51
|
Barre A, Simplicien M, Benoist H, Van Damme EJM, Rougé P. Mannose-Specific Lectins from Marine Algae: Diverse Structural Scaffolds Associated to Common Virucidal and Anti-Cancer Properties. Mar Drugs 2019; 17:E440. [PMID: 31357490 PMCID: PMC6723950 DOI: 10.3390/md17080440] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 07/23/2019] [Accepted: 07/24/2019] [Indexed: 02/06/2023] Open
Abstract
To date, a number of mannose-specific lectins have been isolated and characterized from seaweeds, especially from red algae. In fact, man-specific seaweed lectins consist of different structural scaffolds harboring a single or a few carbohydrate-binding sites which specifically recognize mannose-containing glycans. Depending on the structural scaffold, man-specific seaweed lectins belong to five distinct structurally-related lectin families, namely (1) the griffithsin lectin family (β-prism I scaffold); (2) the Oscillatoria agardhii agglutinin homolog (OAAH) lectin family (β-barrel scaffold); (3) the legume lectin-like lectin family (β-sandwich scaffold); (4) the Galanthus nivalis agglutinin (GNA)-like lectin family (β-prism II scaffold); and, (5) the MFP2-like lectin family (MFP2-like scaffold). Another algal lectin from Ulva pertusa, has been inferred to the methanol dehydrogenase related lectin family, because it displays a rather different GlcNAc-specificity. In spite of these structural discrepancies, all members from the five lectin families share a common ability to specifically recognize man-containing glycans and, especially, high-mannose type glycans. Because of their mannose-binding specificity, these lectins have been used as valuable tools for deciphering and characterizing the complex mannose-containing glycans from the glycocalyx covering both normal and transformed cells, and as diagnostic tools and therapeutic drugs that specifically recognize the altered high-mannose N-glycans occurring at the surface of various cancer cells. In addition to these anti-cancer properties, man-specific seaweed lectins have been widely used as potent human immunodeficiency virus (HIV-1)-inactivating proteins, due to their capacity to specifically interact with the envelope glycoprotein gp120 and prevent the virion infectivity of HIV-1 towards the host CD4+ T-lymphocyte cells in vitro.
Collapse
Affiliation(s)
- Annick Barre
- Institut de Recherche et Développement, Faculté de Pharmacie, UMR 152 PharmaDev, Université Paul Sabatier, 35 Chemin des Maraîchers, 31062 Toulouse, France
| | - Mathias Simplicien
- Institut de Recherche et Développement, Faculté de Pharmacie, UMR 152 PharmaDev, Université Paul Sabatier, 35 Chemin des Maraîchers, 31062 Toulouse, France
| | - Hervé Benoist
- Institut de Recherche et Développement, Faculté de Pharmacie, UMR 152 PharmaDev, Université Paul Sabatier, 35 Chemin des Maraîchers, 31062 Toulouse, France
| | - Els J M Van Damme
- Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, B-9000 Ghent, Belgium
| | - Pierre Rougé
- Institut de Recherche et Développement, Faculté de Pharmacie, UMR 152 PharmaDev, Université Paul Sabatier, 35 Chemin des Maraîchers, 31062 Toulouse, France.
| |
Collapse
|
52
|
Abstract
Microbicides are antiseptic topical drugs that help directly or indirectly inhibit the penetration of an infectious agent into the human body, thereby preventing the sexual transmission of HIV-infection and other sexually transmitted diseases. Microbicides have an antiviral mechanism of action in the sexual transmission of HIV and affect the components of mucosal immunity in the vagina. In this article, the pharmaceutical and biomedical aspects of microbicide application are examined and diverse classifications of microbicides are presented. For each group of chemicals, the most important representatives and their mechanisms of action are described. This article also presents the structure and function of mucosal immunity, and shows the importance of the mucosal immune response in the sexual transmission of HIV. This work also exhibits the experimental models for testing of candidate microbicides. For each compound described, a review of preclinical research and clinical trials is provided, covering its development as a microbicide. This paper gives an overview of microbicides, a new class of chemically diverse immunobiological medications reducing the risk of sexual transmission of HIV. The use of microbicides is believed to curb the HIV/AIDS epidemic in the nearest future.
Collapse
|
53
|
Besednova NN, Zvyagintseva TN, Kuznetsova TA, Makarenkova ID, Smolina TP, Fedyanina LN, Kryzhanovsky SP, Zaporozhets TS. Marine Algae Metabolites as Promising Therapeutics for the Prevention and Treatment of HIV/AIDS. Metabolites 2019; 9:E87. [PMID: 31052506 PMCID: PMC6572556 DOI: 10.3390/metabo9050087] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 04/18/2019] [Accepted: 04/26/2019] [Indexed: 11/17/2022] Open
Abstract
This review presents an analysis of works devoted to the anti-human immunodeficiency virus (HIV) activity of algae metabolites-sulfated polysaccharides (fucoidans, carrageenans), lectins, laminarans, and polyphenols. Despite the presence of a significant number of antiretroviral drugs, the development of new therapeutic and prophylactic agents against this infection remains very urgent problem. This is due to the variability of HIV, the absence of an animal model (except monkeys) and natural immunity to this virus and the toxicity of therapeutic agents and their high cost. In this regard, the need for new therapeutic approaches and broad-spectrum drugs, which in addition to antiviral effects can have anti-inflammatory, antioxidant, and immunomodulatory effects, and to which the minimum resistance of HIV strains would be formed. These requirements meet the biologically active substances of marine algae. The results of experimental and clinical studies conducted in vitro and in vivo are presented, and the issues of the anti-HIV activity of these compounds are considered depending on their structural features. On the whole, the presented data prove the high efficiency of seaweed metabolites and justify the possibility of their use as a potential basis for the development of new drugs with a wide spectrum of activity.
Collapse
Affiliation(s)
- Natalya N Besednova
- Federal State Budgetary Scientific Institution, Somov Research Institute of Epidemiology and Microbiology, Sel'skaya street, 1, 690087 Vladivostok, Russia.
| | - Tatyana N Zvyagintseva
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Pr. 100-letiya Vladivostoka, 159, 690022 Vladivostok, Russia.
| | - Tatyana A Kuznetsova
- Federal State Budgetary Scientific Institution, Somov Research Institute of Epidemiology and Microbiology, Sel'skaya street, 1, 690087 Vladivostok, Russia.
| | - Ilona D Makarenkova
- Federal State Budgetary Scientific Institution, Somov Research Institute of Epidemiology and Microbiology, Sel'skaya street, 1, 690087 Vladivostok, Russia.
| | - Tatyana P Smolina
- Federal State Budgetary Scientific Institution, Somov Research Institute of Epidemiology and Microbiology, Sel'skaya street, 1, 690087 Vladivostok, Russia.
| | - Ludmila N Fedyanina
- Far Eastern Federal University, School of Biomedicine, bldg. M25 FEFU Campus, Ajax Bay, Russky Isl., 690922 Vladivostok, Russia.
| | | | - Tatyana S Zaporozhets
- Federal State Budgetary Scientific Institution, Somov Research Institute of Epidemiology and Microbiology, Sel'skaya street, 1, 690087 Vladivostok, Russia.
| |
Collapse
|
54
|
Design of Poly(lactic- co-glycolic Acid) (PLGA) Nanoparticles for Vaginal Co-Delivery of Griffithsin and Dapivirine and Their Synergistic Effect for HIV Prophylaxis. Pharmaceutics 2019; 11:pharmaceutics11040184. [PMID: 30995761 PMCID: PMC6523646 DOI: 10.3390/pharmaceutics11040184] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 04/03/2019] [Accepted: 04/11/2019] [Indexed: 01/22/2023] Open
Abstract
Long-acting topical products for pre-exposure prophylaxis (PrEP) that combine antiretrovirals (ARVs) inhibiting initial stages of infection are highly promising for prevention of HIV sexual transmission. We fabricated core-shell poly(lactide-co-glycolide) (PLGA) nanoparticles, loaded with two potent ARVs, griffithsin (GRFT) and dapivirine (DPV), having different physicochemical properties and specifically targeting the fusion and reverse transcription steps of HIV replication, as a potential long-acting microbicide product. The nanoparticles were evaluated for particle size and zeta potential, drug release, cytotoxicity, cellular uptake and in vitro bioactivity. PLGA nanoparticles, with diameter around 180–200 nm, successfully encapsulated GRFT (45% of initially added) and DPV (70%). Both drugs showed a biphasic release with initial burst phase followed by a sustained release phase. GRFT and DPV nanoparticles were non-toxic and maintained bioactivity (IC50 values of 0.5 nM and 4.7 nM, respectively) in a cell-based assay. The combination of drugs in both unformulated and encapsulated in nanoparticles showed strong synergistic drug activity at 1:1 ratio of IC50 values. This is the first study to co-deliver a protein (GRFT) and a hydrophobic small molecule (DPV) in PLGA nanoparticles as microbicides. Our findings demonstrate that the combination of GRFT and DPV in nanoparticles is highly potent and possess properties critical to the design of a sustained release microbicide.
Collapse
|
55
|
Kopertekh L, Schiemann J. Transient Production of Recombinant Pharmaceutical Proteins in Plants: Evolution and Perspectives. Curr Med Chem 2019; 26:365-380. [DOI: 10.2174/0929867324666170718114724] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 06/07/2017] [Accepted: 06/07/2017] [Indexed: 11/22/2022]
Abstract
During the last two decades, the production of pharmaceutical proteins in plants
evolved from proof of concept to established technology adopted by several biotechnological
companies. This progress is particularly based on intensive research starting stable genetic
transformation and moving to transient expression. Due to its advantages in yield and
speed of protein production transient expression platforms became the leading plant-based
manufacturing technology. Current transient expression methods rely on Agrobacteriummediated
delivery of expression vectors into plant cells. In recent years, great advances have
been made in the improvement of expression vectors, host cell engineering as well as in the
development of commercial manufacturing processes. Several GMP-certified large-scale
production facilities exist around the world to utilize agroinfiltration method. A number of
pharmaceutical proteins produced by transient expression are currently in clinical development.
The great potential of transient expression platform in respect to rapid response to
emerging pandemics was demonstrated by the production of experimental ZMapp antibodies
against Ebola virus as well as influenza vaccines. This review is focused on current design,
status and future perspectives of plant transient expression system for the production
of biopharmaceutical proteins.
Collapse
Affiliation(s)
- Lilya Kopertekh
- Federal Research Centre for Cultivated Plants, Institute for Biosafety in Plant Biotechnology, Erwin-Baur- Str. 27, D-06484, Quedlinburg, Germany
| | - Joachim Schiemann
- Federal Research Centre for Cultivated Plants, Institute for Biosafety in Plant Biotechnology, Erwin-Baur- Str. 27, D-06484, Quedlinburg, Germany
| |
Collapse
|
56
|
Gondim ACS, Roberta da Silva S, Mathys L, Noppen S, Liekens S, Holanda Sampaio A, Nagano CS, Renata Costa Rocha C, Nascimento KS, Cavada BS, Sadler PJ, Balzarini J. Potent antiviral activity of carbohydrate-specific algal and leguminous lectins from the Brazilian biodiversity. MEDCHEMCOMM 2019; 10:390-398. [PMID: 30996857 PMCID: PMC6430086 DOI: 10.1039/c8md00508g] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 12/11/2018] [Indexed: 01/27/2023]
Abstract
Brazil has one of the largest biodiversities in the world. The search for new natural products extracted from the Brazilian flora may lead to the discovery of novel drugs with potential to treat infectious and other diseases. Here, we have investigated 9 lectins extracted and purified from the Northeastern Brazilian flora, from both leguminous species: Canavalia brasiliensis (ConBr), C. maritima (ConM), Dioclea lasiocarpa (DLasiL) and D. sclerocarpa (DSclerL), and algae Amansia multifida (AML), Bryothamniom seaforthii (BSL), Hypnea musciformis (HML), Meristiella echinocarpa (MEL) and Solieria filiformis (SfL). They were exposed to a panel of 18 different viruses, including HIV and influenza viruses. Several lectins showed highly potent antiviral activity, often within the low nanomolar range. DSclerL and DLasiL exhibited EC50 values (effective concentration of lectin required to inhibit virus-induced cytopathicity by 50%) of 9 nM to 46 nM for HIV-1 and respiratory syncytial virus (RSV), respectively, DLasiL also inhibited feline corona virus at an EC50 of 5 nM, and DSclerL, ConBr and ConM showed remarkably low EC50 values ranging from 0.4 to 6 nM against influenza A virus strain H3N2 and influenza B virus. For HIV, evidence pointed to the blockage of entry of the virus into its target cells as the underlying mechanism of antiviral action of these lectins. Overall, the most promising lectins based on their EC50 values were DLasiL, DSclerL, ConBr, ConM, SfL and HML. These novel findings indicate that lectins from the Brazilian flora may provide novel antiviral compounds with therapeutic potential.
Collapse
Affiliation(s)
- Ana C S Gondim
- Department of Biochemistry and Molecular Biology , Federal University of Ceará , 60455-760 , Fortaleza , Ceará , Brazil .
- Department of Chemistry , University of Warwick , Coventry CV4 7AL , UK .
