51
|
Rossi A, Ross EJ, Jack A, Sánchez Alvarado A. Molecular cloning and characterization of SL3: a stem cell-specific SL RNA from the planarian Schmidtea mediterranea. Gene 2013; 533:156-67. [PMID: 24120894 DOI: 10.1016/j.gene.2013.09.101] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Revised: 08/26/2013] [Accepted: 09/26/2013] [Indexed: 01/03/2023]
Abstract
Spliced leader (SL) trans-splicing is a biological phenomenon, common among many metazoan taxa, consisting in the transfer of a short leader sequence from a small SL RNA to the 5' end of a subset of pre-mRNAs. While knowledge of the biochemical mechanisms driving this process has accumulated over the years, the functional consequences of such post-transcriptional event at the organismal level remain unclear. In addition, the fact that functional analyses have been undertaken mainly in trypanosomes and nematodes leaves a somehow fragmented picture of the possible biological significance and evolution of SL trans-splicing in eukaryotes. Here, we analyzed the spatial expression of SL RNAs in the planarian flatworm Schmidtea mediterranea, with the goal of identifying novel developmental paradigms for the study of trans-splicing in metazoans. Besides the previously identified SL1 and SL2, S. mediterranea expresses a third SL RNA described here as SL3. While, SL1 and SL2 are collectively expressed in a broad range of planarian cell types, SL3 is highly enriched in a subset of the planarian stem cells engaged in regenerative responses. Our findings provide new opportunities to study how trans-splicing may regulate the phenotype of a cell.
Collapse
Affiliation(s)
- Alessandro Rossi
- Stowers Institute for Medical Research, 1000 E 50th St., Kansas City, MO 64110, USA.
| | | | | | | |
Collapse
|
52
|
Zeng A, Li YQ, Wang C, Han XS, Li G, Wang JY, Li DS, Qin YW, Shi Y, Brewer G, Jing Q. Heterochromatin protein 1 promotes self-renewal and triggers regenerative proliferation in adult stem cells. ACTA ACUST UNITED AC 2013; 201:409-25. [PMID: 23629965 PMCID: PMC3639387 DOI: 10.1083/jcb.201207172] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Adult stem cells (ASCs) capable of self-renewal and differentiation confer the potential of tissues to regenerate damaged parts. Epigenetic regulation is essential for driving cell fate decisions by rapidly and reversibly modulating gene expression programs. However, it remains unclear how epigenetic factors elicit ASC-driven regeneration. In this paper, we report that an RNA interference screen against 205 chromatin regulators identified 12 proteins essential for ASC function and regeneration in planarians. Surprisingly, the HP1-like protein SMED-HP1-1 (HP1-1) specifically marked self-renewing, pluripotent ASCs, and HP1-1 depletion abrogated self-renewal and promoted differentiation. Upon injury, HP1-1 expression increased and elicited increased ASC expression of Mcm5 through functional association with the FACT (facilitates chromatin transcription) complex, which consequently triggered proliferation of ASCs and initiated blastema formation. Our observations uncover an epigenetic network underlying ASC regulation in planarians and reveal that an HP1 protein is a key chromatin factor controlling stem cell function. These results provide important insights into how epigenetic mechanisms orchestrate stem cell responses during tissue regeneration.
Collapse
Affiliation(s)
- An Zeng
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Shanghai Jiao-Tong University School of Medicine, 200025 Shanghai, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
53
|
Zhang D, Liu X, Chan JD, Marchant JS. Characterization of a flatworm inositol (1,4,5) trisphosphate receptor (IP₃R) reveals a role in reproductive physiology. Cell Calcium 2013; 53:307-14. [PMID: 23481272 PMCID: PMC3665645 DOI: 10.1016/j.ceca.2013.01.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Revised: 01/22/2013] [Accepted: 01/29/2013] [Indexed: 11/15/2022]
Abstract
Inositol 1,4,5-trisphosphate receptors (IP₃Rs) are intracellular Ca²⁺ channels that elevate cytoplasmic Ca²⁺ in response to the second messenger IP3. Here, we describe the identification and in vivo functional characterization of the planarian IP₃R, the first intracellular Ca²⁺ channel to be defined in flatworms. A single IP₃R gene in Dugesia japonica encoded a 2666 amino acid protein (Dj.IP₃R) that shared well conserved structural features with vertebrate IP₃R counterparts. Expression of an NH₂-terminal Dj.IP₃R region (amino acid residues 223-585) recovered high affinity ³H-IP₃ binding (0.9±0.1 nM) which was abolished by a single point mutation of an arginine residue (R495L) important for IP₃ coordination. In situ hybridization revealed that Dj.IP₃R mRNA was most strongly expressed in the pharynx and optical nerve system as well as the reproductive system in sexualized planarians. Consistent with this observed tissue distribution, in vivo RNAi of Dj.IP₃R resulted in a decreased egg-laying behavior suggesting Dj.IP₃R plays an upstream role in planarian reproductive physiology.
Collapse
Affiliation(s)
- Dan Zhang
- Department of Pharmacology, University of Minnesota Medical School, MN 55455, USA
| | - Xiaolong Liu
- Department of Pharmacology, University of Minnesota Medical School, MN 55455, USA
| | - John D. Chan
- Department of Pharmacology, University of Minnesota Medical School, MN 55455, USA
| | - Jonathan S. Marchant
- Department of Pharmacology, University of Minnesota Medical School, MN 55455, USA
- The Stem Cell Institute, University of Minnesota Medical School, MN 55455, USA
| |
Collapse
|
54
|
Elliott SA, Sánchez Alvarado A. The history and enduring contributions of planarians to the study of animal regeneration. WILEY INTERDISCIPLINARY REVIEWS. DEVELOPMENTAL BIOLOGY 2013; 2:301-26. [PMID: 23799578 PMCID: PMC3694279 DOI: 10.1002/wdev.82] [Citation(s) in RCA: 132] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Having an almost unlimited capacity to regenerate tissues lost to age and injury, planarians have long fascinated naturalists. In the Western hemisphere alone, their documented history spans more than 200 years. Planarians were described in the early 19th century as being 'immortal under the edge of the knife', and initial investigation of these remarkable animals was significantly influenced by studies of regeneration in other organisms and from the flourishing field of experimental embryology in the late 19th and early 20th centuries. This review strives to place the study of planarian regeneration into a broader historical context by focusing on the significance and evolution of knowledge in this field. It also synthesizes our current molecular understanding of the mechanisms of planarian regeneration uncovered since this animal's relatively recent entrance into the molecular-genetic age.
Collapse
Affiliation(s)
- Sarah A Elliott
- Howard Hughes Medical Institute and Stowers Institute for Medical Research, Kansas City, MO, USA.
| | | |
Collapse
|
55
|
Rouhana L, Weiss JA, Forsthoefel DJ, Lee H, King RS, Inoue T, Shibata N, Agata K, Newmark PA. RNA interference by feeding in vitro-synthesized double-stranded RNA to planarians: methodology and dynamics. Dev Dyn 2013; 242:718-30. [PMID: 23441014 DOI: 10.1002/dvdy.23950] [Citation(s) in RCA: 139] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Revised: 02/13/2013] [Accepted: 02/14/2013] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND The ability to assess gene function is essential for understanding biological processes. Currently, RNA interference (RNAi) is the only technique available to assess gene function in planarians, in which it has been induced by means of injection of double-stranded RNA (dsRNA), soaking, or ingestion of bacteria expressing dsRNA. RESULTS We describe a simple and robust RNAi protocol, involving in vitro synthesis of dsRNA that is fed to the planarians. Advantages of this protocol include the ability to produce dsRNA from any vector without subcloning, resolution of ambiguities in quantity and quality of input dsRNA, as well as time and ease of application. We have evaluated the logistics of inducing RNAi in planarians using this methodology in careful detail, from the ingestion and processing of dsRNA in the intestine, to timing and efficacy of knockdown in neoblasts, germline, and soma. We also present systematic comparisons of effects of amount, frequency, and mode of dsRNA delivery. CONCLUSIONS This method gives robust and reproducible results and is amenable to high-throughput studies. Overall, this RNAi methodology provides a significant advance by combining the strengths of current protocols available for dsRNA delivery in planarians and has the potential to benefit RNAi methods in other systems.
Collapse
Affiliation(s)
- Labib Rouhana
- Howard Hughes Medical Institute and Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
56
|
King RS, Newmark PA. In situ hybridization protocol for enhanced detection of gene expression in the planarian Schmidtea mediterranea. BMC DEVELOPMENTAL BIOLOGY 2013; 13:8. [PMID: 23497040 PMCID: PMC3610298 DOI: 10.1186/1471-213x-13-8] [Citation(s) in RCA: 194] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Accepted: 02/27/2013] [Indexed: 02/07/2023]
Abstract
Background The freshwater planarian Schmidtea mediterranea has emerged as a powerful model for studies of regenerative, stem cell, and germ cell biology. Whole-mount in situ hybridization (WISH) and whole-mount fluorescent in situ hybridization (FISH) are critical methods for determining gene expression patterns in planarians. While expression patterns for a number of genes have been elucidated using established protocols, determining the expression patterns for particularly low-abundance transcripts remains a challenge. Results We show here that a short bleaching step in formamide dramatically enhances signal intensity of WISH and FISH. To further improve signal sensitivity we optimized blocking conditions for multiple anti-hapten antibodies, developed a copper sulfate quenching step that virtually eliminates autofluorescence, and enhanced signal intensity through iterative rounds of tyramide signal amplification. For FISH on regenerating planarians, we employed a heat-induced antigen retrieval step that provides a better balance between permeabilization of mature tissues and preservation of regenerating tissues. We also show that azide most effectively quenches peroxidase activity between rounds of development for multicolor FISH experiments. Finally, we apply these modifications to elucidate the expression patterns of a few low-abundance transcripts. Conclusion The modifications we present here provide significant improvements in signal intensity and signal sensitivity for WISH and FISH in planarians. Additionally, these modifications might be of widespread utility for whole-mount FISH in other model organisms.
Collapse
Affiliation(s)
- Ryan S King
- Howard Hughes Medical Institute, Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, 601 South Goodwin Avenue, Urbana, IL 61801, USA
| | | |
Collapse
|
57
|
Forsthoefel DJ, James NP, Escobar DJ, Stary JM, Vieira AP, Waters FA, Newmark PA. An RNAi screen reveals intestinal regulators of branching morphogenesis, differentiation, and stem cell proliferation in planarians. Dev Cell 2013; 23:691-704. [PMID: 23079596 DOI: 10.1016/j.devcel.2012.09.008] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Revised: 08/12/2012] [Accepted: 09/13/2012] [Indexed: 11/19/2022]
Abstract
Planarians grow and regenerate organs by coordinating proliferation and differentiation of pluripotent stem cells with remodeling of postmitotic tissues. Understanding how these processes are orchestrated requires characterizing cell-type-specific gene expression programs and their regulation during regeneration and homeostasis. To this end, we analyzed the expression profile of planarian intestinal phagocytes, cells responsible for digestion and nutrient storage/distribution. Utilizing RNA interference, we identified cytoskeletal regulators required for intestinal branching morphogenesis and a modulator of bioactive sphingolipid metabolism, ceramide synthase, required for the production of functional phagocytes. Additionally, we found that a gut-enriched homeobox transcription factor, nkx-2.2, is required for somatic stem cell proliferation, suggesting a niche-like role for phagocytes. Identification of evolutionarily conserved regulators of intestinal branching, differentiation, and stem cell dynamics demonstrates the utility of the planarian digestive system as a model for elucidating the mechanisms controlling postembryonic organogenesis.
