Ncr1
iCre
R26R
lsl−
DTA
bone marrow with the viral mimic polyinosinic:polycytidylic acid and found a significant reduction of plaque size in NK-cell–deficient chimeric mice.
Conclusions:
Our findings, using state-of-the-art mouse models, demonstrate that NK cells have no direct effect on the natural development of hypercholesterolemia-induced atherosclerosis, but may play a role when an additional systemic NK-cell overactivation occurs.
Collapse
Affiliation(s)
- Wared Nour-Eldine
- From the Institut National de la Santé et de la Recherche Médicale (Inserm), Unit 970, Paris-Cardiovascular Research Center, Université Paris-Descartes, France (W.N.-E., J.J., B.E., A.G., L.Z., J.V., P.B., H.A.-O., Z.M., A.T.); ER045, PRASE (W.N.-E., K.Z.) and Biology Department, Faculty of Sciences-I (K.Z.), Lebanese University, Beirut, Lebanon; Department of Anatomopathology, Hôpital Européen Georges Pompidou, Assistance Publique-Hopitaux de Paris, France (M.T., P.B.); Centre d’Immunologie de
| | - Jérémie Joffre
- From the Institut National de la Santé et de la Recherche Médicale (Inserm), Unit 970, Paris-Cardiovascular Research Center, Université Paris-Descartes, France (W.N.-E., J.J., B.E., A.G., L.Z., J.V., P.B., H.A.-O., Z.M., A.T.); ER045, PRASE (W.N.-E., K.Z.) and Biology Department, Faculty of Sciences-I (K.Z.), Lebanese University, Beirut, Lebanon; Department of Anatomopathology, Hôpital Européen Georges Pompidou, Assistance Publique-Hopitaux de Paris, France (M.T., P.B.); Centre d’Immunologie de
| | - Kazem Zibara
- From the Institut National de la Santé et de la Recherche Médicale (Inserm), Unit 970, Paris-Cardiovascular Research Center, Université Paris-Descartes, France (W.N.-E., J.J., B.E., A.G., L.Z., J.V., P.B., H.A.-O., Z.M., A.T.); ER045, PRASE (W.N.-E., K.Z.) and Biology Department, Faculty of Sciences-I (K.Z.), Lebanese University, Beirut, Lebanon; Department of Anatomopathology, Hôpital Européen Georges Pompidou, Assistance Publique-Hopitaux de Paris, France (M.T., P.B.); Centre d’Immunologie de
| | - Bruno Esposito
- From the Institut National de la Santé et de la Recherche Médicale (Inserm), Unit 970, Paris-Cardiovascular Research Center, Université Paris-Descartes, France (W.N.-E., J.J., B.E., A.G., L.Z., J.V., P.B., H.A.-O., Z.M., A.T.); ER045, PRASE (W.N.-E., K.Z.) and Biology Department, Faculty of Sciences-I (K.Z.), Lebanese University, Beirut, Lebanon; Department of Anatomopathology, Hôpital Européen Georges Pompidou, Assistance Publique-Hopitaux de Paris, France (M.T., P.B.); Centre d’Immunologie de
| | - Andréas Giraud
- From the Institut National de la Santé et de la Recherche Médicale (Inserm), Unit 970, Paris-Cardiovascular Research Center, Université Paris-Descartes, France (W.N.-E., J.J., B.E., A.G., L.Z., J.V., P.B., H.A.-O., Z.M., A.T.); ER045, PRASE (W.N.-E., K.Z.) and Biology Department, Faculty of Sciences-I (K.Z.), Lebanese University, Beirut, Lebanon; Department of Anatomopathology, Hôpital Européen Georges Pompidou, Assistance Publique-Hopitaux de Paris, France (M.T., P.B.); Centre d’Immunologie de
| | - Lynda Zeboudj
- From the Institut National de la Santé et de la Recherche Médicale (Inserm), Unit 970, Paris-Cardiovascular Research Center, Université Paris-Descartes, France (W.N.-E., J.J., B.E., A.G., L.Z., J.V., P.B., H.A.-O., Z.M., A.T.); ER045, PRASE (W.N.-E., K.Z.) and Biology Department, Faculty of Sciences-I (K.Z.), Lebanese University, Beirut, Lebanon; Department of Anatomopathology, Hôpital Européen Georges Pompidou, Assistance Publique-Hopitaux de Paris, France (M.T., P.B.); Centre d’Immunologie de
| | - José Vilar
- From the Institut National de la Santé et de la Recherche Médicale (Inserm), Unit 970, Paris-Cardiovascular Research Center, Université Paris-Descartes, France (W.N.-E., J.J., B.E., A.G., L.Z., J.V., P.B., H.A.-O., Z.M., A.T.); ER045, PRASE (W.N.-E., K.Z.) and Biology Department, Faculty of Sciences-I (K.Z.), Lebanese University, Beirut, Lebanon; Department of Anatomopathology, Hôpital Européen Georges Pompidou, Assistance Publique-Hopitaux de Paris, France (M.T., P.B.); Centre d’Immunologie de
| | - Megumi Terada
- From the Institut National de la Santé et de la Recherche Médicale (Inserm), Unit 970, Paris-Cardiovascular Research Center, Université Paris-Descartes, France (W.N.-E., J.J., B.E., A.G., L.Z., J.V., P.B., H.A.-O., Z.M., A.T.); ER045, PRASE (W.N.-E., K.Z.) and Biology Department, Faculty of Sciences-I (K.Z.), Lebanese University, Beirut, Lebanon; Department of Anatomopathology, Hôpital Européen Georges Pompidou, Assistance Publique-Hopitaux de Paris, France (M.T., P.B.); Centre d’Immunologie de
| | - Patrick Bruneval
- From the Institut National de la Santé et de la Recherche Médicale (Inserm), Unit 970, Paris-Cardiovascular Research Center, Université Paris-Descartes, France (W.N.-E., J.J., B.E., A.G., L.Z., J.V., P.B., H.A.-O., Z.M., A.T.); ER045, PRASE (W.N.-E., K.Z.) and Biology Department, Faculty of Sciences-I (K.Z.), Lebanese University, Beirut, Lebanon; Department of Anatomopathology, Hôpital Européen Georges Pompidou, Assistance Publique-Hopitaux de Paris, France (M.T., P.B.); Centre d’Immunologie de
| | - Eric Vivier
- From the Institut National de la Santé et de la Recherche Médicale (Inserm), Unit 970, Paris-Cardiovascular Research Center, Université Paris-Descartes, France (W.N.-E., J.J., B.E., A.G., L.Z., J.V., P.B., H.A.-O., Z.M., A.T.); ER045, PRASE (W.N.-E., K.Z.) and Biology Department, Faculty of Sciences-I (K.Z.), Lebanese University, Beirut, Lebanon; Department of Anatomopathology, Hôpital Européen Georges Pompidou, Assistance Publique-Hopitaux de Paris, France (M.T., P.B.); Centre d’Immunologie de
| | - Hafid Ait-Oufella
- From the Institut National de la Santé et de la Recherche Médicale (Inserm), Unit 970, Paris-Cardiovascular Research Center, Université Paris-Descartes, France (W.N.-E., J.J., B.E., A.G., L.Z., J.V., P.B., H.A.-O., Z.M., A.T.); ER045, PRASE (W.N.-E., K.Z.) and Biology Department, Faculty of Sciences-I (K.Z.), Lebanese University, Beirut, Lebanon; Department of Anatomopathology, Hôpital Européen Georges Pompidou, Assistance Publique-Hopitaux de Paris, France (M.T., P.B.); Centre d’Immunologie de
| | - Ziad Mallat
- From the Institut National de la Santé et de la Recherche Médicale (Inserm), Unit 970, Paris-Cardiovascular Research Center, Université Paris-Descartes, France (W.N.-E., J.J., B.E., A.G., L.Z., J.V., P.B., H.A.-O., Z.M., A.T.); ER045, PRASE (W.N.-E., K.Z.) and Biology Department, Faculty of Sciences-I (K.Z.), Lebanese University, Beirut, Lebanon; Department of Anatomopathology, Hôpital Européen Georges Pompidou, Assistance Publique-Hopitaux de Paris, France (M.T., P.B.); Centre d’Immunologie de
