51
|
Han KY, Chang JH, Azar DT. Proteomics-Based Characterization of the Effects of MMP14 on the Protein Content of Exosomes from Corneal Fibroblasts. Protein Pept Lett 2021; 27:979-988. [PMID: 32268857 DOI: 10.2174/0929866527666200408142827] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 02/15/2020] [Accepted: 02/17/2020] [Indexed: 12/17/2022]
Abstract
BACKGROUND Exosomes secreted by corneal fibroblasts contain matrix metalloproteinase (MMP) 14, which is known to influence pro-MMP2 accumulation on exosomes. Accordingly, we hypothesized that the enzymatic activity of MMP14 may alter the protein content of corneal fibroblast- secreted exosomes. OBJECTIVE The aim of this study was to investigate the effects of MMP14 on the composition and biological activity of corneal fibroblast-derived exosomes. METHODS Knock out of the catalytic domain (ΔExon4) of MMP14 in corneal fibroblasts was used to determine the effect of MMP14 expression on the characteristics of fibroblast-secreted exosomes. The amount of secreted proteins and their size distribution were measured using Nano Tracking Analysis. Proteins within exosomes from wild-type (WT) and ΔExon4-deficient fibroblasts were identified by liquid chromatography-tandem mass spectrometry (MS/MS) proteomics analysis. The proteolytic effects of MMP14 were evaluated in vitro via MS identification of eliminated proteins. The biological functions of MMP14-carrying exosomes were investigated via fusion to endothelial cells and flow cytometric assays. RESULTS Exosomes isolated from WT and ΔExon4-deficient fibroblasts exhibited similar size distributions and morphologies, although WT fibroblasts secreted a greater amount of exosomes. The protein content, however, was higher in ΔExon4-deficient fibroblast-derived exosomes than in WT fibroblast-derived exosomes. Proteomics analysis revealed that WT-derived exosomes included proteins that regulated cell migration, and ΔExon4 fibroblast-derived exosomes contained additional proteins that were cleaved by MMP14. CONCLUSION Our findings suggest that MMP14 expression influences the protein composition of exosomes secreted by corneal fibroblasts, and through those biological components, MMP14 in corneal fibroblasts derived-exosomes may regulate corneal angiogenesis.
Collapse
Affiliation(s)
- Kyu-Yeon Han
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, United States
| | - Jin-Hong Chang
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, United States
| | - Dimitri T Azar
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, United States
| |
Collapse
|
52
|
Li Y, Hoffman MD, Benoit DSW. Matrix metalloproteinase (MMP)-degradable tissue engineered periosteum coordinates allograft healing via early stage recruitment and support of host neurovasculature. Biomaterials 2021; 268:120535. [PMID: 33271450 PMCID: PMC8110201 DOI: 10.1016/j.biomaterials.2020.120535] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 10/17/2020] [Accepted: 11/06/2020] [Indexed: 12/15/2022]
Abstract
Despite serving as the clinical "gold standard" treatment for critical size bone defects, decellularized allografts suffer from long-term failure rates of ~60% due to the absence of the periosteum. Stem and osteoprogenitor cells within the periosteum orchestrate autograft healing through host cell recruitment, which initiates the regenerative process. To emulate periosteum-mediated healing, tissue engineering approaches have been utilized with mixed outcomes. While vascularization has been widely established as critical for bone regeneration, innervation was recently identified to be spatiotemporally regulated together with vascularization and similarly indispensable to bone healing. Notwithstanding, there are no known approaches that have focused on periosteal matrix cues to coordinate host vessel and/or axon recruitment. Here, we investigated the influence of hydrogel degradation mechanism, i.e. hydrolytic or enzymatic (cell-dictated), on tissue engineered periosteum (TEP)-modified allograft healing, especially host vessel/nerve recruitment and integration. Matrix metalloproteinase (MMP)-degradable hydrogels supported endothelial cell migration from encapsulated spheroids whereas no migration was observed in hydrolytically degradable hydrogels in vitro, which correlated with increased neurovascularization in vivo. Specifically, ~2.45 and 1.84-fold, and ~3.48 and 2.58-fold greater vessel and nerve densities with high levels of vessel and nerve co-localization was observed using MMP degradable TEP (MMP-TEP) -modified allografts versus unmodified and hydrolytically degradable TEP (Hydro-TEP)-modified allografts, respectively, at 3 weeks post-surgery. MMP-TEP-modified allografts exhibited greater longitudinal graft-localized vascularization and endochondral ossification, along with 4-fold and 2-fold greater maximum torques versus unmodified and Hydro-TEP-modified allografts after 9 weeks, respectively, which was comparable to that of autografts. In summary, our results demonstrated that the MMP-TEP coordinated allograft healing via early stage recruitment and support of host neurovasculature.
Collapse
Affiliation(s)
- Yiming Li
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA; Department of Orthopaedics and Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA.
| | - Michael D Hoffman
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA; Department of Orthopaedics and Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA.
| | - Danielle S W Benoit
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA; Department of Orthopaedics and Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA; Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA; Materials Science Program, University of Rochester, Rochester, NY, USA; Department of Chemical Engineering, University of Rochester, Rochester, NY, USA; Department of Biomedical Genetics and Center for Oral Biology, University of Rochester Medical Center, Rochester, NY, USA.
| |
Collapse
|
53
|
de Vos IJHM, Wong ASW, Taslim J, Ong SLM, Syder NC, Goggi JL, Carney TJ, van Steensel MAM. The novel zebrafish model pretzel demonstrates a central role for SH3PXD2B in defective collagen remodelling and fibrosis in Frank-Ter Haar syndrome. Biol Open 2020; 9:bio054270. [PMID: 33234702 PMCID: PMC7790187 DOI: 10.1242/bio.054270] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 11/05/2020] [Indexed: 11/20/2022] Open
Abstract
Frank-Ter Haar syndrome (FTHS, MIM #249420) is a rare skeletal dysplasia within the defective collagen remodelling spectrum (DECORS), which is characterised by craniofacial abnormalities, skeletal malformations and fibrotic soft tissues changes including dermal fibrosis and joint contractures. FTHS is caused by homozygous or compound heterozygous loss-of-function mutation or deletion of SH3PXD2B (Src homology 3 and Phox homology domain-containing protein 2B; MIM #613293). SH3PXD2B encodes an adaptor protein with the same name, which is required for full functionality of podosomes, specialised membrane structures involved in extracellular matrix (ECM) remodelling. The pathogenesis of DECORS is still incompletely understood and, as a result, therapeutic options are limited. We previously generated an mmp14a/b knockout zebrafish and demonstrated that it primarily mimics the DECORS-related bone abnormalities. Here, we present a novel sh3pxd2b mutant zebrafish, pretzel, which primarily reflects the DECORS-related dermal fibrosis and contractures. In addition to relatively mild skeletal abnormalities, pretzel mutants develop dermal and musculoskeletal fibrosis, contraction of which seems to underlie grotesque deformations that include kyphoscoliosis, abdominal constriction and lateral folding. The discrepancy in phenotypes between mmp14a/b and sh3pxd2b mutants suggests that in fish, as opposed to humans, there are differences in spatiotemporal dependence of ECM remodelling on either sh3pxd2b or mmp14a/b The pretzel model presented here can be used to further delineate the underlying mechanism of the fibrosis observed in DECORS, as well as screening and subsequent development of novel drugs targeting DECORS-related fibrosis.This paper has an associated First Person interview with the first author of the article.
Collapse
Affiliation(s)
- Ivo J H M de Vos
- Skin Research Institute of Singapore (SRIS), Agency for Science, Technology and Research (A*STAR), 308232, Singapore
| | - Arnette Shi Wei Wong
- Skin Research Institute of Singapore (SRIS), Agency for Science, Technology and Research (A*STAR), 308232, Singapore
| | - Jason Taslim
- Skin Research Institute of Singapore (SRIS), Agency for Science, Technology and Research (A*STAR), 308232, Singapore
| | - Sheena Li Ming Ong
- Institute of Medical Biology (IMB), Agency for Science, Technology and Research (A*STAR), 138648, Singapore
| | - Nicole C Syder
- Skin Research Institute of Singapore (SRIS), Agency for Science, Technology and Research (A*STAR), 308232, Singapore
| | - Julian L Goggi
- Singapore Bioimaging Consortium (SBIC), Agency for Science, Technology and Research (A*STAR), 138667, Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore (NUS), 117593, Singapore
| | - Thomas J Carney
- Lee Kong Chian School of Medicine, Nanyang Technological University (NTU), 636921, Singapore
| | - Maurice A M van Steensel
- Skin Research Institute of Singapore (SRIS), Agency for Science, Technology and Research (A*STAR), 308232, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University (NTU), 636921, Singapore
| |
Collapse
|
54
|
Niland S, Eble JA. Hold on or Cut? Integrin- and MMP-Mediated Cell-Matrix Interactions in the Tumor Microenvironment. Int J Mol Sci 2020; 22:ijms22010238. [PMID: 33379400 PMCID: PMC7794804 DOI: 10.3390/ijms22010238] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/21/2020] [Accepted: 12/23/2020] [Indexed: 02/07/2023] Open
Abstract
The tumor microenvironment (TME) has become the focus of interest in cancer research and treatment. It includes the extracellular matrix (ECM) and ECM-modifying enzymes that are secreted by cancer and neighboring cells. The ECM serves both to anchor the tumor cells embedded in it and as a means of communication between the various cellular and non-cellular components of the TME. The cells of the TME modify their surrounding cancer-characteristic ECM. This in turn provides feedback to them via cellular receptors, thereby regulating, together with cytokines and exosomes, differentiation processes as well as tumor progression and spread. Matrix remodeling is accomplished by altering the repertoire of ECM components and by biophysical changes in stiffness and tension caused by ECM-crosslinking and ECM-degrading enzymes, in particular matrix metalloproteinases (MMPs). These can degrade ECM barriers or, by partial proteolysis, release soluble ECM fragments called matrikines, which influence cells inside and outside the TME. This review examines the changes in the ECM of the TME and the interaction between cells and the ECM, with a particular focus on MMPs.
Collapse
|
55
|
Attur M, Lu C, Zhang X, Han T, Alexandre C, Valacca C, Zheng S, Meikle S, Dabovic BB, Tassone E, Yang Q, Kolupaeva V, Yakar S, Abramson S, Mignatti P. Membrane-type 1 Matrix Metalloproteinase Modulates Tissue Homeostasis by a Non-proteolytic Mechanism. iScience 2020; 23:101789. [PMID: 33294797 PMCID: PMC7695985 DOI: 10.1016/j.isci.2020.101789] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 08/31/2020] [Accepted: 11/06/2020] [Indexed: 12/26/2022] Open
Abstract
Membrane-type 1 matrix metalloproteinase (MT1-MMP, MMP-14), a transmembrane proteinase with a short cytoplasmic tail, is a major effector of extracellular matrix remodeling. Genetic silencing of MT1-MMP in mouse (Mmp14 -/- ) and man causes dwarfism, osteopenia, arthritis, and lipodystrophy, abnormalities ascribed to defective collagen turnover. We have previously shown non-proteolytic functions of MT1-MMP mediated by its cytoplasmic tail, where the unique tyrosine (Y573) controls intracellular signaling. The Y573D mutation blocks TIMP-2/MT1-MMP-induced Erk1/2 and Akt signaling without affecting proteolytic activity. Here, we report that a mouse with the MT1-MMP Y573D mutation (Mmp14 Y573D/Y573D ) shows abnormalities similar to but also different from those of Mmp14 -/- mice. Skeletal stem cells (SSC) of Mmp14 Y573D/Y573D mice show defective differentiation consistent with the mouse phenotype, which is rescued by wild-type SSC transplant. These results provide the first in vivo demonstration that MT1-MMP modulates bone, cartilage, and fat homeostasis by controlling SSC differentiation through a mechanism independent of proteolysis.
