51
|
G Protein-Coupling of Adhesion GPCRs ADGRE2/EMR2 and ADGRE5/CD97, and Activation of G Protein Signalling by an Anti-EMR2 Antibody. Sci Rep 2020; 10:1004. [PMID: 31969668 PMCID: PMC6976652 DOI: 10.1038/s41598-020-57989-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 01/02/2020] [Indexed: 11/25/2022] Open
Abstract
The experimental evidence that Adhesion G Protein-Coupled Receptors (aGPCRs) functionally couple to heterotrimeric G proteins has been emerging in incremental steps, but attributing biological significance to their G protein signalling function still presents a major challenge. Here, utilising activated truncated forms of the receptors, we show that ADGRE2/EMR2 and ADGRE5/CD97 are G protein-coupled in a variety of recombinant systems. In a yeast-based assay, where heterologous GPCRs are coupled to chimeric G proteins, EMR2 showed broad G protein-coupling, whereas CD97 coupled more specifically to Gα12, Gα13, Gα14 and Gαz chimeras. Both receptors induced pertussis-toxin (PTX) insensitive inhibition of cyclic AMP (cAMP) levels in mammalian cells, suggesting coupling to Gαz. EMR2 was shown to signal via Gα16, and via a Gα16/Gαz chimera, to stimulate IP1 accumulation. Finally, using an NFAT reporter assay, we identified a polyclonal antibody that activates EMR2 G protein signalling in vitro. Our results highlight the potential for the development of soluble agonists to understand further the biological effects and therapeutic opportunities for ADGRE receptor-mediated G protein signalling.
Collapse
|
52
|
Gad AA, Balenga N. The Emerging Role of Adhesion GPCRs in Cancer. ACS Pharmacol Transl Sci 2020; 3:29-42. [PMID: 32259086 DOI: 10.1021/acsptsci.9b00093] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Indexed: 02/08/2023]
Abstract
Aberrant expression, function, and mutation of G protein-coupled receptors (GPCRs) and their signaling partners, G proteins, have been well documented in many forms of cancer. These cell surface receptors and their endogenous ligands are implicated in all aspects of cancer including proliferation, angiogenesis, invasion, and metastasis. Adhesion GPCRs (aGPCRs) form the second largest family of GPCRs, most of which are orphan receptors with unknown physiological functions. This is mainly due to our limited insight into their structure, natural ligands, signaling pathways, and tissue expression profiles. Nevertheless, recent studies show that aGPCRs play important roles in cell adhesion to the extracellular matrix and cell-cell communication, processes that are dysregulated in cancer. Emerging evidence suggests that aGPCRs are implicated in migration, proliferation, and survival of tumor cells. We here review the role of aGPCRs in the five most common types of cancer (lung, breast, colorectal, prostate, and gastric) and emphasize the importance of further translational studies in this field.
Collapse
Affiliation(s)
- Abanoub A Gad
- Graduate Program in Life Sciences, University of Maryland, Baltimore, Maryland 20201, United States.,Division of General & Oncologic Surgery, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland 20201, United States
| | - Nariman Balenga
- Division of General & Oncologic Surgery, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland 20201, United States.,Molecular and Structural Biology program at University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, Maryland 20201, United States
| |
Collapse
|
53
|
Rudlong J, Cheng A, Johnson GVW. The role of transglutaminase 2 in mediating glial cell function and pathophysiology in the central nervous system. Anal Biochem 2019; 591:113556. [PMID: 31866289 DOI: 10.1016/j.ab.2019.113556] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 12/04/2019] [Accepted: 12/18/2019] [Indexed: 12/13/2022]
Abstract
The ubiquitously expressed transglutaminase 2 (TG2) has diverse functions in virtually all cell types, with its role depending not only on cell type, but also on specific subcellular localization. In the central nervous system (CNS) different types of glial cells, such as astrocytes, microglia, and oligodendrocytes and their precursor cells (OPCs), play pivotal supportive functions. This review is focused on what is currently known about the role of TG2 in each type of glial cell, in the context of normal function and pathophysiology. For example, astrocytic TG2 facilitates their migration and proliferation, but hinders their ability to protect neurons after CNS injury. The review also examines the interactions between glial cell types, and how TG2 in one cell type may affect another, as well as implications for specific TG2 populations as therapeutic targets in CNS pathology.
Collapse
Affiliation(s)
- Jacob Rudlong
- Department of Anesthesiology and Perioperative Medicine and the Neuroscience Graduate Program, University of Rochester, Rochester, NY, 14620, USA
| | - Anson Cheng
- Department of Anesthesiology and Perioperative Medicine and the Neuroscience Graduate Program, University of Rochester, Rochester, NY, 14620, USA
| | - Gail V W Johnson
- Department of Anesthesiology and Perioperative Medicine and the Neuroscience Graduate Program, University of Rochester, Rochester, NY, 14620, USA.
| |
Collapse
|
54
|
Dunn HA, Orlandi C, Martemyanov KA. Beyond the Ligand: Extracellular and Transcellular G Protein-Coupled Receptor Complexes in Physiology and Pharmacology. Pharmacol Rev 2019; 71:503-519. [PMID: 31515243 DOI: 10.1124/pr.119.018044] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
G protein-coupled receptors (GPCRs) remain one of the most successful targets of U.S. Food and Drug Administration-approved drugs. GPCR research has predominantly focused on the characterization of the intracellular interactome's contribution to GPCR function and pharmacology. However, emerging evidence uncovers a new dimension in the biology of GPCRs involving their extracellular and transcellular interactions that critically impact GPCR function and pharmacology. The seminal examples include a variety of adhesion GPCRs, such as ADGRLs/latrophilins, ADGRBs/brain angiogenesis inhibitors, ADGRG1/GPR56, ADGRG6/GPR126, ADGRE5/CD97, and ADGRC3/CELSR3. However, recent advances have indicated that class C GPCRs that contain large extracellular domains, including group III metabotropic glutamate receptors (mGluR4, mGluR6, mGluR7, mGluR8), γ-aminobutyric acid receptors, and orphans GPR158 and GPR179, can also participate in this form of transcellular regulation. In this review, we will focus on a variety of identified extracellular and transcellular GPCR-interacting partners, including teneurins, neurexins, integrins, fibronectin leucine-rich transmembranes, contactin-6, neuroligin, laminins, collagens, major prion protein, amyloid precursor protein, complement C1q-likes, stabilin-2, pikachurin, dystroglycan, complement decay-accelerating factor CD55, cluster of differentiation CD36 and CD90, extracellular leucine-rich repeat and fibronectin type III domain containing 1, and leucine-rich repeat, immunoglobulin-like domain and transmembrane domains. We provide an account on the diversity of extracellular and transcellular GPCR complexes and their contribution to key cellular and physiologic processes, including cell migration, axon guidance, cellular and synaptic adhesion, and synaptogenesis. Furthermore, we discuss models and mechanisms by which extracellular GPCR assemblies may regulate communication at cellular junctions. SIGNIFICANCE STATEMENT: G protein-coupled receptors (GPCRs) continue to be the prominent focus of pharmacological intervention for a variety of human pathologies. Although the majority of GPCR research has focused on the intracellular interactome, recent advancements have identified an extracellular dimension of GPCR modulation that alters accepted pharmacological principles of GPCRs. Herein, we describe known endogenous allosteric modulators acting on GPCRs both in cis and in trans.
Collapse
Affiliation(s)
- Henry A Dunn
- Department of Neuroscience, The Scripps Research Institute, Jupiter, Florida
| | - Cesare Orlandi
- Department of Neuroscience, The Scripps Research Institute, Jupiter, Florida
| | | |
Collapse
|
55
|
Zhu B, Luo R, Jin P, Li T, Oak HC, Giera S, Monk KR, Lak P, Shoichet BK, Piao X. GAIN domain-mediated cleavage is required for activation of G protein-coupled receptor 56 (GPR56) by its natural ligands and a small-molecule agonist. J Biol Chem 2019; 294:19246-19254. [PMID: 31628191 DOI: 10.1074/jbc.ra119.008234] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 10/02/2019] [Indexed: 12/15/2022] Open
Abstract
Adhesion G protein-coupled receptors (aGPCRs) represent a distinct family of GPCRs that regulate several developmental and physiological processes. Most aGPCRs undergo GPCR autoproteolysis-inducing domain-mediated protein cleavage, which produces a cryptic tethered agonist (termed Stachel (stinger)), and cleavage-dependent and -independent aGPCR signaling mechanisms have been described. aGPCR G1 (ADGRG1 or G protein-coupled receptor 56 (GPR56)) has pleiotropic functions in the development of multiple organ systems, which has broad implications for human diseases. To date, two natural GPR56 ligands, collagen III and tissue transglutaminase (TG2), and one small-molecule agonist, 3-α-acetoxydihydrodeoxygedunin (3-α-DOG), have been identified, in addition to a synthetic peptide, P19, that contains seven amino acids of the native Stachel sequence. However, the mechanisms by which these natural and small-molecule agonists signal through GPR56 remain unknown. Here we engineered a noncleavable receptor variant that retains signaling competence via the P19 peptide. We demonstrate that both natural and small-molecule agonists can activate only cleaved GPR56. Interestingly, TG2 required both receptor cleavage and the presence of a matrix protein, laminin, to activate GPR56, whereas collagen III and 3-α-DOG signaled without any cofactors. On the other hand, both TG2/laminin and collagen III activate the receptor by dissociating the N-terminal fragment from its C-terminal fragment, enabling activation by the Stachel sequence, whereas P19 and 3-α-DOG initiate downstream signaling without disengaging the N-terminal fragment from its C-terminal fragment. These findings deepen our understanding of how GPR56 signals via natural ligands, and a small-molecule agonist may be broadly applicable to other aGPCR family members.
Collapse
Affiliation(s)
- Beika Zhu
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Weill Institute of Neuroscience, University of California, San Francisco, California 94143
| | - Rong Luo
- Department of Medicine, Children's Hospital and Harvard Medical School, Boston, Massachusetts 02115
| | - Peng Jin
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Weill Institute of Neuroscience, University of California, San Francisco, California 94143
| | - Tao Li
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Weill Institute of Neuroscience, University of California, San Francisco, California 94143
| | - Hayeon C Oak
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Weill Institute of Neuroscience, University of California, San Francisco, California 94143
| | - Stefanie Giera
- Department of Medicine, Children's Hospital and Harvard Medical School, Boston, Massachusetts 02115
| | - Kelly R Monk
- Vollum Institute, Oregon Health and Science University, Portland, Oregon 97239
| | - Parnian Lak
- Department of Pharmaceutical Chemistry and Quantitative Biology Institute, University of California, San Francisco, California 94143
| | - Brian K Shoichet
- Department of Pharmaceutical Chemistry and Quantitative Biology Institute, University of California, San Francisco, California 94143
| | - Xianhua Piao
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Weill Institute of Neuroscience, University of California, San Francisco, California 94143 .,Department of Medicine, Children's Hospital and Harvard Medical School, Boston, Massachusetts 02115.,Division of Neonatology, Department of Pediatrics, University of California, San Francisco, California 94158.,Newborn Brain Research Institute, University of California, San Francisco, California 94158
| |
Collapse
|
56
|
Mitra S, Tiwari K, Podicheti R, Pandhiri T, Rusch DB, Bonetto A, Zhang C, Mitra AK. Transcriptome Profiling Reveals Matrisome Alteration as a Key Feature of Ovarian Cancer Progression. Cancers (Basel) 2019; 11:cancers11101513. [PMID: 31600962 PMCID: PMC6826756 DOI: 10.3390/cancers11101513] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 08/30/2019] [Accepted: 09/30/2019] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Ovarian cancer is the most lethal gynecologic malignancy. There is a lack of comprehensive investigation of disease initiation and progression, including gene expression changes during early metastatic colonization. METHODS RNA-sequencing (RNA-seq) was done with matched primary tumors and fallopian tubes (n = 8 pairs) as well as matched metastatic and primary tumors (n = 11 pairs) from ovarian cancer patients. Since these are end point analyses, it was combined with RNA-seq using high-grade serous ovarian cancer cells seeded on an organotypic three-dimensional (3D) culture model of the omentum, mimicking early metastasis. This comprehensive approach revealed key changes in gene expression occurring in ovarian cancer initiation and metastasis, including early metastatic colonization. RESULTS 2987 genes were significantly deregulated in primary tumors compared to fallopian tubes, 845 genes were differentially expressed in metastasis compared to primary tumors and 304 genes were common to both. An assessment of patient metastasis and 3D omental culture model of early metastatic colonization revealed 144 common genes that were altered during early colonization and remain deregulated even in the fully developed metastasis. Deregulation of the matrisome was a key process in early and late metastasis. CONCLUSION These findings will help in understanding the key pathways involved in ovarian cancer progression and eventually targeting those pathways for therapeutic interventions.
Collapse
Affiliation(s)
- Sumegha Mitra
- Indiana University Melvin and Bren Simon Cancer Center, Indianapolis, IN 46202, USA.
- Department of Obstetrics and Gynecology, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | - Kartikeya Tiwari
- Medical Sciences Program, Indiana University School of Medicine-Bloomington, Bloomington, IN 47405, USA.
| | - Ram Podicheti
- Center for Genomics and Bioinformatics, Indiana University, Bloomington, IN 47405, USA.
| | - Taruni Pandhiri
- Medical Sciences Program, Indiana University School of Medicine-Bloomington, Bloomington, IN 47405, USA.
| | - Douglas B Rusch
- Center for Genomics and Bioinformatics, Indiana University, Bloomington, IN 47405, USA.
| | - Andrea Bonetto
- Indiana University Melvin and Bren Simon Cancer Center, Indianapolis, IN 46202, USA.
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | - Chi Zhang
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | - Anirban K Mitra
- Indiana University Melvin and Bren Simon Cancer Center, Indianapolis, IN 46202, USA.
- Medical Sciences Program, Indiana University School of Medicine-Bloomington, Bloomington, IN 47405, USA.