| | - Sophie Ugolini
- From the Institut National de la Santé et de la Recherche Médicale (Inserm), Unit 970, Paris-Cardiovascular Research Center, Université Paris-Descartes, France (W.N.-E., J.J., B.E., A.G., L.Z., J.V., P.B., H.A.-O., Z.M., A.T.); ER045, PRASE (W.N.-E., K.Z.) and Biology Department, Faculty of Sciences-I (K.Z.), Lebanese University, Beirut, Lebanon; Department of Anatomopathology, Hôpital Européen Georges Pompidou, Assistance Publique-Hopitaux de Paris, France (M.T., P.B.); Centre d’Immunologie de
| | - Alain Tedgui
- From the Institut National de la Santé et de la Recherche Médicale (Inserm), Unit 970, Paris-Cardiovascular Research Center, Université Paris-Descartes, France (W.N.-E., J.J., B.E., A.G., L.Z., J.V., P.B., H.A.-O., Z.M., A.T.); ER045, PRASE (W.N.-E., K.Z.) and Biology Department, Faculty of Sciences-I (K.Z.), Lebanese University, Beirut, Lebanon; Department of Anatomopathology, Hôpital Européen Georges Pompidou, Assistance Publique-Hopitaux de Paris, France (M.T., P.B.); Centre d’Immunologie de
| |
Collapse
|
75
|
Benson DM, Caligiuri MA. Natural Killer Cell Immunity. Hematology 2018. [DOI: 10.1016/b978-0-323-35762-3.00022-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
76
|
|
77
|
Renaud SJ, Scott RL, Chakraborty D, Rumi MAK, Soares MJ. Natural killer-cell deficiency alters placental development in rats. Biol Reprod 2017; 96:145-158. [PMID: 28395334 DOI: 10.1095/biolreprod.116.142752] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 12/06/2016] [Indexed: 12/18/2022] Open
Abstract
Natural killer (NK) cells are the most prevalent leukocyte population in the uterus during early pregnancy. Natural killer cells contribute to uterine vascular (spiral artery) remodeling in preparation for the increased demand on these vessels later in pregnancy. A second wave of spiral artery modification is directed by invasive trophoblast cells. The significance of the initial wave of NK-cell-mediated vascular remodeling in species exhibiting deep trophoblast invasion such as humans and rats is not known. The purpose of this study was to generate a genetic model of NK-cell deficiency in rats, and determine the consequences of NK-cell deficiency on spiral artery remodeling and reproductive outcomes. To accomplish this task, we utilized zinc finger nuclease-mediated genome editing of the rat interleukin-15 (Il15) gene. Il15 encodes a cytokine required for NK-cell lineage development. Using this strategy, a founder rat was generated containing a frameshift deletion in Il15. Uteri of females harboring a homozygous mutation at the Il15 locus contained no detectable NK cells. NK-cell deficiency did not impact fetal growth or viability. However, NK-cell deficiency caused major structural changes to the placenta, including expansion of the junctional zone and robust, early-onset activation of invasive trophoblast-guided spiral artery remodeling. In summary, we successfully generated an NK-cell-deficient rat and showed, using this model, that NK cells dampen the extent of trophoblast invasion and delay trophoblast-directed spiral artery remodeling. This study furthers our understanding of the role of NK cells on uterine vascular remodeling, trophoblast invasion, and placental development.
Collapse
Affiliation(s)
- Stephen J Renaud
- Institute for Reproductive Health and Regenerative Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA.,Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Regan L Scott
- Institute for Reproductive Health and Regenerative Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA.,Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Damayanti Chakraborty
- Institute for Reproductive Health and Regenerative Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA.,Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Mohammad A K Rumi
- Institute for Reproductive Health and Regenerative Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA.,Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Michael J Soares
- Institute for Reproductive Health and Regenerative Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA.,Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA.,Department of Obstetrics and Gynecology, University of Kansas Medical Center, Kansas City, Kansas, USA
| |
Collapse
|
78
|
Duggan MC, Campbell AR, McMichael EL, Opheim KS, Levine KM, Bhave N, Culbertson MC, Noel T, Yu L, Carson WE. Co-stimulation of the fc receptor and interleukin-12 receptor on human natural killer cells leads to increased expression of cd25. Oncoimmunology 2017; 7:e1381813. [PMID: 29308301 DOI: 10.1080/2162402x.2017.1381813] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 08/31/2017] [Accepted: 09/14/2017] [Indexed: 12/24/2022] Open
Abstract
Natural killer (NK) cells serve a critical role in the immune response against microbes and developing tumors. We have demonstrated that NK cells produce stimulatory cytokines (e.g., IFN-γ) in response to potent stimulation via immobilized IgG (to engage Fc receptors) and interleukin (IL)-12. CD25 is a component of the high-affinity IL-2R, which promotes NK cell activation in response to low doses of IL-2 such as those released by activated T cells. We hypothesized that stimulation of NK cells via IgG and IL-12 would enhance CD25 expression and promote NK cell anti-tumor activity in response to low-dose IL-2. It was confirmed that this dual stimulation strategy significantly enhanced NK cell CD25 expression compared to unstimulated cells or cells treated with IgG or IL-12 alone. Dual stimulated NK cells also were more responsive to low-dose IL-2. Dual stimulated NK cells subsequently treated with low-dose IL-2 (10 pg/mL) displayed enhanced intracellular signaling as indicated by increased pSTAT5 levels. IFN-γ production and cytotoxicity against K562 cells by NK cells stimulated with low-dose IL-2 was comparable to that of cells treated with high-dose IL-2 (10 ng/mL). Importantly, cells isolated from head and neck cancer patients receiving the mAb cetuximab and IL-12 on a clinical trial displayed increased CD25 expression following combination therapy compared to baseline. Altogether, these findings suggest that FcR and IL-12R co-stimulation induces expression of the high-affinity IL-2R and promotes NK cell anti-tumor activity.