Collapse
Affiliation(s)
- Mukundan Attur
- Department of Medicine, Division of Rheumatology, NYU School of Medicine, 301 East 17th Street, Suite 1612A, NY 10003, USA
| | - Cuijie Lu
- Department of Medicine, Division of Rheumatology, NYU School of Medicine, 301 East 17th Street, Suite 1612A, NY 10003, USA
| | - Xiaodong Zhang
- Department of Cardiothoracic Surgery, NYU School of Medicine, 550 First Avenue, NY 10016, USA
| | - Tianzhen Han
- Department of Medicine, Division of Rheumatology, NYU School of Medicine, 301 East 17th Street, Suite 1612A, NY 10003, USA
| | - Cassidy Alexandre
- Department of Cardiothoracic Surgery, NYU School of Medicine, 550 First Avenue, NY 10016, USA
| | - Cristina Valacca
- Department of Cardiothoracic Surgery, NYU School of Medicine, 550 First Avenue, NY 10016, USA
| | - Shuai Zheng
- Department of Cardiothoracic Surgery, NYU School of Medicine, 550 First Avenue, NY 10016, USA
| | - Sarina Meikle
- Department of Cardiothoracic Surgery, NYU School of Medicine, 550 First Avenue, NY 10016, USA
| | | | - Evelyne Tassone
- Department of Cardiothoracic Surgery, NYU School of Medicine, 550 First Avenue, NY 10016, USA
| | - Qing Yang
- Department of Medicine, Division of Rheumatology, NYU School of Medicine, 301 East 17th Street, Suite 1612A, NY 10003, USA
| | - Victoria Kolupaeva
- Department of Microbiology, NYU School of Medicine, 550 First Avenue, NY 10016, USA
| | - Shoshana Yakar
- Department of Basic Science & Craniofacial Biology, NYU College of Dentistry, 345 E. 24th Street, NY 10010, USA
| | - Steven Abramson
- Department of Medicine, Division of Rheumatology, NYU School of Medicine, 301 East 17th Street, Suite 1612A, NY 10003, USA
| | - Paolo Mignatti
- Department of Medicine, Division of Rheumatology, NYU School of Medicine, 301 East 17th Street, Suite 1612A, NY 10003, USA
- Department of Cardiothoracic Surgery, NYU School of Medicine, 550 First Avenue, NY 10016, USA
- Department of Cell Biology, NYU School of Medicine, 550 First Avenue, NY 10016, USA
- Corresponding author
| |
Collapse
|
56
|
Tumor cell MT1-MMP is dispensable for osteosarcoma tumor growth, bone degradation and lung metastasis. Sci Rep 2020; 10:19138. [PMID: 33154487 PMCID: PMC7645741 DOI: 10.1038/s41598-020-75995-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 10/16/2020] [Indexed: 02/03/2023] Open
Abstract
The membrane-anchored matrix metalloprotease MT1-MMP is a potent collagenolytic enzyme with a well-established role in extracellular matrix turnover and cellular invasion into collagen-rich tissues. MT1-MMP is highly expressed in various types of cancer and has been demonstrated to be directly involved in several stages of tumor progression, including primary tumor growth, angiogenesis, invasion and metastasis. Osteosarcoma is the most common type of primary bone cancer. This disease is characterized by invasive tumor growth, leading to extensive bone destruction, and metastasis to the lungs. The tumor cells in human osteosarcoma display a strong expression of MT1-MMP, but the role of MT1-MMP in osteosarcoma progression is currently unknown. In this study, we investigated the role of MT1-MMP during various stages of osteosarcoma development. We utilized an optimized orthotopic murine osteosarcoma model and human osteosarcoma cells in which the MT1-MMP gene was knocked out using CRISPR/Cas9. We observed a strong expression of MT1-MMP in wildtype cells of both primary tumors and lung metastases, but, surprisingly, MT1-MMP deficiency did not affect primary tumor growth, bone degradation or the formation and growth of lung metastases. We therefore propose that, unlike findings reported in other cancers, tumor-expressed MT1-MMP is dispensable for all stages of osteosarcoma progression.
Collapse
|
57
|
Shimoda M, Ohtsuka T, Okada Y, Kanai Y. Stromal metalloproteinases: Crucial contributors to the tumor microenvironment. Pathol Int 2020; 71:1-14. [PMID: 33074556 DOI: 10.1111/pin.13033] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 09/25/2020] [Indexed: 12/30/2022]
Abstract
Proteolytic balance is crucial for the maintenance of tissue homeostasis. In cancer, dysregulated proteolysis is involved in unregulated tissue remodeling and inflammation, leading to the promotion of tumor growth, local invasion, and metastasis. Metalloproteinases, which were first identified as collagen cleaving enzymes, have been shown to extensively degrade extracellular matrix proteins or selectively release cell surface-bound cytokines, growth factors, or their receptors, thereby impacting extracellular matrix integrity, immune cell recruitment and tissue turnover. Although tumor cells produce various metalloproteinases, the major source is thought to be stromal cells infiltrating the tumor. Different types of stromal cells express specific sets of metalloproteinases and their inhibitors, which specifically alter the milieu within the tumor. In this review, recent findings and knowledge regarding metalloproteinases derived from stromal cells during the creation of the tumor microenvironment are described and their contribution to the tumor progression and metastasis discussed.
Collapse
Affiliation(s)
- Masayuki Shimoda
- Department of Pathology, Keio University School of Medicine, Tokyo, Japan
| | - Takashi Ohtsuka
- Division of Thoracic Surgery, Department of Surgery, The Jikei University School of Medicine, Tokyo, Japan
| | - Yasunori Okada
- Department of Pathophysiology for Locomotive and Neoplastic Diseases, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yae Kanai
- Department of Pathology, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
58
|
Fischer T, Riedl R. Challenges with matrix metalloproteinase inhibition and future drug discovery avenues. Expert Opin Drug Discov 2020; 16:75-88. [PMID: 32921161 DOI: 10.1080/17460441.2020.1819235] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Matrix metalloproteinases have been in the scope of pharmaceutical drug discovery for decades as promising targets for drug development. Until present, no modulator of the enzyme class survived clinical trials, all failing for various reasons. Nevertheless, the target family did not lose its attractiveness and there is ever more evidence that MMP modulators are likely to overcome the hurdles and result in successful clinical therapies. AREAS COVERED This review provides an overview of past efforts that were taken in the development of MMP inhibitors and insight into promising strategies that might enable drug discovery in the field in the future. Small molecule inhibitors as well as biomolecules are reviewed. EXPERT OPINION Despite the lack of successful clinical trials in the past, there is ongoing research in the field of MMP modulation, proving the target class has not lost its appeal to pharmaceutical research. With ever-growing insights from different scientific fields that shed light on previously unknown correlations, it is now time to use synergies deriving from biological knowledge, chemical structure generation, and clinical application to reach the ultimate goal of bringing MMP derived drugs on a broad front for the benefit of patients into therapeutic use.
Collapse
Affiliation(s)
- Thomas Fischer
- Center of Organic and Medicinal Chemistry, Institute of Chemistry and Biotechnology, Zurich University of Applied Sciences ZHAW , 8820 Wädenswil, Switzerland
| | - Rainer Riedl
- Center of Organic and Medicinal Chemistry, Institute of Chemistry and Biotechnology, Zurich University of Applied Sciences ZHAW , 8820 Wädenswil, Switzerland
| |
Collapse
|
59
|
Collagen IX deficiency leads to premature vascularization and ossification of murine femoral heads through an imbalance of pro- and antiangiogenic factors. Osteoarthritis Cartilage 2020; 28:988-999. [PMID: 32283184 DOI: 10.1016/j.joca.2020.03.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 02/20/2020] [Accepted: 03/30/2020] [Indexed: 02/02/2023]
Abstract
OBJECTIVE The vascular invasion of cartilage is an essential process in the endochondral ossification of long bones. In contrast, vascularization of articular cartilage constitutes a pathological mechanism in the development of osteoarthritis. Polymorphisms of Col9a1 have been described as risk factors for hip osteoarthritis (OA) and the loss of collagen IX is known to lead to premature OA of the hip joint in mice but the underlying mechanism is so far unknown. DESIGN To understand the contribution of collagen IX to OA development in the hip joint, we analyzed the early development of murine Col9a1-/- femoral heads between newborn stage and 16 weeks of age. RESULTS We found significantly accelerated ossification of the femoral heads in the absence of collagen IX as well as premature vascular and osteoclast invasion, even though hypertrophic differentiation was delayed. The loss of collagen IX led to anatomically altered femoral heads lacking the epiphyseal tubercle. Interestingly, this region was found to contain highest levels of the antiangiogenic protein thrombospondin-1 (TSP-1). Hence, TSP-1 levels were strongly reduced in the Col9a1-/- femoral heads. In addition, antiangiogenic matrilin-1 was found to be decreased, while proangiogenic active MMP-9 levels were increased in the collagen IX deficient mice compared to wildtype controls. CONCLUSION We conclude that collagen IX protects against premature vascularization and cartilage to bone transition in femoral heads by increasing the levels of antiangiogenic TSP-1 and matrilin-1 and decreasing the levels of proangiogenic active MMP-9.
Collapse
|
60
|
Zipfel P, Rochais C, Baranger K, Rivera S, Dallemagne P. Matrix Metalloproteinases as New Targets in Alzheimer's Disease: Opportunities and Challenges. J Med Chem 2020; 63:10705-10725. [PMID: 32459966 DOI: 10.1021/acs.jmedchem.0c00352] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Although matrix metalloproteinases (MMPs) are implicated in the regulation of numerous physiological processes, evidence of their pathological roles have also been obtained in the last decades, making MMPs attractive therapeutic targets for several diseases. Recent discoveries of their involvement in central nervous system (CNS) disorders, and in particular in Alzheimer's disease (AD), have paved the way to consider MMP modulators as promising therapeutic strategies. Over the past few decades, diverse approaches have been undertaken in the design of therapeutic agents targeting MMPs for various purposes, leading, more recently, to encouraging developments. In this article, we will present recent examples of inhibitors ranging from small molecules and peptidomimetics to biologics. We will also discuss the scientific knowledge that has led to the development of emerging tools and techniques to overcome the challenges of selective MMP inhibition.
Collapse
Affiliation(s)
- Pauline Zipfel
- Normandie Univ, UNICAEN, CERMN (Centre d'Etudes et de Recherche sur le Médicament de Normandie), F-14032 Caen, France
| | - Christophe Rochais
- Normandie Univ, UNICAEN, CERMN (Centre d'Etudes et de Recherche sur le Médicament de Normandie), F-14032 Caen, France
| | - Kévin Baranger
- Aix-Marseille Univ, CNRS, INP, Inst Neurophysiopathol, Marseille, France
| | - Santiago Rivera
- Aix-Marseille Univ, CNRS, INP, Inst Neurophysiopathol, Marseille, France
| | - Patrick Dallemagne
- Normandie Univ, UNICAEN, CERMN (Centre d'Etudes et de Recherche sur le Médicament de Normandie), F-14032 Caen, France
| |
Collapse
|
61
|
Jiang Z, Zhou J, Qin X, Zheng H, Gao B, Liu X, Jin G, Zhou Z. MT1-MMP deficiency leads to defective ependymal cell maturation, impaired ciliogenesis, and hydrocephalus. JCI Insight 2020; 5:132782. [PMID: 32229724 DOI: 10.1172/jci.insight.132782] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 03/26/2020] [Indexed: 01/02/2023] Open
Abstract
Hydrocephalus is characterized by abnormal accumulation of cerebrospinal fluid (CSF) in the ventricular cavity. The circulation of CSF in brain ventricles is controlled by the coordinated beating of motile cilia at the surface of ependymal cells (ECs). Here, we show that MT1-MMP is highly expressed in olfactory bulb, rostral migratory stream, and the ventricular system. Mice deficient for membrane-type 1-MMP (MT1-MMP) developed typical phenotypes observed in hydrocephalus, such as dome-shaped skulls, dilated ventricles, corpus callosum agenesis, and astrocyte hypertrophy, during the first 2 weeks of postnatal development. MT1-MMP-deficient mice exhibited reduced and disorganized motile cilia with the impaired maturation of ECs, leading to abnormal CSF flow. Consistent with the defects in motile cilia morphogenesis, the expression of promulticiliogenic genes was significantly decreased, with a concomitant hyperactivation of Notch signaling in the walls of lateral ventricles in Mmp14-/- brains. Inhibition of Notch signaling by γ-secretase inhibitor restored ciliogenesis in Mmp14-/- ECs. Taken together, these data suggest that MT1-MMP is required for ciliogenesis and EC maturation through suppression of Notch signaling during early brain development. Our findings indicate that MT1-MMP is critical for early brain development and loss of MT1-MMP activity gives rise to hydrocephalus.
Collapse
Affiliation(s)
- Zhixin Jiang
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, China.,Shenzhen Institute of Innovation and Research, University of Hong Kong, Shenzhen, China
| | - Jin Zhou
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, China.,Shenzhen Institute of Innovation and Research, University of Hong Kong, Shenzhen, China
| | - Xin Qin
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, China.,Shenzhen Institute of Innovation and Research, University of Hong Kong, Shenzhen, China
| | - Huiling Zheng
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, China.,Institute for Aging Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, China
| | - Bo Gao
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, China
| | - Xinguang Liu
- Institute for Aging Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, China
| | - Guoxiang Jin
- Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Zhongjun Zhou
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, China.,Shenzhen Institute of Innovation and Research, University of Hong Kong, Shenzhen, China
| |
Collapse
|
62
|
Chan ZCK, Kwan HLR, Wong YS, Jiang Z, Zhou Z, Tam KW, Chan YS, Chan CB, Lee CW. Site-directed MT1-MMP trafficking and surface insertion regulate AChR clustering and remodeling at developing NMJs. eLife 2020; 9:54379. [PMID: 32208136 PMCID: PMC7093154 DOI: 10.7554/elife.54379] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 02/10/2020] [Indexed: 12/12/2022] Open
Abstract
At vertebrate neuromuscular junctions (NMJs), the synaptic basal lamina contains different extracellular matrix (ECM) proteins and synaptogenic factors that induce and maintain synaptic specializations. Here, we report that podosome-like structures (PLSs) induced by ubiquitous ECM proteins regulate the formation and remodeling of acetylcholine receptor (AChR) clusters via focal ECM degradation. Mechanistically, ECM degradation is mediated by PLS-directed trafficking and surface insertion of membrane-type 1 matrix metalloproteinase (MT1-MMP) to AChR clusters through microtubule-capturing mechanisms. Upon synaptic induction, MT1-MMP plays a crucial role in the recruitment of aneural AChR clusters for the assembly of postsynaptic specializations. Lastly, the structural defects of NMJs in embryonic MT1-MMP-/- mice further demonstrate the physiological role of MT1-MMP in normal NMJ development. Collectively, this study suggests that postsynaptic MT1-MMP serves as a molecular switch to synaptogenesis by modulating local ECM environment for the deposition of synaptogenic signals that regulate postsynaptic differentiation at developing NMJs.
