51
|
GAPDH/Siah1 cascade is involved in traumatic spinal cord injury and could be attenuated by sivelestat sodium. Neuroscience 2016; 330:171-80. [DOI: 10.1016/j.neuroscience.2016.05.054] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 05/25/2016] [Accepted: 05/26/2016] [Indexed: 10/21/2022]
|
52
|
González MC, Romero JM, Ingaramo MC, Muñoz Sosa CJ, Curtino JA, Carrizo ME. Enhancement by GOSPEL protein of GAPDH aggregation induced by nitric oxide donor and its inhibition by NAD(.). FEBS Lett 2016; 590:2210-20. [PMID: 27282776 DOI: 10.1002/1873-3468.12242] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2016] [Revised: 05/31/2016] [Accepted: 06/06/2016] [Indexed: 11/12/2022]
Abstract
Glyceraldehyde-3-phosphate dehydrogenase's (GAPDH's) competitor of Siah Protein Enhances Life (GOSPEL) is the protein that competes with Siah1 for binding to GAPDH under NO-induced stress conditions preventing Siah1-bound GAPDH nuclear translocation and subsequent apoptosis. Under these conditions, GAPDH may also form amyloid-like aggregates proposed to be involved in cell death. Here, we report the in vitro enhancement by GOSPEL of NO-induced GAPDH aggregation resulting in the formation GOSPEL-GAPDH co-aggregates with some amyloid-like properties. Our findings suggest a new function for GOSPEL, contrasting with its helpful role against the apoptotic nuclear translocation of GAPDH. NAD(+) inhibited both GAPDH aggregation and co-aggregation with GOSPEL, a hitherto undescribed effect of the coenzyme against the consequences of oxidative stress.
Collapse
Affiliation(s)
- María C González
- Departamento de Química Biológica, Facultad de Ciencias Químicas, Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), Universidad Nacional de Córdoba-Consejo Nacional de Investigaciones Científicas y Técnicas (UNC-CONICET), Universidad Nacional de Córdoba, Argentina
| | - Jorge M Romero
- Departamento de Química Biológica, Facultad de Ciencias Químicas, Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), Universidad Nacional de Córdoba-Consejo Nacional de Investigaciones Científicas y Técnicas (UNC-CONICET), Universidad Nacional de Córdoba, Argentina
| | - María C Ingaramo
- Departamento de Química Biológica, Facultad de Ciencias Químicas, Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), Universidad Nacional de Córdoba-Consejo Nacional de Investigaciones Científicas y Técnicas (UNC-CONICET), Universidad Nacional de Córdoba, Argentina
| | - Christian J Muñoz Sosa
- Departamento de Química Biológica, Facultad de Ciencias Químicas, Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), Universidad Nacional de Córdoba-Consejo Nacional de Investigaciones Científicas y Técnicas (UNC-CONICET), Universidad Nacional de Córdoba, Argentina
| | - Juan A Curtino
- Departamento de Química Biológica, Facultad de Ciencias Químicas, Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), Universidad Nacional de Córdoba-Consejo Nacional de Investigaciones Científicas y Técnicas (UNC-CONICET), Universidad Nacional de Córdoba, Argentina
| | - María E Carrizo
- Departamento de Química Biológica, Facultad de Ciencias Químicas, Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), Universidad Nacional de Córdoba-Consejo Nacional de Investigaciones Científicas y Técnicas (UNC-CONICET), Universidad Nacional de Córdoba, Argentina
| |
Collapse
|
53
|
Klessig DF, Tian M, Choi HW. Multiple Targets of Salicylic Acid and Its Derivatives in Plants and Animals. Front Immunol 2016; 7:206. [PMID: 27303403 PMCID: PMC4880560 DOI: 10.3389/fimmu.2016.00206] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 05/12/2016] [Indexed: 01/04/2023] Open
Abstract
Salicylic acid (SA) is a critical plant hormone that is involved in many processes, including seed germination, root initiation, stomatal closure, floral induction, thermogenesis, and response to abiotic and biotic stresses. Its central role in plant immunity, although extensively studied, is still only partially understood. Classical biochemical approaches and, more recently, genome-wide high-throughput screens have identified more than two dozen plant SA-binding proteins (SABPs), as well as multiple candidates that have yet to be characterized. Some of these proteins bind SA with high affinity, while the affinity of others exhibit is low. Given that SA levels vary greatly even within a particular plant species depending on subcellular location, tissue type, developmental stage, and with respect to both time and location after an environmental stimulus such as infection, the presence of SABPs exhibiting a wide range of affinities for SA may provide great flexibility and multiple mechanisms through which SA can act. SA and its derivatives, both natural and synthetic, also have multiple targets in animals/humans. Interestingly, many of these proteins, like their plant counterparts, are associated with immunity or disease development. Two recently identified SABPs, high mobility group box protein and glyceraldehyde 3-phosphate dehydrogenase, are critical proteins that not only serve key structural or metabolic functions but also play prominent roles in disease responses in both kingdoms.
Collapse
Affiliation(s)
| | - Miaoying Tian
- Department of Plant and Environmental Protection Sciences, University of Hawaii at Manoa , Honolulu, HI , USA
| | - Hyong Woo Choi
- Boyce Thompson Institute, Cornell University , Ithaca, NY , USA
| |
Collapse
|
54
|
Hu J, Han H, Lau MY, Lee H, MacVeigh-Aloni M, Ji C. Effects of combined alcohol and anti-HIV drugs on cellular stress responses in primary hepatocytes and hepatic stellate and kupffer cells. Alcohol Clin Exp Res 2016; 39:11-20. [PMID: 25623401 DOI: 10.1111/acer.12608] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 10/18/2014] [Indexed: 12/19/2022]
Abstract
BACKGROUND Certain anti-HIV drugs alone or in combination are often associated with liver damages, which are frequently worsened by alcohol consumption. We previously found an endoplasmic reticulum (ER) stress mechanism for the drug- and alcohol-induced hepatic injuries in animal models and in vitro hepatocytes. However, it is unknown whether anti-HIV drugs and alcohol induce similar cellular stress responses and injuries in liver nonparenchymal cells. METHODS Primary mouse hepatocytes (PMH), kupffer cells (KC), and hepatocellular stellate cells (HSC) were freshly isolated from mouse liver and treated with DMSO, stress-inducing pharmaceutical agents, alcohol alone, or in combination with antiviral ritonavir (RIT), lopinavir (LOP), or efavirenz (EFV). Expression of cellular stress markers, protein colocalization, and cell death were analyzed with immunoblotting, immunocytochemistry, and positive double staining with Sytox green and Hoechst blue, respectively. RESULTS Expression of the ER stress markers of BiP, CHOP, and SERCA and the autophagy marker LC3 was significantly changed in PMH in response to combined alcohol, RIT, and LOP, which was companied by increased cell death compared with control. In contrast, although pharmaceutical agents induced ER stress and cell death, no significant ER stress or cell death was found in KC treated with alcohol, RIT, LOP, and EFV singly or in combination. In HSC, alcohol, RIT, LOP, or EFV induced BiP, but not CHOP, SERCA, or cell death compared with vehicle control. Further in PMH, RIT and LOP or in combination with alcohol-induced dose-dependent inhibition of β-actin. Inhibition of β-actin by RIT and LOP was companied with an inhibited nuclear expression of the antioxidant response regulator Nrf2 and reduced GST downstream of Nrf2. Ascorbic acid treatment reduced the alcohol-, RIT-, and LOP-induced cell death. CONCLUSIONS The data suggest for the first time that sensitivities of hepatocytes and nonparenchymal cells to alcohol and anti-HIV drugs in vitro are different in terms of cellular stress response and cell death injury. Oxidative stress mediated by Nrf2 contributes to the alcohol- and drug-induced toxicity in the hepatocytes.
Collapse
Affiliation(s)
- Jay Hu
- GI/Liver Division, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California
| | | | | | | | | | | |
Collapse
|
55
|
Akbar M, Essa MM, Daradkeh G, Abdelmegeed MA, Choi Y, Mahmood L, Song BJ. Mitochondrial dysfunction and cell death in neurodegenerative diseases through nitroxidative stress. Brain Res 2016; 1637:34-55. [PMID: 26883165 PMCID: PMC4821765 DOI: 10.1016/j.brainres.2016.02.016] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 02/02/2016] [Accepted: 02/05/2016] [Indexed: 12/12/2022]
Abstract
Mitochondria are important for providing cellular energy ATP through the oxidative phosphorylation pathway. They are also critical in regulating many cellular functions including the fatty acid oxidation, the metabolism of glutamate and urea, the anti-oxidant defense, and the apoptosis pathway. Mitochondria are an important source of reactive oxygen species leaked from the electron transport chain while they are susceptible to oxidative damage, leading to mitochondrial dysfunction and tissue injury. In fact, impaired mitochondrial function is commonly observed in many types of neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, Huntington's disease, alcoholic dementia, brain ischemia-reperfusion related injury, and others, although many of these neurological disorders have unique etiological factors. Mitochondrial dysfunction under many pathological conditions is likely to be promoted by increased nitroxidative stress, which can stimulate post-translational modifications (PTMs) of mitochondrial proteins and/or oxidative damage to mitochondrial DNA and lipids. Furthermore, recent studies have demonstrated that various antioxidants, including naturally occurring flavonoids and polyphenols as well as synthetic compounds, can block the formation of reactive oxygen and/or nitrogen species, and thus ultimately prevent the PTMs of many proteins with improved disease conditions. Therefore, the present review is aimed to describe the recent research developments in the molecular mechanisms for mitochondrial dysfunction and tissue injury in neurodegenerative diseases and discuss translational research opportunities.
Collapse
Affiliation(s)
- Mohammed Akbar
- Section of Molecular Pharmacology and Toxicology, Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Musthafa Mohamed Essa
- Department of Food Science and Nutrition, College of Agriculture and Marine Sciences, Sultan Qaboos University, Oman; Ageing and Dementia Research Group, Sultan Qaboos University, Oman
| | - Ghazi Daradkeh
- Department of Food Science and Nutrition, College of Agriculture and Marine Sciences, Sultan Qaboos University, Oman
| | - Mohamed A Abdelmegeed
- Section of Molecular Pharmacology and Toxicology, Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Youngshim Choi
- Section of Molecular Pharmacology and Toxicology, Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Lubna Mahmood
- Department of Nutritional Sciences, Qatar University, Qatar
| | - Byoung-Joon Song
- Section of Molecular Pharmacology and Toxicology, Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
56
|
Antidepressant action of ketamine via mTOR is mediated by inhibition of nitrergic Rheb degradation. Mol Psychiatry 2016; 21:313-9. [PMID: 26782056 PMCID: PMC4830355 DOI: 10.1038/mp.2015.211] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 11/11/2015] [Accepted: 11/24/2015] [Indexed: 12/14/2022]
Abstract
As traditional antidepressants act only after weeks/months, the discovery that ketamine, an antagonist of glutamate/N-methyl-D-aspartate (NMDA) receptors, elicits antidepressant actions in hours has been transformative. Its mechanism of action has been elusive, though enhanced mammalian target of rapamycin (mTOR) signaling is a major feature. We report a novel signaling pathway wherein NMDA receptor activation stimulates generation of nitric oxide (NO), which S-nitrosylates glyceraldehyde-3-phosphate dehydrogenase (GAPDH). Nitrosylated GAPDH complexes with the ubiquitin-E3-ligase Siah1 and Rheb, a small G protein that activates mTOR. Siah1 degrades Rheb leading to reduced mTOR signaling, while ketamine, conversely, stabilizes Rheb that enhances mTOR signaling. Drugs selectively targeting components of this pathway may offer novel approaches to the treatment of depression.