Collapse
Affiliation(s)
- Megan C Duggan
- Comprehensive Cancer Center, The Arthur G. James Comprehensive Cancer Center and Solove Research Institute, The Ohio State University, Columbus, OH
| | - Amanda R Campbell
- Comprehensive Cancer Center, The Arthur G. James Comprehensive Cancer Center and Solove Research Institute, The Ohio State University, Columbus, OH.,Medical Scientist Training Program and Biomedical Sciences Graduate Program, The Ohio State University, Columbus, OH
| | - Elizabeth L McMichael
- Comprehensive Cancer Center, The Arthur G. James Comprehensive Cancer Center and Solove Research Institute, The Ohio State University, Columbus, OH
| | - Kallan S Opheim
- Comprehensive Cancer Center, The Arthur G. James Comprehensive Cancer Center and Solove Research Institute, The Ohio State University, Columbus, OH
| | - Kala M Levine
- Comprehensive Cancer Center, The Arthur G. James Comprehensive Cancer Center and Solove Research Institute, The Ohio State University, Columbus, OH
| | - Neela Bhave
- Comprehensive Cancer Center, The Arthur G. James Comprehensive Cancer Center and Solove Research Institute, The Ohio State University, Columbus, OH
| | - Michelle C Culbertson
- Comprehensive Cancer Center, The Arthur G. James Comprehensive Cancer Center and Solove Research Institute, The Ohio State University, Columbus, OH
| | - Tiffany Noel
- Comprehensive Cancer Center, The Arthur G. James Comprehensive Cancer Center and Solove Research Institute, The Ohio State University, Columbus, OH
| | - Lianbo Yu
- Center for Biostatistics, The Ohio State University, Columbus, OH
| | - W E Carson
- Comprehensive Cancer Center, The Arthur G. James Comprehensive Cancer Center and Solove Research Institute, The Ohio State University, Columbus, OH.,Department of Surgery, The Ohio State University, Columbus, OH
| |
Collapse
|
79
|
Immunoreceptor tyrosine-based inhibitory motif-dependent functions of an MHC class I-specific NK cell receptor. Proc Natl Acad Sci U S A 2017; 114:E8440-E8447. [PMID: 28923946 DOI: 10.1073/pnas.1713064114] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Natural killer (NK) cells express MHC class I (MHC-I)-specific receptors, such as Ly49A, that inhibit killing of cells expressing self-MHC-I. Self-MHC-I also "licenses" NK cells to become responsive to activating stimuli and regulates the surface level of NK-cell inhibitory receptors. However, the mechanisms of action resulting from these interactions of the Ly49s with their MHC-I ligands, particularly in vivo, have been controversial. Definitive studies could be derived from mice with targeted mutations in inhibitory Ly49s, but there are inherent challenges in specifically altering a single gene within a multigene family. Herein, we generated a knock-in mouse with a targeted mutation in the immunoreceptor tyrosine-based inhibitory motif (ITIM) of Ly49A that abolished the inhibitory function of Ly49A in cytotoxicity assays. This mutant Ly49A caused a licensing defect in NK cells, but the surface expression of Ly49A was unaltered. Moreover, NK cells that expressed this mutant Ly49A exhibited an altered inhibitory receptor repertoire. These results demonstrate that Ly49A ITIM signaling is critical for NK-cell effector inhibition, licensing, and receptor repertoire development.
Collapse
|
80
|
Abstract
PURPOSE OF REVIEW This review article discusses current knowledge on natural killer (NK) cells in asthma. RECENT FINDINGS It is now well accepted that NK cell activities go beyond cancer immune surveillance and antiviral defense. Recent reports indicate that NK cells are activated in response to allergens in vivo. NK cells promote allergic sensitization, type-2 immune response, development of eosinophilic inflammation, and airway hyperresponsiveness. NK cells are activated by respiratory syncytial virus and other respiratory viruses. When infection occurs in the setting of active allergic inflammation, NK cells augment its magnitude and contribute to asthma exacerbations. Proasthma activities of NK cells can be programmed during embryogenesis through maternal exposure to environmental pollutants. Prenatally programmed NK cells produce type-2 and type-3 cytokines and mediate asthma predisposition. NK cells can also act as asthma antagonists. NK cells contribute to the resolution of inflammation through suppression of antigen-specific CD4+ T cells and type-3 immunity. When viral infection occurs in naïve mice prior to allergic sensitization, NK cells antagonize type-2 immunity and prevent development of asthma. SUMMARY NK cells are nonredundant participants of allergic inflammation. The environmental context determines whether NK cells act as protagonists or antagonists.
Collapse
Affiliation(s)
- Magdalena M Gorska
- aNational Jewish Health, Denver bUniversity of Colorado, Aurora, Colorado, USA
| |
Collapse
|
81
|
Davis ZB, Vallera DA, Miller JS, Felices M. Natural killer cells unleashed: Checkpoint receptor blockade and BiKE/TriKE utilization in NK-mediated anti-tumor immunotherapy. Semin Immunol 2017; 31:64-75. [PMID: 28882429 DOI: 10.1016/j.smim.2017.07.011] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 07/26/2017] [Indexed: 10/18/2022]
Abstract
Natural killer (NK) cells have long been known to mediate anti-tumor responses without prior sensitization or recognition of specific tumor antigens. However, the tumor microenvironment can suppress NK cell function resulting in tumor escape and disease progression. Despite recent advances in cytokine therapy and NK cell adoptive transfer, tumor expression of ligands to NK - expressed checkpoint receptors can still suppress NK mediated tumor lysis. This review will explore many of the checkpoint receptors tumors utilize to manipulate the NK cell response as well as some of the current and upcoming pharmacological solutions to limit tumor suppression of NK cell function. Furthermore, we will discuss the potential to use these drugs in combinational therapies with novel antibody reagents such as bi- and tri-specific killer engagers (BiKEs and TriKEs) against tumor-specific antigens to enhance NK cell-mediated tumor rejection.
Collapse
Affiliation(s)
- Zachary B Davis
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, United States; Masonic Cancer Center, University of Minnesota, United States
| | - Daniel A Vallera
- Masonic Cancer Center, University of Minnesota, United States; Department of Therapeutic Radiology-Radiation Oncology, University of Minnesota, United States
| | - Jeffrey S Miller
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, United States; Masonic Cancer Center, University of Minnesota, United States.
| | - Martin Felices
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, United States; Masonic Cancer Center, University of Minnesota, United States
| |
Collapse
|
82
|
Ferrini M, Carvalho S, Cho YH, Postma B, Miranda Marques L, Pinkerton K, Roberts K, Jaffar Z. Prenatal tobacco smoke exposure predisposes offspring mice to exacerbated allergic airway inflammation associated with altered innate effector function. Part Fibre Toxicol 2017; 14:30. [PMID: 28830530 PMCID: PMC5567899 DOI: 10.1186/s12989-017-0212-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 08/14/2017] [Indexed: 12/30/2022] Open
Abstract
Background Epidemiological studies suggest that prenatal and early life environmental exposures have adverse effects on pulmonary function and are important contributors in the development of childhood asthma and allergic disease. The mechanism by which environmental tobacco smoke (ETS) exposure in utero promotes the development of allergic asthma remains unclear. In this study, we investigated the immunological consequences of prenatal exposure to ETS in order to understand events responsible for the development or exacerbation of allergic asthma. Methods Pregnant C57BL/6 mice were exposed to either ETS or filtered air throughout gestation and the effect on pulmonary inflammation in the offspring were examined and compared. Specifically, the effects on eosinophilic inflammation, airway hyperreactivity, goblet cell hyperplasia, properties of pulmonary natural killer (NK) cells and type 2 cytokines elicited in response to inhaled house dust mite (HDM) allergen were investigated in the progeny. Results Exposure to ETS prenatally significantly exacerbated HDM-induced airway eosinophilic inflammation, hyperreactivity, mucus secretion, cysteinyl leukotriene biosynthesis and type 2 cytokine production in the offspring. Consistently, lung mononuclear cells from ETS-exposed offspring secreted higher levels of IL-13 when stimulated in vitro with anti-αβ TCR antibody or HDM allergen. Moreover, offspring from ETS-exposed dams exhibited a higher frequency of CD11b+ dendritic cells and CD3+CD4+ T lymphocytes in the lungs following allergen inhalation compared to air-exposed mice. Unexpectedly, the exacerbated allergic inflammation in the ETS-exposed offspring was associated with a reduction in CD3−CD19−NK1.1+CD94+ NK cell numbers and their IFN-γ production, highlighting a role for altered innate immunity in the enhanced allergic response. Conclusion Our results reveal that prenatal exposure to ETS predisposes offspring to an exacerbated allergic airway inflammation that is associated with a reduction in pulmonary NK cell function, suggesting that NK cells play a key role in controlling asthma severity.