Collapse
Affiliation(s)
- Zora Chui-Kuen Chan
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Hiu-Lam Rachel Kwan
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Yin Shun Wong
- School of Biological Sciences, Faculty of Science, The University of Hong Kong, Hong Kong, China
| | - Zhixin Jiang
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Zhongjun Zhou
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Kin Wai Tam
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Ying-Shing Chan
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Chi Bun Chan
- School of Biological Sciences, Faculty of Science, The University of Hong Kong, Hong Kong, China
| | - Chi Wai Lee
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
63
|
Chen M, Bao L, Zhao M, Cao J, Zheng H. Progress in Research on the Role of FGF in the Formation and Treatment of Corneal Neovascularization. Front Pharmacol 2020; 11:111. [PMID: 32158390 PMCID: PMC7052042 DOI: 10.3389/fphar.2020.00111] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 01/28/2020] [Indexed: 12/23/2022] Open
Abstract
Corneal neovascularization (CNV) is a sight-threatening disease usually associated with inflammatory, infectious, degenerative, and traumatic disorders of the ocular surface. Fibroblast growth factor (FGF) family members play an important role in angiogenesis to induce corneal neovascularization, which significantly affects the differentiation, proliferation, metastasis, and chemotaxis of vascular endothelial cells. Both acidic fibroblast growth factor (aFGF) and basic fibroblast growth factor (bFGF) demonstrate positive staining in capillaries and induce corneal stromal cells. The anabolism of endothelial cells is induced by bFGF in corneal neovascularization. FGFs exert their effects via specific binding to cell surface-expressed specific receptors. We believe that both anti-FGF antibodies and anti-FGF receptor antibodies represent new directions for the treatment of CNV. Similar to anti-vascular endothelial growth factor antibodies, subconjunctival injection and eye drops can be considered effective forms of drug delivery.
Collapse
Affiliation(s)
- Mengji Chen
- Department of Ophthalmology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Licheng Bao
- Department of Ophthalmology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Mengying Zhao
- Department of Ophthalmology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jiarong Cao
- Department of Ophthalmology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Haihua Zheng
- Department of Ophthalmology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
64
|
Zhang J, Wang S, He Y, Yao B, Zhang Y. Regulation of matrix metalloproteinases 2 and 9 in corneal neovascularization. Chem Biol Drug Des 2020; 95:485-492. [PMID: 31002472 DOI: 10.1111/cbdd.13529] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 03/26/2019] [Accepted: 03/31/2019] [Indexed: 01/11/2023]
Abstract
Corneal neovascularization (CNV), a pathological process of angiogenesis, can lead to serious consequences in the cornea. CNV is generally proved to associate with inflammation in the cornea closely, which is mainly elicited by the disruption of equilibrium between angiogenic and antiangiogenic factors. Angiogenic factors including vascular endothelial growth factors (VEGFs), basic fibroblast growth factors (bFGFs), and matrix metalloproteinases (MMPs) are vital factors in the formation of CNV. Especially VEGFs are convinced to be the core angiogenic factors in CNV, and MMPs are proved to exert dual effects on the process. Strikingly, matrix metalloproteinase 2 (MMP-2) and matrix metalloproteinase 9 (MMP-9) are determined to play key roles in the formation of CNV, while the mechanism is still vague. In this review, the latest researches are reviewed to discuss the role of MMP-2 and MMP-9 in CNV, respectively, and some inhibitors of them are presented. We hope to provide a new direction of drug research for CNV.
Collapse
Affiliation(s)
- Jiahao Zhang
- Department of Ophthalmology, 2nd Hospital of Jilin University, Changchun, China
| | - Shurong Wang
- Department of Ophthalmology, 2nd Hospital of Jilin University, Changchun, China
| | - Yuxi He
- Department of Ophthalmology, 2nd Hospital of Jilin University, Changchun, China
| | - Boyuan Yao
- Department of Ophthalmology, 2nd Hospital of Jilin University, Changchun, China
| | - Yan Zhang
- Department of Ophthalmology, 2nd Hospital of Jilin University, Changchun, China
| |
Collapse
|
65
|
Role of Endogenous Regulators of Hem- And Lymphangiogenesis in Corneal Transplantation. J Clin Med 2020; 9:jcm9020479. [PMID: 32050484 PMCID: PMC7073692 DOI: 10.3390/jcm9020479] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 02/03/2020] [Accepted: 02/07/2020] [Indexed: 12/11/2022] Open
Abstract
Under normal conditions, the cornea, being the transparent “windscreen” of the eye, is free of both blood and lymphatic vessels. However, various diseases of the eye, like infections, can interfere with the balance between promoting and inhibiting factors, which leads to ingrowth of blood and lymphatic vessels. The newly formed lymphatic vessels increase the risk of graft rejection after subsequent corneal transplantation. Corneal transplantation is one of the most commonly performed transplantations worldwide, with more than 40,000 surgeries per year in Europe. To date, various anti-hem- and anti-lymphangiogenic treatment strategies have been developed specifically for the corneal vascular endothelial growth factor (VEGF) pathway. Currently, however, no treatment strategies are clinically available to specifically modulate lymphangiogenesis. In this review, we will give an overview about endogenous regulators of hem- and lymphangiogenesis and discuss potential new strategies for targeting pathological lymphangiogenesis. Furthermore, we will review recently identified modulators and demonstrate that the cornea is a suitable model for the identification of novel endogenous modulators of lymphangiogenesis. The identification of novel modulators of lymphangiogenesis and a better understanding of the signaling pathways involved will contribute to the development of new therapeutic targets for the treatment of pathological lymphangiogenesis. This, in turn, will improve graft rejection, not only for the cornea.
Collapse
|
66
|
Hardy E, Fernandez-Patron C. Destroy to Rebuild: The Connection Between Bone Tissue Remodeling and Matrix Metalloproteinases. Front Physiol 2020; 11:47. [PMID: 32116759 PMCID: PMC7013034 DOI: 10.3389/fphys.2020.00047] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 01/21/2020] [Indexed: 12/11/2022] Open
Abstract
Bone is a dynamic organ that undergoes constant remodeling, an energetically costly process by which old bone is replaced and localized bone defects are repaired to renew the skeleton over time, thereby maintaining skeletal health. This review provides a general overview of bone’s main players (bone lining cells, osteocytes, osteoclasts, reversal cells, and osteoblasts) that participate in bone remodeling. Placing emphasis on the family of extracellular matrix metalloproteinases (MMPs), we describe how: (i) Convergence of multiple protease families (including MMPs and cysteine proteinases) ensures complexity and robustness of the bone remodeling process, (ii) Enzymatic activity of MMPs affects bone physiology at the molecular and cellular levels and (iii) Either overexpression or deficiency/insufficiency of individual MMPs impairs healthy bone remodeling and systemic metabolism. Today, it is generally accepted that proteolytic activity is required for the degradation of bone tissue in osteoarthritis and osteoporosis. However, it is increasingly evident that inactivating mutations in MMP genes can also lead to bone pathology including osteolysis and metabolic abnormalities such as delayed growth. We argue that there remains a need to rethink the role played by proteases in bone physiology and pathology.
Collapse
Affiliation(s)
| | - Carlos Fernandez-Patron
- Department of Biochemistry, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
67
|
Abstract
Post-natal bone development is characterized by substantial longitudinal bone growth and changes in skeletal size and shape. Bone is in a dynamic process of continuous remodeling which helps to regulate calcium homeostasis, repair micro-damage to bones from everyday stress, and to shape the skeleton during growth. Bone growth is regulated by systemic hormones and locally generated factors. Understanding their mechanisms of action enables us to obtain a better appreciation of the cellular and molecular basis of bone remodeling and could therefore be valuable in approaches to new therapies. This article will review molecular and cellular control of skeletal growth in the post-natal period, the physiology of each bone cell with their systemic and local regulators, as well as the physiology of bone remodeling.
Collapse
Affiliation(s)
- Rania Ali El-Farrash
- Department of Pediatrics, Faculty of Medicine, Ain Shams University, Abbassya Square, 11566, Cairo, Egypt.
| | - Radwa Hassan Ali
- Physiology Department, Faculty of Medicine, Ain Shams University, Abbassya Square, 11566, Cairo, Egypt.
| | - Noha Mokhtar Barakat
- Department of Pediatrics, Faculty of Medicine, Ain Shams University, Abbassya Square, 11566, Cairo, Egypt.
| |
Collapse
|
68
|
Mesenchymal VEGFA induces aberrant differentiation in heterotopic ossification. Bone Res 2019; 7:36. [PMID: 31840004 PMCID: PMC6904752 DOI: 10.1038/s41413-019-0075-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 08/11/2019] [Accepted: 08/26/2019] [Indexed: 12/19/2022] Open
Abstract
Heterotopic ossification (HO) is a debilitating condition characterized by the pathologic formation of ectopic bone. HO occurs commonly following orthopedic surgeries, burns, and neurologic injuries. While surgical excision may provide palliation, the procedure is often burdened with significant intra-operative blood loss due to a more robust contribution of blood supply to the pathologic bone than to native bone. Based on these clinical observations, we set out to examine the role of vascular signaling in HO. Vascular endothelial growth factor A (VEGFA) has previously been shown to be a crucial pro-angiogenic and pro-osteogenic cue during normal bone development and homeostasis. Our findings, using a validated mouse model of HO, demonstrate that HO lesions are highly vascular, and that VEGFA is critical to ectopic bone formation, despite lacking a contribution of endothelial cells within the developing anlagen.
Collapse
|
69
|
Willson JA, Damjanovski S. Spatial analysis of RECK, MT1-MMP, and TIMP-2 proteins during early Xenopus laevis development. Gene Expr Patterns 2019; 34:119066. [DOI: 10.1016/j.gep.2019.119066] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 06/19/2019] [Accepted: 07/12/2019] [Indexed: 10/26/2022]
|
70
|
Dukinfield M, Maniati E, Reynolds LE, Aubdool A, Baliga RS, D'Amico G, Maiques O, Wang J, Bedi KC, Margulies KB, Sanz‐Moreno V, Hobbs A, Hodivala‐Dilke K. Repurposing an anti-cancer agent for the treatment of hypertrophic heart disease. J Pathol 2019; 249:523-535. [PMID: 31424556 PMCID: PMC6900130 DOI: 10.1002/path.5340] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 08/14/2019] [Accepted: 08/15/2019] [Indexed: 02/06/2023]
Abstract
Coronary microvascular dysfunction combined with maladaptive cardiomyocyte morphology and energetics is a major contributor to heart failure advancement. Thus, dually enhancing cardiac angiogenesis and targeting cardiomyocyte function to slow, or reverse, the development of heart failure is a logical step towards improved therapy. We present evidence for the potential to repurpose a former anti-cancer Arg-Gly-Asp (RGD)-mimetic pentapeptide, cilengitide, here used at low doses. Cilengitide targets αvβ3 integrin and this protein is upregulated in human dilated and ischaemic cardiomyopathies. Treatment of mice after abdominal aortic constriction (AAC) surgery with low-dose cilengitide (ldCil) enhances coronary angiogenesis and directly affects cardiomyocyte hypertrophy with an associated reduction in disease severity. At a molecular level, ldCil treatment has a direct effect on cardiac endothelial cell transcriptomic profiles, with a significant enhancement of pro-angiogenic signalling pathways, corroborating the enhanced angiogenic phenotype after ldCil treatment. Moreover, ldCil treatment of Angiotensin II-stimulated AngII-stimulated cardiomyocytes significantly restores transcriptomic profiles similar to those found in normal human heart. The significance of this finding is enhanced by transcriptional similarities between AngII-treated cardiomyocytes and failing human hearts. Taken together, our data provide evidence supporting a possible new strategy for improved heart failure treatment using low-dose RGD-mimetics with relevance to human disease. © 2019 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Matthew Dukinfield
- Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse SquareLondonUK
| | - Eleni Maniati
- Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse SquareLondonUK
| | - Louise E Reynolds
- Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse SquareLondonUK
| | - Aisah Aubdool
- William Harvey Research Institute, Queen Mary University of London, Charterhouse SquareLondonUK
| | - Reshma S Baliga
- William Harvey Research Institute, Queen Mary University of London, Charterhouse SquareLondonUK
| | - Gabriela D'Amico
- Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse SquareLondonUK
| | - Oscar Maiques
- Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse SquareLondonUK
| | - Jun Wang
- Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse SquareLondonUK
| | - Kenneth C Bedi
- Perelman School of MedicineUniversity of Pennsylvania, Translational Research CenterPhiladelphiaPAUSA
| | - Kenneth B Margulies
- Perelman School of MedicineUniversity of Pennsylvania, Translational Research CenterPhiladelphiaPAUSA
| | - Victoria Sanz‐Moreno
- Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse SquareLondonUK
| | - Adrian Hobbs
- William Harvey Research Institute, Queen Mary University of London, Charterhouse SquareLondonUK
| | - Kairbaan Hodivala‐Dilke
- Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse SquareLondonUK
| |
Collapse
|
71
|
Pines M, Hasdai A, Monsonego-Ornan E. Tibial dyschondroplasia – tools, new insights and future prospects. WORLD POULTRY SCI J 2019. [DOI: 10.1079/wps200454] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- M. Pines
- Institute of Animal Science, the Volcani Center, Bet Dagan 50250, Israel
| | - A. Hasdai
- Institute of Animal Science, the Volcani Center, Bet Dagan 50250, Israel
| | - E. Monsonego-Ornan
- Institute of Animal Science, the Volcani Center, Bet Dagan 50250, Israel
| |
Collapse
|
72
|
Gonzalez-Molina J, Gramolelli S, Liao Z, Carlson JW, Ojala PM, Lehti K. MMP14 in Sarcoma: A Regulator of Tumor Microenvironment Communication in Connective Tissues. Cells 2019; 8:cells8090991. [PMID: 31466240 PMCID: PMC6770050 DOI: 10.3390/cells8090991] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 08/24/2019] [Accepted: 08/27/2019] [Indexed: 12/12/2022] Open
Abstract
Sarcomas are deadly malignant tumors of mesenchymal origin occurring at all ages. The expression and function of the membrane-type matrix metalloproteinase MMP14 is closely related to the mesenchymal cell phenotype, and it is highly expressed in most sarcomas. MMP14 regulates the activity of multiple extracellular and plasma membrane proteins, influencing cell–cell and cell–extracellular matrix (ECM) communication. This regulation mediates processes such as ECM degradation and remodeling, cell invasion, and cancer metastasis. Thus, a comprehensive understanding of the biology of MMP14 in sarcomas will shed light on the mechanisms controlling the key processes in these diseases. Here, we provide an overview of the function and regulation of MMP14 and we discuss their relationship with clinical and pre-clinical MMP14 data in both adult and childhood sarcomas.