- Department of Organic and Inorganic Chemistry , Federal University of Ceará , 60455-900 , Fortaleza , Ceará , Brazil
| | - Suzete Roberta da Silva
- Department of Fishing and Engineering , Federal University of Ceará , 60455-900 , Fortaleza , Ceará , Brazil
- Para West Federal University , 68220-000 , Monte Alegre , Brazil
| | - Leen Mathys
- Rega Institute for Medical Research , Department of Microbiology and Immunology , KU Leuven , 3000 Leuven , Belgium .
| | - Sam Noppen
- Rega Institute for Medical Research , Department of Microbiology and Immunology , KU Leuven , 3000 Leuven , Belgium .
| | - Sandra Liekens
- Rega Institute for Medical Research , Department of Microbiology and Immunology , KU Leuven , 3000 Leuven , Belgium .
| | - Alexandre Holanda Sampaio
- Department of Fishing and Engineering , Federal University of Ceará , 60455-900 , Fortaleza , Ceará , Brazil
| | - Celso S Nagano
- Department of Fishing and Engineering , Federal University of Ceará , 60455-900 , Fortaleza , Ceará , Brazil
| | | | - Kyria S Nascimento
- Department of Biochemistry and Molecular Biology , Federal University of Ceará , 60455-760 , Fortaleza , Ceará , Brazil .
| | - Benildo S Cavada
- Department of Biochemistry and Molecular Biology , Federal University of Ceará , 60455-760 , Fortaleza , Ceará , Brazil .
| | - Peter J Sadler
- Department of Chemistry , University of Warwick , Coventry CV4 7AL , UK .
| | - Jan Balzarini
- Rega Institute for Medical Research , Department of Microbiology and Immunology , KU Leuven , 3000 Leuven , Belgium .
| |
Collapse
|
57
|
Asai D, Nakashima H. Pathogenic Viruses Commonly Present in the Oral Cavity and Relevant Antiviral Compounds Derived from Natural Products. MEDICINES 2018; 5:medicines5040120. [PMID: 30424484 PMCID: PMC6313515 DOI: 10.3390/medicines5040120] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 11/05/2018] [Accepted: 11/07/2018] [Indexed: 12/18/2022]
Abstract
Many viruses, such as human herpesviruses, may be present in the human oral cavity, but most are usually asymptomatic. However, if individuals become immunocompromised by age, illness, or as a side effect of therapy, these dormant viruses can be activated and produce a variety of pathological changes in the oral mucosa. Unfortunately, available treatments for viral infectious diseases are limited, because (1) there are diseases for which no treatment is available; (2) drug-resistant strains of virus may appear; (3) incomplete eradication of virus may lead to recurrence. Rational design strategies are widely used to optimize the potency and selectivity of drug candidates, but discovery of leads for new antiviral agents, especially leads with novel structures, still relies mostly on large-scale screening programs, and many hits are found among natural products, such as extracts of marine sponges, sea algae, plants, and arthropods. Here, we review representative viruses found in the human oral cavity and their effects, together with relevant antiviral compounds derived from natural products. We also highlight some recent emerging pharmaceutical technologies with potential to deliver antivirals more effectively for disease prevention and therapy.
Collapse
Affiliation(s)
- Daisuke Asai
- Department of Microbiology, St. Marianna University School of Medicine, Kawasaki 216-8511, Japan
| | - Hideki Nakashima
- Department of Microbiology, St. Marianna University School of Medicine, Kawasaki 216-8511, Japan.
| |
Collapse
|
58
|
Yavuz B, Morgan JL, Showalter L, Horng KR, Dandekar S, Herrera C, LiWang P, Kaplan DL. Pharmaceutical Approaches to HIV Treatment and Prevention. ADVANCED THERAPEUTICS 2018; 1:1800054. [PMID: 32775613 PMCID: PMC7413291 DOI: 10.1002/adtp.201800054] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Indexed: 12/17/2022]
Abstract
Human immunodeficiency virus (HIV) infection continues to pose a major infectious disease threat worldwide. It is characterized by the depletion of CD4+ T cells, persistent immune activation, and increased susceptibility to secondary infections. Advances in the development of antiretroviral drugs and combination antiretroviral therapy have resulted in a remarkable reduction in HIV-associated morbidity and mortality. Antiretroviral therapy (ART) leads to effective suppression of HIV replication with partial recovery of host immune system and has successfully transformed HIV infection from a fatal disease to a chronic condition. Additionally, antiretroviral drugs have shown promise for prevention in HIV pre-exposure prophylaxis and treatment as prevention. However, ART is unable to cure HIV. Other limitations include drug-drug interactions, drug resistance, cytotoxic side effects, cost, and adherence. Alternative treatment options are being investigated to overcome these challenges including discovery of new molecules with increased anti-viral activity and development of easily administrable drug formulations. In light of the difficulties associated with current HIV treatment measures, and in the continuing absence of a cure, the prevention of new infections has also arisen as a prominent goal among efforts to curtail the worldwide HIV pandemic. In this review, the authors summarize currently available anti-HIV drugs and their combinations for treatment, new molecules under clinical development and prevention methods, and discuss drug delivery formats as well as associated challenges and alternative approaches for the future.
Collapse
Affiliation(s)
- Burcin Yavuz
- Department of Biomedical Engineering Tufts University 4 Colby Street, Medford, MA 02155, USA
| | - Jessica L Morgan
- Department of Molecular Cell Biology University of California-Merced5200 North Lake Road, Merced, CA 95343, USA
| | - Laura Showalter
- Department of Molecular Cell Biology University of California-Merced5200 North Lake Road, Merced, CA 95343, USA
| | - Katti R Horng
- Department of Medical Microbiology and Immunology University of California-Davis 5605 GBSF, 1 Shields Avenue, Davis, CA 95616, USA
| | - Satya Dandekar
- Department of Medical Microbiology and Immunology University of California-Davis 5605 GBSF, 1 Shields Avenue, Davis, CA 95616, USA
| | - Carolina Herrera
- Department of Medicine St. Mary's Campus Imperial College Room 460 Norfolk Place, London W2 1PG, UK
| | - Patricia LiWang
- Department of Molecular Cell Biology University of California-Merced5200 North Lake Road, Merced, CA 95343, USA
| | - David L Kaplan
- Department of Biomedical Engineering Tufts University 4 Colby Street, Medford, MA 02155, USA
| |
Collapse
|
59
|
Kim BM, Lotter‐Stark HCT, Rybicki EP, Chikwamba RK, Palmer KE. Characterization of the hypersensitive response-like cell death phenomenon induced by targeting antiviral lectin griffithsin to the secretory pathway. PLANT BIOTECHNOLOGY JOURNAL 2018; 16:1811-1821. [PMID: 29509998 PMCID: PMC6131415 DOI: 10.1111/pbi.12917] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Revised: 02/24/2018] [Accepted: 02/28/2018] [Indexed: 05/23/2023]
Abstract
Griffithsin (GRFT) is an antiviral lectin, originally derived from a red alga, which is currently being investigated as a topical microbicide to prevent transmission of human immunodeficiency virus (HIV). Targeting GRFT to the apoplast for production in Nicotiana benthamiana resulted in necrotic symptoms associated with a hypersensitive response (HR)-like cell death, accompanied by H2 O2 generation and increased PR1 expression. Mannose-binding lectins surfactant protein D (SP-D), cyanovirin-N (CV-N) and human mannose-binding lectin (hMBL) also induce salicylic acid (SA)-dependent HR-like cell death in N. benthamiana, and this effect is mediated by the lectin's glycan binding activity. We found that secreted GRFT interacts with an endogenous glycoprotein, α-xylosidase (XYL1), which is involved in cell wall organization. The necrotic effect could be mitigated by overexpression of Arabidopsis XYL1, and by co-expression of SA-degrading enzyme NahG, providing strategies for enhancing expression of oligomannose-binding lectins in plants.
Collapse
Affiliation(s)
- Bo Min Kim
- Center for Predictive MedicineJames Graham Brown Cancer CenterDepartment of Pharmacology and ToxicologyUniversity of Louisville School of MedicineLouisvilleKYUSA
| | | | - Edward P. Rybicki
- Department of Molecular & Cell BiologyInstitute of Infectious Disease and Molecular MedicineUniversity of Cape TownCape TownSouth Africa
| | - Rachel K. Chikwamba
- BiosciencesCouncil for Scientific and Industrial Research (CSIR)PretoriaSouth Africa
| | - Kenneth E. Palmer
- Center for Predictive MedicineJames Graham Brown Cancer CenterDepartment of Pharmacology and ToxicologyUniversity of Louisville School of MedicineLouisvilleKYUSA
| |
Collapse
|
60
|
Derby N, Lal M, Aravantinou M, Kizima L, Barnable P, Rodriguez A, Lai M, Wesenberg A, Ugaonkar S, Levendosky K, Mizenina O, Kleinbeck K, Lifson JD, Peet MM, Lloyd Z, Benson M, Heneine W, O'Keefe BR, Robbiani M, Martinelli E, Grasperge B, Blanchard J, Gettie A, Teleshova N, Fernández-Romero JA, Zydowsky TM. Griffithsin carrageenan fast dissolving inserts prevent SHIV HSV-2 and HPV infections in vivo. Nat Commun 2018; 9:3881. [PMID: 30250170 PMCID: PMC6155161 DOI: 10.1038/s41467-018-06349-0] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 08/24/2018] [Indexed: 01/04/2023] Open
Abstract
Human immunodeficiency virus (HIV) pre-exposure prophylaxis (PrEP) strategies with proven in vivo efficacy rely on antiretroviral drugs, creating the potential for drug resistance and complicated treatment options in individuals who become infected. Moreover, on-demand products are currently missing from the PrEP development portfolio. Griffithsin (GRFT) is a non-antiretroviral HIV entry inhibitor derived from red algae with an excellent safety profile and potent activity in vitro. When combined with carrageenan (CG), GRFT has strong activity against herpes simplex virus-2 (HSV-2) and human papillomavirus (HPV) in vitro and in vivo. Here, we report that GRFT/CG in a freeze-dried fast dissolving insert (FDI) formulation for on-demand use protects rhesus macaques from a high dose vaginal SHIV SF162P3 challenge 4 h after FDI insertion. Furthermore, the GRFT/CG FDI also protects mice vaginally against HSV-2 and HPV pseudovirus. As a safe, potent, broad-spectrum, on-demand non-antiretroviral product, the GRFT/CG FDI warrants clinical development.
Collapse
Affiliation(s)
- Nina Derby
- Center for Biomedical Research, Population Council, 1230 York Ave, New York, NY, 10065, USA.
| | - Manjari Lal
- PATH, 2201 Westlake Ave, Suite 200, Seattle, WA, 98121, USA
| | - Meropi Aravantinou
- Center for Biomedical Research, Population Council, 1230 York Ave, New York, NY, 10065, USA
| | - Larisa Kizima
- Center for Biomedical Research, Population Council, 1230 York Ave, New York, NY, 10065, USA
| | - Patrick Barnable
- Center for Biomedical Research, Population Council, 1230 York Ave, New York, NY, 10065, USA
| | - Aixa Rodriguez
- Center for Biomedical Research, Population Council, 1230 York Ave, New York, NY, 10065, USA
| | - Manshun Lai
- PATH, 2201 Westlake Ave, Suite 200, Seattle, WA, 98121, USA
| | - Asa Wesenberg
- Center for Biomedical Research, Population Council, 1230 York Ave, New York, NY, 10065, USA
| | - Shweta Ugaonkar
- Center for Biomedical Research, Population Council, 1230 York Ave, New York, NY, 10065, USA
| | - Keith Levendosky
- Center for Biomedical Research, Population Council, 1230 York Ave, New York, NY, 10065, USA
| | - Olga Mizenina
- Center for Biomedical Research, Population Council, 1230 York Ave, New York, NY, 10065, USA
| | - Kyle Kleinbeck
- Center for Biomedical Research, Population Council, 1230 York Ave, New York, NY, 10065, USA
| | - Jeffrey D Lifson
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, 8560 Progress Dr, Frederick, MD, 21701, USA
| | - M Melissa Peet
- MPI Research, 54943 N. Main St, Mattawan, MI, 49071, USA
| | - Zachary Lloyd
- MPI Research, 54943 N. Main St, Mattawan, MI, 49071, USA
| | - Michael Benson
- MPI Research, 54943 N. Main St, Mattawan, MI, 49071, USA
| | - Walid Heneine
- Centers for Disease Control, 1600 Clifton Rd, Atlanta, GA, 30333, USA
| | - Barry R O'Keefe
- Molecular Targets Program, Center for Cancer Research, and Natural Products Branch, Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Building 560, Room 21-105, Frederick, MD, 21702-1201, USA
| | | | - Elena Martinelli
- Center for Biomedical Research, Population Council, 1230 York Ave, New York, NY, 10065, USA
| | - Brooke Grasperge
- Tulane National Primate Research Center, 18703 Three Rivers Rd, Covington, LA, 70433-8915, USA
| | - James Blanchard
- Tulane National Primate Research Center, 18703 Three Rivers Rd, Covington, LA, 70433-8915, USA
| | - Agegnehu Gettie
- Aaron Diamond AIDS Research Center, 455 1st Ave. #7, New York, NY, 10016, USA
| | - Natalia Teleshova
- Center for Biomedical Research, Population Council, 1230 York Ave, New York, NY, 10065, USA
| | - José A Fernández-Romero
- Center for Biomedical Research, Population Council, 1230 York Ave, New York, NY, 10065, USA
- Science Department, Borough of Manhattan Community College, 199 Chambers St, New York, NY, 10007, USA
| | - Thomas M Zydowsky
- Center for Biomedical Research, Population Council, 1230 York Ave, New York, NY, 10065, USA
| |
Collapse
|
61
|
Falkenhagen A, Joshi S. HIV Entry and Its Inhibition by Bifunctional Antiviral Proteins. MOLECULAR THERAPY-NUCLEIC ACIDS 2018; 13:347-364. [PMID: 30340139 PMCID: PMC6197789 DOI: 10.1016/j.omtn.2018.09.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 09/05/2018] [Accepted: 09/05/2018] [Indexed: 12/14/2022]
Abstract
HIV entry is a highly specific and time-sensitive process that can be divided into receptor binding, coreceptor binding, and membrane fusion. Bifunctional antiviral proteins (bAVPs) exploit the multi-step nature of the HIV entry process by binding to two different extracellular targets. They are generated by expressing a fusion protein containing two entry inhibitors with a flexible linker. The resulting fusion proteins exhibit exceptional neutralization potency and broad cross-clade inhibition. In this review, we summarize the HIV entry process and provide an overview of the design, antiviral potency, and methods of delivery of bAVPs. Additionally, we discuss the advantages and limitations of bAVPs for HIV prevention and treatment.