Collapse
Affiliation(s)
- David J Forsthoefel
- Howard Hughes Medical Institute and Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | | | | | | | | | | | | |
Collapse
|
58
|
Rompolas P, Azimzadeh J, Marshall WF, King SM. Analysis of ciliary assembly and function in planaria. Methods Enzymol 2013; 525:245-64. [PMID: 23522473 DOI: 10.1016/b978-0-12-397944-5.00012-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Planarians are free-living invertebrates that employ motile cilia for locomotion. Specifically, cilia that populate the ventral epithelium of the planarian body are highly conserved, with a 9+2 axoneme and a full complement of inner and outer arm dynein motors. The abundance of cilia on the planarian body, their unique accessibility, and high degree of conservation make this organism an attractive experimental model system for cilia biology. Moreover, planarians are genetically amenable and defects that compromise the function and structure of the cilia are not detrimental for their overall health, making them an ideal system for cilia gene loss-of-function studies. In this chapter, we provide information for introducing and maintaining planarians for experimental purposes in the laboratory and describe protocols for RNAi-induced gene knockdown studies. Furthermore, we elaborate on different imaging techniques used to analyze cilia physiology and structure, including live video microscopy, immunofluorescence analysis, and electron microscopy. Last, we provide assays for evaluating physical parameters of ciliary motility, including quantification of planarian gliding locomotion and measurement of ciliary beat frequency.
Collapse
Affiliation(s)
- Panteleimon Rompolas
- Department of Genetics, Yale Stem Cell Center, Yale University School of Medicine, New Haven, Connecticut, USA.
| | | | | | | |
Collapse
|
59
|
Hubert A, Henderson JM, Ross KG, Cowles MW, Torres J, Zayas RM. Epigenetic regulation of planarian stem cells by the SET1/MLL family of histone methyltransferases. Epigenetics 2012; 8:79-91. [PMID: 23235145 PMCID: PMC3549883 DOI: 10.4161/epi.23211] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Chromatin regulation is a fundamental mechanism underlying stem cell pluripotency, differentiation, and the establishment of cell type-specific gene expression profiles. To examine the role of chromatin regulation in stem cells in vivo, we study regeneration in the freshwater planarian Schmidtea mediterranea. These animals possess a high concentration of pluripotent stem cells, which are capable of restoring any damaged or lost tissues after injury or amputation. Here, we identify the S. mediterranea homologs of the SET1/MLL family of histone methyltransferases and COMPASS and COMPASS-like complex proteins and investigate their role in stem cell function during regeneration. We identified six S. mediterranea homologs of the SET1/MLL family (set1, mll1/2, trr-1, trr-2, mll5–1 and mll5–2), characterized their patterns of expression in the animal, and examined their function by RNAi. All members of this family are expressed in the stem cell population and differentiated tissues. We show that set1, mll1/2, trr-1, and mll5–2 are required for regeneration and that set1, trr-1 and mll5–2 play roles in the regulation of mitosis. Most notably, knockdown of the planarian set1 homolog leads to stem cell depletion. A subset of planarian homologs of COMPASS and COMPASS-like complex proteins are also expressed in stem cells and implicated in regeneration, but the knockdown phenotypes suggest that some complex members also function in other aspects of planarian biology. This work characterizes the function of the SET1/MLL family in the context of planarian regeneration and provides insight into the role of these enzymes in adult stem cell regulation in vivo.
Collapse
Affiliation(s)
- Amy Hubert
- Department of Biology, San Diego State University, San Diego, CA, USA
| | | | | | | | | | | |
Collapse
|
60
|
Parkinson J, Wasmuth JD, Salinas G, Bizarro CV, Sanford C, Berriman M, Ferreira HB, Zaha A, Blaxter ML, Maizels RM, Fernández C. A transcriptomic analysis of Echinococcus granulosus larval stages: implications for parasite biology and host adaptation. PLoS Negl Trop Dis 2012; 6:e1897. [PMID: 23209850 PMCID: PMC3510090 DOI: 10.1371/journal.pntd.0001897] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Accepted: 09/25/2012] [Indexed: 01/14/2023] Open
Abstract
Background The cestode Echinococcus granulosus - the agent of cystic echinococcosis, a zoonosis affecting humans and domestic animals worldwide - is an excellent model for the study of host-parasite cross-talk that interfaces with two mammalian hosts. To develop the molecular analysis of these interactions, we carried out an EST survey of E. granulosus larval stages. We report the salient features of this study with a focus on genes reflecting physiological adaptations of different parasite stages. Methodology/Principal Findings We generated ∼10,000 ESTs from two sets of full-length enriched libraries (derived from oligo-capped and trans-spliced cDNAs) prepared with three parasite materials: hydatid cyst wall, larval worms (protoscoleces), and pepsin/H+-activated protoscoleces. The ESTs were clustered into 2700 distinct gene products. In the context of the biology of E. granulosus, our analyses reveal: (i) a diverse group of abundant long non-protein coding transcripts showing homology to a middle repetitive element (EgBRep) that could either be active molecular species or represent precursors of small RNAs (like piRNAs); (ii) an up-regulation of fermentative pathways in the tissue of the cyst wall; (iii) highly expressed thiol- and selenol-dependent antioxidant enzyme targets of thioredoxin glutathione reductase, the functional hub of redox metabolism in parasitic flatworms; (iv) candidate apomucins for the external layer of the tissue-dwelling hydatid cyst, a mucin-rich structure that is critical for survival in the intermediate host; (v) a set of tetraspanins, a protein family that appears to have expanded in the cestode lineage; and (vi) a set of platyhelminth-specific gene products that may offer targets for novel pan-platyhelminth drug development. Conclusions/Significance This survey has greatly increased the quality and the quantity of the molecular information on E. granulosus and constitutes a valuable resource for gene prediction on the parasite genome and for further genomic and proteomic analyses focused on cestodes and platyhelminths. Cestodes are a neglected group of platyhelminth parasites, despite causing chronic infections to humans and domestic animals worldwide. We used Echinococcus granulosus as a model to study the molecular basis of the host-parasite cross-talk during cestode infections. For this purpose, we carried out a survey of the genes expressed by parasite larval stages interfacing with definitive and intermediate hosts. Sequencing from several high quality cDNA libraries provided numerous insights into the expression of genes involved in important aspects of E. granulosus biology, e.g. its metabolism (energy production and antioxidant defences) and the synthesis of key parasite structures (notably, the one exposed to humans and livestock intermediate hosts). Our results also uncovered the existence of an intriguing set of abundant repeat-associated non-protein coding transcripts that may participate in the regulation of gene expression in all surveyed stages. The dataset now generated constitutes a valuable resource for gene prediction on the parasite genome and for further genomic and proteomic studies focused on cestodes and platyhelminths. In particular, the detailed characterization of a range of newly discovered genes will contribute to a better understanding of the biology of cestode infections and, therefore, to the development of products allowing their efficient control.
Collapse
Affiliation(s)
- John Parkinson
- Program in Molecular Structure and Function, Hospital for Sick Children, University of Toronto, Toronto, Canada
| | - James D. Wasmuth
- Program in Molecular Structure and Function, Hospital for Sick Children, University of Toronto, Toronto, Canada
| | - Gustavo Salinas
- Cátedra de Inmunología, Facultad de Química, Universidad de la República, Montevideo, Uruguay
| | - Cristiano V. Bizarro
- Laboratório de Biologia Molecular de Cestódeos and Laboratorio de Genômica Estrutural e Funcional, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Chris Sanford
- Program in Molecular Structure and Function, Hospital for Sick Children, University of Toronto, Toronto, Canada
| | - Matthew Berriman
- Parasite Genomics, The Wellcome Trust Sanger Institute, Hinxton, United Kingdom
| | - Henrique B. Ferreira
- Laboratório de Biologia Molecular de Cestódeos and Laboratorio de Genômica Estrutural e Funcional, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Arnaldo Zaha
- Laboratório de Biologia Molecular de Cestódeos and Laboratorio de Genômica Estrutural e Funcional, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Mark L. Blaxter
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Rick M. Maizels
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
- * E-mail: (RMM); (CF)
| | - Cecilia Fernández
- Cátedra de Inmunología, Facultad de Química, Universidad de la República, Montevideo, Uruguay
- * E-mail: (RMM); (CF)
| |
Collapse
|
61
|
Nodono H, Ishino Y, Hoshi M, Matsumoto M. Stem cells from innate sexual but not acquired sexual planarians have the capability to form a sexual individual. Mol Reprod Dev 2012; 79:757-66. [PMID: 22968921 DOI: 10.1002/mrd.22109] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Accepted: 08/27/2012] [Indexed: 11/10/2022]
Abstract
Planarian species may harbor as many as three populations with different reproductive strategies. Animals from innate asexual (AS) and innate sexual (InS) populations reproduce only by fission and cross-fertilization, respectively, whereas the third population switches seasonally between the two reproductive modes. AS worms can be experimentally sexualized by feeding them with minced InS worms; we termed the resulting animals "acquired sexual" (AqS) worms. Both AqS and InS worms exhibit sexualizing activity when used as feed, suggesting that they maintain their sexual state via endogenous sexualizing substances, although the mechanisms underlying determination of reproductive strategy and sexual switching in these metazoans remain enigmatic. Therefore, we compared the endogenous sexualizing activity of InS worms and AqS worms. First, we amputated mature worms and assessed if they could re-enter a sexual state. Regenerants of InS worms, but not AqS worms, were only sexual, indicating that sexual state regulation comprises two steps: (1) autonomous initiation of sexualizing substance production and (2) maintenance of the sexual state by continuous production of sexualizing substances. Next, InS neoblasts were characterized by transplantation, finding that they successfully engrafted, proliferated, and replaced all recipient cells. Under such conditions, the AS recipients of InS worm neoblasts, but not those of AqS worms, became sexual. These results clearly show that there is a neoblast-autonomous determination of reproductive strategy in planarians.
Collapse
Affiliation(s)
- Hanae Nodono
- Department of Biosciences and Informatics, Keio University, Yokohama, Kanagawa, Japan
| | | | | | | |
Collapse
|
62
|
Defining the molecular profile of planarian pluripotent stem cells using a combinatorial RNAseq, RNA interference and irradiation approach. Genome Biol 2012; 13:R19. [PMID: 22439894 PMCID: PMC3439970 DOI: 10.1186/gb-2012-13-3-r19] [Citation(s) in RCA: 125] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Revised: 03/08/2012] [Accepted: 03/22/2012] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Planarian stem cells, or neoblasts, drive the almost unlimited regeneration capacities of freshwater planarians. Neoblasts are traditionally described by their morphological features and by the fact that they are the only proliferative cell type in asexual planarians. Therefore, they can be specifically eliminated by irradiation. Irradiation, however, is likely to induce transcriptome-wide changes in gene expression that are not associated with neoblast ablation. This has affected the accurate description of their specific transcriptomic profile. RESULTS We introduce the use of Smed-histone-2B RNA interference (RNAi) for genetic ablation of neoblast cells in Schmidtea mediterranea as an alternative to irradiation. We characterize the rapid, neoblast-specific phenotype induced by Smed-histone-2B RNAi, resulting in neoblast ablation. We compare and triangulate RNA-seq data after using both irradiation and Smed-histone-2B RNAi over a time course as means of neoblast ablation. Our analyses show that Smed-histone-2B RNAi eliminates neoblast gene expression with high specificity and discrimination from gene expression in other cellular compartments. We compile a high confidence list of genes downregulated by both irradiation and Smed-histone-2B RNAi and validate their expression in neoblast cells. Lastly, we analyze the overall expression profile of neoblast cells. CONCLUSIONS Our list of neoblast genes parallels their morphological features and is highly enriched for nuclear components, chromatin remodeling factors, RNA splicing factors, RNA granule components and the machinery of cell division. Our data reveal that the regulation of planarian stem cells relies on posttranscriptional regulatory mechanisms and suggest that planarians are an ideal model for this understudied aspect of stem cell biology.