Collapse
|
57
|
Lazarev VF, Nikotina AD, Semenyuk PI, Evstafyeva DB, Mikhaylova ER, Muronetz VI, Shevtsov MA, Tolkacheva AV, Dobrodumov AV, Shavarda AL, Guzhova IV, Margulis BA. Small molecules preventing GAPDH aggregation are therapeutically applicable in cell and rat models of oxidative stress. Free Radic Biol Med 2016; 92:29-38. [PMID: 26748070 DOI: 10.1016/j.freeradbiomed.2015.12.025] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2015] [Revised: 12/01/2015] [Accepted: 12/19/2015] [Indexed: 11/18/2022]
Abstract
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is one of the most abundant targets of the oxidative stress. Oxidation of the enzyme causes its inactivation and the formation of intermolecular disulfide bonds, and leads to the accumulation of GAPDH aggregates and ultimately to cell death. The aim of this work was to reveal the ability of chemicals to break the described above pathologic linkage by inhibiting GAPDH aggregation. Using the model of oxidative stress based on SK-N-SH human neuroblastoma cells treated with hydrogen peroxide, we found that lentivirus-mediated down- or up-regulation of GAPDH content caused inhibition or enhancement of the protein aggregation and respectively reduced or increased the level of cell death. To reveal substances that are able to inhibit GAPDH aggregation, we developed a special assay based on dot ultrafiltration using the collection of small molecules of plant origin. In the first round of screening, five compounds were found to possess anti-aggregation activity as established by ultrafiltration and dynamic light scattering; some of the substances efficiently inhibited GAPDH aggregation in nanomolar concentrations. The ability of the compounds to bind GAPDH molecules was proved by the drug affinity responsive target stability assay, molecular docking and differential scanning calorimetry. Results of experiments with SK-N-SH human neuroblastoma treated with hydrogen peroxide show that two substances, RX409 and RX426, lowered the degree of GAPDH aggregation and reduced cell death by 30%. Oxidative injury was emulated in vivo by injecting of malonic acid into the rat brain, and we showed that the treatment with RX409 or RX426 inhibited GAPDH-mediated aggregation in the brain, reduced areas of the injury as proved by magnetic resonance imaging, and augmented the behavioral status of the rats as established by the "beam walking" test. In conclusion, the data show that two GAPDH binders could be therapeutically relevant in the treatment of injuries stemming from hard oxidative stress.
Collapse
Affiliation(s)
- Vladimir F Lazarev
- Institute of Cytology of Russian Academy of Sciences, Tikhoretsky pr., 4, 194064 St. Petersburg, Russia.
| | - Alina D Nikotina
- Institute of Cytology of Russian Academy of Sciences, Tikhoretsky pr., 4, 194064 St. Petersburg, Russia
| | - Pavel I Semenyuk
- Belozersky Institute of Physico-Chemical Biology of Moscow State University, 119992 Moscow, Russia
| | - Diana B Evstafyeva
- Belozersky Institute of Physico-Chemical Biology of Moscow State University, 119992 Moscow, Russia
| | - Elena R Mikhaylova
- Institute of Cytology of Russian Academy of Sciences, Tikhoretsky pr., 4, 194064 St. Petersburg, Russia
| | - Vladimir I Muronetz
- Belozersky Institute of Physico-Chemical Biology of Moscow State University, 119992 Moscow, Russia
| | - Maxim A Shevtsov
- Institute of Cytology of Russian Academy of Sciences, Tikhoretsky pr., 4, 194064 St. Petersburg, Russia
| | - Anastasia V Tolkacheva
- Institute of Cytology of Russian Academy of Sciences, Tikhoretsky pr., 4, 194064 St. Petersburg, Russia
| | - Anatoly V Dobrodumov
- Institute of Macromolecular Compounds Russian Academy of Sciences, 199004 St. Petersburg, Russia
| | - Alexey L Shavarda
- Komarov Botanical Institute Russian Academy of Sciences, 197376 St. Petersburg, Russia
| | - Irina V Guzhova
- Institute of Cytology of Russian Academy of Sciences, Tikhoretsky pr., 4, 194064 St. Petersburg, Russia
| | - Boris A Margulis
- Institute of Cytology of Russian Academy of Sciences, Tikhoretsky pr., 4, 194064 St. Petersburg, Russia
| |
Collapse
|
58
|
Hoque A, Hossain MI, Ameen SS, Ang CS, Williamson N, Ng DCH, Chueh AC, Roulston C, Cheng HC. A beacon of hope in stroke therapy-Blockade of pathologically activated cellular events in excitotoxic neuronal death as potential neuroprotective strategies. Pharmacol Ther 2016; 160:159-79. [PMID: 26899498 DOI: 10.1016/j.pharmthera.2016.02.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Excitotoxicity, a pathological process caused by over-stimulation of ionotropic glutamate receptors, is a major cause of neuronal loss in acute and chronic neurological conditions such as ischaemic stroke, Alzheimer's and Huntington's diseases. Effective neuroprotective drugs to reduce excitotoxic neuronal loss in patients suffering from these neurological conditions are urgently needed. One avenue to achieve this goal is to clearly define the intracellular events mediating the neurotoxic signals originating from the over-stimulated glutamate receptors in neurons. In this review, we first focus on the key cellular events directing neuronal death but not involved in normal physiological processes in the neurotoxic signalling pathways. These events, referred to as pathologically activated events, are potential targets for the development of neuroprotectant therapeutics. Inhibitors blocking some of the known pathologically activated cellular events have been proven to be effective in reducing stroke-induced brain damage in animal models. Notable examples are inhibitors suppressing the ion channel activity of neurotoxic glutamate receptors and those disrupting interactions of specific cellular proteins occurring only in neurons undergoing excitotoxic cell death. Among them, Tat-NR2B9c and memantine are clinically effective in reducing brain damage caused by some acute and chronic neurological conditions. Our second focus is evaluation of the suitability of the other inhibitors for use as neuroprotective therapeutics. We also discuss the experimental approaches suitable for bridging our knowledge gap in our current understanding of the excitotoxic signalling mechanism in neurons and discovery of new pathologically activated cellular events as potential targets for neuroprotection.
Collapse
Affiliation(s)
- Ashfaqul Hoque
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - M Iqbal Hossain
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - S Sadia Ameen
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Ching-Seng Ang
- Bio21 Institute, University of Melbourne, Parkville, VIC 3010, Australia
| | | | - Dominic C H Ng
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, VIC 3010, Australia; School of Biomedical Science, University of Queensland, St. Lucia, QLD, Australia
| | - Anderly C Chueh
- ACRF Chemical Biology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC, 3052, Australia
| | - Carli Roulston
- Department of Medicine, St. Vincent's Hospital, University of Melbourne, Fitzroy, VIC 3065, Australia
| | - Heung-Chin Cheng
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, VIC 3010, Australia.
| |
Collapse
|
59
|
Cocaine elicits autophagic cytotoxicity via a nitric oxide-GAPDH signaling cascade. Proc Natl Acad Sci U S A 2016; 113:1417-22. [PMID: 26787898 DOI: 10.1073/pnas.1524860113] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Cocaine exerts its behavioral stimulant effects by facilitating synaptic actions of neurotransmitters such as dopamine and serotonin. It is also neurotoxic and broadly cytotoxic, leading to overdose deaths. We demonstrate that the cytotoxic actions of cocaine reflect selective enhancement of autophagy, a process that physiologically degrades metabolites and cellular organelles, and that uncontrolled autophagy can also lead to cell death. In brain cultures, cocaine markedly increases levels of LC3-II and depletes p62, both actions characteristic of autophagy. By contrast, cocaine fails to stimulate cell death processes reflecting parthanatos, monitored by cleavage of poly(ADP ribose)polymerase-1 (PARP-1), or necroptosis, assessed by levels of phosphorylated mixed lineage kinase domain-like protein. Pharmacologic inhibition of autophagy protects neurons against cocaine-induced cell death. On the other hand, inhibition of parthanatos, necroptosis, or apoptosis did not change cocaine cytotoxicity. Depletion of ATG5 or beclin-1, major mediators of autophagy, prevents cocaine-induced cell death. By contrast, depleting caspase-3, whose cleavage reflects apoptosis, fails to alter cocaine cytotoxicity, and cocaine does not alter caspase-3 cleavage. Moreover, depleting PARP-1 or RIPK1, key mediators of parthanatos and necroptosis, respectively, did not prevent cocaine-induced cell death. Autophagic actions of cocaine are mediated by the nitric oxide-glyceraldehyde-3-phosphate dehydrogenase signaling pathway. Thus, cocaine-associated autophagy is abolished by depleting GAPDH via shRNA; by the drug CGP3466B, which prevents GAPDH nitrosylation; and by mutating cysteine-150 of GAPDH, its site of nitrosylation. Treatments that selectively influence cocaine-associated autophagy may afford therapeutic benefit.
Collapse
|
60
|
Nakamura T, Lipton SA. Protein S-Nitrosylation as a Therapeutic Target for Neurodegenerative Diseases. Trends Pharmacol Sci 2015; 37:73-84. [PMID: 26707925 DOI: 10.1016/j.tips.2015.10.002] [Citation(s) in RCA: 115] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 10/12/2015] [Accepted: 10/13/2015] [Indexed: 12/20/2022]
Abstract
At physiological levels, nitric oxide (NO) contributes to the maintenance of normal neuronal activity and survival, thus serving as an important regulatory mechanism in the central nervous system. By contrast, accumulating evidence suggests that exposure to environmental toxins or the normal aging process can trigger excessive production of reactive oxygen/nitrogen species (such as NO), contributing to the etiology of several neurodegenerative diseases. We highlight here protein S-nitrosylation, resulting from covalent attachment of an NO group to a cysteine thiol of the target protein, as a ubiquitous effector of NO signaling in both health and disease. We review our current understanding of this redox-dependent post-translational modification under neurodegenerative conditions, and evaluate how targeting dysregulated protein S-nitrosylation can lead to novel therapeutics.
Collapse
Affiliation(s)
| | - Stuart A Lipton
- Scintillon Institute, San Diego, CA 92121, USA; Department of Neurosciences, University of California, San Diego School of Medicine, La Jolla, CA 92039, USA.
| |
Collapse
|
61
|
Choi HW, Tian M, Manohar M, Harraz MM, Park SW, Schroeder FC, Snyder SH, Klessig DF. Human GAPDH Is a Target of Aspirin's Primary Metabolite Salicylic Acid and Its Derivatives. PLoS One 2015; 10:e0143447. [PMID: 26606248 PMCID: PMC4659538 DOI: 10.1371/journal.pone.0143447] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 11/04/2015] [Indexed: 12/23/2022] Open
Abstract
The plant hormone salicylic acid (SA) controls several physiological processes and is a key regulator of multiple levels of plant immunity. To decipher the mechanisms through which SA’s multiple physiological effects are mediated, particularly in immunity, two high-throughput screens were developed to identify SA-binding proteins (SABPs). Glyceraldehyde 3-Phosphate Dehydrogenase (GAPDH) from plants (Arabidopsis thaliana) was identified in these screens. Similar screens and subsequent analyses using SA analogs, in conjunction with either a photoaffinity labeling technique or surface plasmon resonance-based technology, established that human GAPDH (HsGAPDH) also binds SA. In addition to its central role in glycolysis, HsGAPDH participates in several pathological processes, including viral replication and neuronal cell death. The anti-Parkinson’s drug deprenyl has been shown to suppress nuclear translocation of HsGAPDH, an early step in cell death and the resulting cell death induced by the DNA alkylating agent N-methyl-N’-nitro-N-nitrosoguanidine. Here, we demonstrate that SA, which is the primary metabolite of aspirin (acetyl SA) and is likely responsible for many of its pharmacological effects, also suppresses nuclear translocation of HsGAPDH and cell death. Analysis of two synthetic SA derivatives and two classes of compounds from the Chinese medicinal herb Glycyrrhiza foetida (licorice), glycyrrhizin and the SA-derivatives amorfrutins, revealed that they not only appear to bind HsGAPDH more tightly than SA, but also exhibit a greater ability to suppress translocation of HsGAPDH to the nucleus and cell death.