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| |
Collapse
|
57
|
Zhang S, Chatterjee T, Godoy C, Wu L, Liu QJ, Carmon KS. GPR56 Drives Colorectal Tumor Growth and Promotes Drug Resistance through Upregulation of MDR1 Expression via a RhoA-Mediated Mechanism. Mol Cancer Res 2019; 17:2196-2207. [PMID: 31444231 DOI: 10.1158/1541-7786.mcr-19-0436] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 07/19/2019] [Accepted: 08/20/2019] [Indexed: 12/26/2022]
Abstract
Drug resistance continues to be a major obstacle of effective therapy for colorectal cancer, leading to tumor relapse or treatment failure. Cancer stem cells (CSC) or tumor-initiating cells are a subpopulation of tumor cells which retain the capacity for self-renewal and are suggested to be implicated in drug resistance. LGR5 is highly expressed in colorectal cancer and marks CSCs that drive tumor growth and metastasis. LGR5(+) CSCs cells were shown to interconvert with more drug-resistant LGR5(-) cancer cells, and treatment with LGR5-targeted antibody-drug conjugates (ADC) eliminated LGR5(+) tumors, yet a fraction of LGR5(-) tumors eventually recurred. Therefore, it is important to identify mechanisms associated with CSC plasticity and drug resistance in order to develop curative therapies. Here, we show that loss of LGR5 in colon cancer cells enhanced resistance to irinotecan and 5-fluorouracil and increased expression of adhesion G-protein-coupled receptor, GPR56. GPR56 expression was significantly higher in primary colon tumors versus matched normal tissues and correlated with poor survival outcome. GPR56 enhanced drug resistance through upregulation of MDR1 levels via a RhoA-mediated signaling mechanism. Loss of GPR56 led to suppression of tumor growth and increased sensitivity of cancer cells to chemotherapy and monomethyl auristatin E-linked anti-LGR5 ADCs, by reducing MDR1 levels. These findings suggest that upregulation of GPR56 may be a mechanism associated with CSC plasticity by which LGR5(-) cancer cells acquire a more drug-resistant phenotype. IMPLICATIONS: Our findings suggest that targeting GPR56 may provide a new strategy for the treatment of colorectal cancer and combatting drug resistance.
Collapse
Affiliation(s)
- Sheng Zhang
- Texas Therapeutics Institute, The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, Texas
| | - Treena Chatterjee
- Texas Therapeutics Institute, The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, Texas
| | - Carla Godoy
- Texas Therapeutics Institute, The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, Texas
| | - Ling Wu
- Texas Therapeutics Institute, The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, Texas
| | - Qingyun J Liu
- Texas Therapeutics Institute, The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, Texas
| | - Kendra S Carmon
- Texas Therapeutics Institute, The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, Texas.
| |
Collapse
|
58
|
Al Hasan M, Roy P, Dolan S, Martin PE, Patterson S, Bartholomew C. Adhesion G-protein coupled receptor 56 is required for 3T3-L1 adipogenesis. J Cell Physiol 2019; 235:1601-1614. [PMID: 31304602 DOI: 10.1002/jcp.29079] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 06/14/2019] [Indexed: 12/13/2022]
Abstract
Obesity-associated conditions represent major global health and financial burdens and understanding processes regulating adipogenesis could lead to novel intervention strategies. This study shows that adhesion G-protein coupled receptor 56 (GPR56) gene transcripts are reduced in abdominal visceral white adipose tissue derived from obese Zucker rats versus lean controls. Immunostaining in 3T3-L1 preadipocytes reveals both mitotic cell restricted surface and low level general expression patterns of Gpr56. Gpr56 transcripts are differentially expressed in 3T3-L1 cells during adipogenesis. Transient knockdown (KD) of Gpr56 in 3T3-L1 cells dramatically inhibits differentiation through reducing the accumulation of both neutral cellular lipids (56%) and production of established adipogenesis Pparγ 2 (60-80%), C/ebpα (40-78%) mediator, and Ap2 (56-80%) marker proteins. Furthermore, genome editing of Gpr56 in 3T3-L1 cells created CW2.2.4 and RM4.2.5.5 clones (Gpr56 -/- cells) with compound heterozygous deletion frameshift mutations which abolish adipogenesis. Genome edited cells have sustained levels of the adipogenesis inhibitor β-catenin, reduced proliferation, reduced adhesion, altered profiles, and or abundance of extracellular matrix component gene transcripts for fibronectin, types I, III, and IV collagens and loss of actin stress fibers. β-catenin KD alone is insufficient to restore adipogenesis in Gpr56 -/- cells. Together these data show that Gpr56 is required for adipogenesis in 3T3-L1 cells. This report is the first demonstration that Gpr56 participates in regulation of the adipogenesis developmental program. Modulation of the levels of this protein and/or its biological activity may represent a novel target for development of therapeutic agents for the treatment of obesity.
Collapse
Affiliation(s)
- Mohammad Al Hasan
- Department of Biological & Biomedical Sciences, School of Health & Life Sciences, Glasgow Caledonian University, Glasgow, Scotland
| | - Poornima Roy
- Department of Biological & Biomedical Sciences, School of Health & Life Sciences, Glasgow Caledonian University, Glasgow, Scotland
| | - Sharron Dolan
- Department of Biological & Biomedical Sciences, School of Health & Life Sciences, Glasgow Caledonian University, Glasgow, Scotland
| | - Patricia E Martin
- Department of Biological & Biomedical Sciences, School of Health & Life Sciences, Glasgow Caledonian University, Glasgow, Scotland
| | - Steven Patterson
- Department of Biological & Biomedical Sciences, School of Health & Life Sciences, Glasgow Caledonian University, Glasgow, Scotland
| | - Chris Bartholomew
- Department of Biological & Biomedical Sciences, School of Health & Life Sciences, Glasgow Caledonian University, Glasgow, Scotland
| |
Collapse
|
59
|
Wu V, Yeerna H, Nohata N, Chiou J, Harismendy O, Raimondi F, Inoue A, Russell RB, Tamayo P, Gutkind JS. Illuminating the Onco-GPCRome: Novel G protein-coupled receptor-driven oncocrine networks and targets for cancer immunotherapy. J Biol Chem 2019; 294:11062-11086. [PMID: 31171722 DOI: 10.1074/jbc.rev119.005601] [Citation(s) in RCA: 128] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
G protein-coupled receptors (GPCRs) are the largest gene family of cell membrane-associated molecules mediating signal transmission, and their involvement in key physiological functions is well-established. The ability of GPCRs to regulate a vast array of fundamental biological processes, such as cardiovascular functions, immune responses, hormone and enzyme release from endocrine and exocrine glands, neurotransmission, and sensory perception (e.g. vision, odor, and taste), is largely due to the diversity of these receptors and the layers of their downstream signaling circuits. Dysregulated expression and aberrant functions of GPCRs have been linked to some of the most prevalent human diseases, which renders GPCRs one of the top targets for pharmaceutical drug development. However, the study of the role of GPCRs in tumor biology has only just begun to make headway. Recent studies have shown that GPCRs can contribute to the many facets of tumorigenesis, including proliferation, survival, angiogenesis, invasion, metastasis, therapy resistance, and immune evasion. Indeed, GPCRs are widely dysregulated in cancer and yet are underexploited in oncology. We present here a comprehensive analysis of GPCR gene expression, copy number variation, and mutational signatures in 33 cancer types. We also highlight the emerging role of GPCRs as part of oncocrine networks promoting tumor growth, dissemination, and immune evasion, and we stress the potential benefits of targeting GPCRs and their signaling circuits in the new era of precision medicine and cancer immunotherapies.
Collapse
Affiliation(s)
- Victoria Wu
- Department of Pharmacology, UCSD Moores Cancer Center, La Jolla, California 92093
| | - Huwate Yeerna
- Department of Medicine, UCSD Moores Cancer Center, La Jolla, California 92093
| | - Nijiro Nohata
- Department of Pharmacology, UCSD Moores Cancer Center, La Jolla, California 92093
| | - Joshua Chiou
- Department of Pediatrics, University of California San Diego School of Medicine, La Jolla, California 92093
| | - Olivier Harismendy
- Department of Medicine, UCSD Moores Cancer Center, La Jolla, California 92093.,Department of Medicine, UCSD Moores Cancer Center, La Jolla, California 92093
| | - Francesco Raimondi
- CellNetworks, Bioquant, Heidelberg University, Im Neuenheimer Feld 267, 69120 Heidelberg, Germany.,Biochemie Zentrum Heidelberg (BZH), Heidelberg University, Im Neuenheimer Feld 328, 69120 Heidelberg, Germany
| | - Asuka Inoue
- Graduate School of Pharmaceutical Science, Tohoku University, Sendai, Miyagi 980-8578, Japan
| | - Robert B Russell
- CellNetworks, Bioquant, Heidelberg University, Im Neuenheimer Feld 267, 69120 Heidelberg, Germany.,Biochemie Zentrum Heidelberg (BZH), Heidelberg University, Im Neuenheimer Feld 328, 69120 Heidelberg, Germany
| | - Pablo Tamayo
- Department of Medicine, UCSD Moores Cancer Center, La Jolla, California 92093
| | - J Silvio Gutkind
- Department of Pharmacology, UCSD Moores Cancer Center, La Jolla, California 92093
| |
Collapse
|
60
|
Langenhan T. Adhesion G protein–coupled receptors—Candidate metabotropic mechanosensors and novel drug targets. Basic Clin Pharmacol Toxicol 2019; 126 Suppl 6:5-16. [DOI: 10.1111/bcpt.13223] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 02/26/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Tobias Langenhan
- Rudolf Schönheimer Institute of Biochemistry, Division of General Biochemistry, Medical Faculty Leipzig University Leipzig Germany
| |
Collapse
|
61
|
Folts CJ, Giera S, Li T, Piao X. Adhesion G Protein-Coupled Receptors as Drug Targets for Neurological Diseases. Trends Pharmacol Sci 2019; 40:278-293. [PMID: 30871735 DOI: 10.1016/j.tips.2019.02.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 02/03/2019] [Accepted: 02/05/2019] [Indexed: 01/06/2023]
Abstract
The family of adhesion G protein-coupled receptors (aGPCRs) consists of 33 members in humans. Although the majority are orphan receptors with unknown functions, many reports have demonstrated critical functions for some members of this family in organogenesis, neurodevelopment, myelination, angiogenesis, and cancer progression. Importantly, mutations in several aGPCRs have been linked to human diseases. The crystal structure of a shared protein domain, the GPCR Autoproteolysis INducing (GAIN) domain, has enabled the discovery of a common signaling mechanism - a tethered agonist - for this class of receptors. A series of recent reports has shed new light on their biological functions and disease relevance. This review focuses on these recent advances in our understanding of aGPCR biology in the nervous system and the untapped potential of aGPCRs as novel therapeutic targets for neurological disease.
Collapse
Affiliation(s)
- Christopher J Folts
- Division of Newborn Medicine, Department of Medicine, Children's Hospital and Harvard Medical School, Boston, MA 02115, USA; Current address: Vertex Pharmaceuticals, 50 Northern Avenue, Boston, MA 02210, USA
| | - Stefanie Giera
- Division of Newborn Medicine, Department of Medicine, Children's Hospital and Harvard Medical School, Boston, MA 02115, USA; Current address: Sanofi S.A., 49 New York Avenue, Framingham, MA 01701, USA
| | - Tao Li
- Division of Newborn Medicine, Department of Medicine, Children's Hospital and Harvard Medical School, Boston, MA 02115, USA; Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Xianhua Piao
- Division of Newborn Medicine, Department of Medicine, Children's Hospital and Harvard Medical School, Boston, MA 02115, USA; Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA; Newborn Brain Research Institute, University of California at San Francisco, San Francisco, CA 94158, USA; Department of Pediatrics, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
62
|
Daga S, Rosenberger A, Quehenberger F, Krisper N, Prietl B, Reinisch A, Zebisch A, Sill H, Wölfler A. High GPR56 surface expression correlates with a leukemic stem cell gene signature in CD34-positive AML. Cancer Med 2019; 8:1771-1778. [PMID: 30848055 PMCID: PMC6488118 DOI: 10.1002/cam4.2053] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 01/24/2019] [Accepted: 02/04/2019] [Indexed: 12/11/2022] Open
Abstract
Acute myeloid leukemia (AML) is driven by a minor fraction of leukemic stem cells (LSCs) whose persistence is considered being the primary cause of disease relapse. A detailed characterization of the surface immunophenotype of LSCs to discriminate them from bulk leukemic blasts may enable successful targeting of this population thereby improving patient outcomes in AML. To identify surface markers, which may reflect LSC activity at diagnosis, we performed a detailed analysis of 16 putative LSC markers in CD34/38 leukemic subcompartments of 150 diagnostic AML samples using multicolor flow cytometry. The most promising markers were then selected to determine a possible correlation of their expression with a recently published LSC gene signature. We found GPR56 and CLL-1 to be the most prominently differently expressed surface markers in AML subcompartments. While GPR56 was highest expressed within the LSC-enriched CD34+ 38- subcompartment as compared to CD34+ 38+ and CD34- leukemic bulk cells, CLL-1 expression was lowest in CD34+ 38- leukemic cells and increased in CD34+ 38+ and CD34- blasts. Furthermore, high GPR56 surface expression in CD34+ 38- leukemic cells correlated with a recently published LSC gene expression signature and was associated with decreased overall survival in patients receiving intensive chemotherapy. In contrast, CLL-1 expression correlated inversely with the LSC gene signature and was not informative on outcome. Our data strongly support GPR56 as a promising clinically relevant marker for identifying leukemic cells with LSC activity at diagnosis in CD34-positive AML.