Collapse
Affiliation(s)
- Maria Ferrini
- Center for Environmental Health Sciences, Biomedical and Pharmaceutical Sciences, College of Health Professions and Biomedical Sciences, University of Montana, Missoula, MT, MT 59812, USA
| | - Sophia Carvalho
- Center for Environmental Health Sciences, Biomedical and Pharmaceutical Sciences, College of Health Professions and Biomedical Sciences, University of Montana, Missoula, MT, MT 59812, USA
| | - Yoon Hee Cho
- Center for Environmental Health Sciences, Biomedical and Pharmaceutical Sciences, College of Health Professions and Biomedical Sciences, University of Montana, Missoula, MT, MT 59812, USA
| | - Britten Postma
- Center for Environmental Health Sciences, Biomedical and Pharmaceutical Sciences, College of Health Professions and Biomedical Sciences, University of Montana, Missoula, MT, MT 59812, USA
| | - Lucas Miranda Marques
- Center for Environmental Health Sciences, Biomedical and Pharmaceutical Sciences, College of Health Professions and Biomedical Sciences, University of Montana, Missoula, MT, MT 59812, USA
| | - Kent Pinkerton
- Department of Anatomy, Physiology and Cell Biology, Center for Health and the Environment, University of California, Davis, CA, USA
| | - Kevan Roberts
- Center for Environmental Health Sciences, Biomedical and Pharmaceutical Sciences, College of Health Professions and Biomedical Sciences, University of Montana, Missoula, MT, MT 59812, USA.
| | - Zeina Jaffar
- Center for Environmental Health Sciences, Biomedical and Pharmaceutical Sciences, College of Health Professions and Biomedical Sciences, University of Montana, Missoula, MT, MT 59812, USA.
| |
Collapse
|
83
|
Wang J, Jin X, Liu J, Zhao K, Xu H, Wen J, Jiang L, Zeng X, Li J, Chen Q. The prognostic value of B7-H6 protein expression in human oral squamous cell carcinoma. J Oral Pathol Med 2017; 46:766-772. [PMID: 28437013 DOI: 10.1111/jop.12586] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/19/2017] [Indexed: 02/05/2023]
Affiliation(s)
- Jiongke Wang
- State Key Laboratory of Oral Diseases; National Clinical Research Center for Oral Diseases; West China Hospital of Stomatology; Sichuan University; Chengdu China
| | - Xin Jin
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences; College of Stomatology; Chongqing Medical University; Chongqing China
| | - Jiajia Liu
- State Key Laboratory of Oral Diseases; National Clinical Research Center for Oral Diseases; West China Hospital of Stomatology; Sichuan University; Chengdu China
| | - Kui Zhao
- State Key Laboratory of Oral Diseases; National Clinical Research Center for Oral Diseases; West China Hospital of Stomatology; Sichuan University; Chengdu China
| | - Hao Xu
- State Key Laboratory of Oral Diseases; National Clinical Research Center for Oral Diseases; West China Hospital of Stomatology; Sichuan University; Chengdu China
| | - Jing Wen
- State Key Laboratory of Oral Diseases; National Clinical Research Center for Oral Diseases; West China Hospital of Stomatology; Sichuan University; Chengdu China
| | - Lu Jiang
- State Key Laboratory of Oral Diseases; National Clinical Research Center for Oral Diseases; West China Hospital of Stomatology; Sichuan University; Chengdu China
| | - Xin Zeng
- State Key Laboratory of Oral Diseases; National Clinical Research Center for Oral Diseases; West China Hospital of Stomatology; Sichuan University; Chengdu China
| | - Jing Li
- State Key Laboratory of Oral Diseases; National Clinical Research Center for Oral Diseases; West China Hospital of Stomatology; Sichuan University; Chengdu China
| | - Qianming Chen
- State Key Laboratory of Oral Diseases; National Clinical Research Center for Oral Diseases; West China Hospital of Stomatology; Sichuan University; Chengdu China
| |
Collapse
|
84
|
Natural killer cell immunotherapies against cancer: checkpoint inhibitors and more. Semin Immunol 2017; 31:55-63. [DOI: 10.1016/j.smim.2017.08.003] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 08/03/2017] [Indexed: 12/17/2022]
|
85
|
Shahriari K, Shen F, Worrede-Mahdi A, Liu Q, Gong Y, Garcia FU, Fatatis A. Cooperation among heterogeneous prostate cancer cells in the bone metastatic niche. Oncogene 2017; 36:2846-2856. [PMID: 27991924 PMCID: PMC5436952 DOI: 10.1038/onc.2016.436] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 09/20/2016] [Accepted: 10/03/2016] [Indexed: 02/07/2023]
Abstract
The growth of disseminated tumor cells into metastatic lesions depends on the establishment of a favorable microenvironment in the stroma of the target organs. Here we show that mice treated with anakinra, an antagonist of the interleukin (IL)-1β receptor (IL-1R), or harboring a targeted deletion of IL-1R are significantly less prone to develop bone tumors when inoculated in the arterial circulation with human prostate cancer (PCa) cells expressing IL-1β. Interestingly, human mesenchymal stem cells exposed in vitro to medium conditioned by IL-1β-expressing cancer cells responded by upregulating S100A4, a marker of cancer-associated fibroblasts (CAFs), and this effect was blocked by anakinra. Analogously, the stroma adjacent to skeletal metastases generated in mice by IL-1β-expressing cancer cells showed a dramatic increase in S100A4, COX-2 and the alteration of 30 tumor-related genes as measured by Nanostring analysis. These effects were not observed in the stroma associated with the rare and much smaller metastases generated by the same cells in IL-1R knockout animals, confirming that tumor-secreted IL-1β generates skeletal CAFs and conditions the surrounding bone microenvironment. In skeletal lesions from patients with metastatic PCa, histological and molecular analyses revealed that IL-1β is highly expressed in cancer cells in which the androgen receptor (AR) is not detected (AR-), whereas this cytokine is uniformly absent in the AR-positive (AR+) metastatic cells. The stroma conditioned by IL-1β-expressing cancer cells served as a supportive niche also for coexisting IL-1β-lacking cancer cells, which are otherwise unable to generate tumors after independently seeding the skeleton of mice. This niche is established very early following tumor seeding and hints to a role of IL-1β in promoting early colonization of PCa at the skeletal level.