Collapse
Affiliation(s)
- Jordi Gonzalez-Molina
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, 17177 Stockholm, Sweden.
- Department of Oncology-Pathology, Karolinska Institutet, 17176 Stockholm, Sweden.
| | - Silvia Gramolelli
- Translational Cancer Medicine Research Program, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland
| | - Zehuan Liao
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, 17177 Stockholm, Sweden
- School of Biological Sciences, Nanyang Technological University Singapore, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Joseph W Carlson
- Department of Oncology-Pathology, Karolinska Institutet, 17176 Stockholm, Sweden
| | - Päivi M Ojala
- Translational Cancer Medicine Research Program, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland
- Section of Virology, Division of Infectious Diseases, Department of Medicine, Imperial College London, London W2 1NY, UK
| | - Kaisa Lehti
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, 17177 Stockholm, Sweden.
- Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland.
| |
Collapse
|
73
|
The Rebirth of Matrix Metalloproteinase Inhibitors: Moving Beyond the Dogma. Cells 2019; 8:cells8090984. [PMID: 31461880 PMCID: PMC6769477 DOI: 10.3390/cells8090984] [Citation(s) in RCA: 194] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 08/22/2019] [Accepted: 08/26/2019] [Indexed: 12/12/2022] Open
Abstract
The pursuit of matrix metalloproteinase (MMP) inhibitors began in earnest over three decades ago. Initial clinical trials were disappointing, resulting in a negative view of MMPs as therapeutic targets. As a better understanding of MMP biology and inhibitor pharmacokinetic properties emerged, it became clear that initial MMP inhibitor clinical trials were held prematurely. Further complicating matters were problematic conclusions drawn from animal model studies. The most recent generation of MMP inhibitors have desirable selectivities and improved pharmacokinetics, resulting in improved toxicity profiles. Application of selective MMP inhibitors led to the conclusion that MMP-2, MMP-9, MMP-13, and MT1-MMP are not involved in musculoskeletal syndrome, a common side effect observed with broad spectrum MMP inhibitors. Specific activities within a single MMP can now be inhibited. Better definition of the roles of MMPs in immunological responses and inflammation will help inform clinic trials, and multiple studies indicate that modulating MMP activity can improve immunotherapy. There is a U.S. Food and Drug Administration (FDA)-approved MMP inhibitor for periodontal disease, and several MMP inhibitors are in clinic trials, targeting a variety of maladies including gastric cancer, diabetic foot ulcers, and multiple sclerosis. It is clearly time to move on from the dogma of viewing MMP inhibition as intractable.
Collapse
|
74
|
Youssef I, Ricort JM. Deciphering the Role of Protein Kinase D1 (PKD1) in Cellular Proliferation. Mol Cancer Res 2019; 17:1961-1974. [PMID: 31311827 DOI: 10.1158/1541-7786.mcr-19-0125] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 06/05/2019] [Accepted: 07/11/2019] [Indexed: 11/16/2022]
Abstract
Protein kinase D1 (PKD1) is a serine/threonine kinase that belongs to the calcium/calmodulin-dependent kinase family, and is involved in multiple mechanisms implicated in tumor progression such as cell motility, invasion, proliferation, protein transport, and apoptosis. While it is expressed in most tissues in the normal state, PKD1 expression may increase or decrease during tumorigenesis, and its role in proliferation is context-dependent and poorly understood. In this review, we present and discuss the current landscape of studies investigating the role of PKD1 in the proliferation of both cancerous and normal cells. Indeed, as a potential therapeutic target, deciphering whether PKD1 exerts a pro- or antiproliferative effect, and under what conditions, is of paramount importance.
Collapse
Affiliation(s)
- Ilige Youssef
- Centre National de la Recherche Scientifique, CNRS UMR_8113, Laboratoire de Biologie et Pharmacologie Appliquée, Cachan, France.,École Normale Supérieure Paris-Saclay, Université Paris-Saclay, Cachan, France
| | - Jean-Marc Ricort
- Centre National de la Recherche Scientifique, CNRS UMR_8113, Laboratoire de Biologie et Pharmacologie Appliquée, Cachan, France. .,École Normale Supérieure Paris-Saclay, Université Paris-Saclay, Cachan, France.,Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, USPC, Université Paris Descartes, Université Paris Diderot, Paris, France
| |
Collapse
|
75
|
Hos D, Matthaei M, Bock F, Maruyama K, Notara M, Clahsen T, Hou Y, Le VNH, Salabarria AC, Horstmann J, Bachmann BO, Cursiefen C. Immune reactions after modern lamellar (DALK, DSAEK, DMEK) versus conventional penetrating corneal transplantation. Prog Retin Eye Res 2019; 73:100768. [PMID: 31279005 DOI: 10.1016/j.preteyeres.2019.07.001] [Citation(s) in RCA: 173] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 07/01/2019] [Accepted: 07/02/2019] [Indexed: 12/12/2022]
Abstract
In the past decade, novel lamellar keratoplasty techniques such as Deep Anterior Lamellar Keratoplasty (DALK) for anterior keratoplasty and Descemet stripping automated endothelial keratoplasty (DSAEK)/Descemet membrane endothelial keratoplasty (DMEK) for posterior keratoplasty have been developed. DALK eliminates the possibility of endothelial allograft rejection, which is the main reason for graft failure after penetrating keratoplasty (PK). Compared to PK, the risk of endothelial graft rejection is significantly reduced after DSAEK/DMEK. Thus, with modern lamellar techniques, the clinical problem of endothelial graft rejection seems to be nearly solved in the low-risk situation. However, even with lamellar grafts there are epithelial, subepithelial and stromal immune reactions in DALK and endothelial immune reactions in DSAEK/DMEK, and not all keratoplasties can be performed in a lamellar fashion. Therefore, endothelial graft rejection in PK is still highly relevant, especially in the "high-risk" setting, where the cornea's (lymph)angiogenic and immune privilege is lost due to severe inflammation and pathological neovascularization. For these eyes, currently available treatment options are still unsatisfactory. In this review, we will describe currently used keratoplasty techniques, namely PK, DALK, DSAEK, and DMEK. We will summarize their indications, provide surgical descriptions, and comment on their complications and outcomes. Furthermore, we will give an overview on corneal transplant immunology. A specific focus will be placed on endothelial graft rejection and we will report on its incidence, clinical presentation, and current/future treatment and prevention options. Finally, we will speculate how the field of keratoplasty and prevention of corneal allograft rejection will develop in the future.
Collapse
Affiliation(s)
- Deniz Hos
- Department of Ophthalmology, University of Cologne, Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Mario Matthaei
- Department of Ophthalmology, University of Cologne, Cologne, Germany
| | - Felix Bock
- Department of Ophthalmology, University of Cologne, Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Kazuichi Maruyama
- Department of Innovative Visual Science, Graduate School of Medicine, Osaka University, Japan
| | - Maria Notara
- Department of Ophthalmology, University of Cologne, Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Thomas Clahsen
- Department of Ophthalmology, University of Cologne, Cologne, Germany
| | - Yanhong Hou
- Department of Ophthalmology, University of Cologne, Cologne, Germany
| | - Viet Nhat Hung Le
- Department of Ophthalmology, University of Cologne, Cologne, Germany; Department of Ophthalmology, Hue College of Medicine and Pharmacy, Hue University, Viet Nam
| | | | - Jens Horstmann
- Department of Ophthalmology, University of Cologne, Cologne, Germany
| | - Bjoern O Bachmann
- Department of Ophthalmology, University of Cologne, Cologne, Germany
| | - Claus Cursiefen
- Department of Ophthalmology, University of Cologne, Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.
| |
Collapse
|
76
|
Wang LW, Nandadasa S, Annis DS, Dubail J, Mosher DF, Willard BB, Apte SS. A disintegrin-like and metalloproteinase domain with thrombospondin type 1 motif 9 (ADAMTS9) regulates fibronectin fibrillogenesis and turnover. J Biol Chem 2019; 294:9924-9936. [PMID: 31085586 PMCID: PMC6597835 DOI: 10.1074/jbc.ra118.006479] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 05/07/2019] [Indexed: 11/06/2022] Open
Abstract
The secreted metalloprotease ADAMTS9 has dual roles in extracellular matrix (ECM) turnover and biogenesis of the primary cilium during mouse embryogenesis. Its gene locus is associated with several human traits and disorders, but ADAMTS9 has few known interacting partners or confirmed substrates. Here, using a yeast two-hybrid screen for proteins interacting with its C-terminal Gon1 domain, we identified three putative ADAMTS9-binding regions in the ECM glycoprotein fibronectin. Using solid-phase binding assays and surface plasmon resonance experiments with purified proteins, we demonstrate that ADAMTS9 and fibronectin interact. ADAMTS9 constructs, including those lacking Gon1, co-localized with fibronectin fibrils formed by cultured fibroblasts lacking fibrillin-1, which co-localizes with fibronectin and binds several ADAMTSs. We observed no fibrillar ADAMTS9 staining after blockade of fibroblast fibronectin fibrillogenesis with a peptide based on the functional upstream domain of a Staphylococcus aureus adhesin. These findings indicate that ADAMTS9 binds fibronectin dimers and fibrils directly through multiple sites in both molecules. Proteolytically active ADAMTS9, but not a catalytically inactive variant, disrupted fibronectin fibril networks formed by fibroblasts in vitro, and ADAMTS9-deficient RPE1 cells assembled a robust fibronectin fibril network, unlike WT cells. Targeted LC-MS analysis of fibronectin digested by ADAMTS9-expressing cells identified a semitryptic peptide arising from cleavage at Gly2196-Leu2197 We noted that this scissile bond is in the linker between fibronectin modules III17 and I10, a region targeted also by other proteases. These findings, along with stronger fibronectin staining previously observed in Adamts9 mutant embryos, suggest that ADAMTS9 contributes to fibronectin turnover during ECM remodeling.
Collapse
Affiliation(s)
| | | | - Douglas S Annis
- the Departments of Biomolecular Chemistry and Medicine, University of Wisconsin, Madison, Wisconsin 53706
| | | | - Deane F Mosher
- the Departments of Biomolecular Chemistry and Medicine, University of Wisconsin, Madison, Wisconsin 53706
| | - Belinda B Willard
- the Proteomics and Metabolomics Core, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio 44195 and
| | | |
Collapse
|
77
|
de Vos IJHM, Wong ASW, Welting TJM, Coull BJ, van Steensel MAM. Multicentric osteolytic syndromes represent a phenotypic spectrum defined by defective collagen remodeling. Am J Med Genet A 2019; 179:1652-1664. [PMID: 31218820 DOI: 10.1002/ajmg.a.61264] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 04/15/2019] [Accepted: 05/13/2019] [Indexed: 02/06/2023]
Abstract
Frank-Ter Haar syndrome (FTHS), Winchester syndrome (WS), and multicentric osteolysis, nodulosis, and arthropathy (MONA) are ultra-rare multisystem disorders characterized by craniofacial malformations, reduced bone density, skeletal and cardiac anomalies, and dermal fibrosis. These autosomal recessive syndromes are caused by homozygous mutation or deletion of respectively SH3PXD2B (SH3 and PX Domains 2B), MMP14 (matrix metalloproteinase 14), or MMP2. Here, we give an overview of the clinical features of 63 previously reported patients with an SH3PXD2B, MMP14, or MMP2 mutation, demonstrating considerable clinical overlap between FTHS, WS, and MONA. Interestingly, the protein products of SH3PXD2B, MMP14, and MMP2 directly cooperate in collagen remodeling. We review animal models for these three disorders that accurately reflect the major clinical features and likewise show significant phenotypical similarity with each other. Furthermore, they demonstrate that defective collagen remodeling is central in the underlying pathology. As such, we propose a nosological revision, placing these SH3PXD2B, MMP14, and MMP2 related syndromes in a novel "defective collagen-remodelling spectrum (DECORS)". In our opinion, this revised nosology better reflects the central role for impaired collagen remodeling, a potential target for pharmaceutical intervention.
Collapse
Affiliation(s)
- Ivo J H M de Vos
- Skin Research Institute of Singapore, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Arnette Shi Wei Wong
- Skin Research Institute of Singapore, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Tim J M Welting
- Department of Orthopedic Surgery, Maastricht University Medical Center+, Maastricht, the Netherlands.,School for Public Health and Primary Care (CAPHRI), Maastricht University Medical Center+, Maastricht, the Netherlands
| | - Barry J Coull
- Lancaster Medical School, Faculty of Health and Medicine, Lancaster University, Lancaster, UK
| | - Maurice A M van Steensel
- Skin Research Institute of Singapore, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.,Lee Kong Chian School of Medicine, Nanyang Technological University (NTU), Singapore, Singapore
| |
Collapse
|
78
|
Fields GB. Mechanisms of Action of Novel Drugs Targeting Angiogenesis-Promoting Matrix Metalloproteinases. Front Immunol 2019; 10:1278. [PMID: 31214203 PMCID: PMC6558196 DOI: 10.3389/fimmu.2019.01278] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 05/20/2019] [Indexed: 12/16/2022] Open
Abstract
Angiogenesis is facilitated by the proteolytic activities of members of the matrix metalloproteinase (MMP) family. More specifically, MMP-9 and MT1-MMP directly regulate angiogenesis, while several studies indicate a role for MMP-2 as well. The correlation of MMP activity to tumor angiogenesis has instigated numerous drug development programs. However, broad-based and Zn2+-chelating MMP inhibitors have fared poorly in the clinic. Selective MMP inhibition by antibodies, biologicals, and small molecules has utilized unique modes of action, such as (a) binding to protease secondary binding sites (exosites), (b) allosterically blocking the protease active site, or (c) preventing proMMP activation. Clinical trials have been undertaken with several of these inhibitors, while others are in advanced pre-clinical stages. The mechanistically non-traditional MMP inhibitors offer treatment strategies for tumor angiogenesis that avoid the off-target toxicities and lack of specificity that plagued Zn2+-chelating inhibitors.