Collapse
Affiliation(s)
- Alexander Falkenhagen
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 3E2, Canada
| | - Sadhna Joshi
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 3E2, Canada.
| |
Collapse
|
62
|
Unexpected synergistic HIV neutralization by a triple microbicide produced in rice endosperm. Proc Natl Acad Sci U S A 2018; 115:E7854-E7862. [PMID: 30061386 PMCID: PMC6099877 DOI: 10.1073/pnas.1806022115] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Our paper provides an approach for the durable deployment of anti-HIV agents in the developing world. We developed a transgenic rice line expressing three microbicidal proteins (the HIV-neutralizing antibody 2G12 and the lectins griffithsin and cyanovirin-N). Simultaneous expression in the same plant allows the crude seed extract to be used directly as a topical microbicide cocktail, avoiding the costs of multiple downstream processes. This groundbreaking strategy is realistically the only way that microbicidal cocktails can be manufactured at a cost low enough for the developing world, where HIV prophylaxis is most in demand. The transmission of HIV can be prevented by the application of neutralizing monoclonal antibodies and lectins. Traditional recombinant protein manufacturing platforms lack sufficient capacity and are too expensive for developing countries, which suffer the greatest disease burden. Plants offer an inexpensive and scalable alternative manufacturing platform that can produce multiple components in a single plant, which is important because multiple components are required to avoid the rapid emergence of HIV-1 strains resistant to single microbicides. Furthermore, crude extracts can be used directly for prophylaxis to avoid the massive costs of downstream processing and purification. We investigated whether rice could simultaneously produce three functional HIV-neutralizing proteins (the monoclonal antibody 2G12, and the lectins griffithsin and cyanovirin-N). Preliminary in vitro tests showed that the cocktail of three proteins bound to gp120 and achieved HIV-1 neutralization. Remarkably, when we mixed the components with crude extracts of wild-type rice endosperm, we observed enhanced binding to gp120 in vitro and synergistic neutralization when all three components were present. Extracts of transgenic plants expressing all three proteins also showed enhanced in vitro binding to gp120 and synergistic HIV-1 neutralization. Fractionation of the rice extracts suggested that the enhanced gp120 binding was dependent on rice proteins, primarily the globulin fraction. Therefore, the production of HIV-1 microbicides in rice may not only reduce costs compared to traditional platforms but may also provide functional benefits in terms of microbicidal potency.
Collapse
|
63
|
Natural product-derived compounds in HIV suppression, remission, and eradication strategies. Antiviral Res 2018; 158:63-77. [PMID: 30063970 DOI: 10.1016/j.antiviral.2018.07.016] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Revised: 07/10/2018] [Accepted: 07/21/2018] [Indexed: 12/12/2022]
Abstract
While combination antiretroviral therapy (cART) has successfully converted HIV to a chronic but manageable infection in many parts of the world, HIV continues to persist within latent cellular reservoirs, which can become reactivated at any time to produce infectious virus. New therapies are therefore needed not only for HIV suppression but also for containing or eliminating HIV reservoirs. Compounds derived from plant, marine, and other natural products have been found to combat HIV infection and/or target HIV reservoirs, and these discoveries have substantially guided current HIV therapy-based studies. Here we summarize the role of natural product-derived compounds in current HIV suppression, remission, and cure strategies.
Collapse
|
64
|
Alam A, Jiang L, Kittleson GA, Steadman KD, Nandi S, Fuqua JL, Palmer KE, Tusé D, McDonald KA. Technoeconomic Modeling of Plant-Based Griffithsin Manufacturing. Front Bioeng Biotechnol 2018; 6:102. [PMID: 30087892 PMCID: PMC6066545 DOI: 10.3389/fbioe.2018.00102] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 07/02/2018] [Indexed: 12/23/2022] Open
Abstract
Griffithsin is a marine algal lectin that exhibits broad-spectrum antiviral activity by binding oligomannose glycans on viral envelope glycoproteins, including those found in HIV-1, HSV-2, SARS, HCV and other enveloped viruses. An efficient, scalable and cost-effective manufacturing process for Griffithsin is essential for the adoption of this drug in human antiviral prophylaxis and therapy, particularly in cost-sensitive indications such as topical microbicides for HIV-1 prevention. The production of certain classes of recombinant biologics in plants can offer scalability, cost and environmental impact advantages over traditional biomanufacturing platforms. Previously, we showed the technical viability of producing recombinant Griffithsin in plants. In this study, we conducted a technoeconomic analysis (TEA) of plant-produced Griffithsin manufactured at commercial launch volumes for use in HIV microbicides. Data derived from multiple non-sequential manufacturing batches conducted at pilot scale and existing facility designs were used to build a technoeconomic model using SuperPro Designer® modeling software. With an assumed commercial launch volume of 20 kg Griffithsin/year for 6.7 million doses of Griffithsin microbicide at 3 mg/dose, a transient vector expression yield of 0.52 g Griffithsin/kg leaf biomass, recovery efficiency of 70%, and purity of >99%, we calculated a manufacturing cost for the drug substance of $0.32/dose and estimated a bulk product cost of $0.38/dose assuming a 20% net fee for a contract manufacturing organization (CMO). This is the first report modeling the manufacturing economics of Griffithsin. The process analyzed is readily scalable and subject to efficiency improvements and could provide the needed market volumes of the lectin within an acceptable range of costs, even for cost-constrained products such as microbicides. The manufacturing process was also assessed for environmental, health and safety impact and found to have a highly favorable environmental output index with negligible risks to health and safety. The results of this study help validate the plant-based manufacturing platform and should assist in selecting preferred indications for Griffithsin as a novel drug.
Collapse
Affiliation(s)
- Aatif Alam
- Department of Chemical Engineering, University of California, Davis, Davis, CA, United States
| | - Linda Jiang
- Department of Chemical Engineering, University of California, Davis, Davis, CA, United States
| | - Gregory A. Kittleson
- Department of Chemical Engineering, University of California, Davis, Davis, CA, United States
| | - Kenneth D. Steadman
- Department of Chemical Engineering, University of California, Davis, Davis, CA, United States
| | - Somen Nandi
- Department of Chemical Engineering, University of California, Davis, Davis, CA, United States
- Global HealthShare Initiative, University of California, Davis, Davis, CA, United States
| | - Joshua L. Fuqua
- Center for Predictive Medicine, University of Louisville, Louisville, KY, United States
| | - Kenneth E. Palmer
- Center for Predictive Medicine, University of Louisville, Louisville, KY, United States
| | - Daniel Tusé
- Intrucept Biomedicine, LLC, Sacramento, CA, United States
| | - Karen A. McDonald
- Department of Chemical Engineering, University of California, Davis, Davis, CA, United States
- Global HealthShare Initiative, University of California, Davis, Davis, CA, United States
| |
Collapse
|
65
|
Habibi P, Soccol CR, O’Keefe BR, Krumpe LR, Wilson J, de Macedo LLP, Faheem M, Dos Santos VO, Prado GS, Botelho MA, Lacombe S, Grossi-de-Sa MF. Gene-silencing suppressors for high-level production of the HIV-1 entry inhibitor griffithsin in Nicotiana benthamiana. Process Biochem 2018; 70:45-54. [PMID: 32288594 PMCID: PMC7108441 DOI: 10.1016/j.procbio.2018.04.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 03/21/2018] [Accepted: 04/06/2018] [Indexed: 11/26/2022]
Abstract
The exploration of emerging host organisms for the economic and efficient production of protein microbicides against HIV is urgently needed in resource-poor areas worldwide. In this study, the production of the novel HIV entry inhibitor candidate, griffithsin (GRFT), was investigated using Nicotiana benthamiana as the expression platform based on a non-viral vector. To increase the yield of recombinant GRFT, the RNA silencing defense mechanism of N. benthamiana was abolished by using three gene silencing suppressors. A transient expression system was used by transferring the GRFT gene, which encodes 122 amino acids, under the control of the enhanced CaMV 35S promoter. The presence of correctly assembled GRFT in transgenic leaves was confirmed using immunoglobulin-specific sandwich ELISA. The data demonstrated that the use of three gene silencing suppressors allowed the highest accumulation of GRFT, with a yield of 400 μg g-1 fresh weight, and this amount was reduced to 287 μg g-1 after purification, representing a recovery of 71.75%. The analysis also showed that the ability of GRFT expressed in N. benthamiana to bind to glycoprotein 120 is close to that of the GRFT protein purified from E. coli. Whole-cell assays using purified GRFT showed that our purified GRFT was potently active against HIV. This study provides the first high-level production of the HIV-1 entry inhibitor griffithsin with a non-viral expression system and illustrates the robustness of the co-agroinfiltration expression system improved through the use of three gene silencing suppressors.
Collapse
Affiliation(s)
- Peyman Habibi
- Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná, Curitiba, PR, Brazil
- Embrapa Genetic Resources and Biotechnology, PqEB-Final W5 Norte – CP 02372, Brasília-DF, Brazil
| | - Carlos Ricardo Soccol
- Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná, Curitiba, PR, Brazil
| | - Barry R. O’Keefe
- Molecular Targets Program, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, USA
- Natural Products Branch, Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Frederick, MD, USA
| | - Lauren R.H. Krumpe
- Basic Science Program, Leidos Biomedical Research, Inc., Molecular Targets Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Jennifer Wilson
- Molecular Targets Program, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, USA
| | | | - Muhammad Faheem
- Embrapa Genetic Resources and Biotechnology, PqEB-Final W5 Norte – CP 02372, Brasília-DF, Brazil
| | | | - Guilherme Souza Prado
- Embrapa Genetic Resources and Biotechnology, PqEB-Final W5 Norte – CP 02372, Brasília-DF, Brazil
| | | | - Severine Lacombe
- IRD, CIRAD, Universite Montpellier, Interactions Plantes Microorganismes et Environnement (IPME), Montpellier, France
| | - Maria Fatima Grossi-de-Sa
- Embrapa Genetic Resources and Biotechnology, PqEB-Final W5 Norte – CP 02372, Brasília-DF, Brazil
- Catholic University of Brasília, Brasília-DF, Brazil
- Post Graduation Program in Biotechnology, University Potiguar, Natal, RN, Brazil
| |
Collapse
|
66
|
Hoelscher M, Tiller N, Teh AYH, Wu GZ, Ma JKC, Bock R. High-level expression of the HIV entry inhibitor griffithsin from the plastid genome and retention of biological activity in dried tobacco leaves. PLANT MOLECULAR BIOLOGY 2018; 97:357-370. [PMID: 29948657 PMCID: PMC6061503 DOI: 10.1007/s11103-018-0744-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 05/29/2018] [Indexed: 05/02/2023]
Abstract
KEY MESSAGE The potent anti-HIV microbicide griffithsin was expressed to high levels in tobacco chloroplasts, enabling efficient purification from both fresh and dried biomass, thus providing storable material for inexpensive production and scale-up on demand. The global HIV epidemic continues to grow, with 1.8 million new infections occurring per year. In the absence of a cure and an AIDS vaccine, there is a pressing need to prevent new infections in order to curb the disease. Topical microbicides that block viral entry into human cells can potentially prevent HIV infection. The antiviral lectin griffithsin has been identified as a highly potent inhibitor of HIV entry into human cells. Here we have explored the possibility to use transplastomic plants as an inexpensive production platform for griffithsin. We show that griffithsin accumulates in stably transformed tobacco chloroplasts to up to 5% of the total soluble protein of the plant. Griffithsin can be easily purified from leaf material and shows similarly high virus neutralization activity as griffithsin protein recombinantly expressed in bacteria. We also show that dried tobacco provides a storable source material for griffithsin purification, thus enabling quick scale-up of production on demand.
Collapse
Affiliation(s)
- Matthijs Hoelscher
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Nadine Tiller
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
- Leibniz Universität Hannover, Herrenhäuser Straße 2, 30419, Hannover, Germany
| | - Audrey Y-H Teh
- Institute for Infection and Immunity, St. George's, University of London, Cranmer Terrace, London, SW17 0RE, UK
| | - Guo-Zhang Wu
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Julian K-C Ma
- Institute for Infection and Immunity, St. George's, University of London, Cranmer Terrace, London, SW17 0RE, UK
| | - Ralph Bock
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany.
| |
Collapse
|
67
|
Lal M, Lai M, Ugaonkar S, Wesenberg A, Kizima L, Rodriguez A, Levendosky K, Mizenina O, Fernández-Romero J, Zydowsky T. Development of a Vaginal Fast-Dissolving Insert Combining Griffithsin and Carrageenan for Potential Use Against Sexually Transmitted Infections. J Pharm Sci 2018; 107:2601-2610. [PMID: 29902477 DOI: 10.1016/j.xphs.2018.06.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 04/24/2018] [Accepted: 06/05/2018] [Indexed: 10/14/2022]
Abstract
Precoital, on-demand topical microbicides to reduce a woman's risk of sexually transmitted infections have been in development for nearly 3 decades, but no product has been approved due to acceptability issues and poor adherence in clinical trials. We set out to develop a self-administered vaginal fast-dissolving insert (FDI) produced by freeze-drying that would deliver safe and effective amounts of the antiviral agents griffithsin (GRFT) and carrageenan (CG) and would have properties women and their partners find acceptable. We evaluated FDI physical criteria, attributes of the gel produced upon dissolving, and GRFT stability. The lead formulation, FDI-024, was selected from 13 candidates and contains 4 mg of GRFT, 15 mg of CG, and excipients (the cryoprotectant sucrose and bulking agents dextran 40 and mannitol). The FDI exhibits good friability and hardness and is stable for at least 6 months at up to 40°C/75% relative humidity. It disintegrates in less than 60 s in a physiologically relevant volume (∼1 mL) of simulated vaginal fluid, forming a viscous semi-solid gel with favorable mucoadhesive and spreading properties. The formulation retains the antiviral activity of GRFT and CG against HIV type 1 and human papillomavirus, respectively, in cell-based assays.