Collapse
Affiliation(s)
- Shruti Daga
- Division of Hematology, Medical University of Graz, Graz, Austria.,CBmed Center of Biomarker Research in Medicine, Graz, Austria
| | - Angelika Rosenberger
- Division of Hematology, Medical University of Graz, Graz, Austria.,CBmed Center of Biomarker Research in Medicine, Graz, Austria
| | - Franz Quehenberger
- Institute of Medical Informatics, Statistics and Documentation, Medical University of Graz, Graz, Austria
| | - Nina Krisper
- CBmed Center of Biomarker Research in Medicine, Graz, Austria
| | - Barbara Prietl
- CBmed Center of Biomarker Research in Medicine, Graz, Austria.,Division of Endocrinology and Diabetology, Medical University of Graz, Graz, Austria
| | - Andreas Reinisch
- Division of Hematology, Medical University of Graz, Graz, Austria
| | - Armin Zebisch
- Division of Hematology, Medical University of Graz, Graz, Austria
| | - Heinz Sill
- Division of Hematology, Medical University of Graz, Graz, Austria
| | - Albert Wölfler
- Division of Hematology, Medical University of Graz, Graz, Austria.,CBmed Center of Biomarker Research in Medicine, Graz, Austria
| |
Collapse
|
63
|
Yang C, Lim W, You S, Song G. 4-Methylbenzylidene-camphor inhibits proliferation and induces reactive oxygen species-mediated apoptosis of human trophoblast cells. Reprod Toxicol 2019; 84:49-58. [DOI: 10.1016/j.reprotox.2018.12.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 12/11/2018] [Accepted: 12/27/2018] [Indexed: 11/30/2022]
|
64
|
Olaniru OE, Persaud SJ. Adhesion G-protein coupled receptors: Implications for metabolic function. Pharmacol Ther 2019; 198:123-134. [PMID: 30825474 DOI: 10.1016/j.pharmthera.2019.02.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Adhesion G-protein coupled receptors (aGPCRs) are emerging as important actors in energy homeostasis. Recent biochemical and functional studies using transgenic mice indicate that aGPCRs play important roles in endocrine and metabolic functions including β-cell differentiation, insulin secretion, adipogenesis and whole body fuel homeostasis. Most aGPCRs are orphans, for which endogenous ligands have not yet been identified, and many of the endogenous ligands of the already de-orphanised aGPCRs are components of the extracellular matrix (ECM). In this review we focus on aGPCR expression in metabolically active tissues, their activation by ECM proteins, and current knowledge of their potential roles in islet development, insulin secretion, adipogenesis and muscle function.
Collapse
Affiliation(s)
- Oladapo E Olaniru
- Diabetes Research Group, Department of Diabetes, King's College London, Guy's Campus, London SE1 1UL, UK
| | - Shanta J Persaud
- Diabetes Research Group, Department of Diabetes, King's College London, Guy's Campus, London SE1 1UL, UK.
| |
Collapse
|
65
|
Arimont M, van der Woude M, Leurs R, Vischer HF, de Graaf C, Nijmeijer S. Identification of Key Structural Motifs Involved in 7 Transmembrane Signaling of Adhesion GPCRs. ACS Pharmacol Transl Sci 2019. [DOI: 10.1021/acsptsci.8b00051] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Marta Arimont
- Division of Medicinal Chemistry, Faculty of Sciences, Amsterdam Institute of Molecules, Medicines and Systems (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Melanie van der Woude
- Division of Medicinal Chemistry, Faculty of Sciences, Amsterdam Institute of Molecules, Medicines and Systems (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Rob Leurs
- Division of Medicinal Chemistry, Faculty of Sciences, Amsterdam Institute of Molecules, Medicines and Systems (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Henry F. Vischer
- Division of Medicinal Chemistry, Faculty of Sciences, Amsterdam Institute of Molecules, Medicines and Systems (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Chris de Graaf
- Division of Medicinal Chemistry, Faculty of Sciences, Amsterdam Institute of Molecules, Medicines and Systems (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Saskia Nijmeijer
- Division of Medicinal Chemistry, Faculty of Sciences, Amsterdam Institute of Molecules, Medicines and Systems (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| |
Collapse
|
66
|
Dynamic matrisome: ECM remodeling factors licensing cancer progression and metastasis. Biochim Biophys Acta Rev Cancer 2018; 1870:207-228. [DOI: 10.1016/j.bbcan.2018.09.002] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 09/07/2018] [Accepted: 09/30/2018] [Indexed: 01/04/2023]
|
67
|
Huang KY, Lin HH. The Activation and Signaling Mechanisms of GPR56/ADGRG1 in Melanoma Cell. Front Oncol 2018; 8:304. [PMID: 30135857 PMCID: PMC6092491 DOI: 10.3389/fonc.2018.00304] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 07/19/2018] [Indexed: 12/18/2022] Open
Abstract
Adhesion G protein-coupled receptors (aGPCRs) constitute the second largest GPCR subfamily. GPR56/ADGRG1 is a member of the ADGRG subgroup of aGPCRs. Although GPR56 is best known for its pivotal role in the cerebral cortical development, it is also important for tumor progression. Numerous studies have revealed that GPR56 is expressed in various cancer types with a role in cancer cell adhesion, migration and metastasis. In a recent study, we found that the immobilized GPR56-specific CG4 antibody enhanced IL-6 production and migration ability of melanoma cells. In this review, we will summarize the current understanding of GPR56 function and discuss the activation and signaling mechanisms of GPR56 in melanoma cells.
Collapse
Affiliation(s)
- Kuan-Yeh Huang
- Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Hsi-Hsien Lin
- Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Department of Anatomic Pathology, Chang Gung Memorial Hospital-Linkou, Taoyuan, Taiwan.,Chang Gung Immunology Consortium, Chang Gung Memorial Hospital-Linkou, Taoyuan, Taiwan
| |
Collapse
|
68
|
Moreno M, Pedrosa L, Paré L, Pineda E, Bejarano L, Martínez J, Balasubramaniyan V, Ezhilarasan R, Kallarackal N, Kim SH, Wang J, Audia A, Conroy S, Marin M, Ribalta T, Pujol T, Herreros A, Tortosa A, Mira H, Alonso MM, Gómez-Manzano C, Graus F, Sulman EP, Piao X, Nakano I, Prat A, Bhat KP, de la Iglesia N. GPR56/ADGRG1 Inhibits Mesenchymal Differentiation and Radioresistance in Glioblastoma. Cell Rep 2018; 21:2183-2197. [PMID: 29166609 DOI: 10.1016/j.celrep.2017.10.083] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 09/07/2017] [Accepted: 10/23/2017] [Indexed: 12/20/2022] Open
Abstract
A mesenchymal transition occurs both during the natural evolution of glioblastoma (GBM) and in response to therapy. Here, we report that the adhesion G-protein-coupled receptor, GPR56/ADGRG1, inhibits GBM mesenchymal differentiation and radioresistance. GPR56 is enriched in proneural and classical GBMs and is lost during their transition toward a mesenchymal subtype. GPR56 loss of function promotes mesenchymal differentiation and radioresistance of glioma initiating cells both in vitro and in vivo. Accordingly, a low GPR56-associated signature is prognostic of a poor outcome in GBM patients even within non-G-CIMP GBMs. Mechanistically, we reveal GPR56 as an inhibitor of the nuclear factor kappa B (NF-κB) signaling pathway, thereby providing the rationale by which this receptor prevents mesenchymal differentiation and radioresistance. A pan-cancer analysis suggests that GPR56 might be an inhibitor of the mesenchymal transition across multiple tumor types beyond GBM.
Collapse
Affiliation(s)
- Marta Moreno
- Glioma and Neural Stem Cell Group, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
| | - Leire Pedrosa
- Glioma and Neural Stem Cell Group, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain; Translational Genomics and Targeted Therapeutics in Solid Tumors Team, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
| | - Laia Paré
- Translational Genomics and Targeted Therapeutics in Solid Tumors Team, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
| | - Estela Pineda
- Translational Genomics and Targeted Therapeutics in Solid Tumors Team, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain; Department of Medical Oncology, Hospital Clinic, Barcelona, Spain
| | - Leire Bejarano
- Glioma and Neural Stem Cell Group, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
| | - Josefina Martínez
- Department of Basic Nursing, Universitat de Barcelona-Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Barcelona, Spain
| | | | - Ravesanker Ezhilarasan
- Department of Radiation Oncology, The University of Texas, M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Naveen Kallarackal
- Department of Radiation Oncology, The University of Texas, M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Sung-Hak Kim
- Department of Neurosurgery, Comprehensive Cancer Center, University of Alabama at Birmingham, AL 35233, USA
| | - Jia Wang
- Department of Neurosurgery, Comprehensive Cancer Center, University of Alabama at Birmingham, AL 35233, USA
| | - Alessandra Audia
- Department of Translational Molecular Pathology, The University of Texas, M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Siobhan Conroy
- Department of Pathology and Medical Biology, University Medical Center Groningen, Groningen, the Netherlands
| | - Mercedes Marin
- Translational Genomics and Targeted Therapeutics in Solid Tumors Team, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
| | - Teresa Ribalta
- Department of Pathology, Hospital Clinic, Barcelona, Spain; Human and Experimental Functional Oncomorphology, IDIBAPS, Barcelona, Spain
| | - Teresa Pujol
- Department of Radiology, Hospital Clinic, Barcelona, Spain
| | - Antoni Herreros
- Department of Radiation Oncology, Hospital Clinic, Barcelona, Spain
| | - Avelina Tortosa
- Department of Basic Nursing, Universitat de Barcelona-Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Barcelona, Spain
| | - Helena Mira
- Stem Cells and Aging Unit, Biomedicine Institute of València (IBV), Spanish National Research Council (CSIC), València, Spain
| | - Marta M Alonso
- Department of Pediatrics, University Hospital of Navarra, Pamplona, Navarra, Spain; The Health Research Institute of Navarra (IDISNA), Pamplona, Spain; Program in Solid Tumors and Biomarkers, Foundation for Applied Medical Research (CIMA), Pamplona, Spain
| | - Candelaria Gómez-Manzano
- Department of Neuro-Oncology, The University of Texas, M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Francesc Graus
- Clinical and Experimental Neuroimmunology, IDIBAPS, Barcelona, Spain
| | - Erik P Sulman
- Department of Radiation Oncology, The University of Texas, M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Xianhua Piao
- Division of Newborn Medicine, Department of Medicine, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Ichiro Nakano
- Department of Neurosurgery, Comprehensive Cancer Center, University of Alabama at Birmingham, AL 35233, USA
| | - Aleix Prat
- Glioma and Neural Stem Cell Group, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain; Translational Genomics and Targeted Therapeutics in Solid Tumors Team, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain; Department of Medical Oncology, Hospital Clinic, Barcelona, Spain
| | - Krishna P Bhat
- Department of Translational Molecular Pathology, The University of Texas, M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Núria de la Iglesia
- Glioma and Neural Stem Cell Group, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain; Translational Genomics and Targeted Therapeutics in Solid Tumors Team, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain.
| |
Collapse
|
69
|
Fu J, Wei C, Zhang W, Schlondorff D, Wu J, Cai M, He W, Baron MH, Chuang PY, Liu Z, He JC, Lee K. Gene expression profiles of glomerular endothelial cells support their role in the glomerulopathy of diabetic mice. Kidney Int 2018; 94:326-345. [PMID: 29861058 PMCID: PMC6054896 DOI: 10.1016/j.kint.2018.02.028] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 02/06/2018] [Accepted: 02/15/2018] [Indexed: 01/15/2023]
Abstract
Endothelial dysfunction promotes the pathogenesis of diabetic nephropathy (DN), which is considered to be an early event in disease progression. However, the molecular changes associated with glomerular endothelial cell (GEC) injury in early DN are not well defined. Most gene expression studies have relied on the indirect assessment of GEC injury from isolated glomeruli or renal cortices. Here, we present transcriptomic analysis of isolated GECs, using streptozotocin-induced diabetic wildtype (STZ-WT) and diabetic eNOS-null (STZ-eNOS-/-) mice as models of mild and advanced DN, respectively. GECs of both models in comparison to their respective nondiabetic controls showed significant alterations in the regulation of apoptosis, oxidative stress, and proliferation. The extent of these changes was greater in STZ-eNOS-/- than in STZ-WT GECs. Additionally, genes in STZ-eNOS-/- GECs indicated further dysregulation in angiogenesis and epigenetic regulation. Moreover, a biphasic change in the number of GECs, characterized by an initial increase and subsequent decrease over time, was observed only in STZ-eNOS-/- mice. This is consistent with an early compensatory angiogenic process followed by increased apoptosis, leading to an overall decrease in GEC survival in DN progression. From the genes altered in angiogenesis in STZ-eNOS-/- GECs, we identified potential candidate genes, Lrg1 and Gpr56, whose function may augment diabetes-induced angiogenesis. Thus, our results support a role for GEC in DN by providing direct evidence for alterations of GEC gene expression and molecular pathways. Candidate genes of specific pathways, such as Lrg1 and Gpr56, can be further explored for potential therapeutic targeting to mitigate the initiation and progression of DN.
Collapse
Affiliation(s)
- Jia Fu
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA; National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Chengguo Wei
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Weijia Zhang
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Detlef Schlondorff
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Jinshan Wu
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Minchao Cai
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Wu He
- Flow Cytometry Shared Resource Facility, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Margaret H Baron
- Division of Hematology and Medical Oncology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Peter Y Chuang
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Zhihong Liu
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China.
| | - John Cijiang He
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA; Renal Program, James J. Peters VA Medical Center at Bronx, New York, New York, USA.
| | - Kyung Lee
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA.
| |
Collapse
|
70
|
Giera S, Luo R, Ying Y, Ackerman SD, Jeong SJ, Stoveken HM, Folts CJ, Welsh CA, Tall GG, Stevens B, Monk KR, Piao X. Microglial transglutaminase-2 drives myelination and myelin repair via GPR56/ADGRG1 in oligodendrocyte precursor cells. eLife 2018; 7:33385. [PMID: 29809138 PMCID: PMC5980231 DOI: 10.7554/elife.33385] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 05/18/2018] [Indexed: 12/29/2022] Open
Abstract
In the central nervous system (CNS), myelin formation and repair are regulated by oligodendrocyte (OL) lineage cells, which sense and integrate signals from their environment, including from other glial cells and the extracellular matrix (ECM). The signaling pathways that coordinate this complex communication, however, remain poorly understood. The adhesion G protein-coupled receptor ADGRG1 (also known as GPR56) is an evolutionarily conserved regulator of OL development in humans, mice, and zebrafish, although its activating ligand for OL lineage cells is unknown. Here, we report that microglia-derived transglutaminase-2 (TG2) signals to ADGRG1 on OL precursor cells (OPCs) in the presence of the ECM protein laminin and that TG2/laminin-dependent activation of ADGRG1 promotes OPC proliferation. Signaling by TG2/laminin to ADGRG1 on OPCs additionally improves remyelination in two murine models of demyelination. These findings identify a novel glia-to-glia signaling pathway that promotes myelin formation and repair, and suggest new strategies to enhance remyelination.