Collapse
|
63
|
Chalmers IW, Hoffmann KF. Platyhelminth Venom Allergen-Like (VAL) proteins: revealing structural diversity, class-specific features and biological associations across the phylum. Parasitology 2012; 139:1231-45. [PMID: 22717097 PMCID: PMC3435950 DOI: 10.1017/s0031182012000704] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Revised: 03/23/2012] [Accepted: 03/23/2012] [Indexed: 12/31/2022]
Abstract
During platyhelminth infection, a cocktail of proteins is released by the parasite to aid invasion, initiate feeding, facilitate adaptation and mediate modulation of the host immune response. Included amongst these proteins is the Venom Allergen-Like (VAL) family, part of the larger sperm coating protein/Tpx-1/Ag5/PR-1/Sc7 (SCP/TAPS) superfamily. To explore the significance of this protein family during Platyhelminthes development and host interactions, we systematically summarize all published proteomic, genomic and immunological investigations of the VAL protein family to date. By conducting new genomic and transcriptomic interrogations to identify over 200 VAL proteins (228) from species in all 4 traditional taxonomic classes (Trematoda, Cestoda, Monogenea and Turbellaria), we further expand our knowledge related to platyhelminth VAL diversity across the phylum. Subsequent phylogenetic and tertiary structural analyses reveal several class-specific VAL features, which likely indicate a range of roles mediated by this protein family. Our comprehensive analysis of platyhelminth VALs represents a unifying synopsis for understanding diversity within this protein family and a firm context in which to initiate future functional characterization of these enigmatic members.
Collapse
Affiliation(s)
- Iain W Chalmers
- Institute of Biological, Environmental and Rural Sciences, Edward Llwyd Building, Penglais Campus, Aberystwyth University, Aberystwyth SY23 3DA, UK.
| | | |
Collapse
|
64
|
Wagner DE, Ho JJ, Reddien PW. Genetic regulators of a pluripotent adult stem cell system in planarians identified by RNAi and clonal analysis. Cell Stem Cell 2012; 10:299-311. [PMID: 22385657 DOI: 10.1016/j.stem.2012.01.016] [Citation(s) in RCA: 152] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Revised: 12/30/2011] [Accepted: 01/23/2012] [Indexed: 12/24/2022]
Abstract
Pluripotency is a central, well-studied feature of embryonic development, but the role of pluripotent cell regulation in somatic tissue regeneration remains poorly understood. In planarians, regeneration of entire animals from tissue fragments is promoted by the activity of adult pluripotent stem cells (cNeoblasts). We utilized transcriptional profiling to identify planarian genes expressed in adult proliferating, regenerative cells (neoblasts). We also developed quantitative clonal analysis methods for expansion and differentiation of cNeoblast descendants that, together with RNAi, revealed gene roles in stem cell biology. Genes encoding two zinc finger proteins, Vasa, a LIM domain protein, Sox and Jun-like transcription factors, two candidate RNA-binding proteins, a Setd8-like protein, and PRC2 (Polycomb) were required for proliferative expansion and/or differentiation of cNeoblast-derived clones. These findings suggest that planarian stem cells utilize molecular mechanisms found in germ cells and other pluripotent cell types and identify genetic regulators of the planarian stem cell system.
Collapse
Affiliation(s)
- Daniel E Wagner
- Howard Hughes Medical Institute, MIT Biology, Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA 02142, USA
| | | | | |
Collapse
|
65
|
Nishimura O, Hirao Y, Tarui H, Agata K. Comparative transcriptome analysis between planarian Dugesia japonica and other platyhelminth species. BMC Genomics 2012; 13:289. [PMID: 22747887 PMCID: PMC3507646 DOI: 10.1186/1471-2164-13-289] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Accepted: 06/04/2012] [Indexed: 11/10/2022] Open
Abstract
Background Planarians are considered to be among the extant animals close to one of the earliest groups of organisms that acquired a central nervous system (CNS) during evolution. Planarians have a bilobed brain with nine lateral branches from which a variety of external signals are projected into different portions of the main lobes. Various interneurons process different signals to regulate behavior and learning/memory. Furthermore, planarians have robust regenerative ability and are attracting attention as a new model organism for the study of regeneration. Here we conducted large-scale EST analysis of the head region of the planarian Dugesia japonica to construct a database of the head-region transcriptome, and then performed comparative analyses among related species. Results A total of 54,752 high-quality EST reads were obtained from a head library of the planarian Dugesia japonica, and 13,167 unigene sequences were produced by de novo assembly. A new method devised here revealed that proteins related to metabolism and defense mechanisms have high flexibility of amino-acid substitutions within the planarian family. Eight-two CNS-development genes were found in the planarian (cf. C. elegans 3; chicken 129). Comparative analysis revealed that 91% of the planarian CNS-development genes could be mapped onto the schistosome genome, but one-third of these shared genes were not expressed in the schistosome. Conclusions We constructed a database that is a useful resource for comparative planarian transcriptome studies. Analysis comparing homologous genes between two planarian species showed that the potential of genes is important for accumulation of amino-acid substitutions. The presence of many CNS-development genes in our database supports the notion that the planarian has a fundamental brain with regard to evolution and development at not only the morphological/functional, but also the genomic, level. In addition, our results indicate that the planarian CNS-development genes already existed before the divergence of planarians and schistosomes from their common ancestor.
Collapse
Affiliation(s)
- Osamu Nishimura
- Department of Biophysics and Global COE Program, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwake, Sakyo-ku, Kyoto, Japan
| | | | | | | |
Collapse
|
66
|
Transcriptome analysis reveals strain-specific and conserved stemness genes in Schmidtea mediterranea. PLoS One 2012; 7:e34447. [PMID: 22496805 PMCID: PMC3319590 DOI: 10.1371/journal.pone.0034447] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Accepted: 03/05/2012] [Indexed: 02/06/2023] Open
Abstract
The planarian Schmidtea mediterranea is a powerful model organism for studying stem cell biology due to its extraordinary regenerative ability mediated by neoblasts, a population of adult somatic stem cells. Elucidation of the S. mediterranea transcriptome and the dynamics of transcript expression will increase our understanding of the gene regulatory programs that regulate stem cell function and differentiation. Here, we have used RNA-Seq to characterize the S. mediterranea transcriptome in sexual and asexual animals and in purified neoblast and differentiated cell populations. Our analysis identified many uncharacterized genes, transcripts, and alternatively spliced isoforms that are differentially expressed in a strain or cell type-specific manner. Transcriptome profiling of purified neoblasts and differentiated cells identified neoblast-enriched transcripts, many of which likely play important roles in regeneration and stem cell function. Strikingly, many of the neoblast-enriched genes are orthologs of genes whose expression is enriched in human embryonic stem cells, suggesting that a core set of genes that regulate stem cell function are conserved across metazoan species.
Collapse
|
67
|
Cowles MW, Hubert A, Zayas RM. A Lissencephaly-1 homologue is essential for mitotic progression in the planarian Schmidtea mediterranea. Dev Dyn 2012; 241:901-10. [PMID: 22411224 DOI: 10.1002/dvdy.23775] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/02/2012] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Planarians are renowned for their capacity to replace lost tissues from adult pluripotent stem cells (neoblasts). Here we report that Lissencephaly-1 (lis1), which has roles in cellular processes such as mitotic spindle apparatus orientation and in signal regulation required for stem cell self-renewal, is required for stem cell maintenance in the planarian Schmidtea mediterranea. RESULTS In planarians, lis1 is expressed in differentiated tissues and stem cells. lis1 RNAi leads to head regression, ventral curling, and death by lysis. By labeling the neoblasts and proliferating cells, we found lis1 knockdown animals show a dramatic increase in the number of mitotic cells, followed by depletion of the stem cell pool. Analysis of the mitotic spindles in dividing neoblasts revealed that defective spindle positioning is correlated with cells arrested at metaphase. In addition, we show that inhibiting a planarian homologue of nudE, predicted to encode a LIS-1 interacting protein, also leads to cell cycle progression defects. CONCLUSIONS Our results provide evidence for a conserved role of LIS1 and NUDE in regulating the function of the mitotic spindle apparatus in a representative Lophotrochozoan and that planarians will be useful organisms in which to investigate LIS1 regulation of signaling events underlying stem cell self-renewal.
Collapse
Affiliation(s)
- Martis W Cowles
- Department of Biology, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182, USA
| | | | | |
Collapse
|
68
|
Rouhana L, Vieira AP, Roberts-Galbraith RH, Newmark PA. PRMT5 and the role of symmetrical dimethylarginine in chromatoid bodies of planarian stem cells. Development 2012; 139:1083-94. [PMID: 22318224 DOI: 10.1242/dev.076182] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Planarian flatworms contain a population of adult stem cells (neoblasts) that proliferate and generate cells of all tissues during growth, regeneration and tissue homeostasis. A characteristic feature of neoblasts is the presence of chromatoid bodies, large cytoplasmic ribonucleoprotein (RNP) granules morphologically similar to structures present in the germline of many organisms. This study aims to reveal the function, and identify additional components, of planarian chromatoid bodies. We uncover the presence of symmetrical dimethylarginine (sDMA) on chromatoid body components and identify the ortholog of protein arginine methyltransferase PRMT5 as the enzyme responsible for sDMA modification in these proteins. RNA interference-mediated depletion of planarian PRMT5 results in defects in homeostasis and regeneration, reduced animal size, reduced number of neoblasts, fewer chromatoid bodies and increased levels of transposon and repetitive-element transcripts. Our results suggest that PIWI family member SMEDWI-3 is one sDMA-containing chromatoid body protein for which methylation depends on PRMT5. Additionally, we discover an RNA localized to chromatoid bodies, germinal histone H4. Our results reveal new components of chromatoid bodies and their function in planarian stem cells, and also support emerging studies indicative of sDMA function in stabilization of RNP granules and the Piwi-interacting RNA pathway.
Collapse
Affiliation(s)
- Labib Rouhana
- Howard Hughes Medical Institute, Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | | | | | | |
Collapse
|
69
|
Chong T, Stary JM, Wang Y, Newmark PA. Molecular markers to characterize the hermaphroditic reproductive system of the planarian Schmidtea mediterranea. BMC DEVELOPMENTAL BIOLOGY 2011; 11:69. [PMID: 22074376 PMCID: PMC3224759 DOI: 10.1186/1471-213x-11-69] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2011] [Accepted: 11/10/2011] [Indexed: 12/05/2022]
Abstract
Background The freshwater planarian Schmidtea mediterranea exhibits two distinct reproductive modes. Individuals of the sexual strain are cross-fertilizing hermaphrodites with reproductive organs that develop post-embryonically. By contrast, individuals of the asexual strain reproduce exclusively by transverse fission and fail to develop reproductive organs. These different reproductive strains are associated with distinct karyotypes, making S. mediterranea a useful model for studying germline development and sexual differentiation. Results To identify genes expressed differentially between these strains, we performed microarray analyses and identified >800 genes that were upregulated in the sexual planarian. From these, we characterized 24 genes by fluorescent in situ hybridization (FISH), revealing their expression in male germ cells or accessory reproductive organs. To identify additional markers of the planarian reproductive system, we also used immuno- and fluorescent lectin staining, identifying several antibodies and lectins that labeled structures associated with reproductive organs. Conclusions Collectively, these cell-type specific markers will enable future efforts to characterize genes that are important for reproductive development in the planarian.