Collapse
Affiliation(s)
- Gregg B Fields
- Department of Chemistry and Biochemistry, Florida Atlantic University, Jupiter, FL, United States.,Department of Chemistry, The Scripps Research Institute/Scripps Florida, Jupiter, FL, United States
| |
Collapse
|
79
|
Matsumoto H, Kawaguchi F, Itoh S, Yotsu S, Fukuda K, Oyama K, Mannen H, Sasazaki S. The SNPs in bovine MMP14 promoter influence on fat-related traits. Meta Gene 2019. [DOI: 10.1016/j.mgene.2019.100558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
|
80
|
The Expanding Role of MT1-MMP in Cancer Progression. Pharmaceuticals (Basel) 2019; 12:ph12020077. [PMID: 31137480 PMCID: PMC6630478 DOI: 10.3390/ph12020077] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 05/16/2019] [Accepted: 05/18/2019] [Indexed: 12/21/2022] Open
Abstract
For over 20 years, membrane type 1 matrix metalloproteinase (MT1-MMP) has been recognized as a key component in cancer progression. Initially, the primary roles assigned to MT1-MMP were the activation of proMMP-2 and degradation of fibrillar collagen. Proteomics has revealed a great array of MT1-MMP substrates, and MT1-MMP selective inhibitors have allowed for a more complete mapping of MT1-MMP biological functions. MT1-MMP has extensive sheddase activities, is both a positive and negative regulator of angiogenesis, can act intracellularly and as a transcription factor, and modulates immune responses. We presently examine the multi-faceted role of MT1-MMP in cancer, with a consideration of how the diversity of MT1-MMP behaviors impacts the application of MT1-MMP inhibitors.
Collapse
|
81
|
MT1-MMP-dependent cell migration: proteolytic and non-proteolytic mechanisms. Biochem Soc Trans 2019; 47:811-826. [PMID: 31064864 PMCID: PMC6599156 DOI: 10.1042/bst20180363] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 03/22/2019] [Accepted: 04/08/2019] [Indexed: 01/01/2023]
Abstract
Membrane-type 1 matrix metalloproteinase (MT1-MMP) is a type I transmembrane proteinase that belongs to the matrix metalloproteinase (MMP) family. It is a potent modifier of cellular microenvironment and promotes cell migration and invasion of a wide variety of cell types both in physiological and pathological conditions. It promotes cell migration by degrading extracellular matrix on the cell surface and creates a migration path, by modifying cell adhesion property by shedding cell adhesion molecules to increase cell motility, and by altering cellular metabolism. Thus, MT1-MMP is a multifunctional cell motility enhancer. In this review, we will discuss the current understanding of the proteolytic and non-proteolytic mechanism of MT1-MMP-dependent cell migration.
Collapse
|
82
|
Fischer T, Senn N, Riedl R. Design and Structural Evolution of Matrix Metalloproteinase Inhibitors. Chemistry 2019; 25:7960-7980. [DOI: 10.1002/chem.201805361] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 01/09/2019] [Indexed: 12/15/2022]
Affiliation(s)
- Thomas Fischer
- Center of Organic and Medicinal Chemistry, Institute of Chemistry, and BiotechnologyZurich University of Applied Sciences (ZHAW) Einsiedlerstrasse 31 8820 Wädenswil Switzerland
| | - Nicole Senn
- Center of Organic and Medicinal Chemistry, Institute of Chemistry, and BiotechnologyZurich University of Applied Sciences (ZHAW) Einsiedlerstrasse 31 8820 Wädenswil Switzerland
| | - Rainer Riedl
- Center of Organic and Medicinal Chemistry, Institute of Chemistry, and BiotechnologyZurich University of Applied Sciences (ZHAW) Einsiedlerstrasse 31 8820 Wädenswil Switzerland
| |
Collapse
|
83
|
Li X, Ma Z, Wang H, Ren L, Zhang D, Liang W, Zhang G, Zhang J, Yu D, Fang X. Screening, Identification, and Characterization of an Affinity Peptide Specific to MT1-MMP and Its Application in Tumor Imaging. Bioconjug Chem 2019; 30:1507-1517. [PMID: 30986050 DOI: 10.1021/acs.bioconjchem.9b00220] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Membrane type-1 matrix metalloproteinase (MT1-MMP) plays a crucial role in many physiological and pathological processes, especially in tumor invasion and metastasis. Bioimaging of this key molecule may find wide usage in various applications. MT-loop is a unique sequence of MT1-MMP and locates in the surface of the protein. In our previous studies, AF7p, an affinity peptide that targeting the MT-loop domain of MT1-MMP, was identified by screening a phage display (Ph.D.) peptide library. However, the target of AF7p is a synthetic sequence which lacked native conformation of the MT-loop region; thus, the binding affinity and specificity in reality may not be optimal. In this study, we considered the 3-dimensional (3-D) conformation of the MT-loop area in the MT1-MMP molecule and designed a novel strategy to screen the Ph.D. peptide library. The peptide we obtained showed a better binding affinity to WT-MT1-MMP than AF7p as observed through enzyme-linked immunosorbent assay (ELISA) and biolayer interferometry (BLI). The new peptide labeled and attached MT1-MMP expression cell lines HT1080 and did not show any toxicity to cells. Furthermore, for in vivo imaging, HT1080 tumor-bearing mice with higher MT1-MMP expression accumulated more Cy5.5-HS7 than mice with MT1-MMP low-expression cell lines A549 at tumor sites, and the half-life of HS7 was longer than that of AF7p, as confirmed by ex vivo imaging of the main organs. These results suggest the feasibility of using the subtraction biopanning strategy to screen the affinity peptide targeting MT-loop regions and HS7 is a superior probe for noninvasively imaging MT1-MMP expression in MT1-MMP-positive tumor models. It provides impetus for further studies to use HS7 in early diagnosis of tumors and in peptide-mediated drugs.
Collapse
Affiliation(s)
- Xiang Li
- Key Laboratory of Molecular Enzymology and Enzyme Engineering of the Ministry of Education , Jilin University , 2699 Qianjin Street , Changchun 130012 , P. R. China
| | - Zheng Ma
- Department of Thoracic Surgery , Qilu Hospital of Shandong University , 107 Wenhuaxi Road , Jinan 250012 , P. R. China
| | - Haoran Wang
- Key Laboratory of Molecular Enzymology and Enzyme Engineering of the Ministry of Education , Jilin University , 2699 Qianjin Street , Changchun 130012 , P. R. China
| | - Li Ren
- College of Food Science and Engineering , Jilin University , 5333 Xi'an Street , Changchun 130062 , P. R. China
| | - Dianwen Zhang
- Academy of Chinese Medical Sciences of Jilin Province , 155 Chuangju Street , Changchun 130015 , P. R. China
| | - Weiguo Liang
- Suzhou Institute of Biomedical Engineering and Technology Chinese Academy of Sciences , 88 Keling Road , Suzhou 215163 , P. R. China
| | - Guangji Zhang
- Key Laboratory of Molecular Enzymology and Enzyme Engineering of the Ministry of Education , Jilin University , 2699 Qianjin Street , Changchun 130012 , P. R. China
| | - Jinrui Zhang
- Key Laboratory of Molecular Enzymology and Enzyme Engineering of the Ministry of Education , Jilin University , 2699 Qianjin Street , Changchun 130012 , P. R. China
| | - Dahai Yu
- Key Laboratory of Molecular Enzymology and Enzyme Engineering of the Ministry of Education , Jilin University , 2699 Qianjin Street , Changchun 130012 , P. R. China
| | - Xuexun Fang
- Key Laboratory of Molecular Enzymology and Enzyme Engineering of the Ministry of Education , Jilin University , 2699 Qianjin Street , Changchun 130012 , P. R. China
| |
Collapse
|
84
|
de Vos IJHM, Tao EY, Ong SLM, Goggi JL, Scerri T, Wilson GR, Low CGM, Wong ASW, Grussu D, Stegmann APA, van Geel M, Janssen R, Amor DJ, Bahlo M, Dunn NR, Carney TJ, Lockhart PJ, Coull BJ, van Steensel MAM. Functional analysis of a hypomorphic allele shows that MMP14 catalytic activity is the prime determinant of the Winchester syndrome phenotype. Hum Mol Genet 2019; 27:2775-2788. [PMID: 29741626 PMCID: PMC6077784 DOI: 10.1093/hmg/ddy168] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 05/01/2018] [Indexed: 12/23/2022] Open
Abstract
Winchester syndrome (WS, MIM #277950) is an extremely rare autosomal recessive skeletal dysplasia characterized by progressive joint destruction and osteolysis. To date, only one missense mutation in MMP14, encoding the membrane-bound matrix metalloprotease 14, has been reported in WS patients. Here, we report a novel hypomorphic MMP14 p.Arg111His (R111H) allele, associated with a mitigated form of WS. Functional analysis demonstrated that this mutation, in contrast to previously reported human and murine MMP14 mutations, does not affect MMP14’s transport to the cell membrane. Instead, it partially impairs MMP14’s proteolytic activity. This residual activity likely accounts for the mitigated phenotype observed in our patients. Based on our observations as well as previously published data, we hypothesize that MMP14’s catalytic activity is the prime determinant of disease severity. Given the limitations of our in vitro assays in addressing the consequences of MMP14 dysfunction, we generated a novel mmp14a/b knockout zebrafish model. The fish accurately reflected key aspects of the WS phenotype including craniofacial malformations, kyphosis, short-stature and reduced bone density owing to defective collagen remodeling. Notably, the zebrafish model will be a valuable tool for developing novel therapeutic approaches to a devastating bone disorder.
Collapse
Affiliation(s)
- Ivo J H M de Vos
- Institute of Medical Biology (IMB), Agency for Science, Technology and Research (A*STAR), Singapore 138648, Singapore.,Department of Dermatology, Maastricht University Medical Center+, Maastricht 6202 AZ, The Netherlands.,School for Oncology and Developmental Biology (GROW), Maastricht University Medical Center+, Maastricht 6200 MD, The Netherlands
| | - Evelyn Yaqiong Tao
- Institute of Medical Biology (IMB), Agency for Science, Technology and Research (A*STAR), Singapore 138648, Singapore
| | - Sheena Li Ming Ong
- Institute of Medical Biology (IMB), Agency for Science, Technology and Research (A*STAR), Singapore 138648, Singapore
| | - Julian L Goggi
- Singapore Bioimaging Consortium (SBIC), Agency for Science, Technology and Research (A*STAR), Singapore 138667, Singapore.,Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore 117593, Singapore
| | - Thomas Scerri
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville 3052, Australia
| | - Gabrielle R Wilson
- Bruce Lefroy Centre for Genetic Health Research, Murdoch Children's Research Institute, Parkville 3052, Australia.,Department of Paediatrics, The University of Melbourne, Parkville 3052, Australia
| | - Chernis Guai Mun Low
- Institute of Medical Biology (IMB), Agency for Science, Technology and Research (A*STAR), Singapore 138648, Singapore
| | - Arnette Shi Wei Wong
- Institute of Medical Biology (IMB), Agency for Science, Technology and Research (A*STAR), Singapore 138648, Singapore
| | - Dominic Grussu
- Division of Cancer Research, School of Medicine, University of Dundee, Dundee DD1 9SY, UK
| | - Alexander P A Stegmann
- School for Oncology and Developmental Biology (GROW), Maastricht University Medical Center+, Maastricht 6200 MD, The Netherlands.,Department of Clinical Genetics, Maastricht University Medical Center+, Maastricht 6229 HX, The Netherlands
| | - Michel van Geel
- Department of Dermatology, Maastricht University Medical Center+, Maastricht 6202 AZ, The Netherlands.,School for Oncology and Developmental Biology (GROW), Maastricht University Medical Center+, Maastricht 6200 MD, The Netherlands.,Department of Clinical Genetics, Maastricht University Medical Center+, Maastricht 6229 HX, The Netherlands
| | - Renske Janssen
- Department of Dermatology, Maastricht University Medical Center+, Maastricht 6202 AZ, The Netherlands.,School for Oncology and Developmental Biology (GROW), Maastricht University Medical Center+, Maastricht 6200 MD, The Netherlands
| | - David J Amor
- Bruce Lefroy Centre for Genetic Health Research, Murdoch Children's Research Institute, Parkville 3052, Australia.,Department of Paediatrics, The University of Melbourne, Parkville 3052, Australia
| | - Melanie Bahlo
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville 3052, Australia
| | - Norris R Dunn
- Institute of Medical Biology (IMB), Agency for Science, Technology and Research (A*STAR), Singapore 138648, Singapore.,Lee Kong Chian School of Medicine, Nanyang Technological University (NTU), Singapore 636921, Singapore
| | - Thomas J Carney
- Lee Kong Chian School of Medicine, Nanyang Technological University (NTU), Singapore 636921, Singapore.,Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore 138673, Singapore
| | - Paul J Lockhart
- Bruce Lefroy Centre for Genetic Health Research, Murdoch Children's Research Institute, Parkville 3052, Australia.,Department of Paediatrics, The University of Melbourne, Parkville 3052, Australia
| | - Barry J Coull
- Division of Cancer Research, School of Medicine, University of Dundee, Dundee DD1 9SY, UK
| | - Maurice A M van Steensel
- Institute of Medical Biology (IMB), Agency for Science, Technology and Research (A*STAR), Singapore 138648, Singapore.,Division of Cancer Research, School of Medicine, University of Dundee, Dundee DD1 9SY, UK.,Lee Kong Chian School of Medicine, Nanyang Technological University (NTU), Singapore 636921, Singapore
| |
Collapse
|
85
|
Takahashi M, Fujikawa K, Angammana R, Shibata S. An in situ hybridization study of MMP-2, -9, -13, -14, TIMP-1, and -2 mRNA in fetal mouse mandibular condylar cartilage as compared with limb bud cartilage. Gene Expr Patterns 2019; 32:1-11. [PMID: 30822518 DOI: 10.1016/j.gep.2019.02.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 02/21/2019] [Accepted: 02/21/2019] [Indexed: 12/13/2022]
Abstract
The main purpose of this in situ hybridization study was to investigate MMPs and TIMPs mRNA expression in developing mandibular condylar cartilage and limb bud cartilage. At E14.0, MMP-2, -14, TIMP-1 and -2 mRNAs were expressed in the periosteum of mandibular bone, and in the condylar anlage. At E15.0 MMP-2, -14, TIMP-1 and -2 mRNAs were expressed in the perichondrium of newly formed condylar cartilage and the periosteum of developing bone collar, whereas, expression of MMP-14 and TIMP-1 mRNAs were restricted to the inner layer of the periosteum/perichondrium. This expression patterns continued until E18.0. Further, from E13.0 to 14.0, in the developing tibial cartilage, MMP-2, -14, and TIMP-2 mRNAs were expressed in the periosteum/perichondrium, but weak MMP-14 and no TIMP-1 mRNA expression was recognized in the perichondrium. These results confirmed that the perichondrium of condylar cartilage has characteristics of periosteum, and suggested that MMPs and/or TIMPs are more actively involved in the development of condylar (secondary) cartilage than tibial (primary) cartilage. MMP-9-positive cells were observed in the bone collar of both types of cartilage, and they were consistent with osteoclasts/chondroclasts. MMP-13 mRNA expression was restricted to the chondrocytes of the lower hypertrophic cell zone in tibial cartilage at E14.0, indicating MMP-13 can be used as a marker for lower hypertrophic cell zone. It was also expressed in chondrocytes of newly formed condylar cartilage at E15.0, and continuously expressed in the lower hypertrophic cell zone until E18.0. These results confirmed that progenitor cells of condylar cartilage are rapidly differentiated into hypertrophic chondrocytes, which is a unique structural feature of secondary cartilage different from that of primary cartilage.