Collapse
Affiliation(s)
- Stefanie Giera
- Division of Newborn Medicine, Department of Medicine, Children's Hospital and Harvard Medical School, Boston, United States.,Department of Neurology, F. M. Kirby Neurobiology Center, Children's Hospital and Harvard Medical School, Boston, United States
| | - Rong Luo
- Division of Newborn Medicine, Department of Medicine, Children's Hospital and Harvard Medical School, Boston, United States.,Department of Neurology, F. M. Kirby Neurobiology Center, Children's Hospital and Harvard Medical School, Boston, United States
| | - Yanqin Ying
- Division of Newborn Medicine, Department of Medicine, Children's Hospital and Harvard Medical School, Boston, United States.,Department of Neurology, F. M. Kirby Neurobiology Center, Children's Hospital and Harvard Medical School, Boston, United States.,Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Sarah D Ackerman
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, United States
| | - Sung-Jin Jeong
- Division of Newborn Medicine, Department of Medicine, Children's Hospital and Harvard Medical School, Boston, United States.,Department of Neurology, F. M. Kirby Neurobiology Center, Children's Hospital and Harvard Medical School, Boston, United States.,Department of Neural Development and Diseases, Korea Brain Research Institute (KBRI), Daegu, South Korea
| | - Hannah M Stoveken
- Department of Pharmacology, University of Michigan Medical Center, Ann Arbor, United States
| | - Christopher J Folts
- Division of Newborn Medicine, Department of Medicine, Children's Hospital and Harvard Medical School, Boston, United States.,Department of Neurology, F. M. Kirby Neurobiology Center, Children's Hospital and Harvard Medical School, Boston, United States
| | - Christina A Welsh
- Department of Neurology, F. M. Kirby Neurobiology Center, Children's Hospital and Harvard Medical School, Boston, United States
| | - Gregory G Tall
- Department of Pharmacology, University of Michigan Medical Center, Ann Arbor, United States
| | - Beth Stevens
- Department of Neurology, F. M. Kirby Neurobiology Center, Children's Hospital and Harvard Medical School, Boston, United States
| | - Kelly R Monk
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, United States
| | - Xianhua Piao
- Division of Newborn Medicine, Department of Medicine, Children's Hospital and Harvard Medical School, Boston, United States.,Department of Neurology, F. M. Kirby Neurobiology Center, Children's Hospital and Harvard Medical School, Boston, United States
| |
Collapse
|
71
|
Huergo-Zapico L, Parodi M, Cantoni C, Lavarello C, Fernández-Martínez JL, Petretto A, DeAndrés-Galiana EJ, Balsamo M, López-Soto A, Pietra G, Bugatti M, Munari E, Marconi M, Mingari MC, Vermi W, Moretta L, González S, Vitale M. NK-cell Editing Mediates Epithelial-to-Mesenchymal Transition via Phenotypic and Proteomic Changes in Melanoma Cell Lines. Cancer Res 2018; 78:3913-3925. [PMID: 29752261 DOI: 10.1158/0008-5472.can-17-1891] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 12/19/2017] [Accepted: 05/08/2018] [Indexed: 11/16/2022]
Abstract
Tumor cell plasticity is a major obstacle for the cure of malignancies as it makes tumor cells highly adaptable to microenvironmental changes, enables their phenotype switching among different forms, and favors the generation of prometastatic tumor cell subsets. Phenotype switching toward more aggressive forms involves different functional, phenotypic, and morphologic changes, which are often related to the process known as epithelial-mesenchymal transition (EMT). In this study, we report natural killer (NK) cells may increase the malignancy of melanoma cells by inducing changes relevant to EMT and, more broadly, to phenotype switching from proliferative to invasive forms. In coculture, NK cells induced effects on tumor cells similar to those induced by EMT-promoting cytokines, including upregulation of stemness and EMT markers, morphologic transition, inhibition of proliferation, and increased capacity for Matrigel invasion. Most changes were dependent on the engagement of NKp30 or NKG2D and the release of cytokines including IFNγ and TNFα. Moreover, EMT induction also favored escape from NK-cell attack. Melanoma cells undergoing EMT either increased NK-protective HLA-I expression on their surface or downregulated several tumor-recognizing activating receptors on NK cells. Mass spectrometry-based proteomic analysis revealed in two different melanoma cell lines a partial overlap between proteomic profiles induced by NK cells or by EMT cytokines, indicating that various processes or pathways related to tumor progression are induced by exposure to NK cells.Significance: NK cells can induce prometastatic properties on melanoma cells that escape from killing, providing important clues to improve the efficacy of NK cells in innovative antitumor therapies. Cancer Res; 78(14); 3913-25. ©2018 AACR.
Collapse
Affiliation(s)
| | - Monica Parodi
- UOC Immunologia, Ospedale Policlinico San Martino Genova, Genoa, Italy
| | - Claudia Cantoni
- Department of Experimental Medicine (DIMES), University of Genova, Genoa, Italy.,Center of Excellence for Biomedical Research (CEBR), University of Genova, Genoa, Italy.,Istituto Giannina Gaslini, Genoa, Italy
| | - Chiara Lavarello
- Core Facilities - Proteomics Laboratory, Istituto Giannina Gaslini, Genoa, Italy
| | - Juan L Fernández-Martínez
- Group of Inverse Problems, Optimization and Machine Learning, Departamento de Matemáticas, Universidad de Oviedo, Oviedo, Spain
| | - Andrea Petretto
- Core Facilities - Proteomics Laboratory, Istituto Giannina Gaslini, Genoa, Italy
| | - Enrique J DeAndrés-Galiana
- Group of Inverse Problems, Optimization and Machine Learning, Departamento de Matemáticas, Universidad de Oviedo, Oviedo, Spain
| | - Mirna Balsamo
- Department of Experimental Medicine (DIMES), University of Genova, Genoa, Italy
| | - Alejandro López-Soto
- Department of Functional Biology, IUOPA, University of Oviedo, Facultad de Medicina, Oviedo, Spain
| | - Gabriella Pietra
- UOC Immunologia, Ospedale Policlinico San Martino Genova, Genoa, Italy.,Department of Experimental Medicine (DIMES), University of Genova, Genoa, Italy
| | - Mattia Bugatti
- Department of Pathology, University of Brescia, Brescia, Italy
| | - Enrico Munari
- Department of Pathology, Sacro Cuore Don Calabria Hospital, Negrar (VR), Italy
| | - Marcella Marconi
- Department of Pathology, Sacro Cuore Don Calabria Hospital, Negrar (VR), Italy
| | - Maria Cristina Mingari
- UOC Immunologia, Ospedale Policlinico San Martino Genova, Genoa, Italy.,Department of Experimental Medicine (DIMES), University of Genova, Genoa, Italy.,Center of Excellence for Biomedical Research (CEBR), University of Genova, Genoa, Italy
| | - William Vermi
- Department of Pathology, University of Brescia, Brescia, Italy.,Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri
| | - Lorenzo Moretta
- Immunology Area, Ospedale Pediatrico Bambin Gesù, Rome, Italy
| | - Segundo González
- Department of Functional Biology, IUOPA, University of Oviedo, Facultad de Medicina, Oviedo, Spain
| | - Massimo Vitale
- UOC Immunologia, Ospedale Policlinico San Martino Genova, Genoa, Italy.
| |
Collapse
|
72
|
Nazarko O, Kibrom A, Winkler J, Leon K, Stoveken H, Salzman G, Merdas K, Lu Y, Narkhede P, Tall G, Prömel S, Araç D. A Comprehensive Mutagenesis Screen of the Adhesion GPCR Latrophilin-1/ADGRL1. iScience 2018; 3:264-278. [PMID: 30428326 PMCID: PMC6137404 DOI: 10.1016/j.isci.2018.04.019] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 04/16/2018] [Accepted: 04/24/2018] [Indexed: 11/15/2022] Open
Abstract
Adhesion G-protein-coupled receptors (aGPCRs) play critical roles in diverse cellular processes in neurobiology, development, immunity, and numerous diseases. The lack of molecular understanding of their activation mechanisms, especially with regard to the transmembrane domains, hampers further studies to facilitate aGPCR-targeted drug development. Latrophilin-1/ADGRL1 is a model aGPCR that regulates synapse formation and embryogenesis, and its mutations are associated with cancer and attention-deficit/hyperactivity disorder. Here, we established functional assays to monitor latrophilin-1 function and showed the activation of latrophilin-1 by its endogenous agonist peptide. Via a comprehensive mutagenesis screen, we identified transmembrane domain residues essential for latrophilin-1 basal activity and for agonist peptide response. Strikingly, a cancer-associated mutation exhibited increased basal activity and failed to rescue the embryonic developmental phenotype in transgenic worms. These results provide a mechanistic foundation for future aGPCR-targeted drug design.
Collapse
Affiliation(s)
- Olha Nazarko
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA
| | - Amanuel Kibrom
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA
| | - Jana Winkler
- Rudolf Schönheimer Institute of Biochemistry, Molecular Biochemistry, Medical Faculty, University of Leipzig, 04103 Leipzig, Germany
| | - Katherine Leon
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA
| | - Hannah Stoveken
- Department of Pharmacology, University of Michigan, Ann Arbor, MI, USA
| | - Gabriel Salzman
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA
| | - Katarzyna Merdas
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA
| | - Yue Lu
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA
| | - Pradnya Narkhede
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA
| | - Gregory Tall
- Department of Pharmacology, University of Michigan, Ann Arbor, MI, USA
| | - Simone Prömel
- Rudolf Schönheimer Institute of Biochemistry, Molecular Biochemistry, Medical Faculty, University of Leipzig, 04103 Leipzig, Germany
| | - Demet Araç
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA; Grossman Institute for Neuroscience, Quantitative Biology and Human Behavior, The University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
73
|
Jin G, Sakitani K, Wang H, Jin Y, Dubeykovskiy A, Worthley DL, Tailor Y, Wang TC. The G-protein coupled receptor 56, expressed in colonic stem and cancer cells, binds progastrin to promote proliferation and carcinogenesis. Oncotarget 2018; 8:40606-40619. [PMID: 28380450 PMCID: PMC5522213 DOI: 10.18632/oncotarget.16506] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 02/22/2017] [Indexed: 12/12/2022] Open
Abstract
Overexpression of human progastrin increases colonic mucosal proliferation and colorectal cancer progression in mice. The G-protein coupled receptor 56 (GPR56) is known to regulate cell adhesion, migration, proliferation and stem cell biology, but its expression in the gut has not been studied. We hypothesized that the promotion of colorectal cancer by progastrin may be mediated in part through GPR56. Here, we found that GPR56 expresses in rare colonic crypt cells that lineage trace colonic glands consistent with GPR56 marking long-lived colonic stem-progenitor cells. GPR56 was upregulated in transgenic mice overexpressing human progastrin. While recombinant human progastrin promoted the growth and survival of wild-type colonic organoids in vitro, colonic organoids cultured from GPR56−/− mice were resistant to progastrin. We found that progastrin directly bound to, and increased the proliferation of, GPR56-expressing colon cancer cells in vitro, and proliferation was increased in cells that expressed both GPR56 and the cholecystokinin-2 receptor (CCK2R). In vivo, deletion of GPR56 in the mouse germline abrogated progastrin-dependent colonic mucosal proliferation and increased apoptosis. Loss of GPR56 also inhibited progastrin-dependent colonic crypt fission and colorectal carcinogenesis in the azoxymethane (AOM) mouse model of colorectal cancer. Overall, we found that progastrin binds to GPR56 expressing colonic stem cells, which in turn promotes their expansion, and that this GPR56-dependent pathway is an important driver and potential new target in colorectal carcinogenesis.
Collapse
Affiliation(s)
- Guangchun Jin
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University Medical Center, New York, NY, USA.,The Research Institute, Yanbian University Hospital, Jilin, China
| | - Kosuke Sakitani
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University Medical Center, New York, NY, USA
| | - Hongshan Wang
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University Medical Center, New York, NY, USA.,Department of General surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ying Jin
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University Medical Center, New York, NY, USA
| | - Alexander Dubeykovskiy
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University Medical Center, New York, NY, USA
| | - Daniel L Worthley
- South Australian Health and Medical Research Institute, University of Adelaide, Adelaide, South Australia, Australia
| | - Yagnesh Tailor
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University Medical Center, New York, NY, USA
| | - Timothy C Wang
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University Medical Center, New York, NY, USA
| |
Collapse
|
74
|
Scholz N. Cancer Cell Mechanics: Adhesion G Protein-coupled Receptors in Action? Front Oncol 2018; 8:59. [PMID: 29594040 PMCID: PMC5859372 DOI: 10.3389/fonc.2018.00059] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 02/21/2018] [Indexed: 12/11/2022] Open
Abstract
In mammals, numerous organ systems are equipped with adhesion G protein-coupled receptors (aGPCRs) to shape cellular processes including migration, adhesion, polarity and guidance. All of these cell biological aspects are closely associated with tumor cell biology. Consistently, aberrant expression or malfunction of aGPCRs has been associated with dysplasia and tumorigenesis. Mounting evidence indicates that cancer cells comprise viscoelastic properties that are different from that of their non-tumorigenic counterparts, a feature that is believed to contribute to the increased motility and invasiveness of metastatic cancer cells. This is particularly interesting in light of the recent identification of the mechanosensitive facility of aGPCRs. aGPCRs are signified by large extracellular domains (ECDs) with adhesive properties, which promote the engagement with insoluble ligands. This configuration may enable reliable force transmission to the ECDs and may constitute a molecular switch, vital for mechano-dependent aGPCR signaling. The investigation of aGPCR function in mechanosensation is still in its infancy and has been largely restricted to physiological contexts. It remains to be elucidated if and how aGPCR function affects the mechanoregulation of tumor cells, how this may shape the mechanical signature and ultimately determines the pathological features of a cancer cell. This article aims to view known aGPCR functions from a biomechanical perspective and to delineate how this might impinge on the mechanobiology of cancer cells.