Collapse
Affiliation(s)
- Tracy Chong
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA.
| | | | | | | |
Collapse
|
70
|
Kuales G, De Mulder K, Glashauser J, Salvenmoser W, Takashima S, Hartenstein V, Berezikov E, Salzburger W, Ladurner P. Boule-like genes regulate male and female gametogenesis in the flatworm Macrostomum lignano. Dev Biol 2011; 357:117-32. [PMID: 21740899 PMCID: PMC3158854 DOI: 10.1016/j.ydbio.2011.06.030] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2010] [Revised: 06/17/2011] [Accepted: 06/20/2011] [Indexed: 11/22/2022]
Abstract
Members of the DAZ (Deleted in AZoospermia) gene family are important players in the process of gametogenesis and their dysregulation accounts for 10% of human male infertility. Boule, the ancestor of the family, is mainly involved in male meiosis in most organisms. With the exception of Drosophila and C. elegans, nothing is known on the function of boule in non-vertebrate animals. In the present study, we report on three boule orthologues in the flatworm Macrostomum lignano. We demonstrate that macbol1 and macbol2 are expressed in testes whilst macbol3 is expressed in ovaries and developing eggs. Macbol1 RNAi blocked spermatocyte differentiation whereas macbol2 showed no effect upon RNAi treatment. Macbol3 RNAi resulted in aberrant egg maturation and led to female sterility. We further demonstrated the evolutionary functional conservation of macbol1 by introducing this gene into Drosophila bol(1) mutants. Macbol1 was able to rescue the progression of fly meiotic divisions. In summary, our findings provide evidence for an involvement of boule genes in male and female gamete development in one organism. Furthermore, boule gene function is shown here for the first time in a lophotrochozoan. Our results point to a more diverse functional assignment of boule genes. Therefore, a better understanding of boule function in flatworms can help to elucidate the molecular mechanisms of and concomitant infertility in higher organisms including humans.
Collapse
Affiliation(s)
- Georg Kuales
- University of Innsbruck, Institute of Zoology and CMBI, Technikerstrasse 25 A-6020 Innsbruck, Austria
| | - Katrien De Mulder
- University of Innsbruck, Institute of Zoology and CMBI, Technikerstrasse 25 A-6020 Innsbruck, Austria
- Hubrecht Institute and University medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - Jade Glashauser
- University of Innsbruck, Institute of Zoology and CMBI, Technikerstrasse 25 A-6020 Innsbruck, Austria
| | - Willi Salvenmoser
- University of Innsbruck, Institute of Zoology and CMBI, Technikerstrasse 25 A-6020 Innsbruck, Austria
| | - Shigeo Takashima
- University of California Los Angeles, Department of Molecular, Cell and Developmental Biology, 621 Charles E. Young Drive, East Boyer Hall 559, CA 90095-1606 California, USA
| | - Volker Hartenstein
- University of California Los Angeles, Department of Molecular, Cell and Developmental Biology, 621 Charles E. Young Drive, East Boyer Hall 559, CA 90095-1606 California, USA
| | - Eugene Berezikov
- Hubrecht Institute and University medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - Walter Salzburger
- University of Basel, Zoological Institute, Vesalgasse 1, CH-4051 Basel, Switzerland
| | - Peter Ladurner
- University of Innsbruck, Institute of Zoology and CMBI, Technikerstrasse 25 A-6020 Innsbruck, Austria
| |
Collapse
|
71
|
Sandmann T, Vogg MC, Owlarn S, Boutros M, Bartscherer K. The head-regeneration transcriptome of the planarian Schmidtea mediterranea. Genome Biol 2011; 12:R76. [PMID: 21846378 PMCID: PMC3245616 DOI: 10.1186/gb-2011-12-8-r76] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2011] [Revised: 07/13/2011] [Accepted: 08/16/2011] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Planarian flatworms can regenerate their head, including a functional brain, within less than a week. Despite the enormous potential of these animals for medical research and regenerative medicine, the mechanisms of regeneration and the molecules involved remain largely unknown. RESULTS To identify genes that are differentially expressed during early stages of planarian head regeneration, we generated a de novo transcriptome assembly from more than 300 million paired-end reads from planarian fragments regenerating the head at 16 different time points. The assembly yielded 26,018 putative transcripts, including very long transcripts spanning multiple genomic supercontigs, and thousands of isoforms. Using short-read data from two platforms, we analyzed dynamic gene regulation during the first three days of head regeneration. We identified at least five different temporal synexpression classes, including genes specifically induced within a few hours after injury. Furthermore, we characterized the role of a conserved Runx transcription factor, smed-runt-like1. RNA interference (RNAi) knockdown and immunofluorescence analysis of the regenerating visual system indicated that smed-runt-like1 encodes a transcriptional regulator of eye morphology and photoreceptor patterning. CONCLUSIONS Transcriptome sequencing of short reads allowed for the simultaneous de novo assembly and differential expression analysis of transcripts, demonstrating highly dynamic regulation during head regeneration in planarians.
Collapse
Affiliation(s)
- Thomas Sandmann
- Division Signaling and Functional Genomics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, D-69120 Heidelberg, Germany
- CellNetworks Cluster of Excellence, Heidelberg University, Im Neuenheimer Feld 267, 69120 Heidelberg, Germany
| | - Matthias C Vogg
- Max Planck Research Group Stem Cells and Regeneration, Max Planck Institute for Molecular Biomedicine, Von-Esmarch-Str. 54, 48149 Münster, Germany
| | - Suthira Owlarn
- Max Planck Research Group Stem Cells and Regeneration, Max Planck Institute for Molecular Biomedicine, Von-Esmarch-Str. 54, 48149 Münster, Germany
| | - Michael Boutros
- Division Signaling and Functional Genomics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, D-69120 Heidelberg, Germany
- Department of Cell and Molecular Biology, Faculty of Medicine Mannheim, Heidelberg University, Ludolf-Krehl-Straße 13-17, 68167 Mannheim, Germany
| | - Kerstin Bartscherer
- Max Planck Research Group Stem Cells and Regeneration, Max Planck Institute for Molecular Biomedicine, Von-Esmarch-Str. 54, 48149 Münster, Germany
| |
Collapse
|
72
|
Forsthoefel DJ, Park AE, Newmark PA. Stem cell-based growth, regeneration, and remodeling of the planarian intestine. Dev Biol 2011; 356:445-59. [PMID: 21664348 PMCID: PMC3490491 DOI: 10.1016/j.ydbio.2011.05.669] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2011] [Accepted: 05/24/2011] [Indexed: 10/18/2022]
Abstract
Although some animals are capable of regenerating organs, the mechanisms by which this is achieved are poorly understood. In planarians, pluripotent somatic stem cells called neoblasts supply new cells for growth, replenish tissues in response to cellular turnover, and regenerate tissues after injury. For most tissues and organs, however, the spatiotemporal dynamics of stem cell differentiation and the fate of tissue that existed prior to injury have not been characterized systematically. Utilizing in vivo imaging and bromodeoxyuridine pulse-chase experiments, we have analyzed growth and regeneration of the planarian intestine, the organ responsible for digestion and nutrient distribution. During growth, we observe that new gut branches are added along the entire anteroposterior axis. We find that new enterocytes differentiate throughout the intestine rather than in specific growth zones, suggesting that branching morphogenesis is achieved primarily by remodeling of differentiated intestinal tissues. During regeneration, we also demonstrate a previously unappreciated degree of intestinal remodeling, in which pre-existing posterior gut tissue contributes extensively to the newly formed anterior gut, and vice versa. By contrast to growing animals, differentiation of new intestinal cells occurs at preferential locations, including within newly generated tissue (the blastema), and along pre-existing intestinal branches undergoing remodeling. Our results indicate that growth and regeneration of the planarian intestine are achieved by co-ordinated differentiation of stem cells and the remodeling of pre-existing tissues. Elucidation of the mechanisms by which these processes are integrated will be critical for understanding organogenesis in a post-embryonic context.
Collapse
Affiliation(s)
- David J. Forsthoefel
- Howard Hughes Medical Institute, Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana-Champaign, IL, 61801, USA
| | - Amanda E. Park
- Howard Hughes Medical Institute, Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana-Champaign, IL, 61801, USA
| | - Phillip A. Newmark
- Howard Hughes Medical Institute, Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana-Champaign, IL, 61801, USA
| |
Collapse
|
73
|
Early planarian brain regeneration is independent of blastema polarity mediated by the Wnt/β-catenin pathway. Dev Biol 2011; 358:68-78. [PMID: 21806978 DOI: 10.1016/j.ydbio.2011.07.013] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2010] [Revised: 06/09/2011] [Accepted: 07/08/2011] [Indexed: 11/22/2022]
Abstract
Analysis of anteroposterior (AP) axis specification in regenerating planarian flatworms has shown that Wnt/β-catenin signaling is required for posterior specification and that the FGF-like receptor molecule nou-darake (ndk) may be involved in restricting brain regeneration to anterior regions. The relationship between re-establishment of AP identity and correct morphogenesis of the brain is, however, still poorly understood. Here we report the characterization of two axin paralogs in the planarian Schmidtea mediterranea. Although Axins are well known negative regulators of Wnt/β-catenin signaling, no role in AP specification has previously been reported for axin genes in planarians. We show that silencing of Smed-axin genes by RNA interference (RNAi) results in two-tailed planarians, a phenotype previously reported after silencing of Smed-APC-1, another β-catenin inhibitor. More strikingly, we show for the first time that while early brain formation at anterior wounds remains unaffected, subsequent development of the brain is blocked in the two-tailed planarians generated after silencing of Smed-axin genes and Smed-APC-1. These findings suggest that the mechanisms underlying early brain formation can be uncoupled from the specification of AP identity by the Wnt/β-catenin pathway. Finally, the posterior expansion of the brain observed following Smed-ndk RNAi is enhanced by silencing Smed-APC-1, revealing an indirect relationship between the FGFR/Ndk and Wnt/β-catenin signaling systems in establishing the posterior limits of brain differentiation.
Collapse
|
74
|
Hollenbach JP, Resch AM, Palakodeti D, Graveley BR, Heinen CD. Loss of DNA mismatch repair imparts a selective advantage in planarian adult stem cells. PLoS One 2011; 6:e21808. [PMID: 21747960 PMCID: PMC3128615 DOI: 10.1371/journal.pone.0021808] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Accepted: 06/07/2011] [Indexed: 12/29/2022] Open
Abstract
Lynch syndrome (LS) leads to an increased risk of early-onset colorectal and other types of cancer and is caused by germline mutations in DNA mismatch repair (MMR) genes. Loss of MMR function results in a mutator phenotype that likely underlies its role in tumorigenesis. However, loss of MMR also results in the elimination of a DNA damage-induced checkpoint/apoptosis activation barrier that may allow damaged cells to grow unchecked. A fundamental question is whether loss of MMR provides pre-cancerous stem cells an immediate selective advantage in addition to establishing a mutator phenotype. To test this hypothesis in an in vivo system, we utilized the planarian Schmidtea mediterranea which contains a significant population of identifiable adult stem cells. We identified a planarian homolog of human MSH2, a MMR gene which is mutated in 38% of LS cases. The planarian Smed-msh2 is expressed in stem cells and some progeny. We depleted Smed-msh2 mRNA levels by RNA-interference and found a striking survival advantage in these animals treated with a cytotoxic DNA alkylating agent compared to control animals. We demonstrated that this tolerance to DNA damage is due to the survival of mitotically active, MMR-deficient stem cells. Our results suggest that loss of MMR provides an in vivo survival advantage to the stem cell population in the presence of DNA damage that may have implications for tumorigenesis.