Collapse
Affiliation(s)
- Masato Takahashi
- Department of Maxillofacial Anatomy, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kaoru Fujikawa
- Department of Oral Anatomy and Developmental Biology, Showa University School of Dentistry, Tokyo, Japan
| | - Randilini Angammana
- Department of Maxillofacial Anatomy, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shunichi Shibata
- Department of Maxillofacial Anatomy, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan.
| |
Collapse
|
86
|
Tong W, Tower RJ, Chen C, Wang L, Zhong L, Wei Y, Sun H, Cao G, Jia H, Pacifici M, Koyama E, Enomoto-Iwamoto M, Qin L. Periarticular Mesenchymal Progenitors Initiate and Contribute to Secondary Ossification Center Formation During Mouse Long Bone Development. Stem Cells 2019; 37:677-689. [PMID: 30681752 DOI: 10.1002/stem.2975] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 12/19/2018] [Accepted: 12/27/2018] [Indexed: 12/16/2022]
Abstract
Long bone development involves the embryonic formation of a primary ossification center (POC) in the incipient diaphysis followed by postnatal development of a secondary ossification center (SOC) at each epiphysis. Studies have elucidated major basic mechanisms of POC development, but relatively little is known about SOC development. To gain insights into SOC formation, we used Col2-Cre Rosa-tdTomato (Col2/Tomato) reporter mice and found that their periarticular region contained numerous Tomato-positive lineage cells expressing much higher Tomato fluorescence (termed TomatoH ) than underlying epiphyseal chondrocytes (termed TomatoL ). With time, the TomatoH cells became evident at the SOC invagination site and cartilage canal, increased in number in the expanding SOC, and were present as mesenchymal lineage cells in the subchondral bone. These data were verified in two mouse lineage tracing models, Col2-CreER Rosa-tdTomato and Gli1-CreER Rosa-tdTomato. In vitro tests showed that the periarticular TomatoH cells from Col2/Tomato mice contained mesenchymal progenitors with multidifferentiation abilities. During canal initiation, the cells expressed vascular endothelial growth factor (VEGF) and migrated into epiphyseal cartilage ahead of individual or clusters of endothelial cells, suggesting a unique role in promoting vasculogenesis. Later during SOC expansion, chondrocytes in epiphyseal cartilage expressed VEGF, and angiogenic blood vessels preceded TomatoH cells. Gene expression analyses of microdissected samples revealed upregulation of MMPs in periarticular cells at the invagination site and suggested potential roles for novel kinase and growth factor signaling pathways in regulating SOC canal initiation. In summary, our data indicate that the periarticular region surrounding epiphyseal cartilage contains mesenchymal progenitors that initiate SOC development and form subchondral bone. Stem Cells 2019;37:677-689.
Collapse
Affiliation(s)
- Wei Tong
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Robert J Tower
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Chider Chen
- Department of Anatomy and Cell Biology, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Luqiang Wang
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Leilei Zhong
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Yulong Wei
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Hao Sun
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Gaoyuan Cao
- Rutgers Institute for Translational Medicine and Science, Rutgers University, New Brunswick, New Jersey, USA
| | - Haoruo Jia
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Maurizio Pacifici
- Translational Research Program in Pediatric Orthopaedics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Eiki Koyama
- Translational Research Program in Pediatric Orthopaedics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Motomi Enomoto-Iwamoto
- Department of Orthopaedic Surgery, School of Medicine, University of Maryland, Baltimore, Maryland, USA
| | - Ling Qin
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
87
|
Khojastehfard M, Dolatkhah H, Somi MH, Nazari Soltan Ahmad S, Estakhri R, Sharifi R, Naghizadeh M, Rahmati-Yamchi M. The Effect of Oral Administration of PUFAs on the Matrix Metalloproteinase Expression in Gastric Adenocarcinoma Patients Undergoing Chemotherapy. Nutr Cancer 2019; 71:444-451. [PMID: 30616380 DOI: 10.1080/01635581.2018.1506494] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
OBJECTIVE Gastric cancer is the third-leading cause of cancer-related mortality and the fifth most common cancer globally. Polyunsaturated fatty acids (PUFAs) are considered as functional ingredients that improve the efficacy of chemotherapeutic drugs. The aim of this study is to investigate the effect of PUFAs administration on matrix metalloproteinases (MMPs). METHODS This study was designed as a randomized, double-blind trial. Thirty-four newly diagnosed patients with gastric cancer were randomly divided into two groups: control group (n = 17) and case group (n =17). Both groups received the same dose (75 mg/m2) of cisplatin. Control group received cisplatin plus placebo and the case group received cisplatin plus PUFAs [3600 mg/day, for three courses (each course included 3 weeks)]. The mRNA and protein expression of MMPs determined by real-time polymerase chain reaction (qRT-PCR) and immunohistochemistry (IHC), respectively. RESULTS The relative gene expression of MMP-1 and MMP-9 was significantly lower in case group than control. The protein expression of MMP-1 and MMP-9 was significantly lower in case group than control. CONCLUSION According to the results of this study, PUFAs reduced the expression of MMPs in gastric cancer cells. It seems that PUFAs may have an inhibitory effect on invasion and metastasis of gastric cancer cells.
Collapse
Affiliation(s)
- Mehran Khojastehfard
- a Department of Clinical Biochemistry, Faculty of Medicine , Tabriz university of Medical Sciences , Tabriz , Iran.,b Liver and Gastrointestinal Disease Research Center , Tabriz University of Medical Sciences , Tabriz , East-Azerbaijan , Iran
| | - Homayun Dolatkhah
- a Department of Clinical Biochemistry, Faculty of Medicine , Tabriz university of Medical Sciences , Tabriz , Iran
| | - Mohammad-Hossein Somi
- a Department of Clinical Biochemistry, Faculty of Medicine , Tabriz university of Medical Sciences , Tabriz , Iran
| | - Saeed Nazari Soltan Ahmad
- a Department of Clinical Biochemistry, Faculty of Medicine , Tabriz university of Medical Sciences , Tabriz , Iran
| | - Rasoul Estakhri
- c Department of Pathology, Faculty of Medicine , Tabriz University of Medical Sciences , Tabriz , East-Azerbaijan , Iran
| | - Rasoul Sharifi
- d Department of Molecular Biology, Faculty of Science , Islamic Azad University , Ahar Branch , Iran
| | - Mohsen Naghizadeh
- e Department of Clinical Biochemistry, School of Medicine , Tehran University of Medical Sciences , Tehran , Iran
| | - Mohammad Rahmati-Yamchi
- a Department of Clinical Biochemistry, Faculty of Medicine , Tabriz university of Medical Sciences , Tabriz , Iran.,b Liver and Gastrointestinal Disease Research Center , Tabriz University of Medical Sciences , Tabriz , East-Azerbaijan , Iran
| |
Collapse
|
88
|
Kang H, Hong Z, Zhong M, Klomp J, Bayless KJ, Mehta D, Karginov AV, Hu G, Malik AB. Piezo1 mediates angiogenesis through activation of MT1-MMP signaling. Am J Physiol Cell Physiol 2018; 316:C92-C103. [PMID: 30427721 PMCID: PMC6383143 DOI: 10.1152/ajpcell.00346.2018] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Angiogenesis is initiated in response to a variety of external cues, including mechanical and biochemical stimuli; however, the underlying signaling mechanisms remain unclear. Here, we investigated the proangiogenic role of the endothelial mechanosensor Piezo1. Genetic deletion and pharmacological inhibition of Piezo1 reduced endothelial sprouting and lumen formation induced by wall shear stress and proangiogenic mediator sphingosine 1-phosphate, whereas Piezo1 activation by selective Piezo1 activator Yoda1 enhanced sprouting angiogenesis. Similarly to wall shear stress, sphingosine 1-phosphate functioned by activating the Ca2+ gating function of Piezo1, which in turn signaled the activation of the matrix metalloproteinase-2 and membrane type 1 matrix metalloproteinase during sprouting angiogenesis. Studies in mice in which Piezo1 was conditionally deleted in endothelial cells demonstrated the requisite role of sphingosine 1-phosphate-dependent activation of Piezo1 in mediating angiogenesis in vivo. These results taken together suggest that both mechanical and biochemical stimuli trigger Piezo1-mediated Ca2+ influx and thereby activate matrix metalloproteinase-2 and membrane type 1 matrix metalloproteinase and synergistically facilitate sprouting angiogenesis.
Collapse
Affiliation(s)
- Hojin Kang
- Department of Pharmacology and The Center for Lung and Vascular Biology, The University of Illinois College of Medicine , Chicago, Illinois.,Department of Anesthesiology, The University of Illinois College of Medicine , Chicago, Illinois
| | - Zhigang Hong
- Department of Pharmacology and The Center for Lung and Vascular Biology, The University of Illinois College of Medicine , Chicago, Illinois
| | - Ming Zhong
- Department of Pharmacology and The Center for Lung and Vascular Biology, The University of Illinois College of Medicine , Chicago, Illinois
| | - Jennifer Klomp
- Department of Pharmacology and The Center for Lung and Vascular Biology, The University of Illinois College of Medicine , Chicago, Illinois
| | - Kayla J Bayless
- Department of Molecular and Cellular Medicine, Texas A&M University Health Science Center , College Station, Texas
| | - Dolly Mehta
- Department of Pharmacology and The Center for Lung and Vascular Biology, The University of Illinois College of Medicine , Chicago, Illinois
| | - Andrei V Karginov
- Department of Pharmacology and The Center for Lung and Vascular Biology, The University of Illinois College of Medicine , Chicago, Illinois
| | - Guochang Hu
- Department of Pharmacology and The Center for Lung and Vascular Biology, The University of Illinois College of Medicine , Chicago, Illinois.,Department of Anesthesiology, The University of Illinois College of Medicine , Chicago, Illinois
| | - Asrar B Malik
- Department of Pharmacology and The Center for Lung and Vascular Biology, The University of Illinois College of Medicine , Chicago, Illinois
| |
Collapse
|
89
|
Stegen S, Carmeliet G. The skeletal vascular system - Breathing life into bone tissue. Bone 2018; 115:50-58. [PMID: 28844835 DOI: 10.1016/j.bone.2017.08.022] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 08/23/2017] [Indexed: 11/30/2022]
Abstract
During bone development, homeostasis and repair, a dense vascular system provides oxygen and nutrients to highly anabolic skeletal cells. Characteristic for the vascular system in bone is the serial organization of two capillary systems, each typified by specific morphological and physiological features. Especially the arterial capillaries mediate the growth of the bone vascular system, serve as a niche for skeletal and hematopoietic progenitors and couple angiogenesis to osteogenesis. Endothelial cells and osteoprogenitor cells interact not only physically, but also communicate to each other by secretion of growth factors. A vital angiogenic growth factor is vascular endothelial growth factor and its expression in skeletal cells is controlled by osteogenic transcription factors and hypoxia signaling, whereas the secretion of angiocrine factors by endothelial cells is regulated by Notch signaling, blood flow and possibly hypoxia. Bone loss and impaired fracture repair are often associated with reduced and disorganized blood vessel network and therapeutic targeting of the angiogenic response may contribute to enhanced bone regeneration.