Collapse
Affiliation(s)
- Nicole Scholz
- Rudolf Schönheimer Institute of Biochemistry, Division of General Biochemistry, Faculty of Medicine, University Leipzig, Leipzig, Germany
| |
Collapse
|
75
|
Katt WP, Antonyak MA, Cerione RA. The diamond anniversary of tissue transglutaminase: a protein of many talents. Drug Discov Today 2018; 23:575-591. [PMID: 29362136 PMCID: PMC5864117 DOI: 10.1016/j.drudis.2018.01.037] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 11/28/2017] [Accepted: 01/12/2018] [Indexed: 12/21/2022]
Abstract
Tissue transglutaminase (tTG) is capable of binding and hydrolyzing GTP, as well as catalyzing an enzymatic transamidation reaction that crosslinks primary amines to glutamine residues. tTG adopts two vastly different conformations, depending on whether it is functioning as a GTP-binding protein or a crosslinking enzyme. It has been shown to have important roles in several different aspects of cancer progression, making it an attractive target for therapeutic intervention. Here, we highlight many of the major findings involving tTG since its discovery 60 years ago, and describe recent drug discovery efforts that target specific activities or conformations of this unique protein.
Collapse
Affiliation(s)
- William P Katt
- Department of Molecular Medicine, Cornell University, NY, USA
| | - Marc A Antonyak
- Department of Molecular Medicine, Cornell University, NY, USA
| | - Richard A Cerione
- Department of Molecular Medicine, Cornell University, NY, USA; Department of Chemistry and Chemical Biology, Cornell University, NY, USA.
| |
Collapse
|
76
|
Stoveken HM, Larsen SD, Smrcka AV, Tall GG. Gedunin- and Khivorin-Derivatives Are Small-Molecule Partial Agonists for Adhesion G Protein-Coupled Receptors GPR56/ADGRG1 and GPR114/ADGRG5. Mol Pharmacol 2018; 93:477-488. [PMID: 29476042 DOI: 10.1124/mol.117.111476] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 02/22/2018] [Indexed: 12/26/2022] Open
Abstract
Adhesion G protein-coupled receptors (aGPCRs) have emerged as potential therapeutic targets in multiple cancers and in neurologic diseases. However, there are few modulatory compounds that act on these receptors. The majority of aGPCRs are orphans and a general activation mechanism has only recently been defined: aGPCRs are activated by a tethered agonist. aGPCRs constitutively cleave themselves during biosynthesis to generated two-part receptors comprising an extracellular domain (ECD) and a 7-transmembrane spanning domain (7TM). ECD dissociation reveals the tethered agonist initiating G protein signaling. Synthetic peptides that mimic the tethered agonist region can activate aGPCRs. We hypothesized that small molecules could act in the same way as peptide agonists. High throughput screening of the 2000-compound Spectrum Collection library using the serum response element luciferase gene reporter assay revealed two related classes of small molecules that could activate the aGPCR GPR56/ADGRG1. The most potent compound identified was 3-α-acetoxydihydrodeoxygedunin, or 3-α-DOG. 3-α-DOG activated engineered, low-activity GPR56 7TM in independent biochemical and cell-based assays with an EC50 of ∼5 μM. The compound also activated a subset of aGPCRs but not two class A GPCRs tested. The mode of 3-α-DOG-mediated receptor activation is that of partial agonist. 3-α-DOG activated GPR56 less efficaciously than peptide agonist and could antagonize both the peptide agonist and the endogenous tethered agonist, which are pharmacological hallmarks of partial agonists. Taken together, we have uncovered a novel group of aGPCR partial agonists that will serve as invaluable resources for understanding this unique class receptors.
Collapse
Affiliation(s)
- Hannah M Stoveken
- Departments of Pharmacology (H.M.S., A.V.S., G.G.T.) and Medicinal Chemistry (S.D.L.), University of Michigan, Ann Arbor, Michigan
| | - Scott D Larsen
- Departments of Pharmacology (H.M.S., A.V.S., G.G.T.) and Medicinal Chemistry (S.D.L.), University of Michigan, Ann Arbor, Michigan
| | - Alan V Smrcka
- Departments of Pharmacology (H.M.S., A.V.S., G.G.T.) and Medicinal Chemistry (S.D.L.), University of Michigan, Ann Arbor, Michigan
| | - Gregory G Tall
- Departments of Pharmacology (H.M.S., A.V.S., G.G.T.) and Medicinal Chemistry (S.D.L.), University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
77
|
Millar MW, Corson N, Xu L. The Adhesion G-Protein-Coupled Receptor, GPR56/ADGRG1, Inhibits Cell-Extracellular Matrix Signaling to Prevent Metastatic Melanoma Growth. Front Oncol 2018; 8:8. [PMID: 29450192 PMCID: PMC5799216 DOI: 10.3389/fonc.2018.00008] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Accepted: 01/11/2018] [Indexed: 01/06/2023] Open
Abstract
Metastatic growth is considered a rate-limiting step in cancer progression, and upregulation of extracellular matrix (ECM) deposition and cell-ECM signaling are major drivers of this process. Mechanisms to reverse ECM upregulation in cancer could potentially facilitate its prevention and treatment but they are poorly understood. We previously reported that the adhesion G-protein-coupled receptor GPR56/ADGRG1 is downregulated in melanoma metastases. Its re-expression inhibited melanoma growth and metastasis and reduced the deposition of fibronectin, a major ECM component. We hypothesize that its effect on fibronectin deposition contributes to its inhibitory role on metastatic growth. To test this, we investigated the function of GPR56 on cell-fibronectin adhesion and its relationship with metastatic growth in melanoma. Our results reveal that GPR56 inhibits melanoma metastatic growth by impeding the expansion of micrometastases to macrometastases. Meanwhile, we present evidence that GPR56 inhibits fibronectin deposition and its downstream signaling, such as phosphorylation of focal adhesion kinase (FAK), during this process. Administration of the FAK inhibitor Y15 perturbed the proliferation of melanoma metastases, supporting a causative link between the cell adhesion defect induced by GPR56 and its inhibition of metastatic growth. Taken together, our results suggest that GPR56 in melanoma metastases inhibits ECM accumulation and adhesion, which contributes to its negative effects on metastatic growth.
Collapse
Affiliation(s)
- Michelle W Millar
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, United States
| | - Nancy Corson
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, United States
| | - Lei Xu
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, United States
| |
Collapse
|
78
|
Tokoro Y, Yamada Y, Takayanagi SI, Hagiwara T. 57R2A, a newly established monoclonal antibody against mouse GPR56, marks long-term repopulating hematopoietic stem cells. Exp Hematol 2017; 59:51-59.e1. [PMID: 29225194 DOI: 10.1016/j.exphem.2017.12.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Revised: 11/29/2017] [Accepted: 12/01/2017] [Indexed: 11/25/2022]
Abstract
GPR56 molecule, a G-protein-coupled receptor, was suggested to be expressed in mouse hematopoietic stem cells (HSCs) by gene expression analyses. However, little is known about the cell surface expression of GPR56 protein in mouse HSCs due to the absence of an appropriate monoclonal antibody against GPR56 for flow cytometry analyses. In the present study, we established a novel monoclonal antibody against mouse GPR56 (57R2A) to examine the expression and distribution of GPR56 protein in HSCs. A flow cytometry analysis using 57R2A showed that GPR56 was highly expressed in the CD34-, c-Kit+, Sca-1+, lineage-negative (Lin-) fraction, which are highly enriched with HSCs. The competitive long-term repopulation (LTR) assay showed that LTR cells were included only within the GPR56+ fraction (≤15%) of bone marrow mononuclear cells (BMMNCs), but not within the remaining GPR56- fraction (85%), suggesting that all HSCs express GPR56 protein on their surface. Furthermore, we showed that double staining of BMMNCs with only 57R2A and AMM2 (monoclonal antibody against the HSC marker MPL) enabled enrichment of all LTR cells in the double-positive fraction (0.8% of BMMNCs), within which the LTR potency was consistent with the expression of both GPR56 and MPL. In conclusion, these findings for 57R2A suggest that all HSCs in mouse BMMNCs express GPR56 protein on their surface and that GPR56 is a positive marker for HSCs.
Collapse
Affiliation(s)
- Yusuke Tokoro
- Kyowa Hakko Kirin Co., Ltd., Tokyo, Japan; Graduate School of Agriculture, Kyoto University, Kyoto, Japan.
| | | | | | | |
Collapse
|
79
|
Hasmim M, Bruno S, Azzi S, Gallerne C, Michel JG, Chiabotto G, Lecoz V, Romei C, Spaggiari GM, Pezzolo A, Pistoia V, Angevin E, Gad S, Ferlicot S, Messai Y, Kieda C, Clay D, Sabatini F, Escudier B, Camussi G, Eid P, Azzarone B, Chouaib S. Isolation and characterization of renal cancer stem cells from patient-derived xenografts. Oncotarget 2017; 7:15507-24. [PMID: 26551931 PMCID: PMC4941257 DOI: 10.18632/oncotarget.6266] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 10/08/2015] [Indexed: 01/06/2023] Open
Abstract
As rapidly developing patient-derived xenografts (PDX) could represent potential sources of cancer stem cells (CSC), we selected and characterized non-cultured PDX cell suspensions from four different renal carcinomas (RCC). Only the cell suspensions from the serial xenografts (PDX-1 and PDX-2) of an undifferentiated RCC (RCC-41) adapted to the selective CSC medium. The cell suspension derived from the original tumor specimen (RCC-41-P-0) did not adapt to the selective medium and strongly expressed CSC-like markers (CD133 and CD105) together with the non-CSC tumor marker E-cadherin. In comparison, PDX-1 and PDX-2 cells exhibited evolution in their phenotype since PDX-1 cells were CD133high/CD105-/Ecadlow and PDX-2 cells were CD133low/CD105-/Ecad-. Both PDX subsets expressed additional stem cell markers (CD146/CD29/OCT4/NANOG/Nestin) but still contained non-CSC tumor cells. Therefore, using different cell sorting strategies, we characterized 3 different putative CSC subsets (RCC-41-PDX-1/CD132+, RCC-41-PDX-2/CD133-/EpCAMlow and RCC-41-PDX-2/CD133+/EpCAMbright). In addition, transcriptomic analysis showed that RCC-41-PDX-2/CD133− over-expressed the pluripotency gene ERBB4, while RCC-41-PDX-2/CD133+ over-expressed several tumor suppressor genes. These three CSC subsets displayed ALDH activity, formed serial spheroids and developed serial tumors in SCID mice, although RCC-41-PDX-1/CD132+ and RCC-41-PDX-2/CD133+ displayed less efficiently the above CSC properties. RCC-41-PDX-1/CD132+ tumors showed vessels of human origin with CSC displaying peri-vascular distribution. By contrast, RCC-41-PDX-2 originated tumors exhibiting only vessels of mouse origin without CSC peri-vascular distribution. Altogether, our results indicate that PDX murine microenvironment promotes a continuous redesign of CSC phenotype, unmasking CSC subsets potentially present in a single RCC or generating ex novo different CSC-like subsets.
Collapse
Affiliation(s)
- Meriem Hasmim
- INSERM U 1186, Equipe labellisée Ligue Contre le Cancer, Gustave Roussy Campus, Villejuif, France.,INSERM UMR 1014, Lavoisier Building, Paul Brousse Hospital, Villejuif, France
| | - Stefania Bruno
- Department of Molecular Biotechnology and Healthy Science, Molecular Biotechnology Center, University of Torino, Turin, Italy
| | - Sandy Azzi
- INSERM UMR 1014, Lavoisier Building, Paul Brousse Hospital, Villejuif, France
| | - Cindy Gallerne
- INSERM UMR 1014, Lavoisier Building, Paul Brousse Hospital, Villejuif, France
| | - Julien Giron Michel
- INSERM UMR 1014, Lavoisier Building, Paul Brousse Hospital, Villejuif, France
| | - Giulia Chiabotto
- Department of Medical Science, University of Torino, Medical School, Torino, Italy
| | - Vincent Lecoz
- INSERM UMR 1014, Lavoisier Building, Paul Brousse Hospital, Villejuif, France
| | | | | | | | - Vito Pistoia
- Laboratory of Oncology Giannina Gaslini Institute, Genoa, Italy
| | - Eric Angevin
- INSERM U 1186, Equipe labellisée Ligue Contre le Cancer, Gustave Roussy Campus, Villejuif, France.,Medical Oncology Department, Gustave Roussy Campus, Villejuif, France
| | - Sophie Gad
- INSERM U 1186, Equipe labellisée Ligue Contre le Cancer, Gustave Roussy Campus, Villejuif, France.,Laboratoire de Génétique Oncologique EPHE, Ecole Pratique des Hautes Etudes, Paris, France
| | - Sophie Ferlicot
- INSERM U 1186, Equipe labellisée Ligue Contre le Cancer, Gustave Roussy Campus, Villejuif, France.,Université Paris-Sud, Assistance Publique-Hôpitaux de Paris, Service d'Anatomo-Pathologie, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
| | - Yosra Messai
- INSERM U 1186, Equipe labellisée Ligue Contre le Cancer, Gustave Roussy Campus, Villejuif, France
| | - Claudine Kieda
- Centre de Biophysique Moléculaire, CNRS UPR 4301, Orléans, France
| | - Denis Clay
- INSERM UMR 972, Paul Brousse Hospital, Villejuif, France
| | - Federica Sabatini
- Stem Cell and Cell Therapy Laboratory, Istituto G. Gaslini, Genoa, Italy
| | - Bernard Escudier
- INSERM U 1186, Equipe labellisée Ligue Contre le Cancer, Gustave Roussy Campus, Villejuif, France.,Medical Oncology Department, Gustave Roussy Campus, Villejuif, France
| | - Giovanni Camussi
- Department of Medical Science, University of Torino, Medical School, Torino, Italy
| | - Pierre Eid
- INSERM UMR 1014, Lavoisier Building, Paul Brousse Hospital, Villejuif, France
| | | | - Salem Chouaib
- INSERM U 1186, Equipe labellisée Ligue Contre le Cancer, Gustave Roussy Campus, Villejuif, France
| |
Collapse
|
80
|
Abstract
The adhesion G protein-coupled receptors (aGPCRs) are an evolutionarily ancient family of receptors that play key roles in many different physiological processes. These receptors are notable for their exceptionally long ectodomains, which span several hundred to several thousand amino acids and contain various adhesion-related domains, as well as a GPCR autoproteolysis-inducing (GAIN) domain. The GAIN domain is conserved throughout almost the entire family and undergoes autoproteolysis to cleave the receptors into two noncovalently-associated protomers. Recent studies have revealed that the signaling activity of aGPCRs is largely determined by changes in the interactions among these protomers. We review recent advances in understanding aGPCR activation mechanisms and discuss the physiological roles and pharmacological properties of aGPCRs, with an eye toward the potential utility of these receptors as drug targets.