Collapse
Affiliation(s)
- Hyong Woo Choi
- Boyce Thompson Institute for Plant Research, Cornell University, 533 Tower Road, Ithaca, New York, 14853, United States of America
| | - Miaoying Tian
- Boyce Thompson Institute for Plant Research, Cornell University, 533 Tower Road, Ithaca, New York, 14853, United States of America
| | - Murli Manohar
- Boyce Thompson Institute for Plant Research, Cornell University, 533 Tower Road, Ithaca, New York, 14853, United States of America
| | - Maged M. Harraz
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States of America
| | - Sang-Wook Park
- Boyce Thompson Institute for Plant Research, Cornell University, 533 Tower Road, Ithaca, New York, 14853, United States of America
| | - Frank C. Schroeder
- Boyce Thompson Institute for Plant Research, Cornell University, 533 Tower Road, Ithaca, New York, 14853, United States of America
| | - Solomon H. Snyder
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States of America
| | - Daniel F. Klessig
- Boyce Thompson Institute for Plant Research, Cornell University, 533 Tower Road, Ithaca, New York, 14853, United States of America
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, New York, 14853, United States of America
- * E-mail:
| |
Collapse
|
62
|
Qu Z, Greenlief CM, Gu Z. Quantitative Proteomic Approaches for Analysis of Protein S-Nitrosylation. J Proteome Res 2015; 15:1-14. [DOI: 10.1021/acs.jproteome.5b00857] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
| | - C. Michael Greenlief
- Department
of Chemistry, University of Missouri College of Arts and Science, Columbia, Missouri 65211, United States
| | - Zezong Gu
- Harry S. Truman Veterans’ Hospital, Columbia, Missouri 65201, United States
| |
Collapse
|
63
|
Kolodney G, Dumin E, Safory H, Rosenberg D, Mori H, Radzishevsky I, Radzishevisky I, Wolosker H. Nuclear Compartmentalization of Serine Racemase Regulates D-Serine Production: IMPLICATIONS FOR N-METHYL-D-ASPARTATE (NMDA) RECEPTOR ACTIVATION. J Biol Chem 2015; 290:31037-50. [PMID: 26553873 DOI: 10.1074/jbc.m115.699496] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Indexed: 11/06/2022] Open
Abstract
D-Serine is a physiological co-agonist that activates N-methyl D-aspartate receptors (NMDARs) and is essential for neurotransmission, synaptic plasticity, and behavior. D-Serine may also trigger NMDAR-mediated neurotoxicity, and its dysregulation may play a role in neurodegeneration. D-Serine is synthesized by the enzyme serine racemase (SR), which directly converts L-serine to D-serine. However, many aspects concerning the regulation of D-serine production under physiological and pathological conditions remain to be elucidated. Here, we investigate possible mechanisms regulating the synthesis of D-serine by SR in paradigms relevant to neurotoxicity. We report that SR undergoes nucleocytoplasmic shuttling and that this process is dysregulated by several insults leading to neuronal death, typically by apoptotic stimuli. Cell death induction promotes nuclear accumulation of SR, in parallel with the nuclear translocation of GAPDH and Siah proteins at an early stage of the cell death process. Mutations in putative SR nuclear export signals (NESs) elicit SR nuclear accumulation and its depletion from the cytosol. Following apoptotic insult, SR associates with nuclear GAPDH along with other nuclear components, and this is accompanied by complete inactivation of the enzyme. As a result, extracellular D-serine concentration is reduced, even though extracellular glutamate concentration increases severalfold. Our observations imply that nuclear translocation of SR provides a fail-safe mechanism to prevent or limit secondary NMDAR-mediated toxicity in nearby synapses.
Collapse
Affiliation(s)
- Goren Kolodney
- From the Department of Biochemistry, Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology and
| | - Elena Dumin
- the Laboratory of Clinical Biochemistry, Metabolic Unit, Rambam Health Care Campus, Haifa 31096, Israel, and
| | - Hazem Safory
- From the Department of Biochemistry, Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology and
| | - Dina Rosenberg
- From the Department of Biochemistry, Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology and
| | - Hisashi Mori
- the Department of Molecular Neuroscience, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan
| | - Inna Radzishevsky
- From the Department of Biochemistry, Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology and
| | | | - Herman Wolosker
- From the Department of Biochemistry, Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology and
| |
Collapse
|
64
|
Cai ZL, Xu J, Xue SR, Liu YY, Zhang YJ, Zhang XZ, Wang X, Wu FP, Li XM. The E3 ubiquitin ligase seven in absentia homolog 1 may be a potential new therapeutic target for Parkinson's disease. Neural Regen Res 2015; 10:1286-91. [PMID: 26487857 PMCID: PMC4590242 DOI: 10.4103/1673-5374.162763] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
In this study, we investigated the effect of an antibody against E3 ubiquitin ligase seven in absentia homolog 1 (SIAH-1) in PC12 cells. 1-Methyl-4-phenylpyridinium (MPP+) treatment increased α-synuclein, E1 and SIAH-1 protein levels in PC12 cells, and it reduced cell viability; however, there was no significant change in light chain 3 expression. Treatment with an SIAH-1 antibody decreased mRNA expression levels of α-synuclein, light chain 3 and SIAH-1, but increased E1 mRNA expression. It also increased cell viability. Combined treatment with MPP+ and rapamycin reduced SIAH-1 and α-synuclein levels. Treatment with SIAH-1 antibody alone diminished α-synuclein immunoreactivity in PC12 cells, and reduced the colocalization of α-synuclein and light chain 3. These findings suggest that the SIAH-1 antibody reduces the monoubiquitination and aggregation of α-synuclein, promoting its degradation by the ubiquitin-proteasome pathway. Consequently, SIAH-1 may be a potential new therapeutic target for Parkinson's disease.
Collapse
Affiliation(s)
- Zeng-Lin Cai
- Department of Neurology, Affiliated Lianyungang Hospital of Xuzhou Medical College, Lianyungang, Jiangsu Province, China
| | - Jing Xu
- Department of Neurology, Affiliated Lianyungang Hospital of Xuzhou Medical College, Lianyungang, Jiangsu Province, China
| | - Shou-Ru Xue
- Department of Neurology, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Yuan-Yuan Liu
- Department of Neurology, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Yong-Jin Zhang
- Department of Neurology, Affiliated Lianyungang Hospital of Xuzhou Medical College, Lianyungang, Jiangsu Province, China
| | - Xin-Zhi Zhang
- Department of Neurology, Affiliated Lianyungang Hospital of Xuzhou Medical College, Lianyungang, Jiangsu Province, China
| | - Xuan Wang
- Department of Neurology, Affiliated Lianyungang Hospital of Xuzhou Medical College, Lianyungang, Jiangsu Province, China
| | - Fang-Ping Wu
- Department of Neurology, Affiliated Lianyungang Hospital of Xuzhou Medical College, Lianyungang, Jiangsu Province, China
| | - Xiao-Min Li
- Department of Neurology, Affiliated Lianyungang Hospital of Xuzhou Medical College, Lianyungang, Jiangsu Province, China
| |
Collapse
|
65
|
Suarez S, McCollum GW, Jayagopal A, Penn JS. High Glucose-induced Retinal Pericyte Apoptosis Depends on Association of GAPDH and Siah1. J Biol Chem 2015; 290:28311-28320. [PMID: 26438826 DOI: 10.1074/jbc.m115.682385] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Indexed: 11/06/2022] Open
Abstract
Diabetic retinopathy (DR) is a leading cause of blindness worldwide, and its prevalence is growing. Current therapies for DR address only the later stages of the disease, are invasive, and have limited effectiveness. Retinal pericyte death is an early pathologic feature of DR. Although it has been observed in diabetic patients and in animal models of DR, the cause of pericyte death remains unknown. A novel pro-apoptotic pathway initiated by the interaction between glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and the E3 ubiquitin ligase, seven in absentia homolog 1 (Siah1), was recently identified in ocular tissues. In this article we examined the involvement of the GAPDH/Siah1 interaction in human retinal pericyte (hRP) apoptosis. HRP were cultured in 5 mm normal glucose, 25 mm l- or d-glucose for 48 h (osmotic control and high glucose treatments, respectively). Siah1 siRNA was used to down-regulate Siah1 expression. TAT-FLAG GAPDH and/or Siah1-directed peptides were used to block GAPDH and Siah1 interaction. Co-immunoprecipitation assays were conducted to analyze the effect of high glucose on the association of GAPDH and Siah1. Apoptosis was measured by Annexin V staining and caspase-3 enzymatic activity assay. High glucose increased Siah1 total protein levels, induced the association between GAPDH and Siah1, and led to GAPDH nuclear translocation. Our findings demonstrate that dissociation of the GAPDH/Siah1 pro-apoptotic complex can block high glucose-induced pericyte apoptosis, widely considered a hallmark feature of DR. Thus, the work presented in this article can provide a foundation to identify novel targets for early treatment of DR.
Collapse
Affiliation(s)
- Sandra Suarez
- Departments of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-8808.
| | - Gary W McCollum
- Departments of Ophthalmology and Visual Sciences, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-8808
| | - Ashwath Jayagopal
- Pharma Research and Early Development (pRED), F. Hoffman-La Roche Ltd., Grenzacherstrasse 124, CH-4070 Basel, Switzerland
| | - John S Penn
- Departments of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-8808; Departments of Ophthalmology and Visual Sciences, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-8808
| |
Collapse
|
66
|
Menazza S, Aponte A, Sun J, Gucek M, Steenbergen C, Murphy E. Molecular Signature of Nitroso-Redox Balance in Idiopathic Dilated Cardiomyopathies. J Am Heart Assoc 2015; 4:e002251. [PMID: 26396203 PMCID: PMC4599508 DOI: 10.1161/jaha.115.002251] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2015] [Accepted: 08/19/2015] [Indexed: 12/28/2022]
Abstract
BACKGROUND Idiopathic dilated cardiomyopathy is one of the most common types of cardiomyopathy. It has been proposed that an increase in oxidative stress in heart failure leads to a decrease in nitric oxide signaling, leading to impaired nitroso-redox signaling. To test this hypothesis, we investigated the occurrence of protein S-nitrosylation (SNO) and oxidation in biopsies from explanted dilated cardiomyopathy and nonfailing donor male and female human hearts. METHODS AND RESULTS Redox-based resin-assisted capture for oxidation and SNO proteomic analysis was used to measure protein oxidation and SNO, respectively. In addition, 2-dimensional difference gel electrophoresis using maleimide sulfhydryl-reactive fluors was used to identify the SNO proteins. Protein oxidation increased in dilated cardiomyopathy biopsies in comparison with those from healthy donors. Interestingly, we did not find a consistent decrease in SNO in failing hearts; we found that some proteins showed an increase in SNO and others showed a decrease, and there were sex-specific differences in the response. We found 10 proteins with a significant decrease in SNO and 4 proteins with an increase in SNO in failing female hearts. Comparing nonfailing and failing male hearts, we found 9 proteins with a significant decrease and 12 proteins with a significant increase. We also found an increase in S-glutathionylation of endothelial nitric oxide synthase in failing female versus male hearts, suggesting an increase in uncoupled nitric oxide synthase in female hearts. CONCLUSION These findings highlight the importance of nitroso-redox signaling in both physiological and pathological conditions, suggesting a potential target to treat heart failure.
Collapse
Affiliation(s)
- Sara Menazza
- Systems Biology Center, National Heart Lung and Blood Institute, National Institutes of HealthBethesda, MD
| | - Angel Aponte
- Proteomic Core Facility, National Heart Lung and Blood Institute, National Institutes of HealthBethesda, MD
| | - Junhui Sun
- Systems Biology Center, National Heart Lung and Blood Institute, National Institutes of HealthBethesda, MD
| | - Marjan Gucek
- Proteomic Core Facility, National Heart Lung and Blood Institute, National Institutes of HealthBethesda, MD
| | | | - Elizabeth Murphy
- Systems Biology Center, National Heart Lung and Blood Institute, National Institutes of HealthBethesda, MD
| |
Collapse
|
67
|
Akter S, Huang J, Waszczak C, Jacques S, Gevaert K, Van Breusegem F, Messens J. Cysteines under ROS attack in plants: a proteomics view. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:2935-44. [PMID: 25750420 DOI: 10.1093/jxb/erv044] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Plants generate reactive oxygen species (ROS) as part of their metabolism and in response to various external stress factors, potentially causing significant damage to biomolecules and cell structures. During the course of evolution, plants have adapted to ROS toxicity, and use ROS as signalling messengers that activate defence responses. Cysteine (Cys) residues in proteins are one of the most sensitive targets for ROS-mediated post-translational modifications, and they have become key residues for ROS signalling studies. The reactivity of Cys residues towards ROS, and their ability to react to different oxidation states, allow them to appear at the crossroads of highly dynamic oxidative events. As such, a redox-active cysteine can be present as S-glutathionylated (-SSG), disulfide bonded (S-S), sulfenylated (-SOH), sulfinylated (-SO2H), and sulfonylated (-SO3H). The sulfenic acid (-SOH) form has been considered as part of ROS-sensing pathways, as it leads to further modifications which affect protein structure and function. Redox proteomic studies are required to understand how and why cysteines undergo oxidative post-translational modifications and to identify the ROS-sensor proteins. Here, we update current knowledge of cysteine reactivity with ROS. Further, we give an overview of proteomic techniques that have been applied to identify different redox-modified cysteines in plants. There is a particular focus on the identification of sulfenylated proteins, which have the potential to be involved in plant signal transduction.