Collapse
Affiliation(s)
- K Shahriari
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - F Shen
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - A Worrede-Mahdi
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Q Liu
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Y Gong
- Department of Pathology and Laboratory Medicine, Drexel University College of Medicine, Philadelphia, PA, USA
| | - F U Garcia
- Department of Pathology and Laboratory Medicine, Drexel University College of Medicine, Philadelphia, PA, USA
- Cancer Treatment Centers of America, Eastern Regional Medical Center, Philadelphia, PA, USA
| | - A Fatatis
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Drexel University College of Medicine, Philadelphia, PA, USA
- Program in Prostate Cancer, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
86
|
Gaynor LM, Colucci F. Uterine Natural Killer Cells: Functional Distinctions and Influence on Pregnancy in Humans and Mice. Front Immunol 2017; 8:467. [PMID: 28484462 PMCID: PMC5402472 DOI: 10.3389/fimmu.2017.00467] [Citation(s) in RCA: 150] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 04/05/2017] [Indexed: 02/06/2023] Open
Abstract
Our understanding of development and function of natural killer (NK) cells has progressed significantly in recent years. However, exactly how uterine NK (uNK) cells develop and function is still unclear. To help investigators that are beginning to study tissue NK cells, we summarize in this review our current knowledge of the development and function of uNK cells, and what is yet to be elucidated. We compare and contrast the biology of human and mouse uNK cells in the broader context of the biology of innate lymphoid cells and with reference to peripheral NK cells. We also review how uNK cells may regulate trophoblast invasion and uterine spiral arterial remodeling in human and murine pregnancy.
Collapse
Affiliation(s)
- Louise M. Gaynor
- Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
- Department of Obstetrics and Gynaecology, National Institute for Health Research Cambridge Biomedical Research Centre, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - Francesco Colucci
- Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
- Department of Obstetrics and Gynaecology, National Institute for Health Research Cambridge Biomedical Research Centre, University of Cambridge School of Clinical Medicine, Cambridge, UK
| |
Collapse
|
87
|
Lopez-Lastra S, Di Santo JP. Modeling Natural Killer Cell Targeted Immunotherapies. Front Immunol 2017; 8:370. [PMID: 28405194 PMCID: PMC5370275 DOI: 10.3389/fimmu.2017.00370] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 03/14/2017] [Indexed: 01/01/2023] Open
Abstract
Animal models have extensively contributed to our understanding of human immunobiology and to uncover the underlying pathological mechanisms occurring in the development of diseases. However, mouse models do not reproduce the genetic and molecular complexity inherent in human disease conditions. Human immune system (HIS) mouse models that are susceptible to human pathogens and can recapitulate human hematopoiesis and tumor immunobiology provide one means to bridge the interspecies gap. Natural killer cells are the founding member of the innate lymphoid cell family. They exert a rapid and strong immune response against tumor and pathogen-infected cells. Their antitumor features have long been exploited for therapeutic purposes in the context of cancer. In this review, we detail the development of highly immunodeficient mouse strains and the models currently used in cancer research. We summarize the latest improvements in adoptive natural killer (NK) cell therapies and the development of novel NK cell sources. Finally, we discuss the advantages of HIS mice to study the interactions between human NK cells and human cancers and to develop new therapeutic strategies.
Collapse
Affiliation(s)
- Silvia Lopez-Lastra
- Innate Immunity Unit, Institut Pasteur, Paris, France
- Inserm U1223, Paris, France
- Université Paris-Sud (Paris-Saclay), Paris, France
| | - James P. Di Santo
- Innate Immunity Unit, Institut Pasteur, Paris, France
- Inserm U1223, Paris, France
| |
Collapse
|
88
|
Leal FE, Premeaux TA, Abdel-Mohsen M, Ndhlovu LC. Role of Natural Killer Cells in HIV-Associated Malignancies. Front Immunol 2017; 8:315. [PMID: 28377768 PMCID: PMC5359293 DOI: 10.3389/fimmu.2017.00315] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 03/06/2017] [Indexed: 12/15/2022] Open
Abstract
Now in its fourth decade, the burden of HIV disease still persists, despite significant milestone achievements in HIV prevention, diagnosis, treatment, care, and support. Even with long-term use of currently available antiretroviral therapies (ARTs), eradication of HIV remains elusive and now poses a unique set of challenges for the HIV-infected individual. The occurrence of HIV-associated non-AIDS-related comorbidities outside the scope of AIDS-defining illnesses, in particular non-AIDS-defining cancers, is much greater than the age-matched uninfected population. The underlying mechanism is now recognized in part to be related to the immune dysregulated and inflammatory status characteristic of HIV infection that persists despite ART. Natural killer (NK) cells are multifunctional effector immune cells that play a critical role in shaping the innate immune responses to viral infections and cancer. NK cells can modulate the adaptive immune response via their role in dendritic cell (DC) maturation, removal of immature tolerogenic DCs, and their ability to produce immunoregulatory cytokines. NK cells are therefore poised as attractive therapeutic targets that can be harnessed to control or clear both HIV and HIV-associated malignancies. To date, features of the tumor microenvironment and the evolution of NK-cell function among individuals with HIV-related malignancies remain unclear and may be distinct from malignancies observed in uninfected persons. This review intends to uncouple anti-HIV and antitumor NK-cell features that can be manipulated to halt the evolution of HIV disease and HIV-associated malignancies and serve as potential preventative and curative immunotherapeutic options.
Collapse
Affiliation(s)
- Fabio E Leal
- Programa de Oncovirologia, Instituto Nacional de Cancer , Rio de Janeiro , Brazil
| | - Thomas A Premeaux
- Department of Tropical Medicine, Hawaii Center for AIDS, John A. Burns School of Medicine, University of Hawaii , Honolulu, HI , USA
| | - Mohamed Abdel-Mohsen
- Blood Systems Research Institute, San Francisco, CA, USA; University of California, San Francisco, CA, USA
| | - Lishomwa C Ndhlovu
- Department of Tropical Medicine, Hawaii Center for AIDS, John A. Burns School of Medicine, University of Hawaii , Honolulu, HI , USA
| |
Collapse
|
89
|
Small HY, Cornelius DC, Guzik TJ, Delles C. Natural killer cells in placentation and cancer: Implications for hypertension during pregnancy. Placenta 2017; 56:59-64. [PMID: 28318556 DOI: 10.1016/j.placenta.2017.03.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Revised: 03/04/2017] [Accepted: 03/06/2017] [Indexed: 11/25/2022]
Abstract
Hypertension during pregnancy is the most common medical condition encountered during gestation. Despite this, knowledge of the mechanisms that underlie the disease and the development of new therapies are limited. Hypertension during pregnancy and some forms of cancer confer an increased risk to the development of cardiovascular disease later in life; one mechanism which may link these conditions is the involvement of natural killer (NK) cells. Whilst immunology and immunotherapy are well-developed areas in oncology; the complex mechanisms of the immune system in health and disease at the maternal-fetal interface are less well-defined. Natural killer (NK) cells have emerged as key immune cells involved in physiology and pathology of pregnancy. These small lymphocytes are present in the decidua (the uterine-specific uNK cells) and are distinct from peripheral NK cells. The uNK cell population plays a vital role in mediating trophoblast invasion and affecting decidual vascular remodelling whereas the role of the peripheral NK cell population during pregnancy is less well-defined. This review will give an overview of NK cell biology followed by a discussion of the current evidence for the role of uterine and peripheral NK cells at the maternal-fetal interface in health and disease. Furthermore, examples of NK cell research from cancer biology will be employed to inform future directions of research. By combining this knowledge from oncology where the field of immunotherapy has now matured into clinical trials; it is hopeful that new mechanisms can be elucidated to generate targets for similar therapeutic strategies for women with hypertensive pregnancies where interventions are needed.