Collapse
Affiliation(s)
- Jessica P. Hollenbach
- Neag Comprehensive Cancer Center and Center for Molecular Medicine, University of Connecticut Health Center, Farmington, Connecticut, United States of America
| | - Alissa M. Resch
- Department of Genetics and Developmental Biology, University of Connecticut Stem Cell Institute, University of Connecticut Health Center, Farmington, Connecticut, United States of America
| | - Dasaradhi Palakodeti
- Department of Genetics and Developmental Biology, University of Connecticut Stem Cell Institute, University of Connecticut Health Center, Farmington, Connecticut, United States of America
| | - Brenton R. Graveley
- Department of Genetics and Developmental Biology, University of Connecticut Stem Cell Institute, University of Connecticut Health Center, Farmington, Connecticut, United States of America
| | - Christopher D. Heinen
- Neag Comprehensive Cancer Center and Center for Molecular Medicine, University of Connecticut Health Center, Farmington, Connecticut, United States of America
- * E-mail:
| |
Collapse
|
75
|
Adamidi C, Wang Y, Gruen D, Mastrobuoni G, You X, Tolle D, Dodt M, Mackowiak SD, Gogol-Doering A, Oenal P, Rybak A, Ross E, Sánchez Alvarado A, Kempa S, Dieterich C, Rajewsky N, Chen W. De novo assembly and validation of planaria transcriptome by massive parallel sequencing and shotgun proteomics. Genome Res 2011; 21:1193-200. [PMID: 21536722 DOI: 10.1101/gr.113779.110] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Freshwater planaria are a very attractive model system for stem cell biology, tissue homeostasis, and regeneration. The genome of the planarian Schmidtea mediterranea has recently been sequenced and is estimated to contain >20,000 protein-encoding genes. However, the characterization of its transcriptome is far from complete. Furthermore, not a single proteome of the entire phylum has been assayed on a genome-wide level. We devised an efficient sequencing strategy that allowed us to de novo assemble a major fraction of the S. mediterranea transcriptome. We then used independent assays and massive shotgun proteomics to validate the authenticity of transcripts. In total, our de novo assembly yielded 18,619 candidate transcripts with a mean length of 1118 nt after filtering. A total of 17,564 candidate transcripts could be mapped to 15,284 distinct loci on the current genome reference sequence. RACE confirmed complete or almost complete 5' and 3' ends for 22/24 transcripts. The frequencies of frame shifts, fusion, and fission events in the assembled transcripts were computationally estimated to be 4.2%-13%, 0%-3.7%, and 2.6%, respectively. Our shotgun proteomics produced 16,135 distinct peptides that validated 4200 transcripts (FDR ≤1%). The catalog of transcripts assembled in this study, together with the identified peptides, dramatically expands and refines planarian gene annotation, demonstrated by validation of several previously unknown transcripts with stem cell-dependent expression patterns. In addition, our robust transcriptome characterization pipeline could be applied to other organisms without genome assembly. All of our data, including homology annotation, are freely available at SmedGD, the S. mediterranea genome database.
Collapse
Affiliation(s)
- Catherine Adamidi
- Max-Delbrück-Center for Molecular Medicine, Berlin Institute for Medical Systems Biology, Robert Rössle Strasse 10, Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
76
|
Fernández-Taboada E, Rodríguez-Esteban G, Saló E, Abril JF. A proteomics approach to decipher the molecular nature of planarian stem cells. BMC Genomics 2011; 12:133. [PMID: 21356107 PMCID: PMC3058083 DOI: 10.1186/1471-2164-12-133] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2010] [Accepted: 02/28/2011] [Indexed: 01/07/2023] Open
Abstract
Background In recent years, planaria have emerged as an important model system for research into stem cells and regeneration. Attention is focused on their unique stem cells, the neoblasts, which can differentiate into any cell type present in the adult organism. Sequencing of the Schmidtea mediterranea genome and some expressed sequence tag projects have generated extensive data on the genetic profile of these cells. However, little information is available on their protein dynamics. Results We developed a proteomic strategy to identify neoblast-specific proteins. Here we describe the method and discuss the results in comparison to the genomic high-throughput analyses carried out in planaria and to proteomic studies using other stem cell systems. We also show functional data for some of the candidate genes selected in our proteomic approach. Conclusions We have developed an accurate and reliable mass-spectra-based proteomics approach to complement previous genomic studies and to further achieve a more accurate understanding and description of the molecular and cellular processes related to the neoblasts.
Collapse
Affiliation(s)
- Enrique Fernández-Taboada
- Departament de Genètica and Institute of Biomedicine, Universitat de Barcelona, Avenida Diagonal 645, Barcelona, Catalonia, Spain
| | | | | | | |
Collapse
|
77
|
Zayas RM, Cebrià F, Guo T, Feng J, Newmark PA. The use of lectins as markers for differentiated secretory cells in planarians. Dev Dyn 2011; 239:2888-97. [PMID: 20865784 DOI: 10.1002/dvdy.22427] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Freshwater planarians have reemerged as excellent models to investigate mechanisms underlying regeneration. The introduction of molecular tools has facilitated the study of planarians, but cell- and tissue-specific markers are still needed to examine differentiation of most cell types. Here we report the utility of fluorescent lectin-conjugates to label tissues in the planarian Schmidtea mediterranea. We show that 16 lectin-conjugates stain planarian cells or tissues; 13 primarily label the secretory cells, their cytoplasmic projections, and terminal pores. Thus, we examined regeneration of the secretory system using lectin markers and functionally characterized two genes expressed in the secretory cells: marginal adhesive gland-1 (mag-1) and Smed-reticulocalbin1 (Smed-rcn1). RNAi knockdown of these genes caused a dramatic reduction of secretory cell lectin staining, suggesting a role for mag-1 and Smed-rcn1 in secretory cell differentiation. Our results provide new insights into planarian secretory system regeneration and add new markers for labeling several planarian tissues.
Collapse
Affiliation(s)
- Ricardo M Zayas
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | | | | | | | | |
Collapse
|
78
|
The adaptive evolution divergence of triosephosphate isomerases between parasitic and free-living flatworms and the discovery of a potential universal target against flatworm parasites. Parasitol Res 2011; 109:283-9. [DOI: 10.1007/s00436-010-2249-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2010] [Accepted: 12/28/2010] [Indexed: 10/18/2022]
|
79
|
Abril JF, Cebrià F, Rodríguez-Esteban G, Horn T, Fraguas S, Calvo B, Bartscherer K, Saló E. Smed454 dataset: unravelling the transcriptome of Schmidtea mediterranea. BMC Genomics 2010; 11:731. [PMID: 21194483 PMCID: PMC3022928 DOI: 10.1186/1471-2164-11-731] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Accepted: 12/31/2010] [Indexed: 01/04/2023] Open
Abstract
Background Freshwater planarians are an attractive model for regeneration and stem cell research and have become a promising tool in the field of regenerative medicine. With the availability of a sequenced planarian genome, the recent application of modern genetic and high-throughput tools has resulted in revitalized interest in these animals, long known for their amazing regenerative capabilities, which enable them to regrow even a new head after decapitation. However, a detailed description of the planarian transcriptome is essential for future investigation into regenerative processes using planarians as a model system. Results In order to complement and improve existing gene annotations, we used a 454 pyrosequencing approach to analyze the transcriptome of the planarian species Schmidtea mediterranea Altogether, 598,435 454-sequencing reads, with an average length of 327 bp, were assembled together with the ~10,000 sequences of the S. mediterranea UniGene set using different similarity cutoffs. The assembly was then mapped onto the current genome data. Remarkably, our Smed454 dataset contains more than 3 million novel transcribed nucleotides sequenced for the first time. A descriptive analysis of planarian splice sites was conducted on those Smed454 contigs that mapped univocally to the current genome assembly. Sequence analysis allowed us to identify genes encoding putative proteins with defined structural properties, such as transmembrane domains. Moreover, we annotated the Smed454 dataset using Gene Ontology, and identified putative homologues of several gene families that may play a key role during regeneration, such as neurotransmitter and hormone receptors, homeobox-containing genes, and genes related to eye function. Conclusions We report the first planarian transcript dataset, Smed454, as an open resource tool that can be accessed via a web interface. Smed454 contains significant novel sequence information about most expressed genes of S. mediterranea. Analysis of the annotated data promises to contribute to identification of gene families poorly characterized at a functional level. The Smed454 transcriptome data will assist in the molecular characterization of S. mediterranea as a model organism, which will be useful to a broad scientific community.
Collapse
Affiliation(s)
- Josep F Abril
- Departament de Genètica, Facultat de Biología, Universitat de Barcelona (UB), Barcelona, Catalunya, Spain
| | | | | | | | | | | | | | | |
Collapse
|
80
|
Blythe MJ, Kao D, Malla S, Rowsell J, Wilson R, Evans D, Jowett J, Hall A, Lemay V, Lam S, Aboobaker AA. A dual platform approach to transcript discovery for the planarian Schmidtea mediterranea to establish RNAseq for stem cell and regeneration biology. PLoS One 2010; 5:e15617. [PMID: 21179477 PMCID: PMC3001875 DOI: 10.1371/journal.pone.0015617] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2010] [Accepted: 11/13/2010] [Indexed: 12/30/2022] Open
Abstract
The use of planarians as a model system is expanding and the mechanisms that control planarian regeneration are being elucidated. The planarian Schmidtea mediterranea in particular has become a species of choice. Currently the planarian research community has access to this whole genome sequencing project and over 70,000 expressed sequence tags. However, the establishment of massively parallel sequencing technologies has provided the opportunity to define genetic content, and in particular transcriptomes, in unprecedented detail. Here we apply this approach to the planarian model system. We have sequenced, mapped and assembled 581,365 long and 507,719,814 short reads from RNA of intact and mixed stages of the first 7 days of planarian regeneration. We used an iterative mapping approach to identify and define de novo splice sites with short reads and increase confidence in our transcript predictions. We more than double the number of transcripts currently defined by publicly available ESTs, resulting in a collection of 25,053 transcripts described by combining platforms. We also demonstrate the utility of this collection for an RNAseq approach to identify potential transcripts that are enriched in neoblast stem cells and their progeny by comparing transcriptome wide expression levels between irradiated and intact planarians. Our experiments have defined an extensive planarian transcriptome that can be used as a template for RNAseq and can also help to annotate the S. mediterranea genome. We anticipate that suites of other 'omic approaches will also be facilitated by building on this comprehensive data set including RNAseq across many planarian regenerative stages, scenarios, tissues and phenotypes generated by RNAi.