Collapse
Affiliation(s)
- Salma Akter
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium Structural Biology Research Centre, VIB, 1050 Brussels, Belgium Brussels Centre for Redox Biology, 1050 Brussels, Belgium Structural Biology Brussels, Vrije Universiteit Brussel, 1050 Brussels, Belgium Faculty of Biological Sciences, University of Dhaka, 1000 Dhaka, Bangladesh
| | - Jingjing Huang
- Structural Biology Research Centre, VIB, 1050 Brussels, Belgium Brussels Centre for Redox Biology, 1050 Brussels, Belgium Structural Biology Brussels, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Cezary Waszczak
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium Structural Biology Research Centre, VIB, 1050 Brussels, Belgium Brussels Centre for Redox Biology, 1050 Brussels, Belgium Structural Biology Brussels, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Silke Jacques
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium Department of Medical Protein Research, VIB, 9000 Gent, Belgium Department of Biochemistry, Ghent University, 9000 Gent, Belgium
| | - Kris Gevaert
- Department of Medical Protein Research, VIB, 9000 Gent, Belgium Department of Biochemistry, Ghent University, 9000 Gent, Belgium
| | - Frank Van Breusegem
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| | - Joris Messens
- Structural Biology Research Centre, VIB, 1050 Brussels, Belgium Brussels Centre for Redox Biology, 1050 Brussels, Belgium Structural Biology Brussels, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| |
Collapse
|
68
|
Chakravarti R, Gupta K, Majors A, Ruple L, Aronica M, Stuehr DJ. Novel insights in mammalian catalase heme maturation: effect of NO and thioredoxin-1. Free Radic Biol Med 2015; 82:105-13. [PMID: 25659933 PMCID: PMC5030845 DOI: 10.1016/j.freeradbiomed.2015.01.030] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2014] [Revised: 01/07/2015] [Accepted: 01/13/2015] [Indexed: 12/29/2022]
Abstract
Catalase is a tetrameric heme-containing enzyme with essential antioxidant functions in biology. Multiple factors including nitric oxide (NO) have been shown to attenuate its activity. However, the possible impact of NO in relation to the maturation of active catalase, including its heme acquisition and tetramer formation, has not been investigated. We found that NO attenuates heme insertion into catalase in both short-term and long-term incubations. The NO inhibition in catalase heme incorporation was associated with defective oligomerization of catalase, such that inactive catalase monomers and dimers accumulated in place of the mature tetrameric enzyme. We also found that GAPDH plays a key role in mediating these NO effects on the structure and activity of catalase. Moreover, the NO sensitivity of catalase maturation could be altered up or down by manipulating the cellular expression level or activity of thioredoxin-1, a known protein-SNO denitrosylase enzyme. In a mouse model of allergic inflammatory asthma, we found that lungs from allergen-challenged mice contained a greater percentage of dimeric catalase relative to tetrameric catalase in the unchallenged control, suggesting that the mechanisms described here are in play in the allergic asthma model. Together, our study shows how maturation of active catalase can be influenced by NO, S-nitrosylated GAPDH, and thioredoxin-1, and how maturation may become compromised in inflammatory conditions such as asthma.
Collapse
Affiliation(s)
- Ritu Chakravarti
- Department of Pathobiology, Lerner Research Institute, 9500 Euclid Avenue, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Karishma Gupta
- School of Medicine, Case Western Reserve University, Cleveland, OH 44195, USA
| | - Alana Majors
- Department of Pathobiology, Lerner Research Institute, 9500 Euclid Avenue, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Lisa Ruple
- Department of Pathobiology, Lerner Research Institute, 9500 Euclid Avenue, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Mark Aronica
- Department of Pathobiology, Lerner Research Institute, 9500 Euclid Avenue, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Dennis J Stuehr
- Department of Pathobiology, Lerner Research Institute, 9500 Euclid Avenue, Cleveland Clinic, Cleveland, OH 44195, USA.
| |
Collapse
|
69
|
Nakamura T, Prikhodko OA, Pirie E, Nagar S, Akhtar MW, Oh CK, McKercher SR, Ambasudhan R, Okamoto SI, Lipton SA. Aberrant protein S-nitrosylation contributes to the pathophysiology of neurodegenerative diseases. Neurobiol Dis 2015; 84:99-108. [PMID: 25796565 DOI: 10.1016/j.nbd.2015.03.017] [Citation(s) in RCA: 123] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 03/09/2015] [Accepted: 03/12/2015] [Indexed: 11/29/2022] Open
Abstract
Nitric oxide (NO) is a gasotransmitter that impacts fundamental aspects of neuronal function in large measure through S-nitrosylation, a redox reaction that occurs on regulatory cysteine thiol groups. For instance, S-nitrosylation regulates enzymatic activity of target proteins via inhibition of active site cysteine residues or via allosteric regulation of protein structure. During normal brain function, protein S-nitrosylation serves as an important cellular mechanism that modulates a diverse array of physiological processes, including transcriptional activity, synaptic plasticity, and neuronal survival. In contrast, emerging evidence suggests that aging and disease-linked environmental risk factors exacerbate nitrosative stress via excessive production of NO. Consequently, aberrant S-nitrosylation occurs and represents a common pathological feature that contributes to the onset and progression of multiple neurodegenerative disorders, including Alzheimer's, Parkinson's, and Huntington's diseases. In the current review, we highlight recent key findings on aberrant protein S-nitrosylation showing that this reaction triggers protein misfolding, mitochondrial dysfunction, transcriptional dysregulation, synaptic damage, and neuronal injury. Specifically, we discuss the pathological consequences of S-nitrosylated parkin, myocyte enhancer factor 2 (MEF2), dynamin-related protein 1 (Drp1), protein disulfide isomerase (PDI), X-linked inhibitor of apoptosis protein (XIAP), and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) under neurodegenerative conditions. We also speculate that intervention to prevent these aberrant S-nitrosylation events may produce novel therapeutic agents to combat neurodegenerative diseases.
Collapse
Affiliation(s)
- Tomohiro Nakamura
- Neuroscience and Aging Research Center, Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Olga A Prikhodko
- Neuroscience and Aging Research Center, Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA; Biomedical Sciences Graduate Program, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Elaine Pirie
- Neuroscience and Aging Research Center, Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA; Biomedical Sciences Graduate Program, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Saumya Nagar
- Neuroscience and Aging Research Center, Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA; Graduate School of Biomedical Sciences, Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Mohd Waseem Akhtar
- Neuroscience and Aging Research Center, Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Chang-Ki Oh
- Neuroscience and Aging Research Center, Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Scott R McKercher
- Neuroscience and Aging Research Center, Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Rajesh Ambasudhan
- Neuroscience and Aging Research Center, Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Shu-ichi Okamoto
- Neuroscience and Aging Research Center, Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Stuart A Lipton
- Neuroscience and Aging Research Center, Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA; Biomedical Sciences Graduate Program, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA; Department of Neurosciences, University of California San Diego School of Medicine, 9500 Gilman Drive, La Jolla, CA 92093, USA.
| |
Collapse
|
70
|
Alfarouk KO, Verduzco D, Rauch C, Muddathir AK, Adil HHB, Elhassan GO, Ibrahim ME, David Polo Orozco J, Cardone RA, Reshkin SJ, Harguindey S. Glycolysis, tumor metabolism, cancer growth and dissemination. A new pH-based etiopathogenic perspective and therapeutic approach to an old cancer question. Oncoscience 2014; 1:777-802. [PMID: 25621294 PMCID: PMC4303887 DOI: 10.18632/oncoscience.109] [Citation(s) in RCA: 152] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 12/14/2014] [Indexed: 12/15/2022] Open
Abstract
Cancer cells acquire an unusual glycolytic behavior relative, to a large extent, to their intracellular alkaline pH (pHi). This effect is part of the metabolic alterations found in most, if not all, cancer cells to deal with unfavorable conditions, mainly hypoxia and low nutrient supply, in order to preserve its evolutionary trajectory with the production of lactate after ten steps of glycolysis. Thus, cancer cells reprogram their cellular metabolism in a way that gives them their evolutionary and thermodynamic advantage. Tumors exist within a highly heterogeneous microenvironment and cancer cells survive within any of the different habitats that lie within tumors thanks to the overexpression of different membrane-bound proton transporters. This creates a highly abnormal and selective proton reversal in cancer cells and tissues that is involved in local cancer growth and in the metastatic process. Because of this environmental heterogeneity, cancer cells within one part of the tumor may have a different genotype and phenotype than within another part. This phenomenon has frustrated the potential of single-target therapy of this type of reductionist therapeutic approach over the last decades. Here, we present a detailed biochemical framework on every step of tumor glycolysis and then proposea new paradigm and therapeutic strategy based upon the dynamics of the hydrogen ion in cancer cells and tissues in order to overcome the old paradigm of one enzyme-one target approach to cancer treatment. Finally, a new and integral explanation of the Warburg effect is advanced.
Collapse
Affiliation(s)
| | | | - Cyril Rauch
- University of Nottingham, Sutton Bonington, Leicestershire, Nottingham, UK
| | | | | | - Gamal O. Elhassan
- Unizah Pharmacy Collage, Qassim University, Unizah, AL-Qassim, King of Saudi Arabia
- Omdurman Islamic University, Omdurman, Sudan
| | | | | | | | | | | |
Collapse
|
71
|
Tristan CA, Ramos A, Shahani N, Emiliani FE, Nakajima H, Noeh CC, Kato Y, Takeuchi T, Noguchi T, Kadowaki H, Sedlak TW, Ishizuka K, Ichijo H, Sawa A. Role of apoptosis signal-regulating kinase 1 (ASK1) as an activator of the GAPDH-Siah1 stress-signaling cascade. J Biol Chem 2014; 290:56-64. [PMID: 25391652 DOI: 10.1074/jbc.m114.596205] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) plays roles in both energy maintenance, and stress signaling by forming a protein complex with seven in absentia homolog 1 (Siah1). Mechanisms to coordinate its glycolytic and stress cascades are likely to be very important for survival and homeostatic control of any living organism. Here we report that apoptosis signal-regulating kinase 1 (ASK1), a representative stress kinase, interacts with both GAPDH and Siah1 and is likely able to phosphorylate Siah1 at specific amino acid residues (Thr-70/Thr-74 and Thr-235/Thr-239). Phosphorylation of Siah1 by ASK1 triggers GAPDH-Siah1 stress signaling and activates a key downstream target, p300 acetyltransferase in the nucleus. This novel mechanism, together with the established S-nitrosylation/oxidation of GAPDH at Cys-150, provides evidence of how the stress signaling involving GAPDH is finely regulated. In addition, the present results imply crosstalk between the ASK1 and GAPDH-Siah1 stress cascades.