Collapse
Affiliation(s)
- Heather Yvonne Small
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom.
| | - Denise C Cornelius
- Department of Emergency Medicine, University of Mississippi Medical Centre, Jackson, MS, USA
| | - Tomasz J Guzik
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Christian Delles
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
90
|
Muntasell A, Ochoa MC, Cordeiro L, Berraondo P, López-Díaz de Cerio A, Cabo M, López-Botet M, Melero I. Targeting NK-cell checkpoints for cancer immunotherapy. Curr Opin Immunol 2017; 45:73-81. [PMID: 28236750 DOI: 10.1016/j.coi.2017.01.003] [Citation(s) in RCA: 141] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 01/17/2017] [Accepted: 01/19/2017] [Indexed: 12/12/2022]
Abstract
Natural Killer (NK) cells are cytotoxic lymphocytes specialized in early defense against virus-infected and transformed cells. NK-cell function is regulated by activating and inhibitory surface receptors recognizing their ligands on transformed cells. Modulation of NK numbers and/or function by a variety of agents such as cytokines and monoclonal antibodies may result in enhanced anti-tumor activity. Recombinant cytokines (i.e., IL-15 and IL-2), antibodies blocking inhibitory receptors (i.e., KIR, NKG2A and TIGIT) and agonists delivering signals via CD137, NKG2D and CD16 stand out as the most suitable opportunities. These agents can be used to potentiate NKcell- mediated antibody-dependent cellular cytotoxicity (ADCC) against antibody-coated tumor cells, offering potential for multiple combinatorial immunotherapy strategies against cancer.
Collapse
Affiliation(s)
- Aura Muntasell
- Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | - Maria C Ochoa
- Centro de Investigacion Medica Aplicada (CIMA), Pamplona, Spain
| | - Luna Cordeiro
- Centro de Investigacion Medica Aplicada (CIMA), Pamplona, Spain
| | - Pedro Berraondo
- Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | | | - Mariona Cabo
- Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | | | - Ignacio Melero
- Centro de Investigacion Medica Aplicada (CIMA), Pamplona, Spain; Departamento de Inmunologia e Inmunoterapia, Clinica Universidad de Navarra, Pamplona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Spain.
| |
Collapse
|
91
|
Phillips M, Romeo F, Bitsaktsis C, Sabatino D. B7H6-derived peptides trigger TNF-α-dependent immunostimulatory activity of lymphocytic NK92-MI cells. Biopolymers 2017; 106:658-72. [PMID: 27216712 DOI: 10.1002/bip.22879] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 05/03/2016] [Accepted: 05/18/2016] [Indexed: 11/10/2022]
Abstract
The rise of biologics that can stimulate immune responses towards the eradication of tumors has led to the evolution of cancer-based immunotherapy. Representatively, B7H6 has been recently identified as a protein ligand on tumor cells that binds specifically to the NKp30 receptor and triggers NK cell-derived cytokine production, which ultimately leads to tumor cell lysis and death. In an effort to develop effective immunotherapy approaches, the rational design of a novel class of immunostimulatory peptides (IPs) derived from the binding interface of B7H6:NKp30 is described in this study. The IPs comprised the B7H6 active site sequence for NKp30 binding and immunostimulatory activity. An aminohexanoic acid linker was also introduced at the N-terminus of the peptides for FITC-labeling by Fmoc-solid phase peptide synthesis. The peptides were characterized by LCMS to confirm identities and purities >95%. The secondary structures of the peptides were examined by CD spectroscopy in H2 O, PBS and a H2 O:TFE mixture which demonstrated versatile peptide structures which transitioned from random coil (H2 O) to α-helical (PBS) and turn-type (H2 O:TFE) conformations. Their biological properties were then evaluated by flow cytometry, enzyme-linked immunosorbent assays (ELISAs), and cell death assays. The occupancy of the synthetic peptides to a human NK cell line demonstrated comparable binding relative to the natural NKp30 ligand, B7H6, and the human anti-NKp30 monoclonal antibody (mAb), in a concentration dependent manner. A competitive binding assay between the human anti-NKp30 mAb or B7H6, and the synthetic peptides, demonstrated partial displacement of the ligands upon anti-NKp30 mAb treatment, suggesting NKp30 receptor specificities by the synthetic peptides. Moreover, the immunostimulatory activity of B7H6 was demonstrated by the secretion of the pro-inflammatory cytokines tumor necrosis factor-alfa (TNF-α) and interferon gamma (IFN-γ) by the human NK cell line. The immunostimulatory effects of IPs on the NK cells was assessed by the production of TNF-α alone as IFN-γ was undetectable. In a cell death assay, the IPs were found to be nontoxic, without any observable evidence of early or late stage apoptosis within the NK92-MI cells. Taking these findings together, this novel class of synthetic peptides may prove to be a promising lead in the development of a peptide-based immunotherapy approach, especially against B7H6 expressing tumors. © 2016 Wiley Periodicals, Inc. Biopolymers (Pept Sci) 106: 658-672, 2016.
Collapse
Affiliation(s)
- Mariana Phillips
- Department of Chemistry and Biochemistry, Seton Hall University, South Orange, NJ, 07079
| | - Francesca Romeo
- Department of Chemistry and Biochemistry, Seton Hall University, South Orange, NJ, 07079
| | | | - David Sabatino
- Department of Chemistry and Biochemistry, Seton Hall University, South Orange, NJ, 07079.
| |
Collapse
|
92
|
Pandey V, Oyer JL, Igarashi RY, Gitto SB, Copik AJ, Altomare DA. Anti-ovarian tumor response of donor peripheral blood mononuclear cells is due to infiltrating cytotoxic NK cells. Oncotarget 2016; 7:7318-28. [PMID: 26802025 PMCID: PMC4872788 DOI: 10.18632/oncotarget.6939] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 01/01/2016] [Indexed: 12/15/2022] Open
Abstract
Treatment of ovarian cancer, a leading cause of gynecological malignancy, has good initial efficacy with surgery and platinum/taxane-based chemotherapy, but poor long-term survival in patients. Inferior long-term prognosis is attributed to intraperitoneal spreading, relapse and ineffective alternate therapies. Adoptive cell therapy is promising for tumor remission, although logistical concerns impede widespread implementation. In this study, healthy PBMCs were used to examine the immune response in a mouse model with human ovarian cancer, where natural killer (NK) cells were found to be the effector cells that elicited an anti-tumor response. Presence of tumor was found to stimulate NK cell expansion in mice treated intraperitoneally with PBMC+Interleukin-2 (IL-2), as compared to no expansion in non-tumor-bearing mice given the same treatment. PBMC+IL-2 treated mice exhibiting NK cell expansion had complete tumor remission. To validate NK cell mediated anti-tumor response, the intratumoral presence of NK cells and their cytotoxicity was confirmed by immunohistochemistry and granzyme activity of NK cells recovered from the tumor. Collectively, this study highlights the significance of NK cell-cytotoxic response to tumor, which may be attributed to interacting immune cell types in the PBMC population, as opposed to clinically used isolated NK cells showing lack of anti-tumor efficacy in ovarian cancer patients.