Collapse
Affiliation(s)
- Manjari Lal
- PATH, PO Box 900922, Seattle, Washington 98109.
| | - Manshun Lai
- PATH, PO Box 900922, Seattle, Washington 98109
| | - Shweta Ugaonkar
- Population Council, Center for Biomedical Research, New York, New York 10065
| | - Asa Wesenberg
- Population Council, Center for Biomedical Research, New York, New York 10065
| | - Larisa Kizima
- Population Council, Center for Biomedical Research, New York, New York 10065
| | - Aixa Rodriguez
- Population Council, Center for Biomedical Research, New York, New York 10065
| | - Keith Levendosky
- Population Council, Center for Biomedical Research, New York, New York 10065
| | - Olga Mizenina
- Population Council, Center for Biomedical Research, New York, New York 10065
| | - José Fernández-Romero
- Population Council, Center for Biomedical Research, New York, New York 10065; The City University of New York, Borough of Manhattan Community College, Science Department, New York, New York 10007
| | - Thomas Zydowsky
- Population Council, Center for Biomedical Research, New York, New York 10065
| |
Collapse
|
68
|
Girard L, Birse K, Holm JB, Gajer P, Humphrys MS, Garber D, Guenthner P, Noël-Romas L, Abou M, McCorrister S, Westmacott G, Wang L, Rohan LC, Matoba N, McNicholl J, Palmer KE, Ravel J, Burgener AD. Impact of the griffithsin anti-HIV microbicide and placebo gels on the rectal mucosal proteome and microbiome in non-human primates. Sci Rep 2018; 8:8059. [PMID: 29795295 PMCID: PMC5966460 DOI: 10.1038/s41598-018-26313-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 05/10/2018] [Indexed: 12/26/2022] Open
Abstract
Topical microbicides are being explored as an HIV prevention method for individuals who practice receptive anal intercourse. In vivo studies of these microbicides are critical to confirm safety. Here, we evaluated the impact of a rectal microbicide containing the antiviral lectin, Griffithsin (GRFT), on the rectal mucosal proteome and microbiome. Using a randomized, crossover placebo-controlled design, six rhesus macaques received applications of hydroxyethylcellulose (HEC)- or carbopol-formulated 0.1% GRFT gels. Rectal mucosal samples were then evaluated by label-free tandem MS/MS and 16 S rRNA gene amplicon sequencing, for proteomics and microbiome analyses, respectively. Compared to placebo, GRFT gels were not associated with any significant changes to protein levels at any time point (FDR < 5%), but increased abundances of two common and beneficial microbial taxa after 24 hours were observed in HEC-GRFT gel (p < 2E-09). Compared to baseline, both placebo formulations were associated with alterations to proteins involved in proteolysis, activation of the immune response and inflammation after 2 hours (p < 0.0001), and increases in beneficial Faecalibacterium spp. after 24 hours in HEC placebo gel (p = 4.21E-15). This study supports the safety profile of 0.1% GRFT gel as an anti-HIV microbicide and demonstrates that current placebo formulations may associate with changes to rectal proteome and microbiota.
Collapse
Affiliation(s)
- Lauren Girard
- National HIV and Retrovirology Labs, JC Wilt Infectious Diseases Research Centre, Public Health Agency of Canada, Winnipeg, Canada
- Department of Medical Microbiology, University of Manitoba, Winnipeg, Canada
| | - Kenzie Birse
- National HIV and Retrovirology Labs, JC Wilt Infectious Diseases Research Centre, Public Health Agency of Canada, Winnipeg, Canada
- Department of Medical Microbiology, University of Manitoba, Winnipeg, Canada
| | - Johanna B Holm
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, USA
| | - Pawel Gajer
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, USA
| | - Mike S Humphrys
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, USA
| | - David Garber
- Laboratory Branch, Division of HIV/AIDS Prevention, National Centre for HIV/AIDS, Viral Hepatitis, Sexually Transmitted Disease and Tuberculosis Prevention, CDC, Atlanta, USA
| | - Patricia Guenthner
- Laboratory Branch, Division of HIV/AIDS Prevention, National Centre for HIV/AIDS, Viral Hepatitis, Sexually Transmitted Disease and Tuberculosis Prevention, CDC, Atlanta, USA
| | - Laura Noël-Romas
- National HIV and Retrovirology Labs, JC Wilt Infectious Diseases Research Centre, Public Health Agency of Canada, Winnipeg, Canada
- Department of Medical Microbiology, University of Manitoba, Winnipeg, Canada
| | - Max Abou
- National HIV and Retrovirology Labs, JC Wilt Infectious Diseases Research Centre, Public Health Agency of Canada, Winnipeg, Canada
| | - Stuart McCorrister
- Mass Spectrometry and Proteomics Core Facility, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Canada
| | - Garrett Westmacott
- Mass Spectrometry and Proteomics Core Facility, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Canada
| | - Lin Wang
- Magee Women's Research Institute, Pittsburgh, USA
- School of Pharmacy, University of Pittsburgh, Pittsburgh, USA
| | - Lisa C Rohan
- Magee Women's Research Institute, Pittsburgh, USA
- School of Pharmacy, University of Pittsburgh, Pittsburgh, USA
| | - Nobuyuki Matoba
- Center for Predictive Medicine, University of Louisville, Louisville, USA
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, USA
- James Graham Brown Cancer Centre, University of Louisville, Louisville, USA
| | - Janet McNicholl
- Laboratory Branch, Division of HIV/AIDS Prevention, National Centre for HIV/AIDS, Viral Hepatitis, Sexually Transmitted Disease and Tuberculosis Prevention, CDC, Atlanta, USA
| | - Kenneth E Palmer
- Center for Predictive Medicine, University of Louisville, Louisville, USA
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, USA
- James Graham Brown Cancer Centre, University of Louisville, Louisville, USA
| | - Jacques Ravel
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, USA
| | - Adam D Burgener
- National HIV and Retrovirology Labs, JC Wilt Infectious Diseases Research Centre, Public Health Agency of Canada, Winnipeg, Canada.
- Department of Medical Microbiology, University of Manitoba, Winnipeg, Canada.
- Unit of Infectious Diseases, Department of Medicine Solna, Centre for Molecular Medicine, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
69
|
Mazalovska M, Kouokam JC. Lectins as Promising Therapeutics for the Prevention and Treatment of HIV and Other Potential Coinfections. BIOMED RESEARCH INTERNATIONAL 2018; 2018:3750646. [PMID: 29854749 PMCID: PMC5964492 DOI: 10.1155/2018/3750646] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 03/20/2018] [Accepted: 04/01/2018] [Indexed: 12/20/2022]
Abstract
Human immunodeficiency virus-acquired immunodeficiency syndrome (HIV/AIDS) remains a global health problem. Current therapeutics specifically target the viral pathogen at various stages of its life cycle, although complex interactions between HIV and other pathogenic organisms are evident. Targeting HIV and concomitant infectious pathogens simultaneously, both by therapeutic regimens and in prevention strategies, would help contain the AIDS pandemic. Lectins, a ubiquitous group of proteins that specifically bind glycosylated molecules, are interesting compounds that could be used for this purpose, with demonstrated anti-HIV properties. In addition, potential coinfecting pathogens, including other enveloped viruses, bacteria, yeasts and fungi, and protozoa, display sugar-coated macromolecules on their surfaces, making them potential targets of lectins. This review summarizes the currently available findings suggesting that lectins should be further developed to simultaneously fight the AIDS pandemic and concomitant infections in HIV infected individuals.
Collapse
Affiliation(s)
- Milena Mazalovska
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40202, USA
- Center for Predictive Medicine, University of Louisville, Louisville, KY 40202, USA
| | - J. Calvin Kouokam
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40202, USA
- Center for Predictive Medicine, University of Louisville, Louisville, KY 40202, USA
- James Graham Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY 40202, USA
| |
Collapse
|
70
|
Tyo KM, Duan J, Kollipara P, Dela Cerna MVC, Lee D, Palmer KE, Steinbach-Rankins JM. pH-responsive delivery of Griffithsin from electrospun fibers. Eur J Pharm Biopharm 2018; 138:64-74. [PMID: 29698714 DOI: 10.1016/j.ejpb.2018.04.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 04/05/2018] [Accepted: 04/15/2018] [Indexed: 10/17/2022]
Abstract
Human immunodeficiency virus (HIV-1) affects over 36 million people globally. Current prevention strategies utilize antiretrovirals that have demonstrated protection, but result in antiviral resistance, adverse toxicity, and require frequent administration. A novel biologic, griffithsin (GRFT), has demonstrated outstanding safety and efficacy against laboratory and primary HIV isolates and against intravaginal murine herpes simplex virus 2 (HSV-2) challenge, making it a promising microbicide candidate. However, transient activity and instability remain concerns surrounding biologic delivery, particularly in the harsh environment of the female reproductive tract (FRT). Recently, electrospun fibers (EFs) have demonstrated promise for intravaginal delivery, with the potential to conserve active agent until release is needed. The goal of this study was to fabricate and characterize pH-responsive fibers comprised of poly(lactic-co-glycolic acid) (PLGA) or methoxypolyethylene glycol-b-PLGA (mPEG-PLGA) with varying ratios of poly(n-butyl acrylate-co-acrylic acid) (PBA-co-PAA), to selectively release GRFT under pH-conditions that mimic semen introduction. Fibers comprised of mPEG-PLGA:PBA-co-PAA (90:10 w/w) demonstrated high GRFT loading that was maintained within simulated vaginal fluid (SVF), and pH-dependent release upon exposure to buffered and SVF:simulated semen solutions. Moreover, GRFT fibers demonstrated potent in vitro efficacy against HIV-1 and safety in vaginal epithelial cells, suggesting their future potential for efficacious biologic delivery to the FRT.
Collapse
Affiliation(s)
- Kevin M Tyo
- Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, KY, United States; Center for Predictive Medicine, Louisville, KY, United States
| | - Jinghua Duan
- Department of Bioengineering, Speed School of Engineering, University of Louisville, Louisville, KY, United States; Center for Predictive Medicine, Louisville, KY, United States
| | - Pravallika Kollipara
- Department of Bioengineering, Speed School of Engineering, University of Louisville, Louisville, KY, United States
| | - Mark Vincent C Dela Cerna
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Louisville, Louisville, KY, United States
| | - Donghan Lee
- Department of Medicine, James Graham Brown Cancer Center, University of Louisville, Louisville, KY, United States
| | - Kenneth E Palmer
- Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, KY, United States; Center for Predictive Medicine, Louisville, KY, United States
| | - Jill M Steinbach-Rankins
- Department of Bioengineering, Speed School of Engineering, University of Louisville, Louisville, KY, United States; Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, KY, United States; Department of Microbiology and Immunology, School of Medicine, University of Louisville, KY, United States; Center for Predictive Medicine, Louisville, KY, United States.
| |
Collapse
|
71
|
Restricted HIV-1 Env glycan engagement by lectin-reengineered DAVEI protein chimera is sufficient for lytic inactivation of the virus. Biochem J 2018; 475:931-957. [PMID: 29343613 DOI: 10.1042/bcj20170662] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Revised: 12/28/2017] [Accepted: 01/17/2018] [Indexed: 12/28/2022]
Abstract
We previously reported a first-generation recombinant DAVEI construct, a dual action virus entry inhibitor composed of cyanovirin-N (CVN) fused to a membrane proximal external region or its derivative peptide Trp3. DAVEI exhibits potent and irreversible inactivation of HIV-1 (human immunodeficiency virus) viruses by dual engagement of gp120 and gp41. However, the promiscuity of CVN to associate with multiple glycosylation sites in gp120 and its multivalency limit current understanding of the molecular arrangement of the DAVEI molecules on trimeric spike. Here, we constructed and investigated the virolytic function of second-generation DAVEI molecules using a simpler lectin, microvirin (MVN). MVN is a monovalent lectin with a single glycan-binding site in gp120, is structurally similar to CVN and exhibits no toxicity or mitogenicity, both of which are liabilities with CVN. We found that, like CVN-DAVEI-L2-3Trp (peptide sequence DKWASLWNW), MVN-DAVEI2-3Trp exploits a similar mechanism of action for inducing HIV-1 lytic inactivation, but by more selective gp120 glycan engagement. By sequence redesign, we significantly increased the potency of MVN-DAVEI2-3Trp protein. Unlike CVN-DAVEI2-3Trp, re-engineered MVN-DAVEI2-3Trp(Q81K/M83R) virolytic activity and its interaction with gp120 were both competed by 2G12 antibody. That the lectin domain in DAVEIs can utilize MVN without loss of virolytic function argues that restricted HIV-1 Env (envelope glycoprotein) glycan engagement is sufficient for virolysis. It also shows that DAVEI lectin multivalent binding with gp120 is not required for virolysis. MVN-DAVEI2-3Trp(Q81K/M83R) provides an improved tool to elucidate productive molecular arrangements of Env-DAVEI enabling virolysis and also opens the way to form DAVEI fusions made up of gp120-binding small molecules linked to Trp3 peptide.