Collapse
Affiliation(s)
- Ryan H Purcell
- Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia, 30322, USA;
| | - Randy A Hall
- Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia, 30322, USA;
| |
Collapse
|
81
|
Thomas M, Snead D, Mitchell D. An investigation into the potential role of brain angiogenesis inhibitor protein 3 (BAI3) in the tumorigenesis of small-cell carcinoma: a review of the surrounding literature. J Recept Signal Transduct Res 2017; 37:325-334. [PMID: 28537194 DOI: 10.1080/10799893.2017.1328441] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Brain angiogenesis inhibitor protein 3 (BAI3) is from the adhesion group of seven-transmembrane spanning G protein-coupled receptors (GPCRs) and has been identified via gene expression profiling as being upregulated in small-cell lung cancer (SCLC) tumors. It has subsequently been validated as a sensitive and specific immunohistochemical marker for SCLC, helping to differentiate these tumors from morphologically similar large-cell neuroendocrine (LCNEC) malignancies. It is, however, still unclear as to the role BAI3 proteins might play in SCLC and indeed how they might contribute to tumorigenesis. Interestingly, the pattern of staining observed on immunohistochemistry was in fact nuclear as opposed to the membranous staining pattern expected of transmembrane-bound molecules. This fact has lead the authors to believe that the protein receptor is structurally altered in SCLC and that this modification may confer different behavioral properties that contribute toward tumorigenesis. Nuclear localization is not unique to BAI3 and has been reported in a number of GPCRs and frequently correlates with survival outcomes. BAI3 has the potential to act as target for pharmaceutical intervention inline with developing trends in molecular pathology aiming to provide personalized, treatment regimes based on tumor-specific mutation profiles. The adhesion group of the GPCR superfamily is still poorly understood. We present a review of the existing literature regarding the role they play in both physiological and disease states and the mechanisms by which they influence a range of cellular processes.
Collapse
Affiliation(s)
- Michael Thomas
- a Department of Histopathology , University Hospitals Coventry and Warwickshire , Coventry , UK
| | - David Snead
- a Department of Histopathology , University Hospitals Coventry and Warwickshire , Coventry , UK
| | - Daniel Mitchell
- b Department of Translational Medicine , University of Warwick , Coventry , UK
| |
Collapse
|
82
|
Kishore A, Hall RA. Disease-associated extracellular loop mutations in the adhesion G protein-coupled receptor G1 (ADGRG1; GPR56) differentially regulate downstream signaling. J Biol Chem 2017; 292:9711-9720. [PMID: 28424266 DOI: 10.1074/jbc.m117.780551] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 04/17/2017] [Indexed: 12/31/2022] Open
Abstract
Mutations to the adhesion G protein-coupled receptor ADGRG1 (G1; also known as GPR56) underlie the neurological disorder bilateral frontoparietal polymicrogyria. Disease-associated mutations in G1 studied to date are believed to induce complete loss of receptor function through disruption of either receptor trafficking or signaling activity. Given that N-terminal truncation of G1 and other adhesion G protein-coupled receptors has been shown to significantly increase the receptors' constitutive signaling, we examined two different bilateral frontoparietal polymicrogyria-inducing extracellular loop mutations (R565W and L640R) in the context of both full-length and N-terminally truncated (ΔNT) G1. Interestingly, we found that these mutations reduced surface expression of full-length G1 but not G1-ΔNT in HEK-293 cells. Moreover, the mutations ablated receptor-mediated activation of serum response factor luciferase, a classic measure of Gα12/13-mediated signaling, but had no effect on G1-mediated signaling to nuclear factor of activated T cells (NFAT) luciferase. Given these differential signaling results, we sought to further elucidate the pathway by which G1 can activate NFAT luciferase. We found no evidence that ΔNT activation of NFAT is dependent on Gαq/11-mediated or β-arrestin-mediated signaling but rather involves liberation of Gβγ subunits and activation of calcium channels. These findings reveal that disease-associated mutations to the extracellular loops of G1 differentially alter receptor trafficking, depending on the presence of the N terminus, and differentially alter signaling to distinct downstream pathways.
Collapse
Affiliation(s)
- Ayush Kishore
- From the Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Randy A Hall
- From the Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia 30322
| |
Collapse
|
83
|
Chen Z, Gao P, Li Z. Expression of G Protein-coupled Receptor 56 Is an Unfavorable Prognostic Factor in Osteosarcoma Patients. TOHOKU J EXP MED 2017; 239:203-11. [PMID: 27396430 DOI: 10.1620/tjem.239.203] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
G protein-coupled receptor 56 (GPR56) is an atypical G protein-coupled receptor, with the long extracellular N-terminus. GPR56 can trigger various downstream signaling responsible for cell survival, proliferation, adhesion, and migration. Expression of GPR56 is associated with cell malignant transformation and tumor cell metastasis in several carcinomas such as melanoma and glioma. Osteosarcoma is the most common malignant bone tumor in adolescents and young adults with high metastasis tendency. The overall survival of osteosarcoma is unsatisfied, partially due to the lacking of predictive markers for metastasis and overall prognosis. This study aimed at figuring out whether expression of the GPR56 was associated with clinicopathological features of osteosarcoma. Eighty-nine patients who received osteosarcoma operation between March 2004 and February 2011 in Linyi People's Hospital were recruited. Immunohistochemical staining (IHC) was carried out to identify the expression of GPR56 in those osteosarcoma tissues, and our cohort was divided into higher-expression group and lower-expression group according to the cut-off of IHC score. Expression of GPR56 in osteosarcoma tissues was correlated with the TNM stage and overall survival. Univariate and multivariate analysis showed that GPR56 could act as an independent prognosis factor for osteosarcoma. Western blot results demonstrated that GPR56-siRNA down-regulated the expression of GTP-RhoA and Ki67. GTP-RhoA participates in the cell migration process, while Ki67 plays important roles in cell proliferation, indicating GPR56 may function in tumor development. Correspondingly, we show that GPR56 regulates the proliferation and invasion capacity of osteosarcoma cells. Our study has revealed the prognostic value of GPR56 expression in osteosarcoma.
Collapse
Affiliation(s)
- Zhiguo Chen
- Department of Joint Surgery, Linyi People's Hospital
| | | | | |
Collapse
|
84
|
Mehta P, Piao X. Adhesion G-protein coupled receptors and extracellular matrix proteins: Roles in myelination and glial cell development. Dev Dyn 2017; 246:275-284. [PMID: 27859941 DOI: 10.1002/dvdy.24473] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 11/08/2016] [Accepted: 11/10/2016] [Indexed: 01/05/2023] Open
Abstract
Adhesion G protein-coupled receptors (aGPCRs) are a large family of transmembrane proteins that play important roles in many processes during development, primarily through cell-cell and cell-extracellular matrix (ECM) interactions. In the nervous system, they have been linked to the complex process of myelination, both in the central and peripheral nervous system. GPR126 is essential in Schwann cell-mediated myelination in the peripheral nervous system (PNS), while GPR56 is involved in oligodendrocyte development central nervous system (CNS) myelination. VLGR1 is another aGPCR that is associated with the expression of myelin-associated glycoprotein (MAG) which has inhibitory effects on the process of nerve repair. The ECM is composed of a vast array of structural proteins, three of which interact specifically with aGPCRs: collagen III/GPR56, collagen IV/GPR126, and laminin-211/GPR126. As druggable targets, aGPCRs are valuable in their ability to unlock treatment for a wide variety of currently debilitating myelin disorders. Developmental Dynamics 246:275-284, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Paulomi Mehta
- Division of Newborn Medicine, Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Xianhua Piao
- Division of Newborn Medicine, Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
85
|
Chiang NY, Peng YM, Juang HH, Chen TC, Pan HL, Chang GW, Lin HH. GPR56/ADGRG1 Activation Promotes Melanoma Cell Migration via NTF Dissociation and CTF-Mediated Gα 12/13/RhoA Signaling. J Invest Dermatol 2016; 137:727-736. [PMID: 27818281 DOI: 10.1016/j.jid.2016.10.031] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 10/06/2016] [Accepted: 10/17/2016] [Indexed: 02/07/2023]
Abstract
GPR56/ADGRG1 is a versatile adhesion G protein-coupled receptor with diverse biological functions. GPR56 expression is variably detected in human melanoma cell lines and correlates inversely with the metastatic potential of melanoma lesions. GPR56 associates with the tetraspanins CD9 and CD81 on the melanoma cell surface. GPR56 activation by immobilized CG4 monoclonal antibody facilitates N-terminal fragment dissociation in a CD9/CD81-dependent manner specifically inducing IL-6 production, which promotes cell migration and invasion. Interestingly, expression of GPR56-C-terminal fragment alone recapitulates the antibody-induced receptor function, implicating a major role for the C-terminal fragment in GPR56 activation and signaling. Analysis of site-directed mutant receptors attests the importance of the conserved N-terminal residues of the C-terminal fragment for its self-activation. Finally, we show that the GPR56-induced signaling in melanoma cells is mediated by the Gα12/13/RhoA pathway. In summary, the expression and activation of GPR56 may modulate melanoma progression in part by inducing IL-6 production after N-terminal fragment dissociation and C-terminal fragment self-activation.
Collapse
Affiliation(s)
- Nien-Yi Chiang
- Department of Microbiology and Immunology, Chang Gung University, Taoyuan, Taiwan
| | - Yen-Ming Peng
- Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan, Taiwan
| | - Horng-Heng Juang
- Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan, Taiwan; Department of Anatomy, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Department of Urology, Chang Gung Memorial Hospital-Linkou, Taoyuan, Taiwan
| | - Tse-Ching Chen
- Department of Anatomic Pathology, Chang Gung Memorial Hospital-Linkou, Taoyuan, Taiwan
| | - Hsiao-Lin Pan
- Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan, Taiwan
| | - Gin-Wen Chang
- Department of Microbiology and Immunology, Chang Gung University, Taoyuan, Taiwan
| | - Hsi-Hsien Lin
- Department of Microbiology and Immunology, Chang Gung University, Taoyuan, Taiwan; Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan, Taiwan; Department of Anatomic Pathology, Chang Gung Memorial Hospital-Linkou, Taoyuan, Taiwan; Chang Gung Immunology Consortium, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan, Taiwan.
| |
Collapse
|
86
|
Girola N, Matsuo AL, Figueiredo CR, Massaoka MH, Farias CF, Arruda DC, Azevedo RA, Monteiro HP, Resende-Lara PT, Cunha RLOR, Polonelli L, Travassos LR. The Ig V H complementarity-determining region 3-containing Rb9 peptide, inhibits melanoma cells migration and invasion by interactions with Hsp90 and an adhesion G-protein coupled receptor. Peptides 2016; 85:1-15. [PMID: 27575453 DOI: 10.1016/j.peptides.2016.08.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 08/17/2016] [Accepted: 08/22/2016] [Indexed: 12/30/2022]
Abstract
The present work aims at investigating the mechanism of action of the Rb9 peptide, which contains the VHCDR 3 sequence of anti-sodium-dependent phosphate transport protein 2B (NaPi2B) monoclonal antibody RebMab200 and displayed antitumor properties. Short peptides corresponding to the hypervariable complementarity-determining regions (CDRs) of immunoglobulins have been associated with antimicrobial, antiviral, immunomodulatory and antitumor activities regardless of the specificity of the antibody. We have shown that the CDR derived peptide Rb9 induced substrate hyperadherence, inhibition of cell migration and matrix invasion in melanoma and other tumor cell lines. Rb9 also inhibited metastasis of murine melanoma in a syngeneic mouse model. We found that Rb9 binds to and interferes with Hsp90 chaperone activity causing attenuation of FAK-Src signaling and downregulation of active Rac1 in B16F10-Nex2 melanoma cells. The peptide also bound to an adhesion G-protein coupled receptor, triggering a concentration-dependent synthesis of cAMP and activation of PKA and VASP signaling as well as IP-3 dependent Ca2+ release. Hsp90 is highly expressed on the cell surface of melanoma cells, and synthetic agents that target Hsp90 are promising cancer therapeutic drugs. Based on their remarkable antitumor effects, the CDR-H3-derived peptides from RebMab200, and particularly the highly soluble and stable Rb9, are novel candidates to be further studied as potential antitumor drugs, selectively acting on cancer cell motility and invasion.