Collapse
Affiliation(s)
- Veethika Pandey
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, USA
| | - Jeremiah L Oyer
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, USA
| | - Robert Y Igarashi
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, USA
| | - Sarah B Gitto
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, USA
| | - Alicja J Copik
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, USA
| | - Deborah A Altomare
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, USA
| |
Collapse
|
93
|
Luna JI, Grossenbacher SK, Murphy WJ, Canter RJ. Targeting Cancer Stem Cells with Natural Killer Cell Immunotherapy. Expert Opin Biol Ther 2016; 17:313-324. [PMID: 27960589 DOI: 10.1080/14712598.2017.1271874] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Standard cytoreductive cancer therapy, such as chemotherapy and radiotherapy, are frequently resisted by a small portion of cancer cells with 'stem-cell' like properties including quiescence and repopulation. Immunotherapy represents a breakthrough modality for improving oncologic outcomes in cancer patients. Since the success of immunotherapy is not contingent on target cell proliferation, it may also be uniquely suited to address the problem of resistance and repopulation exerted by cancer stem cells (CSCs). Areas covered: Natural killer (NK) cells have long been known for their ability to reject allogeneic hematopoietic stem cells, and there are increasing data demonstrating that NK cells can selectively identify and lyse CSCs. The authors review the current knowledge of CSCs and NK cells and highlight recent studies that support the concept that NK cells are capable of targeting CSC in solid tumors, especially in the context of combination therapy simultaneously targeting non-CSCs and CSCs. Expert opinion: Unlike cytotoxic cancer treatments, NK cells can target and eliminate quiescent/non-proliferating cells such as CSCs, and these enigmatic cells are an important source of relapse and metastasis. NK targeting of CSCs represents a novel and potentially high impact method to capitalize on the intrinsic therapeutic potential of NK cells.
Collapse
Affiliation(s)
- Jesus I Luna
- a Department of Dermatology , University of California Davis School of Medicine , Sacramento , CA USA
| | - Steven K Grossenbacher
- a Department of Dermatology , University of California Davis School of Medicine , Sacramento , CA USA
| | - William J Murphy
- a Department of Dermatology , University of California Davis School of Medicine , Sacramento , CA USA.,b Department of Internal Medicine , University of California Davis Medical Center , Sacramento , CA USA
| | - Robert J Canter
- c Division of Surgical Oncology, Department of Surgery , University of California Davis School of Medicine , Sacramento , CA USA
| |
Collapse
|
94
|
Simons B, Ferrini ME, Carvalho S, Bassett DJP, Jaffar Z, Roberts K. PGI2 Controls Pulmonary NK Cells That Prevent Airway Sensitization to House Dust Mite Allergen. THE JOURNAL OF IMMUNOLOGY 2016; 198:461-471. [PMID: 27895167 DOI: 10.4049/jimmunol.1600275] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 10/31/2016] [Indexed: 12/16/2022]
Abstract
In allergic asthma, inhalation of airborne allergens such as the house dust mite (HDM) effectively activates both innate and adaptive immunity in the lung mucosa. To determine the role of the eicosanoid PGI2 and its receptor IP during allergic airway sensitization, HDM responses in mice lacking a functional IP receptor (i.e., PGI2 IP receptor-deficient [IP-/-]) were compared with wild type (WT) mice. Surprisingly, IP-/- mice had increased numbers of pulmonary CD3-NK1.1+Ly49b+ NK cells producing IFN-γ that was inversely associated with the number of type 2 innate lymphoid cells (ILC2s) expressing IL-33Rα and IL-13 compared with WT animals. This phenomenon was associated with elevated CX3CL1 levels in the airways of IP-/- mice and treatment with a neutralizing Ab to CX3CL1 reduced IFN-γ production by the lung NK cells. Remarkably, IP-/- mice were less responsive to HDM challenge than WT counterparts because intranasal instillation of the allergen induced markedly reduced levels of airway eosinophils, CD4+ lymphocyte infiltration, and mucus production, as well as depressed levels of CCL2 chemokine and Th2 cytokines. NK cells were responsible for such attenuated responses because depletion of NK1.1+ cells in IP-/- mice restored both the HDM-induced lung inflammation and ILC2 numbers, whereas transfer of CD3-NK1.1+ NK cells into the airways of WT hosts suppressed the inflammatory response. Collectively, these data demonstrate a hitherto unknown role for PGI2 in regulating the number and properties of NK cells resident in lung tissue and reveal a role for NK cells in limiting lung tissue ILC2s and preventing allergic inflammatory responses to inhaled HDM allergen.
Collapse
Affiliation(s)
- Bryan Simons
- Center for Environmental Health Sciences, Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, MT 59812; and
| | - Maria E Ferrini
- Center for Environmental Health Sciences, Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, MT 59812; and
| | - Sophia Carvalho
- Center for Environmental Health Sciences, Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, MT 59812; and
| | - David J P Bassett
- Department of Family Medicine and Public Health Sciences, School of Medicine, Wayne State University, Detroit, MI 48201
| | - Zeina Jaffar
- Center for Environmental Health Sciences, Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, MT 59812; and
| | - Kevan Roberts
- Center for Environmental Health Sciences, Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, MT 59812; and
| |
Collapse
|
95
|
Shifrin NT, Kissiov DU, Ardolino M, Joncker NT, Raulet DH. Differential Role of Hematopoietic and Nonhematopoietic Cell Types in the Regulation of NK Cell Tolerance and Responsiveness. THE JOURNAL OF IMMUNOLOGY 2016; 197:4127-4136. [PMID: 27798146 DOI: 10.4049/jimmunol.1402447] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 09/21/2016] [Indexed: 01/13/2023]
Abstract
Many NK cells express inhibitory receptors that bind self-MHC class I (MHC I) molecules and prevent killing of self-cells, while enabling killing of MHC I-deficient cells. But tolerance also occurs for NK cells that lack inhibitory receptors for self-MHC I, and for all NK cells in MHC I-deficient animals. In both cases, NK cells are unresponsive to MHC I-deficient cells and hyporesponsive when stimulated through activating receptors, suggesting that hyporesponsiveness is responsible for self-tolerance. We generated irradiation chimeras, or carried out adoptive transfers, with wild-type (WT) and/or MHC I-deficient hematopoietic cells in WT or MHC I-deficient C57BL/6 host mice. Unexpectedly, in WT hosts, donor MHC I-deficient hematopoietic cells failed to induce hyporesponsiveness to activating receptor stimulation, but did induce tolerance to MHC I-deficient grafts. Therefore, these two properties of NK cells are separable. Both tolerance and hyporesponsiveness occurred when the host was MHC I deficient. Interestingly, infections of mice or exposure to inflammatory cytokines reversed the tolerance of NK cells that was induced by MHC I-deficient hematopoietic cells, but not the tolerance induced by MHC I-deficient nonhematopoietic cells. These data have implications for successful bone marrow transplantation, and suggest that tolerance induced by hematopoietic cells versus nonhematopoietic cells may be imposed by distinct mechanisms.