Collapse
|
72
|
Plants as sources of natural and recombinant anti-cancer agents. Biotechnol Adv 2018; 36:506-520. [DOI: 10.1016/j.biotechadv.2018.02.002] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 01/23/2018] [Accepted: 02/01/2018] [Indexed: 02/07/2023]
|
73
|
Lotfi H, Sheervalilou R, Zarghami N. An update of the recombinant protein expression systems of Cyanovirin-N and challenges of preclinical development. BIOIMPACTS : BI 2018. [PMID: 29977835 DOI: 10.1517/bi.2018.16] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Abstract
Introduction: Human immunodeficiency virus (HIV) is a debilitating challenge and concern worldwide. Accessibility to highly active antiretroviral drugs is little or none for developing countries. Production of cost-effective microbicides to prevent the infection with HIV is a requirement. Cyanovirin-N (CVN) is known as a promising cyanobacterial lectin, capable of inhibiting the HIV cell entry in a highly specific manner. Methods: This review article presents an overview of attempts conducted on different expression systems for the recombinant production of CVN. We have also assessed the potential of the final recombinant product, as an effective anti-HIV microbicide, comparing prokaryotic and eukaryotic expression systems. Results: Artificial production of CVN is a challenging task because the desirable anti-HIV activity (CVN-gp120 interaction) depends on the correct formation of disulfide bonds during recombinant production. Thus, inexpensive and functional production of rCVN requires an effective expression system which must be found among the bacteria, yeast, and transgenic plants, for the subsequent satisfying medical application. Moreover, the strong anti-HIV potential of CVN in trace concentrations (micromolar to picomolar) was reported for the in vitro and in vivo tests. Conclusion: To produce pharmaceutically effective CVN, we first need to identify the best expression system, with Escherichia coli, Pichia pastoris , Lactic acid bacteria and transgenic plants being possible candidates. For this reason, heterologous production of this valuable protein is a serious challenge. Since different obstacles influence clinical trials on microbicides in the field of HIV prevention, these items should be considered for evaluating the CVN activity in pre-clinical and clinical studies.
Collapse
Affiliation(s)
- Hajie Lotfi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Roghayeh Sheervalilou
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nosratollah Zarghami
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
74
|
Singh RS, Walia AK. Lectins from red algae and their biomedical potential. JOURNAL OF APPLIED PHYCOLOGY 2017; 30:1833-1858. [PMID: 32214665 PMCID: PMC7088393 DOI: 10.1007/s10811-017-1338-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 11/06/2017] [Accepted: 11/06/2017] [Indexed: 05/08/2023]
Abstract
Lectins are unique proteins or glycoproteins of non-immune origin that bind specifically to carbohydrates. They recognise and interact reversibly to either free carbohydrates or glycoconjugates, without modifying their structure. Lectins are highly diverse and widely distributed in nature and have been extensively reported from various red algae species. Numerous red algae species have been reported to possess lectins having carbohydrate specificity towards complex glycoproteins or high-mannose N-glycans. These lectin-glycan interactions further trigger many biochemical responses which lead to their extensive use as valuable tools in biomedical research. Thus, owing to their exceptional glycan recognition property, red algae lectins are potential candidate for inhibition of various viral diseases. Hence, the present report integrates existing information on the red algae lectins, their carbohydrate specificity, and characteristics of purified lectins. Further, the review also reports the current state of research into their anti-viral activity against various enveloped viruses such as HIV, hepatitis, influenza, encephalitis, coronavirus and herpes simplex virus and other biomedical activities such as anti-cancer, anti-microbial, anti-inflammatory, anti-nociceptive and acaricidal activities.
Collapse
Affiliation(s)
- Ram Sarup Singh
- Carbohydrate and Protein Biotechnology Laboratory, Department of Biotechnology, Punjabi University, Patiala, Punjab 147 002 India
| | - Amandeep Kaur Walia
- Carbohydrate and Protein Biotechnology Laboratory, Department of Biotechnology, Punjabi University, Patiala, Punjab 147 002 India
| |
Collapse
|
75
|
Lotfi H, Sheervalilou R, Zarghami N. An update of the recombinant protein expression systems of Cyanovirin-N and challenges of preclinical development. ACTA ACUST UNITED AC 2017; 8:139-151. [PMID: 29977835 PMCID: PMC6026528 DOI: 10.15171/bi.2018.16] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 11/05/2017] [Accepted: 11/07/2017] [Indexed: 12/15/2022]
Abstract
![]()
Introduction: Human immunodeficiency virus (HIV) is a debilitating challenge and concern worldwide. Accessibility to highly active antiretroviral drugs is little or none for developing countries. Production of cost-effective microbicides to prevent the infection with HIV is a requirement. Cyanovirin-N (CVN) is known as a promising cyanobacterial lectin, capable of inhibiting the HIV cell entry in a highly specific manner.
Methods: This review article presents an overview of attempts conducted on different expression systems for the recombinant production of CVN. We have also assessed the potential of the final recombinant product, as an effective anti-HIV microbicide, comparing prokaryotic and eukaryotic expression systems.
Results: Artificial production of CVN is a challenging task because the desirable anti-HIV activity (CVN-gp120 interaction) depends on the correct formation of disulfide bonds during recombinant production. Thus, inexpensive and functional production of rCVN requires an effective expression system which must be found among the bacteria, yeast, and transgenic plants, for the subsequent satisfying medical application. Moreover, the strong anti-HIV potential of CVN in trace concentrations (micromolar to picomolar) was reported for the in vitro and in vivo tests.
Conclusion: To produce pharmaceutically effective CVN, we first need to identify the best expression system, with Escherichia coli, Pichia pastoris , Lactic acid bacteria and transgenic plants being possible candidates. For this reason, heterologous production of this valuable protein is a serious challenge. Since different obstacles influence clinical trials on microbicides in the field of HIV prevention, these items should be considered for evaluating the CVN activity in pre-clinical and clinical studies.
Collapse
Affiliation(s)
- Hajie Lotfi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Roghayeh Sheervalilou
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nosratollah Zarghami
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
76
|
Vuong HR, Tyo KM, Steinbach-Rankins JM. Fabrication and Characterization of Griffithsin-modified Fiber Scaffolds for Prevention of Sexually Transmitted Infections. J Vis Exp 2017. [PMID: 29155732 DOI: 10.3791/56492] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Electrospun fibers (EFs) have been widely used in a variety of therapeutic applications; however, they have only recently been applied as a technology to prevent and treat sexually transmitted infections (STIs). Moreover, many EF technologies focus on encapsulating the active agent, relative to utilizing the surface to impart biofunctionality. Here we describe a method to fabricate and surface-modify poly(lactic-co-glycolic) acid (PLGA) electrospun fibers, with the potent antiviral lectin Griffithsin (GRFT). PLGA is an FDA-approved polymer that has been widely used in drug delivery due to its outstanding chemical and biocompatible properties. GRFT is a natural, potent, and safe lectin that possesses broad activity against numerous viruses including human immunodeficiency virus type 1 (HIV-1). When combined, GRFT-modified fibers have demonstrated potent inactivation of HIV-1 in vitro. This manuscript describes the methods to fabricate and characterize GRFT-modified EFs. First, PLGA is electrospun to create a fiber scaffold. Fibers are subsequently surface-modified with GRFT using 1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC) and N-hydroxysuccinimide (NHS)chemistry. Scanning electron microscopy (SEM) was used to assess the size and morphology of surface-modified formulations. Additionally, a gp120 or hemagglutinin (HA)-based ELISA may be used to quantify the amount of GRFT conjugated to, as well as GRFT desorption from the fiber surface. This protocol can be more widely applied to fabricate fibers that are surface-modified with a variety of different proteins.
Collapse
Affiliation(s)
- Hung R Vuong
- Department of Chemistry, University of Louisville
| | - Kevin M Tyo
- Department of Pharmacology and Toxicology, University of Louisville; Center for Predictive Medicine, University of Louisville
| | - Jill M Steinbach-Rankins
- Department of Pharmacology and Toxicology, University of Louisville; Center for Predictive Medicine, University of Louisville; Department of Microbiology and Immunology, University of Louisville; Department of Bioengineering, University of Louisville;
| |
Collapse
|
77
|
Pharmacokinetics of the Protein Microbicide 5P12-RANTES in Sheep following Single-Dose Vaginal Gel Administration. Antimicrob Agents Chemother 2017; 61:AAC.00965-17. [PMID: 28784672 DOI: 10.1128/aac.00965-17] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 07/28/2017] [Indexed: 11/20/2022] Open
Abstract
5P12-RANTES, a chemokine analogue that potently blocks the HIV CCR5 coreceptor, is being developed as both a vaginal and rectal microbicide for prevention of sexual transmission of HIV. Here, we report the first pharmacokinetic data for 5P12-RANTES following single-dose vaginal gel administration in sheep. Aqueous gel formulations containing low (1.24-mg/ml), intermediate (6.18-mg/ml), and high (32.0-mg/ml; suspension-type gel) concentrations of 5P12-RANTES were assessed via rheology, syringeability, and in vitro release testing. Following vaginal gel administration to sheep, 5P12-RANTES concentrations were measured in vaginal fluid, vaginal tissue, and serum over a 96-h period. All gels showed non-Newtonian pseudoplastic behavior, with the high-concentration gels exhibiting a greater viscosity and cohesive structure than the intermediate- and low-concentration gels. In in vitro release testing, >90% 5P12-RANTES was released from the low- and intermediate-concentration gels after 72 h. For the high-concentration gel, ∼50% 5P12-RANTES was detected, attributed to protein denaturation during lyophilization and/or subsequent solvation of the protein within the gel matrix. In sheep, 5P12-RANTES concentrations in vaginal fluid, vaginal tissue, and serum increased in a dose-dependent manner. The highest concentrations were measured in vaginal fluid (105 to 107 ng/ml), followed by vaginal tissue (104 to 106 ng/ml). Both of these concentration ranges are several orders of magnitude above the reported half-maximal inhibitory concentrations. The lowest concentration was measured in serum (<102 ng/ml). The 5P12-RANTES pharmacokinetic data are similar to those reported previously for other candidate microbicides. These data, coupled with 5P12-RANTES's potency at picomolar concentrations, its strong barrier to resistance, and the full protection that it was observed to provide in a rhesus macaque vaginal challenge model, support the continued development of 5P12-RANTES as a microbicide.
Collapse
|
78
|
Notario-Pérez F, Ruiz-Caro R, Veiga-Ochoa MD. Historical development of vaginal microbicides to prevent sexual transmission of HIV in women: from past failures to future hopes. DRUG DESIGN DEVELOPMENT AND THERAPY 2017; 11:1767-1787. [PMID: 28670111 PMCID: PMC5479294 DOI: 10.2147/dddt.s133170] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Infection with human immunodeficiency virus (HIV) remains a global public health concern and is particularly serious in low- and middle-income countries. Widespread sexual violence and poverty, among other factors, increase the risk of infection in women, while currently available prevention methods are outside the control of most. This has driven the study of vaginal microbicides to prevent sexual transmission of HIV from men to women in recent decades. The first microbicides evaluated were formulated as gels for daily use and contained different substances such as surfactants, acidifiers and monoclonal antibodies, which failed to demonstrate efficacy in clinical trials. A gel containing the reverse transcriptase inhibitor tenofovir showed protective efficacy in women. However, the lack of adherence by patients led to the search for dosage forms capable of releasing the active principle for longer periods, and hence to the emergence of the vaginal ring loaded with dapivirine, which requires a monthly application and is able to reduce the sexual transmission of HIV. The future of vaginal microbicides will feature the use of alternative dosage forms, nanosystems for drug release and probiotics, which have emerged as potential microbicides but are still in the early stages of development. Protecting women with vaginal microbicide formulations would, therefore, be a valuable tool for avoiding sexual transmission of HIV.
Collapse
Affiliation(s)
- Fernando Notario-Pérez
- Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy, Universidad Complutense de Madrid, Madrid, Spain
| | - Roberto Ruiz-Caro
- Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy, Universidad Complutense de Madrid, Madrid, Spain
| | - María-Dolores Veiga-Ochoa
- Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
79
|
Zhang L, Herrera C, Coburn J, Olejniczak N, Ziprin P, Kaplan DL, LiWang PJ. Stabilization and Sustained Release of HIV Inhibitors by Encapsulation in Silk Fibroin Disks. ACS Biomater Sci Eng 2017; 3:1654-1665. [PMID: 33225060 DOI: 10.1021/acsbiomaterials.7b00167] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Topical microbicides have the potential to provide effective protection against sexual transmission of HIV. Challenges in developing microbicides include their application in resource-poor settings with high temperatures and a lack of refrigeration, and low user adherence to a rigorous daily regimen. Several protein-based HIV inhibitors show great promise as microbicides, being highly specific and not expected to lead to resistance that would affect the efficacy of current antiretroviral treatments. We show that four potent protein HIV inhibitors, 5P12-RANTES, 5P12-RANTES-L-C37, Grft, and Grft-L-C37 can be formulated into silk fibroin (SF) disks and remain functional for 14 months at 25, 37, and 50 °C. These HIV inhibitor-encapsulated SF disks show excellent inhibition properties in PBMC and in human colorectal and cervical tissue explants, and do not induce inflammatory cytokine secretion. Further, the SF provides a mechanically robust matrix with versatile material formats for this type of application. Finally, a formulation was developed to allow sustained release of functional Grft for 4 weeks at levels sufficient to inhibit HIV transmission. This work establishes the suitability of HIV inhibitor-encapsulated SF disks as topical HIV microbicides that can be further developed to allow easy insertion for extended protection.