Collapse
Affiliation(s)
- Steve Stegen
- Laboratory of Clinical and Experimental Endocrinology, Department of Chronic Diseases, Metabolism and Ageing, KU Leuven, 3000 Leuven, Belgium; Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, 3000 Leuven, Belgium
| | - Geert Carmeliet
- Laboratory of Clinical and Experimental Endocrinology, Department of Chronic Diseases, Metabolism and Ageing, KU Leuven, 3000 Leuven, Belgium; Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, 3000 Leuven, Belgium.
| |
Collapse
|
90
|
Dlx2 overexpression enhanced accumulation of type II collagen and aggrecan by inhibiting MMP13 expression in mice chondrocytes. Biochem Biophys Res Commun 2018; 503:528-535. [PMID: 29787757 DOI: 10.1016/j.bbrc.2018.05.066] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 05/10/2018] [Indexed: 11/21/2022]
Abstract
Genetic studies revealed a crucial role of Distal-homebox (Dlx) genes in skeletal development, and our previous study demonstrated overexpressing Dlx2 in neural crest cells led to abnormal cartilage structure, including ectopic cartilage in the maxillary region and nasal bone in mice. The aim of this study was to investigate how Dlx2 overexpression affects chondrogenesis in mouse chondroblast cell line TMC23 and the underlying mechanism. We first demonstrated that Dlx2 expression was upregulated during chondrogenesis in TMC23 cells. Moreover, forced overexpression of Dlx2 in TMC23 cells led to increased accumulation of aggrecan and type II collagen, markers of early chondrocyte differentiation, but had little effect on mRNA and protein levels of Aggrecan and Col2α1, type II collagen gene. Importantly, Dlx2 overexpression decreased mRNA and protein levels of MMP13, a major collagenase degrading aggrecan and type II collagen during late stages of chondrogenesis. Luciferase-reporter and Chromatin-immunoprecipitation analysis demonstrated that MMP13 promoter contained two Dlx2-response elements, and Dlx2 inhibited MMP13 expression by directly binding to these two elements. Based on these observations, we propose that forced overexpression of Dlx2 enhances early chondrocyte differentiation by increasing accumulation of type II collagen and aggrecan, but interferes later stages of chondrocyte differentiation through inhibiting MMP13 expression.
Collapse
|
91
|
Arkadash V, Radisky ES, Papo N. Combinatorial engineering of N-TIMP2 variants that selectively inhibit MMP9 and MMP14 function in the cell. Oncotarget 2018; 9:32036-32053. [PMID: 30174795 PMCID: PMC6112833 DOI: 10.18632/oncotarget.25885] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 07/21/2018] [Indexed: 12/21/2022] Open
Abstract
Developing selective inhibitors for proteolytic enzymes that share high sequence homology and structural similarity is important for achieving high target affinity and functional specificity. Here, we used a combination of yeast surface display and dual-color selective library screening to obtain selective inhibitors for each of the matrix metalloproteinases (MMPs) MMP14 and MMP9 by modifying the non-specific N-terminal domain of the tissue inhibitor of metalloproteinase-2 (N-TIMP2). We generated inhibitor variants with 30- to 1175-fold improved specificity to each of the proteases, respectively, relative to wild type N-TIMP2. These biochemical results accurately predicted the selectivity and specificity obtained in cell-based assays. In U87MG cells, the activation of MMP2 by MMP14 was inhibited by MMP14-selective blockers but not MMP9-specific inhibitors. Target specificity was also demonstrated in MCF-7 cells stably expressing either MMP14 or MMP9, with only the MMP14-specific inhibitors preventing the mobility of MMP14-expressing cells. Similarly, the mobility of MMP9-expressing cells was inhibited by the MMP9-specific inhibitors, yet was not altered by the MMP14-specific inhibitors. The strategy developed in this study for improving the specificity of an otherwise broad-spectrum inhibitor will likely enhance our understanding of the basis for target specificity of inhibitors to proteolytic enzymes, in general, and to MMPs, in particular. We, moreover, envision that this study could serve as a platform for the development of next-generation, target-specific therapeutic agents. Finally, our methodology can be extended to other classes of proteolytic enzymes and other important target proteins.
Collapse
Affiliation(s)
- Valeria Arkadash
- Department of Biotechnology Engineering and the National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Evette S Radisky
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Jacksonville, Florida, USA
| | - Niv Papo
- Department of Biotechnology Engineering and the National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| |
Collapse
|
92
|
Koikawa K, Ohuchida K, Ando Y, Kibe S, Nakayama H, Takesue S, Endo S, Abe T, Okumura T, Iwamoto C, Moriyama T, Nakata K, Miyasaka Y, Ohtsuka T, Nagai E, Mizumoto K, Hashizume M, Nakamura M. Basement membrane destruction by pancreatic stellate cells leads to local invasion in pancreatic ductal adenocarcinoma. Cancer Lett 2018; 425:65-77. [DOI: 10.1016/j.canlet.2018.03.031] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 02/23/2018] [Accepted: 03/21/2018] [Indexed: 12/17/2022]
|
93
|
Biguetti CC, Cavalla F, Tim CR, Saraiva PP, Orcini W, De Andrade Holgado L, Rennó ACM, Matsumoto MA. Bioactive glass-ceramic bone repair associated or not with autogenous bone: a study of organic bone matrix organization in a rabbit critical-sized calvarial model. Clin Oral Investig 2018; 23:413-421. [PMID: 29700614 DOI: 10.1007/s00784-018-2450-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 04/16/2018] [Indexed: 01/04/2023]
Abstract
OBJECTIVE The aim of the study was to analyze bone matrix (BMX) organization after bone grafting and repair using a new bioactive glass-ceramic (Biosilicate®) associated or not with particulate autogenous bone graft. MATERIAL AND METHODS Thirty rabbits underwent surgical bilateral parietal defects and divided into groups according to the materials used: (C) control-blood clot, (BG) particulate autogenous bone, (BS) bioactive glass-ceramic, and BG + BS. After 7, 14, and 30 days post-surgery, a fragment of each specimen was fixed in - 80 °C liquid nitrogen for zymographic evaluation, while the remaining was fixed in 10% formalin for histological birefringence analysis. RESULTS The results of this study demonstrated that matrix organization in experimental groups was significantly improved compared to C considering collagenous organization. Zymographic analysis revealed pro-MMP-2, pro-MMP-9, and active (a)-MMP-2 in all groups, showing gradual decrease of total gelatinolytic activity during the periods. At day 7, BG presented more prominent gelatinolytic activity for pro-MMP-2 and 9 and a-MMP-2, when compared to the other groups. In addition, at day 7, a 53% activation ratio (active form/[active form + latent form]) was evident in C group, 33% in BS group, and 31% in BG group. CONCLUSION In general, BS allowed the production of a BMX similar to BG, with organized collagen deposition and MMP-2 and MMP-9 disponibility, permitting satisfactory bone remodeling at the late period. CLINICAL RELEVANCE The evaluation of new bone substitute, with favorable biological properties, opens the possibility for its use as a viable and efficient alternative to autologous bone graft.
Collapse
Affiliation(s)
- Claudia Cristina Biguetti
- Research and Postgraduate Pro-Rectory, Universidade do Sagrado Coração - USC, Rua Irmã Arminda 10-50, Jardim Brasil Bauru, SP, 17011-160, Brazil. .,Oral Biology Doctoral's Program, Bauru School of Dentistry, São Paulo University - FOB/USP, Alameda Octávio Pinheiro Brizola 9-75, Vila Universitária, Bauru, SP, 17012-901, Brazil.
| | - Franco Cavalla
- Department of Conservative Dentistry, School of Dentistry, Universidad de Chile, Sergio Livingstone 943, Recoleta, Santiago, RM, Chile
| | - Carla Roberta Tim
- Biotechnology Doctoral's Program, São Carlos Federal University - UFSCAR, Rodovia Washington Luís, km 235, SP-310, São Carlos, SP, 13565-905, Brazil
| | - Patrícia Pinto Saraiva
- Research and Postgraduate Pro-Rectory, Universidade do Sagrado Coração - USC, Rua Irmã Arminda 10-50, Jardim Brasil Bauru, SP, 17011-160, Brazil
| | - Wilson Orcini
- Molecular Biology Laboratory, Research and Postgraduate Pro-Rectory, Universidade do Sagrado Coração - USC, Rua Irmã Arminda 10-50, Jardim, 17011-160, Brazil
| | - Leandro De Andrade Holgado
- Discipline of Oral and Maxillofacial Surgery, Department of Health Sciences, Universidade Sagrado Coração - USC, Rua Irmã Arminda 10-50, Jardim Brasil Bauru, SP, 17011-160, Brazil
| | - Ana Claudia Muniz Rennó
- Department of Bioscience, Federal University of São Paulo, Campus Baixada Santista - UNIFESP, Avenida Ana Costa, 95 - Vila Matias, Santos, SP, 11060-001, Brazil
| | - Mariza Akemi Matsumoto
- Discipline of Histology and Embriology, Department of Basic Sciences, São Paulo State University - FOA/UNESP, Rua Paul Harris 1100, Casa 03, Jardim Nova Iorque Araçatuba, SP, 18016-110, Brazil
| |
Collapse
|
94
|
Sakr M, Li XY, Sabeh F, Feinberg TY, Tesmer JJG, Tang Y, Weiss SJ. Tracking the Cartoon mouse phenotype: Hemopexin domain-dependent regulation of MT1-MMP pericellular collagenolytic activity. J Biol Chem 2018; 293:8113-8127. [PMID: 29643184 DOI: 10.1074/jbc.ra117.001503] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 03/23/2018] [Indexed: 11/06/2022] Open
Abstract
Following ENU mutagenesis, a phenodeviant line was generated, termed the "Cartoon mouse," that exhibits profound defects in growth and development. Cartoon mice harbor a single S466P point mutation in the MT1-MMP hemopexin domain, a 200-amino acid segment that is thought to play a critical role in regulating MT1-MMP collagenolytic activity. Herein, we demonstrate that the MT1-MMPS466P mutation replicates the phenotypic status of Mt1-mmp-null animals as well as the functional characteristics of MT1-MMP-/- cells. However, rather than a loss-of-function mutation acquired as a consequence of defects in MT1-MMP proteolytic activity, the S466P substitution generates a misfolded, temperature-sensitive mutant that is abnormally retained in the endoplasmic reticulum (ER). By contrast, the WT hemopexin domain does not play a required role in regulating MT1-MMP trafficking, as a hemopexin domain-deletion mutant is successfully mobilized to the cell surface and displays nearly normal collagenolytic activity. Alternatively, when MT1-MMPS466P-expressing cells are cultured at a permissive temperature of 25 °C that depresses misfolding, the mutant successfully traffics from the ER to the trans-Golgi network (ER → trans-Golgi network), where it undergoes processing to its mature form, mobilizes to the cell surface, and expresses type I collagenolytic activity. Together, these analyses define the Cartoon mouse as an unexpected gain-of-abnormal function mutation, wherein the temperature-sensitive mutant phenocopies MT1-MMP-/- mice as a consequence of eliciting a specific ER → trans-Golgi network trafficking defect.
Collapse
Affiliation(s)
- Moustafa Sakr
- Molecular Diagnostics and Therapeutics Department, Genetic Engineering and Biotechnology Research institute (GEBRI), University of Sadat City, Sadat City, Egypt 32897
| | - Xiao-Yan Li
- Division of Molecular Medicine and Genetics, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109; Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109
| | - Farideh Sabeh
- Division of Molecular Medicine and Genetics, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109; Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109
| | - Tamar Y Feinberg
- Division of Molecular Medicine and Genetics, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109; Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109
| | - John J G Tesmer
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109; Departments of Medicinal Chemistry, Pharmacology, and Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109
| | - Yi Tang
- Division of Molecular Medicine and Genetics, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109; Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109
| | - Stephen J Weiss
- Division of Molecular Medicine and Genetics, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109; Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109; Departments of Medicinal Chemistry, Pharmacology, and Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109.
| |
Collapse
|
95
|
Buch PR, Ranadive I, Desai I, Balarakrishnan S. Cyclooxygenase-2 interacts with MMP and FGF pathways to promote epimorphic regeneration in lizard Hemidactylus flaviviridis. Growth Factors 2018; 36:69-77. [PMID: 30196771 DOI: 10.1080/08977194.2018.1497021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Cyclooxygenase-2 (COX-2) is an inducible enzyme known for its role in promoting inflammation, pain and cancer. It has more recently been attributed a function in epimorphic regeneration of vertebrate appendages. However, its position among the molecular regulators of regeneration remains unclear. This work was aimed at analyzing the influence of COX-2 on critical mediators of regenerative processes in the lizard Hemidactylus flaviviridis. It was found during the early events of regeneration that MMP and FGF genes get altered in their expression in response to administration of etoricoxib, a COX-2 inhibitor. Results herein also reflect a positive correlation between COX-2 activity and gelatinase activities in our system. These observations, for the first time, establish a definitive interaction of the COX-2 signal with the MMPs and FGFs as essential to the initiation of tail regeneration, placing it as one of the top regulators of the molecular events which characterize epimorphosis.