Collapse
Affiliation(s)
| | | | | | | | - Hidemitsu Nakajima
- the Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka 599-8531, and
| | | | - Yoshinori Kato
- Radiology and Radiological Science, Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287
| | - Tadayoshi Takeuchi
- the Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka 599-8531, and
| | - Takuya Noguchi
- the Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-8654, Japan
| | - Hisae Kadowaki
- the Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-8654, Japan
| | | | | | - Hidenori Ichijo
- the Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-8654, Japan
| | - Akira Sawa
- From the Departments of Psychiatry and Neuroscience,
| |
Collapse
|
72
|
Patent highlights. Pharm Pat Anal 2014. [DOI: 10.4155/ppa.14.44] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A snapshot of noteworthy recent developments in the patent literature of relevance to pharmaceutical and medical research and development.
Collapse
|
73
|
Rodríguez-Ortigosa CM, Celay J, Olivas I, Juanarena N, Arcelus S, Uriarte I, Marín JJG, Avila MA, Medina JF, Prieto J. A GAPDH-mediated trans-nitrosylation pathway is required for feedback inhibition of bile salt synthesis in rat liver. Gastroenterology 2014; 147:1084-93. [PMID: 25066374 DOI: 10.1053/j.gastro.2014.07.030] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Revised: 06/25/2014] [Accepted: 07/17/2014] [Indexed: 12/13/2022]
Abstract
BACKGROUND & AIMS Bile salts inhibit their own production by inducing the nuclear receptor small heterodimer partner (SHP) (encoded by NR0B2), which contributes to repression of the gene encoding cholesterol 7α-hydroxylase (CYP7A1), a key enzyme for the control of bile salt synthesis. On the other hand, bile salts stimulate hepatic synthesis of nitric oxide. We investigated the role of nitric oxide signaling in the control of CYP7A1 expression and the involvement in this process of glyceraldehyde-3-phosphate dehydrogenase (GAPDH), which participates in intracellular propagation of nitric oxide signals. METHODS We studied the effects of inhibitors of nitric oxide synthesis (L-NG-nitroarginine methyl ester [L-NAME]) or protein nitrosylation (via dithiothreitol) on bile salt homeostasis in male Wistar rats placed on a cholate-rich diet for 5 days and in cultured primary hepatocytes. S-nitrosylation of GAPDH was assessed using a biotin-switch assay. Interacions of SHP with other proteins and with the Cyp7a1 promoter sequence were studied using immunoprecipitation and chromatin immunoprecipitation (ChIP) assays. We reduced the GAPDH levels in H35 cells with small interfering RNAs. GAPDH nitrosylation was assessed in normal and cholestatic rat and human livers. RESULTS Rats placed on cholate-rich diets and given L-NAME had increased intrahepatic and biliary levels of bile salts, and deficiency in repression of CYP7A1 (at the messenger RNA and protein levels) in liver tissue, despite preserved induction of SHP. In cultured hepatocytes, L-NAME or dithiothreitol blocked cholate-induced down-regulation of CYP7A1 without impairing SHP up-regulation. In hepatocytes, cholate promoted S-nitrosylation of GAPDH and its translocation to the nucleus, accompanied by S-nitrosylation of histone deacetylase 2 (HDAC2) and Sirtuin 1 (SIRT1), deacetylases that participate, respectively, in the formation of Cyp7a1 and Shp repressor complexes. Knockdown of GAPDH prevented repression of CYP7A1 by cholate, and blocking nuclear transport of nitrosylated GAPDH reduced cholate-induced nitrosylation of HDAC2 and SIRT1; this effect was accompanied by abrogation of Cyp7a1 repression. Cholate induced binding of SHP to HDAC2 and its recruitment to the Cyp7a1 promoter; these processes were inhibited by blocking nitric oxide synthesis. Levels of nitrosylated GAPDH and nitrosylated HDAC2 were increased in cholestatic human and rat livers reflecting increased concentrations of bile salts in these conditions. CONCLUSIONS In rat liver, excess levels of bile salts activate a GAPDH-mediated transnitrosylation cascade that provides feedback inhibition of bile salt synthesis.
Collapse
Affiliation(s)
- Carlos M Rodríguez-Ortigosa
- Division of Hepatology and Gene Therapy, Center for Applied Medical Research, University of Navarra, Pamplona, Spain; Centro de Investigación Biomédica en Red en el área temática de Enfermedades Hepáticas y Digestivas (CIBERehd), Pamplona, Spain.
| | - Jon Celay
- Division of Hepatology and Gene Therapy, Center for Applied Medical Research, University of Navarra, Pamplona, Spain
| | - Israel Olivas
- Division of Hepatology and Gene Therapy, Center for Applied Medical Research, University of Navarra, Pamplona, Spain
| | - Nerea Juanarena
- Division of Hepatology and Gene Therapy, Center for Applied Medical Research, University of Navarra, Pamplona, Spain
| | - Sara Arcelus
- Division of Hepatology and Gene Therapy, Center for Applied Medical Research, University of Navarra, Pamplona, Spain; Centro de Investigación Biomédica en Red en el área temática de Enfermedades Hepáticas y Digestivas (CIBERehd), Pamplona, Spain
| | - Iker Uriarte
- Centro de Investigación Biomédica en Red en el área temática de Enfermedades Hepáticas y Digestivas (CIBERehd), Pamplona, Spain
| | - José Juan G Marín
- Laboratory of Experimental Hepatology and Drug Targeting, University of Salamanca, Salamanca, Spain; Centro de Investigación Biomédica en Red en el área temática de Enfermedades Hepáticas y Digestivas (CIBERehd), Salamanca, Spain
| | - Matias A Avila
- Division of Hepatology and Gene Therapy, Center for Applied Medical Research, University of Navarra, Pamplona, Spain; Centro de Investigación Biomédica en Red en el área temática de Enfermedades Hepáticas y Digestivas (CIBERehd), Pamplona, Spain
| | - Juan F Medina
- Division of Hepatology and Gene Therapy, Center for Applied Medical Research, University of Navarra, Pamplona, Spain; Centro de Investigación Biomédica en Red en el área temática de Enfermedades Hepáticas y Digestivas (CIBERehd), Pamplona, Spain
| | - Jesus Prieto
- Division of Hepatology and Gene Therapy, Center for Applied Medical Research, University of Navarra, Pamplona, Spain; Centro de Investigación Biomédica en Red en el área temática de Enfermedades Hepáticas y Digestivas (CIBERehd), Pamplona, Spain; Liver Unit, University of Navarra Clinic, Pamplona, Spain.
| |
Collapse
|
74
|
El Kadmiri N, Slassi I, El Moutawakil B, Nadifi S, Tadevosyan A, Hachem A, Soukri A. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and Alzheimer's disease. ACTA ACUST UNITED AC 2014; 62:333-6. [PMID: 25246025 DOI: 10.1016/j.patbio.2014.08.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Accepted: 08/29/2014] [Indexed: 01/23/2023]
Abstract
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a ubiquitous enzyme that catalyzes the sixth step of glycolysis and thus, serves to break down glucose for energy production. Beyond the traditional aerobic metabolism of glucose, recent studies have highlighted additional roles played by GAPDH in non-metabolic processes, such as control of gene expression and redox post-translational modifications. Neuroproteomics have revealed high affinity interactions between GAPDH and Alzheimer's disease-associated proteins, including the β-amyloid, β-amyloid precursor protein and tau. This neuronal protein interaction may lead to impairment of the GAPDH glycolytic function in Alzheimer's disease and may be a forerunner of its participation in apoptosis. The present review examines the crucial implication of GAPDH in neurodegenerative processes and clarifies its role in apoptotic cell death.
Collapse
Affiliation(s)
- N El Kadmiri
- Laboratory of Medical Genetics and Molecular Pathology, Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco; Laboratory of Physiology and Molecular Genetics, Faculty of Sciences Aïn Chock, Hassan II University, Casablanca, Morocco.
| | - I Slassi
- Laboratory of Medical Genetics and Molecular Pathology, Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco; Department of Neurology CHU IBN ROCHD, Casablanca, Morocco
| | - B El Moutawakil
- Laboratory of Medical Genetics and Molecular Pathology, Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco; Department of Neurology CHU IBN ROCHD, Casablanca, Morocco
| | - S Nadifi
- Laboratory of Medical Genetics and Molecular Pathology, Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
| | - A Tadevosyan
- Department of Medicine, Université de Montréal, Montréal, Québec, H3C 3J7, Canada
| | - A Hachem
- Laboratory of Thrombosis and Hemostasis, Montreal Heart Institute, Montreal, Quebec, H1T 1C8, Canada
| | - A Soukri
- Laboratory of Physiology and Molecular Genetics, Faculty of Sciences Aïn Chock, Hassan II University, Casablanca, Morocco
| |
Collapse
|
75
|
Jami MS, Pal R, Hoedt E, Neubert TA, Larsen JP, Møller SG. Proteome analysis reveals roles of L-DOPA in response to oxidative stress in neurons. BMC Neurosci 2014; 15:93. [PMID: 25082231 PMCID: PMC4125692 DOI: 10.1186/1471-2202-15-93] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Accepted: 07/23/2014] [Indexed: 12/25/2022] Open
Abstract
Background Parkinson’s disease (PD) is the second most common neurodegenerative movement disorder, caused by preferential dopaminergic neuronal cell death in the substantia nigra, a process also influenced by oxidative stress. L-3,4-dihydroxyphenylalanine (L-DOPA) represents the main treatment route for motor symptoms associated with PD however, its exact mode of action remains unclear. A spectrum of conflicting data suggests that L-DOPA may damage dopaminergic neurons due to oxidative stress whilst other data suggest that L-DOPA itself may induce low levels of oxidative stress, which in turn stimulates endogenous antioxidant mechanisms and neuroprotection. Results In this study we performed a two-dimensional gel electrophoresis (2DE)-based proteomic study to gain further insight into the mechanism by which L-DOPA can influence the toxic effects of H2O2 in neuronal cells. We observed that oxidative stress affects metabolic pathways as well as cytoskeletal integrity and that neuronal cells respond to oxidative conditions by enhancing numerous survival pathways. Our study underlines the complex nature of L-DOPA in PD and sheds light on the interplay between oxidative stress and L-DOPA. Conclusions Oxidative stress changes neuronal metabolic routes and affects cytoskeletal integrity. Further, L-DOPA appears to reverse some H2O2-mediated effects evident at both the proteome and cellular level.
Collapse
Affiliation(s)
| | | | | | | | | | - Simon Geir Møller
- Department of Biological Sciences, St John's University, New York, NY, USA.
| |
Collapse
|
76
|
Yu M, Lamattina L, Spoel SH, Loake GJ. Nitric oxide function in plant biology: a redox cue in deconvolution. THE NEW PHYTOLOGIST 2014; 202:1142-1156. [PMID: 24611485 DOI: 10.1111/nph.12739] [Citation(s) in RCA: 272] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 01/26/2014] [Indexed: 05/18/2023]
Abstract
Nitric oxide (NO), a gaseous, redox-active small molecule, is gradually becoming established as a central regulator of growth, development, immunity and environmental interactions in plants. A major route for the transfer of NO bioactivity is S-nitrosylation, the covalent attachment of an NO moiety to a protein cysteine thiol to form an S-nitrosothiol (SNO). This chemical transformation is rapidly emerging as a prototypic, redox-based post-translational modification integral to the life of plants. Here we review the myriad roles of NO and SNOs in plant biology and, where known, the molecular mechanisms underpining their activity.
Collapse
Affiliation(s)
- Manda Yu
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, King's Buildings, Edinburgh, EH9 3JR, UK
| | - Lorenzo Lamattina
- Instituto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata (UNMdP), CC 12457600, Mar del Plata, Argentina
| | - Steven H Spoel
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, King's Buildings, Edinburgh, EH9 3JR, UK
| | - Gary J Loake
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, King's Buildings, Edinburgh, EH9 3JR, UK
| |
Collapse
|
77
|
Abstract
PURPOSE OF REVIEW Oxidative stress has become an exciting area of schizophrenia research, and provides ample opportunities and hope for a better understanding of its pathophysiology, which may lead to novel treatment strategies. This review describes how recent methodological advances have allowed the study of oxidative stress to tackle fundamental questions and have provided several conceptual breakthroughs to the field. RECENT FINDINGS Recent human studies support the notion that intrinsic susceptibility to oxidative stress may underlie the pathophysiology of schizophrenia. More than one animal model that may be relevant to study the biology of schizophrenia also shows sign of oxidative stress in the brain. SUMMARY These advances have made this topic of paramount importance to the understanding of schizophrenia and will play a role in advancing the treatment options. This review covers topics from the classic biochemical studies of human biospecimens to the use of magnetic resonance spectroscopy and novel mouse models, and focuses on highlighting the promising areas of research.