Collapse
Affiliation(s)
- Li Zhang
- Molecular Cell Biology, University of California Merced, 5200 North Lake Road, Merced, California 95343, United States
| | - Carolina Herrera
- Department of Medicine, St. Mary's Campus Imperial College, Room 460 Norfolk Place, London W2 1PG, United Kingdom
| | - Jeannine Coburn
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, Massachusetts 02155, United States
| | - Natalia Olejniczak
- Department of Medicine, St. Mary's Campus Imperial College, Room 460 Norfolk Place, London W2 1PG, United Kingdom
| | - Paul Ziprin
- Department of Surgery and Cancer, St. Mary's Hospital, Imperial College London, London W2 1PZ, United Kingdom
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, Massachusetts 02155, United States
| | - Patricia J LiWang
- Molecular Cell Biology, University of California Merced, 5200 North Lake Road, Merced, California 95343, United States
| |
Collapse
|
80
|
Mitchell CA, Ramessar K, O'Keefe BR. Antiviral lectins: Selective inhibitors of viral entry. Antiviral Res 2017; 142:37-54. [PMID: 28322922 PMCID: PMC5414728 DOI: 10.1016/j.antiviral.2017.03.007] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 03/13/2017] [Indexed: 01/27/2023]
Abstract
Many natural lectins have been reported to have antiviral activity. As some of these have been put forward as potential development candidates for preventing or treating viral infections, we have set out in this review to survey the literature on antiviral lectins. The review groups lectins by structural class and class of source organism we also detail their carbohydrate specificity and their reported antiviral activities. The review concludes with a brief discussion of several of the pertinent hurdles that heterologous proteins must clear to be useful clinical candidates and cites examples where such studies have been reported for antiviral lectins. Though the clearest path currently being followed is the use of antiviral lectins as anti-HIV microbicides via topical mucosal administration, some investigators have also found systemic efficacy against acute infections following subcutaneous administration.
Collapse
Affiliation(s)
- Carter A Mitchell
- Molecular Targets Laboratory, Center for Cancer Research, National Cancer Institute, NIH, Frederick, MD, 21702-1201, USA
| | - Koreen Ramessar
- Molecular Targets Laboratory, Center for Cancer Research, National Cancer Institute, NIH, Frederick, MD, 21702-1201, USA
| | - Barry R O'Keefe
- Molecular Targets Laboratory, Center for Cancer Research, National Cancer Institute, NIH, Frederick, MD, 21702-1201, USA.
| |
Collapse
|
81
|
Jones TH, McClelland EE, McFeeters H, McFeeters RL. Novel Antifungal Activity for the Lectin Scytovirin: Inhibition of Cryptococcus neoformans and Cryptococcus gattii. Front Microbiol 2017; 8:755. [PMID: 28536555 PMCID: PMC5422485 DOI: 10.3389/fmicb.2017.00755] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 04/12/2017] [Indexed: 11/13/2022] Open
Abstract
Pathogenic cryptococci are encapsulated yeast that can cause severe meningoencephalitis. Existing therapeutic options are dated and there is a growing need for new alternative antifungal agents for these fungi. Here we report novel inhibition of pathogenic cryptococci by the antimicrobial lectin Scytovirin. Inhibition was most potent against Cryptococcus neoformans var neoformans and C. gattii, with MFC values of 500 nM. Scytovirin binding was localized to the cell wall and shown to affect capsule size and release. No effect was observed on melanization or with cells grown in the presence the cell wall stressor Congo red. Synergy with existing antifungals was indicated, most strongly for amphotericin B. Overall, Scytovirin serves as a much needed new avenue for anticryptococcal development.
Collapse
Affiliation(s)
- Tyler H Jones
- Department of Chemistry, University of Alabama in Huntsville, HuntsvilleAL, USA
| | - Erin E McClelland
- Department of Biology, Middle Tennessee State University, MurfreesboroTN, USA
| | - Hana McFeeters
- Department of Chemistry, University of Alabama in Huntsville, HuntsvilleAL, USA
| | - Robert L McFeeters
- Department of Chemistry, University of Alabama in Huntsville, HuntsvilleAL, USA
| |
Collapse
|
82
|
Giritch A, Klimyuk V, Gleba Y. 125 years of virology and ascent of biotechnologies based on viral expressio. CYTOL GENET+ 2017. [DOI: 10.3103/s0095452717020037] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
83
|
Shahzad-Ul-Hussan S, Sastry M, Lemmin T, Soto C, Loesgen S, Scott DA, Davison JR, Lohith K, O'Connor R, Kwong PD, Bewley CA. Insights from NMR Spectroscopy into the Conformational Properties of Man-9 and Its Recognition by Two HIV Binding Proteins. Chembiochem 2017; 18:764-771. [PMID: 28166380 PMCID: PMC5557091 DOI: 10.1002/cbic.201600665] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Indexed: 12/12/2022]
Abstract
Man9 GlcNAc2 (Man-9) present at the surface of HIV makes up the binding sites of several HIV-neutralizing agents and the mammalian lectin DC-SIGN, which is involved in cellular immunity and trans-infections. We describe the conformational properties of Man-9 in its free state and when bound by the HIV entry-inhibitor protein microvirin (MVN), and define the minimum epitopes of both MVN and DC-SIGN by using NMR spectroscopy. To facilitate the implementation of 3D 13 C-edited spectra to deconvolute spectral overlap and to determine the solution structure of Man-9, we developed a robust expression system for the production of 13 C,15 N-labeled glycans in mammalian cells. The studies reveal that Man-9 interacts with HIV-binding proteins through distinct epitopes and adopts diverse conformations in the bound state. In combination with molecular dynamics simulations we observed receptor-bound conformations to be sampled by Man-9 in the free state, thus suggesting a conformational selection mechanism for diverse recognition.
Collapse
Affiliation(s)
- Syed Shahzad-Ul-Hussan
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, 8 Center Drive, Bethesda, MD, 20892, USA
- Structural Biology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, 40 Convent Drive, Bethesda, MD, 20892, USA
- Present address: Department of Biology, SBA School of Science and Engineering, Lahore University of Management Sciences, Lahore, 54792, Pakistan
| | - Mallika Sastry
- Structural Biology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, 40 Convent Drive, Bethesda, MD, 20892, USA
| | - Thomas Lemmin
- Structural Biology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, 40 Convent Drive, Bethesda, MD, 20892, USA
- Structural Bioinformatics Core Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, 40 Convent Drive, Bethesda, MD, 20892, USA
| | - Cinque Soto
- Structural Biology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, 40 Convent Drive, Bethesda, MD, 20892, USA
- Structural Bioinformatics Core Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, 40 Convent Drive, Bethesda, MD, 20892, USA
| | - Sandra Loesgen
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, 8 Center Drive, Bethesda, MD, 20892, USA
| | - Danielle A Scott
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, 8 Center Drive, Bethesda, MD, 20892, USA
| | - Jack R Davison
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, 8 Center Drive, Bethesda, MD, 20892, USA
| | - Katheryn Lohith
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, 8 Center Drive, Bethesda, MD, 20892, USA
| | - Robert O'Connor
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, 8 Center Drive, Bethesda, MD, 20892, USA
| | - Peter D Kwong
- Structural Biology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, 40 Convent Drive, Bethesda, MD, 20892, USA
- Structural Bioinformatics Core Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, 40 Convent Drive, Bethesda, MD, 20892, USA
| | - Carole A Bewley
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, 8 Center Drive, Bethesda, MD, 20892, USA
| |
Collapse
|
84
|
Barton C, Kouokam JC, Hurst H, Palmer KE. Pharmacokinetics of the Antiviral Lectin Griffithsin Administered by Different Routes Indicates Multiple Potential Uses. Viruses 2016; 8:v8120331. [PMID: 27999325 PMCID: PMC5192392 DOI: 10.3390/v8120331] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 12/13/2016] [Accepted: 12/13/2016] [Indexed: 02/06/2023] Open
Abstract
Griffithsin (GRFT) is a red alga-derived lectin with demonstrated broad spectrum antiviral activity against enveloped viruses, including severe acute respiratory syndrome-Coronavirus (SARS-CoV), Japanese encephalitis virus (JEV), hepatitis C virus (HCV), and herpes simplex virus-2 (HSV-2). However, its pharmacokinetic profile remains largely undefined. Here, Sprague Dawley rats were administered a single dose of GRFT at 10 or 20 mg/kg by intravenous, oral, and subcutaneous routes, respectively, and serum GRFT levels were measured at select time points. In addition, the potential for systemic accumulation after oral dosing was assessed in rats after 10 daily treatments with GRFT (20 or 40 mg/kg). We found that parenterally-administered GRFT in rats displayed a complex elimination profile, which varied according to administration routes. However, GRFT was not orally bioavailable, even after chronic treatment. Nonetheless, active GRFT capable of neutralizing HIV-Env pseudoviruses was detected in rat fecal extracts after chronic oral dosing. These findings support further evaluation of GRFT for pre-exposure prophylaxis against emerging epidemics for which specific therapeutics are not available, including systemic and enteric infections caused by susceptible enveloped viruses. In addition, GRFT should be considered for antiviral therapy and the prevention of rectal transmission of HIV-1 and other susceptible viruses.
Collapse
Affiliation(s)
- Christopher Barton
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40202, USA.
| | - J Calvin Kouokam
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40202, USA.
| | - Harrell Hurst
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40202, USA.
| | - Kenneth E Palmer
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40202, USA.
- James Graham Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY 40202, USA.
- Center for Predictive Medicine, University of Louisville School of Medicine, Louisville, KY 40202, USA.
| |
Collapse
|
85
|
Studies in a Murine Model Confirm the Safety of Griffithsin and Advocate Its Further Development as a Microbicide Targeting HIV-1 and Other Enveloped Viruses. Viruses 2016; 8:v8110311. [PMID: 27869695 PMCID: PMC5127025 DOI: 10.3390/v8110311] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 11/04/2016] [Indexed: 11/17/2022] Open
Abstract
Griffithsin (GRFT), a lectin from Griffithsia species, inhibits human immunodeficiency virus-1 (HIV-1) replication at sub-nanomolar concentrations, with limited cellular toxicity. However, in vivo safety of GRFT is not fully understood, especially following parenteral administration. We first assessed GRFT’s effects in vitro, on mouse peripheral blood mononuclear cell (mPBMC) viability, mitogenicity, and activation using flow-cytometry, as well as cytokine secretion through enzyme-linked immunosorbent assay (ELISA). Toxicological properties of GRFT were determined after a single subcutaneous administration of 50 mg/kg or 14 daily doses of 10 mg/kg in BALB/c mice. In the context of microbicide development, toxicity of GRFT at 2 mg/kg was determined after subcutaneous, intravaginal, and intraperitoneal administrations, respectively. Interestingly, GRFT caused no significant cell death, mitogenicity, activation, or cytokine release in mPBMCs, validating the usefulness of a mouse model. An excellent safety profile for GRFT was obtained in vivo: no overt changes were observed in animal fitness, blood chemistry or CBC parameters. Following GRFT treatment, reversible splenomegaly was observed with activation of certain spleen B and T cells. However, spleen tissues were not pathologically altered by GRFT (either with a single high dose or chronic doses). Finally, no detectable toxicity was found after mucosal or systemic treatment with 2 mg/kg GRFT, which should be further developed as a microbicide for HIV prevention.
Collapse
|
86
|
Lusvarghi S, Lohith K, Morin-Leisk J, Ghirlando R, Hinshaw JE, Bewley CA. Binding Site Geometry and Subdomain Valency Control Effects of Neutralizing Lectins on HIV-1 Viral Particles. ACS Infect Dis 2016; 2:882-891. [PMID: 27669574 DOI: 10.1021/acsinfecdis.6b00139] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Carbohydrate binding proteins such as griffithsin, cyanovirin-N, and BanLec are potent HIV entry inhibitors and promising microbicides. Each binds to high-mannose glycans on the surface envelope glycoprotein gp120, yet the mechanisms by which they engage viral spikes and exhibit inhibition constants ranging from nanomolar to picomolar are not understood. To determine the structural and mechanistic basis for recognition and potency, we selected a panel of lectins possessing different valencies per subunit, oligomeric states, and relative orientations of carbohydrate binding sites to systematically probe their contributions to inhibiting viral entry. Cryo-electron micrographs and immuno gold staining of lectin-treated viral particles revealed two distinct effects-namely, viral aggregation or clustering of the HIV-1 envelope on the viral membrane-that were dictated by carbohydrate binding site geometry and valency. "Sandwich" surface plasmon resonance experiments revealed that a second binding event occurs only for those lectins that could aggregate viral particles. Furthermore, picomolar Kd values were observed for the second binding event, providing a mechanism by which picomolar IC50 values are achieved. We suggest that these binding and aggregation phenomena translate to neutralization potency.