Collapse
Affiliation(s)
- Martin J. Blythe
- Deep Seq, Faculty of Medicine and Health Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, United Kingdom
| | - Damian Kao
- Evolutionary Developmental Biology Laboratory, Centre for Genetics and Genomics, Queen's Medical Centre, University of Nottingham, Nottingham, United Kingdom
| | - Sunir Malla
- Deep Seq, Faculty of Medicine and Health Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, United Kingdom
| | - Joanna Rowsell
- Deep Seq, Faculty of Medicine and Health Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, United Kingdom
| | - Ray Wilson
- Deep Seq, Faculty of Medicine and Health Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, United Kingdom
| | - Deborah Evans
- Evolutionary Developmental Biology Laboratory, Centre for Genetics and Genomics, Queen's Medical Centre, University of Nottingham, Nottingham, United Kingdom
| | - Jamie Jowett
- Evolutionary Developmental Biology Laboratory, Centre for Genetics and Genomics, Queen's Medical Centre, University of Nottingham, Nottingham, United Kingdom
| | - Amy Hall
- Evolutionary Developmental Biology Laboratory, Centre for Genetics and Genomics, Queen's Medical Centre, University of Nottingham, Nottingham, United Kingdom
| | - Virginie Lemay
- Evolutionary Developmental Biology Laboratory, Centre for Genetics and Genomics, Queen's Medical Centre, University of Nottingham, Nottingham, United Kingdom
| | - Sabrina Lam
- Evolutionary Developmental Biology Laboratory, Centre for Genetics and Genomics, Queen's Medical Centre, University of Nottingham, Nottingham, United Kingdom
| | - A. Aziz Aboobaker
- Deep Seq, Faculty of Medicine and Health Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, United Kingdom
- Evolutionary Developmental Biology Laboratory, Centre for Genetics and Genomics, Queen's Medical Centre, University of Nottingham, Nottingham, United Kingdom
- * E-mail:
| |
Collapse
|
81
|
Wang Y, Stary JM, Wilhelm JE, Newmark PA. A functional genomic screen in planarians identifies novel regulators of germ cell development. Genes Dev 2010; 24:2081-92. [PMID: 20844018 DOI: 10.1101/gad.1951010] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Germ cells serve as intriguing examples of differentiated cells that retain the capacity to generate all cell types of an organism. Here we used functional genomic approaches in planarians to identify genes required for proper germ cell development. We conducted microarray analyses and in situ hybridization to discover and validate germ cell-enriched transcripts, and then used RNAi to screen for genes required for discrete stages of germ cell development. The majority of genes we identified encode conserved RNA-binding proteins, several of which have not been implicated previously in germ cell development. We also show that a germ cell-specific subunit of the conserved transcription factor CCAAT-binding protein/nuclear factor-Y is required for maintaining spermatogonial stem cells. Our results demonstrate that conserved transcriptional and post-transcriptional mechanisms regulate germ cell development in planarians. These findings suggest that studies of planarians will inform our understanding of germ cell biology in higher organisms.
Collapse
Affiliation(s)
- Yuying Wang
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | | | | | | |
Collapse
|
82
|
Young ND, Jex AR, Cantacessi C, Campbell BE, Laha T, Sohn WM, Sripa B, Loukas A, Brindley PJ, Gasser RB. Progress on the transcriptomics of carcinogenic liver flukes of humans—Unique biological and biotechnological prospects. Biotechnol Adv 2010; 28:859-70. [DOI: 10.1016/j.biotechadv.2010.07.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2010] [Revised: 07/12/2010] [Accepted: 07/16/2010] [Indexed: 12/22/2022]
|
83
|
Collins JJ, Hou X, Romanova EV, Lambrus BG, Miller CM, Saberi A, Sweedler JV, Newmark PA. Genome-wide analyses reveal a role for peptide hormones in planarian germline development. PLoS Biol 2010; 8:e1000509. [PMID: 20967238 PMCID: PMC2953531 DOI: 10.1371/journal.pbio.1000509] [Citation(s) in RCA: 195] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2010] [Accepted: 08/25/2010] [Indexed: 12/02/2022] Open
Abstract
Genomic/peptidomic analyses of the planarian Schmidtea mediterranea identifies >200 neuropeptides and uncovers a conserved neuropeptide required for proper maturation and maintenance of the reproductive system. Bioactive peptides (i.e., neuropeptides or peptide hormones) represent the largest class of cell-cell signaling molecules in metazoans and are potent regulators of neural and physiological function. In vertebrates, peptide hormones play an integral role in endocrine signaling between the brain and the gonads that controls reproductive development, yet few of these molecules have been shown to influence reproductive development in invertebrates. Here, we define a role for peptide hormones in controlling reproductive physiology of the model flatworm, the planarian Schmidtea mediterranea. Based on our observation that defective neuropeptide processing results in defects in reproductive system development, we employed peptidomic and functional genomic approaches to characterize the planarian peptide hormone complement, identifying 51 prohormone genes and validating 142 peptides biochemically. Comprehensive in situ hybridization analyses of prohormone gene expression revealed the unanticipated complexity of the flatworm nervous system and identified a prohormone specifically expressed in the nervous system of sexually reproducing planarians. We show that this member of the neuropeptide Y superfamily is required for the maintenance of mature reproductive organs and differentiated germ cells in the testes. Additionally, comparative analyses of our biochemically validated prohormones with the genomes of the parasitic flatworms Schistosoma mansoni and Schistosoma japonicum identified new schistosome prohormones and validated half of all predicted peptide-encoding genes in these parasites. These studies describe the peptide hormone complement of a flatworm on a genome-wide scale and reveal a previously uncharacterized role for peptide hormones in flatworm reproduction. Furthermore, they suggest new opportunities for using planarians as free-living models for understanding the reproductive biology of flatworm parasites. Flatworms cause diseases affecting hundreds of millions of people, so understanding what influences their reproductive activity is of fundamental importance. Neurally derived signals have been suggested to coordinate sexual reproduction in free-living flatworms, yet the neuroendocrine signaling repertoire has not been characterized comprehensively for any flatworm. Neuropeptides are a large diverse group of cell-cell signaling molecules and play many roles in vertebrate reproductive development; however, little is known about their function in reproductive development among invertebrates. Here we use biochemical and bioinformatic techniques to identify bioactive peptides in the genome of the planarian flatworm Schmidtea mediterranea and identify 51 genes encoding >200 peptides. Analysis of these genes in both sexual and asexual strains of S. mediterranea identified a neuropeptide Y superfamily member as important for the normal development and maintenance of the planarian reproductive system. We suggest that understanding peptide hormone function in planarian reproduction could have practical implications in the treatment of parasitic flatworms.
Collapse
Affiliation(s)
- James J. Collins
- Howard Hughes Medical Institute and Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Xiaowen Hou
- Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Elena V. Romanova
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Bramwell G. Lambrus
- Howard Hughes Medical Institute and Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Claire M. Miller
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Amir Saberi
- Howard Hughes Medical Institute and Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Jonathan V. Sweedler
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Phillip A. Newmark
- Howard Hughes Medical Institute and Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- * E-mail:
| |
Collapse
|
84
|
Rompolas P, Patel-King RS, King SM. An outer arm Dynein conformational switch is required for metachronal synchrony of motile cilia in planaria. Mol Biol Cell 2010; 21:3669-79. [PMID: 20844081 PMCID: PMC2965684 DOI: 10.1091/mbc.e10-04-0373] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Here we use the motile ventral cilia of the planarian S. mediterranea to examine the role of outer arm dynein in the generation and maintenance of metachronal synchrony. We demonstrate that a single dynein light chain plays a mechanosensory role necessary to entrain and maintain the metachronal synchrony of motile cilia. Motile cilia mediate the flow of mucus and other fluids across the surface of specialized epithelia in metazoans. Efficient clearance of peri-ciliary fluids depends on the precise coordination of ciliary beating to produce metachronal waves. The role of individual dynein motors and the mechanical feedback mechanisms required for this process are not well understood. Here we used the ciliated epithelium of the planarian Schmidtea mediterranea to dissect the role of outer arm dynein motors in the metachronal synchrony of motile cilia. We demonstrate that animals that completely lack outer dynein arms display a significant decline in beat frequency and an inability of cilia to coordinate their oscillations and form metachronal waves. Furthermore, lack of a key mechanosensitive regulatory component (LC1) yields a similar phenotype even though outer arms still assemble in the axoneme. The lack of metachrony was not due simply to a decrease in ciliary beat frequency, as reducing this parameter by altering medium viscosity did not affect ciliary coordination. In addition, we did not observe a significant temporal variability in the beat cycle of impaired cilia. We propose that this conformational switch provides a mechanical feedback system within outer arm dynein that is necessary to entrain metachronal synchrony.
Collapse
Affiliation(s)
- Panteleimon Rompolas
- Department of Molecular, Microbial, and Structural Biology, University of Connecticut Health Center, Farmington, CT 06030-3305, USA
| | | | | |
Collapse
|
85
|
Young ND, Campbell BE, Hall RS, Jex AR, Cantacessi C, Laha T, Sohn WM, Sripa B, Loukas A, Brindley PJ, Gasser RB. Unlocking the transcriptomes of two carcinogenic parasites, Clonorchis sinensis and Opisthorchis viverrini. PLoS Negl Trop Dis 2010; 4:e719. [PMID: 20582164 PMCID: PMC2889816 DOI: 10.1371/journal.pntd.0000719] [Citation(s) in RCA: 130] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2010] [Accepted: 04/28/2010] [Indexed: 01/29/2023] Open
Abstract
The two parasitic trematodes, Clonorchis sinensis and Opisthorchis viverrini, have a major impact on the health of tens of millions of humans throughout Asia. The greatest impact is through the malignant cancer ( = cholangiocarcinoma) that these parasites induce in chronically infected people. Therefore, both C. sinensis and O. viverrini have been classified by the World Health Organization (WHO) as Group 1 carcinogens. Despite their impact, little is known about these parasites and their interplay with the host at the molecular level. Recent advances in genomics and bioinformatics provide unique opportunities to gain improved insights into the biology of parasites as well as their relationships with their hosts at the molecular level. The present study elucidates the transcriptomes of C. sinensis and O. viverrini using a platform based on next-generation (high throughput) sequencing and advanced in silico analyses. From 500,000 sequences, >50,000 sequences were assembled for each species and categorized as biologically relevant based on homology searches, gene ontology and/or pathway mapping. The results of the present study could assist in defining molecules that are essential for the development, reproduction and survival of liver flukes and/or that are linked to the development of cholangiocarcinoma. This study also lays a foundation for future genomic and proteomic research of C. sinensis and O. viverrini and the cancers that they are known to induce, as well as novel intervention strategies.
Collapse
Affiliation(s)
- Neil D. Young
- Department of Veterinary Science, The University of Melbourne, Werribee, Victoria, Australia
| | - Bronwyn E. Campbell
- Department of Veterinary Science, The University of Melbourne, Werribee, Victoria, Australia
| | - Ross S. Hall
- Department of Veterinary Science, The University of Melbourne, Werribee, Victoria, Australia
| | - Aaron R. Jex
- Department of Veterinary Science, The University of Melbourne, Werribee, Victoria, Australia
| | - Cinzia Cantacessi
- Department of Veterinary Science, The University of Melbourne, Werribee, Victoria, Australia
| | - Thewarach Laha
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Woon-Mok Sohn
- Department of Parasitology and Institute of Health Sciences, School of Medicine, Gyeongsang National University, Jinju, Republic of Korea
| | - Banchob Sripa
- Department of Pathology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Alex Loukas
- Queensland Tropical Health Alliance, James Cook University, Smithfield, Cairns, Queensland, Australia
| | - Paul J. Brindley
- Department of Microbiology, Immunology and Tropical Medicine, The George Washington University Medical Center, Washington, D. C., United States of America
| | - Robin B. Gasser
- Department of Veterinary Science, The University of Melbourne, Werribee, Victoria, Australia
| |
Collapse
|
86
|
Abstract
Adult planarians are capable of undergoing regeneration and body remodelling in order to adapt to physical damage or extreme environmental conditions. Moreover, most planarians can tolerate long periods of starvation and during this time, they shrink from an adult size to, and sometimes beyond, the initial size at hatching. Indeed, these properties have made them a classic model to study stem cells and regeneration. Under such stressful conditions, food reserves from the gastrodermis and parenchyma are first used up and later the testes, copulatory organs and ovaries are digested. More surprisingly, when food is again made available to shrunken individuals, they grow back to adult size and all their reproductive structures reappear. These cycles of growth and shrinkage may occur over long periods without any apparent impairment to the individual, or to its future maturation and breeding capacities. This plasticity resides in a mesoderm tissue known as the parenchyma, which is formed by several differentiated non-proliferating cell types and only one mitotically active cell type, the neoblasts, which represent approximately 20-30% of the cells in the parenchyma. Neoblasts are generally thought to be somatic stem-cells that participate in the normal continuous turnover of all cell types in planarians. Hence, planarians are organisms that continuously adapt their bodies (morphallaxis) to different environmental stresses (i.e.: injury or starvation). This adaptation involves a variety of processes including proliferation, differentiation, apoptosis and autophagy, all of which are perfectly orchestrated and tightly regulated to remodel or restore the body pattern. While neoblast biology and body re-patterning are currently the subject of intense research, apoptosis and autophagy remain much less studied. In this review we will summarize our current understanding and hypotheses regarding where and when apoptosis and autophagy occur and fulfil an essential role in planarians.