Collapse
|
78
|
Zhai D, Chin K, Wang M, Liu F. Disruption of the nuclear p53-GAPDH complex protects against ischemia-induced neuronal damage. Mol Brain 2014; 7:20. [PMID: 24670206 PMCID: PMC3986870 DOI: 10.1186/1756-6606-7-20] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 02/28/2014] [Indexed: 12/24/2022] Open
Abstract
Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) is conventionally considered a critical enzyme that involves in glycolysis for energy production. Recent previous studies have suggested that GAPDH is important in glutamate-induced neuronal excitotoxicity, while accumulated evidence also demonstrated that GAPDH nuclear translocation plays a critical role in cell death. However, the molecular mechanisms underlying this process remain largely unknown. In this study, we showed that GAPDH translocates to the nucleus in a Siah1-dependent manner upon glutamate stimulation. The nuclear GAPDH forms a protein complex with p53 and enhances p53 expression and phosphorylation. Disruption of the GAPDH-p53 interaction with an interfering peptide blocks glutamate-induced cell death and GAPDH-mediated up-regulation of p53 expression and phosphorylation. Furthermore, administration of the interfering peptide in vivo protects against ischemia-induced cell death in rats subjected to tMCAo. Our data suggest that the nuclear p53-GAPDH complex is important in regulating glutamate-mediated neuronal death and could serve as a potential therapeutic target for ischemic stroke treatment.
Collapse
Affiliation(s)
| | | | | | - Fang Liu
- Department of Neuroscience, Centre for Addiction and Mental Health, Clarke Division, 250 College Street, Toronto, Ontario M5T 1R8, Canada.
| |
Collapse
|
79
|
Naoi M, Maruyama W. Functional mechanism of neuroprotection by inhibitors of type B monoamine oxidase in Parkinson’s disease. Expert Rev Neurother 2014; 9:1233-50. [DOI: 10.1586/ern.09.68] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
80
|
Naoi M, Maruyama W, Inaba-Hasegawa K. Revelation in the neuroprotective functions of rasagiline and selegiline: the induction of distinct genes by different mechanisms. Expert Rev Neurother 2014; 13:671-84. [PMID: 23739004 DOI: 10.1586/ern.13.60] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
In Parkinson's disease, cell death of dopamine neurons in the substantia nigra progresses and neuroprotective therapy is required to halt neuronal loss. In cellular and animal models, selegiline [(-)deprenyl] and rasagiline, inhibitors of type B monoamine oxidase (MAO)-B, protect neuronal cells from programmed cell death. In this paper, the authors review their recent results on the molecular mechanisms by which MAO inhibitors prevent the cell death through the induction of antiapoptotic, prosurvival genes. MAO-A mediates the induction of antiapoptotic bcl-2 and mao-a itself by rasagiline, whereas a different mechanism is associated with selegiline. Rasagiline and selegiline preferentially increase GDNF and BDNF in nonhuman primates and Parkinsonian patients, respectively. Enhanced neurotrophic factors might be applicable to monitor the neurorescuing activity of neuroprotection.
Collapse
Affiliation(s)
- Makoto Naoi
- Department of Health and Nutrition, Faculty of Psychological and Physical Science, Aichi Gakuin University, Nisshin, Aichi, Japan.
| | | | | |
Collapse
|
81
|
Xu R, Serritella AV, Sen T, Farook JM, Sedlak TW, Baraban J, Snyder SH, Sen N. Behavioral effects of cocaine mediated by nitric oxide-GAPDH transcriptional signaling. Neuron 2013; 78:623-30. [PMID: 23719162 DOI: 10.1016/j.neuron.2013.03.021] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/18/2013] [Indexed: 12/13/2022]
Abstract
Cocaine's behavioral-stimulant effects derive from potentiation of synaptic signaling by dopamine and serotonin leading to transcriptional alterations in postsynaptic cells. We report that a signaling cascade involving nitric oxide (NO) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) mediates cocaine's transcriptional and behavioral actions. Lower, behavioral-stimulant doses enhance the cAMP response element-binding (CREB) signaling system, while higher, neurotoxic doses stimulate the p53 cytotoxic system. The drug CGP3466B, which potently and selectively blocks GAPDH nitrosylation and GAPDH-Siah binding, prevents these actions as well as behavioral effects of cocaine providing a strategy for anticocaine therapy.
Collapse
Affiliation(s)
- Risheng Xu
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | | | | | | | | | | | |
Collapse
|
82
|
Nakamura T, Tu S, Akhtar MW, Sunico CR, Okamoto SI, Lipton SA. Aberrant protein s-nitrosylation in neurodegenerative diseases. Neuron 2013; 78:596-614. [PMID: 23719160 DOI: 10.1016/j.neuron.2013.05.005] [Citation(s) in RCA: 277] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/07/2013] [Indexed: 12/14/2022]
Abstract
S-Nitrosylation is a redox-mediated posttranslational modification that regulates protein function via covalent reaction of nitric oxide (NO)-related species with a cysteine thiol group on the target protein. Under physiological conditions, S-nitrosylation can be an important modulator of signal transduction pathways, akin to phosphorylation. However, with aging or environmental toxins that generate excessive NO, aberrant S-nitrosylation reactions can occur and affect protein misfolding, mitochondrial fragmentation, synaptic function, apoptosis or autophagy. Here, we discuss how aberrantly S-nitrosylated proteins (SNO-proteins) play a crucial role in the pathogenesis of neurodegenerative diseases, including Alzheimer's and Parkinson's diseases. Insight into the pathophysiological role of aberrant S-nitrosylation pathways will enhance our understanding of molecular mechanisms leading to neurodegenerative diseases and point to potential therapeutic interventions.
Collapse
Affiliation(s)
- Tomohiro Nakamura
- Del E. Web Center for Neuroscience, Aging, and Stem Cell Research, Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA.
| | | | | | | | | | | |
Collapse
|
83
|
Does Restraining Nitric Oxide Biosynthesis Rescue from Toxins-Induced Parkinsonism and Sporadic Parkinson's Disease? Mol Neurobiol 2013; 49:262-75. [DOI: 10.1007/s12035-013-8517-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Accepted: 07/16/2013] [Indexed: 12/21/2022]
|
84
|
Zhao Q, Cai D, Bai Y. Selegiline rescues gait deficits and the loss of dopaminergic neurons in a subacute MPTP mouse model of Parkinson's disease. Int J Mol Med 2013; 32:883-91. [PMID: 23877198 DOI: 10.3892/ijmm.2013.1450] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Accepted: 07/10/2013] [Indexed: 11/05/2022] Open
Abstract
The monoamine oxidase type-B (MAO-B) inhibitor, selegiline, is often recommended as a first-line treatment for Parkinson's disease (PD) and has been shwon to possess neuroprotective effects. The aim of the present study was to determine whether selegiline increases the levels of the neurotrophic factors (NTFs), glial cell line-derived neurotrophic factor (GDNF) and brain-derived neurotrophic factor (BDNF), and whether it rescues motor dysfunction and the loss of dopaminergic neurons in mice with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced lesions. We found that the oral administration of selegiline (1.0 mg/kg/day for 14 days) successfully suppressed the MPTP-induced reduction of nigral dopaminergic neurons and striatal fibers (192.68 and 162.76% of MPTP-exposed animals, respectively; both P<0.001). Moreover, improvements in gait dysfunction were observed after 7 and 14 days of a low dose of selegiline that is reported not to inhibit MAO‑B. Furthermore, there was a significant increase in GDNF and BDNF mRNA (2.10 and 2.75-fold) and protein levels (143.53 and 157.05%) in the selegiline-treated mice compared with the saline-treated MPTP-exposed mice. In addition, the Bax/Bcl-2 gene and protein expression ratios were significantly increased in the MPTP-exposed mice, and this effect was reversed by selegiline. Correlation analysis revealed that gait measurement and GDNF/BDNF levels positively correlated with the number of dopaminergic neurons. These findings demonstrate that selegiline has neurorescue effects that are possibly associated with the induction of NTFs and anti-apoptotic genes.
Collapse
Affiliation(s)
- Qing Zhao
- Department of Neurology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, PR China.
| | | | | |
Collapse
|
85
|
Validation of a reference control for an SYBR-Green fluorescence assay-based real-time PCR for detection of bovine herpesvirus 5 in experimentally exposed bovine embryos. Mol Cell Probes 2013; 27:237-42. [PMID: 23831485 DOI: 10.1016/j.mcp.2013.06.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Revised: 06/12/2013] [Accepted: 06/17/2013] [Indexed: 11/22/2022]
Abstract
The objective of this study was to optimize an internal control to improve SYBR-Green-based qPCR to amplify/detect the BoHV-5 US9 gene in bovine embryos produced in vitro and experimentally exposed to the virus. We designed an SYBR-Green-based binding assay that is quick to perform, reliable, easily optimized and compares well with the published assay. Herein we demonstrated its general applicability to detect BoHV-5 US9 gene in bovine embryos produced in vitro experimentally exposed to BoHV-5. In order to validate the assay, three different reference genes were tested; and the histone 2a gene was shown to be the most adequate for normalizing the qPCR reaction, by considering melting and standard curves (p < 0.05). On the other hand, no differences were found in the development of bovine embryos in vitro whether they were exposed to BoHV-5 reference and field strains comparing to unexposed embryos. The developed qPCR assay may have important field applications as it provides an accurate BoHV-5 US9 gene detection using a proven reference gene and is considerably less expensive than the TaqMan qPCR currently employed in sanitary programs.
Collapse
|
86
|
Song MS, Matveychuk D, MacKenzie EM, Duchcherer M, Mousseau DD, Baker GB. An update on amine oxidase inhibitors: multifaceted drugs. Prog Neuropsychopharmacol Biol Psychiatry 2013; 44:118-24. [PMID: 23410524 DOI: 10.1016/j.pnpbp.2013.02.001] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2012] [Revised: 01/31/2013] [Accepted: 02/03/2013] [Indexed: 02/08/2023]
Abstract
Although not used as extensively as other antidepressants for the treatment of depression, the monoamine oxidase (MAO) inhibitors continue to hold a niche in psychiatry and to have a relatively broad spectrum with regard to treatment of psychiatric and neurological disorders. Experimental and clinical research on MAO inhibitors has been expanding in the past few years, primarily because of exciting findings indicating that these drugs have neuroprotective properties (often independently of their ability to inhibit MAO). The non-selective and irreversible MAO inhibitors tranylcypromine (TCP) and phenelzine (PLZ) have demonstrated neuroprotective properties in numerous studies targeting elements of apoptotic cascades and neurogenesis. l-Deprenyl and rasagiline, both selective MAO-B inhibitors, are used in the management of Parkinson's disease, but these drugs may be useful in the treatment of other neurodegenerative disorders given that they demonstrate neuroprotective/neurorescue properties in a wide variety of models in vitro and in vivo. Although the focus of studies on the involvement of MAO inhibitors in neuroprotection has been on MAO-B inhibitors, there is a growing body of evidence demonstrating that MAO-A inhibitors may also have neuroprotective properties. In addition to MAO inhibition, PLZ also inhibits primary amine oxidase (PrAO), an enzyme implicated in the etiology of Alzheimer's disease, diabetes and cardiovascular disease. These multifaceted aspects of amine oxidase inhibitors and some of their metabolites are reviewed herein.