Collapse
Affiliation(s)
- Sabrina Lusvarghi
- Laboratory of Bioorganic
Chemistry, ‡Laboratory of Cell and Molecular Biology and #Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Center Drive, Bethesda, Maryland 20892, United States
| | - Katheryn Lohith
- Laboratory of Bioorganic
Chemistry, ‡Laboratory of Cell and Molecular Biology and #Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Center Drive, Bethesda, Maryland 20892, United States
| | - Jeanne Morin-Leisk
- Laboratory of Bioorganic
Chemistry, ‡Laboratory of Cell and Molecular Biology and #Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Center Drive, Bethesda, Maryland 20892, United States
| | - Rodolfo Ghirlando
- Laboratory of Bioorganic
Chemistry, ‡Laboratory of Cell and Molecular Biology and #Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Center Drive, Bethesda, Maryland 20892, United States
| | - Jenny E. Hinshaw
- Laboratory of Bioorganic
Chemistry, ‡Laboratory of Cell and Molecular Biology and #Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Center Drive, Bethesda, Maryland 20892, United States
| | - Carole A. Bewley
- Laboratory of Bioorganic
Chemistry, ‡Laboratory of Cell and Molecular Biology and #Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Center Drive, Bethesda, Maryland 20892, United States
| |
Collapse
|
87
|
Grooms TN, Vuong HR, Tyo KM, Malik DA, Sims LB, Whittington CP, Palmer KE, Matoba N, Steinbach-Rankins JM. Griffithsin-Modified Electrospun Fibers as a Delivery Scaffold To Prevent HIV Infection. Antimicrob Agents Chemother 2016; 60:6518-6531. [PMID: 27550363 PMCID: PMC5075055 DOI: 10.1128/aac.00956-16] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Accepted: 08/07/2016] [Indexed: 01/19/2023] Open
Abstract
Despite current prophylactic strategies, sexually transmitted infections (STIs) remain significant contributors to global health challenges, spurring the development of new multipurpose delivery technologies to protect individuals from and treat virus infections. However, there are few methods currently available to prevent and no method to date that cures human immunodeficiency virus (HIV) infection or combinations of STIs. While current oral and topical preexposure prophylaxes have protected against HIV infection, they have primarily relied on antiretrovirals (ARVs) to inhibit infection. Yet continued challenges with ARVs include user adherence to daily treatment regimens and the potential toxicity and antiviral resistance associated with chronic use. The integration of new biological agents may avert some of these adverse effects while also providing new mechanisms to prevent infection. Of the biologic-based antivirals, griffithsin (GRFT) has demonstrated potent inhibition of HIV-1 (and a multitude of other viruses) by adhering to and inactivating HIV-1 immediately upon contact. In parallel with the development of GRFT, electrospun fibers (EFs) have emerged as a promising platform for the delivery of agents active against HIV infection. In the study described here, our goal was to extend the mechanistic diversity of active agents and electrospun fibers by incorporating the biologic GRFT on the EF surface rather than within the EFs to inactivate HIV prior to cellular entry. We fabricated and characterized GRFT-modified EFs (GRFT-EFs) with different surface modification densities of GRFT and demonstrated their safety and efficacy against HIV-1 infection in vitro We believe that EFs are a unique platform that may be enhanced by incorporation of additional antiviral agents to prevent STIs via multiple mechanisms.
Collapse
Affiliation(s)
- Tiffany N Grooms
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky, USA
| | - Hung R Vuong
- Department of Biochemistry, University of Louisville, Louisville, Kentucky, USA
| | - Kevin M Tyo
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky, USA
| | - Danial A Malik
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky, USA
| | - Lee B Sims
- Department of Bioengineering, University of Louisville, Louisville, Kentucky, USA
| | | | - Kenneth E Palmer
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky, USA
- Center for Predictive Medicine, University of Louisville, Louisville, Kentucky, USA
- Owensboro Cancer Research Program at University of Louisville James Graham Brown Cancer Center, Owensboro, Kentucky, USA
| | - Nobuyuki Matoba
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky, USA
- Owensboro Cancer Research Program at University of Louisville James Graham Brown Cancer Center, Owensboro, Kentucky, USA
| | - Jill M Steinbach-Rankins
- Department of Bioengineering, University of Louisville, Louisville, Kentucky, USA
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky, USA
- Department of Microbiology and Immunology, University of Louisville, Louisville, Kentucky, USA
- Center for Predictive Medicine, University of Louisville, Louisville, Kentucky, USA
| |
Collapse
|
88
|
Lusvarghi S, Bewley CA. Griffithsin: An Antiviral Lectin with Outstanding Therapeutic Potential. Viruses 2016; 8:v8100296. [PMID: 27783038 PMCID: PMC5086628 DOI: 10.3390/v8100296] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 10/10/2016] [Accepted: 10/13/2016] [Indexed: 01/03/2023] Open
Abstract
Griffithsin (GRFT), an algae-derived lectin, is one of the most potent viral entry inhibitors discovered to date. It is currently being developed as a microbicide with broad-spectrum activity against several enveloped viruses. GRFT can inhibit human immunodeficiency virus (HIV) infection at picomolar concentrations, surpassing the ability of most anti-HIV agents. The potential to inhibit other viruses as well as parasites has also been demonstrated. Griffithsin's antiviral activity stems from its ability to bind terminal mannoses present in high-mannose oligosaccharides and crosslink these glycans on the surface of the viral envelope glycoproteins. Here, we review structural and biochemical studies that established mode of action and facilitated construction of GRFT analogs, mechanisms that may lead to resistance, and in vitro and pre-clinical results that support the therapeutic potential of this lectin.
Collapse
Affiliation(s)
- Sabrina Lusvarghi
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Carole A Bewley
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
89
|
Limkul J, Iizuka S, Sato Y, Misaki R, Ohashi T, Ohashi T, Fujiyama K. The production of human glucocerebrosidase in glyco-engineered Nicotiana benthamiana plants. PLANT BIOTECHNOLOGY JOURNAL 2016; 14:1682-94. [PMID: 26868756 PMCID: PMC5067671 DOI: 10.1111/pbi.12529] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 11/24/2015] [Accepted: 12/15/2015] [Indexed: 05/18/2023]
Abstract
For the production of therapeutic proteins in plants, the presence of β1,2-xylose and core α1,3-fucose on plants' N-glycan structures has been debated for their antigenic activity. In this study, RNA interference (RNAi) technology was used to down-regulate the endogenous N-acetylglucosaminyltransferase I (GNTI) expression in Nicotiana benthamiana. One glyco-engineered line (NbGNTI-RNAi) showed a strong reduction of plant-specific N-glycans, with the result that as much as 90.9% of the total N-glycans were of high-mannose type. Therefore, this NbGNTI-RNAi would be a promising system for the production of therapeutic glycoproteins in plants. The NbGNTI-RNAi plant was cross-pollinated with transgenic N. benthamiana expressing human glucocerebrosidase (GC). The recombinant GC, which has been used for enzyme replacement therapy in patients with Gaucher's disease, requires terminal mannose for its therapeutic efficacy. The N-glycan structures that were presented on all of the four occupied N-glycosylation sites of recombinant GC in NbGNTI-RNAi plants (GC(gnt1) ) showed that the majority (ranging from 73.3% up to 85.5%) of the N-glycans had mannose-type structures lacking potential immunogenic β1,2-xylose and α1,3-fucose epitopes. Moreover, GC(gnt1) could be taken up into the macrophage cells via mannose receptors, and distributed and taken up into the liver and spleen, the target organs in the treatment of Gaucher's disease. Notably, the NbGNTI-RNAi line, producing GC, was stable and the NbGNTI-RNAi plants were viable and did not show any obvious phenotype. Therefore, it would provide a robust tool for the production of GC with customized N-glycan structures.
Collapse
Affiliation(s)
- Juthamard Limkul
- International Center for Biotechnology, Osaka University, Suita-shi, Osaka, Japan
| | - Sayoko Iizuka
- Division of Gene Therapy, Research Center for Medical Sciences, The Jikei University School of Medicine, Minato-ku, Tokyo, Japan
| | - Yohei Sato
- Division of Gene Therapy, Research Center for Medical Sciences, The Jikei University School of Medicine, Minato-ku, Tokyo, Japan
| | - Ryo Misaki
- International Center for Biotechnology, Osaka University, Suita-shi, Osaka, Japan
| | - Takao Ohashi
- International Center for Biotechnology, Osaka University, Suita-shi, Osaka, Japan
| | - Toya Ohashi
- Division of Gene Therapy, Research Center for Medical Sciences, The Jikei University School of Medicine, Minato-ku, Tokyo, Japan
| | - Kazuhito Fujiyama
- International Center for Biotechnology, Osaka University, Suita-shi, Osaka, Japan
| |
Collapse
|
90
|
Alexandre KB, Mufhandu HT, London GM, Chakauya E, Khati M. Progress and Perspectives on HIV-1 microbicide development. Virology 2016; 497:69-80. [PMID: 27429040 DOI: 10.1016/j.virol.2016.07.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Revised: 07/01/2016] [Accepted: 07/04/2016] [Indexed: 12/12/2022]
Abstract
The majority of HIV-1 infections occur via sexual intercourse. Women are the most affected by the epidemic, particularly in developing countries, due to their socio-economic dependence on men and the fact that they are often victims of gender based sexual violence. Despite significant efforts that resulted in the reduction of infection rates in some countries, there is still need for effective prevention methods against the virus. One of these methods for preventing sexual transmission in women is the use of microbicides. In this review we provide a summary of the progress made toward the discovery of affordable and effective HIV-1 microbicides and suggest future directions. We show that there is a wide range of compounds that have been proposed as potential microbicides. Although most of them have so far failed to show protection in humans, there are many promising ones currently in pre-clinical studies and in clinical trials.
Collapse
Affiliation(s)
- Kabamba B Alexandre
- Council for Scientific and Industrial Research, Pioneering Health Sciences Laboratory, Biosciences Unit, Pretoria, Gauteng, South Africa.
| | - Hazel T Mufhandu
- Council for Scientific and Industrial Research, Pioneering Health Sciences Laboratory, Biosciences Unit, Pretoria, Gauteng, South Africa
| | - Grace M London
- Department of Health Free State District Health Services and Health Programs, South Africa
| | - E Chakauya
- Council for Scientific and Industrial Research, Pioneering Health Sciences Laboratory, Biosciences Unit, Pretoria, Gauteng, South Africa
| | - M Khati
- Council for Scientific and Industrial Research, Pioneering Health Sciences Laboratory, Biosciences Unit, Pretoria, Gauteng, South Africa; University of Cape Town and Groote Schuur Hospital, Department of Medicine, Cape Town, South Africa
| |
Collapse
|
91
|
Scott Y, Dezzutti CS. Non-Antiretroviral Microbicides for HIV Prevention. AIDS Rev 2016; 18:145-150. [PMID: 27438574 PMCID: PMC5053894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Non-antiretroviral microbicide candidates were previously explored as a female-controlled method of preventing sexual transmission of HIV. These products contained non-HIV specific active compounds that were ultimately found to disrupt the vaginal epithelium, cause increased immune activation in the female genital tract, disturb vaginal flora, and/or cause other irritation that precluded their use as vaginal microbicides. Due to the failure of these first-generation candidates, there was a shift in focus to developing HIV pre-exposure prophylaxis and microbicides containing small-molecule antiretrovirals. Even with the limited success of the antiretroviral-based microbicides in clinical evaluations and no commercially available products, there has been significant progress in microbicide research. The lessons learned from previous trials have given rise to more rigorous preclinical evaluation that aims to be better at predicting microbicide efficacy and safety and to novel formulation and delivery technologies. These advances have resulted in renewed interest in developing non-antiretroviral-based microbicides, such as broadly neutralizing antibodies (for example, VRC01) and anti-viral proteins (for example, Griffithsin), as options for persons not wanting to use antiretroviral drugs, and for their potential to prevent multiple sexually transmitted infections.
Collapse
Affiliation(s)
- Yanille Scott
- University of Pittsburgh, Graduate School of Public Health, Pittsburgh, USA
| | - Charlene S Dezzutti
- University of Pittsburgh, School of Medicine; Magee-Womens Research Institute. Pittsburgh, USA
| |
Collapse
|
92
|
Anti-influenza virus activity of high-mannose binding lectins derived from genus Pseudomonas. Virus Res 2016; 223:64-72. [PMID: 27374061 PMCID: PMC7173227 DOI: 10.1016/j.virusres.2016.06.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 06/28/2016] [Indexed: 12/11/2022]
Abstract
Three Pseudomonas-derived lectins: PFL, PML, and PTL, have been examined for anti-influenza virus activity against several strains of influenza virus. These lectins would bind high-mannose glycan and blocked the entry of influenza virus into the host cells. It is expected that these lectins could have an antiviral activity against not only influenza virus but also other enveloped viruses including HIV as described by many other studies. These three lectins will be applicable to a novel microbicide.
Lectin PFL binding high-mannose glycan derived from Pseudomonas fluorescens and other homologous lectins: PML derived from Pseudomonas mandelii and PTL derived from Pseudomonas taiwanensis were examined for antiviral activity. The cDNA of these lectin genes were synthesized, cloned, expressed in Escherichia coli. The expressed lectins were purified by gel filtrations, and supplied to cultures infected with several strains of influenza virus. These three lectins have inhibited propagation of influenza viruses with a similar extent, 50% of inhibition-dose was around ten nanomolar concentration. An immunofluorescent microscopy, a microarray analysis, and several infection experiments with different time periods of lectin addition or using the competitor substrates indicated that binding of these lectins with high-mannose glycan on HA protein of influenza virus could block the virus entry into the host cells, thereby resulting in inhibition of the virus propagation. These Pseudomonas-derived lectins would be protential and attractive antiviral agents targeting glycoproteins of enveloped viruses including influenza virus.
Collapse
|
93
|
Vamvaka E, Arcalis E, Ramessar K, Evans A, O'Keefe BR, Shattock RJ, Medina V, Stöger E, Christou P, Capell T. Rice endosperm is cost-effective for the production of recombinant griffithsin with potent activity against HIV. PLANT BIOTECHNOLOGY JOURNAL 2016; 14:1427-37. [PMID: 26800650 PMCID: PMC4865440 DOI: 10.1111/pbi.12507] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 10/21/2015] [Accepted: 11/06/2015] [Indexed: 05/17/2023]
Abstract
Protein microbicides containing neutralizing antibodies and antiviral lectins may help to reduce the rate of infection with human immunodeficiency virus (HIV) if it is possible to manufacture the components in large quantities at a cost affordable in HIV-endemic regions such as sub-Saharan Africa. We expressed the antiviral lectin griffithsin (GRFT), which shows potent neutralizing activity against HIV, in the endosperm of transgenic rice plants (Oryza sativa), to determine whether rice can be used to produce inexpensive GRFT as a microbicide ingredient. The yield of (OS) GRFT in the best-performing plants was 223 μg/g dry seed weight. We also established a one-step purification protocol, achieving a recovery of 74% and a purity of 80%, which potentially could be developed into a larger-scale process to facilitate inexpensive downstream processing. (OS) GRFT bound to HIV glycans with similar efficiency to GRFT produced in Escherichia coli. Whole-cell assays using purified (OS) GRFT and infectivity assays using crude extracts of transgenic rice endosperm confirmed that both crude and pure (OS) GRFT showed potent activity against HIV and the crude extracts were not toxic towards human cell lines, suggesting they could be administered as a microbicide with only minimal processing. A freedom-to-operate analysis confirmed that GRFT produced in rice is suitable for commercial development, and an economic evaluation suggested that 1.8 kg/ha of pure GRFT could be produced from rice seeds. Our data therefore indicate that rice could be developed as an inexpensive production platform for GRFT as a microbicide component.