Collapse
Affiliation(s)
- Nataliya Tovbis Shifrin
- Department of Molecular and Cell Biology, Division of Immunology, University of California at Berkeley, Berkeley, CA 94720, USA
| | - Djem U Kissiov
- Department of Molecular and Cell Biology, Division of Immunology, University of California at Berkeley, Berkeley, CA 94720, USA
| | - Michele Ardolino
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada and Centre for Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
| | - Nathalie T Joncker
- Department of Molecular and Cell Biology, Division of Immunology, University of California at Berkeley, Berkeley, CA 94720, USA
| | - David H Raulet
- Department of Molecular and Cell Biology, Division of Immunology, University of California at Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
96
|
Hoteit R, Bazarbachi A, Antar A, Salem Z, Shammaa D, Mahfouz R. KIR genotype distribution among patients with chronic lymphocytic leukemia: Is there a role for KIR 2DS4 and KIR 2DS5 genes? GENE REPORTS 2016. [DOI: 10.1016/j.genrep.2015.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
97
|
Modulation of innate immunity in the tumor microenvironment. Cancer Immunol Immunother 2016; 65:1261-8. [PMID: 27344341 DOI: 10.1007/s00262-016-1859-9] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 06/10/2016] [Indexed: 01/27/2023]
Abstract
A recent report from the Center for Disease Control identified melanoma as being among the highest causes of cancer-related mortalities in the USA. While interventions such as checkpoint blockade have made substantial impact in terms of improving response rates and overall survival, a significant number of patients fail to respond to treatment or become resistant to therapy. A better understanding of the tumor microenvironment in these patients becomes imperative for identifying immune suppressive mechanisms that impact the development of effective anti-tumor immune responses. We have investigated innate immune cells (dendritic cells, NK cells) in the tumor microenvironment (TME) in order to devise effective targeted anticancer immune therapies. We find that matrix metalloproteinase-2 (MMP-2), secreted from melanoma cells and stromal cells, cleaves IFNAR1 and stimulates TLR-2 on dendritic cells (DC) within the TME. Both these events independently culminate in programing the DCs to promote pro-tumorigenic TH2 T cell differentiation. In addition, we have shown that NK cells become functionally exhausted in melanoma patients. We identified the expression of Tim-3 as one of the factors responsible for NK cell exhaustion and showed that anti-Tim3 antibodies partially reversed this exhaustion. We have initiated local intervention strategies such as intra-tumoral administration of DC activating Poly-ICLC and compared the efficacy of different TLR agonists and melanoma antigens for use as combination tumor vaccine in clinical trials. Such approaches will provide a unique insight into tumor biology and will facilitate in development of highly effective and cell type-specific immune therapies.
Collapse
|
98
|
NK Cells, Tumor Cell Transition, and Tumor Progression in Solid Malignancies: New Hints for NK-Based Immunotherapy? J Immunol Res 2016; 2016:4684268. [PMID: 27294158 PMCID: PMC4880686 DOI: 10.1155/2016/4684268] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 04/10/2016] [Indexed: 12/31/2022] Open
Abstract
Several evidences suggest that NK cells can patrol the body and eliminate tumors in their initial phases but may hardly control established solid tumors. Multiple factors, including the transition of tumor cells towards a proinvasive/prometastatic phenotype, the immunosuppressive effect of the tumor microenvironment, and the tumor structure complexity, may account for limited NK cell efficacy. Several putative mechanisms of NK cell suppression have been defined in these last years; conversely, the cross talk between NK cells and tumor cells undergoing different transitional phases remains poorly explored. Nevertheless, recent in vitro studies and immunohistochemical analyses on tumor biopsies suggest that NK cells could not only kill tumor cells but also influence their evolution. Indeed, NK cells may induce tumor cells to change the expression of HLA-I, PD-L1, or NKG2D-L and modulate their susceptibility to the immune response. Moreover, NK cells may be preferentially located in the borders of tumor masses, where, indeed, tumor cells can undergo Epithelial-to-Mesenchymal Transition (EMT) acquiring prometastatic phenotype. Finally, the recently highlighted role of HMGB1 both in EMT and in amplifying the recruitment of NK cells provides further hints on a possible effect of NK cells on tumor progression and fosters new studies on this issue.
Collapse
|
99
|
Natural killer cells enhance the immune surveillance of cancer. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2016. [DOI: 10.1016/j.ejmhg.2015.08.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
100
|
Yang F, Jin H, Wang J, Sun Q, Yan C, Wei F, Ren X. Adoptive Cellular Therapy (ACT) for Cancer Treatment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 909:169-239. [PMID: 27240459 DOI: 10.1007/978-94-017-7555-7_4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Adoptive cellular therapy (ACT) with various lymphocytes or antigen-presenting cells is one stone in the pillar of cancer immunotherapy, which relies on the tumor-specific T cell. The transfusion of bulk T-cell population into patients is an effective treatment for regression of cancer. In this chapter, we summarize the development of various strategies in ACT for cancer immunotherapy and discuss some of the latest progress and obstacles in technical, safety, and even regulatory aspects to translate these technologies to the clinic. ACT is becoming a potentially powerful approach to cancer treatment. Further experiments and clinical trials are needed to optimize this strategy.
Collapse
Affiliation(s)
- Fan Yang
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, Huanhuxi Road, Tiyuanbei, Hexi District, Tianjin, 300060, Tianjin, China
- Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, Huanhuxi Road, Tiyuanbei, Hexi District, Tianjin, 300060, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, Huanhuxi Road, Tiyuanbei, Hexi District, Tianjin, 300060, Tianjin, China
- Department of Biotherapy, Tianjin Medical University Cancer Institute and Hospital, Huanhuxi Road, Tiyuanbei, Hexi District, Tianjin, 300060, Tianjin, China
| | - Hao Jin
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, Huanhuxi Road, Tiyuanbei, Hexi District, Tianjin, 300060, Tianjin, China
- Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, Huanhuxi Road, Tiyuanbei, Hexi District, Tianjin, 300060, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, Huanhuxi Road, Tiyuanbei, Hexi District, Tianjin, 300060, Tianjin, China
| | - Jian Wang
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, Huanhuxi Road, Tiyuanbei, Hexi District, Tianjin, 300060, Tianjin, China
- Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, Huanhuxi Road, Tiyuanbei, Hexi District, Tianjin, 300060, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, Huanhuxi Road, Tiyuanbei, Hexi District, Tianjin, 300060, Tianjin, China
| | - Qian Sun
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, Huanhuxi Road, Tiyuanbei, Hexi District, Tianjin, 300060, Tianjin, China
- Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, Huanhuxi Road, Tiyuanbei, Hexi District, Tianjin, 300060, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, Huanhuxi Road, Tiyuanbei, Hexi District, Tianjin, 300060, Tianjin, China
| | - Cihui Yan
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, Huanhuxi Road, Tiyuanbei, Hexi District, Tianjin, 300060, Tianjin, China
- Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, Huanhuxi Road, Tiyuanbei, Hexi District, Tianjin, 300060, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, Huanhuxi Road, Tiyuanbei, Hexi District, Tianjin, 300060, Tianjin, China
| | - Feng Wei
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, Huanhuxi Road, Tiyuanbei, Hexi District, Tianjin, 300060, Tianjin, China
- Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, Huanhuxi Road, Tiyuanbei, Hexi District, Tianjin, 300060, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, Huanhuxi Road, Tiyuanbei, Hexi District, Tianjin, 300060, Tianjin, China
| | - Xiubao Ren
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, Huanhuxi Road, Tiyuanbei, Hexi District, Tianjin, 300060, Tianjin, China.
- Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, Huanhuxi Road, Tiyuanbei, Hexi District, Tianjin, 300060, Tianjin, China.
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, Huanhuxi Road, Tiyuanbei, Hexi District, Tianjin, 300060, Tianjin, China.
- Department of Biotherapy, Tianjin Medical University Cancer Institute and Hospital, Huanhuxi Road, Tiyuanbei, Hexi District, Tianjin, 300060, Tianjin, China.
| |
Collapse
|