Collapse
Affiliation(s)
- Mee-Sook Song
- Neurochemical Research Unit, Department of Psychiatry, University of Alberta, Edmonton, AB, Canada
| | | | | | | | | | | |
Collapse
|
87
|
Schlisser AE, Hales BF. Deprenyl enhances the teratogenicity of hydroxyurea in organogenesis stage mouse embryos. Toxicol Sci 2013; 134:391-9. [PMID: 23696560 PMCID: PMC3707438 DOI: 10.1093/toxsci/kft115] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Hydroxyurea, an antineoplastic drug, is a model teratogen. The administration of hydroxyurea to CD1 mice on gestation day 9 induces oxidative stress, increasing the formation of 4-hydroxy-2-nonenal adducts to redox-sensitive proteins such as glyceraldehyde-3-phosphate dehydrogenase (GAPDH) in the caudal region of the embryo. GAPDH catalytic activity is reduced, and its translocation into the nucleus is increased. Because the nuclear translocation of GAPDH is associated with oxidative stress–induced cell death, we hypothesized that this translocation plays a role in mediating the teratogenicity of hydroxyurea. Deprenyl (also known as selegiline), a drug used as a neuroprotectant in Parkinson’s disease, inhibits the nuclear translocation of GAPDH. Hence, timed pregnant CD1 mice were treated with deprenyl (10mg/kg) on gestation day 9 followed by the administration of hydroxyurea (400 or 600mg/kg). Deprenyl treatment significantly decreased the hydroxyurea-induced nuclear translocation of GAPDH in the caudal lumbosacral somites. Deprenyl enhanced hydroxyurea-mediated caudal malformations, inducing specifically limb reduction, digit anomalies, tail defects, and lumbosacral vertebral abnormalities. Deprenyl did not augment the hydroxyurea-induced inhibition of glycolysis or alter the ratio of oxidized to reduced glutathione. However, it did dramatically increase cleaved caspase-3 in embryos. These data suggest that nuclear GAPDH plays an important, region-specific, role in teratogen-exposed embryos. Deprenyl exacerbated the developmental outcome of hydroxyurea exposure by a mechanism that is independent of oxidative stress. Although the administration of deprenyl alone did not affect pregnancy outcome, this drug may have adverse consequences when combined with exposures that increase the risk of malformations.
Collapse
Affiliation(s)
- Ava E Schlisser
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | | |
Collapse
|
88
|
Methods for detection and characterization of protein S-nitrosylation. Methods 2013; 62:138-50. [PMID: 23628946 DOI: 10.1016/j.ymeth.2013.04.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2012] [Revised: 04/15/2013] [Accepted: 04/18/2013] [Indexed: 11/24/2022] Open
Abstract
Reversible protein S-nitrosylation, defined as the covalent addition of a nitroso moiety to the reactive thiol group on a cysteine residue, has received increasing recognition as a critical post-translational modification that exerts ubiquitous influence in a wide range of cellular pathways and physiological processes. Due to the lability of the S-NO bond, which is a dynamic modification, and the low abundance of endogenously S-nitrosylated proteins in vivo, unambiguous identification of S-nitrosylated proteins and S-nitrosylation sites remains methodologically challenging. In this review, we summarize recent advancements and the use of state-of-art approaches for the enrichment, systematic identification and quantitation of S-nitrosylation protein targets and their modification sites at the S-nitrosoproteome scale. These advancements have facilitated the global identification of >3000 S-nitrosylated proteins that are associated with wide range of human diseases. These strategies hold promise to site-specifically unravel potential molecular targets and to change S-nitrosylation-based pathophysiology, which may further the understanding of the potential role of S-nitrosylation in diseases.
Collapse
|
89
|
Nakamura T, Lipton SA. Emerging role of protein-protein transnitrosylation in cell signaling pathways. Antioxid Redox Signal 2013; 18:239-49. [PMID: 22657837 PMCID: PMC3518546 DOI: 10.1089/ars.2012.4703] [Citation(s) in RCA: 115] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
SIGNIFICANCE Protein S-nitrosylation, a covalent reaction of a nitric oxide (NO) group with a critical protein thiol (or more properly thiolate anion), mediates an important form of redox-related signaling as well as aberrant signaling in disease states. RECENT ADVANCES A growing literature suggests that over 3000 proteins are S-nitrosylated in cell systems. Our laboratory and several others have demonstrated that protein S-nitrosylation can regulate protein function by directly inhibiting catalytically active cysteines, by reacting with allosteric sites, or via influencing protein-protein interaction. For example, S-nitrosylation of critical cysteine thiols in protein-disulfide isomerase and in parkin alters their activity, thus contributing to protein misfolding in Parkinson's disease. CRITICAL ISSUES However, the mechanism by which specific protein S-nitrosylation occurs in cell signaling pathways is less well investigated. Interestingly, the recent discovery of protein-protein transnitrosylation reactions (transfer of an NO group from one protein to another) has revealed a unique mechanism whereby NO can S-nitrosylate a particular set of protein thiols, and represents a major class of nitrosylating/denitrosylating enzymes in mammalian systems. In this review, we will discuss recent evidence for transnitrosylation reactions between (i) hemoglobin/anion exchanger 1, (ii) thioredoxin/caspase-3, (iii) X-linked inhibitor of apoptosis/caspase-3, (iv) GAPDH-HDAC2/SIRT1/DNA-PK, and (v) Cdk5/dynamin related protein 1 (Drp1). This review also discusses experimental techniques useful in characterizing protein-protein transnitrosylations. FUTURE DIRECTIONS Elucidation of additional transnitrosylation cascades will further our understanding of the enzymes that catalyze nitrosation, thereby contributing to NO-mediated signaling pathways.
Collapse
Affiliation(s)
- Tomohiro Nakamura
- Del E. Webb Center for Neuroscience, Aging, and Stem Cell Research, Sanford-Burnham Medical Research Institute, La Jolla, California 92037, USA.
| | | |
Collapse
|
90
|
Abstract
The concept of the cytosol as a space that contains discrete zones of metabolites is discussed relative to the contribution of GAPDH. GAPDH is directed to very specific cell compartments. This chapter describes the utilization of GAPDH's enzymatic function for focal demands (i.e. ATP/ADP and NAD(+)/NADH), and offers a speculative role for GAPDH as perhaps moderating local concentrations of inorganic phosphate and hydrogen ions (i.e. co-substrate and co-product of the glycolytic reaction, respectively). Where known, the structural features of the binding between GAPDH and the compartment components are discussed. The nuances, which are associated with the intracellular distribution of GAPDH, appear to be specific to the cell-type, particularly with regards to the various plasma membrane proteins to which GAPDH binds. The chapter includes discussion on the curious observation of GAPDH being localized to the external surface of the plasma membrane in a human cell type. The default perspective has been that GAPDH localization is synonymous with compartmentation of glycolytic energy. The chapter discusses GAPDH translocation to the nucleus and to non-nuclear cellular structures, emphasizing its glycolytic function. Nevertheless, it is becoming clear that alternate functions of GAPDH play a role in compartmentation, particularly in the translocation to the nucleus.
Collapse
Affiliation(s)
- Norbert W Seidler
- Department of Biochemistry, Kansas City University of Medicine and Biosciences, Kansas City, MO, USA
| |
Collapse
|
91
|
Calabresi P, Di Filippo M, Gallina A, Wang Y, Stankowski JN, Picconi B, Dawson VL, Dawson TM. New synaptic and molecular targets for neuroprotection in Parkinson's disease. Mov Disord 2013; 28:51-60. [PMID: 22927178 PMCID: PMC4161019 DOI: 10.1002/mds.25096] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Revised: 03/21/2012] [Accepted: 06/03/2012] [Indexed: 12/20/2022] Open
Abstract
The defining anatomical feature of Parkinson's disease (PD) is the degeneration of substantia nigra pars compacta (SNc) neurons, resulting in striatal dopamine (DA) deficiency and in the subsequent alteration of basal ganglia physiology. Treatments targeting the dopaminergic system alleviate PD symptoms but are not able to slow the neurodegenerative process that underlies PD progression. The nucleus striatum comprises a complex network of projecting neurons and interneurons that integrates different neural signals to modulate the activity of the basal ganglia circuitry. In this review we describe new potential molecular and synaptic striatal targets for the development of both symptomatic and neuroprotective strategies for PD. In particular, we focus on the interaction between adenosine A2A receptors and dopamine D2 receptors, on the role of a correct assembly of NMDA receptors, and on the sGC/cGMP/PKG pathway. Moreover, we also discuss the possibility to target the cell death program parthanatos and the kinase LRRK2 in order to develop new putative neuroprotective agents for PD acting on dopaminergic nigral neurons as well as on other basal ganglia structures.
Collapse
|
92
|
Seidler NW. Target for diverse chemical modifications. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 985:179-206. [PMID: 22851450 DOI: 10.1007/978-94-007-4716-6_6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The chapter begins with an historical perspective of GAPDH isozymes that is juxtaposed to the fact that there is only one somatic functional gene in humans that is virtually identical among the mammalian species. Over the many years of GAPDH research, dozens of labs have reported the existence of multiple forms of GAPDH, which mostly vary as a function of charge with an occasional report of truncated forms. These observations are in part due to GAPDH being a substrate for many enzymatically-controlled post-translational modifications. While target residues have been identified and predictive algorithms have implicated certain residues, this area of research appears to be in its infancy regarding GAPDH. Equally fascinating, the uniquely susceptible nature of GAPDH to non-enzymatic reactions, that typically are associated with cell stress, such as oxidation and nitration, is also discussed. Two metabolic gases, nitric oxide and hydrogen sulfide, which are enzymatically produced, appear to exert their signaling properties through non-enzymatic reaction with GAPDH. Models of cellular decline are also proposed, including the compelling hypothesis that states cell compromise occurs by the physically blocking the function of chaperonins (i.e. dual-ring multiple-subunit molecular chaperones) by the attachment of misfolded GAPDH.
Collapse
Affiliation(s)
- Norbert W Seidler
- Department of Biochemistry, Kansas City University of Medicine and Biosciences, Kansas City, MO, USA
| |
Collapse
|
93
|
Komatsubara AT, Asano T, Tsumoto H, Shimizu K, Nishiuchi T, Yoshizumi M, Ozawa K. Proteomic analysis of S-nitrosylation induced by 1-methyl-4-phenylpyridinium (MPP+). Proteome Sci 2012; 10:74. [PMID: 23273257 PMCID: PMC3576269 DOI: 10.1186/1477-5956-10-74] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Accepted: 12/23/2012] [Indexed: 11/12/2022] Open
Abstract
Background Nitric oxide (NO) mediates its function through the direct modification of various cellular targets. S-nitrosylation is a post-translational modification of cysteine residues by NO that regulates protein function. Recently, an imbalance of S-nitrosylation has also been linked to neurodegeneration through the impairment of pro-survival proteins by S-nitrosylation. Results In the present study, we used two-dimensional gel electrophoresis in conjunction with the modified biotin switch assay for protein S-nitrosothiols using resin-assisted capture (SNO-RAC) to identify proteins that are S-nitrosylated more intensively in neuroblastoma cells treated with a mitochondrial complex I inhibitor, 1-methyl-4-phenylpyridinium (MPP+). We identified 14 proteins for which S-nitrosylation was upregulated and seven proteins for which it was downregulated in MPP+-treated neuroblastoma cells. Immunoblot analysis following SNO-RAC confirmed a large increase in the S-nitrosylation of esterase D (ESD), serine-threonine kinase receptor-associated protein (STRAP) and T-complex protein 1 subunit γ (TCP-1 γ) in MPP+-treated neuroblastoma cells, whereas S-nitrosylation of thioredoxin domain-containing protein 5 precursor (ERp46) was decreased. Conclusions These results suggest that S-nitrosylation resulting from mitochondrial dysfunction can compromise neuronal survival through altering multiple signal transduction pathways and might be a potential therapeutic target for neurodegenerative diseases.