Collapse
Affiliation(s)
- Natalia Girola
- Department of Microbiology, Immunology and Parasitology, Cell Biology Division and Experimental Oncology Unit (UNONEX), Federal University of São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - Alisson L Matsuo
- Interdepartmental Group of Health Economics (Grides), Federal University of São Paulo, SP, Brazil
| | - Carlos R Figueiredo
- Department of Microbiology, Immunology and Parasitology, Cell Biology Division and Experimental Oncology Unit (UNONEX), Federal University of São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - Mariana H Massaoka
- Department of Microbiology, Immunology and Parasitology, Cell Biology Division and Experimental Oncology Unit (UNONEX), Federal University of São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - Camyla F Farias
- Department of Microbiology, Immunology and Parasitology, Cell Biology Division and Experimental Oncology Unit (UNONEX), Federal University of São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - Denise C Arruda
- Núcleo Integrado de Biotecnologia, Universidade de Mogi das Cruzes, São Paulo, SP, Brazil
| | - Ricardo A Azevedo
- Biochemistry and Biophysics Laboratory, Butantan Institute, São Paulo, SP, Brazil
| | - Hugo P Monteiro
- Center for Cellular and Molecular Therapy (CTCMol) and Department of Biochemistry, Federal University of São Paulo, São Paulo, SP, Brazil
| | - Pedro T Resende-Lara
- Computation and Bioinformatic Biology laboratory, Federal University of ABC, Santo André, São Paulo, SP, Brazil
| | - Rodrigo L O R Cunha
- Chemical Biology Laboratory, Natural and Human Sciences Center, Federal University of ABC, Santo André, São Paulo, SP, Brazil
| | - Luciano Polonelli
- Microbiology and Virology Unit, Department of Biomedical, Biotechnological and Translational Sciences, Universitá degli Studi di Parma, Parma, Italy
| | - Luiz R Travassos
- Department of Microbiology, Immunology and Parasitology, Cell Biology Division and Experimental Oncology Unit (UNONEX), Federal University of São Paulo (UNIFESP), São Paulo, SP, Brazil; Recepta Biopharma, São Paulo, SP, Brazil.
| |
Collapse
|
87
|
Mogha A, D'Rozario M, Monk KR. G Protein-Coupled Receptors in Myelinating Glia. Trends Pharmacol Sci 2016; 37:977-987. [PMID: 27670389 DOI: 10.1016/j.tips.2016.09.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2016] [Revised: 09/02/2016] [Accepted: 09/06/2016] [Indexed: 12/21/2022]
Abstract
The G protein-coupled receptor (GPCR) superfamily represents the largest class of functionally selective drug targets for disease modulation and therapy. GPCRs have been studied in great detail in central nervous system (CNS) neurons, but these important molecules have been relatively understudied in glia. In recent years, however, exciting new roles for GPCRs in glial cell biology have emerged. We focus here on the key roles of GPCRs in a specialized subset of glia, myelinating glia. We highlight recent work firmly establishing GPCRs as regulators of myelinating glial cell development and myelin repair. These advances expand our understanding of myelinating glial cell biology and underscore the utility of targeting GPCRs to promote myelin repair in human disease.
Collapse
Affiliation(s)
- Amit Mogha
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Mitchell D'Rozario
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Kelly R Monk
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA; Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
88
|
Adhesion GPCRs in immunology. Biochem Pharmacol 2016; 114:88-102. [DOI: 10.1016/j.bcp.2016.04.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 04/25/2016] [Indexed: 12/16/2022]
|
89
|
Song Y, Li A, Zhang L, Duan L. Expression of G protein-coupled receptor 56 is associated with tumor progression in non-small-cell lung carcinoma patients. Onco Targets Ther 2016; 9:4105-12. [PMID: 27462165 PMCID: PMC4939992 DOI: 10.2147/ott.s106907] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Background G protein-coupled receptor 56 (GPR56) is an adhesion G protein-coupled receptor with essential functions for cell physiology and survival, and its expression correlates with prognosis in a number of malignancies. The aim of this study is to determine the relationship of GPR56 expression with clinicopathological parameters and prognosis in non-small-cell lung carcinoma (NSCLC). Methods The levels of GPR56 were evaluated by immunohistochemistry in 157 NSCLC tissue samples. The association between GPR56 and clinicopathological parameters was evaluated by χ2 test. Univariate and multivariate analyses were performed to demonstrate the prognosis role of GPR56. The function of GPR56 in NSCLC cell lines was also explored through overexpression and knockdown studies. Results The expression level of GPR56 in tumor tissues was significantly correlated with the TNM stage of NSCLC (P=0.005). Univariate and multivariate analyses revealed that GPR56 can act as an independent prognostic factor for overall survival. Furthermore, through overexpression and knockdown experiments, we confirmed that GPR56 can promote the proliferation and invasion of NSCLC cells. Conclusion GPR56 plays an important role in tumor development and may serve as a promising target for prognostic prediction in NSCLC.
Collapse
Affiliation(s)
- Yanjie Song
- Department of Neurosurgery, Yidu Central Hospital of Weifang, Weifang Medical University, Qingzhou
| | - Aiqin Li
- Department of Neurosurgery, Yidu Central Hospital of Weifang, Weifang Medical University, Qingzhou
| | - Li Zhang
- Department of Neurosurgery, Yidu Central Hospital of Weifang, Weifang Medical University, Qingzhou
| | - Lingling Duan
- Medical Care Department for Personnel, Jinan Central Hospital, Shangdong University, Jinan, Shandong, People's Republic of China
| |
Collapse
|
90
|
Stoveken HM, Bahr LL, Anders MW, Wojtovich AP, Smrcka AV, Tall GG. Dihydromunduletone Is a Small-Molecule Selective Adhesion G Protein-Coupled Receptor Antagonist. Mol Pharmacol 2016; 90:214-24. [PMID: 27338081 DOI: 10.1124/mol.116.104828] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 06/10/2016] [Indexed: 12/21/2022] Open
Abstract
Adhesion G protein-coupled receptors (aGPCRs) have emerging roles in development and tissue maintenance and is the most prevalent GPCR subclass mutated in human cancers, but to date, no drugs have been developed to target them in any disease. aGPCR extracellular domains contain a conserved subdomain that mediates self-cleavage proximal to the start of the 7-transmembrane domain (7TM). The two receptor protomers, extracellular domain and amino terminal fragment (NTF), and the 7TM or C-terminal fragment remain noncovalently bound at the plasma membrane in a low-activity state. We recently demonstrated that NTF dissociation liberates the 7TM N-terminal stalk, which acts as a tethered-peptide agonist permitting receptor-dependent heterotrimeric G protein activation. In many cases, natural aGPCR ligands are extracellular matrix proteins that dissociate the NTF to reveal the tethered agonist. Given the perceived difficulty in modifying extracellular matrix proteins to create aGPCR probes, we developed a serum response element (SRE)-luciferase-based screening approach to identify GPR56/ADGRG1 small-molecule inhibitors. A 2000-compound library comprising known drugs and natural products was screened for GPR56-dependent SRE activation inhibitors that did not inhibit constitutively active Gα13-dependent SRE activation. Dihydromunduletone (DHM), a rotenoid derivative, was validated using cell-free aGPCR/heterotrimeric G protein guanosine 5'-3-O-(thio)triphosphate binding reconstitution assays. DHM inhibited GPR56 and GPR114/ADGRG5, which have similar tethered agonists, but not the aGPCR GPR110/ADGRF1, M3 muscarinic acetylcholine, or β2 adrenergic GPCRs. DHM inhibited tethered peptide agonist-stimulated and synthetic peptide agonist-stimulated GPR56 but did not inhibit basal activity, demonstrating that it antagonizes the peptide agonist. DHM is a novel aGPCR antagonist and potentially useful chemical probe that may be developed as a future aGPCR therapeutic.
Collapse
Affiliation(s)
- Hannah M Stoveken
- Department of Pharmacology and Physiology (H.M.S., L.L.B., M.W.A., A.P.W., A.V.S.), and Department of Anesthesiology (L.L.B., A.P.W.), University of Rochester Medical Center, Rochester, New York; and Department of Pharmacology, University of Michigan, Ann Arbor, Michigan (G.G.T.)
| | - Laura L Bahr
- Department of Pharmacology and Physiology (H.M.S., L.L.B., M.W.A., A.P.W., A.V.S.), and Department of Anesthesiology (L.L.B., A.P.W.), University of Rochester Medical Center, Rochester, New York; and Department of Pharmacology, University of Michigan, Ann Arbor, Michigan (G.G.T.)
| | - M W Anders
- Department of Pharmacology and Physiology (H.M.S., L.L.B., M.W.A., A.P.W., A.V.S.), and Department of Anesthesiology (L.L.B., A.P.W.), University of Rochester Medical Center, Rochester, New York; and Department of Pharmacology, University of Michigan, Ann Arbor, Michigan (G.G.T.)
| | - Andrew P Wojtovich
- Department of Pharmacology and Physiology (H.M.S., L.L.B., M.W.A., A.P.W., A.V.S.), and Department of Anesthesiology (L.L.B., A.P.W.), University of Rochester Medical Center, Rochester, New York; and Department of Pharmacology, University of Michigan, Ann Arbor, Michigan (G.G.T.)
| | - Alan V Smrcka
- Department of Pharmacology and Physiology (H.M.S., L.L.B., M.W.A., A.P.W., A.V.S.), and Department of Anesthesiology (L.L.B., A.P.W.), University of Rochester Medical Center, Rochester, New York; and Department of Pharmacology, University of Michigan, Ann Arbor, Michigan (G.G.T.)
| | - Gregory G Tall
- Department of Pharmacology and Physiology (H.M.S., L.L.B., M.W.A., A.P.W., A.V.S.), and Department of Anesthesiology (L.L.B., A.P.W.), University of Rochester Medical Center, Rochester, New York; and Department of Pharmacology, University of Michigan, Ann Arbor, Michigan (G.G.T.)
| |
Collapse
|
91
|
Lai TS, Lin CJ, Greenberg CS. Role of tissue transglutaminase-2 (TG2)-mediated aminylation in biological processes. Amino Acids 2016; 49:501-515. [PMID: 27270573 DOI: 10.1007/s00726-016-2270-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 05/31/2016] [Indexed: 01/08/2023]
Abstract
Post-translational modification (PTM) is an important mechanism in modulating a protein's structure and can lead to substantial diversity in biological function. Compared to other forms of PTMs such as phosphorylation, acetylation and glycosylation, the physiological significance of aminylation is limited. Aminylation refers to the covalent incorporation of biogenic/polyamines into target protein by calcium-dependent transglutaminases (TGs). The development of novel and more sensitive techniques has led to more proteins identified as tissue transglutaminase (TG2) substrates and potential targets for aminylation. Many of these substrate proteins play a role in cell signaling, cytoskeleton organization, muscle contraction, and inflammation. TG2 is well studied and widely expressed in a variety of tissues and will be the primary focus of this review on recent advance in transglutaminase-mediated aminylation.
Collapse
Affiliation(s)
- Thung-S Lai
- Graduate Institute of Biomedical Science, Mackay Medical College, No. 46, Sec. 3, Jhong-Jheng Rd., Sanzhi Dist, New Taipei City, 25200, Taiwan, ROC.
| | - Cheng-Jui Lin
- Nephrology/Department of Internal Medicine, Mackay Memorial Hospital, Taipei, Taiwan, ROC
- Nursing and Management, Mackay Junior College of Medicine, Taipei, Taiwan, ROC
| | - Charles S Greenberg
- Department of Medicine, Medical University of South Carolina, Charleston, SC, 29425, USA
| |
Collapse
|
92
|
Chang GW, Hsiao CC, Peng YM, Vieira Braga F, Kragten N, Remmerswaal E, van de Garde M, Straussberg R, König G, Kostenis E, Knäuper V, Meyaard L, van Lier R, van Gisbergen K, Lin HH, Hamann J. The Adhesion G Protein-Coupled Receptor GPR56/ADGRG1 Is an Inhibitory Receptor on Human NK Cells. Cell Rep 2016; 15:1757-70. [DOI: 10.1016/j.celrep.2016.04.053] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Revised: 01/22/2016] [Accepted: 04/13/2016] [Indexed: 10/21/2022] Open
|
93
|
Chiang NY, Chang GW, Huang YS, Peng YM, Hsiao CC, Kuo ML, Lin HH. Heparin interacts with the adhesion GPCR GPR56, reduces receptor shedding, and promotes cell adhesion and motility. J Cell Sci 2016; 129:2156-69. [PMID: 27068534 DOI: 10.1242/jcs.174458] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 03/31/2016] [Indexed: 12/11/2022] Open
Abstract
GPR56 is an adhesion-class G-protein-coupled receptor responsible for bilateral frontoparietal polymicrogyria (BFPP), a severe disorder of cortical formation. Additionally, GPR56 is involved in biological processes as diverse as hematopoietic stem cell generation and maintenance, myoblast fusion, muscle hypertrophy, immunoregulation and tumorigenesis. Collagen III and tissue transglutaminase 2 (TG2) have been revealed as the matricellular ligands of GPR56 involved in BFPP and melanoma development, respectively. In this study, we identify heparin as a glycosaminoglycan interacting partner of GPR56. Analyses of truncated and mutant GPR56 proteins reveal two basic-residue-rich clusters, R(26)GHREDFRFC(35) and L(190)KHPQKASRRP(200), as the major heparin-interacting motifs that overlap partially with the collagen III- and TG2-binding sites. Interestingly, the GPR56-heparin interaction is modulated by collagen III but not TG2, even though both ligands are also heparin-binding proteins. Finally, we show that the interaction with heparin reduces GPR56 receptor shedding, and enhances cell adhesion and motility. These results provide novel insights into the interaction of GPR56 with its multiple endogenous ligands and have functional implications in diseases such as BFPP and cancer.