Collapse
Affiliation(s)
- Pranav R Buch
- a Department of Zoology, Faculty of Science , The M. S. University of Baroda , Vadodara , India
| | - Isha Ranadive
- a Department of Zoology, Faculty of Science , The M. S. University of Baroda , Vadodara , India
| | - Isha Desai
- b N. V. Patel College of Pure and Applied Sciences , Vallabh Vidyanagar , Anand , India
| | - Suresh Balarakrishnan
- a Department of Zoology, Faculty of Science , The M. S. University of Baroda , Vadodara , India
| |
Collapse
|
96
|
Gharib SA, Manicone AM, Parks WC. Matrix metalloproteinases in emphysema. Matrix Biol 2018; 73:34-51. [PMID: 29406250 DOI: 10.1016/j.matbio.2018.01.018] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 12/14/2017] [Accepted: 01/24/2018] [Indexed: 02/07/2023]
Abstract
Several studies have implicated a causative role for specific matrix metalloproteinases (MMPs) in the development and progression of cigarette smoke-induced chronic obstructive pulmonary disease (COPD) and its severe sequela, emphysema. However, the precise function of any given MMP in emphysema remains an unanswered question. Emphysema results from the degradation of alveolar elastin - among other possible mechanisms - a process that is often thought to be caused by elastolytic proteinases made by macrophages. In this article, we discuss the data suggesting, supporting, or refuting causative roles of macrophage-derived MMPs, with a focus on MMPs-7, -9, -10, -12, and 28, in both the human disease and mouse models of emphysema. Findings from experimental models suggest that some MMPs, such as MMP-12, may directly breakdown elastin, whereas others, particularly MMP-10 and MMP-28, promote the development of emphysema by influencing the proteolytic and inflammatory activities of macrophages.
Collapse
Affiliation(s)
- Sina A Gharib
- Center for Lung Biology, University of Washington, Seattle, WA, USA
| | - Anne M Manicone
- Center for Lung Biology, University of Washington, Seattle, WA, USA
| | - William C Parks
- Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| |
Collapse
|
97
|
Javaheri B, Caetano-Silva SP, Kanakis I, Bou-Gharios G, Pitsillides AA. The Chondro-Osseous Continuum: Is It Possible to Unlock the Potential Assigned Within? Front Bioeng Biotechnol 2018; 6:28. [PMID: 29619368 PMCID: PMC5871702 DOI: 10.3389/fbioe.2018.00028] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 03/08/2018] [Indexed: 01/08/2023] Open
Abstract
Endochondral ossification (EO), by which long bones of the axial skeleton form, is a tightly regulated process involving chondrocyte maturation with successive stages of proliferation, maturation, and hypertrophy, accompanied by cartilage matrix synthesis, calcification, and angiogenesis, followed by osteoblast-mediated ossification. This developmental sequence reappears during fracture repair and in osteoarthritic etiopathology. These similarities suggest that EO, and the cells involved, are of great clinical importance for bone regeneration as it could provide novel targeted approaches to increase specific signaling to promote fracture healing, and if regulated appropriately in the treatment of osteoarthritis. The long-held accepted dogma states that hypertrophic chondrocytes are terminally differentiated and will eventually undergo apoptosis. In this mini review, we will explore recent evidence from experiments that revisit the idea that hypertrophic chondrocytes have pluripotent capacity and may instead transdifferentiate into a specific sub-population of osteoblast cells. There are multiple lines of evidence, including our own, showing that local, selective alterations in cartilage extracellular matrix (ECM) remodeling also indelibly alter bone quality. This would be consistent with the hypothesis that osteoblast behavior in long bones is regulated by a combination of their lineage origins and the epigenetic effects of chondrocyte-derived ECM which they encounter during their recruitment. Further exploration of these processes could help to unlock potential novel targets for bone repair and regeneration and in the treatment of osteoarthritis.
Collapse
Affiliation(s)
- Behzad Javaheri
- Skeletal Biology Group, Comparative Biomedical Sciences, The Royal Veterinary College, London, United Kingdom
| | - Soraia P Caetano-Silva
- Skeletal Biology Group, Comparative Biomedical Sciences, The Royal Veterinary College, London, United Kingdom
| | - Ioannis Kanakis
- Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, United Kingdom
| | - George Bou-Gharios
- Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, United Kingdom
| | - Andrew A Pitsillides
- Skeletal Biology Group, Comparative Biomedical Sciences, The Royal Veterinary College, London, United Kingdom
| |
Collapse
|
98
|
Assis-Ribas T, Forni MF, Winnischofer SMB, Sogayar MC, Trombetta-Lima M. Extracellular matrix dynamics during mesenchymal stem cells differentiation. Dev Biol 2018; 437:63-74. [PMID: 29544769 DOI: 10.1016/j.ydbio.2018.03.002] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 02/05/2018] [Accepted: 03/02/2018] [Indexed: 12/18/2022]
Abstract
Mesenchymal stem cells (MSCs) are stromal cells that display self-renewal and multipotent differentiation capacity. The repertoire of mature cells generated ranges but is not restricted to: fat, bone and cartilage. Their potential importance for both cell therapy and maintenance of in vivo homeostasis is indisputable. Nonetheless, both their in vivo identity and use in cell therapy remain elusive. A drawback generated by this fact is that little is known about the MSC niche and how it impacts differentiation and homeostasis maintenance. Hence, the roles played by the extracellular matrix (ECM) and its main regulators namely: the Matrix Metalloproteinases (MMPs) and their counteracting inhibitors (TIMPs and RECK) upon stem cells differentiation are only now beginning to be unveiled. Here, we will focus on mesenchymal stem cells and review the main mechanisms involved in adipo, chondro and osteogenesis, discussing how the extracellular matrix can impact not only lineage commitment, but, also, their survival and potentiality. This review critically analyzes recent work in the field in an effort towards a better understanding of the roles of Matrix Metalloproteinases and their inhibitors in the above-cited events.
Collapse
Affiliation(s)
- Thais Assis-Ribas
- NUCEL-NETCEM-Faculdade de Medicina, Departamento de Clínica Médica, Universidade de São Paulo, São Paulo, SP 05360-120, Brazil
| | - Maria Fernanda Forni
- Instituto de Química, Departamento de Bioquímica, Universidade de São Paulo, São Paulo, SP 05508-000, Brazil
| | | | - Mari Cleide Sogayar
- NUCEL-NETCEM-Faculdade de Medicina, Departamento de Clínica Médica, Universidade de São Paulo, São Paulo, SP 05360-120, Brazil; Instituto de Química, Departamento de Bioquímica, Universidade de São Paulo, São Paulo, SP 05508-000, Brazil
| | - Marina Trombetta-Lima
- NUCEL-NETCEM-Faculdade de Medicina, Departamento de Clínica Médica, Universidade de São Paulo, São Paulo, SP 05360-120, Brazil.
| |
Collapse
|
99
|
Agopiantz M, Xandre-Rodriguez L, Jin B, Urbistondoy G, Ialy-Radio C, Chalbi M, Wolf JP, Ziyyat A, Lefèvre B. Growth arrest specific 1 (Gas1) and glial cell line-derived neurotrophic factor receptor α1 (Gfrα1), two mouse oocyte glycosylphosphatidylinositol-anchored proteins, are involved in fertilisation. Reprod Fertil Dev 2018; 29:824-837. [PMID: 28442042 DOI: 10.1071/rd15367] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 12/10/2015] [Indexed: 12/25/2022] Open
Abstract
Recently, Juno, the oocyte receptor for Izumo1, a male immunoglobulin, was discovered. Juno is an essential glycosylphosphatidylinositol (GIP)-anchored protein. This result did not exclude the participation of other GIP-anchored proteins in this process. After bibliographic and database searches we selected five GIP-anchored proteins (Cpm, Ephrin-A4, Gas1, Gfra1 and Rgmb) as potential oocyte candidates participating in fertilisation. Western blot and immunofluorescence analyses showed that only three were present on the mouse ovulated oocyte membrane and, of these, only two were clearly involved in the fertilisation process, namely growth arrest specific 1 (Gas1) and glial cell line-derived neurotrophic factor receptor α1 (Gfrα1). This was demonstrated by evaluating oocyte fertilisability after treatment of oocytes with antibodies against the selected proteins, with their respective short interference RNA or both. Gfrα1 and Gas1 seem to be neither redundant nor synergistic. In conclusion, oocyte Gas1 and Gfrα1 are both clearly involved in fertilisation.
Collapse
Affiliation(s)
- M Agopiantz
- Inserm, U1016, Institut Cochin, 24 rue du Faubourg Saint-Jacques, 75014, Paris, France
| | - L Xandre-Rodriguez
- Université Paris Descartes, Sorbonne Paris Cité, 24 rue du Faubourg Saint-Jacques, 75014, Paris, France
| | - B Jin
- Université Paris Descartes, Sorbonne Paris Cité, 24 rue du Faubourg Saint-Jacques, 75014, Paris, France
| | - G Urbistondoy
- Université Paris Descartes, Sorbonne Paris Cité, 24 rue du Faubourg Saint-Jacques, 75014, Paris, France
| | - C Ialy-Radio
- Inserm, U1016, Institut Cochin, 24 rue du Faubourg Saint-Jacques, 75014, Paris, France
| | - M Chalbi
- Inserm, U1016, Institut Cochin, 24 rue du Faubourg Saint-Jacques, 75014, Paris, France
| | - J-P Wolf
- Service d'Histologie Embryologie Biologie de la Reproduction - CECOS, Hôpital Cochin, AP-HP, F75014 Paris, France
| | - A Ziyyat
- Inserm, U1016, Institut Cochin, 24 rue du Faubourg Saint-Jacques, 75014, Paris, France
| | - B Lefèvre
- Inserm, U1016, Institut Cochin, 24 rue du Faubourg Saint-Jacques, 75014, Paris, France
| |
Collapse
|
100
|
Duran CL, Abbey CA, Bayless KJ. Establishment of a three-dimensional model to study human uterine angiogenesis. Mol Hum Reprod 2018; 24:74-93. [PMID: 29329415 PMCID: PMC6454809 DOI: 10.1093/molehr/gax064] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 10/25/2017] [Accepted: 12/19/2017] [Indexed: 01/29/2023] Open
Abstract
STUDY QUESTION Can primary human uterine microvascular endothelial cells (UtMVECs) be used as a model to study uterine angiogenic responses in vitro that are relevant in pregnancy? SUMMARY ANSWER UtMVECs demonstrated angiogenic responses when stimulated with proangiogenic factors, including sphingosine 1-phosphate (S1P), vascular endothelial growth factor (VEGF), basic fibroblast growth factor (bFGF), physiological levels of wall shear stress (WSS), human chorionic gonadotropin (hCG) and various combinations of estrogen and progesterone. WHAT IS KNOWN ALREADY During sprouting angiogenesis, signaling from growth factors and cytokines induces a monolayer of quiescent endothelial cells (ECs) lining the vasculature to degrade the extracellular matrix and invade the surrounding tissue to form new capillaries. During pregnancy and the female reproductive cycle, the uterine endothelium becomes activated and undergoes sprouting angiogenesis to increase the size and number of blood vessels in the endometrium. STUDY DESIGN, SIZE, DURATION The study was designed to examine the angiogenic potential of primary human UtMVECs using the well-characterized human umbilical vein EC (HUVEC) line as a control to compare angiogenic potential. ECs were seeded onto three-dimensional (3D) collagen matrices, supplemented with known proangiogenic stimuli relevant to pregnancy and allowed to invade for 24 h. Sprouting responses were analyzed using manual and automated methods for quantification. PARTICIPANTS/MATERIALS, SETTING, METHODS RT-PCR, Western blot analysis and immunostaining were used to characterize UtMVECs. Angiogenic responses were examined using 3D invasion assays. Western blotting was used to confirm signaling responses after proangiogenic lipid, pharmacological inhibitor, and recombinant lentiviral treatments. All experiments were repeated at least three times. MAIN RESULTS AND THE ROLE OF CHANCE After ensuring that UtMVECs expressed the proper endothelial markers, we found that UtMVECs invade 3D collagen matrices dose-dependently in response to known proangiogenic stimuli (e.g. S1P, VEGF, bFGF, hCG, estrogen, progesterone and WSS) present during early pregnancy. Invasion responses were positively correlated with phosphorylation of phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) and p42/p44 mitogen-activated protein kinase (ERK). Inhibition of these second messengers significantly impaired sprouting (P < 0.01). Gene silencing of membrane type 1-matrix metalloproteinase using multiple approaches completely abrogated sprouting (P < 0.001). Finally, UtMVECs displayed a unique ability to undergo sprouting in response to hCG, and combined estrogen and progesterone treatment. LARGE SCALE DATA Not applicable. LIMITATIONS, REASONS FOR CAUTION The study of uterine angiogenesis in vitro has limitations and any findings many not fully represent the in vivo state. However, these experiments do provide evidence for the ability of UtMVECs to be used in functional sprouting assays in a 3D environment, stimulated by physiological factors that are produced locally within the uterus during early pregnancy. WIDER IMPLICATIONS OF THE FINDINGS We show that UtMVECs can be used reliably to investigate how growth factors, hormones, lipids and other factors, such as flow, affect angiogenesis in the uterus. STUDY FUNDING/COMPETING INTERESTS This work was supported by NIH award HL095786 to K.J.B. The authors have no conflicts of interest.
Collapse
Affiliation(s)
- Camille L Duran
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, 440 Reynolds Medical Building, College Station, TX 77843-1114, USA
- Interdisciplinary Program in Genetics, Texas A&M University, Mail Stop 2128, College Station, TX 77843, USA
| | - Colette A Abbey
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, 440 Reynolds Medical Building, College Station, TX 77843-1114, USA
| | - Kayla J Bayless
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, 440 Reynolds Medical Building, College Station, TX 77843-1114, USA
- Interdisciplinary Program in Genetics, Texas A&M University, Mail Stop 2128, College Station, TX 77843, USA
- Interdisciplinary Faculty of Reproductive Biology, Texas A&M University, Mail Stop 2471, College Station, TX 77843, USA
| |
Collapse
|