Collapse
|
87
|
Shibata N, Rouhana L, Agata K. Cellular and molecular dissection of pluripotent adult somatic stem cells in planarians. Dev Growth Differ 2010; 52:27-41. [PMID: 20078652 DOI: 10.1111/j.1440-169x.2009.01155.x] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Freshwater planarians, Plathelminthes, have been an intriguing model animal of regeneration studies for more than 100 years. Their robust regenerative ability is one of asexual reproductive capacity, in which complete animals develop from tiny body fragments within a week. Pluripotent adult somatic stem cells, called neoblasts, assure this regenerative ability. Neoblasts give rise to not only all types of somatic cells, but also germline cells. During the last decade, several experimental techniques for the analysis of planarian neoblasts at the molecular level, such as in situ hybridization, RNAi and fluorescence activated cell sorting, have been established. Moreover, information about genes involved in maintenance and differentiation of neoblasts has been accumulated. One of the molecular features of neoblasts is the expression of many RNA regulators, which are involved in germline development in other animals, such as vasa and piwi family genes. In this review, we introduce physiological and molecular features of the neoblast, and discuss how germline genes regulate planarian neoblasts and what differences exist between neoblasts and germline cells.
Collapse
Affiliation(s)
- Norito Shibata
- Global COE Program, Division of Biological Science, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan.
| | | | | |
Collapse
|
88
|
De Mulder K, Kuales G, Pfister D, Willems M, Egger B, Salvenmoser W, Thaler M, Gorny AK, Hrouda M, Borgonie G, Ladurner P. Characterization of the stem cell system of the acoel Isodiametra pulchra. BMC DEVELOPMENTAL BIOLOGY 2009; 9:69. [PMID: 20017953 PMCID: PMC2806412 DOI: 10.1186/1471-213x-9-69] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2009] [Accepted: 12/18/2009] [Indexed: 12/27/2022]
Abstract
Background Tissue plasticity and a substantial regeneration capacity based on stem cells are the hallmark of several invertebrate groups such as sponges, cnidarians and Platyhelminthes. Traditionally, Acoela were seen as an early branching clade within the Platyhelminthes, but became recently positioned at the base of the Bilateria. However, little is known on how the stem cell system in this new phylum is organized. In this study, we wanted to examine if Acoela possess a neoblast-like stem cell system that is responsible for development, growth, homeostasis and regeneration. Results We established enduring laboratory cultures of the acoel Isodiametra pulchra (Acoela, Acoelomorpha) and implemented in situ hybridization and RNA interference (RNAi) for this species. We used BrdU labelling, morphology, ultrastructure and molecular tools to illuminate the morphology, distribution and plasticity of acoel stem cells under different developmental conditions. We demonstrate that neoblasts are the only proliferating cells which are solely mesodermally located within the organism. By means of in situ hybridisation and protein localisation we could demonstrate that the piwi-like gene ipiwi1 is expressed in testes, ovaries as well as in a subpopulation of somatic stem cells. In addition, we show that germ cell progenitors are present in freshly hatched worms, suggesting an embryonic formation of the germline. We identified a potent stem cell system that is responsible for development, homeostasis, regeneration and regrowth upon starvation. Conclusions We introduce the acoel Isodiametra pulchra as potential new model organism, suitable to address developmental questions in this understudied phylum. We show that neoblasts in I. pulchra are crucial for tissue homeostasis, development and regeneration. Notably, epidermal cells were found to be renewed exclusively from parenchymally located stem cells, a situation known only from rhabditophoran flatworms so far. For further comparison, it will be important to analyse the stem cell systems of other key-positioned understudied taxa.
Collapse
Affiliation(s)
- Katrien De Mulder
- University of Innsbruck, Institute of Zoology, Technikerstrasse 25, A-6020 Innsbruck, Austria.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
89
|
Sekii K, Salvenmoser W, De Mulder K, Scharer L, Ladurner P. Melav2, an elav-like gene, is essential for spermatid differentiation in the flatworm Macrostomum lignano. BMC DEVELOPMENTAL BIOLOGY 2009; 9:62. [PMID: 19995429 PMCID: PMC2795745 DOI: 10.1186/1471-213x-9-62] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2009] [Accepted: 12/08/2009] [Indexed: 11/10/2022]
Abstract
Background Failure of sperm differentiation is one of the major causes of male sterility. During spermiogenesis, spermatids undergo a complex metamorphosis, including chromatin condensation and cell elongation. Although the resulting sperm morphology and property can vary depending on the species, these processes are fundamental in many organisms. Studying genes involved in such processes can thus provide important information for a better understanding of spermatogenesis, which might be universally applied to many other organisms. Results In a screen for genes that have gonad-specific expression we isolated an elav-like gene, melav2, from Macrostomum lignano, containing the three RNA recognition motifs characteristic of elav-like genes. We found that melav2 mRNA was expressed exclusively in the testis, as opposed to the known elav genes, which are expressed in the nervous system. The RNAi phenotype of melav2 was characterized by an aberrant spermatid morphology, where sperm elongation often failed, and an empty seminal vesicle. Melav2 RNAi treated worms were thus male-sterile. Further analysis revealed that in melav2 RNAi treated worms precocious chromatin condensation occurred during spermatid differentiation, resulting in an abnormally tightly condensed chromatin and large vacuoles in round spermatids. In addition, immunostaining using an early-spermatid specific antibody revealed that melav2 RNAi treated worms had a larger amount of signal positive cells, suggesting that many cells failed the transition from early spermatid stage. Conclusion We characterize a new function for elav-like genes, showing that melav2 plays a crucial role during spermatid differentiation, especially in the regulation of chromatin condensation and/or cell elongation.
Collapse
Affiliation(s)
- Kiyono Sekii
- Department of Evolutionary Biology, Zoological Institute, University of Basel, Basel, Switzerland.
| | | | | | | | | |
Collapse
|
90
|
Rompolas P, Patel-King RS, King SM. Schmidtea mediterranea: a model system for analysis of motile cilia. Methods Cell Biol 2009; 93:81-98. [PMID: 20409812 DOI: 10.1016/s0091-679x(08)93004-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Cilia are cellular organelles that appeared early in the evolution of eukaryotes. These structures and the pool of about 600genes involved in their assembly and function are highly conserved in organisms as distant as single-cell protists, like Chlamydomonas reinhardtti, and humans (Silflow and Lefebvre, 2001). A significant body of work on the biology of cilia has been produced over the years, with the help of powerful model organisms including C. reinhardtti, Caenorhabditis elegans, sea urchins, and mice. However, specific limitations of these systems, especially regarding the ability to efficiently study gene loss-of-function, warrant the search for a new model organism to study cilia and cilia-based motility. Schmidtea mediterranea is a species of planarian (Class: Tubellaria) with a well-defined monostratified ciliated epithelium, which contributes to the motility of the organism, in addition to other more specialized ciliary structures. The use of S. mediterranea as an experimental system to study stem cell biology and regeneration has led to a recently sequenced genome and to the development of a wide array of powerful tools including the ability to inhibit gene expression via RNA interference. In addition, we have developed and describe here a number of methods for analyzing motile cilia in S. mediterranea. Overall, S. mediterranea is a highly versatile, easy to maintain, and genetically tractable organism that provides a powerful alternative model system for the study of motile cilia.
Collapse
Affiliation(s)
- Panteleimon Rompolas
- Department of Molecular, Microbial & Structural Biology, University of Connecticut Health Center, Farmington, Connecticut 06030-3305, USA
| | | | | |
Collapse
|
91
|
Lu YC, Smielewska M, Palakodeti D, Lovci MT, Aigner S, Yeo GW, Graveley BR. Deep sequencing identifies new and regulated microRNAs in Schmidtea mediterranea. RNA (NEW YORK, N.Y.) 2009; 15:1483-1491. [PMID: 19553344 PMCID: PMC2714757 DOI: 10.1261/rna.1702009] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2009] [Accepted: 04/29/2009] [Indexed: 05/28/2023]
Abstract
MicroRNAs (miRNAs) play important roles in directing the differentiation of cells down a variety of cell lineage pathways. The planarian Schmidtea mediterranea can regenerate all lost body tissue after amputation due to a population of pluripotent somatic stem cells called neoblasts, and is therefore an excellent model organism to study the roles of miRNAs in stem cell function. Here, we use a combination of deep sequencing and bioinformatics to discover 66 new miRNAs in S. mediterranea. We also identify 21 miRNAs that are specifically expressed in either sexual or asexual animals. Finally, we identified five miRNAs whose expression is sensitive to gamma-irradiation, suggesting they are expressed in neoblasts or early neoblast progeny. Together, these results increase the known repertoire of S. mediterranea miRNAs and identify numerous regulated miRNAs that may play important roles in regeneration, homeostasis, neoblast function, and reproduction.
Collapse
Affiliation(s)
- Yi-Chien Lu
- Department of Genetics and Developmental Biology, University of Connecticut Stem Cell Institute, University of Connecticut Health Center, Farmington, Connecticut 06030-3301, USA
| | | | | | | | | | | | | |
Collapse
|
92
|
Forsthoefel DJ, Newmark PA. Emerging patterns in planarian regeneration. Curr Opin Genet Dev 2009; 19:412-20. [PMID: 19574035 PMCID: PMC2882238 DOI: 10.1016/j.gde.2009.05.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2009] [Accepted: 05/15/2009] [Indexed: 11/21/2022]
Abstract
In the past decade, the planarian has become an increasingly tractable invertebrate model for the investigation of regeneration and stem cell biology. Application of a variety of techniques and development of genomic reagents in this system have enabled exploration of the molecular mechanisms by which pluripotent somatic stem cells called neoblasts replenish, repair, and regenerate planarian tissues and organs. Recent investigations have implicated evolutionarily conserved signaling pathways in the re-establishment of anterior-posterior (A-P), dorsal-ventral (D-V), and medial-lateral (M-L) polarity after injury. These studies have significantly advanced our understanding of early events during planarian regeneration and have raised new questions about the mechanisms of stem cell-based tissue repair and renewal.