Collapse
Affiliation(s)
- Akira T Komatsubara
- Department of Pharmacology, Nara Medical University School of Medicine, 840 Shijo-cho, Kashihara, Nar, 634-8521, Japan.,Department of Genomic Drug Discovery Science, Kyoto University Graduate School of Pharmaceutical Sciences, Sakyo-ku, Kyoto, Japan
| | - Tomoya Asano
- Division of Functional Genomics, Advanced Science Research Center, Kanazawa University, Kanazawa, Japan
| | - Hiroki Tsumoto
- World-Leading Drug Discovery Research Center, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Kazuharu Shimizu
- World-Leading Drug Discovery Research Center, Kyoto University, Sakyo-ku, Kyoto, Japan.,Department of Nanobio Drug Discovery, Kyoto University Graduate School of Pharmaceutical Sciences, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Takumi Nishiuchi
- Division of Functional Genomics, Advanced Science Research Center, Kanazawa University, Kanazawa, Japan
| | - Masanori Yoshizumi
- Department of Pharmacology, Nara Medical University School of Medicine, 840 Shijo-cho, Kashihara, Nar, 634-8521, Japan
| | - Kentaro Ozawa
- Department of Pharmacology, Nara Medical University School of Medicine, 840 Shijo-cho, Kashihara, Nar, 634-8521, Japan.,World-Leading Drug Discovery Research Center, Kyoto University, Sakyo-ku, Kyoto, Japan
| |
Collapse
|
94
|
Abstract
Moonlighting--the performance of more than one function by a single protein--is becoming recognized as a common phenomenon with important implications for systems biology and human health. The different functions of a moonlighting protein may use different regions of the protein structure, or alternative structures that occur due to post-translational modifications and/or differences in binding partners. Often the different functions of moonlighting proteins are used at different times or in different places. The existence of moonlighting functions complicates efforts to understand metabolic and regulatory networks, as well as physiological and pathological processes in organisms. Because moonlighting functions can play important roles in disease processes, an improved understanding of moonlighting proteins will provide new opportunities for pharmacological manipulations that specifically target a function involved in pathology while sparing physiologically important functions.
Collapse
Affiliation(s)
- Shelley D Copley
- Department of Molecular, Cellular and Developmental Biology, Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO, USA.
| |
Collapse
|
95
|
Pekcec A, Yigitkanli K, Jung JE, Pallast S, Xing C, Antipenko A, Minchenko M, Nikolov DB, Holman TR, Lo EH, van Leyen K. Following experimental stroke, the recovering brain is vulnerable to lipoxygenase-dependent semaphorin signaling. FASEB J 2012; 27:437-45. [PMID: 23070608 DOI: 10.1096/fj.12-206896] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Recovery from stroke is limited, in part, by an inhibitory environment in the postischemic brain, but factors preventing successful remodeling are not well known. Using cultured cortical neurons from mice, brain endothelial cells, and a mouse model of ischemic stroke, we show that signaling from the axon guidance molecule Sema3A via eicosanoid second messengers can contribute to this inhibitory environment. Either 90 nM recombinant Sema3A, or the 12/15-lipoxygenase (12/15-LOX) metabolites 12-HETE and 12-HPETE at 300 nM, block axon extension in neurons compared to solvent controls, and decrease tube formation in endothelial cells. The Sema3A effect is reversed by inhibiting 12/15-LOX, and neurons derived from 12/15-LOX-knockout mice are insensitive to Sema3A. Following middle cerebral artery occlusion to induce stroke in mice, immunohistochemistry shows both Sema3A and 12/15-LOX are increased in the cortex up to 2 wk. To determine whether a Sema3A-dependent damage pathway is activated following ischemia, we injected recombinant Sema3A into the striatum. Sema3A alone did not cause injury in normal brains. But when injected into postischemic brains, Sema3A increased cortical damage by 79%, and again, this effect was reversed by 12/15-LOX inhibition. Our findings suggest that blocking the semaphorin pathway should be investigated as a therapeutic strategy to improve stroke recovery.
Collapse
Affiliation(s)
- Anton Pekcec
- Neuroprotection Research Laboratory, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
96
|
Mongin AA, Dohare P, Jourd'heuil D. Selective vulnerability of synaptic signaling and metabolism to nitrosative stress. Antioxid Redox Signal 2012; 17:992-1012. [PMID: 22339371 PMCID: PMC3411350 DOI: 10.1089/ars.2012.4559] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
SIGNIFICANCE Nitric oxide (NO) plays diverse physiological roles in the central nervous system, where it modulates neuronal communication, regulates blood flow, and contributes to the innate immune responses. In a number of brain pathologies, the excessive production of NO also leads to the formation of reactive and toxic intermediates generically termed reactive nitrogen species (RNS). RNS cause irreversible or poorly reversible damage to brain cells. RECENT ADVANCES Recent work in the field focused on the ability of NO and RNS to yield protein modifications, including the S-nitrosation of cysteine residues, which, in many instances, impact cellular functions and viability. CRITICAL ISSUES The vast majority of neuropathological studies focus on the loss of cell viability, but nitrosative stress may also strongly impair the functions of neuronal processes: axonal projections and dendritic trees. The functional integrity of axons and dendrites critically depends on local metabolism and effective delivery of metabolic enzymes and organelles. Here, we summarize the existing literature describing the effects of nitrosative stress on the major pathways of energetic metabolism: glycolysis, tricarboxylic acid cycle, and mitochondrial respiration, with the emphasis on modifications of protein thiols. FUTURE DIRECTIONS We propose that axons and dendrites are highly vulnerable to nitrosative stress because of their low glycolytic capacity and high dependence on timely delivery of metabolic enzymes and organelles from the cell body. Thus, supplementation with the end products of glycolysis, pyruvate or lactate, may help preserve metabolism in distal neuronal processes and protect or restore synaptic function in the ailing brain.
Collapse
Affiliation(s)
- Alexander A Mongin
- Center for Neuropharmacology and Neuroscience, Albany Medical College, New York 12208, USA.
| | | | | |
Collapse
|
97
|
Wang S, Njoroge SK, Battle K, Zhang C, Hollins BC, Soper SA, Feng J. Two-dimensional nitrosylated protein fingerprinting by using poly (methyl methacrylate) microchips. LAB ON A CHIP 2012; 12:3362-3369. [PMID: 22766561 DOI: 10.1039/c2lc40132k] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
S-nitrosylation (also referred to as nitrosation), a reversible post translational modification (PTM) of cysteine, plays an important role in cellular functions and cell signalling pathways. Nitrosylated proteins are considered as biomarkers of aging and Alzheimer's disease (AD). Microfluidics has been widely used for development of novel tools for separation of protein mixtures. Here we demonstrate two-dimensional micro-electrophoresis (2D μ-CE) separations of nitrosylated proteins from the human colon epithelial adenocarcinoma cells (HT-29) and AD transgenic mice brain tissues. Sodium dodecyl sulphate micro-capillary gel electrophoresis (SDS μ-CGE) and microemulsion electrokinetic chromatography (MEEKC) were used for the first and second dimensional separations, respectively. The effective separation lengths for both dimensions were 10 mm, and electrokinetic injection was used with field strength at 200 V cm(-1). After 80 s separation in the first CGE dimension, fractions were successfully transferred to a second MEEKC dimension for a short 10 s separation. We first demonstrate this 2D μ-CE separation by resolving five standard proteins with molecular weight (MW) ranging from 20 to 64 kDa. We also present a high peak capacity 3D landscape image of nitrosylated proteins from HT-29 cells before and following menadione (MQ) treatment to induce oxidative stress. Additionally, to illustrate the potential of the 2D μ-CE separation method for rapid profiling of oxidative stress-induced biomarkers implicated in AD disease, the nitrosylated protein fingerprints from 11-month-old AD transgenic mice brain and their age matched controls were also generated. To our knowledge, this is the first report on 2D profiling of nitrosylated proteins in biological samples on a microchip. The characteristics of this biomarker profiling will potentially serve as the screening for early detection of AD.
Collapse
Affiliation(s)
- Siyang Wang
- Department of Biomedical Engineering, Louisiana Tech University, Ruston, USA
| | | | | | | | | | | | | |
Collapse
|
98
|
CIB1 prevents nuclear GAPDH accumulation and non-apoptotic tumor cell death via AKT and ERK signaling. Oncogene 2012; 32:4017-27. [PMID: 22964641 PMCID: PMC3530648 DOI: 10.1038/onc.2012.408] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Revised: 07/25/2012] [Accepted: 07/29/2012] [Indexed: 01/05/2023]
Abstract
CIB1 is a 22-kDa regulatory protein previously implicated in cell survival and proliferation. However, the mechanism by which CIB1 regulates these processes is poorly defined. Here we report that CIB1 depletion in SK-N-SH neuroblastoma and MDA-MB-468 breast cancer cells promotes non-apoptotic, caspase-independent cell death that is not initiated by increased outer mitochondrial membrane permeability or translocation of apoptosis-inducing factor to the nucleus. Instead, cell death requires nuclear GAPDH accumulation. Furthermore, CIB1 depletion disrupts two commonly dysregulated, oncogenic pathways– PI3K/AKT and Ras/MEK/ERK, resulting in a synergistic mechanism of cell death, which was mimicked by simultaneous pharmacological inhibition of both pathways, but not either pathway alone. In defining each pathway’s contributions, we found that AKT inhibition alone maximally induced GAPDH nuclear accumulation, whereas MEK/ERK inhibition alone had no effect on GAPDH localization. Concurrent GAPDH nuclear accumulation and ERK inhibition were required however, to induce a significant DNA damage response, which was critical to subsequent cell death. Collectively, our results indicate that CIB1 is uniquely positioned to regulate PI3K/AKT and MEK/ERK signaling and that simultaneous disruption of these pathways synergistically induces a nuclear GAPDH-dependent cell death. The mechanistic insights into cell death induced by CIB1 interference suggest novel molecular targets for cancer therapy.
Collapse
|
99
|
Boll MC, Alcaraz-Zubeldia M, Rios C. Medical management of Parkinson's disease: focus on neuroprotection. Curr Neuropharmacol 2012; 9:350-9. [PMID: 22131943 PMCID: PMC3131725 DOI: 10.2174/157015911795596577] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2009] [Revised: 07/21/2010] [Accepted: 08/13/2010] [Indexed: 12/12/2022] Open
Abstract
Neuroprotection refers to the protection of neurons from excitotoxicity, oxidative stress and apoptosis as principal mechanisms of cell loss in a variety of diseases of the central nervous system. Our interest in Parkinson’s disease (PD) treatment is focused on drugs with neuroprotective properties in preclinical experiments and evidence-based efficacy in human subjects. To this date, neuroprotection has never been solidly proven in clinical trials but recent adequate markers and/or strategies to study and promote this important goal are described. A myriad of compounds with protective properties in cell cultures and animal models yield to few treatments in clinical practice. At present, markers of neuronal vitality, disease modifying effects and long term clinical stability are the elements searched for in clinical trials. This review highlights new strategies to monitor patients with PD. Currently, neuroprotection in subjects has not been solidly achieved for selegiline and pramipexole; however, a recent rasagiline trial design is showing new indications of disease course modifying effects. In neurological practice, it is of utmost importance to take into account the potential neuroprotection exerted by a treatment in conjunction with its symptomatic efficacy.
Collapse
Affiliation(s)
- Marie-Catherine Boll
- Department of Clinical Investigation in Neurology National Institute of Neurology and Neurosurgery, Mexico. D.F
| | | | | |
Collapse
|
100
|
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) induces cancer cell senescence by interacting with telomerase RNA component. Proc Natl Acad Sci U S A 2012; 109:13308-13. [PMID: 22847419 DOI: 10.1073/pnas.1206672109] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Oxidative stress regulates telomere homeostasis and cellular aging by unclear mechanisms. Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) is a key mediator of many oxidative stress responses, involving GAPDH nuclear translocation and induction of cell death. We report here that GAPDH interacts with the telomerase RNA component (TERC), inhibits telomerase activity, and induces telomere shortening and breast cancer cell senescence. The Rossmann fold containing NAD(+) binding region on GAPDH is responsible for the interaction with TERC, whereas a lysine residue in the GAPDH catalytic domain is required for inhibiting telomerase activity and disrupting telomere maintenance. Furthermore, the GAPDH substrate glyceraldehyde-3-phosphate (G3P) and the nitric oxide donor S-nitrosoglutathione (GSNO) both negatively regulate GAPDH inhibition of telomerase activity. Thus, we demonstrate that GAPDH is regulated to target the telomerase complex, resulting in an arrest of telomere maintenance and cancer cell proliferation.
Collapse
|