Collapse
Affiliation(s)
- Evangelia Vamvaka
- Department of Plant Production and Forestry Science, School of Agrifood and Forestry Science and Engineering (ETSEA), University of Lleida-Agrotecnio Center, Lleida, Spain
| | - Elsa Arcalis
- Department for Applied Genetics and Cell Biology, Molecular Plant Physiology and Crop Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Koreen Ramessar
- Molecular Targets Laboratory, Center for Cancer Research, National Cancer Institute, NIH, Frederick, MD, USA
| | - Abbey Evans
- Department of Medicine, Imperial College London, Norfolk Place, London, UK
| | - Barry R O'Keefe
- Molecular Targets Laboratory, Center for Cancer Research, National Cancer Institute, NIH, Frederick, MD, USA
- Natural Products Branch, Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, NIH, Frederick, MD, USA
| | - Robin J Shattock
- Department of Medicine, Imperial College London, Norfolk Place, London, UK
| | - Vicente Medina
- Department of Plant Production and Forestry Science, School of Agrifood and Forestry Science and Engineering (ETSEA), University of Lleida-Agrotecnio Center, Lleida, Spain
| | - Eva Stöger
- Department for Applied Genetics and Cell Biology, Molecular Plant Physiology and Crop Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Paul Christou
- Department of Plant Production and Forestry Science, School of Agrifood and Forestry Science and Engineering (ETSEA), University of Lleida-Agrotecnio Center, Lleida, Spain
- Catalan Institute for Research and Advanced Studies (ICREA), Barcelona, Spain
| | - Teresa Capell
- Department of Plant Production and Forestry Science, School of Agrifood and Forestry Science and Engineering (ETSEA), University of Lleida-Agrotecnio Center, Lleida, Spain
| |
Collapse
|
94
|
Ishag HZA, Li C, Wang F, Mao X. Griffithsin binds to the glycosylated proteins (E and prM) of Japanese encephalitis virus and inhibit its infection. Virus Res 2016; 215:50-4. [PMID: 26820432 PMCID: PMC7114533 DOI: 10.1016/j.virusres.2016.01.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 01/17/2016] [Accepted: 01/22/2016] [Indexed: 01/22/2023]
Abstract
Griffithsin (GRFT) is a broad-spectrum antiviral protein against several glycosylated viruses. In our previous publication, we have shown that GRFT exerted antiviral activity against Japanese encephalitis virus (JEV) infection. Herein, we further elucidated the mechanism by which GRFT inhibits JEV infection in BHK-21 cells. In vitro experiments using Pull-down assay and Co-immunoprecipitation (CO-IP) assay showed that GRFT binds to the JEV glycosylated viral proteins, specifically the enveloped (E) and premature (prM) glycoproteins. The binding of GRFT to the JEV was competitively inhibited by increasing concentrations of mannose; in turns abolished anti-JEV activity of GRFT. We suggested that, the binding of GRFT to the glycosylated viral proteins may contribute to its anti-JEV activity. Collectively, our data indicated a possible mechanism by which GRFT exerted its anti-JEV activity. This observation suggests GRFT's potentials in the development of therapeutics against JEV or other flavivirus infection.
Collapse
Affiliation(s)
- Hassan Z A Ishag
- College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, Jiangsu Province, China; College of Veterinary Sciences, Nyala University, Nyala, Sudan.
| | - Chen Li
- College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, Jiangsu Province, China
| | - Fengjuan Wang
- College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, Jiangsu Province, China
| | - Xiang Mao
- College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, Jiangsu Province, China; Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China.
| |
Collapse
|
95
|
Sato Y. [Structure and Function of a Novel Class of High Mannose-binding Proteins with Anti-viral or Anti-tumor Activity]. YAKUGAKU ZASSHI 2015; 135:1281-9. [PMID: 26521877 DOI: 10.1248/yakushi.15-00217] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The recently discovered high mannose (HM)-binding lectin family in lower organisms such as bacteria, cyanobacteria, and marine algae represents a novel class of anti-viral or anti-tumor compounds. This lectin family shows unique carbohydrate binding properties with exclusive high specificity for HM glycans with core trisaccharide comprising Manα(1-3)Manα(1-6)Man at the D2 arm. At low nanomolar levels, these lectins exhibit potent antiviral activity against HIV and influenza viruses through the recognition of HM glycans on virus spike glycoproteins. In addition, some of these lectins, such as bacterial PFL, show cytotoxicity for various cancer cells at low micromolar levels. Cell surface molecules to which PFL bound were identified as integrin alpha 2 and epidermal growth factor receptor (EGFR) by peptide mass finger printing with MALDI-TOF MS. Upon PFL binding, these molecules were rapidly internalized to cytoplasm. EGFR was time dependently degraded in the presence of PFL, and this process was largely responsible for autophagy. Furthermore, PFL sensitizes cancer cells to the EGFR kinase inhibitor, gefitinib. In vivo experiments showed that intratumoral injection of PFL significantly inhibited the growth of tumors in nude mice. PFL-mediated down regulation of integrin/EGFR ultimately contributed to the inhibition of tumor growth both in vitro and in vivo. Thus, the novel anti-cancer mechanism of PFL suggests that this lectin is potentially useful as an anti-cancer drug or as an adjuvant for other drugs. This class of proteins will likely have beneficial impact as a tool for biochemical and biomedical research because of its unique carbohydrate specificity and various biological activities.
Collapse
Affiliation(s)
- Yuichiro Sato
- Department of Medical Pharmacy, Faculty of Pharmacy, Yasuda Women's University
| |
Collapse
|
96
|
Animal and human mucosal tissue models to study HIV biomedical interventions: can we predict success? J Int AIDS Soc 2015; 18:20301. [PMID: 26530077 PMCID: PMC4631705 DOI: 10.7448/ias.18.1.20301] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 09/10/2015] [Accepted: 09/28/2015] [Indexed: 12/20/2022] Open
Abstract
Introduction Preclinical testing plays an integral role in the development of HIV prevention modalities. Several models are used including humanized mice, non-human primates and human mucosal tissue cultures. Discussion Pharmaceutical development traditionally uses preclinical models to evaluate product safety. The HIV prevention field has extended this paradigm to include models of efficacy, encompassing humanized mice, non-human primates (typically Asian macaques) and human mucosal tissue (such as cervical and colorectal). As our understanding of the biology of HIV transmission improves and includes the influence of human behaviour/biology and co-pathogens, these models have evolved as well to address more complex questions. These three models have demonstrated the effectiveness of systemic (oral) and topical use of antiretroviral drugs. Importantly, pharmacokinetic/pharmacodynamic relationships are being developed and linked to information gathered from human clinical trials. The models are incorporating co-pathogens (bacterial and viral) and the effects of coitus (mucosal fluids) on drug distribution and efficacy. Humanized mice are being tailored in their immune reconstitution to better represent humans. Importantly, human mucosal tissue cultures are now being used in early clinical trials to provide information on product efficacy to more accurately characterize efficacious products to advance to larger clinical trials. While all of these models have made advancements in product development, each has limitations and the data need to be interpreted by keeping these limitations in mind. Conclusions Development and refinement of each of these models has been an iterative process and linkages to data generated among each of them and from human clinical trials are needed to determine their reliability. Preclinical testing has evolved from simply identifying products that demonstrate efficacy prior to clinical trials to defining essential pharmacokinetic/pharmacodynamic relationships under a variety of conditions and has the potential to improve product selection prior to the initiation of large-scale human clinical trials. The goal is to provide researchers with ample information to make conversant decisions that guide optimized and efficient product development.
Collapse
|
97
|
Fernández Romero JA. Not just HIV: preventing other viral sexually transmitted infections. Future Virol 2015. [DOI: 10.2217/fvl.15.82] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- José A Fernández Romero
- Population Council, Center for Biomedical Research, 1230 York Avenue, New York, NY 10065, USA
| |
Collapse
|
98
|
Limkul J, Misaki R, Kato K, Fujiyama K. The combination of plant translational enhancers and terminator increase the expression of human glucocerebrosidase in Nicotiana benthamiana plants. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2015; 240:41-9. [PMID: 26475186 DOI: 10.1016/j.plantsci.2015.08.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 08/19/2015] [Accepted: 08/25/2015] [Indexed: 05/18/2023]
Abstract
Gaucher's disease is a lysosomal storage disorder caused by mutations in the gene encoding glucocerebrosidase (GCase). It is currently treated by enzyme replacement therapy using recombinant GCase expressed in mammalian cells. Plant production systems are among the most attractive alternatives for pharmaceutical protein production due to such advantages as low-cost, high-scalability, and safety from human pathogen contamination. Because of its high biomass yield, Nicotiana benthamiana could be an economical recombinant GCase production system. In this study, a translational enhancer and suitable terminator were utilized to obtain a powerful expression system for GCase production in N. benthamiana plants. Six plasmid constructs were used. The highest activity of 44.5units/mg protein (after subtraction of endogenous glucosidase activity of the wild-type plant) was observed in transgenic plants transformed with pAt-GC-HSP combined with a 5' untranslated region of the Arabidopsis alcohol dehydrogenase gene with the Arabidopsis heat shock protein terminator. These transgenic plant lines could pave the way to a stable plant-production system for low-cost, high-yield human GCase production.
Collapse
Affiliation(s)
- Juthamard Limkul
- International Center for Biotechnology, Osaka University, 2-1 Yamada-oka, Suita-shi, Osaka 565-0871, Japan
| | - Ryo Misaki
- International Center for Biotechnology, Osaka University, 2-1 Yamada-oka, Suita-shi, Osaka 565-0871, Japan
| | - Ko Kato
- Graduate School of Biological Sciences, Nara Institute of Science and Technology (NAIST), 8916-5 Takayama-cho, Ikoma, Nara 630-0192, Japan
| | - Kazuhito Fujiyama
- International Center for Biotechnology, Osaka University, 2-1 Yamada-oka, Suita-shi, Osaka 565-0871, Japan.
| |
Collapse
|
99
|
Fuqua JL, Hamorsky K, Khalsa G, Matoba N, Palmer KE. Bulk production of the antiviral lectin griffithsin. PLANT BIOTECHNOLOGY JOURNAL 2015; 13:1160-8. [PMID: 26176205 PMCID: PMC5016770 DOI: 10.1111/pbi.12433] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 06/04/2015] [Accepted: 06/12/2015] [Indexed: 05/13/2023]
Abstract
Application of plant-based protein expression systems for bulk production of recombinant protein pharmaceuticals is building momentum. There are considerable regulatory challenges to consider in commercialization of plant-made pharmaceuticals (PMPs), some of which are inherent to plant-production systems and others that are common with other production systems, but are new to PMPs because of the youth of the industry. In this review, we discuss our recent and ongoing experience with bulk production of the HIV microbicide candidate, griffithsin (GRFT), utilizing plant-based transient protein expression, with specific focus on areas relevant to commercial manufacturing of bulk GRFT active pharmaceutical ingredient (API). Analytical programs have been developed for the qualification and monitoring of both the expression vector system and the API detailing our experience and plans for each. Monitoring postpurification protein modifications are discussed in relation to stability and safety programs. Expression, processing and analytics programs are associated with increased manufacturing costs in current good manufacturing practice (cGMP) production because of the required qualification testing. The impact of these costs on the overall cost of goods is particularly relevant to GRFT manufacturing because GRFT, as an HIV microbicide, is most needed in populations at high risk for HIV exposure in resource-poor countries. Consequently, GRFT for microbicide applications is a very cost-sensitive recombinant PMP. We have therefore emphasized maintaining a low cost of goods. We provide a review of the literature on the economics of PMPs with various expression systems and how they may impact production costs and complexity.
Collapse
Affiliation(s)
- Joshua L Fuqua
- Owensboro Cancer Research Program, Owensboro, KY, USA
- Department of Pharmacology and Toxicology, James Graham Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY, USA
| | - Krystal Hamorsky
- Owensboro Cancer Research Program, Owensboro, KY, USA
- Department of Pharmacology and Toxicology, James Graham Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY, USA
| | | | - Nobuyuki Matoba
- Owensboro Cancer Research Program, Owensboro, KY, USA
- Department of Pharmacology and Toxicology, James Graham Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY, USA
| | - Kenneth E Palmer
- Owensboro Cancer Research Program, Owensboro, KY, USA
- Department of Pharmacology and Toxicology, James Graham Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY, USA
| |
Collapse
|
100
|
Abstract
Antiretroviral preexposure prophylaxis has huge potential for reducing the rates of new HIV infections in at risk populations. Oral and vaginal antiretroviral formulations have been evaluated in multiple Phase IIB and Phase III effectiveness trials and there is clear evidence that these products work when used. The converse is also true; antiretrovirals do not work when they are not used and unfortunately adherence is a problem for both HIV treatment and prevention. As a consequence, long-acting injectable and implantable antiretroviral formulations are being developed for the treatment and prevention of HIV infection. It is hoped they will reduce the burden of product adherence associated with the use of oral and topical products and improve clinical outcomes associated with their use. The purpose of this review is to summarize recent preclinical and clinical research in this area of HIV prevention.
Collapse
Affiliation(s)
- Ian McGowan
- Magee-Womens Research Institute, Division of Gastroenterology, Hepatology, & Nutrition, University of Pittsburgh School of Medicine, 204 Craft Ave, Room B621, Pittsburgh, PA 15213, USA
| |
Collapse
|