Collapse
Affiliation(s)
- David J. Forsthoefel
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign
| | - Phillip A. Newmark
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign
- Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign
| |
Collapse
|
93
|
Ortiz-Pineda PA, Ramírez-Gómez F, Pérez-Ortiz J, González-Díaz S, Santiago-De Jesús F, Hernández-Pasos J, Del Valle-Avila C, Rojas-Cartagena C, Suárez-Castillo EC, Tossas K, Méndez-Merced AT, Roig-López JL, Ortiz-Zuazaga H, García-Arrarás JE. Gene expression profiling of intestinal regeneration in the sea cucumber. BMC Genomics 2009; 10:262. [PMID: 19505337 PMCID: PMC2711116 DOI: 10.1186/1471-2164-10-262] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2009] [Accepted: 06/08/2009] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Among deuterostomes, the regenerative potential is maximally expressed in echinoderms, animals that can quickly replace most injured organs. In particular, sea cucumbers are excellent models for studying organ regeneration since they regenerate their digestive tract after evisceration. However, echinoderms have been sidelined in modern regeneration studies partially because of the lack of genome-wide profiling approaches afforded by modern genomic tools.For the last decade, our laboratory has been using the sea cucumber Holothuria glaberrima to dissect the cellular and molecular events that allow for such amazing regenerative processes. We have already established an EST database obtained from cDNA libraries of normal and regenerating intestine at two different regeneration stages. This database now has over 7000 sequences. RESULTS In the present work we used a custom-made microchip from Agilent with 60-mer probes for these ESTs, to determine the gene expression profile during intestinal regeneration. Here we compared the expression profile of animals at three different intestinal regeneration stages (3-, 7- and 14-days post evisceration) against the profile from normal (uneviscerated) intestines. The number of differentially expressed probes ranged from 70% at p < 0.05 to 39% at p < 0.001. Clustering analyses show specific profiles of expression for early (first week) and late (second week) regeneration stages. We used semiquantitative reverse transcriptase polymerase chain reaction (RT-PCR) to validate the expression profile of fifteen microarray detected differentially expressed genes which resulted in over 86% concordance between both techniques. Most of the differentially expressed ESTs showed no clear similarity to sequences in the databases and might represent novel genes associated with regeneration. However, other ESTs were similar to genes known to be involved in regeneration-related processes, wound healing, cell proliferation, differentiation, morphological plasticity, cell survival, stress response, immune challenge, and neoplastic transformation. Among those that have been validated, cytoskeletal genes, such as actins, and developmental genes, such as Wnt and Hox genes, show interesting expression profiles during regeneration. CONCLUSION Our findings set the base for future studies into the molecular basis of intestinal regeneration. Moreover, it advances the use of echinoderms in regenerative biology, animals that because of their amazing properties and their key evolutionary position, might provide important clues to the genetic basis of regenerative processes.
Collapse
Affiliation(s)
- Pablo A Ortiz-Pineda
- University of Puerto Rico, Rio Piedras, Department of Biology, San Juan, PR, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
94
|
Willems M, Leroux F, Claeys M, Boone M, Mouton S, Artois T, Borgonie G. Ontogeny of the complex sperm in the macrostomid flatworm Macrostomum lignano (Macrostomorpha, Rhabditophora). J Morphol 2009; 270:162-74. [PMID: 18798245 DOI: 10.1002/jmor.10675] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Spermiogenesis in Macrostomum lignano (Macrostomorpha, Rhabditophora) is described using light- and electron microscopy of the successive stages in sperm development. Ovoid spermatids develop to highly complex, elongated sperm possessing an undulating distal (anterior) process (or "feeler"), bristles, and a proximal (posterior) brush. In particular, we present a detailed account of the morphology and ontogeny of the bristles, describing for the first time the formation of a highly specialized bristle complex consisting of several parts. This complex is ultimately reduced when sperm are mature. The implications of the development of this bristle complex on both sperm maturation and the evolution and function of the bristles are discussed. The assumed homology between bristles and flagellae questioned.
Collapse
Affiliation(s)
- Maxime Willems
- Nematology Section, Department of Biology, Ghent University, B-9000 Ghent, Belgium
| | | | | | | | | | | | | |
Collapse
|
95
|
Solana J, Lasko P, Romero R. Spoltud-1 is a chromatoid body component required for planarian long-term stem cell self-renewal. Dev Biol 2009; 328:410-21. [PMID: 19389344 DOI: 10.1016/j.ydbio.2009.01.043] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2008] [Revised: 01/29/2009] [Accepted: 01/30/2009] [Indexed: 12/31/2022]
Abstract
Freshwater planarians exhibit a striking power of regeneration, based on a population of undifferentiated totipotent stem cells, called neoblasts. These somatic stem cells have several characteristics resembling those of germ line stem cells in other animals, such as the presence of perinuclear RNA granules (chromatoid bodies). We have isolated a Tudor domain-containing gene in the planarian species Schmidtea polychroa, Spoltud-1, and show that it is expressed in neoblast cells, germ line cells and central nervous system, and during embryonic development. Within the neoblasts, Spoltud-1 protein is enriched in chromatoid bodies. Spoltud-1 RNAi eliminates protein expression after 3 weeks, and abolishes the power of regeneration of planarians after 7 weeks. Neoblast cells are eliminated by the RNAi treatment, disappearing at the end rather than gradually during the process. Neoblasts with no detectable Spoltud-1 protein are able to proliferate and differentiate. These results suggest that Spoltud-1 is required for long term stem cell self renewal.
Collapse
Affiliation(s)
- Jordi Solana
- Departament de Genètica, Facultat de Biologia, Av. Diagonal 645, Edifici Annex, Planta 1, 08028 Barcelona, Catalunya, Spain.
| | | | | |
Collapse
|
96
|
Expression pattern of the expanded noggin gene family in the planarian Schmidtea mediterranea. Gene Expr Patterns 2009; 9:246-53. [PMID: 19174194 DOI: 10.1016/j.gep.2008.12.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2008] [Revised: 12/22/2008] [Accepted: 12/24/2008] [Indexed: 01/04/2023]
Abstract
Noggin genes are mainly known as inhibitors of the Bone Morphogenetic Protein (BMP) signalling pathway. Noggin genes play an important role in various developmental processes such as axis formation and neural differentiation. In vertebrates, inhibition of the BMP pathway is usually carried out together with other inhibitory molecules: chordin and follistatin. Recently, it has been shown in planarians that the BMP pathway has a conserved function in the maintenance and re-establishment of the dorsoventral axis during homeostasis and regeneration. In an attempt to further characterize the BMP pathway in this model we have undertaken an in silico search of noggin genes in the genome of Schmidtea mediterranea. In contrast to other systems in which between one and four noggin genes have been reported, ten genes containing a noggin domain are present in S. mediterranea. These genes have been classified into two groups: noggin genes (two genes) and noggin-like genes (eight genes). Noggin-like genes are characterized by the presence of an insertion of 50-60 amino acids in the middle of the noggin domain. Here, we report the characterization of this expanded family of noggin genes in planarians as well as their expression patterns in both intact and regenerating animals. In situ hybridizations show that planarian noggin genes are expressed in a variety of cell types located in different regions of the planarian body.
Collapse
|
97
|
Reddien PW, Newmark PA, Alvarado AS. Gene nomenclature guidelines for the planarianSchmidtea mediterranea. Dev Dyn 2008; 237:3099-101. [DOI: 10.1002/dvdy.21623] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
98
|
Oviedo NJ, Nicolas CL, Adams DS, Levin M. Planarians: a versatile and powerful model system for molecular studies of regeneration, adult stem cell regulation, aging, and behavior. Cold Spring Harb Protoc 2008; 2008:pdb.emo101. [PMID: 21356684 PMCID: PMC10467510 DOI: 10.1101/pdb.emo101] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
INTRODUCTIONIn recent years, planarians have been increasingly recognized as an emerging model organism amenable to molecular genetic techniques aimed at understanding complex biological tasks commonly observed among metazoans. Growing evidence suggests that this model organism is uniquely poised to inform us about the mechanisms of tissue regeneration, stem cell regulation, tissue turnover, pharmacological action of diverse drugs, cancer, and aging. This article provides an overview of the planarian model system with special attention to the species Schmidtea mediterranea. Additionally, information is provided about the most popular use of this organism, together with modern genomic resources and technical approaches.
Collapse
Affiliation(s)
- Néstor J. Oviedo
- Center for Regenerative and Developmental Biology, Forsyth Institute and Developmental Biology Department, Harvard School of Dental Medicine, Boston, MA 02115, USA
| | - Cindy L. Nicolas
- Center for Regenerative and Developmental Biology, Forsyth Institute and Developmental Biology Department, Harvard School of Dental Medicine, Boston, MA 02115, USA
| | - Dany S. Adams
- Center for Regenerative and Developmental Biology, Forsyth Institute and Developmental Biology Department, Harvard School of Dental Medicine, Boston, MA 02115, USA
| | - Michael Levin
- Center for Regenerative and Developmental Biology, Forsyth Institute and Developmental Biology Department, Harvard School of Dental Medicine, Boston, MA 02115, USA
| |
Collapse
|
99
|
Eisenhoffer GT, Kang H, Sánchez Alvarado A. Molecular analysis of stem cells and their descendants during cell turnover and regeneration in the planarian Schmidtea mediterranea. Cell Stem Cell 2008; 3:327-39. [PMID: 18786419 PMCID: PMC2614339 DOI: 10.1016/j.stem.2008.07.002] [Citation(s) in RCA: 297] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2008] [Revised: 06/12/2008] [Accepted: 07/02/2008] [Indexed: 12/20/2022]
Abstract
In adult planarians, the replacement of cells lost to physiological turnover or injury is sustained by the proliferation and differentiation of stem cells known as neoblasts. Neoblast lineage relationships and the molecular changes that take place during differentiation into the appropriate cell types are poorly understood. Here we report the identification and characterization of a cohort of genes specifically expressed in neoblasts and their descendants. We find that genes with severely downregulated expression after irradiation molecularly define at least three discrete subpopulations of cells. Simultaneous BrdU labeling and in situ hybridization experiments in intact and regenerating animals indicate that these cell subpopulations are related by lineage. Our data demonstrate not only the ability to measure and study the in vivo population dynamics of adult stem cells during tissue homeostasis and regeneration, but also the utility of studies in planarians to broadly inform stem cell biology in adult organisms.
Collapse
Affiliation(s)
- George T Eisenhoffer
- Department of Neurobiology and Anatomy, Howard Hughes Medical Institute, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
| | | | | |
Collapse
|
100
|
Palakodeti D, Smielewska M, Lu YC, Yeo GW, Graveley BR. The PIWI proteins SMEDWI-2 and SMEDWI-3 are required for stem cell function and piRNA expression in planarians. RNA (NEW YORK, N.Y.) 2008; 14:1174-1186. [PMID: 18456843 PMCID: PMC2390803 DOI: 10.1261/rna.1085008] [Citation(s) in RCA: 173] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2008] [Accepted: 03/10/2008] [Indexed: 05/26/2023]
Abstract
PIWI proteins are expressed in germ cells in a wide variety of metazoans, where they participate in the synthesis and function of a novel class of small RNAs called PIWI associated RNAs (piRNAs). One function of piRNAs is to preserve the integrity of the germline genome by silencing transposons, though they also participate in epigenetic and post-transcriptional gene regulation. In the planarian Schmidtea mediterranea, the PIWI proteins SMEDWI-1 and SMEDWI-2 are expressed in neoblasts and SMEDWI-2 is required for regeneration and homeostasis. Here, we identify a diverse population of approximately 32-nucleotide small RNAs that strongly resemble vertebrate and insect piRNAs and map to hundreds of thousands of loci in the S. mediterranea genome. The expression of these RNAs occurs predominantly in neoblasts and is not restricted to the germline. RNAi knockdown of either SMEDWI-2 or a newly identified PIWI protein, SMEDWI-3, impairs regeneration and homeostasis and decreases the levels of both piRNAs and neoblasts. Therefore, SMEDWI-2 and SMEDWI-3 are required for piRNA expression, regeneration, and neoblast function in S. mediterranea.
Collapse
Affiliation(s)
- Dasaradhi Palakodeti
- Department of Genetics and Developmental Biology, University of Connecticut Stem Cell Institute, Farmington, Connecticut 06030-3301, USA
| | | | | | | | | |
Collapse
|