Collapse
Affiliation(s)
- Nien-Yi Chiang
- Department of Microbiology and Immunology, Chang Gung University, Tao-Yuan 333, Taiwan
| | - Gin-Wen Chang
- Department of Microbiology and Immunology, Chang Gung University, Tao-Yuan 333, Taiwan
| | - Yi-Shu Huang
- Department of Microbiology and Immunology, Chang Gung University, Tao-Yuan 333, Taiwan
| | - Yen-Ming Peng
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Tao-Yuan 333, Taiwan
| | - Cheng-Chih Hsiao
- Department of Microbiology and Immunology, Chang Gung University, Tao-Yuan 333, Taiwan
| | - Ming-Ling Kuo
- Department of Microbiology and Immunology, Chang Gung University, Tao-Yuan 333, Taiwan Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Tao-Yuan 333, Taiwan Chang Gung Immunology Consortium, Chang Gung Memorial Hospital and Chang Gung University, Tao-Yuan 333, Taiwan Division of Allergy, Asthma, and Rheumatology, Department of Pediatrics, Chang Gung Memorial Hospital-Linkou, Tao-Yuan 333, Taiwan
| | - Hsi-Hsien Lin
- Department of Microbiology and Immunology, Chang Gung University, Tao-Yuan 333, Taiwan Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Tao-Yuan 333, Taiwan Chang Gung Immunology Consortium, Chang Gung Memorial Hospital and Chang Gung University, Tao-Yuan 333, Taiwan Department of Anatomic Pathology, Chang Gung Memorial Hospital-Linkou, Tao-Yuan 333, Taiwan
| |
Collapse
|
94
|
Pupo AS, Duarte DA, Lima V, Teixeira LB, Parreiras-E-Silva LT, Costa-Neto CM. Recent updates on GPCR biased agonism. Pharmacol Res 2016; 112:49-57. [PMID: 26836887 DOI: 10.1016/j.phrs.2016.01.031] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Revised: 01/27/2016] [Accepted: 01/28/2016] [Indexed: 12/20/2022]
Abstract
G protein-coupled receptors (GPCRs) are the most important targets for drug discovery and not surprisingly ∼40% of all drugs currently in the market act on these receptors. Currently, one of the most active areas in GPCRs signaling is biased agonism, a phenomenon that occurs when a given ligand is able to preferentially activate one (or some) of the possible signaling pathways. In this review, we highlight the most recent findings about biased agonism, including an extension of this concept to intracellular signaling, allosterism, strategies for assessment and interpretation, and perspectives of therapeutic applications for biased agonists.
Collapse
Affiliation(s)
- André S Pupo
- Department of Pharmacology, Instituto de Biociências, UNESP, Botucatu, SP, Brazil.
| | - Diego A Duarte
- Department of Biochemistry and Immunology, Faculty of Medicine at Ribeirão Preto, University of São Paulo, 14049-900 Ribeirão Preto, SP, Brazil
| | - Vanessa Lima
- Department of Pharmacology, Instituto de Biociências, UNESP, Botucatu, SP, Brazil; Department of Biochemistry and Immunology, Faculty of Medicine at Ribeirão Preto, University of São Paulo, 14049-900 Ribeirão Preto, SP, Brazil
| | - Larissa B Teixeira
- Department of Biochemistry and Immunology, Faculty of Medicine at Ribeirão Preto, University of São Paulo, 14049-900 Ribeirão Preto, SP, Brazil
| | - Lucas T Parreiras-E-Silva
- Department of Biochemistry and Immunology, Faculty of Medicine at Ribeirão Preto, University of São Paulo, 14049-900 Ribeirão Preto, SP, Brazil
| | - Claudio M Costa-Neto
- Department of Biochemistry and Immunology, Faculty of Medicine at Ribeirão Preto, University of São Paulo, 14049-900 Ribeirão Preto, SP, Brazil.
| |
Collapse
|
95
|
Ohta S, Sakaguchi S, Kobayashi Y, Mizuno N, Tago K, Itoh H. Agonistic antibodies reveal the function of GPR56 in human glioma U87-MG cells. Biol Pharm Bull 2016; 38:594-600. [PMID: 25832639 DOI: 10.1248/bpb.b14-00752] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
GPR56 is a member of the adhesion G protein-coupled receptor (GPCR) and is highly expressed in parts of tumor cells. The involvement of GPR56 in tumorigenesis has been reported. We generated agonistic monoclonal antibodies against human GPR56 and analyzed the action and signaling pathway of GPR56. The antibodies inhibited cell migration through the Gq and Rho pathway in human glioma U87-MG cells. Co-immunoprecipitation analysis indicated that the interaction between the GPR56 extracellular domain and transmembrane domain was potentiated by agonistic antibodies. These results demonstrated that functional antibodies are invaluable tools for GPCR research and should open a new avenue for therapeutic treatment of tumors.
Collapse
Affiliation(s)
- Shigeyuki Ohta
- Department of Biomedical Science, Graduate School of Biological Sciences, Nara Institute of Science and Technolog
| | | | | | | | | | | |
Collapse
|
96
|
Abstract
The adhesion G protein-coupled receptors (aGPCRs) are a family of 33 receptors in humans that are widely expressed in various tissues and involved in many diverse biological processes. These receptors possess extremely large N-termini (NT) containing a variety of adhesion domains. A distinguishing feature of these receptors is the presence within the NT of a highly conserved GPCR autoproteolysis-inducing (GAIN) domain, which mediates autoproteolysis of the receptors into N-terminal and C-terminal fragments that stay non-covalently associated. The downstream signaling pathways and G protein-coupling preferences of many aGPCRs have recently been elucidated, and putative endogenous ligands for some aGPCRs have also been discovered and characterized in recent years. A pivotal observation for aGPCRs has been that deletion or removal of the NT up the point of GAIN cleavage results in constitutive receptor activation. For at least some aGPCRs, this activation is dependent on the unmasking of specific agonistic peptide sequences within the N-terminal stalk region (i.e., the region between the site of GAIN domain cleavage and the first transmembrane domain). However, the specific peptide sequences involved and the overall importance of the stalk region for activation can vary greatly from receptor to receptor. An emerging theme of work in this area is that aGPCRs are capable of versatile signaling activity that may be fine-tuned to suit the specific physiological roles played by the various members of this family.
Collapse
Affiliation(s)
- Ayush Kishore
- Department of Pharmacology, Emory University School of Medicine, 1510 Clifton Road NE, Atlanta, GA, 30322, USA
| | - Randy A Hall
- Department of Pharmacology, Emory University School of Medicine, 1510 Clifton Road NE, Atlanta, GA, 30322, USA.
| |
Collapse
|
97
|
Krishnan A, Nijmeijer S, de Graaf C, Schiöth HB. Classification, Nomenclature, and Structural Aspects of Adhesion GPCRs. Handb Exp Pharmacol 2016; 234:15-41. [PMID: 27832482 DOI: 10.1007/978-3-319-41523-9_2] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Representation of the nine distinct aGPCR subfamilies and their unique N-terminal domain architecture. The illustration also shows the extracellular structural feature shared by all aGPCRs (except ADGRA1), known as the GPCR autoproteolysis-inducing (GAIN) domain, that mediates autoproteolysis and subsequent attachment of the cleaved NTF and CTF fragments The adhesion family of G protein-coupled receptors (aGPCRs) is unique among all GPCR families with long N-termini and multiple domains that are implicated in cell-cell and cell-matrix interactions. Initially, aGPCRs in the human genome were phylogenetically classified into nine distinct subfamilies based on their 7TM sequence similarity. This phylogenetic grouping of genes into subfamilies was found to be in congruence in closely related mammals and other vertebrates as well. Over the years, aGPCR repertoires have been mapped in many species including model organisms, and, currently, there is a growing interest in exploring the pharmacological aspects of aGPCRs. Nonetheless, the aGPCR nomenclature has been highly diverse because experts in the field have used different names for different family members based on their characteristics (e.g., epidermal growth factor-seven-span transmembrane (EGF-TM7)), but without harmonization with regard to nomenclature efforts. In order to facilitate naming of orthologs and other genetic variants in different species in the future, the Adhesion-GPCR Consortium, together with the International Union of Basic and Clinical Pharmacology Committee on Receptor Nomenclature and Drug Classification, proposed a unified nomenclature for aGPCRs. Here, we review the classification and the most recent/current nomenclature of aGPCRs and as well discuss the structural topology of the extracellular domain (ECD)/N-terminal fragment (NTF) that is comparable with this 7TM subfamily classification. Of note, we systematically describe the structural domains in the ECD of aGPCR subfamilies and highlight their role in aGPCR-protein interactions.
Collapse
Affiliation(s)
- Arunkumar Krishnan
- Department of Neuroscience, Functional Pharmacology, Uppsala University, Biomedical Center, 593, Uppsala, 75 124, Sweden
| | - Saskia Nijmeijer
- Department of Medicinal Chemistry, Amsterdam Institute for Molecules, Medicines and Systems, Vrije Universiteit Amsterdam, Amsterdam, 1081HV, The Netherlands
| | - Chris de Graaf
- Department of Medicinal Chemistry, Amsterdam Institute for Molecules, Medicines and Systems, Vrije Universiteit Amsterdam, Amsterdam, 1081HV, The Netherlands
| | - Helgi B Schiöth
- Department of Neuroscience, Functional Pharmacology, Uppsala University, Biomedical Center, 593, Uppsala, 75 124, Sweden.
| |
Collapse
|
98
|
Abstract
Development of the aGPCR scientific field based on PubMed-listed research articles and selected key findings Since the discovery of adhesion G-protein-coupled receptors (aGPCRs) 20 years ago, reverse genetics approaches have dominated the elucidation of their function and work mechanisms. Seminal findings in this field comprise the description of aGPCRs as seven-transmembrane (7TM) molecules with an extended extracellular region, the identification of matricellular ligands that bind to distinct protein folds at the N-terminus, the clarification of an autoproteolytic cleavage event at a juxtamembranous GPCR proteolysis site (GPS), the elucidation of the crystal structure of the GPCR autoproteolysis-inducing (GAIN) domain that embeds the GPS and connects the receptor fragments, the demonstration that a short N-terminal sequence of the seven-transmembrane (7TM) region can serve as a tethered agonist, and, recently, the notification that aGPCRs can serve as mechanosensors. We here discuss how these discoveries have moved forward aGPCR research and, finally, linked the field to the GPCR field. We argue that crucial questions remain to be addressed before we can fully appreciate the biological nature of these fascinating receptors.
Collapse
Affiliation(s)
- Jörg Hamann
- Department of Experimental Immunology, K0-144, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105AZ, Amsterdam, The Netherlands.
| | - Alexander G Petrenko
- Laboratory of Receptor Cell Biology, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997, Moscow, Russia.
| |
Collapse
|
99
|
Abstract
Alterations in the homeostasis of several adhesion GPCRs (aGPCRs) have been observed in cancer. The main cellular functions regulated by aGPCRs are cell adhesion, migration, polarity, and guidance, which are all highly relevant to tumor cell biology. Expression of aGPCRs can be induced, increased, decreased, or silenced in the tumor or in stromal cells of the tumor microenvironment, including fibroblasts and endothelial and/or immune cells. For example, ADGRE5 (CD97) and ADGRG1 (GPR56) show increased expression in many cancers, and initial functional studies suggest that both are relevant for tumor cell migration and invasion. aGPCRs can also impact the regulation of angiogenesis by releasing soluble fragments following the cleavage of their extracellular domain (ECD) at the conserved GPCR-proteolytic site (GPS) or other more distal cleavage sites as typical for the ADGRB (BAI) family. Interrogation of in silico cancer databases suggests alterations in other aGPCR members and provides the impetus for further exploration of their potential role in cancer. Integration of knowledge on the expression, regulation, and function of aGPCRs in tumorigenesis is currently spurring the first preclinical studies to examine the potential of aGPCR or the related pathways as therapeutic targets.
Collapse
Affiliation(s)
- Gabriela Aust
- Department of Surgery, Research Laboratories, University of Leipzig, Liebigstraße 19, Leipzig, 04103, Germany.
| | - Dan Zhu
- Department of Neurosurgery and Hematology & Medical Oncology, School of Medicine and Winship Cancer Institute, Emory University, Atlanta, GA, 30322, USA
| | - Erwin G Van Meir
- Department of Neurosurgery and Hematology & Medical Oncology, School of Medicine and Winship Cancer Institute, Emory University, Atlanta, GA, 30322, USA
| | - Lei Xu
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, 14642, USA
| |
Collapse
|
100
|
Abstract
Adhesion G protein-coupled receptors (aGPCRs/ADGRs) are unique receptors that combine cell adhesion and signaling functions. Protein networks related to ADGRs exert diverse functions, e.g., in tissue polarity, cell migration, nerve cell function, or immune response, and are regulated via different mechanisms. The large extracellular domain of ADGRs is capable of mediating cell-cell or cell-matrix protein interactions. Their intracellular surface and domains are coupled to downstream signaling pathways and often bind to scaffold proteins, organizing membrane-associated protein complexes. The cohesive interplay between ADGR-related network components is essential to prevent severe disease-causing damage in numerous cell types. Consequently, in recent years, attention has focused on the decipherment of the precise molecular composition of ADGR protein complexes and interactomes in various cellular modules. In this chapter, we discuss the affiliation of ADGR networks to cellular modules and how they can be regulated, pinpointing common features in the networks related to the diverse ADGRs. Detailed decipherment of the composition of protein networks should provide novel targets for the development of novel therapies with the aim to cure human diseases related to ADGRs.
Collapse
Affiliation(s)
- Barbara Knapp
- Cell and Matrix Biology, Institute of Zoology, Johannes Gutenberg University of Mainz, Johannes von Muellerweg 6, Mainz, 55099, Germany
| | - Uwe Wolfrum
- Cell and Matrix Biology, Institute of Zoology, Johannes Gutenberg University of Mainz, Johannes von Muellerweg 6, Mainz, 55099, Germany.
| |
Collapse
|